Sample records for dawn flight project

  1. Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challenge

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.

    2006-01-01

    The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), manages the project and is responsible for flight operation; Orbital Sciences Corporation (OSC), is the spacecraft builder and is responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), is responsible for science planning and operations. As a cost-capped mission, one of Dawn's implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL's ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL's GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project's commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to fundamental systems engineering practices: decomposition of the project request into manageable requirements; integration of multiple ground disciplines and experts into a focused team effort; definition of a structured yet flexible development process; definition of an in-process risk reduction plan; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.

  2. Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challange

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.

    2006-01-01

    The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), responsible for project management and flight operations; Orbital Sciences Corporation (OSC), spacecraft builder and responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), responsible for science planning and operations. As a cost-capped mission, one of Dawn s implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL s ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL s GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project s commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to an overall systems engineering process and fundamental systems engineering practices: decomposition of the project request into manageable requirements; definition of a structured yet flexible development process; integration of multiple ground disciplines and experts into a focused team effort; in-process risk management; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.

  3. Use of Cumulative Degradation Factor Prediction and Life Test Result of the Thruster Gimbal Assembly Actuator for the Dawn Flight Project

    NASA Technical Reports Server (NTRS)

    Lo, C. John; Brophy, John R.; Etters, M. Andy; Ramesham, Rajeshuni; Jones, William R., Jr.; Jansen, Mark J.

    2009-01-01

    The Dawn Ion Propulsion System is the ninth project in NASA s Discovery Program. The Dawn spacecraft is being developed to enable the scientific investigation of the two heaviest main-belt asteroids, Vesta and Ceres. Dawn is the first mission to orbit two extraterrestrial bodies, and the first to orbit a main-belt asteroid. The mission is enabled by the onboard Ion Propulsion System (IPS) to provide the post-launch delta-V. The three Ion Engines of the IPS are mounted on Thruster Gimbal Assembly (TGA), with only one engine operating at a time for this 10-year mission. The three TGAs weigh 14.6 kg.

  4. PolarWindsII_DAWN_DC8_1

    Atmospheric Science Data Center

    2018-04-18

    ... Layer Winds Surface Winds Upper Level Winds Wind Profiles LIDAR Calibration/Validation Order Data:  ... Model Barrier Flow Case Study DAWN Coherent Wind Profiling Flights DAWN Overview and Preliminary Flight Results ...

  5. Solar maximum mission fine pointing sun sensor dawn and dusk errors flight data and model analysis

    NASA Technical Reports Server (NTRS)

    Kulp, D. R.

    1988-01-01

    SMM flight system control errors occurring at spacecraft dawn and dusk are analyzed. The errors are associated with the fine pointing sun sensor (FPSS), which is a primary component of the SMM attitude control system. It is shown that the source of the FPSS dawn/dusk distortion is the incomplete masking of sunlight reflected off the earth by the optical baffle covering the FPSS sensor heads onboard the SMM during periods of orbit dawn and dusk. For the most part, the modeled behavior of the FPSS under dawn and dusk lighting conditions matches the observed behavior in the SMM flight data.

  6. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  7. Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-06-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  8. Modeling to Improve the Risk Reduction Process for Command File Errors

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Bryant, Larry; Waggoner, Bruce

    2013-01-01

    The Jet Propulsion Laboratory has learned that even innocuous errors in the spacecraft command process can have significantly detrimental effects on a space mission. Consequently, such Command File Errors (CFE), regardless of their effect on the spacecraft, are treated as significant events for which a root cause is identified and corrected. A CFE during space mission operations is often the symptom of imbalance or inadequacy within the system that encompasses the hardware and software used for command generation as well as the human experts and processes involved in this endeavor. As we move into an era of increased collaboration with other NASA centers and commercial partners, these systems become more and more complex. Consequently, the ability to thoroughly model and analyze CFEs formally in order to reduce the risk they pose is increasingly important. In this paper, we summarize the results of applying modeling techniques previously developed to the DAWN flight project. The original models were built with the input of subject matter experts from several flight projects. We have now customized these models to address specific questions for the DAWN flight project and formulating use cases to address their unique mission needs. The goal of this effort is to enhance the project's ability to meet commanding reliability requirements for operations and to assist them in managing their Command File Errors.

  9. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    NASA Technical Reports Server (NTRS)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This viewgraph presentation reviews the architectural description of the Mission Data Processing and Control System (MPCS). MPCS is an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is designed with these factors (1) Enabling plug and play architecture (2) MPCS has strong inheritance from GDS components that have been developed for other Flight Projects (MER, MRO, DAWN, MSAP), and are currently being used in operations and ATLO, and (3) MPCS components are Java-based, platform independent, and are designed to consume and produce XML-formatted data

  10. The DAWN Project's Transition to Mission Operations: on Its Way to Rendezvous with (4) Vesta and (1) Ceres

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Patel, Keyur C.

    2008-01-01

    Dawn launched on 27 September 2007 on a mission to orbit main belt asteroids (4) Vesta in 2011 - 2012 and (1) Ceres in 2015. The operations team conducted an extensive set of assessments of the engineering subsystems and science instruments during the first 80 days of the mission. A major objective of this period was to thrust for one week with the ion propulsion system to verify flight and ground systems readiness for typical interplanetary operations. Upon successful conclusion of the checkout phase, the interplanetary cruise phase began, most of which will be devoted to thrusting. The flexibility afforded by the use of ion propulsion enabled the project to accommodate a launch postponement of more than 3 months caused by a combination of launch vehicle and tracking system readiness, unfavorable weather, and then conflicts with other launches. Even with the shift in the launch date, all of the science objectives are retained with the same schedule and greater technical margins. This paper describes the conclusion of the development phase of the project, launch operations, and the progress of mission operations.

  11. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain.

    PubMed

    Reynolds, D R; Smith, A D; Chapman, J W

    2008-02-01

    Radar observations have consistently shown that high-altitude migratory flight in insects generally occurs after mass take-off at dusk or after take-off over a more extended period during the day (in association with the growth of atmospheric convection). In this paper, we focus on a less-studied third category of emigration - the 'dawn take-off' - as recorded by insect-monitoring radars during the summer months in southern England. In particular, we describe occasions when dawn emigrants formed notable layer concentrations centred at altitudes ranging from ca. 240 m to 700 m above ground, very probably due to the insects responding to local temperature maxima in the atmosphere, such as the tops of inversions. After persisting for several hours through the early morning, the layers eventually merged into the insect activity building up later in the morning (from 06.00-08.00 h onwards) in conjunction with the development of daytime convection. The species forming the dawn layers have not been positively identified, but their masses lay predominantly in the 16-32 mg range, and they evidently formed a fauna quite distinct from that in flight during the previous night. The displacement and common orientation (mutual alignment) characteristics of the migrants are described.

  12. DAWN: Dynamic Ad-hoc Wireless Network

    DTIC Science & Technology

    2016-06-19

    DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or

  13. Dawn's Exploration of Vesta

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Mase, Robert A.

    2012-01-01

    On 16 July 2011, after completing nearly four years of interplanetary flight, Dawn entered orbit around (4) Vesta, the second most massive body in the main asteroid belt. Dawn used solar electric propulsion to spiral to a series of six different orbits to accomplish its science campaign. Although the transfers to progressively lower orbits presented significant challenges, all were executed smoothly. During its nearly 14 months in orbit, Dawn spiraled down to 210 km above the surface and back up, before initiating the gradual departure to travel to dwarf planet (1) Ceres for a 2015 rendezvous. Dawn's exploration of Vesta has shown it to be geologically complex and fascinating, resembling terrestrial planets more than typical asteroids. Among the principal features is a 500-km diameter impact basin within which is the second tallest mountain known in the solar system. This paper presents Dawn's operations at Vesta and summarizes the principal findings.

  14. Flight Over Ceres

    NASA Image and Video Library

    2016-01-28

    This animated flight over Ceres explores the most prominent craters, as well as the mountain Ahuna Mons. The movie shows Ceres in enhanced color, using images taken by the NASA's Dawn spacecraft as it orbited the dwarf planet.

  15. KSC-07pd1645

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians lower the upper canister over the Dawn spacecraft. After enclosure, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  16. KSC-07pd1636

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the Dawn spacecraft has been wrapped with a protective cover before it is enclosed in a canister. Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  17. KSC-07pd1646

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians secure the upper canister over the Dawn spacecraft. Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  18. KSC-07pd1644

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians begin lowering the upper canister over the Dawn spacecraft. After enclosure, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  19. The Enabling Use of Ion Propulsion on Dawn

    NASA Astrophysics Data System (ADS)

    Rayman, M.; Russell, C. T.; Raymond, C. A.; Mase, R. M.

    2011-12-01

    Dawn's mission to orbit both Vesta and Ceres is enabled by its use of ion propulsion. Even orbiting Vesta alone with conventional propulsion would have been unaffordable within the constraints of the Discovery Program, and orbiting both would have been impossible. In fact, no other spacecraft has been targeted to orbit two solar system destinations, which is only one of the many firsts that Dawn will achieve. The successful testing of ion propulsion on Deep Space 1 paved the way for Dawn not only to use the hardware with confidence but also to learn how to design the flight system and design the mission to take advantage of its capabilities. In addition to allowing Dawn to reach these two important targets, ion propulsion allows the spacecraft to accomplish significant changes in its orbit. Therefore, science observations of Vesta are planned from four different orbits, at varying altitudes and solar geometry. The use of ion propulsion results in a significant mission design effort since the trajectory is constantly being refined. This also creates a flexible mission architecture, which allows for optimization of the mission as conditions change. Solar electric ion propulsion is especially well suited to missions to the Main Asteroid Belt since solar energy is still a viable power source, whereas the size of the solar array needed beyond 3.5 AU is a potential limitation. Dawn has already surpassed the record for greatest propulsive velocity, but its greatest achievements will no doubt be the incredible bounty of science data enabled by this innovative flight system.

  20. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated the engine over the entire NSTAR throttle range over a series of tests. Flow rates were very stable with variations of at most 0.2%, and transition times between throttle levels were typically 90 seconds or less with a maximum of 200 seconds, both significant improvements over the Dawn bang-bang feed system.

  1. KSC-07pd1640

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move another segment of the lower canister onto the workstand holding the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  2. KSC-07pd1643

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the partially enclosed Dawn spacecraft into another room to complete the canning. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  3. KSC-07pd1638

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  4. KSC-07pd1641

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians place another segment of the canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  5. KSC-07pd1642

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians examine the lower canister they placed around the bottom of the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  6. KSC-07pd1637

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister toward the stand holding the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  7. KSC-07pd1639

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  8. KSC-07pd1509

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft arrives on Launch Pad 17-B at Cape Canaveral Air Force Station where it will be mated with the first stage. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  9. A Perfect View of Vesta: Creating Pointing Observations for the Dawn Spacecraft on Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    Hay, Katrina M.

    2005-01-01

    The Dawn spacecraft has a timely and clever assignment in store. It will take a close look at two intact survivors from the dawn of the solar system (asteroids 4 Vesta and 1 Ceres) to understand more about solar system origin and evolution. To optimize science return, Dawn must make carefully designed observations on approach and in survey orbit, high altitude mapping orbit, and low altitude mapping orbit at each body. In this report, observations outlined in the science plan are modeled using the science opportunity analyzer program for the Vesta encounter. Specifically, I encoded Dawn's flight rules into the program, modeled pointing profiles of the optical instruments (framing camera, visible infrared spectrometer) and mapped their fields of view onto Vesta's surface. Visualization of coverage will provide the science team with information necessary to assess feasibility of alternative observation plans. Dawn launches in summer 2006 and ends its journey in 2016. Instrument observations on Vesta in 2011 will supply detailed information about Vesta's surface and internal structure. These data will be used to analyze the formation and history of the protoplanet and, therefore, complete an important step in understanding the development of our solar system.

  10. Non-parametric entrainment by natural twilight in the microchiropteran bat, Hipposideros speoris inside a cave.

    PubMed

    Joshi, D S; Vanlalnghaka, C

    2005-01-01

    The study aimed to determine the influence of repeated natural dawn and dusk twilight pulses in entraining the circadian flight activity rhythm of the microchiropteran bat, Hipposideros speoris, free-running in constant darkness in a natural cave. The bats were exposed to repeated dawn or dusk twilight pulses at eight circadian phases. All bats exposed to dawn twilight pulses were entrained by advancing transients, and the stable entrainment was reached when the onset of activity occurred about 12 h before the lights-on of the pulses, irrespective of the initial phase at which the bats were exposed to twilight. All bats exposed to dusk twilight pulses, however, were entrained by delaying transients, and the stable entrainment was reached when the onset of activity occurred about 1.6 h after the lights-on of the pulses. The entrainment caused by dawn and dusk twilight pulses is discussed in the context of the postulated two photoreceptors: the short wavelength sensitive (S) photoreceptors mediating entrainment via dusk twilight, and the medium wavelength sensitive (M) photoreceptors mediating entrainment via dawn twilight.

  11. KSC-07pd1514

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Delta II launch vehicle for the Dawn spacecraft is lowered into the hole toward the Delta first stage below. The two stages will be mated. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  12. KSC-07pd1512

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. It will be mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  13. KSC-07pd1510

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. It will be mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  14. Color Map of Ceres Elliptical Projection

    NASA Image and Video Library

    2016-03-22

    This global map elliptical map from NASA Dawn spacecraft shows the surface of Ceres in enhanced color, encompassing infrared wavelengths beyond human visual range. Some areas near the poles are black where Dawn color imaging coverage is incomplete.

  15. Level-2 Milestone 3504: Scalable Applications Preparations and Outreach for the Sequoia ID (Dawn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futral, W. Scott; Gyllenhaal, John C.; Hedges, Richard M.

    2010-07-02

    This report documents LLNL SAP project activities in anticipation of the ASC Sequoia system, ASC L2 milestone 3504: Scalable Applications Preparations and Outreach for the Sequoia ID (Dawn), due June 30, 2010.

  16. A compiler and validator for flight operations on NASA space missions

    NASA Astrophysics Data System (ADS)

    Fonte, Sergio; Politi, Romolo; Capria, Maria Teresa; Giardino, Marco; De Sanctis, Maria Cristina

    2016-07-01

    In NASA missions the management and the programming of the flight systems is performed by a specific scripting language, the SASF (Spacecraft Activity Sequence File). In order to perform a check on the syntax and grammar it is necessary a compiler that stress the errors (eventually) found in the sequence file produced for an instrument on board the flight system. In our experience on Dawn mission, we developed VIRV (VIR Validator), a tool that performs checks on the syntax and grammar of SASF, runs a simulations of VIR acquisitions and eventually finds violation of the flight rules of the sequences produced. The project of a SASF compiler (SSC - Spacecraft Sequence Compiler) is ready to have a new implementation: the generalization for different NASA mission. In fact, VIRV is a compiler for a dialect of SASF; it includes VIR commands as part of SASF language. Our goal is to produce a general compiler for the SASF, in which every instrument has a library to be introduced into the compiler. The SSC can analyze a SASF, produce a log of events, perform a simulation of the instrument acquisition and check the flight rules for the instrument selected. The output of the program can be produced in GRASS GIS format and may help the operator to analyze the geometry of the acquisition.

  17. KSC-07pd1515

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, workers maneuver the second stage of the Delta II launch vehicle onto the first stage for mating. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  18. KSC-07pd1511

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. At right can be seen the solid rocket boosters surrounding Delta's first stage. The second stage will be mated with the first stage. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  19. KSC-07pd1513

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Delta II launch vehicle for the Dawn spacecraft arrives at the upper level of the mobile service tower. It will be moved inside the tower and mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  20. GRIP Experiment 2010

    NASA Image and Video Library

    2010-08-17

    Michael Kavaya, of the NASA Langley Research Center, a Principal Investigator for the DAWN experiment, looks over data with Jeffrey Beyon during a flight of the NASA DC-8, Tuesday, Aug. 17, 2010, in the Gulf of Mexico. The DAWN experiment, also known as the Doppler Aerosol Wind Lidar, is one of many experiments supporting the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)

  1. Teachers Touch the Sky: A Workshop in Astronomy for Teachers in Grades 3-9

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Banholzer, S.; Dalba, P. A.; Edberg, S.

    2012-10-01

    Nine times during the past two decades, JPL technical staff assisted by master teachers conducted a one-week workshop for teachers in grades 3-9. The teachers are walked through hands-on activities that are all based on current projects in astronomy and space science at JPL. The activities are inquiry-based and emphasize the scientific method and fundamental math and science skills. Each year the workshop focuses on a NASA theme: in 2012 it was the Dawn Mission to the asteroid 4 Vesta. Several activities are based on the Lawrence Livermore Lab’s Great Exploration in Math and Science (GEMS) guides. Teachers tour JPL’s facilities such as the Space Flight Operations Center, the Spacecraft Assembly Facility, and the Mars Yard. The integration of the lessons into the teachers’ own curricula is discussed, and a field trip to JPL’s Table Mountain Observatory is included. Teachers learn of the resources NASA makes available to them, and they have the opportunity to talk to “real” scientists about their work. Teachers receive a stipend for participation plus classroom materials. Work funded by NASA through an E&PO supplement to the Dawn Participating Scientist Program.

  2. The bat-bird-bug battle: daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Jansson, Samuel; Zhu, Shiming; Li, Wansha; Svanberg, Katarina; Svanberg, Sune; Rydell, Jens; Song, Ziwei; Bood, Joakim; Brydegaard, Mikkel; Åkesson, Susanne

    2018-04-01

    We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.

  3. Reevaluating Surface Composition of Asteroid (4) Vesta by Comparing HED Spectral Data with Dawn Framing Camera (FC) Observations

    NASA Astrophysics Data System (ADS)

    Giebner, T.; Jaumann, R.; Schröder, S.

    2016-08-01

    This master's thesis project tries to reevaluate previous findings on asteroid (4) Vesta's surface composition by using DAWN FC Filter image ratios in a new way in order to identify HED (howardite, eucrite, diogenite) lithologies on the surface.

  4. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    DTIC Science & Technology

    2014-08-07

    Modeling and Simulation of an Unmanned Ground Vehicle Power System John Broderick Jack Hartner Dawn Tilbury Ella Atkins Sponsored by U.S...5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) John Broderick ; Jack Hartner; Dawn Tilbury; Ella Atkins 5d. PROJECT

  5. Preparing for Dawn's Mission at Ceres: Challenges and Opportunities in the Exploration of a Dwarf Planet

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Mase, Robert A.

    2014-01-01

    After escaping from Vesta in 2012, Dawn is continuing its 2.5-year flight to dwarf planet Ceres. Investigating this second destination promises to provide a view of an intriguing world of ice and rock, likely displaying fascinating geology entirely unlike any body yet orbited by a spacecraft. Dawn spends the significant majority of the time thrusting with its ion propulsion system to deliver the 3.6 km/s required to rendezvous with Ceres. Meanwhile, the operations team has developed the sequences that will be used there. Following orbit capture in March 2015, Dawn will fly to a series of four circular polar science orbits. The orbits, ranging from about 13,500 km to 375 km in altitude, are designed to optimize the scientific observations. The overall strategy for exploring Ceres is based strongly on the extremely successful 16 months of Vesta operations, during which Dawn met or exceeded all of its objectives. Nevertheless, the loss of two of the spacecraft's four reaction wheels has necessitated some important changes. Based on a very productive hydrazine conservation campaign in the interplanetary cruise and the development of new hydrazine-efficient methods of operating at Ceres, there is good reason to expect that Dawn will be able to accomplish all of its objectives regardless of the health of the reaction wheels. This paper describes the progress in traveling to Ceres as well as the plans for exploring this giant, icy world.

  6. Dawn Orbit Determination Team: Trajectory Modeling and Reconstruction Processes at Vesta

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J.; Ardito, Alessandro; Han, Dongsuk; Haw, Robert; Kennedy, Brian; Mastrodemos, Nick; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012. In order to maintain the designated science reference orbits and enable the transfers between those orbits, precise and timely orbit determination was required. Challenges included low-thrust ion propulsion modeling, estimation of relatively unknown Vesta gravity and rotation models, track-ing data limitations, incorporation of real-time telemetry into dynamics model updates, and rapid maneuver design cycles during transfers. This paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.

  7. Expedition 10 Landing

    NASA Image and Video Library

    2005-04-24

    Flight Engineer Salizhan Sharipov, bottom left, Expedition 10 Commander Leroy Chiao and European Space Agency astronaut Roberto Vittori, top left, arrive in Star City, Russia, Monday, April 25, 2005, after thet brought their Soyuz TMA-5 capsule to a pre-dawn landing northeast of Arkalyk, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  8. Expedition 10 Landing

    NASA Image and Video Library

    2005-04-24

    Expedition 10 Commander Leroy Chiao rests in a Russian search and rescue helicopter after a pre-dawn landing in the Soyuz TMA-5 capsule with crew mates Flight Engineer Salizhan Sharipov and European Space Agency astronaut Roberto Vittori northeast of the town of Arkalyk, Kazakhstan, Monday, April 25, 2005. Photo Credit: (NASA/Bill Ingalls)

  9. X-34 Poster Art

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is NASA's poster art for the X-34 technology Demonstrator. The X-34 was part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments would support the Agency's goal of dramatically reducing the cost of access to space and would define the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  10. Pathfinder

    NASA Image and Video Library

    2004-04-15

    Pictured is NASA's poster art for the X-34 technology Demonstrator. The X-34 was part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments would support the Agency's goal of dramatically reducing the cost of access to space and would define the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  11. Pathfinder

    NASA Image and Video Library

    2004-04-15

    Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  12. Dawning of A New Day on Dec. 22, 2012

    NASA Image and Video Library

    2017-12-08

    Dec. 21, 2012 was not the end of the world, contrary to some of the common beliefs out there. NASA's SDO satellite captured this image of the SUN on 12-22-12 at 00:14 UTC as the time rolled over into the new day. To learn more about why the world did not end yesterday, watch this Science @ NASA video: youtu.be/2wimiRUHMI4 or visit www.nasa.gov/2012 Credit: NASA/NOAA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Expedition 10 Landing

    NASA Image and Video Library

    2005-04-24

    Russian flight suits lie on the ground outside the inflatable medical tent, Monday, April 25, 2005, Arkalyk, Kazakhstan. Expedition 10 Commander Leroy Chiao, Flight Engineer Salizhan Sharipov and European Space Agency astronaut Roberto Vittori brought their Soyuz TMA-5 capsule to a pre-dawn landing April 25 northeast of the town of Arkalyk in Kazakhstan to wrap up a six-month mission aboard the International Space Station for Chiao and Sharipov, and a ten-day mission for Vittori, who flew under a commercial contract between ESA and the Russian Federal Space Agency. Photo Credit: (NASA/Bill Ingalls)

  14. X-34 Technology Demonstrator in High Bay

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  15. Level-2 Milestone 3244: Deploy Dawn ID Machine for Initial Science Runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, D

    2009-09-21

    This report documents the delivery, installation, integration, testing, and acceptance of the Dawn system, ASC L2 milestone 3244: Deploy Dawn ID Machine for Initial Science Runs, due September 30, 2009. The full text of the milestone is included in Attachment 1. The description of the milestone is: This milestone will be a result of work started three years ago with the planning for a multi-petaFLOPS UQ-focused platform (Sequoia) and will be satisfied when a smaller ID version of the final system is delivered, installed, integrated, tested, accepted, and deployed at LLNL for initial science runs in support of SSP mission.more » The deliverable for this milestone will be a LA petascale computing system (named Dawn) usable for code development and scaling necessary to ensure effective use of a final Sequoia platform (expected in 2011-2012), and for urgent SSP program needs. Allocation and scheduling of Dawn as an LA system will likely be performed informally, similar to what has been used for BlueGene/L. However, provision will be made to allow for dedicated access times for application scaling studies across the entire Dawn resource. The milestone was completed on April 1, 2009, when science runs began running on the Dawn system. The following sections describe the Dawn system architecture, current status, installation and integration time line, and testing and acceptance process. A project plan is included as Attachment 2. Attachment 3 is a letter certifying the handoff of the system to a nuclear weapons stockpile customer. Attachment 4 presents the results of science runs completed on the system.« less

  16. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Validation: Doppler Aerosol WiNd Lidar (DAWN). Interim Review #1 (6 months)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Trieu, Bo C.; Petros, Mulugeta

    2006-01-01

    A new project, selected in 2005 by NASA's Science Mission Directorate (SMD), under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The state-of-the-art 2-micron coherent DWL breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent DWL system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid DWL solution to the need for global tropospheric wind measurements.

  17. Dawn Orbit Determination Team : Trajectory Modeling and Reconstruction Processes at Vesta

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matt; Ardito, Alessandro; Han, Don; Haw, Robert; Kennedy, Brian; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The NASA Dawn spacecraft was launched on September 27, 2007 on a mission to study the asteroid belt's two largest objects, Vesta and Ceres. It is the first deep space orbiting mission to demonstrate solar-electric ion propulsion, providing the necessary delta-V to enable capture and escape from two extraterrestrial bodies. At this time, Dawn has completed its science campaign at Vesta and is currently on its journey to Ceres, where it will arrive in mid-2015. The spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012, capturing science data during four dedicated orbit phases. In order to maintain the reference orbits necessary for science and enable the transfers between those orbits, precise and timely orbit determination was required. The constraints associated with low-thrust ion propulsion coupled with the relatively unknown a priori gravity and rotation models for Vesta presented unique challenges for the Dawn orbit determination team. While [1] discusses the prediction performance of the orbit determination products, this paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.

  18. Clues to Ceres' Internal Structure

    NASA Image and Video Library

    2017-10-26

    This frame from an animation shows Ceres as seen by NASA's Dawn spacecraft from its high-altitude mapping orbit at 913 miles (1,470 kilometers) above the surface. The colorful map overlaid at right shows variations in Ceres' gravity field measured by Dawn, and gives scientists hints about the dwarf planet's internal structure. Red colors indicate more positive values, corresponding to a stronger gravitational pull than expected, compared to scientists' pre-Dawn model of Ceres' internal structure; blue colors indicate more negative values, corresponding to a weaker gravitational pull. The animation was created by projecting a map of Ceres onto a rotating sphere. The image scale is about 450 feet (140 meters) per pixel. The animations are available at https://photojournal.jpl.nasa.gov/catalog/PIA22083

  19. Dawn : a mission in developement for exploration of main belt asteroids Vesta and Ceres

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Fraschetti, Thomas C.; Russell, Christopher T.; Raymond, Carol A.

    2004-01-01

    Dawn is in development for a 2006 launch on a mission to explore main belt asteroids in order to yield insights into important questions about the formation and evolution of the solar system. Its objective is to acquire detailed data from orbit around two complementary bodies, Vesta and Ceres, the two most massive asteroids. The project relies on extensive heritage from other deep-space and Earth-orbiting missions, thus permitting the ambitious objectives to be accomplished with an affordable budget.

  20. Expedition 10 Landing

    NASA Image and Video Library

    2005-04-24

    Expedition 10 Flight Engineer Salizhan Sharipov, on bus, looks out at well wishers after arriving back at Star City, Russia from Kazakhstan, Monday, April 25, 2005. Expedition 10 Commander Leroy Chiao, Flight Engineer Salizhan Sharipov and European Space Agency astronaut Roberto Vittori brought their Soyuz TMA-5 capsule to a pre-dawn landing April 25 northeast of the town of Arkalyk to wrap up a six-month mission aboard the International Space Station for Chiao and Sharipov, and a ten-day mission for Vittori, who flew under a commercial contract between ESA and the Russian Federal Space Agency. Photo Credit: (NASA/Bill Ingalls)

  1. Colorized Map of Ceres Mercator Projection

    NASA Image and Video Library

    2016-03-22

    The map is a Mercator projection and has a resolution of 460 feet 140 meters per pixel. The images used to make this map were taken from Dawn high-altitude mapping orbit HAMO, at a distance of 915 miles 1,470 kilometers from Ceres.

  2. Petrology and Composition of HED Polymict Breccias

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Herrin, J. S.; Mertzman, S. A.; Mertzman, K. R.

    2010-01-01

    The howardite, eucrite and diogenite (HED) clan of meteorites forms the largest suite of achondrites with over 900 named members. The HEDs are igneous rocks and breccias of igneous rocks from a differentiated asteroid [1]. The consensus view is that these rocks hail from the asteroid 4 Vesta, which will be the first target of NASA's Dawn mission. When Dawn arrives at Vesta, she will begin remote imagery and spectroscopy of the surface. The surface she will observe will be dominated by rocks and soils mixed through impact gardening. To help with the interpretation of the remotely sensed data, we have begun a project on the petrologic and compositional study of a suite of HED polymict breccias. Here we report on the preliminary findings of this project.

  3. High-resolution Ceres HAMO Atlas derived from Dawn FC Images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    Introduction: NASA's Dawn spacecraft will orbit the dwarf planet Ceres in August and September 2015 in HAMO (High Altitude Mapping Orbit) with an altitude of about 1,500 km to characterize for instance the geology, topography, and shape of Ceres before it will be transferred to the lowest orbit. One of the major goals of this mission phase is the global mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera will take about 2600 clear filter images with a resolution of about 120 m/pixel and different viewing angles and different illumination conditions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. Both, improved orientation and high-resolution shape models, are provided by stereo processing of the HAMO dataset. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself will be done onto a reference sphere for Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:750,000 and will consist of 15 tiles that conform to the quadrangle schema for small planets and medium size Icy satellites. A map scale of 1:750,000 guarantees a mapping at the highest availa-ble Dawn resolution in HAMO. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters. This proposal was accepted by the IAU and the team proposed names for geological features to the IAU based on the HAMO mosaic. These feature names will be applied to the map tiles.

  4. In-Flight Operation of the Dawn Ion Propulsion System - The First Nine Months

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.; Mikes, Steven C.; Raymond, Marc D.

    2008-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta-V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion engine design is based on the design validated on NASA's Deep Space 1 mission. However, because of the very substantial (11 km/s) delta-V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are also based on the DS1 design. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft prior to the initiation of long-term thrusting for the heliocentric transfer to Vesta. The IPS hardware, consisting of three ion thrusters and TGAs, two PPUs and DCIUs, xenon feed system, and spacecraft control software, was investigated extensively. Thrust measurements, roll torque measurements, pointing capabilities, control characteristics, and thermal behavior of the spacecraft and IPS were carefully evaluated. The Dawn IPS fully met all its initial checkout performance objectives. Deterministic thrusting for cruise began on December 17, 2007. Over the subsequent approximately 330 days the IPS will be operated virtually continuously at full power thrusting (approximately 91 mN) leading to a Mars flyby in February 2009. The encounter with Mars provides a gravity assist for a plane change and is the only source of post-launch delta-V apart from the IPS. Following the Mars gravity assist IPS will be operated for approximately one year at full power and for 1.3 years at throttled power levels leading to rendezvous with Vesta in August of 2011. Following nine months of orbital operations with IPS providing the propulsion needed for orbit capture, science orbit transfer and orbit maintenance and Vesta escape, Dawn will transit to Ceres with an expected arrival date of February 2015. As of June 16, 2008 the ion thrusters on Dawn have operated for close to 3,846 hours and have delivered nearly 1 km/s of delta-V to the spacecraft. Dawn IPS operation has been almost flawless during the initial checkout and six months of cruise. This paper provides an overview of Dawn's mission objectives, mission and system design, and the results of the post-launch Dawn IPS mission operations through June 2008

  5. High resolution Ceres HAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2016-04-01

    Introduction: NASA's Dawn spacecraft entered the orbit of dwarf planet Ceres in March 2015, and will characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Ceres. One of the major goals of the mission is a global mapping of Ceres. Data: The Dawn mission was mapping Ceres in HAMO (High Altitude Mapping Orbit, 1475 km altitude) between August and October 2015. The framing camera took about 2,600 clear filter images with a resolution of about 140 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected images from one cycle (cycle #1) for the mosaicking process to have similar viewing and illumination conditions. Very minor gaps in the coverage were filled with a few images from cycle #2. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the targets. Both, improved orientation and a high-resolution shape model, are provided by stereo processing (bundle block adjustment) of the HAMO stereo image dataset [3]. Ceres's HAMO shape model was used for the calculation of the ray intersection points while the map projection itself was done onto the reference sphere of Ceres with a radius of 470 km. The final step is the controlled mosaicking) of all images to a global mosaic of Ceres, the so-called basemap. Ceres map tiles: The Ceres atlas was produced in a scale of 1:750,000 and consists of 15 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4]. A map scale of 1:750,000 guarantees a mapping at the highest available Dawn resolution in HAMO. The individual tiles were extracted from the global mosaic and reprojected. Nomenclature: The Dawn team proposed 81 names for geological features. By international agreement, craters must be named after gods and goddesses of agriculture and vegetation from world mythology, whereas other geological features must be named after agricultural festivals of the world. The nomenclature proposed by the Dawn team was approved by the IAU [http://planetarynames.wr.usgs.gov/] and is shown in Fig. 1. The entire Ceres HAMO atlas will be available to the public through the Dawn GIS web page [http://dawngis.dlr.de/atlas]. References: [1] Russell, C.T. and Raymond, C.A., Space Sci. Rev., 163, DOI 10.1007/s11214-011-9836-2; [2] Sierks, et al., 2011, Space Sci. Rev., 163, DOI 10.1007/s11214-011-9745-4; [3] Preusker, F. et al., this session; [4] Greeley, R. and Batson, G., 1990, Planetary Mapping, Cambridge University Press.

  6. KSC-06pd0214

    NASA Image and Video Library

    2006-02-07

    KENNEDY SPACE CENTER, FLA. - Before dawn on NASA Kennedy Space Center’s Shuttle Landing Facility (SLF), Steve Fossett talks to the media about the anticipated flight of the Virgin Atlantic GlobalFlyer. Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. Fossett is expected to take off from the KSC SLF. Later, takeoff of the GlobalFlyer was postponed due to a fuel leak that appeared during the last moments of loading. The next planned takeoff attempt is 7 a.m. Feb. 8 from the SLF. Photo credit: NASA/Kim Shiflett

  7. KSC-06pd0213

    NASA Image and Video Library

    2006-02-07

    KENNEDY SPACE CENTER, FLA. - Before dawn on NASA Kennedy Space Center’s Shuttle Landing Facility (SLF), Steve Fossett looks over the Virgin Atlantic GlobalFlyer in preparation for flight.. Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. Fossett is expected to take off from the KSC SLF. Later, takeoff of the GlobalFlyer was postponed due to a fuel leak that appeared during the last moments of loading. The next planned takeoff attempt is 7 a.m. Feb. 8 from the SLF. Photo credit: NASA/Kim Shiflett

  8. Cosmic Dawn Intensity Mapper (CDIM): Instrument and Mission Design

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.; CDIM Team

    2018-01-01

    CDIM is the Cosmic Dawn Intensity Mapper, one of the probe-class missions currently under study for NASA. A detailed Report from the study will be submitted to NASA and for consideration by the Decadal Survey. The flight system will comprise a wide-field cryogenic telescope with a large focal plane array providing complete coverage from optical through mid-IR. The system will be deployed to L2 or Earth-trailing orbit, to provide a stable thermal environment and allow extended observations of fields selected to be cross-correlated with deep surveys in other wavebands. Spectra with will be measured for every point in each target field, using linear variable filters (LVFs). These filters eliminate the need for a spectrometer in the focal plane. Spectra are built up through simple imaging of a series of telescope pointings separated by small angular offsets. This poster presents the initial concept for the instrument and mission design.

  9. Vesta Topography Map

    NASA Image and Video Library

    2013-07-08

    This color-coded topography map from NASA Dawn mission shows the giant asteroid Vesta in an equirectangular projection at 32 pixels per degree, relative to an ellipsoid of 177 miles by 177 miles by 142 miles.

  10. White Shirt Project Engages Students in Art and Society

    ERIC Educational Resources Information Center

    Independent School, 2016

    2016-01-01

    This brief article describes how Dawn Southworth, upper school art teacher at the Glen Urquhart School (GUS) (Massachusetts), devised the White Shirt Project to engage eighth-graders in art and society. Each year, Southworth purchases white shirts for her eighth grade students to transform into original works of art. Prior to the culminating art…

  11. Operation Odyssey Dawn and Lessons for the Future

    DTIC Science & Technology

    2013-02-14

    private meeting during the G8 Summit, Sarkozy informed them that French combat aircraft were en route to the Libyan coast. Soon thereafter, Rafale...force of any form on any part of Libyan territory, and requests the Member States concerned to inform the Secretary-General immediately of the...serve as a kind of forward air control air battle manager , sequencing and de-conflicting flights in addition to finding and identifying their own

  12. KSC-06pd0216

    NASA Image and Video Library

    2006-02-07

    KENNEDY SPACE CENTER, FLA. - As a rosy dawn creeps over the horizon, Deputy Associate Administrator for Exploration Operations Michael Foale (left) and astronaut Bill Readdy (center) talk to Steve Fossett about the anticipated flight of the Virgin Atlantic GlobalFlyer. Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. Fossett is expected to take off from the KSC SLF. Later, takeoff of the GlobalFlyer was postponed due to a fuel leak that appeared during the last moments of loading. The next planned takeoff attempt is 7 a.m. Feb. 8 from the SLF. Photo credit: NASA/Kim Shiflett

  13. Topographic Ceres Map With Crater Names

    NASA Image and Video Library

    2015-07-28

    This color-coded map from NASA Dawn mission shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union. Occator, the mysterious crater containing Ceres' mysterious bright spots, is named after the Roman agriculture deity of harrowing, a method of leveling soil. They retain their bright appearance in this map, although they are color-coded in the same green elevation of the crater floor in which they sit. The color scale extends about 5 miles (7.5 kilometers) below the surface in indigo to 5 miles (7.5 kilometers) above the surface in white. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected as an simple cylindrical projection. http://photojournal.jpl.nasa.gov/catalog/PIA19606

  14. High-resolution Ceres LAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C.

    2016-12-01

    Introduction: NASA's Dawn spacecraft has been orbiting the dwarf planet Ceres since December 2015 in LAMO (High Altitude Mapping Orbit) with an altitude of about 400 km to characterize for instance the geology, topography, and shape of Ceres. One of the major goals of this mission phase is the global high-resolution mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera took until the time of writing about 27,500 clear filter images in LAMO with a resolution of about 30 m/pixel and dif-ferent viewing angles and different illumination condi-tions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. A high-resolution shape model was provided by stereo processing of the HAMO dataset, orbit and attitude data are available as reconstructed SPICE data. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself was done onto a reference sphere of Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:250,000 and will consist of 62 tiles that conforms to the quadrangle schema for Venus at 1:5,000,000. A map scale of 1:250,000 is a compro-mise between the very high resolution in LAMO and a proper map sheet size of the single tiles. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters and to use names of agricultural festivals of the world for other geological features. This proposal was ac-cepted by the IAU and the team proposed 92 names for geological features to the IAU based on the LAMO mosaic. These feature names will be applied to the map tiles.

  15. Modeling Pilot Behavior for Assessing Integrated Alert and Notification Systems on Flight Decks

    NASA Technical Reports Server (NTRS)

    Cover, Mathew; Schnell, Thomas

    2010-01-01

    Numerous new flight deck configurations for caution, warning, and alerts can be conceived; yet testing them with human-in-the-Ioop experiments to evaluate each one would not be practical. New sensors, instruments, and displays are being put into cockpits every day and this is particularly true as we enter the dawn of the Next Generation Air Transportation System (NextGen). By modeling pilot behavior in a computer simulation, an unlimited number of unique caution, warning, and alert configurations can be evaluated 24/7 by a computer. These computer simulations can then identify the most promising candidate formats to further evaluate in higher fidelity, but more costly, Human-in-the-Ioop (HITL) simulations. Evaluations using batch simulations with human performance models saves time, money, and enables a broader consideration of possible caution, warning, and alerting configurations for future flight decks.

  16. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  17. Rebuilding the Joint Airborne Forward Air Controller: Analyzing Joint Air Tasking Doctrine’s Ability to Facilitate Effective Air-Ground Integration

    DTIC Science & Technology

    2013-12-13

    Air Controller: An Analysis of Mosquito Operations in Korea Since the dawn of powered flight, airpower visionaries and land warfare stalwarts have...properly employed, this aid from the sky in assisting during an attack by our own troops or in repelling an attack or counterattack by the enemy greatly...proliferation of airborne Forward Air Controllers. The Mosquito Airborne Tactical Air Coordinator (TAC(A)) role, known as FAC(A) in modern joint

  18. KSC-06pd0238

    NASA Image and Video Library

    2006-02-08

    KENNEDY SPACE CENTER, FLA. - Just at dawn, Steve Fossett (left) climbs into the Virgin Atlantic GlobalFlyer parked on NASA Kennedy Space Center’s Shuttle Landing Facility. Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. This is the second attempt in two days after a fuel leak was detected Feb. 7. The expected time of takeoff is 7 a.m. Photo credit: NASA/Kim Shiflett

  19. KSC-06pd0236

    NASA Image and Video Library

    2006-02-08

    KENNEDY SPACE CENTER, FLA. - Just at dawn, Steve Fossett (left) gets ready to climb into the Virgin Atlantic GlobalFlyer parked on NASA Kennedy Space Center’s Shuttle Landing Facility. Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. This is the second attempt in two days after a fuel leak was detected Feb. 7. The expected time of takeoff is 7 a.m. Photo credit: NASA/Kim Shiflett

  20. KSC-06pd0237

    NASA Image and Video Library

    2006-02-08

    KENNEDY SPACE CENTER, FLA. - Just at dawn, Steve Fossett (left) climbs into the Virgin Atlantic GlobalFlyer parked on NASA Kennedy Space Center’s Shuttle Landing Facility. Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. This is the second attempt in two days after a fuel leak was detected Feb. 7. The expected time of takeoff is 7 a.m. Photo credit: NASA/Kim Shiflett

  1. In-Flight Operation of the Dawn Ion Propulsion System Through Start of the Vesta Cruise Phase

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.; Brophy, John R.

    2009-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion design is based on the design validated on NASA's Deep Space 1 (DS1) mission. However, because of the very substantial (11 km/s) delta V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are derivatives of the components used on DS1. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft followed by cruise to Mars. Cruise thrusting leading to a Mars gravity assist began on December 17, 2007 and was successfully concluded as planned on October 31, 2008. During this time period the Dawn IPS was operated mostly at full power for approximately 6500 hours, consumed 71.7 kg of xenon and delivered approximately 1.8 km/s of delta V to the spacecraft. The thrusting to Mars was followed by a coasting period of approximately 3.5 months that included a Mars flyby in February of 2009. The Mars flyby provided a gravity assist (MGA) for a plane change and approximately 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. During the coast period IPS was operated for a trajectory correction maneuver and for engineering tests but was not operated for primary propulsion. Closest approach to Mars occurred as planned on February 17, 2009 and was followed by another coasting period of just under 4 months in duration. During this last coasting phase IPS was operated only for routine maintenance activities and for system engineering tests. Deterministic thrusting for heliocentric transfer to Vesta resumed on June 8, 2009. IPS will be operated for over two years at throttled power levels leading to arrival at Vesta in September of 2011 and arrival at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through the start of deterministic thrusting to Vesta.

  2. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-01

    Carrying a crew of seven, the Space Shuttle Orbiter Columbia soared through some pre-dawn clouds into the sky as it began its 27th flight, STS-109. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm. Here four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  3. Pre-dawn stomatal opening does not substantially enhance early-morning photosynthesis in Helianthus annuus.

    PubMed

    Auchincloss, Lisa; Easlon, Hsien M; Levine, Diedre; Donovan, Lisa; Richards, James H

    2014-06-01

    Most C3 plant species have partially open stomata during the night especially in the 3-5 h before dawn. This pre-dawn stomatal opening has been hypothesized to enhance early-morning photosynthesis (A) by reducing diffusion limitations to CO2 at dawn. We tested this hypothesis in cultivated Helianthus annuus using whole-shoot gas exchange, leaf level gas exchange and modelling approaches. One hour pre-dawn low-humidity treatments were used to reduce pre-dawn stomatal conductance (g). At the whole-shoot level, a difference of pre-dawn g (0.40 versus 0.17 mol m(-2) s(-1)) did not significantly affect A during the first hour after dawn. Shorter term effects were investigated with leaf level gas exchange measurements and a difference of pre-dawn g (0.10 versus 0.04 mol m(-2) s(-1)) affected g and A for only 5 min after dawn. The potential effects of a wider range of stomatal apertures were explored with an empirical model of the relationship between A and intercellular CO2 concentration during the half-hour after dawn. Modelling results demonstrated that even extremely low pre-dawn stomatal conductance values have only a minimal effect on early-morning A for a few minutes after dawn. Thus, we found no evidence that pre-dawn stomatal opening enhances A.

  4. Dawn: Cooperation, not Control

    NASA Technical Reports Server (NTRS)

    May, Todd

    2008-01-01

    On September 27, 2007, a Delta II rocket carrying the Dawn spacecraft lifted off from Kennedy Space Center. Part of NASAs Discovery program, the $370 million Dawn mission began its three-billion-mile voyage to the asteroid belt to study the asteroid Vesta and Ceres, a dwarf planet. The spacecraft is scheduled to reach Vesta in 2011. After spending nine months measuring the composition, shape, and topography of that body, it will travel a billion miles to carry out a similar analysis of Ceres in 2015. The Important Lessons: The demands of Dawn and other challenging missions have taught some important lessons for successful program and project management. These are the main ones: a) Program management, particularly of uncoupled and loosely coupled projects, should be more about enabling than controlling. You're working with motivated, high-performing teams and institutions with a track record of quality and success. Emphasize commander's intent over rudder control; let them know where you want to go and when you want to be there, then let them figure out how to get there. b) Open and honest discussion of issues is essential. People fill the void of the unknown with their worst fears. Get folks around the table and have open, honest, and frank dialogue. I've seldom seen this fail to get to the root of issues. c) You have to earn your seat at the table, proving that you are competent, trustworthy, and dedicated to the success of the mission. d) Know when to fold 'em. Your pride can get rolled up in making a milestone or launch date, but you have to make a judgment based on the realities of the situation and not wear down the team trying to meet an increasingly impossible deadline. e) The NASA governance model that gives a voice to the concerns of engineers and safety experts works-trust it and use it.

  5. Detection of serpentine in exogenic carbonaceous chondrite material on Vesta from Dawn FC data

    NASA Astrophysics Data System (ADS)

    Nathues, Andreas; Hoffmann, Martin; Cloutis, Edward A.; Schäfer, Michael; Reddy, Vishnu; Christensen, Ulrich; Sierks, Holger; Thangjam, Guneshwar Singh; Le Corre, Lucille; Mengel, Kurt; Vincent, Jean-Baptist; Russell, Christopher T.; Prettyman, Tom; Schmedemann, Nico; Kneissl, Thomas; Raymond, Carol; Gutierrez-Marques, Pablo; Hall, Ian; Büttner, Irene

    2014-09-01

    The Dawn mission’s Framing Camera (FC) observed Asteroid (4) Vesta in 2011 and 2012 using seven color filters and one clear filter from different orbits. In the present paper we analyze recalibrated HAMO color cubes (spatial resolution ∼60 m/pixel) with a focus on dark material (DM). We present a definition of highly concentrated DM based on spectral parameters, subsequently map the DM across the Vestan surface, geologically classify DM, study its spectral properties on global and local scales, and finally, compare the FC in-flight color data with laboratory spectra. We have discovered an absorption band centered at 0.72 μm in localities of DM that show the lowest albedo values by using FC data as well as spectral information from Dawn’s imaging spectrometer VIR. Such localities are contained within impact-exposed outcrops on inner crater walls and ejecta material. Comparisons between spectral FC in-flight data, and laboratory spectra of meteorites and mineral mixtures in the wavelength range 0.4-1.0 μm, revealed that the absorption band can be attributed to the mineral serpentine, which is typically present in CM chondrites. Dark material in its purest form is rare on Vesta’s surface and is distributed globally in a non-uniform manner. Our findings confirm the hypothesis of an exogenic origin of the DM by the infall of carbonaceous chondritic material, likely of CM type. It further confirms the hypothesis that most of the DM was deposited by the Veneneia impact.

  6. SPIDER: Probing the dawn of time from above the clouds

    NASA Astrophysics Data System (ADS)

    Moncelsi, Lorenzo; Spider Collaboration

    2017-11-01

    SPIDER is a balloon-borne microwave polarimeter designed to measure cosmological B-modes on degree angular scales in the presence of Galactic foregrounds. With six independent telescopes housing a total of 2000 detectors in the 90 GHz and 150 GHz frequency bands, SPIDER is the most instantaneously-sensitive CMB polarimeter deployed on the sky to date. SPIDER was successfully launched from McMurdo Station, Antarctica in January 2015 and acquired science data for 16 days. We cover the in-flight performance and present highlights from the ongoing data-analysis. After a successful recovery, the SPIDER team is planning the next flight, featuring one foreground-optimized channel at 280GHz, which will allow us constrain the primordial tensor-mode amplitude at the level of r < 0.03 (99% CL), in the presence of foregrounds.

  7. Lidar measurements at Lauder, NZ

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Gross, Michael; Singh, Upendra; Kimvilakani, Patrick

    1995-01-01

    In March of 1994, the GSFC Stratospheric Ozone Lidar was deployed to the Network for the Detection of Stratospheric Change (NDSC) site at Lauder, NZ. This was in conjunction with a series of NASA ER-2 flights from Christchurch, NZ south to the Antarctic Circle. These flights were organized to study the chemistry of the stratosphere before, during and after the formation of the well-known 'ozone hole'. Lidar measurements were made at four different time periods corresponding to the times of the ER-2 flights. Lauder is situated nearly along the flight path as the aircraft flew south and so the lidar measurements provide a checkpoint for the ozone, aerosol and temperature instruments onboard the aircraft. Whenever the weather permitted, lidar measurements were made as near to dawn, prior to the flight, and as near to sunset, after the flight. This provided data as close to the aircraft transit time as possible. More than 70 individual lidar measurements were made, each consisting of a vertical profile of ozone, temperature, and aerosol. These were made over three different seasons and show seasonal variation. Of particular interest in the lidar data base is the wintertime stratospheric - mesospheric temperature profiles, which show large variations at the stratopause and also some significant wave activity.

  8. Twilight airglow. II - N2/+/ emission at 3914 A

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1974-01-01

    One of the experiments aboard a rocket flight carrying instruments to measure the dawn airglow, the ion and electron densities, and the photoelectron spectrum is reported. For a solar zenith angle of 90 deg the emission at 3914 A from N2(+) peaks at about 260 km. The integrated intensity from model calculations suggests that resonance scattering of 3914-A solar photons off N2(+) produces 90% of the emission, whereas simultaneous photoionization excitation of N2(+) produces less than 10% of the emission. Photoelectron impact excitation is found to contribute about 1%.

  9. Expedition 10 Landing

    NASA Image and Video Library

    2005-04-24

    An external view of the Expedition 10 crew inflatable medical tent, Monday, April 25, 2005, Arkalyk, Kazakhstan. Expedition 10 Commander Leroy Chiao, Flight Engineer Salizhan Sharipov and European Space Agency astronaut Roberto Vittori brought their Soyuz TMA-5 capsule to a pre-dawn landing April 25 northeast of the town of Arkalyk in Kazakhstan to wrap up a six-month mission aboard the International Space Station for Chiao and Sharipov, and a ten-day mission for Vittori, who flew under a commercial contract between ESA and the Russian Federal Space Agency. Photo Credit: (NASA/Bill Ingalls)

  10. Essential science for understanding risks from radiation for airline passengers and crews

    NASA Astrophysics Data System (ADS)

    Knipp, Delores J.

    2017-04-01

    This commentary addresses the essential science and return-on-investment related to radiation risks for airline passengers and crews. The focus is on two recent NASA efforts to obtain data on radiation at and above commercial flight altitudes. Given that cosmic ray fluxes will likely be the highest since the dawn of the aviation age during the upcoming solar minimum, measuring high-altitude radiation dose and turning those data into useful information for aviation operators, schedulers, and frequent flyers will provide support for key decisions.

  11. What Drives Pakistan’s Interest in Afghanistan?

    DTIC Science & Technology

    2011-05-19

    2010), 13. 172 Kamran Shafi, “Putting on a Brave Face and Standing Tall,” http://www.dawn.com/wps/wcm/connect/dawn-content-library/dawn/the-newspaper...columnists/ kamran -shafi- putting-on-a-brave-face-and-standing-tall-480 (accessed September 10, 2010). 59 include sanctuary, to militant...Shafi, Kamran . “Putting on a Brave Face and Standing Tall.” http://www.dawn.com/wps/wcm/connect/dawn-content-library/dawn/the- newspaper

  12. NASA's Dawn Mission to Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    McFadden, Lucyann A.

    2011-01-01

    NASA's Dawn Mission to asteroid 4 Vesta is part of a 13-year robotic space project designed to reveal the nature of two of the largest asteroids in the Main Asteroid Belt of our Solar System. Ceres and Vesta are two complementary terrestrial protoplanets whose accretion was probably terminated by the formation of Jupiter. They provide a bridge in our understanding between the rocky bodies of the inner solar system and the icy bodies of the outer solar system. Ceres appears to be undifferentiated Vesta has experienced significant heating and likely differentiation. Both formed very early in history of the solar system and while suffering many impacts have remained intact, thereby retaining a record of events and processes from the time of planet formation. Detailed study of the geophysics and geochemistry of these two bodies provides critical benchmarks for early solar system conditions and processes that shaped its subsequent evolution. Dawn provides the missing context for both primitive and evolved meteoritic data, thus playing a central role in understanding terrestrial planet formation and the evolution of the asteroid belt. Dawn is to he launched in 2006 arriving at Vesta in 20l0 and Ceres in 2014, stopping at each to make 11 months of orbital measurements. The spacecraft uses solar electric propulsion, both in cruise and in orbit, to make most efficient use of its xenon propellant. The spacecraft carries a framing camera, visible and infrared mapping spectrometer, gamma ray/neutron magnetometer, and radio science.

  13. JPL Contamination Control Engineering

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  14. Ask Magazine

    NASA Technical Reports Server (NTRS)

    Prusak, Laurence (Editor); Cohen, Don (Editor); Ellis, Kerry (Editor); Kohut, Matt (Editor)

    2008-01-01

    The topics covered include: The Summer of Hydrogen; Leading Your Leaders; Dawn: Cooperation, not Control; Best Buy: Planning for Disaster The Astronaut Glove Challenge: Big Innovation from a (Very) Small Team; Using the Space Glove to Teach Spatial Thinking; The Power of Story; Interview with Jay O'Callahan; Learning from Space Entrepreneurs; Featured Invention: Laser Scaling Device; Reaching for the APEX at Ames; The Project Manager Who Saved His Country; Choosing and Developing the Right Leadership Styles for Projects; and The Costs of Knowledge.

  15. Stray light calibration of the Dawn Framing Camera

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Sierks, Holger; Nathues, Andreas; Richards, Michael; Gutierrez-Marques, Pablo

    2013-10-01

    Sensitive imaging systems with high dynamic range onboard spacecrafts are susceptible to ghost and stray-light effects. During the design phase, the Dawn Framing Camera was laid out and optimized to minimize those unwanted, parasitic effects. However, the requirement of low distortion to the optical design and use of a front-lit focal plane array induced an additional stray light component. This paper presents the ground-based and in-flight procedures characterizing the stray-light artifacts. The in-flight test used the Sun as the stray light source, at different angles of incidence. The spacecraft was commanded to point predefined solar elongation positions, and long exposure images were recorded. The PSNIT function was calculated by the known illumination and the ground based calibration information. In the ground based calibration, several extended and point sources were used with long exposure times in dedicated imaging setups. The tests revealed that the major contribution to the stray light is coming from the ghost reflections between the focal plan array and the band pass interference filters. Various laboratory experiments and computer modeling simulations were carried out to quantify the amount of this effect, including the analysis of the diffractive reflection pattern generated by the imaging sensor. The accurate characterization of the detector reflection pattern is the key to successfully predict the intensity distribution of the ghost image. Based on the results, and the properties of the optical system, a novel correction method is applied in the image processing pipeline. The effect of this correction procedure is also demonstrated with the first images of asteroid Vesta.

  16. Ceres Topographic Globe Animation

    NASA Image and Video Library

    2015-07-28

    This frame from an animation shows a color-coded map from NASA Dawn mission revealing the highs and lows of topography on the surface of dwarf planet Ceres. The color scale extends 3.7 miles (6 kilometers) below the surface in purple to 3.7 miles (6 kilometers) above the surface in brown. The brightest features (those appearing nearly white) -- including the well-known bright spots within a crater in the northern hemisphere -- are simply reflective areas, and do not represent elevation. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected onto a 3-D shape model of the dwarf planet to create the animation. http://photojournal.jpl.nasa.gov/catalog/PIA19605

  17. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In Astrotech's Payload Processing Facility, technicians help secure the Dawn spacecraft onto a moveable stand. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  18. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In Astrotech's Payload Processing Facility, an overhead crane lifts the Dawn spacecraft from its transporter. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C

  19. "Teachers Touch the Sky:" A Workshop in Astronomy for Teachers in Grades 3-9

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.

    2012-08-01

    Eight times during the past two decades, JPL technical staff, assisted by master teachers, conducted a one-week workshop for teachers in grades 3-9. In these workshops, the teachers are walked through hands-on activities that are all based on current projects in astronomy and space science at JPL. The activities are inquiry-based and emphasize the scientific method and fundamental math and science skills. Each year the workshop focuses on a NASA theme: in 2011 it was the Dawn Mission to the asteroid 4 Vesta, as orbit insertion occurred right before the workshop. Several activities are based on the Lawrence Livermore Lab's Great Exploration in Math and Science (GEMS) guides. Teachers tour JPL's facilities such as the Space Flight Operations Center, the Spacecraft Assembly Facility, and the Mars Yard. The integration of the lessons into the teachers' own curricula is discussed, and a field trip to JPL's Table Mountain Observatory is included. Teachers learn of the resources NASA makes available to them, and they have the opportunity to talk to "real" scientists about their work. Teachers receive an honorarium for participation plus classroom materials.

  20. DRUG ABUSE WARNING NETWORK (DAWN) DATABASE

    EPA Science Inventory

    The Drug Abuse Warning Network (DAWN) is an ongoing drug abuse data collection system sponsored by SAMHSA's Office of Applied Studies. DAWN collects data from: (1) hospital emergency departments (EDs) and (2) medical examiners (MEs). The DAWN ED component relies on a nationally r...

  1. In-Flight Operation of the Dawn Ion Propulsion System: Status at One Year from the Vesta Rendezvous

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.

    2010-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide most of the delta V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer among Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer among Ceres science orbits. The Dawn ion thruster [I thought we only called it a thruster. Both terms are used in the paper, but I think a replacement of every occurrence of "engine" with "thruster" would be clearer.] design is based on the design validated on NASA's Deep Space 1 (DS1) mission. However, because of the very substantial (11 km/s) delta V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are derivatives of the components used on DS1. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft followed by cruise to Mars. Cruise thrusting leading to a Mars gravity assist began on December 17, 2007 and was successfully concluded as planned on October 31, 2008. During this time period the Dawn IPS was operated mostly at full power for approximately 6500 hours, consumed 71.7 kg of xenon and delivered approximately 1.8 km/s of delta V to the spacecraft. The thrusting to Mars was followed by a coasting period of approximately 3.5 months that included a Mars flyby in February of 2009. The Mars flyby provided a gravity assist (MGA) for a plane change and approximately 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. During the coast period IPS was operated for a trajectory correction maneuver and for engineering tests but was not operated for primary propulsion. Closest approach to Mars occurred as planned on February 17, 2009 and was followed by another coasting period of just under 4 months in duration. During this last coasting phase IPS was operated only for routine maintenance activities and for system engineering tests. Deterministic thrusting for heliocentric transfer to Vesta resumed on June 8, 2009. Since resumption of cruise to Vesta IPS has been operated at throttled power levels, most of the time at full power, and with a duty cycle of approximately 93%, leading to an arrival at Vesta in July of 2011 and arrival at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through one year from the spacecraft's rendezvous with Vesta.

  2. 15 maps merged in one data structure - GIS-based template for Dawn at Ceres

    NASA Astrophysics Data System (ADS)

    Naß, A.; Dawn Mapping Team

    2017-09-01

    Derive regional and global valid statements out of the map (quadrangles) is already a very time intensive task. However, another challenge is how individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) representing one geologically-consistent final map. Within this contribution a template will be presented which was generated for the process of the interpretative mapping project of Ceres to accomplish the requirement of unifying and merging individual quadrangle.

  3. KSC-08pd4013

    NASA Image and Video Library

    2008-12-13

    CAPE CANAVERAL, Fla. -- Before dawn, at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida, space shuttle Endeavour is lowered toward the ground by the sling in the mate/demate device. Visible on Endeavour is the tail cone that covers and protects the main engines during the ferry flight. After Endeavour is on the ground, it will be towed via the two-mile tow-way from the SLF by a diesel-powered tractor to the Orbiter Processing Facility where it will begin preparations for its next mission, STS-127, targeted for May 2009. Photo credit: NASA/Jim Grossmann

  4. KSC-06pd0209

    NASA Image and Video Library

    2006-02-07

    KENNEDY SPACE CENTER, FLA. - Before dawn, the Virgin Atlantic GlobalFlyer is being fueled on NASA Kennedy Space Center’s Shuttle Landing Facility (SLF). Steve Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. Fossett is expected to take off from the KSC SLF. Later, takeoff of the GlobalFlyer was postponed due to a fuel leak that appeared during the last moments of loading. The next planned takeoff attempt is 7 a.m. Feb. 8 from the SLF. Photo credit: NASA/Kim Shiflett

  5. Application of ground-truth for classification and quantification of bird movements on migratory bird habitat initiative sites in southwest Louisiana: final report

    USGS Publications Warehouse

    Barrow, Wylie C.; Baldwin, Michael J.; Randall, Lori A.; Pitre, John; Dudley, Kyle J.

    2013-01-01

    This project was initiated to assess migrating and wintering bird use of lands enrolled in the Natural Resources Conservation Service’s (NRCS) Migratory Bird Habitat Initiative (MBHI). The MBHI program was developed in response to the Deepwater Horizon oil spill in 2010, with the goal of improving/creating habitat for waterbirds affected by the spill. In collaboration with the University of Delaware (UDEL), we used weather surveillance radar data (Sieges 2014), portable marine radar data, thermal infrared images, and visual observations to assess bird use of MBHI easements. Migrating and wintering birds routinely make synchronous flights near dusk (e.g., departure during migration, feeding flights during winter). Weather radars readily detect birds at the onset of these flights and have proven to be useful remote sensing tools for assessing bird-habitat relations during migration and determining the response of wintering waterfowl to wetland restoration (e.g., Wetlands Reserve Program lands). However, ground-truthing is required to identify radar echoes to species or species group. We designed a field study to ground-truth a larger-scale, weather radar assessment of bird use of MBHI sites in southwest Louisiana. We examined seasonal bird use of MBHI fields in fall, winter, and spring of 2011-2012. To assess diurnal use, we conducted total area surveys of MBHI sites in the afternoon, collecting data on bird species composition, abundance, behavior, and habitat use. In the evenings, we quantified bird activity at the MBHI easements and described flight behavior (i.e., birds landing in, departing from, circling, or flying over the MBHI tract). Our field sampling captured the onset of evening flights and spanned the period of collection of the weather radar data analyzed. Pre- and post-dusk surveys were conducted using a portable radar system and a thermal infrared camera. Landbirds, shorebirds, and wading birds were commonly found on MBHI fields during diurnal surveys in the fall. Ducks (breeding and early migrating species) were also detected on diurnal surveys, but were less abundant than the previously mentioned taxa. Wading birds were the most abundant taxa observed during evening surveys up to 5 min before dusk when their numbers declined and duck densities increased. Ducks accounted for 64.0% of all birds detected from 0-5 min before dusk. Most ducks observed at that time were flyovers (71.4%), but circling (9.2%), departing (12.1%), and landing birds (7.4%) were also detected. In fall, the portable radar system detected two peaks in bird movement: one shortly before sunset and a second shortly after dusk. The later movement began just before dusk, peaked approximately 9 min after dusk, and concluded within 20 min after dusk. The flight headings of birds changed in relation to time from dusk. In general, the majority of targets flew towards the southwest before dusk and towards the northeast after dusk. The change in flight direction pre- and post-dusk may be related to movements dominated by migratory versus local flight. In winter, ducks, shorebirds, wading birds, and landbirds were the most abundant taxa in diurnal surveys. Geese were abundant at times, but their frequency of occurrence and densities were highly variable. The majority of ducks, shorebirds, and wading birds were observed feeding in MBHI fields. Landbirds and geese were more commonly seen resting. Overwintering ducks and geese dominated the movements near dusk (95.9% of all birds ≤ 5 min pre-dusk). Ducks were more frequently observed landing in (40.8%) and flying over (33.5%) MBHI fields while geese were mainly observed circling (54.7%) and flying over (38.9%) sites. Most of the shorebirds detected Shorebirds, ducks, and wading birds were the most abundant taxa during diurnal surveys of MBHI fields in spring, and the majority of individuals were observed actively foraging rather than resting. Breeding, overwintering, and transient migrant species were all detected on MBHI fields. Near dusk, the majority of birds in flight were ducks (67.7% of all birds) that were flying over (38.2%), departing from (34.2%), or landing in (22.9%) MBHI fields. These results contrast with our winter observations when 40.8% of ducks landed in MBHI fields and 9.1% departed from fields. Portable radar and thermal camera data documented a peak in bird movements shortly after dusk, however, the peak was of lower magnitude than observed in the winter. Thermal camera data identified the birds as mostly shorebirds (57.3%) and waterfowl (40.4%). Flight headings were more variable than winter and lacked an undirectional flow. After the post-dusk movement had concluded, bird activity remained low throughout the night until approximately 30 min before dawn when a small peck in activity was observed. Flight headings during the pre-dawn were variable and multidirectional. We compared bird abundance data collected by each of our three sampling techniques (portable radar, thermal infrared camera, and direct visual observation) for the 45-min observation period immediately preceding dusk; the period when all three survey methods were used simultaneously. Abundance data from the three methods were significantly correlated at P ≤ 0.05. We documented diurnal and nocturnal bird use of MBHI fields. Most observations near dusk in winter, when weather radar data were sampled, were of ducks and geese, and in spring, shorebirds and ducks. Our winter observations show large synchronous movements of waterfowl occurring near dusk. These birds were moving to the NE and feeding in agricultural fields at night. Portable radar data suggest that birds stay in these fields through the night and make return flights near dawn.

  6. Perseus High Altitude Remotely Piloted Aircraft on Ramp

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle waits on Rogers Dry Lake in the pre-dawn darkness before a test flight at the Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  7. Dawn Fields of View of Asteroid Vesta

    NASA Image and Video Library

    2007-01-01

    This graphic from NASA's Dawn shows fields of view of Dawn instruments from Survey orbit (red), High Altitude Mapping Orbit (green), and Low Altitude Mapping Orbit (blue) and is part of the Mission Art series from NASA's Dawn mission. http://photojournal.jpl.nasa.gov/catalog/PIA19371

  8. Psychological Traumas of War: Training School Counselors as Home-Front Responders

    ERIC Educational Resources Information Center

    Waliski, Angie; Kirchner, JoAnn E.; Shue, Valorie M.; Bokony, Patti A.

    2012-01-01

    Purpose: With nearly 3 million US troops having deployed for Operations Enduring Freedom, Iraqi Freedom, and New Dawn (OEF/OIF/OND) since the conflicts began, an estimated 2 million children have been separated from a parent. This manuscript describes a collaborative project between a state's Veterans Healthcare System, a branch of the American…

  9. ePortfolios beyond Pre-Service Teacher Education: A New Dawn?

    ERIC Educational Resources Information Center

    Boulton, Helen

    2014-01-01

    The aim of this paper is to demonstrate the efficacy of using ePortfolios to enhance career skills for newly qualified teachers (NQTs). The context is the final phase of a longitudinal action research project investigating whether an ePortfolio, created as a pre-service teacher to evidence a digital story of developing professional identity, could…

  10. Human Exploration and Development in the Solar System

    NASA Astrophysics Data System (ADS)

    Mendell, Wendell

    2017-05-01

    Emergence of ballistic missile technology after the Second World War enabled human flight into Earth's orbit, fueling the imagination of those fascinated with science, technology, exploration, and adventure. The performance of astronauts in the early flights assuaged concerns about the functioning of "the human system" in the absence of normal gravity. However, researchers in space medicine have observed degradation of crews after longer exposure to the space environment and have developed countermeasures for most of them, although significant challenges remain. With the dawn of the 21st century, well-financed and technically competent commercial entities began to provide more affordable alternatives to historically expensive and risk-averse government-funded programs. Space's growing accessibility has encouraged entrepreneurs to pursue plans for potentially autarkic communities beyond Earth, exploiting natural resources on other worlds. Should such dreams prove to be technically and economically feasible, a new era will open for humanity with concomitant societal issues of a revolutionary nature.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2005-06-09

    The STS-121 patch depicts the Space Shuttle docked with the International Space Station (ISS) in the foreground, overlaying the astronaut symbol with three gold columns and a gold star. The ISS is shown in the configuration that it was during the STS-121 mission. The background shows the nighttime Earth with a dawn breaking over the horizon. STS-121, ISS mission ULF1.1, was the final Shuttle Return to Flight test mission. This utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.

  12. NAAMES Photo Essay

    NASA Image and Video Library

    2017-12-08

    Most NAAMES flights depart close to dawn, with the goal of getting out to its observation coordinates in time for maximum sun on the surface of the ocean. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. STS-101: Flight Day Highlights / CAR

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Halsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the launch of STS-101, beginning with the pre-flight breakfast and the crew's introduction. The videotape next shows a pre-dawn view of the orbiter waiting the crew's arrival. The crew is shown getting into their space suits and then climbing onboard the shuttle. In this videotape we are shown a few of the crew getting into their places onboard the shuttle. We are also shown the newly designed "glass cockpit", which gives the pilot and the commander better views and are told that this is the first flight of the shuttle with the new design. After the hatch is closed, we see the shuttle launch into the night, followed by the Solid Rocket Boosters (SRB) separation.

  14. In-Flight Operation of the Dawn Ion Propulsion System Through Survey Science Orbit at Ceres

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.

    2015-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt objects, Vesta and Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H- 9.5 (Delta-II Heavy) rocket that placed the 1218-kg spacecraft onto an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide a total delta V of 11 km/s for the heliocentric transfer to Vesta, orbit capture at Vesta, transfer between Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer between Ceres science orbits. Full-power thrusting from December 2007 through October 2008 was used to successfully target a Mars gravity assist flyby in February 2009 that provided an additional delta V of 2.6 km/s. Deterministic thrusting for the heliocentric transfer to Vesta resumed in June 2009 and concluded with orbit capture at Vesta on July 16, 2011. From July 2011 through September 2012 the IPS was used to transfer to all the different science orbits at Vesta and to escape from Vesta orbit. Cruise for a rendezvous with Ceres began in September 2012 and concluded with the start of the approach to Ceres phase on December 26, 2015, leading to orbit capture on March 6, 2015. Deterministic thrusting continued during approach to place the spacecraft in its first science orbit, called RC3, which was achieved on April 23, 2015. Following science operations at RC3 ion thrusting was resumed for twenty-five days leading to arrival to the next science orbit, called survey orbit, on June 3, 2015. The IPS will be used for all subsequent orbit transfers and trajectory correction maneuvers until completion of the primary mission in approximately June 2016. To date the IPS has been operated for over 46,774 hours, consumed approximately 393 kg of xenon, and provided a delta V of over 10.8 km/s to the spacecraft. The IPS performance characteristics are very close to the expected performance based on analysis and testing performed pre-launch. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through arrival at the second science orbit at Ceres.

  15. The Dawn of Vesta Science

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.; Brophy, John R.; Mikes, Steven C.

    2011-01-01

    The Dawn mission is part of NASA's Discovery Program and has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218-kg spacecraft onto an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide a total ?V of 11.3 km/s for the heliocentric transfer to Vesta, orbit capture at Vesta, transfer between Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer between Ceres science orbits. Fullpower thrusting from December 2007 through October 2008 was used to successfully target a Mars gravity assist flyby in February 2009 that provided an additional ?V of 2.6 km/s. Deterministic thrusting for the heliocentric transfer to Vesta resumed in June 2009 and concluded with orbit capture at Vesta on July 16, 2011. An additional 210 hours of IPS thrusting was used to enter the first Vesta science orbit, called Survey orbit, on August 3, 2011 at an altitude of approximately 2,735 km. To date the IPS has been operated for 23,621 hours, consumed approximately 252 kg of xenon, and provided a delta-V of approximately 6.7 km/s. The IPS performance characteristics are very close to the expected performance based on analysis and testing performed pre-launch. The only significant issue in over the almost four years of IPS operations in flight was the temporary failure of a valve driver board in the Digital Control and Interface Unit-1 (DCIU-1), resulting in a loss of thrust of approximately 29 hours. Thrusting operations resumed after switching to DCIU-2, and power cycling conducted after orbit capture restored DCIU-1 to full functionality. After about three weeks of Survey orbit operations the IPS will be used to transfer the spacecraft to the other planned science orbit altitudes. After approximately one year of science operations the IPS will be used for escape from Vesta and then for thrusting to Ceres with a planned arrival date at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through the start of science operations at Vesta.

  16. Polarization patterns of the twilight sky

    NASA Astrophysics Data System (ADS)

    Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit

    2005-08-01

    Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.

  17. Exploring the Experiences of Successful Completers of a System of Care for Children and Their Families through Case Narratives

    ERIC Educational Resources Information Center

    Anderson, Jeffrey A.; McIntyre, Janet S.; Somers, John W.

    2004-01-01

    This paper explores the experiences of three young people with emotional and behavioral challenges and their families as they entered, participated in, and completed a community-based system of care. Using a case narrative approach, the characteristics and experiences of the children and families who successfully completed the Dawn Project system…

  18. Bob McCall signs the Centennial of Flight mural in the artist's studio in Paradise Valley, Arizona.

    NASA Image and Video Library

    2003-06-05

    Artist Bob McCall signs the Centennial of Flight Mural in his Paradise Valley, Arizona Studio. The mural was created to celebrate the achievements of Wilbur and Orville Wright and to commemorate a century of powered flight. Many of the epic flights represented in the painting took place in the skies over NASA Dryden Flight Research Center. An equally important goal of this celebration is to encourage the values that have characterized 100 years of aviation history: ingenuity, inventiveness, persistence, creativity and courage. These values hold true not just for pioneers of flight, but also for all pioneers of invention and innovation, and they will remain an important part of America's future. "Celebrating One Hundred Years of Powered Flight, 1903-2003", documents many significant achievements in aeronautics and space flight from the dawn of powered flight to the present. Historic aircraft and spacecraft serve as the backdrop, highlighting six figures representing the human element that made these milestones possible. These figures stand, symbolically supported by the words of Wilbur Wright, "It is my belief that flight is possible…" The quote was taken from a letter written to his father on September 3rd, 1900, announcing Wilbur's intention to make "some experiments with a flying machine" at Kitty Hawk, North Carolina. "This year, Bob is helping us commemorate the Centennial of Flight with a beautiful mural slated for placement in our Dryden Flight Research Center that documents the history of flight from the Wright Flyer to the International Space Station. We should all take note, I think, that in the grand scheme of things, one hundred years is a very short period of time. In that blink of an eye we've gone from Kitty Hawk to Tranquility Base and now look forward to our rovers traversing the surface of Mars. Despite the challenges we face, the future we envision, like the future depicted in the artwork of Bob McCall, is a future of boundless possibility. "

  19. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (third from left), mission manager and project engineer, Mars Science Laboratory (MSL), Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. From left to right, Watkins is joined by Dwayne Brown, NASA Headquarters public affairs officer; Michael Meyer, lead scientist Mars Exploration Program, NASA Headquarters; Watkins; John Grant, geologist, Smithsonian National Air and Space Museum in Washington; Dawn Sumner, geologist, University of California, Davis and John Grotzinger, MSL project scientist, JPL. Photo Credit: (NASA/Carla Cioffi)

  20. From Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challenge

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.

    2006-01-01

    The Dawn GDS Team met the SC Sim integration challenge in eight months. The GDS System Engineering approach in response to the SC Simintegration challenge, focused on a set of key practices: decomposition of project request into manageable requirements; integration of multiple ground disciplines and experts into a focused team effort; risk management thru management of expectations; and aggregation of intermediate products into a final product. By maintaining a a system-level focus, the overall systems engineering process unified team GDS Team members with a common goal: the success of the ground system as a whole and not just the success of their individual expert contributions. Incorporation of Agile-type development efforts were aligned with a risk strategy based on team-oriented principles and expectations management, thus achieving a more stable baseline solution without compromising the integrity of the GDS design.

  1. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, technicians dressed in "bunny suits," or clean-room attire, begin working on the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  2. KSC-2009-1329

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – In the rosy dawn light, construction of the towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida continues on the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  3. KSC-2009-1328

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – In the rosy dawn light, construction of the towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida continues on the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.

  4. Wright Flyer detail in Bob McCall's Centennial of Flight mural

    NASA Image and Video Library

    2003-06-05

    The mural was created to celebrate the achievements of Wilbur and Orville Wright and to commemorate a century of powered flight. Central to the composition is the 1903 Wright Flyer. "On Dec. 17, 1903, the Wright brothers inaugurated the aerial age with their successful first flights of a heavier-than-air flying machine at Kitty Hawk, N.C. This airplane, known as the Wright Flyer, sometimes referred to as the Kitty Hawk Flyer, was the product of a sophisticated four-year program of research and development conducted by Wilbur and Orville Wright beginning in 1899. During the Wrights' design and construction of their experimental aircraft, they also pioneered many of the basic tenets and techniques of modern aeronautical engineering, such as the use of a wind tunnel and flight testing as design tools. Their seminal accomplishment encompassed not only the breakthrough first flight of an airplane, but also the equally important achievement of establishing the foundation of aeronautical engineering." Dr. Peter Jakab, Curator of Aviation, National Air and Space Museum, Smithsonian Institution "Celebrating One Hundred Years of Powered Flight, 1903-2003", documents many significant achievements in aeronautics and space flight from the dawn of powered flight to the present. Historic aircraft and spacecraft serve as the backdrop, highlighting six figures representing the human element that made these milestones possible. These figures stand, symbolically supported by the words of Wilbur Wright, "It is my belief that flight is possible…" The quote was taken from a letter written to his father on September 3rd, 1900, announcing Wilbur's intention to make "some experiments with a flying machine" at Kitty Hawk, North Carolina. "This year, Bob is helping us commemorate the Centennial of Flight with a beautiful mural slated for placement in our Dryden Flight Research Center that documents the history of flight from the Wright Flyer to the International Space Station. We should

  5. Bob Mccall and NASA Dryden Center Director Kevin Petersen in the artist's studio in Paradise Valley, Arizona.

    NASA Image and Video Library

    2003-06-05

    Bob Mccall and NASA Dryden Director Kevin Petersen stand by "Celebrating One Hundred Years of Powered Flight, 1903-2003", in the artist's studio in Paradise Valley, Arizona. The mural was created to celebrate the achievements of Wilbur and Orville Wright and to commemorate a century of powered flight. Many of the epic flights represented in the painting took place in the skies over NASA Dryden Flight Research Center. An equally important goal of this celebration will be to encourage the values that have characterized 100 years of aviation history: ingenuity, inventiveness, persistence, creativity and courage. These values hold true not just for pioneers of flight, but also for all pioneers of invention and innovation, and they will remain an important part of America's future. "Celebrating One Hundred Years of Powered Flight, 1903-2003", documents many significant achievements in aeronautics and space flight from the dawn of powered flight to the present. Historic aircraft and spacecraft serve as the backdrop, highlighting six figures representing the human element that made these milestones possible. These figures stand, symbolically supported by the words of Wilbur Wright, "It is my belief that flight is possible…" The quote was taken from a letter written to his father on September 3rd, 1900, announcing Wilbur's intention to make "some experiments with a flying machine" at Kitty Hawk, North Carolina. "This year, Bob is helping us commemorate the Centennial of Flight with a beautiful mural slated for placement in our Dryden Flight Research Center that documents the history of flight from the Wright Flyer to the International Space Station. We should all take note, I think, that in the grand scheme of things, one hundred years is a very short period of time. In that blink of an eye we've gone from Kitty Hawk to Tranquility Base and now look forward to our rovers traversing the surface of Mars. Despite the challenges we face, the future we envision, like the fu

  6. Artists Bob and Louise McCall in their studio in Paradise Valley, Arizona.

    NASA Image and Video Library

    2003-06-05

    Artists Bob and Louise McCall in their Paradise Valley, Arizona studio, in front of "Celebrating One Hundred Years of Powered Flight 1903-2003." The mural was created to celebrate the achievements of Wilbur and Orville Wright and to commemorate a century of powered flight. Many of the epic flights represented in the painting took place in the skies over NASA Dryden Flight Research Center. An equally important goal of this celebration is to encourage the values that have characterized 100 years of aviation history: ingenuity, inventiveness, persistence, creativity and courage. These values hold true not just for pioneers of flight, but also for all pioneers of invention and innovation, and they will remain an important part of America's future. "Celebrating One Hundred Years of Powered Flight, 1903-2003", documents many significant achievements in aeronautics and space flight from the dawn of powered flight to the present. Historic aircraft and spacecraft serve as the backdrop, highlighting six figures representing the human element that made these milestones possible. These figures stand, symbolically supported by the words of Wilbur Wright, "It is my belief that flight is possible…" The quote was taken from a letter written to his father on September 3rd, 1900, announcing Wilbur's intention to make "some experiments with a flying machine" at Kitty Hawk, North Carolina. "This year, Bob is helping us commemorate the Centennial of Flight with a beautiful mural slated for placement in our Dryden Flight Research Center that documents the history of flight from the Wright Flyer to the International Space Station. We should all take note, I think, that in the grand scheme of things, one hundred years is a very short period of time. In that blink of an eye we've gone from Kitty Hawk to Tranquility Base and now look forward to our rovers traversing the surface of Mars. Despite the challenges we face, the future we envision, like the future depicted in the artwork of Bo

  7. Dawn Usage, Scheduling, and Governance Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louis, S

    2009-11-02

    This document describes Dawn use, scheduling, and governance concerns. Users started running full-machine science runs in early April 2009 during the initial open shakedown period. Scheduling Dawn while in the Open Computing Facility (OCF) was controlled and coordinated via phone calls, emails, and a small number of controlled banks. With Dawn moving to the Secure Computing Facility (SCF) in fall of 2009, a more detailed scheduling and governance model is required. The three major objectives are: (1) Ensure Dawn resources are allocated on a program priority-driven basis; (2) Utilize Dawn resources on the job mixes for which they were intended;more » and (3) Minimize idle cycles through use of partitions, banks and proper job mix. The SCF workload for Dawn will be inherently different than Purple or BG/L, and therefore needs a different approach. Dawn's primary function is to permit adequate access for tri-lab code development in preparation for Sequoia, and in particular for weapons multi-physics codes in support of UQ. A second purpose is to provide time allocations for large-scale science runs and for UQ suite calculations to advance SSP program priorities. This proposed governance model will be the basis for initial time allocation of Dawn computing resources for the science and UQ workloads that merit priority on this class of resource, either because they cannot be reasonably attempted on any other resources due to size of problem, or because of the unavailability of sizable allocations on other ASC capability or capacity platforms. This proposed model intends to make the most effective use of Dawn as possible, but without being overly constrained by more formal proposal processes such as those now used for Purple CCCs.« less

  8. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the two largest members of the main asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional thrust design objectives (like minimum (Delta)V or minimum transfer time) often result in thrust direction time evolutions that can not be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and necessary to successfully navigate Dawn through all orbital transfers at Vesta.

  9. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    The Dawn spacecraft is seen here in clean room C of Astrotech's Payload Processing Facility. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  10. Dawn LAMO Image 19

    NASA Image and Video Library

    2016-02-03

    Tupo Crater on Ceres is seen in this view from NASA Dawn spacecraft. This crater, located in the southern hemisphere of Ceres, was named for the Polynesian god of turmeric. Dawn captured the scene on Dec. 24, 2015.

  11. A Reflective E-Learning Journey from the Dawn of CALL to Web 2.0 Intercultural Communicative Competence (ICC)

    ERIC Educational Resources Information Center

    Orsini-Jones, Marina

    2015-01-01

    The author reflects on how she has used technology as a language teacher since the mid-1980s. She describes the evolution of technology in language learning pre- and Internet tools, from "blended learning" to social media. She concludes with the telecollaboration projects she has been recently working on and the issues they have found…

  12. Dawn Blue Glow Artist Concept

    NASA Image and Video Library

    2015-03-02

    This artist concept shows NASA Dawn spacecraft arriving at the dwarf planet Ceres. Dawn travels through space using a technology called ion propulsion, with ions glowing with blue light are accelerated out of an engine, giving the spacecraft thrust.

  13. Artist Rendering of NASA Dawn Spacecraft Approaching Mars

    NASA Image and Video Library

    2009-05-23

    Artist rendering of NASA's Dawn spacecraft approaching Mars. Dawn, part of NASA's Discovery Program of competitively selected missions, was launched in 2007 to orbit the large asteroid Vesta and the dwarf planet Ceres. The two bodies have very different properties from each other. By observing them both with the same set of instruments, Dawn will probe the early solar system and specify the properties of each body. http://photojournal.jpl.nasa.gov/catalog/PIA18152

  14. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wears a "bunny suit," or clean-room attire, next to the Dawn spacecraft, which will be unbagged and undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  15. Vesta in the Light of Dawn, But Without HEDS?

    NASA Technical Reports Server (NTRS)

    McSween, H. Y.; Mittlefehldt, D. W.

    2014-01-01

    The derivation of HEDs from Vesta is strongly supported by Dawn data [1], and these meterorites have made interpretations of Dawn spectra much more rigorous. Compared to the Moon, where samples became available after geologic mapping, the exploration of Vesta has been backwards. But what if HEDs had not been available or identified as vestan samples? What petrologic and geochemical predictions would have been possible using Dawn data, without the benefit of HEDs?

  16. X-43A Final Flight Observations

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie

    2011-01-01

    The presentation will provide an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The third and final flight, which occurred on November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. As such, the final flight presented first time technical challenges in addition to final flight project closeout concerns. The goals and objectives for the third flight as well as those for the project will be presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter wil also be presented. Mission differences, vehicle modifications and lessons learned from the first and second flights as they applied to the third flight will also be discussed. Although X-43A flight 3 was always planned to be the final flight of the X-43A project, the X-43 program had two other vehicles and corresponding flight phases in X-43C and X-43B. Those other projects never manifested under the X-43 banner and X-43A flight 3 also became the final flight of X-43 program.

  17. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the giant asteroid Vesta and the dwarf planet Ceres, the two largest members of the main asteroid belt. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional low-thrust design objectives (like minimum change in velocity or minimum transfer time) often result in thrust direction time evolutions that cannot be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and turned out to be essential to the successful navigation of Dawn at Vesta.

  18. Method for the Collection, Gravimetric and Chemical Analysis of Nonvolatile Residue (NVR) on Surfaces

    NASA Technical Reports Server (NTRS)

    Gordon, Keith; Rutherford, Gugu; Aranda, Denisse

    2017-01-01

    Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International Space Station Experiment - X (MISSE-X), and Doppler Aerosol Wind Lidar (DAWN).

  19. KSC-07pd1827

    NASA Image and Video Library

    2007-07-11

    KENNEDY SPACE CENTER, FLA. -- The dawn sky over the Atlantic Ocean reveals Space Shuttle Endeavour sitting on Launch Pad 39A. First motion out of the Vehicle Assembly Building was at 8:10 p.m. July 10, and the shuttle was hard down on the pad at 3:02 a.m. July 11. The orbiter access arm is already extended to the orbiter from the fixed service structure. Peering just above the solid rocket booster on the left is the 290-foot-tall water tank. It provides the deluge over the mobile launcher platform for sound suppression during liftoff. Endeavour is scheduled to launch on mission STS-118 on Aug. 7. During the mission, Endeavour will carry into orbit the S5 truss, SPACEHAB module and external stowage platform 3. The mission is the 22nd flight to the International Space Station and will mark the first flight of Mission Specialist Barbara Morgan, the teacher-turned-astronaut whose association with NASA began more than 20 years ago. STS-118 will be the first flight since 2002 for Endeavour, which has undergone extensive modifications, including the addition of safety upgrades already added to orbiters Discovery and Atlantis. Photo credit: NASA/George Shelton

  20. KSC-07pd1299

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- At Astrotech's Payload Processing Facility, technicians check the Dawn spacecraft as it is lowered onto a transporter. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  1. KSC-07pd1305

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, technicians check the Dawn spacecraft as it is lowered onto a scale for weighing. Next, Dawn will be prepared for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  2. KSC-07pd1300

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. --At Astrotech's Payload Processing Facility, technicians maneuver the shipping container to place around the Dawn spacecraft, at right. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  3. Prioritizing Strategic Interests in South Asia

    DTIC Science & Technology

    2010-06-01

    rolled out “Aghaz-e-Haqooq Balochistan ”—its by far the most serious fallout from the conflict in Afghanistan is the increasing radicalization of...Foreign Policy, August 2006, available at <www.foreignpolicy.com/ story/cms.php?story_id=3578>. 17 “Aghaz-e-Haqooq Balochistan Package,” Dawn. com...November 16, 2009, available at <www.dawn.com/ wps/wcm/connect/dawn-content-library/dawn/news/ pakistan/13+aghaz-e-haqooq+ balochistan +package- za-05

  4. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  5. Artifacts reduction in VIR/Dawn data.

    PubMed

    Carrozzo, F G; Raponi, A; De Sanctis, M C; Ammannito, E; Giardino, M; D'Aversa, E; Fonte, S; Tosi, F

    2016-12-01

    Remote sensing images are generally affected by different types of noise that degrade the quality of the spectral data (i.e., stripes and spikes). Hyperspectral images returned by a Visible and InfraRed (VIR) spectrometer onboard the NASA Dawn mission exhibit residual systematic artifacts. VIR is an imaging spectrometer coupling high spectral and spatial resolutions in the visible and infrared spectral domain (0.25-5.0 μm). VIR data present one type of noise that may mask or distort real features (i.e., spikes and stripes), which may lead to misinterpretation of the surface composition. This paper presents a technique for the minimization of artifacts in VIR data that include a new instrument response function combining ground and in-flight radiometric measurements, correction of spectral spikes, odd-even band effects, systematic vertical stripes, high-frequency noise, and comparison with ground telescopic spectra of Vesta and Ceres. We developed a correction of artifacts in a two steps process: creation of the artifacts matrix and application of the same matrix to the VIR dataset. In the approach presented here, a polynomial function is used to fit the high frequency variations. After applying these corrections, the resulting spectra show improvements of the quality of the data. The new calibrated data enhance the significance of results from the spectral analysis of Vesta and Ceres.

  6. Greenland Ice Sheet in 3D Cutaway

    NASA Image and Video Library

    2017-12-08

    Peering into the thousands of frozen layers inside Greenland’s ice sheet is like looking back in time. Each layer provides a record of what Earth’s climate was like at the dawn of civilization, or during the last ice age, or during an ancient period of warmth similar to the one we experience today. Scientists using ice-penetrating radar data collected by NASA’s Operation IceBridge and earlier airborne campaigns have built the first-ever comprehensive map of layers deep inside the Greenland Ice Sheet. View the full video: youtu.be/u0VbPE0TOtQ Credit: NASA’s Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Dawn simulation and bright light in the treatment of SAD: a controlled study.

    PubMed

    Avery, D H; Eder, D N; Bolte, M A; Hellekson, C J; Dunner, D L; Vitiello, M V; Prinz, P N

    2001-08-01

    Some small controlled studies have found that dawn simulation is effective in treating seasonal affective disorder (SAD). With a larger sample size and a longer duration of treatment, we compared dawn simulation with bright light therapy and a placebo condition in patients with SAD. Medication-free patients with SAD were randomly assigned to one of three conditions: bright light therapy (10,000 lux for 30 min, from 6:00 AM to 6:30 AM), dawn simulation (1.5 hour dawn signal from 4:30 AM to 6:00 AM peaking at 250 lux), and a placebo condition, a dim red light (1.5 hour dawn signal from 4:30 am to 6:00 AM peaking at 0.5 lux.) Over the subsequent 6 weeks, the subjects were blindly rated by a psychiatrist using the Structured Interview Guide for the Hamilton Depression Rating-Seasonal Affective Disorder Version (SIGH-SAD). We modeled the profiles of the remissions (SIGH-SAD < or = 8) and response (> or =50% decrease in SIGH-SAD) to treatment over time using Cox proportional hazards models. The sample consisted of 95 subjects who were randomized to the three conditions: bright light (n = 33), dawn simulation (n = 31) and placebo (n = 31). Dawn simulation was associated with greater remission (p <.05) and response (p <.001) rates compared to the placebo. Bright light did not differ significantly from the placebo. Dawn simulation was associated with greater remission (p <.01) and response (p <.001) rates compared to the bright light therapy. The mean daily hours of sunshine during the week before each visit were associated with a significant increase in likelihood of both remission (p <.001) and response (p <.001). Dawn simulation was associated with greater remission and response rates compared to the placebo and compared to bright light therapy. The hours of sunshine during the week before each assessment were associated with a positive clinical response.

  8. 76 FR 48834 - Michigan Consolidated Gas Company and Dawn Gateway Pipeline, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ...'s Belle River-St. Clair Pipeline into the new 21-mile long Dawn Gateway Pipeline system, which... & Optimization, DTE Pipeline/Dawn Gateway LLC, One Energy Plaza, Detroit, MI 48226, phone (313) 235-6531 or e...

  9. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  10. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  11. KSC-07pd0858

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, an overhead crane lifts the Dawn spacecraft from its transporter. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  12. KSC-07pd1304

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, technicians check the progress of the Dawn spacecraft as it is lifted off the transporter. Dawn will be moved to a scale for weighing and then prepared for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  13. [Correlation study between obesity and dawn phenomenon in patients with type 2 diabetes].

    PubMed

    Guo, Zhenhong; Xu, Jie; Wang, Jingyu; Han, Fei; Zhang, Yi; Yang, X iaoyun; Yang, Shaohua; Chang, Bai; Yang, Juhong; Shan, Chunyan; Chen, Liming; Chang, Baocheng; Xu, Yanguang

    2016-01-01

    To investigate the correlation between the frequency of dawn phenomenon and obesity in patients with type 2 diabetes. This study was conducted in 98 patients with type 2 diabetes admitted to the Metabolic Disease Hospital of Tianjin Medical University from 2011 to 2014. The subjects were divided into 3 groups according to BMI: the normal weight (BMI 18.5-23.9 kg/m(2), n = 30), the overweight(BMI 24-27.9 kg/m(2), n = 33)and the obesity (BMI ≥ 28.0 kg/m(2), n = 35). All participants underwent continuous glucose monitoring for 72 h. Fasting plasma glucose(FPG), insulin and C-peptide were tested. Frequency of dawn phenomenon among the 3 groups was calculated, and the correlations between dawn phenomenon and its related factors were analyzed. The frequency of dawn phenomenon in type 2 diabetes increased with the increase of BMI in the 3 groups (P < 0.05) with 33.3% in the normal weight, 78.8% in the overweight and 88.6% in the obesity groups, respectively. The dawn phenomenon was positively correlated with BMI (r = 0.424, P < 0.05), Homeostasis model assessment of insulin resistance(HOMA-IR) (r = 0.781, P < 0.05), waist circumference (r = 0.394, P < 0.05), fasting C-peptide (r = 0.254, P < 0.05)and TG (r = 0.220, P < 0.05). It was negatively correlated with the course of diabetes mellitus (r = -0.278, P<0.05) and HDL-C (r = -0.268, P < 0.05). No correlation could be viewed between the dawn phenomenon and age, LDL-C, glycosylated hemoglobin A1c(HbA1c), TC and FPG (P > 0.05). The dawn phenomenon is closely associated with obesity and insulin resistance. The frequency of dawn phenomenon increases with BMI.

  14. Lung Reference Set A Application: Dawn Coverley- University of York (2011) — EDRN Public Portal

    Cancer.gov

    A variant of the nuclear matrix factor Ciz1 is prevalent in lung cancer cell lines and tumours, but not in adjacent lung tissue, giving rise to a protein that is stable enough to be detected in just one ul of plasma. This project evaluates the potential of variant Ciz1 as an early detection tool for lung cancer, using variant-selective antibodies.

  15. The Crater Ejecta Distribution on Ceres

    NASA Astrophysics Data System (ADS)

    Schmedemann, Nico; Neesemann, Adrian; Schulzeck, Franziska; Krohn, Katrin; Gathen, Isabel; Otto, Katharina; Jaumann, Ralf; Michael, Gregory; Raymond, Carol; Russell, Christopher

    2017-04-01

    Since March 6 2015 the Dawn spacecraft [1] has been in orbit around the dwarf planet Ceres. At small crater diameters Ceres appears to be peppered with secondary craters that often align in chains or form clusters. Some of such possible crater chains follow curved geometries and are not in a radial orientation with respect to possible source craters [2]. Ceres is a fast rotating body ( 9 h per revolution) with comparatively low surface gravity ( 0.27 m/s2). A substantial fraction of impact ejecta may be launched with velocities similar to Ceres' escape velocity (510 m/s), which implies that many ejected particles follow high and long trajectories. Thus, due to Ceres' fast rotation the distribution pattern of the reimpacting ejected material is heavily affected by Coriolis forces that results in a highly asymmetrical and curved pattern of secondary crater chains. In order to simulate flight trajectories and distribution of impact ejected material for individual craters on Ceres we used the scaling laws by [3] adjusted to the Cerean impact conditions [4] and the impact ejecta model by [5]. These models provide the starting conditions for tracer particles in the simulation. The trajectories of the particles are computed as n-body simulation. The simulation calculates the positions and impact velocities of each impacting tracer particle with respect to the rotating surface of Ceres, which is approximated by a two-axis ellipsoid. Initial results show a number of interesting features in the simulated deposition geometries of specific crater ejecta. These features are roughly in agreement with features that can be observed in Dawn imaging data of the Cerean surface. For example: ray systems of fresh impact craters, non-radial crater chains and global scale border lines of higher and lower color ratio areas. Acknowledgment: This work has been supported by the German Space Agency (DLR) on behalf of the Federal Ministry for Economic Affairs and Energy, Germany, grants 50 OW 1505 (NS, AN) and 50 QM 1301 (GM), and Helmholtz-Gemeinschaft (Helmholtz Association) PD-207 (KK). We thank the Dawn flight team for their excellent job of navigating and maintaining the probe. References: [1] C. T. Russell, et al., Science, 353, 1008 (2016). [2] J. E. C. Scully et al., American Astronomical Society, DPS meeting #48, id.321.02 (2016). [3] B. A. Ivanov, Space Science Reviews, 96, 87 (2001). [4] H. Hiesinger et al., Science, 353, 1003 (2016). [5] K. R. Housen and K. A. Holsapple, Icarus, 211, 856 (2011).

  16. Dawn HAMO Image 75

    NASA Image and Video Library

    2015-12-11

    This view from NASA Dawn spacecraft shows high northern latitudes on Ceres. Dawn acquired the image on Oct. 17, 2015, from an altitude of 915 miles 1,470 kilometers. It has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20138

  17. Abort Flight Test Project Overview

    NASA Technical Reports Server (NTRS)

    Sitz, Joel

    2007-01-01

    A general overview of the Orion abort flight test is presented. The contents include: 1) Abort Flight Test Project Overview; 2) DFRC Exploration Mission Directorate; 3) Abort Flight Test; 4) Flight Test Configurations; 5) Flight Test Vehicle Engineering Office; 6) DFRC FTA Scope; 7) Flight Test Operations; 8) DFRC Ops Support; 9) Launch Facilities; and 10) Scope of Launch Abort Flight Test

  18. STS-114 landing at Edwards Air Force Base

    NASA Image and Video Library

    2005-08-09

    STS114-S-046 (9 August 2005) --- The Space Shuttle Discovery, with its crew of seven astronauts onboard, glides to a pre-dawn landing at Edwards Air Force Base in California. Touchdown occurred at 5:11 a.m. (PDT) August 9, 2005. Astronauts Eileen M. Collins and James M. Kelly, STS-114 commander and pilot, respectively, guided the ship as it made its 17,000 mph descent from space into the morning darkness. The landing concludes a historic 14-day, Return to Flight mission to the International Space Station. Also onboard were astronauts Stephen K. Robinson, Andrew S. W. Thomas, Wendy B. Lawrence, Charles J. Camarda, and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, all mission specialists.

  19. Landing of the STS-114 orbiter Discovery

    NASA Image and Video Library

    2005-08-09

    STS114-S-044 (9 August 2005) --- The Space Shuttle Discovery, with its crew of seven astronauts onboard, glides to a pre-dawn landing at Edwards Air Force Base in California. Touchdown occurred at 5:11 a.m. (PDT) August 9, 2005. Astronauts Eileen M. Collins and James M. Kelly, STS-114 commander and pilot, respectively, guided the ship as it made its 17,000 mph descent from space into the morning darkness. The landing concludes a historic 14-day, Return to Flight mission to the International Space Station. Also onboard were astronauts Stephen K. Robinson, Andrew S. W. Thomas, Wendy B. Lawrence, Charles J. Camarda, and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, all mission specialists.

  20. Landing of the STS-114 orbiter Discovery

    NASA Image and Video Library

    2005-08-09

    STS114-S-042 (9 August 2005) --- The Space Shuttle Discovery, with its crew of seven astronauts onboard, glides to a pre-dawn landing at Edwards Air Force Base in California. Touchdown occurred at 5:11 a.m. (PDT) August 9, 2005. Astronauts Eileen M. Collins and James M. Kelly, STS-114 commander and pilot, respectively, guided the ship as it made its 17,000 mph descent from space into the morning darkness. The landing concludes a historic 14-day, Return to Flight mission to the international space station. Also onboard were astronauts Stephen K. Robinson, Andrew S. W. Thomas, Wendy B. Lawrence, Charles J. Camarda, and Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, all mission specialists.

  1. KSC-06pd0215

    NASA Image and Video Library

    2006-02-07

    KENNEDY SPACE CENTER, FLA. - As a rosy dawn creeps over the horizon, team members check the Virgin Atlantic GlobalFlyer before its early morning launch from NASA Kennedy Space Center’s Shuttle Landing Facility (SLF). Steve Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. Fossett is expected to take off from the KSC SLF. Later, takeoff of the GlobalFlyer was postponed due to a fuel leak that appeared during the last moments of loading. The next planned takeoff attempt is 7 a.m. Feb. 8 from the SLF. Photo credit: NASA/Kim Shiflett

  2. KSC-06pd0212

    NASA Image and Video Library

    2006-02-07

    KENNEDY SPACE CENTER, FLA. - Before dawn on NASA Kennedy Space Center’s Shuttle Landing Facility (SLF), Sir Richard Branson talks to the media. Branson is chairman and founder of Virgin Atlantic, which is sponsoring the GlobalFlyer. Steve Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. Fossett is expected to take off from the KSC SLF. Later, takeoff of the GlobalFlyer was postponed due to a fuel leak that appeared during the last moments of loading. The next planned takeoff attempt is 7 a.m. Feb. 8 from the SLF. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-1868

    NASA Image and Video Library

    2011-02-26

    CAPE CANAVERAL, Fla. -- The sun dawns over the Atlantic Ocean and Liberty Star, one of NASA's solid rocket booster retrieval ships, stationed in the Atlantic Ocean, to recover the right spent booster after it splashed down following space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux

  4. Ceres From Dawn, Processed

    NASA Image and Video Library

    2015-01-19

    This processed image, taken Jan. 13, 2015, shows the dwarf planet Ceres as seen from the Dawn spacecraft. The image hints at craters on the surface of Ceres. Dawn framing camera took this image at 238,000 miles 383,000 kilometers from Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA19167

  5. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  6. Flight Projects Office Information Systems Testbed (FIST)

    NASA Technical Reports Server (NTRS)

    Liggett, Patricia

    1991-01-01

    Viewgraphs on the Flight Projects Office Information Systems Testbed (FIST) are presented. The goal is to perform technology evaluation and prototyping of information systems to support SFOC and JPL flight projects in order to reduce risk in the development of operational data systems for such projects.

  7. Dawn: A Simulation Model for Evaluating Costs and Tradeoffs of Big Data Science Architectures

    NASA Astrophysics Data System (ADS)

    Cinquini, L.; Crichton, D. J.; Braverman, A. J.; Kyo, L.; Fuchs, T.; Turmon, M.

    2014-12-01

    In many scientific disciplines, scientists and data managers are bracing for an upcoming deluge of big data volumes, which will increase the size of current data archives by a factor of 10-100 times. For example, the next Climate Model Inter-comparison Project (CMIP6) will generate a global archive of model output of approximately 10-20 Peta-bytes, while the upcoming next generation of NASA decadal Earth Observing instruments are expected to collect tens of Giga-bytes/day. In radio-astronomy, the Square Kilometre Array (SKA) will collect data in the Exa-bytes/day range, of which (after reduction and processing) around 1.5 Exa-bytes/year will be stored. The effective and timely processing of these enormous data streams will require the design of new data reduction and processing algorithms, new system architectures, and new techniques for evaluating computation uncertainty. Yet at present no general software tool or framework exists that will allow system architects to model their expected data processing workflow, and determine the network, computational and storage resources needed to prepare their data for scientific analysis. In order to fill this gap, at NASA/JPL we have been developing a preliminary model named DAWN (Distributed Analytics, Workflows and Numerics) for simulating arbitrary complex workflows composed of any number of data processing and movement tasks. The model can be configured with a representation of the problem at hand (the data volumes, the processing algorithms, the available computing and network resources), and is able to evaluate tradeoffs between different possible workflows based on several estimators: overall elapsed time, separate computation and transfer times, resulting uncertainty, and others. So far, we have been applying DAWN to analyze architectural solutions for 4 different use cases from distinct science disciplines: climate science, astronomy, hydrology and a generic cloud computing use case. This talk will present preliminary results and discuss how DAWN can be evolved into a powerful tool for designing system architectures for data intensive science.

  8. KSC-07pd1243

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft for thermal blanket installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  9. KSC-07pd1242

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft for thermal blanket installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  10. KSC-07pd2429

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is moved toward the opening above the Delta II rocket in the mobile service tower. Dawn will be mated with the Delta in preparation for launch. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  11. KSC-07pd2430

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lowered toward the awaiting Delta II rocket in the mobile service tower. Dawn will be mated with the Delta in preparation for launch. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  12. KSC-07pd2427

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lifted alongside the mobile service tower. At the top, Dawn will be prepared for mating with the awaiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  13. KSC-07pd2431

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, workers in the mobile service tower keep watch as the Dawn spacecraft is lowered toward the awaiting Delta II rocket. Dawn will be mated with the Delta in preparation for launch. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  14. KSC-07pd2438

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers remove the transportation canister from around the Dawn spacecraft. After removal of the canister, Dawn will be mated with the waiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jim Grossmann

  15. KSC-07pd2426

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lifted alongside the mobile service tower. At the top, Dawn will be prepared for mating with the awaiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  16. KSC-07pd2424

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- The Dawn spacecraft arrives on Launch Pad 17-B at Cape Canaveral Air Force Station. At the pad, Dawn will be lifted into the mobile service tower and prepared for mating with the awaiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  17. KSC-07pd2442

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the upper transportation canister is lifted away from the Dawn spacecraft. After removal of the canister, Dawn will be mated with the waiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jim Grossmann

  18. KSC-07pd2425

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lifted off its transporter. Dawn will be lifted into the mobile service tower and prepared for mating with the awaiting Delta II rocket.Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  19. Photometric properties of Ceres from telescopic observations using Dawn Framing Camera color filters

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Li, Jian-Yang; Gary, Bruce L.; Sanchez, Juan A.; Stephens, Robert D.; Megna, Ralph; Coley, Daniel; Nathues, Andreas; Le Corre, Lucille; Hoffmann, Martin

    2015-11-01

    The dwarf planet Ceres is likely differentiated similar to the terrestrial planets but with a water/ice dominated mantle and an aqueously altered crust. Detailed modeling of Ceres' phase function has never been performed to understand its surface properties. The Dawn spacecraft began orbital science operations at the dwarf planet in April 2015. We observed Ceres with flight spares of the seven Dawn Framing Camera color filters mounted on ground-based telescopes over the course of three years to model its phase function versus wavelength. Our analysis shows that the modeled geometric albedos derived from both the IAU HG model and the Hapke model are consistent with a flat and featureless spectrum of Ceres, although the values are ∼10% higher than previous measurements. Our models also suggest a wavelength dependence of Ceres' phase function. The IAU G-parameter and the Hapke single-particle phase function parameter, g, are both consistent with decreasing (shallower) phase slope with increasing wavelength. Such a wavelength dependence of phase function is consistent with reddening of spectral slope with increasing phase angle, or phase-reddening. This phase reddening is consistent with previous spectra of Ceres obtained at various phase angles archived in the literature, and consistent with the fact that the modeled geometric albedo spectrum of Ceres is the bluest of all spectra because it represents the spectrum at 0° phase angle. Ground-based FC color filter lightcurve data are consistent with HST albedo maps confirming that Ceres' lightcurve is dominated by albedo and not shape. We detected a positive correlation between 1.1-μm absorption band depth and geometric albedo suggesting brighter areas on Ceres have absorption bands that are deeper. We did not see the "extreme" slope values measured by Perna et al. (Perna, D., et al. [2015]. Astron. Astrophys. 575 (L1-6)), which they have attributed to "resurfacing episodes" on Ceres.

  20. KSC-07pd1506

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- Technicians at Astrotech are preparing the Dawn spacecraft for spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B. The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  1. KSC-07pd1508

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the Dawn spacecraft is ready for spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B. The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  2. KSC-07pd1507

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- Technicians at Astrotech check the Dawn spacecraft before spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B.The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  3. KSC-07pd1505

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- Technicians at Astrotech prepare the Dawn spacecraft for spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B. The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  4. Dawn song in natural and artificial continuous day: Light pollution affects songbirds at high latitudes.

    PubMed

    Derryberry, Elizabeth P

    2017-10-01

    In Focus: Da Silva, A., & Kempenaers, B. (2017). Singing from North to South: Latitudinal variation in timing of dawn singing under natural and artificial light conditions. Journal of Animal Ecology, 86, 1286-1297. doi: 10.1111/1365-2656.12739 Satellite images of the world at night show bright dots connected by glowing lines crisscrossing the globe. As these connect-the-dots become brighter and expand into more and more remote regions, much of the flora and fauna of the world are experiencing evolutionarily unprecedented levels of light at night. Light cues are essential to most physiological and behavioural processes, and so the need to measure the effects of light pollution on these processes is critical. In this issue, Da Silva and Kempenaers take on this task using an important reproductive behaviour in songbirds-dawn song. The geographic, temporal and taxonomic breadth of sampling in this study allows for a close examination of a potentially complex interaction between light pollution and natural variation in the behaviour of dawn singing across latitude, season and species. Their extensive dataset highlights complexity in how songbirds respond to light pollution. Although light pollution has a strong effect on the timing of dawn song, not all songbirds respond the same way to light pollution, and the effects of light pollution vary with changes in natural light levels. Early dawn singers show more flexibility in the timing of dawn song across the season and across latitudes than late dawn singers, and also appear less affected by light pollution at high latitudes than are late dawn singers. These findings suggest that not all songbirds are responding to artificial continuous daylight as they do to natural continuous daylight, highlighting the general need to measure the fitness effects of light pollution. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  5. Dawn's Gamma Ray and Neutron Detector

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Feldman, William C.; McSween, Harry Y.; Dingler, Robert D.; Enemark, Donald C.; Patrick, Douglas E.; Storms, Steven A.; Hendricks, John S.; Morgenthaler, Jeffery P.; Pitman, Karly M.; Reedy, Robert C.

    2011-12-01

    The NASA Dawn Mission will determine the surface composition of 4 Vesta and 1 Ceres, providing constraints on their formation and thermal evolution. The payload includes a Gamma Ray and Neutron Detector (GRaND), which will map the surface elemental composition at regional spatial scales. Target elements include the constituents of silicate and oxide minerals, ices, and the products of volcanic exhalation and aqueous alteration. At Vesta, GRaND will map the mixing ratio of end-members of the howardite, diogenite, and eucrite (HED) meteorites, determine relative proportions of plagioclase and mafic minerals, and search for compositions not well sampled by the meteorite collection. The large south polar impact basin may provide an opportunity to determine the composition of Vesta’s mantle and lower crust. At Ceres, GRaND will provide chemical information needed to test different models of Ceres’ origin and thermal and aqueous evolution. GRaND is also sensitive to hydrogen layering and can determine the equivalent H2O/OH content of near-surface hydrous minerals as well as the depth and water abundance of an ice table, which may provide information about the state of water in the interior of Ceres. Here, we document the design and performance of GRaND with sufficient detail to interpret flight data archived in the Planetary Data System, including two new sensor designs: an array of CdZnTe semiconductors for gamma ray spectroscopy, and a loaded-plastic phosphor sandwich for neutron spectroscopy. An overview of operations and a description of data acquired from launch up to Vesta approach is provided, including annealing of the CdZnTe sensors to remove radiation damage accrued during cruise. The instrument is calibrated using data acquired on the ground and in flight during a close flyby of Mars. Results of Mars flyby show that GRaND has ample sensitivity to meet science objectives at Vesta and Ceres. Strategies for data analysis are described and prospective results for Vesta are presented for different operational scenarios and compositional models.

  6. NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  7. A Chief Engineer's View of the NASA X-43A Scramjet Flight Test

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.; Corpening, Griffin P.; Sherrill, Robert

    2005-01-01

    This paper presents an overview of the preparation and execution of the first two flights of the NASA X-43A scramjet flight test project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The challenges faced by the project team as they prepared the first ever scramjet-powered airplane for flight are presented. Modifications made to the second flight vehicle as a result of the first flight failure and the return to flight activities are discussed. Flight results and lessons learned are also presented.

  8. Mission operations and command assurance: Flight operations quality improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Potts, Sherrill S.; Witkowski, Mona M.

    1994-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous solving among flight teams and provides continuous process improvement to reduce risk in mission operations by addressing human factors. The MO&CA task has evolved from participating as a member of the spacecraft team, to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  9. 78 FR 77684 - Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Hennepin Avenue, Minneapolis, Minnesota 55480-0291: 1. Dawn Crane, Fosston, Minnesota, individually and as trustee; Lorri Skeie-Campbell, Rio Rancho, New Mexico, individually and as trustee; Dawn M. Skeie Crane Irrevocable Trust; Dawn Crane, as co- trustee; Lorri J. Skeie-Campbell Irrevocable Trust, Winger, and Lorri...

  10. Dawn LAMO Image 188

    NASA Image and Video Library

    2016-10-07

    NASA's Dawn spacecraft views Oxo Crater (6 miles, 10 kilometers wide) in this view from Ceres. Dawn took this image on June 4, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20950

  11. KSC-07pd1248

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers begin black light testing on the solar panels of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  12. KSC-07pd1249

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers begin black light testing on the solar panels of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  13. Overview of the NASA Dryden Flight Research Facility aeronautical flight projects

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    1992-01-01

    Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

  14. Continuous glucose monitoring system: dawn period calibration does not change accuracy of the method.

    PubMed

    Augusto, Gustavo A; Sousa, André G P; Perazo, Marcela N A; Correa-Giannella, Maria L C; Nery, Marcia; Melo, Karla F S de

    2009-06-01

    Continuous glucose monitoring system is a valuable instrument to measure glycemic control, which uses a retrospective calibration based upon 3 to 4 capillary glucose meter values inserted by the patient each day. We evaluated the interference of calibration during the dawn period in the system accuracy. The monitoring data were retrospectively divided into two groups: with (Group A) or without (Group B) the dawn period calibration (between 1:00 and 5:00 AM). Accuracy of the method was expressed by relative absolute difference. Thirty-four continuous glucose monitoring data were evaluated comprising a total of 112 nights. A total of 289 paired readings were analyzed - 195 in Group A and 94 in Group B. We did not find a difference in relative absolute difference (RAD%) in any analyzed period of day by adding dawn calibration. These data suggest that dawn calibration does not alter accuracy of method.

  15. KSC-07pd1306

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, the Dawn spacecraft is weighed before fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  16. KSC-07pd0851

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- Two trucks (one air-ride, one flat-bed) deliver the Dawn spacecraft, as well as additional electrical and ground support equipment and xenon ground support equipment, to Astrotech. Dawn will be moved from the truck and the shipping container removed. The spacecraft will then be moved into the high bay of the Payload Processing Facility. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  17. KSC-07pd2423

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- The Dawn spacecraft is moved out of the Astrotech Space Operations facility, on its way to Launch Pad 17-B at Cape Canaveral Air Force Station. At the pad, Dawn will be lifted into the mobile service tower and prepared for mating with the awaiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  18. KSC-07pd2444

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers remove the lower segments of the transportation canister away from the Dawn spacecraft. After removal of the canister, Dawn will be mated with the waiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jim Grossmann

  19. Historical Picture of Maxwell AFB.

    DTIC Science & Technology

    1986-04-01

    and ZIP Code) 10. SOURCE OF FUNDING NOS. PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. NO. II T’ LE drnc~ iud . 7ecurity Classification) Historical...activities created a great deal of public interest. From dawn to sunset, people came to the site by whatever means they could--by foot, by horse , by...birds." (16:7) Those bringing horses were warned * by the local newspaper, the Montgomery Advertiser, to be careful near the site, because the strange

  20. Mission operations and command assurance: Instilling quality into flight operations

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  1. The path to an experiment in space (from concept to flight)

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.

  2. Sex in an uncertain world: environmental stochasticity helps restore competitive balance between sexually and asexually reproducing populations.

    PubMed

    Park, A W; Vandekerkhove, J; Michalakis, Y

    2014-08-01

    Like many organisms, individuals of the freshwater ostracod species Eucypris virens exhibit either obligate sexual or asexual reproductive modes. Both types of individual routinely co-occur, including in the same temporary freshwater pond (their natural habitat in which they undergo seasonal diapause). Given the well-known two-fold cost of sex, this begs the question of how sexually reproducing individuals are able to coexist with their asexual counterparts in spite of such overwhelming costs. Environmental stochasticity in the form of 'false dawn' inundations (where the first hydration is ephemeral and causes loss of early hatching individuals) may provide an advantage to the sexual subpopulation, which shows greater variation in hatching times following inundation. We explore the potential role of environmental stochasticity in this system using life-history data analysis, climate data, and matrix projection models. In the absence of environmental stochasticity, the population growth rate is significantly lower in sexual subpopulations. Climate data reveal that 'false dawn' inundations are common. Using matrix projection modelling with and without environmental stochasticity, we demonstrate that this phenomenon can restore appreciable balance to the system, in terms of population growth rates. This provides support for the role of environmental stochasticity in helping to explain the maintenance of sex and the occurrence of geographical parthenogenesis. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  3. Marshall Space Flight Center and the Reactor-in-Flight Stage: A Look Back at Using Nuclear Propulsion to Power Space Vehicles in the 1960's

    NASA Technical Reports Server (NTRS)

    Wright, Mike

    2003-01-01

    This paper examines the Marshall Space Flight Center s role in the Reactor-In-Flight (RIlT) project that NASA was involved with in the early 1960 s. The paper outlines the project s relation to the joint NASA-Atomic Energy Commission nuclear initiative known as Project Rover. It describes the justification for the RIFT project, its scope, and the difficulties that were encountered during the project. It also provides as assessment of NASA s overall capabilities related to nuclear propulsion in the early 1960 s.

  4. Flight projects overview

    NASA Technical Reports Server (NTRS)

    Levine, Jack

    1988-01-01

    Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.

  5. 14 CFR 1216.305 - Criteria for actions requiring environmental assessments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... assessment are: (1) Specific spacecraft development and flight projects in space science. (2) Specific spacecraft development and flight projects in space and terrestrial applications. (3) Specific experimental... spacecraft development and flight projects. (2) R&D activities in space and terrestrial applications (e.g...

  6. Final Report for the Advanced Camera for Surveys (ACS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    ACS was launched aboard the Space Shuttle Columbia just before dawn on March 1, 2002. At the time of liftoff, the Hubble Space Telescope (HST) was reflecting the early morning sun as it moved across the sky. After successfully docking with HST, several components were replaced. One of the components was the Advanced Camera for Surveys built by Ball Aerospace & Technologies Corp. (BATC) in Boulder, Colorado. Over the life of the HST contract at BATC, hundreds of employees had the pleasure of working on the concept, design, fabrication, assembly, and test of ACS. Those employees thank NASA - Goddard Space Flight Center and the science team at Johns Hopkins University (JHU) for the opportunity to participate in building a great science instrument for HST.

  7. KSC-06pd0211

    NASA Image and Video Library

    2006-02-07

    KENNEDY SPACE CENTER, FLA. - During fueling of the Virgin Atlantic GlobalFlyer before dawn on NASA Kennedy Space Center’s Shuttle Landing Facility (SLF), Sir Richard Branson talks to the media. Branson is chairman and founder of Virgin Atlantic. The GlobalFlyer is in the background. Steve Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. Fossett is expected to take off from the KSC SLF. Later, takeoff of the GlobalFlyer was postponed due to a fuel leak that appeared during the last moments of loading. The next planned takeoff attempt is 7 a.m. Feb. 8 from the SLF. Photo credit: NASA/Kim Shiflett

  8. KSC-06pd0210

    NASA Image and Video Library

    2006-02-07

    KENNEDY SPACE CENTER, FLA. - During fueling of the Virgin Atlantic GlobalFlyer before dawn on NASA Kennedy Space Center’s Shuttle Landing Facility (SLF), Sir Richard Branson talks to the media. Branson is chairman and founder of Virgin Atlantic. The GlobalFlyer is in the background. Steve Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. Fossett is expected to take off from the KSC SLF. Later, takeoff of the GlobalFlyer was postponed due to a fuel leak that appeared during the last moments of loading. The next planned takeoff attempt is 7 a.m. Feb. 8 from the SLF. Photo credit: NASA/Kim Shiflett

  9. A century of wind tunnels since Eiffel

    NASA Astrophysics Data System (ADS)

    Chanetz, Bruno

    2017-08-01

    Fly higher, faster, preserve the life of test pilots and passengers, many challenges faced by man since the dawn of the twentieth century, with aviation pioneers. Contemporary of the first aerial exploits, wind tunnels, artificially recreating conditions encountered during the flight, have powerfully contributed to the progress of aeronautics. But the use of wind tunnels is not limited to aviation. The research for better performance, coupled with concern for energy saving, encourages manufacturers of ground vehicles to perform aerodynamic tests. Buildings and bridge structures are also concerned. This article deals principally with the wind tunnels built at ONERA during the last century. Somme wind tunnels outside ONERA, even outside France, are also evocated when their characteristics do not exist at ONERA.

  10. STS-88 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Designed by the STS-88 crew members, this patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task was to assemble the cornerstone of the Space Station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the Space Shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future.

  11. STS-132vesrsion8NASA

    NASA Image and Video Library

    2010-02-03

    STS132-S-001 (February 2010) --- The STS-132 mission will be the 32nd flight of the space shuttle Atlantis. The primary STS-132 mission objective is to deliver the Russian-made MRM-1 (Mini Research Module) to the International Space Station (ISS). Atlantis will also deliver a new communications antenna and a new set of batteries for one of the ISS solar arrays. The STS-132 mission patch features Atlantis flying off into the sunset as the end of the Space Shuttle Program approaches. However the sun is also heralding the promise of a new day as it rises for the first time on a new ISS module, the MRM-1, which is also named ?Rassvet,? the Russian word for dawn. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  12. KSC-05PD-1142

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Under post-dawn cloudy skies, Space Shuttle Discovery, resting on the Mobile Launcher Platform, rolls away from Launch Pad 39B via the Crawler/Transporter underneath. At left are the Rotating and Fixed Service Structures (RSS and FSS). Atop the FSS is the 80-foot lightning mast. At right is the 290-foot-tall water tower that holds 300,000 gallons of water, part of the sound suppression system during a launch. Discovery is returning to the Vehicle Assembly Buildling where it will be demated from its External Tank and lifted into the transfer aisle. On or about June 7, Discovery will be lifted and attached to its new tank and Solid Rocket Boosters, which are already in the VAB. Only the 15th rollback in Space Shuttle Program history, the 4.2-mile journey allows additional modifications to be made to the External Tank prior to a safe Return to Flight. Discovery is expected to be rolled back to the launch pad in mid-June for Return to Flight mission STS-114. The launch window extends from July 13 to July 31.

  13. International Space Station (ISS)

    NASA Image and Video Library

    1998-11-08

    Designed by the STS-88 crew members, this patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task was to assemble the cornerstone of the Space Station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the Space Shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future.

  14. Dawn LAMO Image 175

    NASA Image and Video Library

    2016-09-20

    NASA's Dawn spacecraft obtained this view of Laukumate Crater (19 miles, 30 kilometers wide) on Ceres on June 2, 2016. Laukumate is named for a Latvian goddess of agriculture. Dawn took this image from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20937

  15. Dawn LAMO Image 185

    NASA Image and Video Library

    2016-10-04

    NASA's Dawn spacecraft spies Achita Crater on Ceres in this view. Achita is named for a Nigerian god of agriculture and is 25 miles (40 kilometers) wide. Dawn took this image on June 3, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20947

  16. KSC-07pd1227

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar A&O at Cape Canaveral Air Force Station, the Delta II second stage for the Dawn spacecraft is ready for transfer to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  17. KSC-07pd1265

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers prepare the Dawn spacecraft before test deploying its large solar panels on one side. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  18. KSC-07pd1244

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare to deploy the solar panels of the Dawn spacecraft. The panels will be tested and undergo black light inspection. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  19. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    NASA Technical Reports Server (NTRS)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  20. Overview With Results and Lessons Learned of the X-43A Mach 10 Flight

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.; Bahm, Catherine; Corpening, Griffin P.; Sherrill, Robert

    2005-01-01

    This paper provides an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The third and final flight, November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. The goals and objectives for the project as well as those for the third flight are presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter is discussed. The second flight of the X-43A was successfully conducted on March 27, 2004. Mission differences, vehicle modifications and lessons learned from the second flight as they applied to the third flight are also discussed. An overview of flight 3 results is presented.

  1. Dawn Mission Education and Public Outreach: Science as Human Endeavor

    NASA Astrophysics Data System (ADS)

    Cobb, W. H.; Wise, J.; Schmidt, B. E.; Ristvey, J.

    2012-12-01

    Dawn Education and Public Outreach strives to reach diverse learners using multi-disciplinary approaches. In-depth professional development workshops in collaboration with NASA's Discovery Program, MESSENGER and Stardust-NExT missions focusing on STEM initiatives that integrate the arts have met the needs of diverse audiences and received excellent evaluations. Another collaboration on NASA ROSES grant, Small Bodies, Big Concepts, has helped bridge the learning sequence between the upper elementary and middle school, and the middle and high school Dawn curriculum modules. Leveraging the Small Bodies, Big Concepts model, educators experience diverse and developmentally appropriate NASA activities that tell the Dawn story, with teachers' pedagogical skills enriched by strategies drawn from NSTA's Designing Effective Science Instruction. Dawn mission members enrich workshops by offering science presentations to highlight events and emerging data. Teachers' awareness of the process of learning new content is heightened, and they use that experience to deepen their science teaching practice. Activities are sequenced to enhance conceptual understanding of big ideas in space science and Vesta and Ceres and the Dawn Mission 's place within that body of knowledge Other media add depth to Dawn's resources for reaching students. Instrument and ion engine interactives developed with the respective science team leads help audiences engage with the mission payload and the data each instrument collects. The Dawn Dictionary, an offering in both audio as well as written formats, makes key vocabulary accessible to a broader range of students and the interested public. Further, as Dawn E/PO has invited the public to learn about mission objectives as the mission explored asteroid Vesta, new inroads into public presentations such as the Dawn MissionCast tell the story of this extraordinary mission. Asteroid Mapper is the latest, exciting citizen science endeavor designed to invite the general public into the thrill of NASA science. Helping teachers develop a picture of the history and evolution of our understanding of the solar system, and honing in on the place of asteroids in helping us answer old questions and discover new ones, students and the general public sees the power and excitement underlying planetary science as human endeavor. Research indicates that science inquiry is powerful in the classroom and mission scientists are real-life models of science inquiry in action. Cross-curricular elements include examining research-based strategies for enhancing English language learners' ability to engage in higher order questions and a professional astronomy artist's insight into how visual analysis requires not just our eyes engaged, but our brains: comparing, synthesizing, questioning, evaluating, and wondering. Dawn Education and Public Outreach will share out perspectives and lessons learned, backed by extensive evaluation examining the efficacy of the mission's efforts.

  2. Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; hide

    2012-01-01

    The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times.

  3. Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.

    2010-01-01

    Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.

  4. Microgravity

    NASA Image and Video Library

    1998-09-30

    The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.

  5. KSC-07pd1256

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, the Dawn spacecraft is lowered toward a work stand for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  6. KSC-07pd1260

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft for installation of its solar array panels. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  7. KSC-07pd0856

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, a crane lifts the shipping container from the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  8. KSC-07pd1264

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers get ready to test deploy the large solar array panels on one side of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  9. KSC-07pd1246

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, the solar panels of the Dawn spacecraft are extended to their full extent. The panels will be tested and undergo black light inspection. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  10. Dawn Orbit Determination Team: Modeling and Fitting of Optical Data at Vesta

    NASA Technical Reports Server (NTRS)

    Kennedy, Brian; Abrahamson, Matt; Ardito, Alessandro; Haw, Robert; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft was launched on September 27th, 2007. Its mission is to consecutively rendezvous with and observe the two largest bodies in the main asteroid belt, Vesta and Ceres. It has already completed over a year's worth of direct observations of Vesta (spanning from early 2011 through late 2012) and is currently on a cruise trajectory to Ceres, where it will begin scientific observations in mid-2015. Achieving this data collection required careful planning and execution from all Dawn operations teams. Dawn's Orbit Determination (OD) team was tasked with reconstruction of the as-flown trajectory as well as determination of the Vesta rotational rate, pole orientation and ephemeris, among other Vesta parameters. Improved knowledge of the Vesta pole orientation, specifically, was needed to target the final maneuvers that inserted Dawn into the first science orbit at Vesta. To solve for these parameters, the OD team used radiometric data from the Deep Space Network (DSN) along with optical data reduced from Dawn's Framing Camera (FC) images. This paper will de-scribe the initial determination of the Vesta ephemeris and pole using a combination of radiometric and optical data, and also the progress the OD team has made since then to further refine the knowledge of Vesta's body frame orientation and rate with these data.

  11. Cosmic Dawn Science Interest Group

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Cosmic Origins Program Analysis Group

    2016-01-01

    Cosmic Dawn was identified as one of the three science objectives for this decade in the _New Worlds, New Horizons_ Decadal report, and it will likely continue to be a research focus well into the next decade. Cosmic Dawn refers to the interval during which the Universe transitioned from a nearly completely neutral state back to a nearly fully ionized state and includes the time during which the first stars formed and the first galaxies assembled.The Cosmic Dawn Science Interest Group (SIG) was formed recently under the auspices of the Cosmic Origins Program Analysis Group (COPAG). The Cosmic Dawn SIG focusses on the science cases, observations, and technology development needed to address the "great mystery" of Cosmic Origins. The reach of this SIG is broad, involving the nature of the first stars and the detectability of gamma-ray bursts at high redshifts, the extent to which the first galaxies and first supermassive black holes grew together, and the technology required to pursue these questions.For further information, consult the Cosmic Dawn SIG Web site http://cd-sig.jpl.nasa.gov/ and join the mailing list (by contacting the author).Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  12. Effects of artificial dawn on subjective ratings of sleep inertia and dim light melatonin onset.

    PubMed

    Giménez, Marina C; Hessels, Martijn; van de Werken, Maan; de Vries, Bonnie; Beersma, Domien G M; Gordijn, Marijke C M

    2010-07-01

    The timing of work and social requirements has a negative impact on performance and well-being of a significant proportion of the population in our modern society due to a phenomenon known as social jetlag. During workdays, in the early morning, late chronotypes, in particular, suffer from a combination of a nonoptimal circadian phase and sleep deprivation. Sleep inertia, a transient period of lowered arousal after awakening, therefore, becomes more severe. In the present home study, the authors tested whether the use of an alarm clock with artificial dawn could reduce complaints of sleep inertia in people having difficulties in waking up early. The authors also examined whether these improvements were accompanied by a shift in the melatonin rhythm. Two studies were performed: Study 1: three conditions (0, 50, and 250 lux) and Study 2: two conditions (0 lux and self-selected dawn-light intensity). Each condition lasted 2 weeks. In both studies, the use of the artificial dawn resulted in a significant reduction of sleep inertia complaints. However, no significant shift in the onset of melatonin was observed after 2 weeks of using the artificial dawn of 250 lux or 50 lux compared to the control condition. A multilevel analysis revealed that only the presence of the artificial dawn, rather than shift in the dim light melatonin onset or timing of sleep offset, is related to the observed reduction of sleep inertia complaints. Mechanisms other than shift of circadian rhythms are needed to explain the positive results on sleep inertia of waking up with a dawn signal.

  13. Sleepless in Town – Drivers of the Temporal Shift in Dawn Song in Urban European Blackbirds

    PubMed Central

    Nordt, Anja; Klenke, Reinhard

    2013-01-01

    Organisms living in urban environments are exposed to different environmental conditions compared to their rural conspecifics. Especially anthropogenic noise and artificial night light are closely linked to urbanization and pose new challenges to urban species. Songbirds are particularly affected by these factors, because they rely on the spread of acoustic information and adjust their behaviour to the rhythm of night and day, e.g. time their dawn song according to changing light intensities. Our aim was to clarify the specific contributions of artificial night light and traffic noise on the timing of dawn song of urban European Blackbirds (Turdus merula). We investigated the onset of blackbird dawn song along a steep urban gradient ranging from an urban forest to the city centre of Leipzig, Germany. This gradient of anthropogenic noise and artificial night light was reflected in the timing of dawn song. In the city centre, blackbirds started their dawn song up to 5 hours earlier compared to those in semi-natural habitats. We found traffic noise to be the driving factor of the shift of dawn song into true night, although it was not completely separable from the effects of ambient night light. We additionally included meteorological conditions into the analysis and found an effect on the song onset. Cloudy and cold weather delayed the onset, but cloud cover was assumed to reflect night light emissions, thus, amplified sky luminance and increased the effect of artificial night light. Beside these temporal effects, we also found differences in the spatial autocorrelation of dawn song onset showing a much higher variability in noisy city areas than in rural parks and forests. These findings indicate that urban hazards such as ambient noise and light pollution show a manifold interference with naturally evolved cycles and have significant effects on the activity patterns of urban blackbirds. PMID:23940759

  14. (abstract) Mission Operations and Control Assurance: Flight Operations Quality Improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Witkowski, Mona M.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA), a recent addition to flight operations teams at JPL. provides a system level function to instill quality in mission operations. MO&CA's primary goal at JPL is to help improve the operational reliability for projects during flight. MO&CA tasks include early detection and correction of process design and procedural deficiencies within projects. Early detection and correction are essential during development of operational procedures and training of operational teams. MO&CA's effort focuses directly on reducing the probability of radiating incorrect commands to a spacecraft. Over the last seven years at JPL, MO&CA has become a valuable asset to JPL flight projects. JPL flight projects have benefited significantly from MO&CA's efforts to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit directly from previous and ongoing experience. Since MO&CA, like Total Quality Management (TQM), focuses on continuous improvement of processes and elimination of rework, we recommend that this effort be continued on NASA flight projects.

  15. Performance of High-Efficiency Advanced Triple-Junction Solar Panels for the LILT Mission Dawn

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Sharma, Surya; Buitrago, Oscar; Sharps, Paul R.; Blok, Ron; Kroon, Martin; Jalink, Cees; Harris, Robin; Stella, Paul; Distefano, Sal

    2005-01-01

    NASA's Discovery Mission Dawn is designed to (LILT) conditions. operate within the solar system's Asteroid belt, where the large distance from the sun creates a low-intensity, low-temperature (LILT) condition. To meet the mission power requirements under LlLT conditions, very high-efficiency multi-junction solar cells were selected to power the spacecraft to be built by Orbital Sciences Corporation (OSC) under contract with JPL. Emcore's InGaP/InGaAs/Ge advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of greater than 27.6% (one-sun, 28 C), were used to populate the solar panels [1]. The two solar array wings, to be built by Dutch Space, with 5 large- area panels each (total area of 36.4 sq. meters) are projected to produce between 10.3 kWe and 1.3 kWe of end-of life (EOL) power in the 1.0 to 3.0 AU range, respectively. The details of the solar panel design, testing and power analysis are presented.

  16. Characterizing the Young Galaxies at Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2013-10-01

    We propose to analyze the data of the Hubble Frontier Fields, in order to discover and study galaxies at the highest redshifts and to an unprecedented depth. The redshift range of z 10-12 marks the beginning of the IGM reionization and remains as HST's last frontier. In the framework of the CLASH and related projects, our team has succeeded in finding the most distant galaxies. We will carry out a systematic search for galaxy candidates at z 10-12 in the proposed deep observations. At this redshift range, most of the spectral features are shifted longward of the WFC3/IR bands, and additional data are therefore needed in order to secure the candidates and study their intrinsic properties. We will {1} obtain deep photometry in complementary ground-based K-band observations; {2} estimate the global star-formation rate density; {3} measure the sources' UV continuum slope and {4} carry out ALMA observations to study the dust content. Finally, we will estimate the effect of these young galaxies in ionizing the IGM. Our study will serve as an ideal bridge between HST and JWST in exploring the cosmic dawn.

  17. Mineralogical Mapping of the Av-5 Floronia Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Combe, J.-Ph.; Fulchinioni, M.; McCord, T. B.; Ammannito, E.; De Sanctis, M. C.; Nathues, A.; Capaccioni, F.; Frigeri, A.; Jaumann, R.; Le Corre, L.; Palomba, E.; Preusker, F.; Reddy, V.; Stephan, K.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2012-04-01

    Asteroid 4 Vesta is currently under investigation by NASA's Dawn orbiter. The Dawn Science Team is conducting mineralogical mapping of Vesta's surface in the form of 15 quadrangle maps, and here we report results from the mapping of Floronia quadrangle Av-5. The maps are based on the data acquired by the Visible and Infrared Mapping Spectrometer (VIR-MS) and the Framing Camera (FC) (De Sanctis et al., this meeting). This abstract is focused on the analysis of band ratios, as well as the depth and position of the 2-µm absorption band of pyroxenes, but additional information will be presented. Absorption band depth is sensitive to abundance, texture and multiple scattering effects. Absorption band position is controlled by composition, shorter wavelength positions indicate less Calcium (and more Magnesium) in pyroxenes. The inferred composition is compared with that of Howardite, Eucite and Diogenite meteorites (HEDs). Diogenites are Mg-rich with large orthopyroxene crystals suggesting formation in depth; Eucrites are Ca-poor pyroxene, with smaller crystals. Av-5 Floronia Quadrangle is located between ~20-66˚N and 270˚-360˚E. It covers a portion of the heavily-cratered northern hemisphere of Vesta, and part of it is in permanent night, until August 2012. Long shadows make the visualization of albedo variations difficult, because of limited effectiveness of photometric corrections. Most of the variations of the band depth at 2 µm are partly affected by illumination geometry in this area. Only regional tendencies are meaningful at this time of the analysis. The 2-µm absorption band depth seems to be deeper towards the south of the quadrangle, in particular to the south of Floronia crater. It is not possible to interpret the value of the band depth in the floor the craters because of the absence of direct sunlight. However, the illuminated rims seem to have a deeper 2-µm absorption band, as does the ejecta from an unnamed crater located further south, within quadrangle Av-10 (Tosi et al., 2010, this meeting). The absorption band seems slightly shifted towards shorter wavelengths in the neighborhood of the same crater, which may indicate a more diogenitic composition, consistent with materials of the deeper crust. Relationships between craters, ejecta and composition will be investigated further. The authors acknowledge the support of the Dawn Science, Instrument and Operations Teams. This work was supported by the NASA Dawn Project under contract from UCLA and by the NASA Dawn at Vesta Participating Scientist program.

  18. Space Shuttle Projects Overview to Columbia Air Forces War College

    NASA Technical Reports Server (NTRS)

    Singer, Jody; McCool, Alex (Technical Monitor)

    2000-01-01

    This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

  19. KSC-07pd0860

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, technicians roll the Dawn spacecraft into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  20. KSC-07pd1257

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, the Dawn spacecraft, secure on a work stand, is moved to another room for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  1. KSC-07pd0857

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, a crane is being attached to the Dawn spacecraft to lift it from the transporter. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  2. KSC-07pd0855

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, a crane is attached to the shipping container to remove it from around the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  3. KSC-07pd1254

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft to be moved to a work stand for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  4. KSC-07pd1266

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the more than 32-foot-long solar panels on one side of the Dawn spacecraft glide open during a test deployment. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  5. KSC-07pd1279

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, a suspended set of solar array panels is opened prior to installation on the Dawn spacecraft. Another set was installed previously. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/George Shelton

  6. KSC-07pd1255

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers stand near while the Dawn spacecraft is lifted and moved toward a work stand for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  7. KSC-07pd1268

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the more than 32-foot-long solar panels on one side of the Dawn spacecraft are fully deployed during a test. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  8. KSC-07pd1269

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers check the Dawn spacecraft after testing the deployment of its more than 32-foot-long solar panels on one side. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  9. KSC-07pd1263

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers fold the large solar array panels on one side of the Dawn spacecraft. The panels will be tested for deployment and stowage. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  10. KSC-07pd1259

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In another clean room at Astrotech, solar array panels at left are ready to be installed on the Dawn spacecraft, at right. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  11. These two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project o

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project over California's Mojave Desert. This second flight phase is mapping the wingtip vortex of the lead aircraft, the Systems Research Aircraft (tail number 847), on the trailing F/A-18 tail number 847. Wingtip vortex is a spiraling wind flowing from the wing during flight. The project is studying the drag and fuel reduction of precision formation flying.

  12. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  13. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus.

    PubMed

    Xiong, Xiaorui R; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A; Tao, Huizhong W; Zhang, Li I

    2015-06-11

    Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities.

  14. Song trait similarity in great tits varies with social structure.

    PubMed

    Snijders, Lysanne; van der Eijk, Jerine; van Rooij, Erica P; de Goede, Piet; van Oers, Kees; Naguib, Marc

    2015-01-01

    For many animals, long-range signalling is essential to maintain contact with conspecifics. In territorial species, individuals often have to balance signalling towards unfamiliar potential competitors (to solely broadcast territory ownership) with signalling towards familiar immediate neighbours (to also maintain so-called "dear enemy" relations). Hence, to understand how signals evolve due to these multilevel relationships, it is important to understand how general signal traits vary in relation to the overall social environment. For many territorial songbirds dawn is a key signalling period, with several neighbouring individuals singing simultaneously without immediate conflict. In this study we tested whether sharing a territory boundary, rather than spatial proximity, is related to similarity in dawn song traits between territorial great tits (Parus major) in a wild personality-typed population. We collected a large dataset of automatized dawn song recordings from 72 unique male great tits, during the fertile period of their mate, and compared specific song traits between neighbours and non-neighbours. We show here that both song rate and start time of dawn song were repeatable song traits. Moreover, neighbours were significantly more dissimilar in song rate compared to non-neighbours, while there was no effect of proximity on song rate similarity. Additionally, similarity in start time of dawn song was unrelated to sharing a territory boundary, but birds were significantly more similar in start time of dawn song when they were breeding in close proximity of each other. We suggest that the dissimilarity in dawn song rate between neighbours is either the result of neighbouring great tits actively avoiding similar song rates to possibly prevent interference, or a passive consequence of territory settlement preferences relative to the types of neighbours. Neighbourhood structuring is therefore likely to be a relevant selection pressure shaping variation in territorial birdsong.

  15. KSC-07pd0865

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, technicians dressed in "bunny suits," or clean-room attire, begin working on the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  16. KSC-07pd1307

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- The mobile service towers on Launch Pads 17-A (left) and 17-B (right) are silhouetted against the pre-dawn sky at Cape Canaveral Air Force Station. In the background are the launch gantries. Pad 17-B is the site for the launch of the Dawn spacecraft on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller

  17. KSC-07pd1212

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, the first stage of the Delta II rocket that will launch the Dawn spacecraft is ready to be transferred to a transporter for its move to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  18. KSC-07pd0864

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- The Dawn spacecraft is seen here in clean room C of Astrotech's Payload Processing Facility. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  19. Development and Translation of a Tissue-Engineered Disc in a Preclinical Rodent Model

    DTIC Science & Technology

    2013-10-01

    authors Dong Hwa Kim, John T. Martin, Dawn M. Elliott, Lachlan J. Smith , and Robert L. Mauck...Replacement in a Small Animal Model with authors John T. Martin, Andrew H. Milby, Joseph A. Chiaro, Dong Hwa Kim, Nader M. Hebela, Lachlan J. Smith , Dawn... Smith , Dawn M. Elliott, and Robert L. Mauck is now in review. To carry out this study, radiopaque scaffolds were generated from a 14.3% w/v slurry

  20. Dawn LAMO Image 182

    NASA Image and Video Library

    2016-09-29

    NASA's Dawn spacecraft views Kupalo Crater in this view of Ceres. Kupalo, which measures 16 miles (26 kilometers) across and is located at southern mid-latitudes, is named for the Slavic god of vegetation and harvest. Dawn took this image on June 2, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20944

  1. Dawn LAMO Image 5

    NASA Image and Video Library

    2016-01-13

    This view of the Cerean crater Victa was captured by NASA Dawn spacecraft on Dec. 19, 2015. The steep-walled crater is approximately 19 miles 30 kilometers in diameter, and was named for the Roman goddess of food and nourishment. Dawn took this image from its low-altitude mapping orbit (LAMO), at an approximate altitude of 240 miles (385 kilometers) above Ceres. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20195

  2. Using Dawn to Observe SEP Events Past 2 AU

    NASA Astrophysics Data System (ADS)

    Villarreal, M. N.; Russell, C. T.; Prettyman, T. H.

    2017-12-01

    The launch of the STEREO spacecraft provided much insight into the longitudinal and radial distribution of solar energetic particles (SEPs) relative to their origin site. However, almost all of the observations of SEP events have been made exclusively near 1 AU. The Dawn mission, which orbited around Vesta before arriving at Ceres, provides an opportunity to analyze these events at much further distances. Although Dawn's Gamma Ray and Neutron Detector (GRaND) is not optimized for SEP characterization, it is sensitive to protons greater than 4 MeV, making it capable of detecting a solar energetic particle event in its vicinity. Solar energetic particles in this area of the solar system are important as they are believed to cause sputtering at bodies such as Ceres and comets (Villarreal et al., 2017; Wurz et al., 2015). In this study, we use Dawn's GRaND data from 2011-2015 when Dawn was at distances between 2-3 AU. We compare the SEP events seen by Dawn with particle measurements at 1 AU using STEREO, Wind, and ACE to understand how the SEP events evolved past 1 AU.References: Villarreal, M. N., et al. (2017), The dependence of the Cerean exosphere on solar energetic particle events, Astrophys. J. Lett., 838, L8.Wurz, P. et al. (2015), Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, A&A, 583, A22.

  3. A feasibility study of using remotely sensed data for water resource models

    NASA Technical Reports Server (NTRS)

    Ruff, J. F.

    1973-01-01

    Remotely sensed data were collected to demonstrate the feasibility of applying the results to water resource problems. Photographs of the Wolf Creek watershed in southwestern Colorado were collected over a one year period. Cloud top temperatures were measured using a radiometer. Thermal imagery of the Wolf Creek Pass area was obtained during one pre-dawn flight. Remote sensing studies of water resource problems for user agencies were also conducted. The results indicated that: (1) remote sensing techniques could be used to assist in the solution of water resource problems; (2) photogrammetric determination of snow depths is feasible; (3) changes in turbidity or suspended material concentration can be observed; and (4) surface turbulence can be related to bed scour; and (5) thermal effluents into rivers can be monitored.

  4. KSC-08pd4009

    NASA Image and Video Library

    2008-12-13

    CAPE CANAVERAL, Fla. -- Before dawn, at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida, space shuttle Endeavour has been lifted away from the shuttle carrier aircraft, or SCA, underneath. The SCA will be rolled back and Endeavour placed on the ground. Visible on Endeavour is the tail cone that covers and protects the main engines during the ferry flight. The SCA carried the shuttle piggyback from California, where Endeavour landed Nov. 30 to end the STS-126 mission. After Endeavour is on the ground, it will be towed via the two-mile tow-way from the SLF by a diesel-powered tractor to the Orbiter Processing Facility where it will begin preparations for its next mission, STS-127, targeted for May 2009. Photo credit: NASA/Jim Grossmann

  5. KSC-08pd4011

    NASA Image and Video Library

    2008-12-13

    CAPE CANAVERAL, Fla. -- Before dawn, at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida, space shuttle Endeavour is suspended by a sling under the mate/demate device. The shuttle carrier aircraft, or SCA, has rolled away. Endeavour, which retains the tail cone that covers and protects the main engines during the ferry flight, will be lowered onto the ground. The SCA carried the shuttle piggyback from California, where Endeavour landed Nov. 30 to end the STS-126 mission. After Endeavour is on the ground, it will be towed via the two-mile tow-way from the SLF by a diesel-powered tractor to the Orbiter Processing Facility where it will begin preparations for its next mission, STS-127, targeted for May 2009. Photo credit: NASA/Jim Grossmann

  6. Dawn LAMO Image 83

    NASA Image and Video Library

    2016-05-06

    Ceres densely cratered landscape is revealed in this image taken by the framing camera aboard NASA Dawn spacecraft. The craters show various degrees of degradation. The youngest craters have sharp rims.

  7. Dawn LAMO Image 84

    NASA Image and Video Library

    2016-05-09

    Ceres densely cratered landscape is revealed in this image taken by the framing camera aboard NASA Dawn spacecraft. The craters show various degrees of degradation. The youngest craters have sharp rims.

  8. NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project. The first flight was performed for evaluation purposes, and the spike was not extended. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  9. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  10. KSC-07pd2401

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers move the platform with the Dawn spacecraft. They are preparing to install the transportation canister around Dawn for transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. Photo credit: NASA/Jim Grossmann

  11. KSC-07pd2445

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is ready for mating with the waiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jim Grossmann

  12. KSC-07pd2428

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft arrives at the upper level of the mobile service tower. It will be moved inside and prepared for mating with the awaiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  13. The deep space network, volume 10

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress on the Deep Space Network (DSN) supporting research and technology is reported. The objectives, functions and facilities of the DSN are described along with the mission support for the following: interplanetary flight projects, planetary flight projects, and manned space flight projects. Work in advanced engineering and communications systems is reported along with changes in hardware and software configurations in the DSN/MSFN tracking stations.

  14. STS-121 Mission Patch

    NASA Image and Video Library

    2005-06-01

    STS121-S-001 (June 2005) --- The STS-121 patch depicts the space shuttle docked with the International Space Station (ISS) in the foreground, overlaying the astronaut symbol with three gold columns and a gold star. The ISS is shown in the configuration that it will be in during the STS-121 mission. The background shows the nighttime Earth with a dawn breaking over the horizon. STS-121, ISS mission ULF1.1, is the final Shuttle Return to Flight test mission. This utilization and logistics flight will bring a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) will be delivered and stowed externally on ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew will also carry out testing of shuttle inspection and repair hardware, as well as evaluate operational techniques and concepts for conducting on-orbit inspection and repair. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  15. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr

    2014-01-01

    Description of current ARMD projects; Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project (new ARMD reorg), sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  16. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    PubMed

    Olofsson, Martin; Vallin, Adrian; Jakobsson, Sven; Wiklund, Christer

    2010-05-24

    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  17. Dawn at Vesta: testing the protoplanetary paradigm

    USGS Publications Warehouse

    Russell, C.T.; Raymond, C.A.; Coradini, A.; McSween, H.Y.; Zuber, M.T.; Nathues, A.; DeSanctis, Maria-Cristina; Jaumann, R.; Konopliv, A.S.; Preusker, F.; Asmar, S.W.; Park, R.S.; Gaskell, R.; Keller, H.U.; Mottola, S.; Roatsch, T.; Scully, J.E.C.; Smith, D.E.; Tricarico, P.; Toplis, M.J.; Christensen, U.R.; Feldman, W.C.; Lawrence, D.J.; McCoy, T.J.; Prettyman, T.H.; Reedy, R.C.; Sykes, M.E.; Titus, T.N.

    2012-01-01

    The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta's south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteorites. The spatially resolved mineralogy of the surface reflects the composition of the HED meteorites, confirming the formation of Vesta's crust by melting of a chondritic parent body. Vesta's mass, volume, and gravitational field are consistent with a core having an average radius of 107 to 113 kilometers, indicating sufficient internal melting to segregate iron. Dawn's results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs.

  18. Meet EPA researcher Dawn King

    EPA Pesticide Factsheets

    Research microbiologist Dawn King works in EPA’s National Exposure Research Laboratory where she identifies and assesses the health risk of microbial pathogens in water. This is her researchers at work profile.

  19. Space Flight: The First 30 Years

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.

  20. Dawn HAMO Image 67

    NASA Image and Video Library

    2015-12-01

    The tall, cone-shaped mountain Ahuna Mons is seen in this image taken by NASA's Dawn spacecraft. Ahuna Mons, named for the traditional post-harvest festival of the Sumi tribe of Nagaland in India, is about 4 miles (6 kilometers) tall and 12 miles (20 kilometers) in diameter. Dawn took this image on Oct. 14, 2015, from an altitude of 915 miles (1,470 kilometers). It has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20130

  1. Dawn LAMO Image 158

    NASA Image and Video Library

    2016-08-25

    An area along the rim of the crater at the center of this view from NASA Dawn spacecraft, has collapsed, producing a lobe-shaped feature where the material settled. The image is centered at approximately 52 degrees north latitude, 316 degrees east longitude. NASA's Dawn spacecraft took this image on May 28, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface of Ceres. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20880

  2. KSC-07pd0861

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, a worker wears a "bunny suit," or clean-room attire, next to the Dawn spacecraft, which will be unbagged and undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  3. KSC-07pd0852

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the shipping container holding the Dawn spacecraft is removed from the truck. The container will then be moved into the high bay of the Payload Processing Facility and the spacecraft removed. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  4. KSC-07pd1281

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers prepare the Dawn spacecraft, at left, for installation of a second set of solar array panels, at right. Together, the panels extend 64.6 feet when fully open. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/George Shelton

  5. KSC-07pd0854

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the shipping container holding the Dawn spacecraft is moved into the high bay of the Payload Processing Facility. The spacecraft will next be removed from the container. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  6. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  7. The Richmond Flight Project

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1976

    1976-01-01

    Evaluation of a project that provided flight instruction to inner-city junior high school students showed that former project youths are demonstrably better off than controls in the areas of employment, avoidance of deviant behavior, and advanced education. (MLH)

  8. Dawn LAMO Image 87

    NASA Image and Video Library

    2016-05-12

    This image from NASA Dawn spacecraft shows the rim of Occator crater, just east of the area containing the brightest spots on Ceres. The crater rim has collapsed, leaving structures geologists refer to as terraces.

  9. Current Status of the LOFAR EoR Key Science Project

    NASA Astrophysics Data System (ADS)

    Koopmans, L. V. E.; LOFAR EoR KSP Team

    2018-05-01

    A short status update on the LOFAR Epoch of Reionization (EoR) Key Science Project (KSP) is given, regarding data acquisition, data processing and analysis, and current power-spectrum limits on the redshifted 21-cm signal of neutral hydrogen at redshifts z = 8 - 10. With caution, we present a preliminary astrophysical analysis of ~60 hr of processed LOFAR data and their resulting power spectrum, showing that potentially already interesting limits on X-ray heating during the Cosmic Dawn can already be gained. This is by no means the final analysis of this sub-set of data, but illustrates the future potential when all nearly 3000 hr of data in hand on two EoR windows will have been processed.

  10. Automated simulation as part of a design workstation

    NASA Technical Reports Server (NTRS)

    Cantwell, Elizabeth; Shenk, T.; Robinson, P.; Upadhye, R.

    1990-01-01

    A development project for a design workstation for advanced life-support systems (called the DAWN Project, for Design Assistant Workstation), incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulation such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components are discussed.

  11. The Extent to Which Dayside Reconnection Drives Field-Aligned Currents During Substorms

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Shortt, M. W.; Coxon, J.; Rae, J.; Freeman, M. P.; Kalmoni, N. M. E.; Jackman, C. M.; Anderson, B. J.

    2016-12-01

    Field-aligned currents, also known as Birkeland currents, are the agents by which energy and momentum is transferred to the ionosphere from the magnetosphere and solar wind. In order to understand this coupling, it is necessary to analyze the variations in these current systems with respect to the main energy sources of the solar wind and substorms. In this study, we perform a superposed epoch analysis of field-aligned currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) project with respect to substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE) technique. We examine the total upward and downward currents separately in the noon, dusk, dawn and midnight sectors. Our results show that the dusk and dawn currents have up to a 66% linear correlated with the dayside reconnection rate estimated from solar wind measurements, whereas the noon and midnight currents are not. The noon currents show little or no variation throughout the substorm cycle. The midnight currents follows the dusk currents up to 20 min before onset, after which the midnight current increases more rapidly and exponentially. At substorm onset, the exponential growth rate increases. While the midnight field-aligned currents grow exponentially after substorm onset, the auroral indices vary with a 1/6th power law. Overall, our results show that the growth and decay rates of the Region 1 and 2 current systems, which are strongest at dawn and dusk, are directly driven by the solar wind, whereas the growth and decay rates of the substorm current system, which are dominant at midnight, act independently of the upstream driver.

  12. Dawn HAMO Image 79

    NASA Image and Video Library

    2015-12-17

    NASA Dawn spacecraft captured this scene, showing southern mid-latitudes on Ceres, on Oct. 18, 2015, from an altitude of 915 miles 1,470 kilometers. It has a resolution of 450 feet 140 meters per pixel.

  13. Dawn LAMO Image 73

    NASA Image and Video Library

    2016-04-22

    This image from NASA Dawn spacecraft shows terrain within Chaminuka Crater on Ceres. Chaminuka was named for the spirit who provides rains during times of drought, according to the legends of the Shona people of Zimbabwe.

  14. Dawn LAMO Image 55

    NASA Image and Video Library

    2016-03-29

    This view from NASA Dawn spacecraft shows an area in mid-southern latitudes on Ceres. The crater named Juling 12 miles, 20 kilometers wide is seen at lower right. Bright material is visible along its upper walls.

  15. Dawn LAMO Image 62

    NASA Image and Video Library

    2016-04-07

    Tupo Crater, named for the Polynesian god of turmeric, is shown at upper left in this view of Ceres from NASA Dawn spacecraft. Just below the crater, a line of narrow troughs parallels the rim of Tupo.

  16. KSC-07pd1384

    NASA Image and Video Library

    2007-06-06

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, a technician monitors the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd1386

    NASA Image and Video Library

    2007-06-06

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, a technician monitors the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett

  18. KSC-07pd1387

    NASA Image and Video Library

    2007-06-06

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, technicians check data during the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd1388

    NASA Image and Video Library

    2007-06-07

    KENNEDY SPACE CENTER, FLA. -- At Astrotech's Hazardous Processing Facility, technicians are loading the Dawn spacecraft with xenon gas for the ion propulsion system. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann

  20. KSC-07pd1385

    NASA Image and Video Library

    2007-06-06

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, technicians check data during the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett

  1. Dawn Gateway View of Ceres

    NASA Image and Video Library

    2014-12-05

    From about three times the distance from Earth to the moon, NASA's Dawn spacecraft spies its final destination -- the dwarf planet Ceres. The resolution of this image does not yet exceed the best views of Ceres, which were obtained by the Hubble Space Telescope (see PIA10235). Nonetheless, Ceres' spherical shape is clearly revealed here. Sunlight illuminates the dwarf planet from the right, leaving a sliver of the surface in shadow at left. A zoomed-in view is provided in Figure 1, along with the original unmagnified, uncropped view. The image was taken on Dec. 1, 2014 with the Dawn spacecraft's framing camera, using a clear spectral filter. Dawn was about 740,000 miles (1.2 million kilometers) from Ceres at the time. Ceres is 590 miles (950 kilometers) across and was discovered in 1801. http://photojournal.jpl.nasa.gov/catalog/PIA19049

  2. Automated Spectral System for Terrain Classification, Mineralogy of Vesta from the Dawn Framing Cameras

    NASA Astrophysics Data System (ADS)

    Reddy, V.; Le Corre, L.; Nathues, A.; Hall, I.; Gutierrez-Marques, P.; Hoffmann, M.

    2011-10-01

    The Dawn mission will rendezvous with asteroid (4) Vesta in July 2011. We have developed a set of equations for extracting mean pyroxene chemistry (Ferrosilite and Wollastonite) for classifying terrains on Vesta by using the Dawn Framing Camera (FC) multi-color bands. The Automated Spectral System (ASS) utilizes pseudo-Band I minima to estimate the mean pyroxene chemistry of diogenites, and basaltic eucrites. The mean pyroxene chemistries of cumulate eucrites, and howardites overlap each other on the pyroxene quadrilateral and hence are harder to distinguish. We expect our ASS to carry a bulk of the terrain classification and mineralogy workload utilizing these equations and complement the work of DawnKey (Le Corre et al., 2011, DPS/EPSC 2011). The system will also provide surface mineral chemistry layers that can be used for mapping Vesta's surface.

  3. BLT Flight Experiment Overview and In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Anderson, Brian P.; Campbell, Charles H.; Saucedo, Luis A.; Kinder, Gerald R.

    2010-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for the flight of STS-119. Additional instrumentation was also installed in order to obtain more spatially resolved measurements. This paper will provide an overview of the BLT FE Project, including the project history, organizations involved, and motivations for the flight experiment. Significant efforts were made to place the protuberance at an appropriate location on the Orbiter and to design the protuberance to withstand the expected environments. Efforts were also extended to understand the as-fabricated shape of the protuberance and the thermal protection system tile configuration surrounding the protuberance. A high level overview of the in-situ flight data will be presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data.

  4. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  5. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus

    PubMed Central

    Xiong, Xiaorui R.; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A.; Tao, Huizhong W.; Zhang, Li I.

    2015-01-01

    Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities. PMID:26068082

  6. Diel periodicity of Drosophila suzukii (Diptera: Drosophilidae) under field conditions

    PubMed Central

    Evans, Richard K.; Toews, Michael D.

    2017-01-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae), an economically important pest of blueberry and other thin-skinned fruits, persists and prolifically reproduces under seemingly lethal climatic conditions in the field. However, behavioral and physiological mechanisms employed by D. suzukii to tolerate such extreme climatic conditions in the field are unknown. The primary objective of this project was to investigate diel periodicity of D. suzukii and their reproductive success under field conditions as related by climatic factors such as temperature and relative humidity. Results show that D. suzukii reproductive success was significantly higher during the night (including dawn and dusk periods) than the day in terms of oviposition, pupation, adult eclosion, and the number of progeny per female. Female D. suzukii reproductive success was not significantly different between specific regions of a blueberry bush in relation to the amount of shade provided by the canopy. Our studies indicate that D. suzukii flight activity is crepuscular and is sensitive to fluctuations in temperature and relative humidity. Results also suggest that the majority of fly activity during peak hours is concentrated in areas around the border and within the center of blueberry orchards with little activity in the surrounding wooded areas. These findings suggest that D. suzukii prefers microclimate with mild temperatures and high humidity, and does not function well when exposed to direct sunlight with extreme heat. The authors propose that D. suzukii management strategies should be implemented during the early morning and immediately before darkness to maximize efficacy. PMID:28187140

  7. What makes Alpine swift ascend at twilight? Novel geolocators reveal year-round flight behaviour.

    PubMed

    Meier, Christoph M; Karaardıç, Hakan; Aymí, Raül; Peev, Strahil G; Bächler, Erich; Weber, Roger; Witvliet, Willem; Liechti, Felix

    2018-01-01

    Studying individual flight behaviour throughout the year is indispensable to understand the ecology of a bird species. Recent development in technology allows now to track flight behaviour of small long-distance bird migrants throughout its annual cycle. The specific flight behaviour of twilight ascents in birds has been documented in a few studies, but only during a short period of the year, and never quantified on the individual level. It has been suggested that twilight ascents might be a role in orientation and navigation. Previous studies had reported the behaviour only near the breeding site and during migration. We investigated year-round flight behaviour of 34 individual Alpine swifts ( Apus melba ) of four different populations in relation to twilight ascents. We recorded twilight ascents all around the year and found a twofold higher frequency in ascents during the non-breeding residence phase in Africa compared to all other phases of the year. Dawn ascents were twice as common as dusk ascents and occurred mainly when atmospheric conditions remained stable over a 24-h period. We found no conclusive support that twilight ascents are essential for recalibration of compass cues and landmarks. Data on the wing flapping intensity revealed that high activity at twilight occurred more regularly than the ascents. We therefore conclude that alpine swift generally increase flight activity-also horizontal flight-during the twilight period and we suppose that this increased flight activity, including ascents, might be part of social interactions between individuals. Year-round flight altitude tracking with a light-weight multi-sensor tag reveals that Alpine swifts ascend several hundred meters high at twilight regularly. The reason for this behaviour remains unclear and the low-light conditions at this time of the day preclude foraging as a possibility. The frequency and altitude of twilight ascents were highest during the non-breeding period, intermediate during migration and low for active breeders during the breeding phase. We discuss our findings in the context of existing hypotheses on twilight ascent and we propose an additional hypothesis which links twilight ascent with social interaction between flock members. Our study highlights how flight behaviour of individuals of a migratory bird species can be studied even during the sparsely documented non-breeding period.

  8. Concerning the Motion of FTEs and Attendant Signatures

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    2010-01-01

    We employ the Cooling et al. [2001] model to predict the location, orientation, and motion of flux transfer events (FTEs) generated along finite length component and anti parallel reconnection lines for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) orientations in the plane perpendicular to the SunEarth line at the solstices and equinoxes. For duskward and northward or southward IMF orientations, events formed by component reconnection originate along reconnection curves passing through the sub solar point that tilt from southern dawn to northern dusk. They maintain this orientation as they move either northward into the northern dawn quadrant or southward into the southern dusk quadrant. By contrast, events formed by antiparallel reconnection originate along reconnection curves running from northern dawn to southern dusk in the southern dawn and northern dusk quadrants and maintain these orientations as they move anti sunward into both these quadrants. Although both the component and antiparallel reconnection models can explain previously reported event orientations on the southern dusk magnetopause during intervals of northward and dawn ward IMF orientation, only the component model explains event occurrence near the subsolar magnetopause during intervals when the IMF does not point due southward.

  9. Dawn: An Ion-Propelled Journey to the Beginning of the Solar System

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Rayman, Marc D.; Pavri, Betina

    2008-01-01

    The Dawn mission is designed to perform a scientific investigation of the two heaviest mainbelt asteroids Vesta and Ceres. These bodies are believed to preserve records of the physical and chemical conditions present during the formation of the solar system. The mission uses an ion propulsion system to enable the single Dawn spacecraft and its complement of scientific instruments to orbit both of these asteroids. Dawn's three science instruments - the gamma ray and neutron detector, the visible and infrared mapping spectrometer, and the primary framing camera - were successfully tested after launch and are functioning normally. The ion propulsion system includes three ion thrusters of the type flown previously on NASA's Deep Space 1 mission. A minimum of two ion thrusters is necessary to accomplish the Dawn mission. Checkout of two of the ion thrusters was completed as planned within 30 days after launch. This activity confirmed that the spacecraft has two healthy ion thrusters. While further checkout activities are still in progress, the activities completed as of the end of October indicate that the spacecraft is well on its way toward being ready for the start of the thrusting-cruise phase of the mission beginning December 15th.

  10. Eclipse project QF-106 and C-141A climbs out under tow on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    TOW LAUNCH DEMONSTRATION - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 climbs out under tow by a USAF C-141A on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  11. Eclipse project QF-106 and C-141A takeoff on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    TOW ROPE TAKEOFF - The Kelly Space & Technology (KST)/USAF Eclipse project's modified QF-106 and a USAF C-141A takeoff for the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  12. Eclipse project closeup of QF-106 under tow on takeoff on first flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    OFF THE GROUND - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 lifts off under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  13. Eclipse project closeup of QF-106 under tow on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Kelly Space and Technology (KST)/USAF/NASA Eclipse project's modified QF-106 is shown under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, is hosting the project, providing engineering and facility support as well as the project pilot, Mark Stucky. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  14. History of Manned Space Flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    U.S. manned space projects from Mercury Redstone 3 through Skylab 4 are briefly described including dates, flight duration, crew, and number of earth/moon orbits. The flight costs of each project are itemized. Highlights in the history of the manned space program from 1957 to February, 1974 are included.

  15. Dawn LAMO Image 80

    NASA Image and Video Library

    2016-05-03

    NASA Dawn spacecraft shows Azacca Crater has a prominent set of north-south trending fractures. Its floor is relatively smooth and its rim has terraces descending toward its floor. Azacca was named for the Haitian god of agriculture.

  16. Dawn LAMO Image 25

    NASA Image and Video Library

    2016-02-11

    This image, taken by NASA Dawn spacecraft, shows a densely cratered region within Meanderi Crater on Ceres. Elongated craters in the wall of the largest impact feature are likely the result of material slumping down the crater walls.

  17. Dawn LAMO Image 33

    NASA Image and Video Library

    2016-02-24

    NASA Dawn spacecraft captured this view of a region in the mid-southern latitudes of Ceres. The largest crater in the scene is Fluusa. Fluusa has a densely cratered floor and therefore is interpreted as an old impact feature.

  18. Dawn LAMO Image 32

    NASA Image and Video Library

    2016-02-23

    This image of Ceres from NASA Dawn spacecraft was taken at an oblique viewing angle relative to the surface. The crater to the upper right is named Juling which displays prominent spurs of compacted material along its walls.

  19. High-Resolution Global Geologic Map of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Buczkowski, D. L.; Crown, D. A.; Frigeri, A.; Hughson, K.; Kneissl, T.; Krohn, K.; Mest, S. C.; Pasckert, J. H.; Platz, T.; Ruesch, O.; Schulzeck, F.; Scully, J. E. C.; Sizemore, H. G.; Nass, A.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2018-06-01

    This presentation will discuss the completed 1:4,000,000 global geologic map of dwarf planet Ceres derived from Dawn Framing Camera Low Altitude Mapping Orbit (LAMo) images, combining 15 quadrangle maps.

  20. On the Way to Ceres Artist Concept

    NASA Image and Video Library

    2013-12-03

    This artist concept shows NASA Dawn spacecraft heading toward the dwarf planet Ceres. When Dawn arrives, it will be the first spacecraft to go into orbit around two destinations in our solar system beyond Earth.

  1. Dawn LAMO Image 24

    NASA Image and Video Library

    2016-02-10

    This image, taken by NASA Dawn spacecraft, shows the heavily cratered rim of an older, unnamed impact feature on Ceres. The crater density is almost the same inside and outside, and its wall is also quite battered by impacts.

  2. Thermal biology of Pacific cicada killers, Sphecius convallis Patton, in the Upper Sonoran Desert.

    PubMed

    Coelho, Joseph R; Holliday, Charles W; Hastings, Jon M; Phillips, Christy M

    2016-04-01

    A comprehensive investigation of the Pacific cicada killer, Sphecius convallis Patton, was undertaken to examine the behavioral and physiological mechanisms by which they are able to complete their life cycle in the thermal extremes of the Upper Sonoran Desert. S. convallis were endothermic, exhibiting elevated and relatively constant thorax temperatures during many activities. Males basked in trees at dawn to warm up, then used a variety of behaviors and perching strategies to maintain thorax temperature during territorial behavior. The thorax temperature of females was highest during provisioning and orientation flights, somewhat lower while investigating burrows, and lowest while digging burrows. The optimal thorax temperature for flight was about 40°C, which was approximated most closely by males resting in the shade during the afternoon. In mating clusters, the mated male was the hottest, the female was coolest and the other males were intermediate. Wasps lost about 5% of body mass during heating treatments, and may use evaporative water loss for cooling. Pacific cicada killers use a complex suite of behavioral and physiological adaptations to regulate body temperature during their nesting season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. iss024-s-001

    NASA Image and Video Library

    2010-01-04

    ISS024-S-001 (January 2010) --- Science and Exploration are the cornerstones of NASA?s mission onboard the International Space Station (ISS). This emblem signifies the dawn of a new era in our program?s history. With each new expedition, as we approach assembly complete, our focus shifts toward the research nature of this world-class facility. Prominently placed in the foreground, the ISS silhouette leads the horizon. Each ray of the sun represents the five international partner organizations that encompass this cooperative program. Expedition 24 is one of the first missions expanding to a crew of six. These crews, symbolized here as stars arranged in two groups of three, will launch on Soyuz vehicles. The unbroken flight track symbolizes our continuous human presence in space, representing all who have and will dedicate themselves as crew and citizens of the International Space Station. The NASA insignia design for shuttle flights and station increments is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  4. EXP_24_patch_names_OL

    NASA Image and Video Library

    2010-01-04

    ISS024-S-001A (January 2010) --- Science and Exploration are the cornerstones of NASA?s mission onboard the International Space Station (ISS). This emblem signifies the dawn of a new era in our program?s history. With each new expedition, as we approach assembly complete, our focus shifts toward the research nature of this world-class facility. Prominently placed in the foreground, the ISS silhouette leads the horizon. Each ray of the sun represents the five international partner organizations that encompass this cooperative program. Expedition 24 is one of the first missions expanding to a crew of six. These crews, symbolized here as stars arranged in two groups of three, will launch on Soyuz vehicles. The unbroken flight track symbolizes our continuous human presence in space, representing all who have and will dedicate themselves as crew and citizens of the International Space Station. The NASA insignia design for shuttle flights and station increments is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  5. KSC-07pd1239

    NASA Image and Video Library

    2007-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Astrotech Space Operations facility, Orbital Science technicians install a computer chip on the Dawn spacecraft. The silicon chip holds the names of more than 360,000 space enthusiasts worldwide who signed up to participate in a virtual voyage to the asteroid belt and is about the size of an American five-cent coin. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jim Grossmann

  6. KSC-07pd0853

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, an external cover is removed from around the shipping container holding the Dawn spacecraft. The container will then be moved into the high bay of the Payload Processing Facility and the spacecraft removed. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  7. KSC-07pd0862

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  8. KSC-07pd0863

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  9. Dawn XMO2 Image 29

    NASA Image and Video Library

    2017-01-11

    Ikapati Crater on Ceres is seen at top right in this image from NASA's Dawn spacecraft. Ikapati has a complex of central peaks and roughly parallel fractures on its floor. The crater, named for a Philippine goddess of cultivated lands, measures 31 miles (50 kilometers) in diameter. Dawn took this image on Oct. 24, 2016, during its second extended-mission science orbit (XMO2), from a distance of about 920 miles (1,480 kilometers) above the surface of Ceres. The image resolution is about 460 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21249

  10. KSC-07pd1238

    NASA Image and Video Library

    2007-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Astrotech Space Operations facility, a computer chip awaits installation on the Dawn spacecraft. The silicon chip holds the names of more than 360,000 space enthusiasts worldwide who signed up to participate in a virtual voyage to the asteroid belt and is about the size of an American five-cent coin. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jim Grossmann

  11. Chemical Mixing Model and K-Th-Ti Systematics and HED Meteorites for the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Usui, T.; McSween, H. Y., Jr.; Mittlefehldt, D. W.; Prettyman, T. H.

    2009-01-01

    The Dawn mission will explore 4 Vesta, a large differentiated asteroid believed to be the parent body of the howardite, eucrite and diogenite (HED) meteorite suite. The Dawn spacecraft carries a gamma-ray and neutron detector (GRaND), which will measure the abundances of selected elements on the surface of Vesta. This study provides ways to leverage the large geochemical database on HED meteorites as a tool for interpreting chemical analyses by GRaND of mapped units on the surface of Vesta.

  12. KSC-07pd2400

    NASA Image and Video Library

    2007-09-01

    KENNEDY SPACE CENTER, FLA. -- This logo represents the mission of the Dawn spacecraft. During its nearly decade-long mission, Dawn will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. The mission hopes to unlock some of the mysteries of planetary formation, including the building blocks and the processes leading to their state today. The Dawn mission is managed by the Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., for NASA's Science Mission Directorate in Washington, D.C.

  13. Configuration management issues and objectives for a real-time research flight test support facility

    NASA Technical Reports Server (NTRS)

    Yergensen, Stephen; Rhea, Donald C.

    1988-01-01

    Presented are some of the critical issues and objectives pertaining to configuration management for the NASA Western Aeronautical Test Range (WATR) of Ames Research Center. The primary mission of the WATR is to provide a capability for the conduct of aeronautical research flight test through real-time processing and display, tracking, and communications systems. In providing this capability, the WATR must maintain and enforce a configuration management plan which is independent of, but complimentary to, various research flight test project configuration management systems. A primary WATR objective is the continued development of generic research flight test project support capability, wherein the reliability of WATR support provided to all project users is a constant priority. Therefore, the processing of configuration change requests for specific research flight test project requirements must be evaluated within a perspective that maintains this primary objective.

  14. Boundary Layer Transition Flight Experiment Overview and In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Anderson, Brian P.; Campbell, Charles H.; Saucedo, Luis A.; Kinder, Gerald R.; Berger, Karen T.

    2010-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLTFE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for the flights of STS-119 and STS-128. Additional instrumentation was also installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLTFE Project, including the project history, organizations involved, and motivations for the flight experiment. Significant efforts were made to place the protuberance at an appropriate location on the Orbiter and to design the protuberance to withstand the expected environments. Efforts were also extended to understand the as-fabricated shape of the protuberance and the thermal protection system tile configuration surrounding the protuberance. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that predictions for boundary layer transition onset time closely match the flight data, while predicted temperatures were significantly higher than observed flight temperatures.

  15. Integration of optical measurement methods with flight parameter measurement systems

    NASA Astrophysics Data System (ADS)

    Kopecki, Grzegorz; Rzucidlo, Pawel

    2016-05-01

    During the AIM (advanced in-flight measurement techniques) and AIM2 projects, innovative modern techniques were developed. The purpose of the AIM project was to develop optical measurement techniques dedicated for flight tests. Such methods give information about aircraft elements deformation, thermal loads or pressure distribution, etc. In AIM2 the development of optical methods for flight testing was continued. In particular, this project aimed at the development of methods that could be easily applied in flight tests in an industrial setting. Another equally important task was to guarantee the synchronization of the classical measuring system with cameras. The PW-6U glider used in flight tests was provided by the Rzeszów University of Technology. The glider had all the equipment necessary for testing the IPCT (image pattern correlation technique) and IRT (infrared thermometry) methods. Additionally, equipment adequate for the measurement of typical flight parameters, registration and analysis has been developed. This article describes the designed system, as well as presenting the system’s application during flight tests. Additionally, the results obtained in flight tests show certain limitations of the IRT method as applied.

  16. Managing External Relations: The Lifeblood of Mission Success

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2007-01-01

    The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.

  17. UAS Integration in the NAS Project: Flight Test 3 Data Analysis of JADEM-Autoresolver Detect and Avoid System

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Wu, Minghong G.; Santiago, Confesor

    2016-01-01

    The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS Integration in the NAS, aims to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The UAS Integration in the NAS Project conducted a flight test activity, referred to as Flight Test 3 (FT3), involving several Detect-and-Avoid (DAA) research prototype systems between June 15, 2015 and August 12, 2015 at the Armstrong Flight Research Center (AFRC). This report documents the flight testing and analysis results for the NASA Ames-developed JADEM-Autoresolver DAA system, referred to as 'Autoresolver' herein. Four flight test days (June 17, 18, 22, and July 22) were dedicated to Autoresolver testing. The objectives of this test were as follows: 1. Validate CPA prediction accuracy and detect-and-avoid (DAA, formerly known as self-separation) alerting logic in realistic flight conditions. 2. Validate DAA trajectory model including maneuvers. 3. Evaluate TCAS/DAA interoperability. 4. Inform final Minimum Operating Performance Standards (MOPS). Flight test scenarios were designed to collect data to directly address the objectives 1-3. Objective 4, inform final MOPS, was a general objective applicable to the UAS in the NAS project as a whole, of which flight test is a subset. This report presents analysis results completed in support of the UAS in the NAS project FT3 data review conducted on October 20, 2015. Due to time constraints and, to a lesser extent, TCAS data collection issues, objective 3 was not evaluated in this analysis.

  18. NASA's Evolutionary Xenon Thruster: The NEXT Ion Propulsion System for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Benson, Scott W.

    2008-01-01

    This viewgraph presentation reviews NASA s Evolutionary Xenon Thruster (NEXT) Ion Propulsion system. The NEXT project is developing a solar electric ion propulsion system. The NEXT project is advancing the capability of ion propulsion to meet NASA robotic science mission needs. The NEXT system is planned to significantly improve performance over the state of the art electric propulsion systems, such as NASA Solar Electric Propulsion Technology Application Readiness (NSTAR). The status of NEXT development is reviewed, including information on the NEXT Thruster, the power processing unit, the propellant management system (PMS), the digital control interface unit, and the gimbal. Block diagrams NEXT system are presented. Also a review of the lessons learned from the Dawn and NSTAR systems is provided. In summary the NEXT project activities through 2007 have brought next-generation ion propulsion technology to a sufficient maturity level.

  19. Geochemistry at 4 Vesta: Observations Using Fast Neutrons

    NASA Technical Reports Server (NTRS)

    Lawrence, David J.; Prettyman, Thomas H.; Feldman, William C.; Bazell, David; Mittlefehldt, David W.; Peplowski, Patrick N.; Reedy, Robert C.

    2012-01-01

    Dawn is currently in orbit around the asteroid 4 Vesta, and one of the major objectives of the mission is to probe the relationship of Vesta to the Howardite, Eucrite, and Diogenite (HED) meteorites. As Vesta is an example of a differentiated planetary embryo, Dawn will also provide fundamental information about planetary evolution in the early solar system [1]. To help accomplish this overall goal, the Dawn spacecraft carries the Gamma-Ray and Neutron Detector (GRaND). GRaND uses planetary gamma-ray and neutron spectroscopy to measure the surface elemental composition of Vesta and will provide information that is unique and complementary to that provided by the other Dawn instruments and investigations. Gamma-ray and neutron spectroscopy is a standard technique for measuring planetary compositions [2], having successfully made measurements at near-Earth asteroids, the Moon, Mars, Mercury and now Vesta. GRaND has made the first measurements of the neutron spectrum from any asteroid (previous asteroid measurements were only made with gamma-rays). Dawn has been collecting data at Vesta since July 2011. The prime data collection period for GRaND is the Low-Altitude Mapping Orbit (LAMO), which started on 12 December 2011 and will last through spring 2012. During LAMO, the Dawn spacecraft orbits at an average altitude of 210 km above the surface of Vesta, which allows good neutron and gamma-ray signals to be detected from Vesta. A description of the overall goals of GRaND and a summary of the initial findings are given elsewhere [3,4]. The subject of this study is to present the information that will be returned from GRaND using fast neutron measurements. Here, we discuss what fast neutrons can reveal about Vesta s surface composition, how such data can address Dawn science goals, and describe fast neutron measurements made in the early portion of the Vesta LAMO phase.

  20. Dawn HAMO Image 23

    NASA Image and Video Library

    2015-09-24

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 27, 2015.

  1. Dawn HAMO Image 20

    NASA Image and Video Library

    2015-09-21

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 26, 2015.

  2. Dawn LAMO Image 106

    NASA Image and Video Library

    2016-06-09

    This image from NASA Dawn spacecraft shows a portion of Ceres known as Erntedank Planum, a broad plateau 345 miles 555 kilometers wide. The terrain seen here lies just to the southeast of Occator Crater, home of Ceres brightest region.

  3. Dawn HAMO Image 82

    NASA Image and Video Library

    2015-12-22

    Part of the southern hemisphere on dwarf planet Ceres is seen in this image taken by NASA Dawn spacecraft. Hamori crater, named after a Japanese god and protector of tree leaves, is the large crater near the center of the image.

  4. Dawn LAMO Image 89

    NASA Image and Video Library

    2016-05-16

    This image captured by NASA Dawn spacecraft features the shadowy rim of an unnamed crater on Ceres. The crater on the left appears relatively old, as its flanks are rugged and the crater density inside it is more or less uniform.

  5. KSC-07pd1389

    NASA Image and Video Library

    2007-06-07

    KENNEDY SPACE CENTER, FLA. -- At Astrotech's Hazardous Processing Facility, technicians look at the connections for loading the Dawn spacecraft with xenon gas for the ion propulsion system. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann

  6. KSC-07pd1390

    NASA Image and Video Library

    2007-06-07

    KENNEDY SPACE CENTER, FLA. -- At Astrotech's Hazardous Processing Facility, a technician checks the connections for loading the Dawn spacecraft with xenon gas for the ion propulsion system. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann

  7. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  8. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    NASA Technical Reports Server (NTRS)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  9. MSFC Technology Year in Review 2015

    NASA Technical Reports Server (NTRS)

    Reynolds, David; Tinker, Mike

    2015-01-01

    MSFC has a strong diverse portfolio of technology development projects, ranging from flight projects to very low Technology Readiness Level (TRL) laboratory projects. The 2015 Year in Review highlights the Center's technology projects and celebrates their accomplishments to raise awareness of technology development work that is integral to the success of future Agency flight programs.

  10. KSC-2011-8148

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – Dawn at Port Canaveral in Florida finds preparations under way for the departure of NASA's Liberty Star ship. Liberty Star has been enlisted to support the Crew Module Recovery Attach Fitting Test (CRAFT) which began at-sea operations Nov. 29. Multiple attach clips are being evaluated against the current recovery cleat configuration by U.S. Air Force pararescue jumpers (PJs) and a U.S. Navy diver. The 21st Century Ground Systems Program will use data collected from the tests to help develop ground operations support equipment that could be used to recover an uncrewed Orion flight test capsule after splashdown. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft being developed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Tim Jacobs

  11. KSC-2009-4407

    NASA Image and Video Library

    2009-08-04

    CAPE CANAVERAL, Fla. – Space shuttle Discovery is silhouetted against the dawn sky as it rolls out to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion out of the Vehicle Assembly Building was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. The 3.4-mile journey was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2009-4406

    NASA Image and Video Library

    2009-08-04

    CAPE CANAVERAL, Fla. – Space shuttle Discovery is silhouetted against the dawn sky as it rolls out to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion out of the Vehicle Assembly Building was at 2:07 a.m. EDT Aug. 4. Rollout was delayed approximately 2 hours due to lightning in the area. The 3.4-mile journey was slower than usual as technicians stopped several times to clear mud from the crawler's treads and bearings caused by the waterlogged crawlerway. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the International Space Station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for late August. Photo credit: NASA/Dimitri Gerondidakis

  13. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes. The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful towed flight occurred on December 20, 1997. Prior to this first tow test flight, the C-141A and EXD-01 were used to conduct a series of tethered taxi tests that would validate the tow procedures. Before these tethered taxi tests, a successful joint flight test was conducted in late October 1996, by Dryden, AFFTC, and KST, in which one of the Dryden F-18 chase aircraft flew at various ranges and locations behind the C-141A to define the wake turbulence and wingtip vortex environment. This flight test was replicated in July 1997, with an unmodified QF-106 flight proficiency aircraft.

  14. Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day.

    PubMed

    Fernandez, Olivier; Ishihara, Hirofumi; George, Gavin M; Mengin, Virginie; Flis, Anna; Sumner, Dean; Arrivault, Stéphanie; Feil, Regina; Lunn, John E; Zeeman, Samuel C; Smith, Alison M; Stitt, Mark

    2017-08-01

    We investigated whether starch degradation occurs at the same time as starch synthesis in Arabidopsis ( Arabidopsis thaliana ) leaves in the light. Starch accumulated in a linear fashion for about 12 h after dawn, then accumulation slowed and content plateaued. Following decreases in light intensity, the rate of accumulation of starch declined in proportion to the decline in photosynthesis if the decrease occurred <10 h after dawn, but accumulation ceased or loss of starch occurred if the same decrease in light intensity was imposed more than 10 h after dawn. These changes in starch accumulation patterns after prolonged periods in the light occurred at both high and low starch contents and were not related to time-dependent changes in either the rate of photosynthesis or the partitioning of assimilate between starch and Suc, as assessed from metabolite measurements and 14 CO 2 pulse experiments. Instead, measurements of incorporation of 13 C from 13 CO 2 into starch and of levels of the starch degradation product maltose showed that substantial starch degradation occurred simultaneously with synthesis at time points >14 h after dawn and in response to decreases in light intensity that occurred >10 h after dawn. Starch measurements in circadian clock mutants suggested that the clock influences the timing of onset of degradation. We conclude that the propensity for leaf starch to be degraded increases with time after dawn. The importance of this phenomenon for efficient use of carbon for growth in long days and for prevention of starvation during twilight is discussed. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day1[OPEN

    PubMed Central

    Mengin, Virginie; Arrivault, Stéphanie

    2017-01-01

    We investigated whether starch degradation occurs at the same time as starch synthesis in Arabidopsis (Arabidopsis thaliana) leaves in the light. Starch accumulated in a linear fashion for about 12 h after dawn, then accumulation slowed and content plateaued. Following decreases in light intensity, the rate of accumulation of starch declined in proportion to the decline in photosynthesis if the decrease occurred <10 h after dawn, but accumulation ceased or loss of starch occurred if the same decrease in light intensity was imposed more than 10 h after dawn. These changes in starch accumulation patterns after prolonged periods in the light occurred at both high and low starch contents and were not related to time-dependent changes in either the rate of photosynthesis or the partitioning of assimilate between starch and Suc, as assessed from metabolite measurements and 14CO2 pulse experiments. Instead, measurements of incorporation of 13C from 13CO2 into starch and of levels of the starch degradation product maltose showed that substantial starch degradation occurred simultaneously with synthesis at time points >14 h after dawn and in response to decreases in light intensity that occurred >10 h after dawn. Starch measurements in circadian clock mutants suggested that the clock influences the timing of onset of degradation. We conclude that the propensity for leaf starch to be degraded increases with time after dawn. The importance of this phenomenon for efficient use of carbon for growth in long days and for prevention of starvation during twilight is discussed. PMID:28663333

  16. Comparing Vesta Topography

    NASA Image and Video Library

    2013-09-27

    These two images compare topographic maps of the giant asteroid Vesta as discerned by NASA Hubble Space Telescope top and as seen by NASA Dawn spacecraft bottom. Hubble has been in an orbit around Earth, while Dawn orbited Vesta from 2011 to 2012.

  17. Dawn HAMO Image 34

    NASA Image and Video Library

    2015-10-09

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on September 15, 2015, and has a resolution of 450 feet 140 meters per pixel.

  18. Dawn HAMO Image 27

    NASA Image and Video Library

    2015-09-30

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on August 22, 2015, and has a resolution of 450 feet 140 meters per pixel.

  19. Dawn View from OpNav9

    NASA Image and Video Library

    2015-05-28

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 23, 2015, from a distance of 3,169 miles 5,100 kilometers. Resolution in the image is about 1,565 feet 477 meters per pixel.

  20. Dawn Mission to Vesta and Ceres Lithograph

    NASA Image and Video Library

    2007-01-01

    This artist's lithograph features general information, significant dates, and interesting facts on the backabout asteroid Vesta and dwarf planet Ceres and is part of the Mission Art series from NASA's Dawn mission. http://photojournal.jpl.nasa.gov/catalog/PIA19370

  1. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae; hide

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.

  2. The role of simulation in the development and flight test of the HiMAT vehicle

    NASA Technical Reports Server (NTRS)

    Evans, M. B.; Schilling, L. J.

    1984-01-01

    Real time simulations have been essential in the flight test program of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle at NASA Ames Research Center's Dryden Flight Research Facility. The HiMAT project makes extensive use of simulations in design, development, and qualification for flight, pilot training, and flight planning. Four distinct simulations, each with varying amounts of hardware in the loop, were developed for the HiMAT project. The use of simulations in detecting anomalous behavior of the flight software and hardware at the various stages of development, verification, and validation has been the key to flight qualification of the HiMAT vehicle.

  3. "SP.ACE" 2013-2015: ASGARD Balloon and BIFROST Parabolic Flights: Latest Developments in Hands-On Space Education Projects for Secondary School Students

    NASA Astrophysics Data System (ADS)

    de Schrijver, E.; Chameleva, H.; Degroote, C.; D'Haese, Z.; Paice, C.; Plas, H.; Van den Bossche, A.; Vander Donckt, L.; Vander Vost, J.

    2015-09-01

    Flight opportunities on high-altitude ASGARD balloons offered to secondary schools worldwide since 20 1 1 have led to an ever more rapidly increasing number of project proposals. The introduction of beginners' and ‘advanced classes of experiments is hoped to draw in even larger numbers of interested school teams. Furthermore, and in cooperation with ESERO (European Space Education Resources Office), workshops and documentation are being prepared to introduce teachers and students alike to the world of microcontrollers and sensors. A student parabolic flight programme called BIFROST (Brussels' Initiative to provide Flight Research Opportunities to STudents) was initiated to meet the rising demand for hands-on space education projects and the desire to cover the widest possible range of scientific and/or technical domains, which essentially calls for a variety of flight platforms: cansats, balloons and parabolic flight.

  4. Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2012-01-01

    Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.

  5. Multi-Vehicle Cooperative Control Research at the NASA Armstrong Flight Research Center, 2000-2014

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2014-01-01

    A brief introductory overview of multi-vehicle cooperative control research conducted at the NASA Armstrong Flight Research Center from 2000 - 2014. Both flight research projects and paper studies are included. Since 2000, AFRC has been almost continuously pursuing research in the areas of formation flight for drag reduction and automated cooperative trajectories. An overview of results is given, including flight experiments done on the FA-18 and with the C-17. Other multi-vehicle cooperative research is discussed, including small UAV swarming projects and automated aerial refueling.

  6. NASA Aerosciences Perspective on Proposed De-Scope of Ares I-X Development Flight Instrumentation

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2009-01-01

    This position paper is written as a result of a number of emails and a presentation that have recently been circulated concerning the potential reduction of Development Flight Instrumentation (DFI) to be included on the Ares I-X flight test vehicle. A reduction in instrumentation has been proposed presumably to reduce project costs and relieve project schedule pressures. This proposal has generated a significant amount of discussion on both sides of the issue, primarily from those within the project. The intention here is to provide a perspective on this issue from outside the mainline project.

  7. Dawn HAMO Image 42

    NASA Image and Video Library

    2015-10-21

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres at mid-latitudes, from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 21, 2015, and has a resolution of 450 feet 140 meters per pixel.

  8. Dawn Survey Orbit Image 40

    NASA Image and Video Library

    2015-08-04

    This image, taken by NASA Dawn spacecraft on June 24, 2015, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers with a resolution of 1,400 feet 410 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19613

  9. Dawn LAMO Image 38

    NASA Image and Video Library

    2016-03-02

    NASA Dawn spacecraft obtained this view of Azacca Crater on Ceres. The rim of this crater has terraces descending from its rim down to its floor. The crater floor is relatively free of large impact scars and is named for the Haitian god of agriculture

  10. A Last Look Back at Vesta

    NASA Image and Video Library

    2012-09-05

    This image is from the last sequence of images NASA Dawn spacecraft obtained of the giant asteroid Vesta, looking down at Vesta north pole as it was departing. Dawn escaped from Vesta orbit on Sept. 4, 2012 PDT Sept. 5, 2012 CET.

  11. Dawn LAMO Image 90

    NASA Image and Video Library

    2016-05-17

    This image from NASA Dawn spacecraft shows the western rim of Azacca Crater on Ceres. A smaller impact feature sits on its flank. Of particular interest in this scene is the great number of small, bright spots, in the southern part of the image.

  12. Parallel computing of a climate model on the dawn 1000 by domain decomposition method

    NASA Astrophysics Data System (ADS)

    Bi, Xunqiang

    1997-12-01

    In this paper the parallel computing of a grid-point nine-level atmospheric general circulation model on the Dawn 1000 is introduced. The model was developed by the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). The Dawn 1000 is a MIMD massive parallel computer made by National Research Center for Intelligent Computer (NCIC), CAS. A two-dimensional domain decomposition method is adopted to perform the parallel computing. The potential ways to increase the speed-up ratio and exploit more resources of future massively parallel supercomputation are also discussed.

  13. KSC-07pd1241

    NASA Image and Video Library

    2007-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Astrotech Space Operations facility, Orbital Science technicians verify that a computer chip is securely bonded to a side brace on the Dawn spacecraft. The silicon chip holds the names of more than 360,000 space enthusiasts worldwide who signed up to participate in a virtual voyage to the asteroid belt and is about the size of an American five-cent coin. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  14. Dawn XMO2 Image 3

    NASA Image and Video Library

    2016-11-09

    Relatively young craters, with sharp crater rims and streaks of bright material, are the focus of this view of Ceres from NASA's Dawn spacecraft. The large, ancient and quite degraded crater Fluusa is seen at top center. The younger craters are Kupalo, at lower right, and Juling, to its left. Dawn took this image on Oct. 17, 2016, from its second extended-mission science orbit (XMO2), at a distance of about 920 miles (1,480 kilometers) above the surface. The image resolution is about 460 feet (140 meters) per pxel. http://photojournal.jpl.nasa.gov/catalog/PIA21223

  15. KSC-07pd1240

    NASA Image and Video Library

    2007-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Astrotech Space Operations facility, a computer chip is bonded to a side brace on the Dawn spacecraft. The silicon chip holds the names of more than 360,000 space enthusiasts worldwide who signed up to participate in a virtual voyage to the asteroid belt and is about the size of an American five-cent coin. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jim Grossmann

  16. Spectral modeling of water ice-rich areas on Ceres' surface from Dawn-VIR data analysis: abundance and grain size retrieval

    NASA Astrophysics Data System (ADS)

    Raponi, Andrea; De Sanctis, Maria Cristina; Ciarniello, Mauro; Tosi, Federico; Combe, Jean-Philippe; Frigeri, Alessandro; Zambon, Francesca; Ammannito, Eleonora; Giacomo Carrozzo, Filippo; Magni, Gianfranco; Capria, Maria Teresa; Formisano, Michelangelo; Longobardo, Andrea; Palomba, Ernesto; Pieters, Carle; Russell, Christopher T.; Raymond, Carol; Dawn/VIR Team

    2016-10-01

    Dawn spacecraft orbits around Ceres since early 2015 acquiring a huge amount of data at different spatial resolutions during the several phases of the mission. VIR, the visible and InfraRed spectrometer onboard Dawn [1] allowed to detect the principal mineralogical phases present on Ceres: a large abundance of dark component, NH4-phillosilicates and carbonates.Water has been detected in small areas on Ceres' surface by the Dawn-VIR instrument. The most obvious finding is located in Oxo crater [2]. Further detections of water have been made during the Survey observation phase (1.1 km/pixel) and High-Altitude Mapping Orbit (400 m/px) [3]. During the LAMO phase (Low Altitude Mapping Orbit), the data with increased spatial resolution (100 m/px) coming from both regions have improved the detection of water, highlighting clear diagnostic water ice absorption features. In this study, we focused on spectral modeling of VIR spectra of Oxo and another crater (lon = 227°, lat 57°), near Messor crater.The Hapke radiative transfer model [4] has been applied in order to retrieve the water ice properties. We consider two types of mixtures: areal and intimate mixing. In areal mixing, the surface is modelled as patches of pure water ice, with each photon scattered within one patch. In intimate mixing, the particles of water ice are in contact with particles of the dark terrain, and both are involved in the scattering of a single photon. The best fit with the measured spectra has been derived with the areal mixture. The water ice abundance obtained is up to 15-20% within the field of view, and the grain size retrieved is of the order of 100-200 μm. Phyllosilicates and carbonates, which are ubiquitous on Ceres surface [5], have been also detected and modeled in correspondence with the icy regions. The water ice is typically located near and within the shadows projected by the crater rims. Further analysis is required to study the thermal state of the ice and its origin.References[1] De Sanctis M.C. et al., Space Sci. Rev., 2010[2] Combe J-Ph. et al., 2016, LPI N. 1903, 1820[3] Combe J.-Ph. Et al., 2016, DPS-EPSC[4] Hapke B., Cambridge Univ. Press., 1993, 2012[5] De Sanctis M.C. et al., 2015. Nature 242, 528

  17. sts088-s-001

    NASA Image and Video Library

    1998-09-01

    STS088-S-001 (September 1998) --- Designed by the crew members, this STS-88 patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task is to assemble the cornerstone of the space station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the space shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, "These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future." The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  18. First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations

    NASA Technical Reports Server (NTRS)

    Kahle, R.; Kazeminejad, B.; Kirschner, M.; Yoon, Y.; Kiehling, R.; D'Amico, S.

    2007-01-01

    TerraSAR-X is an advanced synthetic aperture radar satellite system for scientific and commercial applications that is realized in a public-private partnership between the German Aerospace Center (DLR) and the Astrium GmbH. TerraSAR-X was launched at June 15, 2007 on top of a Russian DNEPR-1 rocket into a 514 km sun-synchronous dusk-dawn orbit with an 11-day repeat cycle and will be operated for a period of at least 5 years during which it will provide high resolution SAR-data in the X-band. Due to the objectives of the interferometric campaigns the satellite has to comply to tight orbit control requirements, which are formulated in the form of a 250 m toroidal tube around a pre-flight determined reference trajectory (see [1] for details). The acquisition of the reference orbit was one of the main and key activities during the Launch and Early Orbit Phase (LEOP) and had to compensate for both injection errors and spacecraft safe mode attitude control thruster activities. The paper summarizes the activities of GSOC flight dynamics team during both LEOP and early Commissioning Phase, where the main tasks have been 1) the first-acquisition support via angle-tracking and GPS-based orbit determination, 2) maneuver planning for target orbit acquisition and maintenance, and 3) precise orbit and attitude determination for SAR processing support. Furthermore, a presentation on the achieved results and encountered problems will be addressed.

  19. Ares I-X Flight Data Evaluation: Executive Overview

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Waits, David A.; Lewis, Donny L.; Richards, James S.; Coates, R. H., Jr.; Cruit, Wendy D.; Bolte, Elizabeth J.; Bangham, Michal E.; Askins, Bruce R.; Trausch, Ann N.

    2011-01-01

    NASA's Constellation Program (CxP) successfully launched the Ares I-X flight test vehicle on October 28, 2009. The Ares I-X flight was a developmental flight test to demonstrate that this very large, long, and slender vehicle could be controlled successfully. The flight offered a unique opportunity for early engineering data to influence the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office (APO) established a set of 33 flight evaluation tasks to correlate flight results with prospective design assumptions and models. The flight evaluation tasks used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. Included within these tasks were direct comparisons of flight data with preflight predictions and post-flight assessments utilizing models and processes being applied to design and develop Ares I. The benefits of early development flight testing were made evident by results from these flight evaluation tasks. This overview provides summary information from assessment of the Ares I-X flight test data and represents a small subset of the detailed technical results. The Ares Projects Office published a 1,600-plus-page detailed technical report that documents the full set of results. This detailed report is subject to the International Traffic in Arms Regulations (ITAR) and is available in the Ares Projects Office archives files.

  20. The beginning of the space age: information and mathematical aspect. To the 60th anniversary of the launch of the first sputnik

    NASA Astrophysics Data System (ADS)

    Sushkevich, T. A.

    2017-11-01

    60 years ago, on 4 October 1957, the USSR successfully launched into space the FIRST SPUTNIK (artificial Earth satellite). From this date begins the countdown of the space age. Information and mathematical software is an integral component of any space project. Discusses the history and future of space exploration and the role of mathematics and computers. For illustration, presents a large list of publications. It is important to pay attention to the role of mathematics and computer science in space projects and research, remote sensing problems, the evolution of the Earth's environment and climate, where the theory of radiation transfer plays a key role, and the achievements of Russian scientists at the dawn of the space age.

  1. Dawn HAMO Image 40

    NASA Image and Video Library

    2015-10-19

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 20, 2015, and has a resolution of 450 feet 140 meters per pixel.

  2. Dawn HAMO Image 41

    NASA Image and Video Library

    2015-10-20

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 21, 2015, and has a resolution of 450 feet 140 meters per pixel.

  3. Defining and Applying Limits for Test and Flight Through the Project Lifecycle GSFC Standard. [Scope: Non-Cryogenic Systems Tested in Vacuum

    NASA Technical Reports Server (NTRS)

    Mosier, Carol

    2015-01-01

    The presentation will be given at the Annual Thermal Fluids Analysis Workshop (TFAWS 2015, NCTS 21070-15) hosted by the Goddard SpaceFlight Center (GSFC) Thermal Engineering Branch (Code 545). The powerpoint presentation details the process of defining limits throughout the lifecycle of a flight project.

  4. The Aircraft Simulation Role in Improving Flight Safety Through Control Room Training

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Hageman, Jacob J.; Le, Jeanette H.; Sitz, Joel (Technical Monitor)

    2002-01-01

    NASA Dryden Flight Research Center uses its six-degrees-of-freedom (6-DOF) fixed-base simulations for mission control room training to improve flight safety and operations. This concept is applied to numerous flight projects such as the F-18 High Alpha Research Vehicle (HARV), the F-15 Intelligent Flight Control System (IFCS), the X-38 Actuator Control Test (XACT), and X-43A (Hyper-X). The Dryden 6-DOF simulations are typically used through various stages of a project, from design to ground tests. The roles of these simulations have expanded to support control room training, reinforcing flight safety by building control room staff proficiency. Real-time telemetry, radar, and video data are generated from flight vehicle simulation models. These data are used to drive the control room displays. Nominal static values are used to complete information where appropriate. Audio communication is also an integral part of training sessions. This simulation capability is used to train control room personnel and flight crew for nominal missions and emergency situations. Such training sessions are also opportunities to refine flight cards and control room display pages, exercise emergency procedures, and practice control room setup for the day of flight. This paper describes this technology as it is used in the X-43A and F-15 IFCS and XACT projects.

  5. Comparing Vesta's Surface Roughness to the Moon Using Bistatic Radar Observations by the Dawn Mission

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.; Moghaddam, M.

    2015-12-01

    The first orbital bistatic radar (BSR) observations of a small body have been conducted opportunistically by NASA's Dawn spacecraft at Asteroid Vesta using the telecommunications antenna aboard Dawn to transmit and the Deep Space Network 70-meter antennas on Earth to receive. Dawn's high-gain communications antenna continuously transmitted right-hand circularly polarized radio waves (4-cm wavelength), and due to the opportunistic nature of the experiment, remained in a fixed orientation pointed toward Earth throughout each BSR observation. As a consequence, Dawn's transmitted radio waves scattered from Vesta's surface just before and after each occultation of the Dawn spacecraft behind Vesta, resulting in surface echoes at highly oblique incidence angles of greater than 85 degrees, and a small Doppler shift of ~2 Hz between the carrier signal and surface echoes from Vesta. We analyze the power and Doppler spreading of Vesta's surface echoes to assess surface roughness, and find that Vesta's area-normalized radar cross section ranges from -8 to -17 dB, which is notably much stronger than backscatter radar cross section values reported for the Moon's limbs (-20 to -35 dB). However, our measurements correspond to the forward scattering regime--such that at high incidence, radar waves are expected to scatter more weakly from a rough surface in the backscatter direction than that which is scattered forward. Using scattering models of rough surfaces observed at high incidence, we report on the relative roughness of Vesta's surface as compared to the Moon and icy Galilean satellites. Through this, we assess the dominant processes that have influenced Vesta's surface roughness at centimeter and decimeter scales, which are in turn applicable to assisting future landing, sampling and orbital missions of other small bodies.

  6. Ceres Evolution: From Thermodynamic Modeling and Now Dawn Observation

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Combe, J. P.; Castillo, J. C.; Raymond, C. A.; De Sanctis, M. C.; Jaumann, R.; Ammannito, E.; Russell, C. T.

    2015-12-01

    Thermodynamic modeling indicated that Ceres has experienced planetary processes, including extensive melting of its ~25% water and differentiation, (McCord and Sotin, JGR, 2005; Castillo and McCord, Icarus, 2009). Early telescopic studies showed Ceres' surface to be spectrally similar to carboneous-chondrite-like material, i.e., aqueously altered silicates darkened by carbon, with a water-OH-related absorption near 3.06 µm. Later observations improved the spectra and suggested more specific interpretations: Structural water in clay minerals, phyllosilicates, perhaps ammoniated, iron-rich clays, carbonates, brucite, all implying extensive aqueous alteration, perhaps in the presence of CO2. Telescopic observations and thermodynamic models predicted Dawn would find a very different body compared to Vesta (e.g. McCord et al., SSR, 2011), as current Dawn observations are confirming. Ceres' original water ice should have melted early in its evolution, with the resulting differentiation and mineralization strongly affecting Ceres' composition, size and shape over time. The ocean should have become very salty and perhaps may still be liquid in places. The surface composition from telescopes seems to reflect this complex history. The mineralization with repeated mixing of the crust with the early liquid interior and with in-fall from space would create a complex surface that will present an interpretation challenge for Dawn. The Dawn spacecraft is currently collecting observations of Ceres' landforms, elemental and mineralogical/molecular composition and gravity field from orbit. Early results suggest a heavily cratered but distorted and lumpy body with features and composition consistent with internal activity, perhaps recent or current, associated with water and perhaps other volatiles. We will present and interpret the latest Dawn Ceres findings and how they affect our earlier understanding of Ceres evolution from modeling and telescope observations.

  7. Extended Duration Orbiter Medical Project

    NASA Technical Reports Server (NTRS)

    Sawin, Charles F. (Editor); Taylor, Gerald R. (Editor); Smith, Wanda L. (Editor); Brown, J. Travis (Technical Monitor)

    1999-01-01

    Biomedical issues have presented a challenge to flight physicians, scientists, and engineers ever since the advent of high-speed, high-altitude airplane flight in the 1940s. In 1958, preparations began for the first manned space flights of Project Mercury. The medical data and flight experience gained through Mercury's six flights and the Gemini, Apollo, and Skylab projects, as well as subsequent space flights, comprised the knowledge base that was used to develop and implement the Extended Duration Orbiter Medical Project (EDOMP). The EDOMP yielded substantial amounts of data in six areas of space biomedical research. In addition, a significant amount of hardware was developed and tested under the EDOMP. This hardware was designed to improve data gathering capabilities and maintain crew physical fitness, while minimizing the overall impact to the microgravity environment. The biomedical findings as well as the hardware development results realized from the EDOMP have been important to the continuing success of extended Space Shuttle flights and have formed the basis for medical studies of crew members living for three to five months aboard the Russian space station, Mir. EDOMP data and hardware are also being used in preparation for the construction and habitation of International Space Station. All data sets were grouped to be non-attributable to individuals, and submitted to NASA s Life Sciences Data Archive.

  8. X-43C Plans and Status

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    X-43C Project is a hypersonic flight demonstration being executed as a collaboration between the National Aeronautics and Space Administration (NASA) and the United States Air Force (USAF). X-43C will expand the hypersonic flight envelope for air breathing engines beyond the history making efforts of the Hyper-X Program (X-43A). X-43C will demonstrate sustained accelerating flight during three flight tests of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs are to be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA s Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center over water off the coast of California in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration ( 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavyweight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 ( 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides background for NASA s current hypersonic flight demonstration efforts.

  9. Dawn Survey Orbit Image 32

    NASA Image and Video Library

    2015-07-22

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19601

  10. Dawn Survey Orbit Image 23

    NASA Image and Video Library

    2015-07-09

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 22, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19591

  11. Dawn HAMO Image 16

    NASA Image and Video Library

    2015-09-15

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19894

  12. Dawn Survey Orbit Image 5

    NASA Image and Video Library

    2015-06-16

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19573

  13. Dawn HAMO Image 19

    NASA Image and Video Library

    2015-09-18

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 26, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19897

  14. Dawn Survey Orbit Image 31

    NASA Image and Video Library

    2015-07-21

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19600

  15. Dawn OpNav9 Image 5

    NASA Image and Video Library

    2015-06-12

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 22, 2015, from a distance of 3,200 miles 5,100 kilometers with a resolution of 1,600 feet 480 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19567

  16. Dawn Survey Orbit Image 26

    NASA Image and Video Library

    2015-07-14

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19594

  17. Dawn Survey Orbit Image 15

    NASA Image and Video Library

    2015-06-26

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 10, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19583

  18. Dawn Survey Orbit Image 4

    NASA Image and Video Library

    2015-06-15

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19572

  19. Dawn OpNav9 Image 4

    NASA Image and Video Library

    2015-06-11

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 22, 2015, from a distance of 3,200 miles 5,100 kilometers with a resolution of 1,600 feet 480 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19566

  20. Dawn OpNav9 Image 3

    NASA Image and Video Library

    2015-06-10

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 22, 2015, from a distance of 3,200 miles 5,100 kilometers with a resolution of 1,600 feet 480 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19565

  1. Dawn HAMO Image 17

    NASA Image and Video Library

    2015-09-16

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19895

  2. Dawn Survey Orbit Image 8

    NASA Image and Video Library

    2015-06-19

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19576

  3. Dawn HAMO Image 15

    NASA Image and Video Library

    2015-09-14

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19893

  4. Dawn OpNav9 Image 1

    NASA Image and Video Library

    2015-06-08

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 22, 2015, from a distance of 3,200 miles 5,100 kilometers with a resolution of 1,600 feet 480 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19563

  5. Dawn HAMO Image 21

    NASA Image and Video Library

    2015-09-22

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 27, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19899

  6. Dawn HAMO Image 14

    NASA Image and Video Library

    2015-09-11

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19892

  7. Dawn Survey Orbit Image 22

    NASA Image and Video Library

    2015-07-08

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 18, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19590

  8. Dawn HAMO Image 18

    NASA Image and Video Library

    2015-09-17

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 26, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19896

  9. Dawn Survey Orbit Image 30

    NASA Image and Video Library

    2015-07-20

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19599

  10. Dawn Survey Orbit Image 28

    NASA Image and Video Library

    2015-07-16

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19596

  11. Dawn Survey Orbit Image 12

    NASA Image and Video Library

    2015-06-23

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 7, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19580

  12. Dawn OpNav9 Image 2

    NASA Image and Video Library

    2015-06-09

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 22, 2015, from a distance of 3,200 miles 5,100 kilometers with a resolution of 1,600 feet 480 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19564

  13. Dawn Survey Orbit Image 27

    NASA Image and Video Library

    2015-07-15

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19595

  14. Dawn HAMO Image 22

    NASA Image and Video Library

    2015-09-23

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 27, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19900

  15. Dawn Survey Orbit Image 7

    NASA Image and Video Library

    2015-06-18

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 9, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19575

  16. Dawn First Glimpse of Vesta -- Processed

    NASA Image and Video Library

    2011-05-11

    This image, processed to show the true size of the giant asteroid Vesta, shows Vesta in front of a spectacular background of stars. It was obtained by the framing camera aboard NASA Dawn spacecraft on May 3, 2011, from a distance of about 750,000 miles.

  17. Singing in the moonlight: dawn song performance of a diurnal bird varies with lunar phase

    PubMed Central

    York, Jennifer E.; Young, Andrew J.; Radford, Andrew N.

    2014-01-01

    It is well established that the lunar cycle can affect the behaviour of nocturnal animals, but its potential to have a similar influence on diurnal species has received less research attention. Here, we demonstrate that the dawn song of a cooperative songbird, the white-browed sparrow weaver (Plocepasser mahali), varies with moon phase. When the moon was above the horizon at dawn, males began singing on average 10 min earlier, if there was a full moon compared with a new moon, resulting in a 67% mean increase in performance period and greater total song output. The lack of a difference between full and new moon dawns when the moon was below the horizon suggests that the observed effects were driven by light intensity, rather than driven by other factors associated with moon phase. Effects of the lunar cycle on twilight signalling behaviour have implications for both pure and applied animal communication research. PMID:24429683

  18. The role of PDF neurons in setting the preferred temperature before dawn in Drosophila.

    PubMed

    Tang, Xin; Roessingh, Sanne; Hayley, Sean E; Chu, Michelle L; Tanaka, Nobuaki K; Wolfgang, Werner; Song, Seongho; Stanewsky, Ralf; Hamada, Fumika N

    2017-05-02

    Animals have sophisticated homeostatic controls. While mammalian body temperature fluctuates throughout the day, small ectotherms, such as Drosophila achieve a body temperature rhythm (BTR) through their preference of environmental temperature. Here, we demonstrate that pigment dispersing factor (PDF) neurons play an important role in setting preferred temperature before dawn. We show that small lateral ventral neurons (sLNvs), a subset of PDF neurons, activate the dorsal neurons 2 (DN2s), the main circadian clock cells that regulate temperature preference rhythm (TPR). The number of temporal contacts between sLNvs and DN2s peak before dawn. Our data suggest that the thermosensory anterior cells (ACs) likely contact sLNvs via serotonin signaling. Together, the ACs-sLNs-DN2s neural circuit regulates the proper setting of temperature preference before dawn. Given that sLNvs are important for sleep and that BTR and sleep have a close temporal relationship, our data highlight a possible neuronal interaction between body temperature and sleep regulation.

  19. Dawn Auroral Breakup at Saturn Initiated by Auroral Arcs: UVIS/Cassini Beginning of Grand Finale Phase

    NASA Astrophysics Data System (ADS)

    Radioti, A.; Grodent, D.; Yao, Z. H.; Gérard, J.-C.; Badman, S. V.; Pryor, W.; Bonfond, B.

    2017-12-01

    We present Cassini auroral observations obtained on 11 November 2016 with the Ultraviolet Imaging Spectrograph at the beginning of the F-ring orbits and the Grand Finale phase of the mission. The spacecraft made a close approach to Saturn's southern pole and offered a remarkable view of the dayside and nightside aurora. With this sequence we identify, for the first time, the presence of dusk/midnight arcs, which are azimuthally spread from high to low latitudes, suggesting that their source region extends from the outer to middle/inner magnetosphere. The observed arcs could be auroral manifestations of plasma flows propagating toward the planet from the magnetotail, similar to terrestrial "auroral streamers." During the sequence the dawn auroral region brightens and expands poleward. We suggest that the dawn auroral breakup results from a combination of plasma instability and global-scale magnetic field reconfiguration, which is initiated by plasma flows propagating toward the planet. Alternatively, the dawn auroral enhancement could be triggered by tail magnetic reconnection.

  20. Dawn XMO2 Image 32

    NASA Image and Video Library

    2017-02-10

    This image captures the day-night boundary, or terminator, in the north polar region of Ceres. The north pole itself, which lies just slightly left of center in this view, is barely sunlit, even though the local time at its location is 11:06 a.m. The north polar region is densely cratered, and some crater floors remain in permanent shadow. Some of those permanently shadowed craters contain bright deposits, as described in a 2016 Nature Astronomy study by scientists on NASA's Dawn mission. The best example of these bright deposits was found by Dawn in an unnamed and geologically young, 4-mile- (6-kilometer-) wide crater located at 86.2 degrees north latitude, 80.0 degrees east longitude (the small, sharply defined crater just right of center). This picture was obtained by the Dawn spacecraft on October 17, 2016, from an altitude of about 923 miles (1,486 kilometers). The image is located at 89 degrees north latitude, 86 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA21397

  1. Dawn Orbit Determination Team: Trajectory and Gravity Prediction Performance During Vesta Science Phases

    NASA Technical Reports Server (NTRS)

    Kennedy, Brian; Abrahamson, Matt; Ardito, Alessandro; Han, Dongsuk; Haw, Robert; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft was launched on September 27th, 2007. Its mission is to consecutively rendezvous with and observe the two largest bodies in the asteroid belt, Vesta and Ceres. It has already completed over a year's worth of direct observations of Vesta (spanning from early 2011 through late 2012) and is currently on a cruise trajectory to Ceres, where it will begin scientific observations in mid-2015. Achieving this data collection required careful planning and execution from all spacecraft teams. Dawn's Orbit Determination (OD) team was tasked with accurately predicting the trajectory of the Dawn spacecraft during the Vesta science phases, and also determining the parameters of Vesta to support future science orbit design. The future orbits included the upcoming science phase orbits as well as the transfer orbits between science phases. In all, five science phases were executed at Vesta, and this paper will describe some of the OD team contributions to the planning and execution of those phases.

  2. Project Hermes 'Use of Smartphones for Receiving Telemetry and Commanding a Satellite'

    NASA Technical Reports Server (NTRS)

    Maharaja, Rishabh (Principal Investigator)

    2016-01-01

    TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility. TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility.

  3. Summary of results of NASA F-15 flight research program

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Trippensee, G. A.; Fisher, D. F.; Putnam, T. W.

    1986-01-01

    NASA conducted a multidisciplinary flight research program on the F-15 airplane. The program began in 1976 when two preproduction airplanes were obtained from the U.S. Air Force. Major projects involved stability and control, handling qualities, propulsion, aerodynamics, propulsion controls, and integrated propulsion-flight controls. Several government agencies and aerospace contractors were involved. In excess of 330 flights were flown, and over 85 papers and reports were published. This document describes the overall program, the projects, and the key results. The F-15 was demonstrated to be an excellent flight research vehicle, producing high-quality results.

  4. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  5. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  6. The Eclipse Project

    NASA Technical Reports Server (NTRS)

    Tucker, Tom; Launius, Roger (Technical Monitor)

    2000-01-01

    The Eclipse Project by Tom Tucker provides a readable narrative and a number of documents that record an important flight research effort at NASA's Dryden Flight Research Center. Carried out by Kelly Space and Technology, Inc., in partnership with the Air Force and Dryden at Edwards Air Force Base in the Mojave Desert of California, this project tested and gathered data about a potential newer and less expensive way to launch satellites into space. Whether the new technology comes into actual use will depend on funding, market forces, and other factors at least partly beyond the control of the participants in the project. This is a familiar situation in the history of flight research.

  7. Scientific study in solar and plasma physics relative to rocket and balloon projects

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  8. Chemical research projects office fuel tank sealants review. [flight testing of fluorosilicone sealants

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Parker, J. A.

    1974-01-01

    The status of high-temperature fuel tank sealants for military and potentially commercial supersonic aircraft is examined. The interrelationships of NASA's sealants program comprise synthesis and development of new fluoroether elastomers, sealant prediction studies, flight simulation and actual flight testing of best state-of-the-art fluorosilicone sealants. The technical accomplishments of these projects are reviewed.

  9. UAS in the NAS Flight Test Series 3 Overview

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2015-01-01

    The UAS Integration in the NAS Project is conducting a series of flight tests to acheive the following objectives: 1.) Validate results previously collected during project simulations with live data 2.) Evaluate TCAS IISS interoperability 3.) Test fully integrated system in a relevant live test environment 4.) Inform final DAA and C2 MOPS 5.) Reduce risk for Flight Test Series 4.

  10. A simple model describing the nonlinear dynamics of the dusk/dawn asymmetry in the high-latitude thermospheric flow

    NASA Technical Reports Server (NTRS)

    Gundlach, J. P.; Larsen, M. F.; Mikkelsen, I. S.

    1988-01-01

    A simple nonlinear, axisymmetric, shallow-water numerical model has been used to study the asymmetry in the neutral flow between the dusk and dawn sides of the auroral oval. The results indicate that the Coriolis force and the curvature terms are nearly in balance on the evening side and require only a small pressure gradient to effect adjustment. The result is smaller neutral velocities near dawn and larger velocities near dusk than would be the case for a linearized treatment. A consequence is that more gravity wave energy is produced on the morning side than on the evening side.

  11. KSC-07pd2062

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — Sitting on a transporter, the Dawn spacecraft arrives at the Astrotech payload processing facility. Dawn was returned from Launch Pad 17-B at Cape Canaveral Air Force Station to Astrotech to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/Charisse Nahser

  12. KSC-07pd2063

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — The Dawn spacecraft is moved inside the Astrotech payload processing facility. Dawn was returned from Launch Pad 17-B at Cape Canaveral Air Force Station to Astrotech to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/Charisse Nahser

  13. KSC-07pd1658

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, workers prepare NASA's Dawn spacecraft mated to the Delta II upper stage booster, for hoisting up into the mobile service tower. Dawn will be mated with the Delta II launch vehicle. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  14. Dawn XMO2 Image 28

    NASA Image and Video Library

    2017-01-03

    Meanderi Crater on Ceres is seen at lower right in this image from NASA's Dawn spacecraft. Meanderi -- named for the Ngaing goddess (New Guinea) of taro, sugar cane and other foods -- hosts several medium-sized craters within its walls. Meanderi measures 64 miles (103 kilometers) in diameter. The crater is centered at 41 degrees south, 194 degrees east. Dawn took this image on Oct. 26, 2016, during its second extended-mission science orbit (XMO2), from a distance of about 920 miles (1,480 kilometers) above the surface of Ceres. The image resolution is about 460 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21248

  15. Overview of the Cranked-Arrow Wing Aerodynamics Project International

    NASA Technical Reports Server (NTRS)

    Obara, Clifford J.; Lamar, John E.

    2008-01-01

    This paper provides a brief history of the F-16XL-1 aircraft, its role in the High Speed Research program and how it was morphed into the Cranked Arrow Wing Aerodynamics Project. Various flight, wind-tunnel and Computational Fluid Dynamics data sets were generated as part of the project. These unique and open flight datasets for surface pressures, boundary-layer profiles and skin-friction distributions, along with surface flow data, are described and sample data comparisons given. This is followed by a description of how the project became internationalized to be known as Cranked Arrow Wing Aerodynamics Project International and is concluded by an introduction to the results of a four year computational predictive study of data collected at flight conditions by participating researchers.

  16. Dawn HAMO Image 32

    NASA Image and Video Library

    2015-10-07

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on September 9, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19910

  17. Dawn HAMO Image 31

    NASA Image and Video Library

    2015-10-06

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on September 9, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19909

  18. Dawn HAMO Image 33

    NASA Image and Video Library

    2015-10-08

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on September 14, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19971

  19. Dawn HAMO Image 30

    NASA Image and Video Library

    2015-10-05

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on September 9, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19908

  20. Dawn HAMO Image 36

    NASA Image and Video Library

    2015-10-13

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on September 20, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19978

  1. Dawn HAMO Image 37

    NASA Image and Video Library

    2015-10-14

    This image, taken by NASA Dawn spacecraft on Sept. 20, 2015, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19979

  2. Dawn HAMO Image 35

    NASA Image and Video Library

    2015-10-12

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on August 23, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19972

  3. Dawn HAMO Image 29

    NASA Image and Video Library

    2015-10-02

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on September 9, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19907

  4. Dawn HAMO Image 9

    NASA Image and Video Library

    2015-09-03

    This image, taken by NASA Dawn spacecraft, shows a portion of Ceres at mid-latitudes from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19885

  5. Dawn HAMO Image 28

    NASA Image and Video Library

    2015-10-01

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on August 24, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19906

  6. Dawn HAMO Image 25

    NASA Image and Video Library

    2015-09-28

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on August 21, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19903

  7. Dawn HAMO Image 26

    NASA Image and Video Library

    2015-09-29

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on August 21, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19904

  8. Dawn HAMO Image 24

    NASA Image and Video Library

    2015-09-25

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on August 21, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19902

  9. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  10. Using Dawn to Observe SEP Events Past 2 AU

    NASA Astrophysics Data System (ADS)

    Villarreal, Michaela; Russell, Christopher T.; Prettyman, Thomas H.

    2017-10-01

    The launch of the STEREO spacecraft provided much insight into the longitudinal and radial distribution of solar energetic particles (SEPs) relative to their origin site. However, almost all of the observations of SEP events have been made exclusively near 1 AU. The Dawn mission, which orbited around Vesta before arriving at Ceres, provides an opportunity to analyze these events at much further distances. Although Dawn's Gamma Ray and Neutron Detector (GRaND) is not optimized for SEP characterization, it is sensitive to protons greater than 4 MeV, making it capable of detecting a solar energetic particle event in its vicinity. Solar energetic particles in this area of the solar system are important as they are believed to cause sputtering at bodies such as Ceres and comets (Villarreal et al., 2017; Wurz et al., 2015). In this study, we use Dawn’s GRaND data from 2011-2015 when Dawn was at distances between 2-3 AU. We compare the SEP events seen by Dawn with particle measurements at 1 AU using STEREO, Wind, and ACE to understand how the SEP events evolved past 1 AU.References: Villarreal, M. N., et al. (2017), The dependence of the Cerean exosphere on solar energetic particle events, Astrophys. J. Lett., 838, L8.Wurz, P. et al. (2015), Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, A&A, 583, A22.

  11. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    NASA Technical Reports Server (NTRS)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  12. Dawn-dusk asymmetries in rotating magnetospheres: Lessons from modeling Saturn

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.

    2016-02-01

    Spacecraft measurements reveal perplexing dawn-dusk asymmetries of field and plasma properties in the magnetospheres of Saturn and Jupiter. Here we describe a previously unrecognized source of dawn-dusk asymmetry in a rapidly rotating magnetosphere. We analyze two magnetohydrodynamic simulations, focusing on how flows along and across the field vary with local time in Saturn's dayside magnetosphere. As plasma rotates from dawn to noon on a dipolarizing flux tube, it flows away from the equator along the flux tube at roughly half of the sound speed (Cs), the maximum speed at which a bulk plasma can flow along a flux tube into a lower pressure region. As plasma rotates from noon to dusk on a stretching flux tube, the field-aligned component of its centripetal acceleration decreases and it flows back toward the equator at speeds typically smaller than 1/2 Cs. Correspondingly, the plasma sheet remains far thicker and the field less stretched in the afternoon than in the morning. Different radial force balance in the morning and afternoon sectors produce asymmetry in the plasma sheet thickness and a net dusk-to-dawn flow inside of L = 15 or equivalently, a large-scale electric field (E) oriented from postnoon to premidnight, as reported from observations. Morning-afternoon asymmetry analogous to that found at Saturn has been observed at Jupiter, and a noon-midnight component of E cannot be ruled out.

  13. Review of NASA's Hypersonic Research Engine Project

    NASA Technical Reports Server (NTRS)

    Andrews, Earl H.; Mackley, Ernest A.

    1993-01-01

    The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a hypersonic research ramjet/scramjet engine for high performance and to flight-test the developed concept over the speed range from Mach 3 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research aircraft, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of engine models then became the focus of the project. Two axisymmetric full-scale engine models having 18-inch-diameter cowls were fabricated and tested: a structural model and a combustion/propulsion model. A brief historical review of the project with salient features, typical data results, and lessons learned is presented.

  14. Dawn of a New Space Age: Developing a Global Exploration Strategy.

    NASA Technical Reports Server (NTRS)

    Volosin, Jeff

    2006-01-01

    Jeff Volosin is an aerospace engineer with over 20 years of experience in the design, development, and operations of both robotic and crewed spacecraft. Mr. Volosin is currently leading the NASA effort to develop and integrate a global exploration strategy which reflects the lunar exploration interests of international space agencies, academia and commercial stakeholders. Prior to joining NASA as a member of the Exploration Systems Mission Directorate in 2004, Jeff was an aerospace contractor, serving in a number of leadership positions including: Operations Manager for the NASA Communications Network and Flight Operations Manager for the Advanced Composition Explorer, Tropical Rainfall Measuring Mission, and the NOAA Polar and Geostationary satellite constellations. Earlier in his career, Jeff spent 4 years as a system engineer supporting the Space Exploration Initiative studies on human voyages to the Moon and Mars and also supported the Space Station program as an advanced life support engineer.

  15. Dawning of the N =32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes

    NASA Astrophysics Data System (ADS)

    Leistenschneider, E.; Reiter, M. P.; Ayet San Andrés, S.; Kootte, B.; Holt, J. D.; Navrátil, P.; Babcock, C.; Barbieri, C.; Barquest, B. R.; Bergmann, J.; Bollig, J.; Brunner, T.; Dunling, E.; Finlay, A.; Geissel, H.; Graham, L.; Greiner, F.; Hergert, H.; Hornung, C.; Jesch, C.; Klawitter, R.; Lan, Y.; Lascar, D.; Leach, K. G.; Lippert, W.; McKay, J. E.; Paul, S. F.; Schwenk, A.; Short, D.; Simonis, J.; Somà, V.; Steinbrügge, R.; Stroberg, S. R.; Thompson, R.; Wieser, M. E.; Will, C.; Yavor, M.; Andreoiu, C.; Dickel, T.; Dillmann, I.; Gwinner, G.; Plaß, W. R.; Scheidenberger, C.; Kwiatkowski, A. A.; Dilling, J.

    2018-02-01

    A precision mass investigation of the neutron-rich titanium isotopes Ti-5551 was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N =32 shell closure, and the overall uncertainties of the Ti-5552 mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N =32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N =32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.

  16. KSC-06pd2268

    NASA Image and Video Library

    2006-10-11

    KENNEDY SPACE CENTER, FLA. - Against a pre-dawn sky on Launch Pad 17-B at Cape Canaveral Air Force Station, the STEREO spacecraft is lifted up toward the platform on the mobile service tower. In the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton

  17. KSC-06pd2267

    NASA Image and Video Library

    2006-10-11

    KENNEDY SPACE CENTER, FLA. - Against a pre-dawn sky on Launch Pad 17-B at Cape Canaveral Air Force Station, the STEREO spacecraft is lifted alongside the mobile service tower. In the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton

  18. Eclipse - tow flight closeup and release

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This clip, running 15 seconds in length, shows the QF-106 'Delta Dart' gear down, with the tow rope secured to the attachment point above the aircraft nose. First there is a view looking back from the C-141A, then looking forward from the nose of the QF-106, and finally a shot of the aircraft being released from the tow rope. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate a reusable tow launch vehicle concept developed by KST. Kelly Space and Technology hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight-measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes.The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful towed flight occurred on Dec. 20, 1997. Prior to this first tow test flight, the C-141A and EXD-01 were used to conduct a series of tethered taxi tests to validate the tow procedures. Before these tethered taxi tests, a successful joint flight test was conducted in late October 1996, by Dryden, AFFTC, and KST, in which one of the Dryden F-18 chase aircraft flew at various ranges and locations behind the C-141A to define the wake turbulence and wingtip vortex environment. This flight test was replicated in July 1997, with an unmodified QF-106 flight proficiency aircraft.

  19. Dawn HAMO Image 44

    NASA Image and Video Library

    2015-10-23

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 21, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19986

  20. Dawn HAMO Image 10

    NASA Image and Video Library

    2015-09-04

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19886

  1. Dawn Survey Orbit Image 53

    NASA Image and Video Library

    2015-08-24

    This image, taken by NASA's Dawn spacecraft, shows the bright spots of Occator crater on Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19630

  2. Dawn HAMO Image 52

    NASA Image and Video Library

    2015-11-04

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres at mid-latitudes from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 29, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19994

  3. Dawn HAMO Image 8

    NASA Image and Video Library

    2015-09-02

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19884

  4. Dawn HAMO Image 12

    NASA Image and Video Library

    2015-09-10

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19888

  5. Dawn HAMO Image 48

    NASA Image and Video Library

    2015-10-29

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 22, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19990

  6. Dawn Survey Orbit Image 34

    NASA Image and Video Library

    2015-07-24

    This image, taken on June 25, 2015 by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers, with a resolution of 1,400 feet 410 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19603

  7. Dawn HAMO Image 6

    NASA Image and Video Library

    2015-08-31

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19882

  8. Dawn HAMO Image 7

    NASA Image and Video Library

    2015-09-01

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19883

  9. Dawn HAMO Image 45

    NASA Image and Video Library

    2015-10-26

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres at mid-latitudes from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 21, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19987

  10. Dawn HAMO Image 5

    NASA Image and Video Library

    2015-08-28

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19881

  11. Dawn HAMO Image 4

    NASA Image and Video Library

    2015-08-27

    This image, taken by NASA's Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19635

  12. Dawn HAMO Image 43

    NASA Image and Video Library

    2015-10-22

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 21, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19985

  13. Dawn Survey Orbit Image 35

    NASA Image and Video Library

    2015-07-27

    This image, taken by NASA Dawn spacecraft, shows the brightest spots on dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19604

  14. Dawn HAMO Image 38

    NASA Image and Video Library

    2015-10-15

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 20, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19980

  15. Dawn Survey Orbit Image 13

    NASA Image and Video Library

    2015-06-24

    The north pole of Ceres can be seen in this image taken on June 9, 2015 by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers with a resolution of 1,400 feet 410 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19581

  16. Dawn HAMO Image 11

    NASA Image and Video Library

    2015-09-08

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19887

  17. Dawn HAMO Image 49

    NASA Image and Video Library

    2015-10-30

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 22, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19991

  18. Dawn Survey Orbit Image 33

    NASA Image and Video Library

    2015-07-23

    This image, taken on June 25, 2015 by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers, with a resolution of 1,400 feet 410 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19602

  19. Dawn Survey Orbit Image 45

    NASA Image and Video Library

    2015-08-11

    This image, taken June 6, 2015 by NASA Dawn spacecraft, shows Haulani crater on Ceres from an altitude of 2,700 miles 4,400 kilometers with a resolution of 1,400 feet 410 meters per pixel. North on Ceres is toward upper right. http://photojournal.jpl.nasa.gov/catalog/PIA19621

  20. Travels With Mullen

    Science.gov Websites

    Department of Defense Submit Search Operation New Dawn September 2010 More Stories Mullen Gets Afghanistan mission officially transfer to the civilian-led Operation New Dawn, Navy Adm. Mike Mullen, chairman of the Operation Atlantic Resolve Sexual Assault Prevention Asia-Pacific Rebalance Cyber Strategy News Today in DOD

  1. Club Drugs. The DAWN Report.

    ERIC Educational Resources Information Center

    Substance Abuse and Mental Health Services Administration (DHHS/PHS), Rockville, MD. Office of Applied Studies.

    This report was prepared in response to requests from the media, law enforcement, and community leaders for information about club drugs. By being able to utilize statistics from hospital emergency departments and by compiling statistics on drug-related deaths, the Drug Abuse Warning Network (DAWN) is able to alert parents, educators, and others…

  2. Juling Crater's Floor

    NASA Image and Video Library

    2018-03-14

    This view from NASA's Dawn mission shows the floor of Ceres' Juling Crater. The crater floor shows evidence of the flow of ice and rock, similar to rock glaciers in Earth's polar regions. Dawn acquired the picture with its framing camera on Aug. 30, 2016. https://photojournal.jpl.nasa.gov/catalog/PIA21920

  3. Dawn: Testing Paradigms by Exploring Dichotomies

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Schmidt, B. E.; Wise, J.; Ristvey, J.; Raymond, C. A.

    2010-12-01

    NASA’s Dawn mission represents a series of “firsts” for major NASA missions. Dawn is the first major NASA science mission to use ion propulsion engines, allowing Dawn to be the first mission to orbit one target and then leave its gravity well to explore a second destination. Dawn is the first science mission to the main asteroid belt, reaching protoplanet Vesta in summer 2011, and will be the first mission to reach a “dwarf planet” when it arrives at Ceres in 2015. By targeting both Vesta and Ceres, Dawn explores two intriguing dichotomies in the solar system, that of the dry rocky planets and the wet icy bodies (Fire and Ice) and the dichotomy between planets and asteroids. Is there a clear dividing line here? Vesta, the second most massive asteroid, is a protoplanet: a round, mostly intact asteroid that bears more resemblance to a planet than to smaller asteroids. Vesta is also the likely parent body of the HED meteorites that richly populate Earth’s meteorite collections. It is possible to hold a piece of Vesta in your hands. From the HED meteorites, scientists have learned the Vesta is one of few differentiated asteroids. And from its spectrum, rich in basaltic minerals, it is known to be much like a mini-version of Earth’s Moon and Mercury. Vesta’s surface once was home to floods of lava not unlike those found still today on the Earth. Vesta is very similar to a terrestrial planet. Ceres is the giant of the asteroid belt with a hydrostatic shape that earns it a dwarf planet classification. Like its larger cousins, Ceres’ round shape suggests that the body may be differentiated, but due to its low density, Ceres’ interior is more like an icy moon of Jupiter. Beneath a relatively thin clay veneer probably lies an ice-rich mantle and rocky core, and even possibly a liquid ocean. With such enticing questions posed for Vesta and Ceres, Dawn will enable scientists and the public alike to explore how planets were born, how fire and ice have shaped the solar system, and have a chance to push the boundaries of our own classification system. Dawn’s set of instrumentation, with cameras, a visible and infrared spectrometer, a gamma ray and neutron detector and radio science, will produce a wealth of information about two previously unexplored, diverse and yet somehow familiar worlds. Communication of the lessons learned by Dawn from the scientists to the public has and will occur over a range of interfaces, including a series of online activities such as Find a Meteorite, Clickworkers and a simulation of an ion engine. Other activities include Dawn “Science of the Day” archives, fun family activities and games as well as classroom materials and outreach events. Since the two bodies are the brightest sources in the main belt, an integral part of Dawn’s journey has been the integration of amateur and “backyard” astronomers. All these activities allow us to share the science with the public. Dawn arrives at Vesta in the middle of the Year of the Solar System in July 2011 and will depart for Ceres as the YSS ends.

  4. Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Maliska, Heather

    2006-01-01

    The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight.

  5. Future X Pathfinder: Quick, Low Cost Flight Testing for Tomorrow's Launch Vehicles

    NASA Technical Reports Server (NTRS)

    London, John, III; Sumrall, Phil

    1999-01-01

    The DC-X and DC-XA Single Stage Technology flight program demonstrated the value of low cost rapid prototyping and flight testing of launch vehicle technology testbeds. NASA is continuing this important legacy through a program referred to as Future-X Pathfinder. This program is designed to field flight vehicle projects that cost around $100M each, with a new vehicle flying about every two years. Each vehicle project will develop and extensively flight test a launch vehicle technology testbed that will advance the state of the art in technologies directly relevant to future space transportation systems. There are currently two experimental, or "X" vehicle projects in the Pathfinder program, with additional projects expected to follow in the near future. The first Pathfinder project is X-34. X-34 is a suborbital rocket plane capable of flights to Mach 8 and 75 kilometers altitude. There are a number of reusable launch vehicle technologies embedded in the X-34 vehicle design, such as composite structures and propellant tanks, and advanced reusable thermal protection systems. In addition, X-34 is designed to carry experiments applicable to both the launch vehicle and hypersonic aeronautics community. X-34 is scheduled to fly later this year. The second Pathfinder project is the X-37. X-37 is an orbital space plane that is carried into orbit either by the Space Shuttle or by an expendable launch vehicle. X-37 provides NASA access to the orbital and orbital reentry flight regimes with an experimental testbed vehicle. The vehicle will expose embedded and carry-on advanced space transportation technologies to the extreme environments of orbit and reentry. Early atmospheric approach and landing tests of an unpowered version of the X-37 will begin next year, with orbital flights beginning in late 2001. Future-X Pathfinder is charting a course for the future with its growing fleet of low-cost X- vehicles. X-34 and X-37 are leading the assault on high launch costs and enabling the flight testing of technologies that will lead to affordable access to space.

  6. MD-11 PCA - Research flight team photo

    NASA Technical Reports Server (NTRS)

    1995-01-01

    On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.

  7. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  8. Evolution of Ada technology in the flight dynamics area: Implementation/testing phase analysis

    NASA Technical Reports Server (NTRS)

    Quimby, Kelvin L.; Esker, Linda; Miller, John; Smith, Laurie; Stark, Mike; Mcgarry, Frank

    1989-01-01

    An analysis is presented of the software engineering issues related to the use of Ada for the implementation and system testing phases of four Ada projects developed in the flight dynamics area. These projects reflect an evolving understanding of more effective use of Ada features. In addition, the testing methodology used on these projects has changed substantially from that used on previous FORTRAN projects.

  9. Flying an Autonomous Formation Flight mission, two F/A-18s from the NASA Dryden Flight Research Cent

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Flying an Autonomous Formation Flight mission, two F/A-18's from the NASA Dryden Flight Research Center, Edwards, California, gain altitude near Rogers Dry Lake. The Systems Research Aircraft (tail number 845) and F/A-18 tail number 847 are flying the second phase of a project that is demonstrating a 15-percent fuel savings of the trailing aircraft during cruise flight. Project goal was a 10-percent savings. The drag-reduction study mimics the formation of migrating birds. Scientists have known for years that the trailing birds require less energy than flying solo.

  10. YF-12A and YF-12C in flight formation at dawn

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The YF-12A (60-6935) carries the 'coldwall' heat transfer pod on a pylon beneath the forward fuselage. The pod is seen with its insulating coating intact. In the background, the YF-12C flies photo chase. The coldwall project, supported by Langley Research Center, consisted of a stainless steel tube equipped with thermocouples and pressure-sensors. A special insulating coating covered the tube, which was chilled with liquid nitrogen. At Mach 3, the insulation could be pyrotechnically blown away from the tube, instantly exposing it to the thermal environment. The experiment caused many inflight difficulties, such as engine unstarts, but eventually researchers got a successful flight. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made 62 flights. It was lost in a non-fatal crash on 24 June 1971. It was replaced by the so-called YF-12C (SR-71A 61-7951, modified with YF-12A inlets and engines and a bogus tail number 06937). The Lockheed A-12 family, known as the Blackbirds, were designed by Clarence 'Kelly' Johnson. They were constructed mostly of titanium to withstand aerodynamic heating. Fueled by JP-7, the Blackbirds were capable of cruising at Mach 3.2 and attaining altitudes in excess of 80,000 feet. The first version, a CIA reconnaissance aircraft that first flew in April 1962 was called the A-12. An interceptor version was developed in 1963 under the designation YF-12A. A USAF reconnaissance variant, called the SR-71, was first flown in 1964. The A-12 and SR-71 designs included leading and trailing edges made of high-temperature fiberglass-asbestos laminates. The NASA YF-12 research program was ambitious; the aircraft flew an average of once a week unless down for extended maintenance or modification. Program expenses averaged $3.1 million per year just to run the flight tests. NASA crews for the YF-12 included pilots Fitzhugh Fulton and Donald Mallick, anf flight test engineers Victor Horton and Ray Young. Other NASA test pilots checked out in the YF-12A included John Manke, William Dana, Gary Krier, Einar Enevoldson, Tom McMurtry, Steve Ishmael, and Michael Swann. The YF-12C was only flown by Fulton, Mallick, Horton, and Ray.

  11. Software conversion history of the Flight Dynamics System (FDS)

    NASA Technical Reports Server (NTRS)

    Liu, K.

    1984-01-01

    This report summarizes the overall history of the Flight Dynamics System (FDS) applications software conversion project. It describes the background and nature of the project; traces the actual course of conversion; assesses the process, product, and personnel involved; and offers suggestions for future projects. It also contains lists of pertinent reference material and examples of supporting data.

  12. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  13. Midnight flash model of energetic neutral atom periodicities at Saturn

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.; Mitchell, D. G.

    2017-07-01

    The Ion Neutral Camera on the Cassini spacecraft made images of energetic H atoms (25-55 keV) over a 3 day span in 2017. The images were projected onto the equatorial plane of Saturn, and a keogram was made by interpolating the projections in local time at 9 RS (1 RS = 60268 km). The keogram intensities show strong periodicities near the 10.79 h period of Saturn's energetic particles and exhibit a slope commensurate with corotation at that period. These periodic fluxes intensify near midnight but are weaker near noon. A "midnight flash" model can explain this behavior in terms of a searchlight rotating at 10.79 h that intensifies in the midnight sector. The model can also describe similar activity in Saturn's kilometric radiation and magnetic fields, although the "flash" must be shifted to the dawn-to-noon sector.

  14. Boundary Layer Transition Flight Experiment Overview and In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.

    2010-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for the flights of STS-119, STS-128 and STS-131. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project. Significant efforts were made to place the protuberance at an appropriate location on the Orbiter and to design the protuberance to withstand the expected environments. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that predictions for boundary layer transition onset time closely match the flight data, while predicted temperatures were significantly higher than observed flight temperatures.

  15. Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera

    NASA Image and Video Library

    2015-05-14

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.

  16. Observations, Ideas, and Opinions: Systems Engineering and Integration for Return to Flight

    NASA Technical Reports Server (NTRS)

    Gafka, George K.

    2006-01-01

    This presentation addresses project management and systems engineering and integration challenges for return to flight, focusing on the Thermal Protection System Tile Repair Project (TRP). The program documentation philosophy, communication with program requirements flow and philosophy and planned deliverables and documentation are outlined. The development of TRP 'use-as-is' analytical tools is also highlighted and emphasis is placed on the use flight history to assess pre-flight and real-time risk. Additionally, an overview is provided of the repair procedure, including an outline of the logistics deployment chart.

  17. NASA's Hypersonic Research Engine Project: A review

    NASA Technical Reports Server (NTRS)

    Andrews, Earl H.; Mackley, Ernest A.

    1994-01-01

    The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a high-performance hypersonic research ramjet/scramjet engine for flight tests of the developed concept over the speed range of Mach 4 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research airplane, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of full-scale engine models then became the focus of the project. Two axisymmetric full-scale engine models, having 18-inch-diameter cowls, were fabricated and tested: a structural model and combustion/propulsion model. A brief historical review of the project, with salient features, typical data results, and lessons learned, is presented. An extensive number of documents were generated during the HRE Project and are listed.

  18. KSC-07pd2061

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — On Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is safely secured on a transporter for its trip to Astrotech. Dawn is being returned to the Astrotech payload processing facility to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/George Shelton

  19. KSC-07pd2058

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — On Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lowered from the mobile service tower to the ground. Dawn is being returned to the Astrotech payload processing facility to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/George Shelton

  20. KSC-07pd2059

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — On Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lowered from the mobile service tower to the ground. Dawn is being returned to the Astrotech payload processing facility to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/George Shelton

Top