Sample records for dayglow

  1. Production of N(+)-asterisk from N2 + hnu - Effective EUV emission yields from laboratory and dayglow data

    NASA Technical Reports Server (NTRS)

    Meier, R. R.; Samson, James A. R.; Chung, Y.; Lee, E.-M.; He, Z.-X.

    1991-01-01

    Photodissociative ionization of N2 into the unbound N2(+) H 2Sigma-g(+) state is identified as the parentage of a number of N(+) and N-excited states that contribute to the u.v. dayglow. Yields have been obtained for the production of extreme ultraviolet emission lines of N(+) and N from a laboratory experiment using a broadband synchrotron radiation source with fluorescence spectroscopy. The yields are termed 'effective', in that they are constant percentages of the H state cross section. These are compared wih effective yields needed to reproduce N II 1085 and 916 A lines from four dayglow observations using a model of solar energy deposition and photoelectron production and loss in the earth's thermosphere. The 1085 A effective yield measured in the laboratory (18 percent) agrees with that from the dayglow data (average of 17 percent) to well within experimental uncertainties. Thus, it is concluded that photodissociative ionization of N2 is the primary source of the N II 1085 A dayglow. However, there is an order of magnitude discrepancy among the various dayglow observations of the 1085/916 intensity ratio, only one of which is consistent with the laboratory observation of 4.4. Neither contamination by other dayglow features nor atmospheric extinction can account for the disparities. Laboratory measurements of N2 and O2 absorption cross sections at these wavelengths are also reported.

  2. On the Utility of the Molecular Oxygen Dayglow Emissions as Proxies for Middle Atmospheric Ozone

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Olander, Daphne S.

    1995-01-01

    Molecular oxygen dayglow emissions arise in part from processes related to the Hartley band photolysis of ozone. It is therefore possible to derive daytime ozone concentrations from measurements of the volume emission rate of either dayglow. The accuracy to which the ozone concentration can be inferred depends on the accuracy to which numerous kinetic and spectroscopic rate constants are known, including rates which describe the excitation of molecular oxygen by processes that are not related to the ozone concentration. We find that several key rate constants must be known to better than 7 percent accuracy in order to achieve an inferred ozone concentration accurate to 15 percent from measurements of either dayglow. Currently, accuracies for various parameters typically range from 5 to 100 percent.

  3. N2 triplet band systems and atomic oxygen in the dayglow

    NASA Astrophysics Data System (ADS)

    Broadfoot, A. L.; Hatfield, D. B.; Anderson, E. R.; Stone, T. C.; Sandel, B. R.; Gardner, J. A.; Murad, E.; Knecht, D. J.; Pike, C. P.; Viereck, R. A.

    1997-06-01

    New spectrographic observations of the Earth's dayglow have been acquired by the Arizona Airglow Experiment (GLO) flown on the space shuttle. GLO is an imaging spectrograph that records simultaneous vertical profiles of prominent Earth limb emissions occurring at wavelengths between 115 and 900 nm. This study addresses the measured emissions from the N2 triplet states (first positive, second positive, and Vegard-Kaplan band systems) and their excitation by the local photoelectron flux. The triplet state population distributions modeled for aurora by Cartwright [1978] are modified for dayglow conditions by changing to a photoelectron-flux energy distribution and including resonance scattering by the first positive system. Modeled and observed intensities are in excellent agreement, in contrast to the well-studied auroral case. This work concentrates on dayglow conditions at 200 km altitude near the subsolar point. Parameters to infer the local photoelectron flux from the emission band intensities are provided. Several atomic oxygen dayglow emission features were analyzed to complement the N2 analysis. The photoelectron-excited O I(135.6, 777.4 nm) lines were found to be 3 to 4 times weaker than predicted while the O I(630.0, 844.6 nm) lines were in close agreement with the model prediction.

  4. The ultraviolet dayglow at solar maximum. 1 - Far UV spectroscopy at 3.5 A resolution

    NASA Technical Reports Server (NTRS)

    Eastes, R. W.; Feldman, P. D.; Gentieu, E. P.; Christensen, A. B.

    1985-01-01

    The earth's far ultraviolet dayglow (1080-1515 A) was observed at about 3.5 A resolution during a period of high solar activity near solar maximum om June 27, 1980. The observations were made at local noon by rocket-borne spectrometers viewing toward the earth's northern limb at 90 deg zenith angle (ZA) at altitudes between 100 and 245 km, and at 98 deg ZA between 245 and 260 km. The zenith angle was 8.9 deg. These spectra are compared with earlier lower-resolution dayglow data obtained during a period of lower solar activity and with auroral spectra. The brightness ratio of O I 1356 to the N2 Lyman-Birge-Hopfield (LBH) system, an indicator of the O to N2 density ratio, is lower than that previously measured at mid-latitudes and closer to the value found in aurorae. In the LBH system a depletion of the bands originating on the v-prime = 3 vibrational level of the excited state is found. Some weak N2 Birge-Hopfield bands and N I lines only marginally detected previously in the dayglow are confirmed.

  5. Analysis of EUV/FUV dayglow and auroral measurements

    NASA Technical Reports Server (NTRS)

    Majeed, T.; Strickland, D. J.; Link, R.

    1994-01-01

    This report documents investigations carried out over the twelve month period which commenced in November 1992. The contract identifies the following three tasks: analysis of the O II 83.4 nm dayglow and comparison with incoherent scatter radar data, analysis of the EUV spectrum of an electron aurora, and analysis of the EUV spectrum of a proton-hydrogen-electron aurora. The analysis approach, data reduction methods, and results, including plots of O I 98.9 nm versus time and average spectra, are presented for the last two tasks. The appendices contain preprints of two papers written under the first task. The first paper examines the effect of new O(3P) photoionization cross sections, N2 photoabsorption cross sections, and O(+) oscillator strengths and transition probabilities on the O II 83.4 nm dayglow. The second addresses the problem of remotely sensing the dayside F2 region using limb O II 83.4 nm data.

  6. Effects of solar proton events on dayglow observed by the TIMED/SABER satellite

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Xu, Jiyao; Smith, Anne K.; Chen, Guang-Ming

    2017-07-01

    The effect of solar proton events on the daytime O2 and OH airglows and ozone and atomic oxygen concentrations in the mesosphere is studied using data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Five events occurred in September 2005, December 2006, March 2012, May 2013, and June 2015 that satisfy two criteria: the maximum proton fluxes are larger than 1000 pfu, and daytime data in the high latitude region are available from SABER. The event in December 2006 is studied in detail, and the effects of all five events are compared in brief. The results indicate that all four parameters in the mesosphere decrease during the events. During the event in 2006, the maximum depletions of O2 and OH dayglow emission rates and ozone and atomic oxygen volume mixing ratios at 70 km are respectively 31.6%, 37.0%, 42.4%, and 38.9%. The effect of the solar proton event changes with latitude, longitude, and altitude. The depletions due to the stronger events are larger on average than those due to the weaker events. The depletions of both dayglow emission rates are weaker than those of ozone and atomic oxygen. The responses of O2 and OH nightglow emissions around their peak altitudes to the SPEs are not as strong and regular as those for dayglow in the mesosphere.

  7. Ultraviolet aurorae and dayglow in the upper atmospheres of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Claude; Hubert, Benoit; Gustin, J.; Cox, Cedric

    Since its discovery in 2005 with the SPICAM spectrograph on board Mars Express, the Mars aurora has been further investigated. It is caused by sporadic soft electron precipitation whose signature is clearly observed in the FUV nightglow spectrum. The characteristics of the auroral electrons have been documented with parallel observations. Dayglow UV spectra have been collected with SPICAM over several seasons. The dependence of the intensity and peak altitude of the CO Cameron bands and CO2 + doublet emissions on latitude, local time and solar activity level have been investigated and compared with the results of a FUV Mars dayglow model. Far and Extreme ultraviolet spectra have been collected with the UVIS instrument during the flyby of Venus by Cassini, in a period a high solar activity. Their analysis shows the presence of OI, OII, NI, CI, CO and CO2 + emissions, some of them not previously identified in the Venus spectrum. The intensities will be compared with those observed with the HUT spectrograph during a period of low solar activity. The excitation processes of the observed features will be discussed. Scans of the intensity variation of several EUV bright emissions such as OII 83.4 nm, OI 98.9 nm and NI 120.0 nm multiplets across the sunlit disc will be compared with the calculations of a Venus dayglow model, including multiple scattering of optically thick transitions.

  8. Long-term nadir observations of the O2 dayglow by SPICAM IR

    NASA Astrophysics Data System (ADS)

    Guslyakova, S.; Fedorova, A.; Lefèvre, F.; Korablev, O.; Montmessin, F.; Trokhimovskiy, A.; Bertaux, J. L.

    2016-03-01

    The O2(a1Δg) dayglow at the 1.27 μm band on Mars is produced by the solar UV photolysis of ozone and quenched in collisions with CO2. The SPICAM IR instrument onboard the Mars Express orbiter observes the O2(a1Δg) emission in the Martian atmosphere starting from 2004. We present a continuous set of O2(a1Δg) dayglow intensities from nadir measurements for six Martian years from the end of MY26 to MY32. Maximum values of the O2(a1Δg) dayglow reaching 31 MR were observed in early northern and southern springs in both hemispheres. Near the equator a spring maximum of 5-8 MR was observed for all years. The emission intensity is minimum in the Southern hemisphere in summer with values of 1-2 MR. Comparison of the data with GCM simulations and simultaneous ozone measurements by SPICAM UV allows to derive the quenching rate (k) of the excited O2 molecules by CO2, k=0.73×10-20 cm3 molecules-1 s-1. The interannual variation of the O2 emission has been studied after applying correction for the local time. The O2(a1Δg) seasonal pattern is rather stable with average year-to-year relative variation of about 21%, in accord with interannual variations detected from the ground (Krasnopolsky, 2013). The most variable region corresponds to northern and southern spring at middle latitudes, coinciding with sublimation of the polar caps in both hemispheres. Southern latitudes also show a high year-to-year variability in summer (Ls=270-330°) relating to the dust activity in this region. A comparison with simultaneous SPICAM water vapor observations shows that the O2(a1Δg) dayglow depends on the water vapor variations, and clearly confirms their anti-correlation, excepting the case of low and middle latitudes in the aphelion period.

  9. The Ultraviolet Spectrum of the Jovian Dayglow

    NASA Technical Reports Server (NTRS)

    Liu, Weihong; Dalgarno, A.

    1995-01-01

    The ultraviolet spectra of molecular hydrogen H2 and HD due to solar fluorescence and photoelectron excitation are calculated and compared with the Jovian equatorial dayglow spectrum measured at 3 A resolution at solar maximum. The dayglow emission is accounted for in both brightness and spectral shape by the solar fluorescence and photoelectron excitation and requires no additional energy source. The emission is characterized by an atmospheric temperature of 530 K and an H2 column density of 10(exp 20) cm(exp -2). The dayglow spectrum contains a cascade contribution to the Lyman band emission from high-lying E and F states. Its relative weakness at short wavelengths is due to both self-absorption by H2 and absorption by CH4. Strong wavelength coincidences of solar emission lines and absorption lines of H2 and HD produce unique line spectra which can be identified in the dayglow spectrum. The strongest fluorescence is due to absorption of the solar Lyman-beta line at 1025.72 A by the P(1) line of the (6, 0) Lyman band of H2 at 1025.93 A. The fluorescence lines due to absorption of the solar O 6 line at 1031.91 A by vibrationally excited H2 via the Q(3) line of the (1, 1) Werner band at 1031.86 A are identified. The fluorescence lines provide a sensitive measure of the atmospheric temperature. There occurs an exact coincidence of the solar O 6 line at 1031.91 A and the R(0) line of the (6, 0) Lyman band of HD at 1031-91 A, but HD on Jupiter is difficult to detect due to the dominance of the H2 emission where the HD emission is particularly strong. Higher spectral resolution and higher sensitivity may make possible such a detection. The high resolution (0.3 A) spectra of H2 and HD are presented to stimulate search for the HD on Jupiter with the Hubble Space Telescope.

  10. Intensities of the Venusian N2 electron-impact excited dayglow emissions

    NASA Astrophysics Data System (ADS)

    Fox, Jane L.; F. Hać, Nicholas E.

    2013-12-01

    Dayglow emissions are signatures of both the energy deposition into an atmosphere and the abundances of the species from which they arise. The first N2 dayglow emissions from Mars, the (0,5) and (0,6) bands of the N2 Vegard-Kaplan band system, were detected by the Spectroscopy for Investigations of the Characteristics of the Atmosphere of Mars (SPICAM) UV spectrometer on board the Mars Express spacecraft. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is populated by direct electron-impact excitation and by cascading from higher triplet states. The Venus UV dayglow is currently being probed by an instrument similar to SPICAM, the Spectroscopy for the Investigations of the Characteristics of the Atmosphere of Venus (SPICAV) UV spectrometer on Venus Express, but no N2 emissions have been detected. Because the N2 mixing ratios in the Venus thermosphere are larger than those in the thermosphere of Mars and the solar flux is greater at the orbit of Venus than that at Mars, we expect the Venus N2 emissions to be significantly more intense than those of Mars. A prediction of the intensities of various N2 emissions from Venus could be used to guide observations by the SPICAV and other instruments that are used to measure the Venus dayglow. Employing updated data, we here construct models of the low and high solar activity thermospheres of Venus, and we compute the integrated overhead intensities of 17 N2 band systems and limb profiles of the Vegard-Kaplan bands. The ratios of the predicted intensities of the various N2 bands at Venus to those at Mars are in the range 5.5-9.5.

  11. IUE observations of the Jovian dayglow emission

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Feldman, P. D.; Ballester, G. E.; Moos, H. W.

    1989-01-01

    IUE spectra of Jupiter are examined in light of recent models put forward to explain the anomalously bright ultraviolet emissions seen from the upper atmospheres of the outer planets. Chi-squared fits of the IUE spectra with model spectra produced by two proposed excitation mechanisms, electron impact and fluorescence of solar radiation, result in consistently higher chi-squared values for the solar fluorescence model. No conclusive evidence is found in the IUE data for the dominance of solar fluorescence over electron excitation in producing the Jovian dayglow emission.

  12. Collisional excitation and radiative properties of N II - The strong intercombination (1D - 3P0) transition at 748 A

    NASA Technical Reports Server (NTRS)

    Tripp, T. M.; Shemansky, D. E.; James, G. K.; Ajello, J. M.

    1991-01-01

    Laboratory measurements of EUV emission from electron-excited N2 have been obtained at medium resolution, providing N II EUV emission cross section measurements and allowing the confirmation of recent calculations by Fawcett (1987) indicating the presence of a strong intercombination line in N II at 748.37 A. The most recently available data are used to predict the basic collisional and radiative properties of N II, the plasma diagnostic properties are briefly explored, and radiative cooling coefficients are given. Some basic properties of electron-excited N II and N2 are examined in the EUV in order to diagnose emission spectra of the earth and Titan. The N II emissions in the earth dayglow, particularly at 916 A, are much brighter than current estimates of source rates. The N II 1085 A line in the dayglow contains a significant component from dissociative photoionization excitation. The N II 1085 A, 916 A, and 670 A lines in the Titan dayglow spectrum appear to be compatible with direct electron excitation of N2.

  13. Intensities of the Martian N2 electron-impact excited dayglow emissions

    NASA Astrophysics Data System (ADS)

    Fox, Jane L.; Hać, Nicholas E. F.

    2013-06-01

    The first N2 emissions in the Martian dayglow were detected by the SPICAM UV spectrograph on board the Mars Express spacecraft. Intensities of the (0,5) and (0,6) Vegard-Kaplan bands were found to be about one third of those predicted more than 35 years ago. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is excited in the Martian dayglow by direct electron-impact excitation of the ground N2(X) state to the A state and by excitation to higher triplet states that populate the A state by cascading. Using revised data, we compute here updated intensities of several of the bands in the N2 triplet systems and those involving the a1Πg state, the upper state of the Lyman-Birge-Hopfield bands. We find that the predicted limb intensities for the (0,5) and (0,6) Vegard-Kaplan bands are consistent with the measured values.

  14. F2 region response to geomagnetic disturbances across Indian latitudes: O(1S) dayglow emission

    NASA Astrophysics Data System (ADS)

    Upadhayaya, A. K.; Gupta, Sumedha; Brahmanandam, P. S.

    2016-03-01

    The morphology of ionospheric storms has been investigated across equatorial and low latitudes of Indian region. The deviation in F2 region characteristic parameters (foF2 and h'F) along with modeled green line dayglow emission intensities is examined at equatorial station Thiruvananthapuram (8.5°N, 76.8°E, 0.63°S geomagnetic latitude) and low-latitude station Delhi (28.6°N, 77.2°E,19.2°N geomagnetic latitude) during five geomagnetic storm events. Both positive and negative phases have been noticed in this study. The positive storm phase over equatorial station is found to be more frequent, while the drop in ionization in most of the cases was observed at low-latitude station. It is concluded that the reaction as seen at different ionospheric stations may be quite different during the same storm depending on both the geographic and geomagnetic coordinates of the station, storm intensity, and the storm onset time. Modulation in the F2 layer critical frequency at low and equatorial stations during geomagnetic disturbance of 20-23 November 2003 was caused by the storm-induced changes in O/N2. It is also found that International Reference Ionosphere 2012 model predicts the F2 layer characteristic (foF2 and h'F) parameters at both the low and equatorial stations during disturbed days quite reasonably. A simulative approach in GLOW model developed by Solomon is further used to estimate the changes in the volume emission rate of green line dayglow emission under quiet and strong geomagnetic conditions. It is found that the O(1S) dayglow thermospheric emission peak responds to varying geomagnetic conditions.

  15. Evidence for OI 630.0 nm dayglow variations over low latitudes during onset of a substorm

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D.; Sekar, R.; Sastri, J. H.; Pathan, B. M.; Reeves, G. D.; Yumoto, K.; Kikuchi, T.

    2010-10-01

    Observations of OI 630.0 nm dayglow intensity from Mt. Abu (magnetic latitude (MLAT): 16.2°N magnetic longitude (MLONG): 148°E) at two different directions corresponding to two different magnetic latitudes (MLATZenith: 16.2°N and MLAT20°Elevation: 22.2°N) revealed nearly simultaneous intensity enhancements on 2 February 2002 (Ap = 19) during 0554-0635 universal time (UT) (1124-1205 Indian Standard Time (IST); IST = UT + 5.5 h). This feature is found to be absent on a typical control day (3 February 2002; Ap = 4). The dayglow enhancements were concomitant with enhancements in the E-region zonal electric field inferred from deviations of the northward component of magnetic field (ΔH) obtained from a meridional chain of magnetometers encompassing the dip equatorial and low-latitude regions. Simultaneous positive bay signatures in ΔH were also recorded at all stations along the 210° magnetic meridian (MM) in the afternoon sector (˜1454-1535 magnetic local time). The changes in the solar wind parameters including the dawn-to-dusk component of IEF and ram pressure are found negligible during 0554-0635 UT. However, the variations in the auroral electrojet and ring current indices indicate the presence of a substorm during 0554-0635 UT. Sudden enhancements in the energetic particle fluxes measured by the Los Alamos National Laboratory (LANL) 1991-080 satellite at geosynchronous altitude provide evidence for the onset of the expansion phase of a magnetospheric substorm. Therefore, the present investigation adduces the response of 630.0 nm dayglow intensities over low latitudes corresponding to the onset of the expansion phase of an auroral/magnetospheric substorm.

  16. A rocket measurement of the extreme ultraviolet dayglow

    NASA Technical Reports Server (NTRS)

    Christensen, A. B.

    1976-01-01

    Extreme ultraviolet spectra of the mid-latitude dayglow in the wavelength range of 550 to 1250A have been obtained with a rocket borne grating spectrometer at a resolution of 20A. Spectra were obtained in the altitude range of 140 to 280 km. The spectra are dominated by emissions from atomic multiplets and no molecular bands have been identified with certainty. The strongest emissions other than H Lyman-alpha are OI (989) and OII (834). Other prominent emissions include He I(584), N II(916) and N II(1085). An unexpected feature near 612A has an intensity comparable to He I(584).

  17. Dayglow emissions of the O2 Herzberg bands and the Rayleigh backscattered spectrum of the earth

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Abrams, R. B.

    1982-01-01

    It is pointed out that numerous fluorescent emissions from the Herzberg bands of molecular oxygen lie in the spectral region 242-300 nm. This coincides with the wavelength range used by orbiting spectrometers that observe the Rayleigh backscattered spectrum of the earth for the purpose of monitoring the vertical distribution of stratospheric ozone. Model calculations suggest that Herzberg band emissions in the dayglow could provide significant contamination of the ozone measurements if the quenching rate of O2(A3Sigma) is sufficiently small. It is noted that this is especially true near 255 nm, where the most intense fluorescent emissions relative to the Rayleigh scattered signal are located and where past satellite measurements have shown a persistent excess radiance above that expected for a pure ozone absorbing and molecular scattering atmosphere. Very small quenching rates, however, are adequate to reduce the dayglow emission to negligible levels. Noting that available laboratory data have not definitely established the quenching on the rate of O2(A3Sigma) as a function of vibration level, it is emphasized that such information is required before the Herzberg band contributions can be evaluated with confidence.

  18. Linewidth studies on the the NI(4S-4P) resonance multiplet. [applicable to analysis of dayglow

    NASA Technical Reports Server (NTRS)

    Erdman, P. W.; Zipf, E. C.

    1983-01-01

    Doppler broadening of the 8691, 8212, and 1200-A multiplet lines of N I is investigated experimentally, and its implications for the interpretation of the earth's 1200-A UV dayglow are considered. A regulated 100-eV, 1-mA electron beam is passed through N2 at 300 K and about 0.0005 torr flowing through a collision chamber within a UHV system, and the radiation emitted is observed with a temperature-stabilized short-focal length monochromator with a bandpass of 0.2 A in the IR and an effective UV resolution (in second-order operation with a 3600-groove/mm plane grating) of about 0.04 A. Both the IR and VUV lines are found to be broadened to about 25 times the thermal Doppler linewidth, with the IR transitions accounting for more than half of the total N(4P) cross section at 100 eV. The kinetic energy of the N(4P) atoms produced by dissociative excitation is such that their 1200-A resonance radiation (2p2 3s4P - 2p3 4SO) would be optically thin in the upper atmosphere, contrary to what has been observed. A need to revise some aspects of current UV-dayglow models is identified.

  19. Atmospheric dayglow diagnostics involving the O2(b-X) Atmospheric band emission: Global Oxygen and Temperature (GOAT) mapping

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.; Pejaković, D. A.; Kostko, O.; Matsiev, D.; Kalogerakis, K. S.

    2017-03-01

    The terrestrial dayglow displays prominent emission features from the 0-0 and 1-1 bands of the O2 Atmospheric band system in the 760-780 nm region. We present an analysis of observations in this wavelength region recorded by the Space Shuttle during the Arizona Airglow Experiment. A major conclusion is that the dominant product of O(1D) + O2 energy transfer is O2(b, v = 1), a result that corroborates our previous laboratory studies. Moreover, critical to the interpretation of dayglow is the possible interference by N2 and N2+ bands in the 760-780 nm region, where the single-most important component is the N2 1PG 3-1 band that overlaps with the O2(b-X) 0-0 band. When present, this background must be accounted for to reveal the O2(b-X) 0-0 and 1-1 bands for altitudes at which the O2 and N2/N2+ emissions coincide. Finally, we exploit the very different collisional behavior of the two lowest O2(b) vibrational levels to outline a remote sensing technique that provides information on Atmospheric composition and temperature from space-based observations of the 0-0 and 1-1 O2 atmospheric bands.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hume, E.E. Jr.

    The green line (5577[angstrom]) is a bright, persistent component of the visible airglow produced by an electric quadrupole transition from the meta-stable second excited state ([sup 1]S[sub 0]) to the first excited state ([sup 1]D[sub 2]) of atomic oxygen. In this thesis, production and loss mechanisms important to the F-region dayglow 5577[angstrom] emission are investigated. Four major source reactions need to be incorporated in the modeling of the emission profile, photoelectron impact on atomic oxygen, dissociative recombination of O[sup +][sub 2], quenching of N[sub 2](A[sup 3][Sigma][sub u][sup +]) by atomic oxygen, and photo-dissociation of O[sub 2]. For some of themore » reactions, the properties of the rate coefficients, branching ratios, and cross sections are not well known. Models are used to determine the rate coefficients, branching ratios, and cross sections for these reactions. The impact of photoelectrons on atomic oxygen is the primary source of 5577[angstrom] dayglow emission in the thermosphere. The quenching of N[sub 2](A) by atomic oxygen is an important source of the 5577[angstrom] emission at the peak in the layer. The total quenching rate was determined using a vibrational model and a band model for N[sub 2] to study emissions at 3371[angstrom] from the Atmosphere Explorer satellite. The value of the rate coefficient deduced here agrees well with experimental values by Piper and Caledonia (1981) and Thomas and Kaufman (1985). The effective branching ratio determined by this study tends to support the results from Piper (1982) and De Souza et al. (1985). The effect of the distribution of the vibrational population of the N[sub 2](A[sup 3][Sigma][sub u][sup +]) state on the branching ratio is also discussed. The extension of the dayglow photochemistry into the twilight is also investigated. The model developed for the dayglow can reasonably reproduce the rapidly changing twilight emissions.« less

  1. OH-asterisk (7-5) Meinel band dayglow and nightglow measured by the SME limb scanning near infrared spectrometer - Comparison of the observed seasonal variability with two-dimensional model simulations

    NASA Technical Reports Server (NTRS)

    Le Texier, H.; Solomon, S.; Thomas, R. J.; Garcia, R. R.

    1989-01-01

    Seasonal variations of the OH-asterisk (7-5) mesospheric hydroxyl emission at 1.89 microns observed by the SME near-IR spectrometer are compared with the theoretical predictions of a two-dimensional dynamical/chemical model. The good agreement found at low latitudes for both dayglow and nightglow provides support for the model assumption that breaking gravity waves induce seasonal and latitudinal variations in diffusion. The seasonal behavior of atomic hydrogen in the upper mesosphere (related to vertical transport) and/or uncertainties in the OH Meinel band parameters are proposed as possible explanations for the discrepancy noted between model and observational data for the middle latitudes.

  2. The UV dayglow 3, OI emissions at 989, 1027, 1152, 1304, and 1356A

    NASA Technical Reports Server (NTRS)

    Anderson, D. E., Jr.; Meier, R. R.; Feldman, P. D.; Gentieu, E. P.

    1980-01-01

    Rocket observations of the dayglow spectrum between 530 and 1500A were obtained on 9 January 1978 at a solar zenith angle of 56 deg. Data were obtained from 80 to 260 km with viewing angles of 40, 90, and 180 deg to the local zenith. OI emissions were observed at 989, 1027, 1152, 1304, and 1356A. Analysis of these data with a radiative transfer model using the energy dependences of currently accepted excitation cross sections, branching ratios and photoelectron fluxes shows that electron impact excitation is the primary source of these emissions. The infrared emission rates at 7990 and 11287A are also calculated in this analysis for comparison with previous observations and estimates.

  3. An evaluation of the rate of absorption of solar radiation in the O2(X3Sigma-g - b1Sigma-g) transition

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.

    1993-01-01

    The rate at which molecular oxygen absorbs radiation in the O2(X3Sigma-g - b1Sigma-g) transition is calculated using a line-by-line radiative transfer model. This rate is critical to the determination of the population of the O2(b1Sigma-g) state required for studies of the O2(b1Sigma-g - X3Sigma-g) dayglow, the O2(a1Delta-g - X3Sigma-g) dayglow, and possibly the rates of oxidation of H2 and N2O. Previous evaluations of this rate (which is sometimes called the g-factor) have significantly overestimated its value. The rate is tabulated as a function of altitude, pressure, and solar zenith angle.

  4. O2(a1Δg) dayglow limb observations on Mars by SPICAM IR on Mars-Express and connection to water vapor distribution

    NASA Astrophysics Data System (ADS)

    Guslyakova, S.; Fedorova, A. A.; Lefèvre, F.; Korablev, O. I.; Montmessin, F.; Bertaux, J.-L.

    2014-09-01

    The 1.27-μm O2(a1Δg) dayglow on Mars is a product of the ozone photolysis by solar UV radiation. The intensity of the O2(a1Δg) emission rate depends on ozone concentration, atmospheric density and kinetic parameters of involved photochemical reactions. In turn, the distribution of ozone is sensitive to the vertical and spatial distribution of water vapor, which is an effective destructor of O3. SPICAM IR on the Mars-Express mission measures the O2(1Δg) dayglow with spectral resolving power of 2200. The results of 147 limb observations from 2004 to 2013 are reported. Limb resolution of the instrument is variable and exceeds the scale height of the atmosphere. The slant emission rate reaches a maximum at the high Northern latitudes at northern and southern springs Ls = 0-50° and 160-190°, respectively and a minimum in middle and low latitudes at southern summer Ls = 200-300°. We have compared the SPIVAM O2(a1Δg) limb profiles with the General Circulation Model simulation by the Laboratoire de Meteorologie Dynamique (LMD GCM, Lefèvre, F., Lebonnois, S., Montmessin, F., Forget, F. [2004]. J. Geophys. Res. 109, E07004. http://dx.doi.org/10.1029/2004JE002268; Lefèvre, F., et al. [2008]. Nature 454(7207), 971-975) reduced to the vertical resolution of the instrument. The GCM includes the radiative effect of the water clouds and an interactive dust scheme, and well reproduces Martian Climate Sounder (MCS) temperature profiles (Clancy, R. Todd et al. [2012]. J. Geophys. Res. 117, 10. http://dx.doi.org/10.1029/2011JE004018). The model underestimates the emission for Ls = 0-50°, Ls = 160-180° and overestimates it from Ls = 60° to Ls = 150° at high Northern latitudes. In the Southern hemisphere the model underestimates the emission for Ls = 170-200° and overestimates it for Ls = 200-230° at high Southern latitudes. The disagreement could be related to the water vapor distribution as the model reproduces it. The most recent version of the LMD GCM including microphysical representation of cloud formation taking into account the effect of dust scavenging by water ice clouds (Navarro, T., Madeleine, J.-B., Montmessin, F., Forget, F., Spiga, A., Millour, E. [2013]. Modeling of the martian water cycle with an improved representation of water ice clouds. European Planetary Science Congress 2013, EPSC Abstracts, vol. 8, EPSC2013-203) gives much better agreement with SPICAM O2(a1Δg) dayglow limb observations. Characterization of the Mars water cycle by GCMs continues to improve, and the observations of the O2(a1Δg) dayglow offer a powerful tool for its validation.

  5. Role of excited N2 in the production of nitric oxide

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Cartwright, D. C.; Brunger, M. J.

    2007-08-01

    Excited N2 plays a role in a number of atmospheric processes, including auroral and dayglow emissions, chemical reactions, recombination of free electrons, and the production of nitric oxide. Electron impact excitation of N2 is followed by radiative decay through a series of excited states, contributing to auroral and dayglow emissions. These processes are intertwined with various chemical reactions and collisional quenching involving the excited and ground state vibrational levels. Statistical equilibrium and time step atmospheric models are used to predict N2 excited state densities and emissions (as a test against previous models and measurements) and to investigate the role of excited nitrogen in the production of nitric oxide. These calculations predict that inclusion of the reaction N2[A3Σu +] + O, to generate NO, produces an increase by a factor of up to three in the calculated NO density at some altitudes.

  6. Helium glow detector experiment, MA-088. [Apollo Soyuz test project data reduction

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1978-01-01

    Of the two 584 A channels in the helium glow detector, channel #1 appeared to provide data with erratic count rates and undue susceptibility to dayglow and solar contamination possibly because of filter fatigue or failure. Channel #3 data appear normal and of high quality. For this reason only data from this last channel was analyzed and used for detailed comparison with theory. Reduction and fitting techniques are described, as well as applications of the data in the study of nighttime and daytime Hel 584 A emission. A hot model of the interstellar medium is presented. Topics covered in the appendix include: observations of interstellar helium with a gas absorption cell: implications for the structure of the local interstellar medium; EUV dayglow observations with a helium gas absorption cell; and EUV scattering from local interstellar helium at nonzero temperatures: implications for the derivations of interstellar medium parameters.

  7. Jovian H2 dayglow emission (1978-1989)

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Ballester, G. E.; Moos, H. W.

    1990-01-01

    The IUE data set accumulated through 10 years of Jovian equatorial observations is used to measure the long-term temporal variation of the H2 dayglow emission. The model that best fits the data indicates a possible correlation between long-term solar activity and the Jovian H2 emission in the region 1500-1700 A between 1978 and 1989, which spans the decline in solar activity for solar cycle 21 and the rise in solar activity accompanying solar cycle 22. The magnitude of the observed variation is closer to that of the solar Ly-alpha flux than the 10.7 cm radio flux. Short-wavelength H2 band emission intensity is inconsistent with the amount of long-wavelength emission but may be reconciled if relatively low-energy excitation or fluorescence of solar radiation is invoked. No persistent longitudinal feature analogous to the H I Ly-alpha can be identified.

  8. A comparison of FUV dayglows measured by STSAT-1/FIMS with the AURIC model in a geomagnetic quiet condition

    NASA Astrophysics Data System (ADS)

    Kam, Hosik; Kim, Yong Ha; Hong, Jun-Seok; Lee, Joon-Chan; Choi, Yeon-Ju; Min, Kyung Wook

    2014-09-01

    The Korea scientific microsatellite, STSAT-1 (Science and Technology Satellite-1), was launched in 2003 and observed far ultraviolet (FUV) airglow from the upper atmosphere with a Far-ultraviolet IMaging Spectrograph (FIMS) at an altitude of 690 km. The FIMS consists of a dual-band imaging spectrograph of 900-1150 Å (S-band) and 1340-1715 Å (L-band). Limb scanning observations were performed only at the S-band, resulting in intensity profiles of OI 989 Å, OI 1026 Å, NII 1085 Å and NI 1134 Å emission lines near the horizon. We compare these emission intensities with those computed by using a theoretical model, the AURIC (Atmospheric Ultraviolet Radiance Integrated Code). The intensities of the OI 1026 Å, NII 1085 Å and NI 1134 Å emissions measured by using the FIMS are overall consistent with the values computed by using AURIC under the thermospheric and solar activity conditions on August 6, 1984, which is close to the FIMS's observation condition. We find that the FIMS dayglow intensity profiles match reasonably well with AURIC intensity profiles for the MSIS90 oxygen atom density profiles within factors of 0.5 and 2. However, the FIMS intensities of the OI 989 Å line are about 2 ˜ 4 times stronger than the AURIC intensities, which is expected because AURIC does not properly simulate resonance scattering of airglow and solar photons at 989 Å by atomic oxygen in the thermosphere. We also find that the maximum tangential altitudes of the oxygen bearing dayglows (OI 989 Å, OI 1026 Å) are higher than those of the nitrogen-bearing dayglows (NII 1085 Å, NI 1134 Å), which is confirmed by using AURIC model calculations. This is expected because the oxygen atoms are distributed at higher altitudes in the thermosphere than the nitrogen molecules. Validations of the qualities of both the FIMS instrument and the AURIC model indicate that AURIC should be updated with improved thermospheric models and with measured solar FUV spectra for better agreement with the observations. Once the updated AURIC model is available, one can extract valuable information on the densities and compositions of the thermosphere from limb scanning observations with an FUV instrument such as FIMS.

  9. First Look at the 3-channel Photometer Data from RENU2

    NASA Astrophysics Data System (ADS)

    Hecht, J. H.; Brinkman, D. G.; Clemmons, J. H.; Walterscheid, R. L.; Evans, J. S.; Fritz, B.; Lessard, M.

    2016-12-01

    The Rocket Experiment for Neutral Upwelling-2 (RENU2) rocket launched north towards the cusp region from Andoya, Norway at 735 UT on December 12th 2015. It included a 3-channel forward looking photometer which included narrow-band interference filters at the following wavelengths: (1) 391.4 nm to measure the relatively bright N2+(0,0) band, primarily excited in cusp aurora via resonant scattering of solar light, (2) 557.7 nm, the auroral green line, which is seen in both dayglow emission (very weakly) and when auroral precipitation is present, and (3) 630.0 nm, the auroral redline, which is also excited in the dayglow and by low energy auroral electrons typically present in the cusp. Averaging over the 2 seconds, to minimize out the rocket spin modulation, revealed a volume emission rate profile as a function of altitude that showed dayglow and resonant scattering emission from all three features on the up leg before the cusp aurora region was entered, and a combination of this and auroral emission on the down leg. Noteworthy on the down leg was a sudden increase in the 391.4 nm emission strongly suggestive of an increase in N2+ ions above the rocket. The data are compared to results of AURIC and B3C model runs where electron data from the EPLAS instrument were used to provide the electron spectra. This comparison revealed information not only about the N2+ ion and atomic oxygen density but also showed, via the effects of the different lifetime of the red and green emissions, that there were many short timescale bursts of precipitation lasting much less than 1 second.

  10. Berkeley extreme-ultraviolet airglow rocket spectrometer: BEARS.

    PubMed

    Cotton, D M; Chakrabarti, S

    1992-09-20

    We describe the Berkeley extreme-UV airglow rocket spectrometer, which is a payload designed to test several thermospheric remote-sensing concepts by measuring the terrestrial O I far-UV and extreme-UV dayglow and the solar extreme-UV spectrum simultaneously. The instrument consisted of two near-normal Rowland mount spectrometers and a Lyman-alpha photometer. The dayglow spectrometer covered two spectral regions from 980 to 1040 A and from 1300 to 1360 A with 1.5-A resolution. The solar spectrometer had a bandpass of 250-1150 A with an ~ 10-A resolution. All three spectra were accumulated by using a icrochannel-plate-intensified, two-dimensional imaging detector with three separate wedge-and strip anode readouts. The hydrogen Lyman-alpha photometer was included to monitor the solar Lyman-alpha irradiance and geocoronal Lyman-alpha emissions. The instrument was designed, fabricated, and calibrated at the University of California, Berkeley and was successfully launched on 30 September 1988 aboard the first test flight of a four-stage sounding rocket, Black Brant XII.

  11. Analysis of TIMED/GUVI Dayglow Utraviolet Oxygen Images

    NASA Astrophysics Data System (ADS)

    Christensen, A. B.; Crowley, G.; Meier, R.

    2016-12-01

    Analysis of the atomic oxygen resonance transition at 130.4 nm and the inter-combination transition at 135.6 nm measured by the TIMED/GUVI mission demonstrates the state of knowledge of these important dayglow emission features and the degree to which current models can simulate their global properties. The complete modeling framework comprises several models, including the Thermosphere ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM), Assimilative Mapping of Ionospheric Electrodynamics (AMIE), a partial frequency redistribution resonance scattering model usually called REDISTER needed to compute the optically thick radiative transfer of the 130.4 nm emission, airglow emission models, GLOW and AURIC and other procedures. Observations for four different days, collected under different geophysical conditions of magnetic activity and solar cycle, show very good agreement with the calculated emission brightness and geographic distribution for both emissions. The differences between the airglow codes for the 135.6 nm emission will be discussed in connection to the photoelectron energy loss cross sections, as well as the excitation cross sections used in the various models.

  12. Model study of greenline dayglow emission under geomagnetic storm conditions.

    NASA Astrophysics Data System (ADS)

    Singh, V.; Bag, T.; Sunil Krishna, M. V.

    2016-12-01

    A comprehensive model is developed to study the influences of geomagnetic storms on greenline (557.7 nm) dayglow emission during the solar active and solar quiet conditions in thermosphere. This study is based on a photochemical model which is developed using the latest reaction rate coefficients, quantum yields and collisional cross-sections obtained from the experimental observations and empirical models. This study is for a low latitude station Tirunelveli (8.7N,77.8E), India. The volume emission rate (VER) has been calculated using the densities and temperature from NRLMSISE-00 and IRI-2012 models. The modeled VER shows a positive correlation with the Dst index, and a negative correlation with the number densities of O, O2, and N2. The VER calculated at the peak emission altitude shows depletion during the main phase of the storm. The peak emission altitude doesn't show any appreciable variation during storm period. On the other hand, the peak emission altitude shows an upward movement with the increase in F10.7 solar index.

  13. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  14. The spectrum of the Jovian dayglow observed at 3 A resolution with the Hopkins ultraviolet telescope

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Mcgrath, M. A.; Moos, H. W.; Durrance, S. T.; Strobel, D. F.; Davidsen, A. F.

    1993-01-01

    Ultraviolet spectra of the Jovian equatorial dayglow in the spectral range 830-1850 A were obtained at about 3 A resolution. The observed spectrum is dominated by electron impact excitation of the H2 Lyman and Werner band systems. Solar Lyman-beta induced fluorescence in the (6, nu-double prime) Lyman band progression is clearly identified in five distinct P(1) lines, and the contribution of solar fluorescence to the total 2.3 kR slit-averaged H2 emission rate is estimated to be 17-22 percent. The electron excitation spectrum is characterized by a relative weakness of the Werner band system and the absence of cascade contributions to the Lyman system and is very similar to that of the south polar aurora. The integrated H2 emission rate in the 900-1100 A band is a factor of two lower than that measured by the Voyager UVS. Based on model calculations, photoelectron excitation does not appear able to account for the amount of observed electron-excited H2 emission.

  15. Effect of geomagnetic storms on the daytime low-latitude thermospheric wave dynamics

    NASA Astrophysics Data System (ADS)

    Karan, Deepak K.; Pallamraju, Duggirala

    2018-05-01

    The equatorial- and low-latitude thermospheric dynamics is affected by both equatorial electrodynamics and neutral wave dynamics, the relative variation of which is dependent on the prevalent background conditions, which in turn has a seasonal dependence. Depending on the ambient thermospheric conditions, varying effects of the geomagnetic disturbances on the equatorial- and low-latitude thermosphere are observed. To investigate the effect of these disturbances on the equatorial- and low-latitude neutral wave dynamics, daytime airglow emission intensities at OI 557.7 nm, OI 630.0 nm, and OI 777.4 nm are used. These emissions from over a large field-of-view (FOV∼1000) have been obtained using a high resolution slit spectrograph, MISE (Multiwavelength Imaging Spectrograph using Echelle grating), from a low-latitude location, Hyderabad (17.50N, 78.40E; 8.90N MLAT), in India. Variations of the dayglow emission intensities are investigated during three geomagnetic disturbance events that occurred in different seasons. It is seen that the neutral dayglow emission intensities at all the three wavelengths showed different type of variations with the disturbance storm time (Dst) index in different seasons. Even though the dayglow emission intensities over low-latitude regions are sensitive to the variation in the equatorial electric fields, during periods of geomagnetic disturbances, especially in solstices, these are dependent on thermospheric O/N2 values. This shows the dominance of neutral dynamics over electrodynamics in the low-latitude upper atmosphere during geomagnetic disturbances. Further, spectral analyses have been carried out to obtain the zonal scale sizes in the gravity wave regime and their diurnal distributions are compared for geomagnetic quiet and disturbed days. Broadly, the zonal scales seem to be breaking into various scale sizes on days of geomagnetic disturbances when compared to those on quiet days. This contrast in the diurnal distribution of the zonal scale sizes brings to light, for the first time, the varying nature of the neutral wave coupling in the daytime thermosphere during periods of geomagnetic disturbances.

  16. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    NASA Technical Reports Server (NTRS)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  17. Dayglow and night glow of the Venusian upper atmosphere. Modelling and observations

    NASA Astrophysics Data System (ADS)

    Gronoff, G.; Lilensten, J.; Simon, C.; Barthélemy, M.; Leblanc, F.

    2007-08-01

    Aims. We present the modelling of the production of excited states of O, CO and N2 in the Venusian upper atmosphere, which allows to compute the nightglow emissions. In the dayside, we also compute several emissions, taking advantage of the small influence of resonant scattering for forbidden transitions. Methods. We compute the photoionisation and the photodissociation mechanisms, and thus the photoelectron production. We compute electron impact excitation and ionisation through a multi-stream stationary kinetic transport code. Finally, we compute the ion recombination with a stationary chemical model. Results.We predict altitude density profiles for O(1S) and O(1D) states and the emissions corresponding to their different transitions. They are found to be very comparable to the observations without the need for stratospheric emissions. In the nightside, we highlight the role of the N + O+2 reaction in the creation of the O(1S) state. This reaction has been suggested by Rees in 1975 (Frederick, 1976). It has been discussed several times afterwhile and in spite of different studies, is still controversial. However, when we take it in consideration in Venus, it is shown to be the cause of almost 90% of the state production. We calculate the production intensities of O(3S) and O(5S) states, which are needed for radiative transfer models. For CO we compute the Cameron band and the fourth positive band emissions. For N2 we compute the LBH, first and second positive bands. All these values are successfully compared to the experiment when data are available. Conclusions. For the first time, a comprehensive model is proposed to compute dayglow and nightglow emissions of the Venusian upper atmosphere. It relies on previous works with noticeable improvements, both on the transport and on the chemical aspects. In the near future, a radiative transfer model will be used to compute optically thick lines in the dayglow, and a fluid model will be added to compute ionosphere densities and temperatures. We will present the first observational results from the Pic du Midi telescope in June 2007, in order to compare with our modelling.

  18. Tilting-filter measurements in dayglow rocket photometry.

    PubMed

    Schaeffer, R C; Fastie, W G

    1972-10-01

    A rocket-borne photometer containing two tilting-filter channels for the measurement of the [OI] lambdalambda6300-A and 5577A emission lines in the day airglow is described. The results of one flight substantiate the employment of tilting filters to determine accurate corrections for background continuum and provide reliable height profiles of emission intensity down to approximately 90 km. Discussions on the calibration of the instrument and its baffling against sunlight are also presented.

  19. Report on the search for atmospheric holes using airs image data

    NASA Technical Reports Server (NTRS)

    Reinleitner, Lee A.

    1991-01-01

    Frank et al (1986) presented a very controversial hypothesis which states that the Earth is being bombarded by water-vapor clouds resulting from the disruption and vaporization of small comets. This hypothesis was based on single-pixel intensity decreases in the images of the earth's dayglow emissions at vacuum-ultraviolet (VUV) wavelengths using the DE-1 imager. These dark spots, or atmospheric holes, are hypothesized to be the result of VUV absorption by a water-vapor cloud between the imager and the dayglow-emitting region. Examined here is the VUV data set from the Auroral Ionospheric Remote Sensor (AIRS) instrument that was flown on the Polar BEAR satellite. AIRS was uniquely situated to test this hypothesis. Due to the altitude of the sensor, the holes should show multi-pixel intensity decreases in a scan line. A statistical estimate indicated that sufficient 130.4-nm data from AIRS existed to detect eight to nine such holes, but none was detected. The probability of this occurring is less than 1.0 x 10(exp -4). A statistical estimate indicated that sufficient 135.6-nm data from AIRS existed to detect approx. 2 holes, and two ambiguous cases are shown. In spite of the two ambiguous cases, the 135.6-nm data did not show clear support for the small-comet hypothesis. The 130.4-nm data clearly do not support the small-comet hypothesis.

  20. Electron Driven Processes in Atmospheric Behaviour

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Teubner, P. J. O.

    2006-11-01

    Electron impact plays an important role in many atmospheric processes. Calculation of these is important for basic understanding, atmospheric modeling and remote sensing. Accurate atomic and molecular data, including electron impact cross sections, are required for such calculations. Five electron-driven processes are considered: auroral and dayglow emissions, the reduction of atmospheric electron density by vibrationally excited N2, NO production and infrared emission from NO. In most cases the predictions are compared with measurements. The dependence on experimental atomic and molecular data is also investigated.

  1. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1992-01-01

    The results obtained in the second year of a three year collaborative effort with MSFC are summarized. A succession of experimental studies was completed to determine the effects of the natural and induced space vehicle environment on the measurement of auroral images from space-based platforms. In addition, a global model which incorporates both auroral and dayglow emission sources is being developed to allow interpretation of measured auroral emissions. A description of work completed on these two tasks is presented.

  2. Solar cycle variation of Mars exospheric temperatures: Critical review of available dayside measurements and recent model simulations

    NASA Astrophysics Data System (ADS)

    Bougher, Stephen; Huestis, David

    The responses of the Martian dayside thermosphere to solar flux variations (on both solar rotation and solar cycle timescales) have been the subject of considerable debate and study for many years. Available datasets include: Mariner 6,7,9 (UVS dayglow), Viking Lander 1-2 (UAMS densities upon descent), several aerobraking campaigns (MGS, Odyssey, MRO densities), and Mars Express (SPICAM dayglow). Radio Science derived plasma scale heights near the ionospheric peak can be used to derive neutral temperatures in this region (only); such values are not applicable to exobase heights (e.g. Forbes et al. 2008; Bougher et al. 2009). Recently, densities and temperatures derived from precise orbit determination of the MGS spacecraft (1999-2005) have been used to establish the responses of Mars' exosphere to long-term solar flux variations (Forbes et al., 2008). From this multi-year dataset, dayside exospheric temperatures weighted toward moderate southern latitudes are found to change by about 120 K over the solar cycle. However, the applicability of these drag derived exospheric temperatures to near solar minimum conditions is suspect (e.g Bruinsma and Lemoine, 2002). Finally, re-evaluation of production mechanisms for UV dayglow emissions implies revised values for exospheric temperatures (e.g. Simon et al., 2009; Huestis et al. 2010). Several processes are known to influence Mars' exospheric temperatures and their variability (Bougher et al., 1999; 2000; 2009). Solar EUV heating and its variations with solar fluxes received at Mars, CO2 15-micron cooling, molecular thermal conduction, and hydrodynamic heating/cooling associated with global dynamics all contribute to regulate dayside thermo-spheric temperatures. Poorly measured dayside atomic oxygen abundances render CO2 cooling rates uncertain at the present time. However, global thermospheric circulation models can be exercised for conditions spanning the solar cycle and Mars seasons to address the relative roles of these processes in driving observed variations in dayside exospheric temperatures. Mars Thermospheric General Circulation Model (MTGCM) simulations and resulting exo-spheric temperatures will be presented and compared with assimilated temperatures collected from all these available measurements over the solar cycle. It is important to match measure-ments at dayside local times and latitudes for specific seasons with corresponding MTGCM simulated outputs. Calculated local heat budgets and their variations illustrate the changes required to reproduce solar cycle variations in exospheric temperatures. The ability to success-fully predict solar cycle responses of the Martian upper atmosphere is important for simulations of present-day Mars volatile escape rates.

  3. Mars proton aurora: energy deposition and Lyman-α line profile

    NASA Astrophysics Data System (ADS)

    Gérard, JC; Hubert, B.; Bisikalo, D. V.; Shematovich, V. I.

    2017-09-01

    Enhancements of the Lyman-alpha dayglow have been occasionally observed with IUVS on board MAVEN during periods of increased solar wind activity. They are interpreted as signatures of the penetration of energetic protons and H atoms into the Martian atmosphere. We present the results of Monte Carlo simulations of the energy deposition of the proton/H atom beam and the subsequent Lyman-alpha emission. We compare the observed brightness and the altitude of the emission peak with those calculated based on in-situ measurements of the incident energetic protons.

  4. A Study of Mid-Latitude 5577A CI Dayglow Emissions

    DTIC Science & Technology

    1992-01-01

    The subroutine returns the longwave and shortwave boundaries, WAVE1 and WAVE2 , of the wavelength bins (A), and the solar flux in each bin SFLUX...average 10.7 cm flux (’) C FLYA H Lyman-alpha flux (photons cm-2 s-i) C WAVE 1 longwave bound of spectral intervals (Angstroms) C WAVE2 shortwave bound...currently = 59 C WAVEL = WAVE1 C WAVES = WAVE2 C RFLUX low solar activity reference flux C XFLUX high solar activity flux C SCALE1 scaling factors for H LyB

  5. Airglow and aurora in the atmospheres of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Fox, J. L.

    Measurements and models of the luminosity that originates in the Martian and Venusian atmospheres, including dayglow, nightglow and aurora, are compared. Most of the emission features considered appear in the UV and visible regions of the spectrum and arise from electronic transitions of thermospheric species. Spatially and temporally variable intensities of the oxygen 1304 and 1356 A lines have been observed on the nightside of Venus and have been labeled 'auroral', that is, ascribed to electron precipitation. Only a future aeronomy mission to Mars could unequivocally determine whether such emissions are present on the nightside of Mars.

  6. The Effect of Solar Radiation on Molecular Nitrogen Emissions Originating in the Sunlit Thermosphere of Earth.

    NASA Astrophysics Data System (ADS)

    Hatfield, David Brooke

    The vibrational distribution of N_2 triplet states in the sunlit upper thermosphere of Earth is measured and modeled for the first time. A comparison is made between measured and theoretical limb column emission rates for bands originating from each upper vibrational level of C^3Pi_ u(v) and A^3Sigma_sp {u}{+}(v). The measured column emission rates for the Second Positive (2PG) bands are 3.2 (+/-0.2), 3.2 (+/-0.2) and 0.6 (+0.0,-0.4) kRayleighs for bands originating from C^3Pi_ u(0<=qrm v<=q2) and 13.3 ( +/-0.2), 10.0 (+/-0.2), 3 (+0,-2) and 2 (+0,-2) kRayleighs for Vegard-Kaplan (VK) bands originating from A^3Sigma_sp{u}{+ }(0<=qrm v<=q3).. Predicted limb column emission rates for C ^3Pi_ u(v) are in excellent agreement with the measured 2PG intensities, but comparisons of predicted A^3Sigma_sp{u }{+}(v) column emissions to measured VK intensities are poor. Despite this discrepancy, the predicted sum of all A^3Sigma_sp {u}{+}(v) emission rates over all v compared well to the sum of measured VK intensities. This implies that the excitation rate into the N_2 triplet states is well understood, but that the cascade mechanisms are not as yet understood sufficiently to use dayglow N_2 band emissions as remote sensing probes of the sunlit thermosphere. The dayglow N_2 emissions are modeled by extending the existing auroral model to include resonance scattering of sunlight and replacing the precipitating auroral electrons with photoelectrons. The effects of solar resonance scattering on the X ^1Sigma_sp{g}{+}, A^3Sigma_sp{u }{+} and B^3Pi _ g states are presented as a function of A^3Sigma_sp{u}{+ } quenching rate. These theoretical predictions have important implications for the analysis of dayglow and auroral emissions. The effect of resonance scattering on the A^3Sigma_sp{u} {+} state is small, and will not be measurable under auroral conditions. This implies that the measured auroral vibrational population of the A^3 Sigma_sp{u}{+} state is valid for sunlit aurora. The population of B ^3Pi_ g(v = O) relative to other B^3Pi_ g(v) states is predicted to be enhanced by sunlight. A novel set of computer variables based on tree structures was created to manage the information used. These variables are described in detail and were found to be useful tools for the creation and extension of computer models treating diatomic species.

  7. Io's SO2 Atmosphere Viewed in Silhouette by Jupiter Lyman-α

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Roth, Lorenz; Feaga, Lori M.; Becker, Tracy M.; Tsang, Constantine; Jessup, Kandis-Lea; Grava, Cesare

    2016-10-01

    We report a new technique for mapping Io's SO2 vapor distribution. Hubble's Space Telescope Imaging Spectrograph (STIS) instrument observed Io during four Jupiter transit events to obtain medium resolution far-UV spectral images near the Lyman-α wavelength of 121.6 nm. Jupiter's bright Lyman-α dayglow provides a background light source for opacity measurements, much like during a stellar occultation or transiting exoplanet event. Peaks in the photoabsorption cross-sections for sulfur dioxide occur near 122 nm, with resulting absorptions raising the altitude where a tangential line of sight opacity of tau=1 is detected up to resolvable distances above the disk. This method of measuring column densities along lines of sight above the limb complements Lyman-α reflectance imaging and other methods for measuring Io's SO2 gas. For example, interpretation of Io's surface reflected components at far-UV wavelengths is complicated by SO2 frost features being correlated with regions of known volcanic outgassing activity, while Jupiter's Lyman-α dayglow provides a more spatially uniform background light source. Initial examination of these near-terminator limb observations with STIS confirms the findings from previous Lyman-α disk reflectance imaging using STIS's G140L mode (e.g., Feldman et al., GRL, 2000; Feaga et al. 2009) that Io's polar SO2 density is roughly an order of magnitude lower than found at the equator. As Strobel & Wolven (2001) described it, Io appears to wear its dayside atmosphere as "a belt" around the equator. We describe detailed simulations, now underway, that incorporate the STIS point spread function and consideration of additional attenuation by atmospheric hydrogen atoms, which are produced by charge exchange reactions between magnetospheric protons and Io's atmosphere.

  8. Comment on the paper 'On the influx of small comets into the earth's upper atmosphere. I - Observations'

    NASA Technical Reports Server (NTRS)

    Chubb, T. A.

    1986-01-01

    The observations of transient decreases or holes in the EUV dayglow reported by Frank et al. (1986) and attributed to an influx of small comets into the earth atmosphere are discussed critically. The techniques used in acquiring and analyzing the observational data are examined, and it is argued that the decreases are probably instrument artifacts. A critique of the geophysical basis of the comet hypothesis is also included. In a reply by Frank et al., the instrument-artifact argument is rejected, in part on the basis of the statistical properties of the holes observed. Additional observational data are presented in graphs and dynamics Explorer 1 images are analyzed in detail.

  9. Meteorological and ecological monitoring of the stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Newell, R. E.; Gray, C. R.

    1972-01-01

    A concept for determining the constituent densities of ozone, atomic oxygen, aerosols, and neutral density in the 20 to 1000 km region of the atmosphere from a satellite was developed. The concept includes the daytime measurement of solar scattering at the earth's limb in selected narrow spectral bands of the ultraviolet and visible regions, and the measurement of selected (dayglow) emissions. Nighttime measurements of the atmospheric extinction of stellar energy in selected bands are also considered as are simultaneous measurements of the 5577 airglow and molecular oxygen emission in the Herzberg band. Radiative-transfer models and recursive inversion algorithms are developed for the measurements, and the accuracy of the concept is assessed.

  10. Atomic and molecular emissions in the middle ultraviolet dayglow

    NASA Astrophysics Data System (ADS)

    Bucsela, Eric J.; Cleary, David D.; Dymond, Kenneth F.; McCoy, Robert P.

    1998-12-01

    Dayglow spectra in the middle ultraviolet, obtained during a sounding rocket flight from White Sands Missile Range in 1992, have been analyzed to determine the altitude distributions of thermospheric atomic and molecular species and to address a number of problems related to airglow excitation mechanisms. Among the atomic and molecular profiles retrieved are the N2 second positive, N2 Vegard-Kaplan and NO gamma band systems, and the OI 297.2 nm, OII 247.0 nm, and NII 214.3 nm emissions. A self-consistent study of the emission profiles was conducted by comparing observed intensities with one another and to forward models. Model photoelectron and photon fluxes were generated by the field line interhemispheric plasma model (FLIP) and two solar flux models. Neutral densities were obtained from mass-spectrometer/incoherent scatter (MSIS)-90. The results from the data analysis suggest that the major species' densities are within 40% of MSIS values. Evidence for the accuracy of the modeled densities and fluxes is seen in the close agreement between the calculated and observed intensities of the N2 second positive emission. Analysis of the OI 297.2 nm emission shows that the reaction N2(A)+O is the dominant source of O(1S) in the daytime thermosphere. The data imply that the vibrationally averaged yield of O(1S) from the reaction is 0.43+/-0.12, which is smaller than the laboratory value measured for the N2(A,v'=0) level. The cause of a disagreement between model and data for the Vegard-Kaplan emission is unclear, but the discrepancy can be eliminated if the N2(A)+O quenching coefficient or the A state lifetime is increased by a factor between 2 and 4. The observed intensity of OII 247.0 nm is greater than expected by a factor of 2, implying possible inadequacies in the EUVAC and/or EUV91 solar models used in the analysis.

  11. The MATS Satellite Mission - Tomographic Perspectives on the Mesosphere

    NASA Astrophysics Data System (ADS)

    Karlsson, B.; Gumbel, J.

    2015-12-01

    Tomography in combination with space-borne limb imaging opens exciting new ways of probing atmospheric structures. MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is a new Swedish satellite mission that applies these ideas to the mesosphere. MATS science questions focus on mesospheric wave activity and noctilucent clouds. Primary measurement targets are O2 Atmospheric band dayglow and nightglow in the near infrared (759-767 nm) and sunlight scattered from noctilucent clouds in the ultraviolet (270-300 nm). While tomography provides horizontally and vertically resolved data, spectroscopy allows analysis in terms of mesospheric composition, temperature and cloud properties. This poster introduces instrument and analysis ideas, and discusses scientific perspectives and connections to other missions. MATS is being prepared for a launch in 2018.

  12. Shuttle-based measurements: GLO ultraviolet earthlimb view

    NASA Astrophysics Data System (ADS)

    Gardner, James A.; Murad, Edmond; Viereck, Rodney A.; Knecht, David J.; Pike, Charles P.; Broadfoot, A. Lyle

    1996-11-01

    The GLO experiment is an on-going shuttle-based spectrograph/imager project that has returned ultraviolet (100 - 400 nm) limb views. High spectral (0.35 nm FWHM) and temporal (4 s) resolution spectra include simultaneous altitude profiles (in the range of 80 - 400 km tangent height with 10 km resolution) of dayglow and nightglow features. Measured emissions include the NO gamma, N2 Vegard-Kaplan and second positive, N2+ first negative, and O2 Herzberg I band systems and both atomic and cation lines of N, O, and Mg. This data represents a low solar activity benchmark for future observations. We report on the status of the GLO project, which included three space flights in 1995, and present spectral data on important ultraviolet band systems.

  13. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  14. Temperature dependence of the reaction N2(A3Σu+)+O in the terrestrial thermosphere

    NASA Astrophysics Data System (ADS)

    Hill, Steven M.; Solomon, Stanley C.; Cleary, David D.; Broadfoot, A. Lyle

    2000-05-01

    Previous models for dayglow and auroral emissions of the N2(A3Σu+->X1Σg+) Vegard-Kaplan (VK) bands and O(1S) lines, when based on laboratory rate coefficients, disagree with observations. The problem has two parts: the overall rate of N2(A)+O and the state-specific yield of O(1S). Resolving these discrepancies should yield more accurate determinations of atomic oxygen density by remote sensing of the 2972 and 5577 Å lines. To solve the problem, the sources and sinks of O(1S) are considered using dayglow observations from 105 to 315 km and a numerical model. Line and band intensities are extracted from the data using a multiple regression fit to synthetic spectra. A photoelectron and photochemical model is used to analyze the resulting vertical emission profiles. N2 Second Positive (2P) altitude profiles indicate that photoelectron excitation of the N2 triplet system is modeled with an absolute uncertainty of +/-23%. The VK/2P intensity ratio suggests that laboratory rate coefficients for the reaction N2(Aν'=0,1,2)+O should be increased by a factor of 1.74 to 2.34. However, the laboratory rates were measured at room temperature. When the effect of high thermospheric temperatures on collision frequency is accounted for the rate coefficients for ν'=0, 1, and 2 are found to be (3.4+/-0.8)×10-11(T/298)1/2, (5.6+/-1.3)×10-11(T/298)1/2, and (4.8+/-1.2)×10-11(T/298)1/2cm3s-1. At 298 K, the ν'=0 and 2 values are within 5% of the laboratory values, but for ν'=1 the value is 40% larger than the laboratory value. The effective quantum yield of O(1S) by N2(A)+O is found to be 0.47+/-0.17. The observations support a photoelectron cross section for O(1S) that is consistent with laboratory measurements, but about 2.0 times larger than theoretical calculations.

  15. Science highlights from MAVEN/IUVS after two years in Mars Orbit

    NASA Astrophysics Data System (ADS)

    Schneider, N. M.; Deighan, J.; Stiepen, A.; Jain, S.; Lefèvre, F.; Stevens, M. H.; Gröller, H.; Yelle, R. V.; Lo, D.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; Crismani, M. M. J.; Mayyasi, M.; McClintock, W. E.; Holsclaw, G.; Clarke, J. T.; Montmessin, F.; Jakosky, B. M.

    2016-12-01

    The broad capabilities of the Imaging UltraViolet Spectrograph on the MAVEN mission are enabling new science ranging from Mars' lower atmosphere up though the escaping corona. After two years in Mars orbit, the instrument has yielded insights on present-day processes at Mars including dayglow, nightglow, aurora, meteor showers, clouds, and solar-planetary interactions. In this presentation we will highlight several new discoveries in the mesosphere and below. First, spatial mapping of nitric oxide nightglow reveals regions of atmospheric downwelling necessitating substantial changes to global atmospheric circulation models. Second, a new high-spatial-resolution UV imaging mode allows detection of clouds from nadir to limb and their local time evolution, as well as unprecedented determinations of Mars' low-altitude ozone. Finally, IUVS has obtained hundreds of stellar occultation profiles probing atmospheric structure, composition, waves and tides.

  16. Retrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN

    NASA Astrophysics Data System (ADS)

    Evans, J. S.; Stevens, M. H.; Lumpe, J. D.; Schneider, N. M.; Stewart, A. I. F.; Deighan, J.; Jain, S. K.; Chaffin, M. S.; Crismani, M.; Stiepen, A.; McClintock, W. E.; Holsclaw, G. M.; Lefèvre, F.; Lo, D. Y.; Clarke, J. T.; Eparvier, F. G.; Thiemann, E. M. B.; Chamberlin, P. C.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.

    2015-11-01

    We present direct number density retrievals of carbon dioxide (CO2) and molecular nitrogen (N2) for the upper atmosphere of Mars using limb scan observations during October and November 2014 by the Imaging Ultraviolet Spectrograph on board NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We use retrieved CO2 densities to derive temperature variability between 170 and 220 km. Analysis of the data shows (1) low-mid latitude northern hemisphere CO2 densities at 170 km vary by a factor of about 2.5, (2) on average, the N2/CO2 increases from 0.042 ± 0.017 at 130 km to 0.12 ± 0.06 at 200 km, and (3) the mean upper atmospheric temperature is 324 ± 22 K for local times near 14:00.

  17. A Concept for Ionospheric Tomography from a CubeSat Platform at Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; Cook, T.; Finn, S. C.; Mendillo, C.; Martel, J.; Geddes, G.

    2015-12-01

    Remote sensing of the neutral atmosphere and ionosphere using extreme and far ultraviolet airglow has now been well established. It has been shown that the OI 135.6 nm nightglow can be used to infer the density of singly ionized atomic oxygen ions, the dominant ion in the F2 region. It has also been shown that zenith angle profiles of OII 83.4 nm emissions in the dayglow are sensitive to the electron density profiles as measured by incoherent scatter radar. Finally, simultaneous measurements of OII 61.7 nm and OII 83.4 nm emissions have been shown to yield daytime electron densities. We describe several key technological advances that have made it possible to consider self-consistent characterization of the thermosphere and ionosphere from a CubeSat platform.

  18. Twilight Intensity Variation of the Infrared Hydroxyl Airglow

    NASA Technical Reports Server (NTRS)

    Lowe, R. P.; Gilbert, K. L.; Niciejewski, R. J.

    1984-01-01

    The vibration rotation bands of the hydroxyl radical are the strongest features in the night airglow and are exceeded in intensity in the dayglow only by the infrared atmospheric bands of oxygen. The variation of intensity during evening twilight is discussed. Using a ground-based Fourier Transform Spectrometer (FTS), hydroxyl intensity measurements as early as 3 deg solar depression were made. Models of the twilight behavior show that this should be sufficient to provide measurement of the main portion of the twilight intensity change. The instrument was equipped with a liquid nitrogen-cooled germanium detector whose high sensitivity combined with the efficiency of the FTS technique permits spectra of the region 1.1 to 1.6 microns at high signal-to-noise to be obtained in two minutes. The use of a polarizer at the entrance aperture of the instrument reduces the intensity of scattered sunlight by a factor of at least ten for zenith observations.

  19. The 630 nm dayglow

    NASA Technical Reports Server (NTRS)

    Solomon, Stanley C.; Abreu, Vincent J.

    1989-01-01

    The daytime thermospheric emission at 630 nm from the (3P-1D) transition of atomic oxygen is examined using data from the Atmosphere Explorer C and E spacecraft. Observed altitude distributions of the emission rate measured using the Visible Airglow Experiment are compared with those calculated from in situ measurements of ion and neutral densities and temperatures, and from a model of the photon and photoelectron flux. Good agreement is obtained for most orbits with photoelectron impact on O, photodissociation of O2, and dissociative recombination of O2(+) providing most of the production. Implications for some of the controversial points of O(1D) chemistry, such as the solar EUV and Schumann-Runge continuum flux, the yield of O(1D) from the reaction of N(2D) with O2, the value of spontaneous transition coefficients, and the rate of quenching by O(3P) are discussed.

  20. O2/1 Delta/ emission in the day and night airglow of Venus

    NASA Technical Reports Server (NTRS)

    Connes, P.; Noxon, J. F.; Traub, W. A.; Carleton, N. P.

    1979-01-01

    An intense airglow from O2(1 Delta) at 1.27 microns on both the light and the dark sides of Venus has been detected by using a ground-based high-resolution Fourier-transform spectrometer. Both dayglow and nightglow are roughly 1,000 times brighter than the visible O2 nightglow found by Veneras 9 and 10 in 1975. The column emission rate of O2(1 Delta) from Venus is close to the rate at which fresh O atoms are produced from photolysis of CO2 on the day side. Formation of O2(1 Delta) is thus a major step in the removal of O atoms from the atmosphere, and dynamical processes must carry these atoms to the night side fast enough to yield a maximum density near 90 km, which is almost constant over the planet.

  1. How relevant is heterogeneous chemistry on Mars? Strong tests via global mapping of water and ozone (sampled via O2 dayglow)

    NASA Astrophysics Data System (ADS)

    Villanueva, Geronimo Luis; Mumma, Michael J.; Novak, Robert E.

    2015-11-01

    Ozone and water are powerful tracers of photochemical processes on Mars. Considering that water is a condensable with a multifaceted hydrological cycle and ozone is continuously being produced / destroyed on short-time scales, their maps can test the validity of current 3D photochemical and dynamical models. Comparisons of modern GCM models (e.g., Lefèvre et al. 2004) with certain datasets (e.g., Clancy et al. 2012; Bertaux et al. 2012) point to significant disagreement, which in some cases have been related to heterogeneous (gas-dust) chemistry beyond the classical gas-gas homogeneous reactions.We address these concerns by acquiring full 2D maps of water and ozone (via O2 dayglow) on Mars, employing high spectral infrared spectrometers at ground-based telescopes (CRIRES/VLT and CSHELL/NASA-IRTF). By performing a rotational analysis on the O2 lines, we derive molecular temperature maps that we use to derive the vertical level of the emission (e.g., Novak et al. 2002). Our maps sample the full observable disk of Mars on March/25/2008 (Ls=50°, northern winter) and on Jan/29/2014 (Ls=83°, northern spring). The maps reveal a strong dependence of the O2 emission and water burden on local orography, while the temperature maps are in strong disagreement with current models. Could this be the signature of heterogeneous chemistry? We will present the global maps and will discuss possible scenarios to explain the observations.This work was partially funded by grants from NASA's Planetary Astronomy Program (344-32-51-96), NASA’s Mars Fundamental Research Program (203959.02.02.20.29), NASA’s Astrobiology Program (344-53-51), and the NSF-RUI Program (AST-805540). We thank the administration and staff of the European Southern Observatory/VLT and NASA-IRTF for awarding observing time and coordinating our observations.Bertaux, J.-L., Gondet, B., Lefèvre, F., et al. 2012. J. Geophys. Res. Pl. 117. pp. 1-9.Clancy, R.T., Sandor, B.J., Wolff, M.J., et al. 2012. J. Geophys. Res. Pl. 117. p. E00J10.Lefèvre, F., Lebonnois, S., Montmessin, F. & Forget, F. 2004. J. Geophys. Res. Pl. 109. pp. 1-20.Novak, R.E., Mumma, M.J., Disanti, M.A., et al. 2002. Icarus. 158 (1). pp. 14-23.

  2. Global Investigation of the Mg Atom and ion Layers using SCIAMACHY/Envisat Observations between 70 km and 150 km Altitude and WACCM-MG Model Results

    NASA Technical Reports Server (NTRS)

    Langowski, M.; vonSavigny, C.; Burrows, J. P.; Feng, W.; Plane, J. M. C.; Marsh, D. R.; Janches, Diego; Sinnhuber, M.; Aikin, A. C.

    2014-01-01

    Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly means of Mg and Mg+ for number density as well as vertical column density in different latitudinal regions are shown. Data from the limb mesosphere-thermosphere mode of SCIAMACHY/Envisat are used, which covers the 50 km to 150 km altitude region with a vertical sampling of 3.3 km and a highest latitude of 82 deg. The high latitudes are not covered in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cm(exp-3) and 2000 cm(exp-3). Mg does not show strong seasonal variation at mid-latitudes. The Mg+ peak occurs 5-15 km above the neutral Mg peak at 95-105 km. Furthermore, the ions show a significant seasonal cycle with a summer maximum in both hemispheres at mid- and high-latitudes. The strongest seasonal variations of the ions are observed at mid-latitudes between 20-40 deg and densities at the peak altitude range from 500 cm(exp-3) to 6000 cm(exp-3). The peak altitude of the ions shows a latitudinal dependence with a maximum at mid-latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. In contrast to the SCIAMACHY results, the WACCM results show a strong seasonal variability for Mg with a winter maximum, which is not observable by SCIAMACHY, and globally higher peak densities. Although the peak densities do not agree the vertical column densities agree, since SCIAMACHY results show a wider vertical profile. The agreement of SCIAMACHY and WACCM results is much better for Mg+, showing the same seasonality and similar peak densities. However, there are the following minor differences: there is no latitudinal dependence of the peak altitude for WACCM and the density maximum, passing the equatorial region during equinox conditions, is not reduced as for SCIAMACHY.

  3. Understanding the Role of Electron-driven Processes in Atmospheric Behaviour

    NASA Astrophysics Data System (ADS)

    Brunger, M. J.; Campbell, L.; Jones, D. B.; Cartwright, D. C.

    2004-12-01

    Electron-impact excitation plays a major role in emission from aurora and a less significant but nonetheless crucial role in the dayglow and nightglow. For some molecules, such as N2, O2 and NO, electron-impact excitation can be followed by radiative cascade through many different sets of energy levels, producing emission with a large number of lines. We review the application of our statistical equilibrium program to predict this rich spectrum of radiation, and we compare results we have obtained against available independent measurements. In addition, we also review the calculation of energy transfer rates from electrons to N2, O2 and NO in the thermosphere. Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N2 and O2 in this is particularly significant. The importance of the energy dependence and magnitude of the electron-impact vibrational cross sections in the calculation of these rates is assessed.

  4. Nonthermal rotational distribution of CO/A 1Pi/ fragments produced by dissociative excitation of CO2 by electron impact. [in Mars atmosphere

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Stone, E. J.; Zipf, E. C.

    1975-01-01

    Measurements were made of the rotational profiles of specific bands of the CO fourth-positive group (4PG). The CO 4PG bands were excited by electron impact dissociative excitation of CO2. The results are applicable to analysis of the Mariner observations of the CO 4PG in the dayglow of Mars. The results indicate that dissociative excitation of CO2 by electron impact leads to CO(A 1Pi) fragments with a rotational distribution that is highly nonthermal. The parent CO2 temperature was about 300 K in the experiment, while the fragment CO(A 1Pi) showed emission band profiles consistent with a rotational temperature greater than about 1500 K. Laboratory measurement of the reduced transmission of the hot bands by thermal CO appears to be the most direct way of determining the column density responsible for the CO(v',0) absorption of Mars.

  5. Observations of Ultraviolet Emission from Mg+ in the Lower and Middle Thermosphere

    NASA Astrophysics Data System (ADS)

    Minschwaner, K.; Shukla, N.; Fortna, C.; Budzien, S.; Dymond, K.; McCoy, R.

    2004-12-01

    New observations of ionized magnesium dayglow are reported from the Ionospheric Spectroscopy and Atmospheric Chemistry (ISAAC) instrument on the ARGOS satellite. We focused on two periods, October 14-28 1999 and November 15-30 1999, when ISAAC obtained high quality limb spectra between 2600 and 3000 Å and from 85 to 350 km tangent altitude. In addition to the resonant scattering by Mg+ near 2800 Å, these limb spectra also contain signatures of fluorescent scattering by nitric oxide in the gamma bands, emission by molecular nitrogen in the Vergard-Kaplan bands, and atomic emission by oxygen in the 2972 Å line. A retrieval algorithm has been developed to measure the abundance of nitric oxide using the intensity of fluorescent scattering in the γ (1,5) band at 2670 Å. This technique then allows for separating the overlapping emission by nitric oxide in the γ (1,6) band from the Mg+ doublet at 2800 Å. Retrieved Mg+ column densities have been mapped as a function of altitude and geomagnetic latitude.

  6. MAVEN/IUVS Apoapse Observations of the Martian FUV Dayglow

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Stevens, M. H.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Stiepen, A.; Clarke, J. T.; Mahaffy, P. R.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.

    2015-12-01

    We present FUV data (115 - 190 nm) from MAVEN/IUVS apoapse mode observations for the Oct 2014 through Feb 2015 time period. During apoapse mode the highly elliptical orbit of MAVEN allows for up to four apoapse disk images by IUVS per day. Maps of FUV feature intensities and intensity ratios as well as derived CO/CO2 and O/CO2 column density ratios will be shown. Column density ratios are derived from lookup tables created using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] in conjunction with observed intensity ratios. Column density ratios provide a measure of composition changes in the Martian atmosphere. Due to MAVEN's orbital geometry the observations from this time period focus on the southern hemisphere. The broad view provided by apoapse observations allows for the investigation of spatial and temporal variations (both long term and local time) of the atmospheric composition (via the column density ratios). IUVS FUV intensities and derived column density ratios will also be compared with model results from Mars Global Ionosphere/Thermosphere Model (MGITM) and the Mars Climate Database (MCD).

  7. Spectroscopy of the extreme ultraviolet dayglow at 6.5A resolution - Atomic and ionic emissions between 530 and 1240A

    NASA Technical Reports Server (NTRS)

    Gentieu, E. P.; Feldman, P. D.; Meier, R. R.

    1979-01-01

    EUV spectra (530-1500A) of the day airglow in up, down and horizontal aspect orientations have been obtained with 6.5A resolution and a limiting sensitivity of 5R from a rocket experiment. Below 834A the spectrum is rich in previously unobserved OII transitions connecting with 4S(0), 2D(0), and 2P(0) states. Recent broad-band photometric observations of geocoronal HeI 584A emission in terms of the newly observed OII emissions are shown. The OI 989A and OI 1304A emissions exhibit similar dependence on altitude and viewing geometry with the OI 989A brightness 1/15 that of OI 1340. Emission at 1026A is identified as geocoronal HI Lyman beta rather than OI multiplet emission and observed intensities agree well with model estimates. An unexpectedly high NI 1200/NI 1134A brightness ratio is evidence of a significant contribution from photodissociative excitation of N2 to the NI 1200A source function.

  8. New Observations of Molecular Nitrogen by the Imaging Ultraviolet Spectrograph on MAVEN

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Evans, J. S.; Schneider, Nicholas M.; Stewart, A. I. F.; Deighan, Justin; Jain, Sonal K.; Crismani, Matteo M. J.; Stiepen, Arnaud; Chaffin, Michael S.; McClintock, William E.; Holsclaw, Greg M.; Lefevre, Franck; Montmessin, Franck; Lo, Daniel Y.; Clarke, John T.; Bougher, Stephen W.; Jakosky, Bruce M.

    2015-11-01

    The Martian ultraviolet dayglow provides information on the basic state of the Martian upper atmosphere. The Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission has observed Mars at mid and far-UV wavelengths since its arrival in September 2014. In this work, we describe a linear regression method used to extract components of UV spectra from IUVS limb observations and focus in particular on molecular nitrogen (N2) photoelectron excited emissions. We identify N2 Lyman-Birge-Hopfield (LBH) emissions for the first time at Mars and we also confirm the tentative identification of N2 Vegard-Kaplan (VK) emissions. We compare observed VK and LBH limb radiance profiles to model results between 90 and 210 km. Finally, we compare retrieved N2 density profiles to general circulation (GCM) model results. Contrary to earlier analyses using other satellite data that indicated N2 densities were a factor of three less than predictions, we find that N2 abundances exceed GCM results by about a factor of two at 130 km but are in agreement at 150 km.

  9. Satellite observations of the nitric oxide dayglow Implications for the behavior of mesospheric and lower-thermospheric odd nitrogen

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Serafino, G. N.

    1985-01-01

    The solar backscattered ultraviolet spectral radiometer on the Nimbus 7 satellite routinely measures fluorescence emissions from the nitric oxide (1, 4) gamma band that are imposed on the large Rayleigh-scattered signal in the wavelength range 255-256 nm. The gamma band feature, when isolated from the background radiance, provide information on the seasonal and latitudinal variations in the nitric oxide column abundance over the altitude region from 40 to 45 km upward through the thermosphere. At latitudes from 30 deg to 45 deg in the Northern Hemisphere the measurements show an annual cycle with maximum nitric oxide abundance in summer. The Southern Hemisphere pattern is qualitatively similar to this, although the amplitude of the seasonal variation is substantially smaller. The most prominent feature of the data base is a large maximum in nitric oxide emission that develops poleward of 45 deg latitude in both Hemispheres during late autumn and early winter. These maxima dissipate rapidly as spring approaches and are no longer evident in the data for Northern Hemisphere March and Southern Hemisphere September.

  10. Modelling of N2 Vegard-Kaplan and LBH emissions in the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Jain, Sonal Kumar; Bhardwaj, Anil

    The N_{2} triplet band emissions are common features in the dayglow of Earth. Recent discoveries of N _{2} Vegard-Kaplan (VK) band emissions on Mars by SPICAM/Mars-Express and N _{2} VK and LBH band emissions on Titan by Cassini's UVIS have led planetary scientists to look for the processes governing the N _{2} triplet and singlet band emissions in different planetary atmospheres. We have developed a model to calculate N _{2} triplet and Lyman-Birge-Hopefield (LBH) band emissions in the dayglow of Venus, Mars, Titan, and Pluto. The Steady state photoelectron fluxes and volume excitation rates have been calculated using the Analytical Yield Spectra (AYS) technique. Since interstate cascading is important for triplet and singlet states of N _{2}, the population of any given level of N _{2} triplet and singlet states is calculated under statistical equilibrium considering direct excitation, cascading, and quenching effects. Relative population of all vibrational levels of each triplet and singlet states is calculated in the model. Line of sight intensities and height-integrated overhead intensities have been calculated for VK ( A(3Sigma_u^+) - X(1Sigma^+_g) ), first positive ( B(3Pi_g) - A(3Sigma^+_u) ), second positive ( C(3Pi_u) - B(3Pi_g) ), Wu-Benesch (W(3Delta_u) - B(3Pi_g) ), B '-> B, E -> B, E-> C, E-> A, and LBH (a(1Pi_g) - X(1Sigma^+_g) ) bands of N _{2}. The N _{2} VK band span wavelength range from far ultraviolet to visible, and some transitions even originate at wavelength more than 1000 nm. Our calculations show that the overhead intensity of VK bands in the wavelength range 400-800, 300-190, 200-300, and 150-200 nm are 22%, 39%, 35%, and 4% of the total VK band emission. On Titan, the calculated intensities of N _{2} VK and LBH bands in 150-190 and 120-190 nm wavelength range, respectively, are in good agreement with the Cassini-UVIS observation. On Mars, calculated intensities of N _{2} VK bands are in agreement with the SPICAM observed limb profile of N _{2} VK (0-6) when the N _{2} density in Martian upper atmosphere is reduced by a factor of 3. Calculations are also carried out on Venus using this model. Calculated intensities on Venus are about factor of 10 higher than that on Mars. On Pluto, the predicted limb intensities of N _{2} VK and LBH bands for New Horizons flyby condition peak at radial distance of 2000 km with a value of about 5 and 9.5 R, respectively for solar zenith angle 60(°) . The results will presented and discussed.

  11. On the escape of oxygen and hydrogen from Mars

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1993-01-01

    Escape rates of oxygen atoms from dissociative recombination of O2(+) above the Martian exobase are computed in light of new information from ab initio calculations of the dissociative recombination process and our recently revised understanding of the Martian dayside ionosphere. Only about 60 percent of the dissociative recombinations occur in channels in which the O atoms are released with energies in excess of the escape velocity. Futhermore, we find that the computed escape fluxes for O depend greatly on the nature of the ion loss process that has been found necessary to reproduce the topside ion density profiles measured by Viking. If it is assumed that the ions are not lost from the gravitational field of the planet, as required by an analysis of nitrogen escape, the computed average O escape rate is 3 x 10 exp 6/sq cm/s, much less than half the H escape rates inferred from measurements of the Lyman-alpha dayglow, which are in the range (1-2) x 10 exp 8/sq cm/s. Suggestions for restoring the relative escape rates of H and O to the stoichiometric ratio of water are explored.

  12. The Martian airglow: observations by Mars Express and kinetic modelling

    NASA Astrophysics Data System (ADS)

    Simon, Cyril; Leblanc, François; Gronoff, Guillaume; Witasse, Olivier; Lilensten, Jean; Barthelemy, Mathieu; Bertaux, Jean-Loup

    The photoemissions on Mars are the result of physical chemistry reactions in the upper atmo-sphere that depend on the planet's plasma environment. They arise on the dayside from UV photo-excitation (Barth et al., 1971) and on the nightside from chemical reactions and electron precipitation above regions of strong crustal magnetism (Bertaux et al., 2005). The physics of airglow generation at Mars is discussed both in terms of observations (satellites) and models (especially transport codes). A review of observations made by SPICAM, the UV spectrometer onboard Mars Express, is first presented. The Cameron bands of CO(a - X), the CO+ (A - X) 2 doublet at 289.0 nm and the trans-auroral line of OI (297.2 nm) are mainly seen on the dayside. On the nightside both Cameron emissions and NO(C - X and A - X) emissions are present. In a second step, an updated airglow model has been developed and compared to the latest SPICAM data. Several interesting implications are highlighted regarding neutral atmosphere variations for the dayglow (Simon et al., 2009) and electron precipitation mechanisms at the origin of the auroral intensities measured by SPICAM in conjunction with the particle detector ASPERA and the radar MARSIS.

  13. Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles

    NASA Astrophysics Data System (ADS)

    Todd Clancy, R.; Smith, Michael D.; Lefèvre, Franck; McConnochie, Timothy H.; Sandor, Brad J.; Wolff, Michael J.; Lee, Steven W.; Murchie, Scott L.; Toigo, Anthony D.; Nair, Hari; Navarro, Thomas

    2017-09-01

    Since July of 2009, The Compact Reconnaissance Imaging Spectral Mapper (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) has periodically obtained pole-to-pole observations (i.e., full MRO orbits) of limb scanned visible/near IR spectra (λ = 0.4 - 4.0 μ m, △λ ∼ 10 nm- Murchie et al., 2007). These CRISM limb observations support the first seasonally and spatially extensive set of Mars 1.27 μm O2(1△g) dayglow profile retrievals (∼ 1100) over ≥ 8-80 km altitudes. Their comparison to Laboratoire de Météorologie Dynamique (LMD) global climate model (GCM) simulated O2(1△g) volume emission rate (VER) profiles, as a function of altitude, latitude, and season (solar longitude, Ls), supports several key conclusions regarding Mars atmospheric water vapor (which is derived from O2(1△g) emission rates), Mars O3, and the collisional de-excitation of O2(1△g) in the Mars CO2 atmosphere. Current (Navarro et al., 2014) LMDGCM simulations of Mars atmospheric water vapor fall 2-3 times below CRISM derived water vapor abundances at 20-40 km altitudes over low-to-mid latitudes in northern spring (Ls = 30-60°), and northern mid-to-high latitudes over northern summer (Ls = 60-140°). In contrast, LMDGCM simulated water vapor is 2-5 times greater than CRISM derived values at all latitudes and seasons above 40 km, within the aphelion cloud belt (ACB), and over high-southern to mid-southern latitudes in southern summer (Ls = 190-340°) at 15-35 km altitudes. Overall, the solstitial summer-to-winter hemisphere gradients in water vapor are reversed between the LMDGCM modeled versus the CRISM derived water vapor abundances above 10-30 km altitudes. LMDGCM-CRISM differences in water vapor profiles correlate with LMDGCM-CRISM differences in cloud mixing profiles; and likely reflect limitations in simulating cloud microphysics and radiative forcing, both of which restrict meridional transport of water from summer-to-winter hemispheres on Mars (Clancy et al., 1996; Montmessin et al., 2004; Steele et al., 2014; Navarro et al., 2014) and depend on uncertain cloud microphysical properties (Navarro et al., 2014). The derived low-to-mid latitude changes in Mars water vapor vertical distributions should reduce current model-data disagreements in column O3 and H2O2 abundances over low-to-mid latitudes (e.g., within the ACB; Lefèvre et al., 2008; Encrenaz et al., 2015; Clancy et al., 2016). Lastly, the global/seasonal average comparison of CRISM and LMDGCM O2(1△g) VER below 20 km altitudes indicates a factor of ∼3 times lower value (0.25 ×10-20 cm3sec-1) for the CO2 collisional de-excitation rate coefficient of O2(1△g) than derived recently by Guslyakova et al. (2016).

  14. Effect of equatorial electrodynamics on low-latitude thermosphere as inferred from neutral optical dayglow emission observations

    NASA Astrophysics Data System (ADS)

    Karan, D. K.; Duggirala, P. R.

    2017-12-01

    The diurnal variations in daytime airglow emission intensity measurements at three wavelengths OI 777.4 nm, OI 630.0 nm, and OI 557.7 nm made from a low-latitude location, Hyderabad (Geographic 17.50 N, 78.40 E; 8.90 N Mag. Lat) in India have been investigated. The intensity patterns showed both symmetric and asymmetric behavior in their respective diurnal emission variability with respect to local noon. The asymmetric diurnal behavior is not expected considering the photochemical nature of the production mechanisms. The reason for this observed asymmetric diurnal behavior has been found to be predominantly the temporal variation in the equatorial electrodynamics. The plasma that is transported across latitudes due to the action of varying electric field strength over the magnetic equator in the daytime contributes to the asymmetric diurnal behavior in the neutral daytime airglow emissions. Independent magnetic and radio measurements support this finding. It is also noted that this asymmetric diurnal behavior in the neutral emission intensities has a solar cycle dependence with more number of days during high solar activity period showing asymmetric diurnal behavior compared to those during low-solar activity epoch. These intensity variations over long time scale demonstrate that the daytime neutral optical emissions are extremely sensitive to the changes in the eastward electric field over low- and equatorial-latitudes.

  15. Production of N2 Vegard-Kaplan and Lyman-Birge-Hopfield emissions on Pluto

    NASA Astrophysics Data System (ADS)

    Jain, Sonal Kumar; Bhardwaj, Anil

    2015-01-01

    We have developed a model to calculate the emission intensities of various vibrational transitions of N2 triplet band and Lyman-Birge-Hopfield (LBH) band emissions in the dayglow of Pluto for solar minimum, moderate, and maximum conditions. The calculated overhead intensities of Vegard-Kaplan (A3Σu+ -X1 Σg+) , First Positive (B3Πg -A3 Σu+), Second Positive (C3Πu -B3Πg) , Wu-Benesch (W3Δu -B3Πg) , Reverse First Positive, and LBH (a1Πg -X1 Σg+) bands of N2 are 17 (74), 14.8 (64), 2.4 (10.8), 2.9 (12.7), 2.9 (12.5), and 2.3 (10) R, respectively, for solar minimum (maximum) condition. We have predicted the overhead and limb intensities of VK (150-190 nm) and LBH (120-190 nm) bands of N2 on Pluto for the New Horizons (NH) flyby condition that can be observed by ALICE: the ultraviolet imaging spectrograph also know as P-ALICE. The predicted limb intensities of VK and LBH bands peak at radial distance of ∼2000 km with the value of about 5 (13) and 9.5 (22) R for solar zenith angle 60° (0°), respectively. We have also calculated overhead and limb intensities of few prominent transition of CO Fourth Positive bands for NH flyby condition.

  16. Mg+ and other metallic emissions observed in the thermosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, J.A.; Viereck, R.A.; Murad, E.

    1994-11-17

    Limb observations of UV dayglow emissions from 80 to 300 km tangent heights were made in December 1992, using the GLO instrument, which flew on STS-53 as a Hitchhiker-G experiment. STS-53 was at 330 km altitude and had an orbit inclination of 57 deg. The orbit placed the shuttle near the terminator for the entire mission, resulting in a unique set of observations. The GLO instrument consisted of 12 imagers and 9 spectrographs on an Az/El gimbal system. The data was obtained over 6 days of the mission. Emissions from Mg+ and Ca+ were observed, as were emissions from themore » neutral metallic species Mg and Na. The ultimate source of the metals is ablation of meteors; however, the spatial distribution of the emissions is controlled by upper mesospheric and thermospheric winds and, in the case of the ions, by the electromagnetic fields of the ionosphere. The observed Mg+ emission was the brightest of the metal emissions, and was observed near the poles and around the geomagnetic equator near sunset. The polar emissions were short-lived and intense, indicative of auroral activity. The equatorial emissions were more continuous, with several luminous patches propagation poleward over the period of several orbits. The instrumentation will be described, as will spatial and temporal variations of the metal emissions with emphasis on the metal ions. These observations will be compared to previous observations of thermospheric metallic species.« less

  17. Mg{sup +} and other metallic emissions observed in the thermosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, J.A.; Viereck, R.A.; Murad, E.

    1994-12-31

    Limb observations of UV dayglow emissions from 80 to 300 km tangent heights were made in December, 1992, using the GLO instrument, which flew on STS-53 as a Hitchhiker-G experiment. STS-53 was at 330 km altitude and had an orbit inclination of 57{degree}. The orbit placed the shuttle near the terminator for the entire mission, resulting in a unique set of observations. The GLO instrument consisted of 12 imagers and 9 spectrographs on an Az/El gimbal system. The data was obtained over 6 days of the mission. Emissions from Mg{sup +} and Ca{sup +} were observed, as were emissions frommore » the neutral metallic species Mg and Na. The ultimate source of the metals is ablation of meteors; however, the spatial distribution of the emissions is controlled by upper mesospheric and thermospheric winds and, in the case of the ions, by the electromagnetic fields of the ionosphere. The observed Mg{sup +} emission was the brightest of the metal emissions, and was observed near the poles and around the geomagnetic equator near sunset. The polar emissions were short-lived and intense, indicative of auroral activity. The equatorial emissions were more continuous, with several luminous patches propagating poleward over the period of several orbits. The instrumentation will be described, as will spatial and temporal variations of the metal emissions with emphasis on the metal ions. These observations will be compared to previous observations of thermospheric metallic species.« less

  18. Aurora and Non-Auroral X-ray Emissions from Jupiter: A Comparative View

    NASA Technical Reports Server (NTRS)

    Bhardwal, Anil; Elsner, Ron; Gladstone, Randy; Waite, Hunter, Jr.; Lugaz, Noe; Cravens, Tom; Branduardi-Raymont, Graziella; Ramsay, Gavin; Soria, Rob; Ford, Peter

    2004-01-01

    Jovian X-rays can be broadly classified into two categories: (1) auroral emission, which is confined to high-latitudes (approximately greater than 60 deg.) at both polar regions, and (2) dayglow emission, which originates from the sunlit low-latitude (approximately less than 50 deg.) regions of the disk (hereafter called disk emissions). Recent X-ray observations of Jupiter by chandra and XMM-Newton have shown that these two types of X-ray emission from Jupiter have different morphological, temporal, and spectral characteristics. In particular: 1) contrary to the auroral X-rays, which are concentrated in a spot in the north and in a band that runs half-way across the planet in the south, the low-latitude X-ray disk is almost uniform; 2) unlike the approximately 40 plus or minus 20-min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations; 3) the disk emission is harder and extends to higher energies than the auroral spectrum; and 4) the disk X-ray emission show time variability similar to that seen in solar X-rays. These differences and features imply that the processes producing X-rays are different at these two latitude regions on Jupiter. We will present the details of these and other features that suggest the differences between these two classes of X-ray emissions from Jupiter, and discuss the current scenario of the production mechanism of them.

  19. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1994-01-01

    This report describes the accomplishments of a program designed to develop the tools necessary to interpret auroral emissions measured from a space-based platform. The research was divided into two major areas. The first area was a laboratory study designed to improve our understanding of the space vehicle external environment and how it will affect the space-based measurement of auroral emissions. Facilities have been setup and measurements taken to simulate the gas phase environment around a space vehicle; the radiation environment encountered by an orbiting vehicle that passes through the Earth's radiation belts; and the thermal environment of a vehicle in Earth orbit. The second major area of study was a modeling program to develop the capability of using auroral images at various wavelengths to infer the total energy influx and characteristic energy of the incident auroral particles. An ab initio auroral calculation has been added to the extant ionospheric/thermospheric global modeling capabilities within our group. Once the addition of the code was complete, the combined model was used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Attached papers included are: 'Laboratory Facility for Simulation of Vehicle-Environment Interactions'; 'Workshop on the Induced Environment of Space Station Freedom'; 'Radiation Damage Effects in Far Ultraviolet Filters and Substrates'; 'Radiation Damage Effects in Far Ultraviolet Filters, Thin Films, and Substrates'; 'Use of FUV Auroral Emissions as Diagnostic Indicators'; and 'Determination of Ionospheric Conductivities from FUV Auroral Emissions'.

  20. Uniqueness of a solution of a steady state photochemical problem: Applications to Mars

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, Vladimir A.

    1995-01-01

    Based on the conservation of chemical elements in chemical reactions, a rule is proved that the number of boundary conditions given by densities and/or nonzero velocities should not be less than the number of chemical elements in the system, and the boundary conditions for species given by densities and velocities should include all elements in the system. Applications of this rule to Mars are considered. It is shown that the problem of the CO2-H2O chemistry in the lower and middle atmosphere of Mars, say, in the range of 0-80 km does not have a unique solution, if only CO2 and H2O densities are given at the lower boundary, and the remaining boundary conditions are fluxes. Two examples of models of this type are discussed. Two models of the photochemistry of the Martian atmosphere, with and without nitrogen chemistry, are considered. The oxygen nonthermal escape ratio of 1.2 x 10(exp 8)/cu cm/s is given at 240 km and is balanced with the total hydrogen escape rate within an uncertainty of 1% for both models. Both models fit the measured O2 and CO mixing ratios, the O3 abundance, and the O2 1.27-micrometer dayglow almost within the uncertainties of the measured values, though the model without nitrogen chemistry fits better. The importance of nitrogen chemistry in the lower and middle atmosphere of Mars depends on a fine balance between production of NO and N in the upper atmosphere which is not known within the required accuracy.

  1. DETECTION OF A HYDROGEN CORONA IN HST Ly α IMAGES OF EUROPA IN TRANSIT OF JUPITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Lorenz; Ivchenko, Nickolay; Schlatter, Nicola

    We report far-ultraviolet observations of Europa in transit of Jupiter obtained with the Space Telescope Imaging Spectrograph of the Hubble Space Telescope on six occasions between 2014 December and 2015 March. Absorption of Jupiter’s bright hydrogen Ly α dayglow is detected in a region several moon radii above the limb in all observations. The observed extended absorption provides the first detection of an atomic hydrogen corona around Europa. Molecular constituents in Europa’s global sputtered atmosphere are shown to be optically thin to Ly α . The observations are consistent with a radially escaping H corona with maximum densities at themore » surface in the range of (1.5–2.2) × 10{sup 3} cm{sup −3}, confirming the abundances predicted by Monte Carlo simulations. In addition, we search for anomalies around the limb of Europa from absorption by localized high H{sub 2}O abundances from active plumes. No significant local absorption features are detected. We find that an H{sub 2}O plume with line-of-sight column density in the order of 10{sup 16} cm{sup −2}, as inferred by Roth et al. would not be detectable based on the statistical fluctuations of the transit measurements, and hence is not excluded or further constrained. The presence of plumes with line-of-sight column densities of >2 × 10{sup 17} cm{sup −2} can be excluded at a 3- σ level during five of our six observations.« less

  2. Data Impact of the DMSP F18 SSULI UV Data on the Operational GAIM Model

    NASA Astrophysics Data System (ADS)

    Dandenault, P. B.; Metzler, C. A.; Nicholas, A. C.; Coker, C.; Budzien, S. A.; Chua, D. H.; Finne, T. T.; Dymond, K.; Walker, P. W.; Schunk, R. W.; Scherliess, L.; Gardner, L. C.

    2011-12-01

    The Naval Research Laboratory (NRL) has developed five ultraviolet remote sensing instruments for the United States Air Force (USAF) Defense Meteorological Satellite Program (DMSP). The DMSP satellites are launched in a near-polar, sun-synchronous orbit at an altitude of approximately 830 km. Each Special Sensor Ultraviolet Limb Imager (SSULI) instrument measures vertical profiles of the natural airglow radiation from atoms, molecules and ions in the upper atmosphere and ionosphere by viewing the earth's limb within a tangent altitude range of approximately 50 km to 750 km. Limb observations are made from the extreme ultraviolet (EUV) to the far ultraviolet (FUV) over the wavelength range of 80 nm to 170 nm, with 1.8 nm resolution. Data products from SSULI observations include nightglow and dayglow Sensor Data Records (SDRs), as well as Environmental Data Records (EDRs) which contain vertical profiles of electron (Ne) densities, N2, O2, O, O+, and Temperature, hmF2, NmF2 and vertical Total Electron Content (TEC). On October 18, 2009, the third SSULI sensor launched from Vandenberg Air Force Base aboard the DMSP F18 spacecraft. The Calibration and Validation of the F18 instrument has completed and the SSULI program is scheduled to go operational at the Air Force Weather Agency (AFWA) in Fall 2011. The SSULI F18 data are ingested by the Global Assimilation of Ionospheric Measurements (GAIM) space weather model, which was developed by Utah State University and has been used operationally at AFWA since February 2006. A brief overview of the SSULI F18 SDR data assimilation process with GAIM is provided and the impact of the SSULI 1356 Å emission on the GAIM model is examined for spring and summer 2011 nightside data in the low-latitude region.

  3. Effect of geomagnetic storm conditions on the equatorial ionization anomaly and equatorial temperature anomaly

    NASA Astrophysics Data System (ADS)

    Bharti, Gaurav; Bag, T.; Sunil Krishna, M. V.

    2018-03-01

    The effect of the geomagnetic storm on the equatorial ionization anomaly (EIA) and equatorial temperature anomaly (ETA) has been studied using the atomic oxygen dayglow emissions at 577.7 nm (OI 557.7 nm) and 732.0 nm (OII 732.0 nm). For the purpose of this study, four intense geomagnetic storms during the ascending phase of solar cycle 24 have been considered. This study is primarily based on the results obtained using photochemical models with necessary inputs from theoretical studies and experimental observations. The latest reaction rate coefficients, quantum yields and the corresponding cross-sections have also been incorporated in these models. The volume emission rate of airglow emissions has been calculated using the neutral densities from NRLMSISE-00 and charged densities from IRI-2012 model. The modeled volume emission rate (VER) for OI 557.7 nm shows a positive correlation with the Dst index at 150 km and negative correlation with Dst at 250 and 280 km altitudes. Latitudinal profile of the greenline emission rate at different altitudes show a distinct behaviour similar to what has been observed in EIA with crests on either sides of the equator. The EIA crests are found to show poleward movement in the higher altitude regions. The volume emission rate of 732.0 nm emission shows a strong enhancement during the main phase of the storm. The changes observed in the airglow emission rates are explained with the help of variations induced in neutral densities and parameters related to EIA and ETA. The latitudinal variation of 732.0 nm emission rate is correlated to the variability in EIA during the storm period.

  4. Solar Energy Deposition Rates in the Mesosphere Derived from Airglow Measurements: Implications for the Ozone Model Deficit Problem

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura

    2000-01-01

    We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.

  5. Emirates Mars Ultraviolet Spectrometer's (EMUS) Prediction of Oxygen OI 135.6 nm and CO 4PG Emissions in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Almatroushi, H. R.; Lootah, F. H.; Deighan, J.; Fillingim, M. O.; Jain, S.; Bougher, S. W.; England, S.; Schneider, N. M.

    2017-12-01

    This research focuses on developing empirical and theoretical models for OI 135.6 nm and CO 4PG band system FUV dayglow emissions in the Martian thermosphere as predicted to be seen from the Emirates Mars Ultraviolet Spectrometer (EMUS), one of the three scientific instruments aboard the Emirates Mars Mission (EMM) to be launched in 2020. These models will aid in simulating accurate disk radiances which will be utilized as an input to an EMUS instrument simulator. The developed zonally averaged empirical models are based on FUV data from the IUVS instrument onboard the MAVEN mission, while the theoretical models are based on a basic Chapman profile. The models calculate the brightness (B) of those emissions taking into consideration observation geometry parameters such as emission angle (EA), solar zenith angle (SZA) and planet distance from the sun (Ds). Specifically, the empirical models takes a general form of Bn=A*cos(SZA)n/cos(EA)m , where Bn is the normalized brightness value of an emission feature, and A, n, and m are positive constant values. The model form shows that the brightness has a positive correlation with EA and a negative correlation with SZA. A comparison of both models are explained in this research while examining full Mars and half Mars disk images generated using geometry code specially developed for the EMUS instrument. Sensitivity analyses have also been conducted for the theoretical modeling to observe the contributions of electron impact on atomic oxygen and CO2 to the brightness of OI 135.6nm, in addition to the effect of electron temperature on the CO2± dissociative recombination contribution to the CO 4PG band system.

  6. Chapman Solar Zenith Angle variations at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie M.; Ajello, Joseph; Holsclaw, Gregory; West, Robert; Esposito, Larry W.; Bradley, Eric Todd

    2016-10-01

    Solar XUV photons and magnetospheric particles are the two main sources contributing to the airglow in the Titan's upper atmosphere. We are focusing here on the solar XUV photons and how they influence the airglow intensity. The Cassini-UVIS observations analyzed in this study consist each in a partial scan of Titan, while the center of the detector stays approximately at the same location on Titan's disk. We used observations from 2008 to 2012, which allow for a wide range of Solar Zenith Angle (SZA). Spectra from 800 km to 1200 km of altitude have been corrected from the solar spectrum using TIMED/SEE data. We observe that the airglow intensity varies as a function of the SZA and follows a Chapman curve. Three SZA regions are identified: the sunlit region ranging from 0 to 50 degrees. In this region, the intensity of the airglow increases, while the SZA decreases. Between SZA 50 and 100 degrees, the airglow intensity decreases from it maximum to its minimum. In this transition region the upper atmosphere of Titan changes from being totally sunlit to being in the shadow of the moon. For SZA 100 to 180 degrees, we observe a constant airglow intensity close to zero. The behavior of the airglow is also similar to the behavior of the electron density as a function of the SZA as observed by Ågren at al (2009). Both variables exhibit a decrease intensity with increasing SZA. The goal of this study is to understand such correlation. We demonstrate the importance of the solar XUV photons contribution to the Titan airglow and prove that the strongest contribution to the Titan dayglow occurs by solar fluorescence rather than the particle impact that predominates at night.

  7. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1991-01-01

    The accomplishments achieved over the past year are detailed with emphasis on the interpretation or auroral emissions and studies of potential spacecraft-induced contamination effects. Accordingly, the research was divided into two tasks. The first task is designed to add to the understanding of space vehicle induced external contamination. An experimental facility for simulation of the external environment for a spacecraft in low earth orbit was developed. The facility was used to make laboratory measurements of important phenomena required for improving the understanding of the space vehicle induced external environment and its effect on measurement of auroral emissions from space-based platforms. A workshop was sponsored to provide a forum for presentation of the latest research by nationally recognized experts on space vehicle contamination and to discuss the impact of this research on future missions involving space-based platforms. The second task is to add an ab initio auroral calculation to the extant ionospheric/thermospheric global modeling capabilities. Once the addition of the code was complete, the combined model was to be used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Such studies are essential to an understanding of the types of vacuum ultraviolet (VUV) auroral images which are expected to be available within two years with the successful deployment of the Ultraviolet Imager (UVI) on the ISTP POLAR spacecraft. In anticipation of this, the second task includes support for meetings of the science working group for the UVI to discuss operational and data analysis needs. Taken together, the proposed tasks outline a course of study designed to make significant contributions to the field of space-based auroral imaging.

  8. Interpretation of satellite airglow observations during the March 22, 1979, magnetic storm, using the coupled ionosphere-thermosphere model developed at University College, London

    NASA Technical Reports Server (NTRS)

    Parish, H. F.; Gladstone, G. R.; Chakrabarti, S.

    1994-01-01

    The University of California, Berkeley, extreme ultraviolet spectrometer aboard the U.S. Air Force STP 78-1 satellite measured emission features in the Earth's dayglow due to neutral and ionized species in the atmosphere, in the 35 to 140-nm range. The spectrometer was operating between March 1979 and March 1980, including the period of the magnetic storm on March 22, 1979. Some of these measurements are interpreted using the predictions of the three-dimensional time-dependent coupled ionosphere-thermosphere model developed at University College, London. The observations show a reduction in the atomic oxygen 130.4-nm airglow emission at high northern latitudes following the storm. Model simulations show that this reduction in 130.4-nm emission is associated with an increase in the O2/O ratio. Analysis of model results using electron transport and radiative transport codes show that the brightness of 130.4-nm emission at high latitudes due to resonantly scattered sunlight is approximately twice that due to photoelectron impact excitation. However, the observed decrease in the brightness at high northern latitudes is mainly due to a change in the photoelectron impact source, which contributes approximately 75% of the total, as well as its multiple scattering component; for the photoelectron impact source at 70 deg latitude and 200 km altitude, the reduction in multiple scattering is 1.5 times greater than the reduction in the initial excitation. The reduction in the airglow emission is visible only in the norther n hemisphere because the south pole was not sunlit over the storm period. The comparison of model results with observations suggests that 130.4-nm emission may be useful as a tracer for global changes in the concentration of atomic energy.

  9. Uniqueness of a solution of a steady state photochemical problem: Applications to Mars

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.

    1994-01-01

    Based on the conservation of chemical elements in chemical reactions, a rule is proved that the number of boundary conditions given by densities and/or non-zero velocities should not be less than the number of chemical elements in the system, and the components given by densities and velocities should include all elements in the system. Applications of this rule to Mars are considered. It is proved that a problem of CO2-H2O chemistry in the lower and middle atmosphere of Mars, say, in the range of 0-80 km does not have an unique solution, if only CO2 and H2O densities are given at the lower boundary, while all other boundary conditions are fluxes. Two models of this type are discussed. These models fit the same boundary conditions, are balanced with a relative uncertainty of 10(exp -4) for H2, and predict the O2, CO, and H2 mixing ratios which differ by order of magnitude. One more species density, e.g. that of O2, should be specified at the boundary to obtain the unique solution. The situation is better if the upper boundary is extended to the exobase where thermal escape velocities of H and H2 can be specified. However, in this case, either oxygen nonthermal escape rate or the O2 density at the surface should be given as the boundary condition. Two models of Mars' photochemistry, with and without nitrogen chemistry, are considered. The oxygen nonthermal escape rate of 1.2 x 10(exp 8) cm(exp -2) s(exp -1) is given at 240 km and is balanced with the total hydrogen escape rate within uncertainty of 1 percent for both models. Both models fit the measured O2 and CO mixing ratios, the O3 line absorption at 9.6 microns, and the O2 1.27 microns dayglow within the uncertainties of the measured values; although, the model without nitrogen chemistry fits better.

  10. Episodic HI and OI in the Saturn System

    NASA Astrophysics Data System (ADS)

    Melin, Henrik; Shemansky, D.

    2007-10-01

    A transient event in Cassini UVIS imaging of atomic hydrogen in the Saturn magnetosphere has been found in pre-SOI exposures obtained on May 18, 2004. The event occurred at 2.7 ± 0.2 RS in the orbital plane on the subsolar side of the planet in the 1.5 hour interval between exposures, and decayed inside the 17 hour interval to the next exposure. The time scale indicates that the gas was produced well above the escape velocity (0.6 eV/atom). Atomic oxygen in the magnetosphere also shows variability in abundance, but measurement time-scale is limited to a minimum to 2 weeks, compared to hours for the measurement of atomic hydrogen. The brightness of the flash object is estimated at 300 R in H Lya, compared to 1000 R for the Saturn dayglow. The FWHM latitudinal size of the feature is 0.8 RS(pixel size 0.38 RS ) with a density of 2500 atoms cm-3. The total population in the exposure is estimated to be 6 X 1032 atoms (total of 2. X 1035 magnetospheric H atoms). Enceladus has been assumed to be the major source of oxygen in the magnetosphere based on measurements of the recently discovered plume. The source of atomic hydrogen is evidently more complicated, showing evidence that the Saturn atmosphere delivers most of the broadly distributed HI in the magnetosphere. The Cassini UVIS images, however, show a persistent narrow HI torus near 3 RS above the broad background, where the flash reported here is located. The OI in UVIS images is in an irregular asymmetric distribution showing peak emissions positioned from 2 to 4 RS depending on time of observation. The properties of these features indicate Enceladus is not the only strong source of neutral gas in the magnetosphere. This work is supported by the Cassini Program.

  11. Detailed Modeling of EUV Recombination and Contaminating Emissions Near 911 Å: A New Means of Dayside Ionospheric Sensing

    NASA Astrophysics Data System (ADS)

    Dymond, K.; Budzien, S. A.; Coker, C.; Nicholas, A. C.; Stephan, A. W.; Bishop, R. L.; Christensen, A. B.; Hecht, J. H.; Straus, P. R.

    2012-12-01

    The 911 Å emission is produced by radiative recombination of ionospheric O+ ions and electrons, which makes it useful for satellite remote sensing of the ionosphere during the daytime and at night. However, previous measurements of the 911 Å emission made by sounding rockets during the daytime, at altitudes less than 300 km, indicated that the emission was either very weak or non-existent. Furthermore, the daytime spectrum was shown to be contaminated by other EUV emissions produced by molecular nitrogen, thus suggesting that the 911 Å was useless as a dayside ionospheric diagnostic. Yet, satellite-based measurements made by the Low Resolution Airglow and Aurora Spectrograph (LORAAS) instrument launched aboard the Advanced Research and Global Observation Satellite (ARGOS), which operated between mid-May 1999 and April 2002 at an altitude of ~830 km, showed the emission to be present and strong enough to be accurately measured and inverted; those inversions were validated against ionosonde measurements and demonstrated the possibility of using the 911 Å emission for daytime ionospheric sensing. Recent measurements made by the Remote Atmospheric and Ionospheric Detection System (RAIDS) currently in operation aboard the International Space Station, at an altitude of 340 km, show that the daytime EUV spectrum is not as strongly contaminated as previously thought; the RAIDS measurements are shown to be in agreement with LORAAS measurements made between 1999-2002. A new analysis of the daytime and nighttime production of the 911 Å emission and the contaminating emissions that takes absorption by O, O2, and N2 into account shows that viewing geometry effects and absorption can explain these seemingly disparate observations. This analysis is shown to be in agreement with the RAIDS, LORAAS, and other recent observations. Simulations of the dayglow measurements are presented confirming that, although contaminated, the measurements can still provide an accurate measure of the daytime ionospheric electron density.

  12. First Retrieval of Thermospheric Carbon Monoxide From Mars Dayglow Observations

    NASA Astrophysics Data System (ADS)

    Evans, J. Scott; Stevens, Michael H.; Jain, Sonal; Deighan, Justin; Lumpe, Jerry; Schneider, Nicholas M.; Stewart, A. Ian; Crismani, Matteo; Stiepen, Arnaud; Chaffin, Michael S.; Mayyasi-Matta, Majd A.; McClintock, William E.; Holsclaw, Greg; Lefevre, Franck; Lo, Daniel; Clarke, John T.; Montmessin, Franck; Bougher, Stephen W.; Bell, Jared M.; Eparvier, Frank; Thiemann, Ed; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Jakosky, Bruce

    2017-10-01

    As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By linking CO density distributions to dynamical wind patterns, the structure and variability of the atmosphere will be better understood. Direct measurements of CO can therefore provide insight into the magnitude and pattern of winds and provide a metric for studying the response of the atmosphere to solar forcing. In addition, CO measurements can help solve outstanding photochemical modeling problems in explaining the abundance of CO at Mars. CO is directly observable by electron impact excitation and solar resonance fluorescence emissions in the far-ultraviolet (FUV). The retrieval of CO from solar fluorescence was first proposed over 40 years ago, but has been elusive at Mars due to significant spectral blending. However, by simulating the spectral shape of each contributing emission feature, electron impact excitation and solar fluorescence brightnesses can be extracted from the composite spectrum using a multiple linear regression approach. We use CO Fourth Positive Group (4PG) molecular band emission observed on the limb (130 - 200 km) by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft over both northern and southern hemispheres from October 2014 to December 2016. We present the first direct retrieval of CO densities by FUV remote sensing in the upper atmosphere of Mars. Atmospheric composition is inferred using the terrestrial Atmospheric Ultraviolet Radiance Integrated Code adapted to the Martian atmosphere. We investigate the sensitivity of CO density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our results to predictions from the Mars Global Ionosphere-Thermosphere Model as well as in situ measurements by the Neutral Gas and Ion Mass Spectrometer on MAVEN and quantify any differences.

  13. UV Observations of Hemispheric Asymmetry

    NASA Astrophysics Data System (ADS)

    Schaefer, R. K.; Paxton, L. J.; Wolven, B. C.; Zhang, Y.; Romeo, G.

    2015-12-01

    Asymmetry in the auroral patterns can be an important diagnostic for understanding the dynamics of solar wind interaction with the magnetosphere-ionosphere-thermosphere system (e.g., Newel and Meng, 1998; Fillingrim et al., 2005). Molecular nitrogen emission in the UV Lyman-Birge-Hopfield bands can be used to determine energy flux and electron mean energy (Sotirelis, et al, 2013) and thereby Hall and Pederson integrated conductances (Gjerloev, et al., 2014). UV imagery provided by the 4 SSUSI instruments on the Defense Meteorological Satellite Program (DMSP) F16-F19 spacecraft provide two dimensional maps of this emission at different local times. Often there are near simultaneous observations of both poles by some combination of the satellites. (see figure 1) The SSUSI auroral data products are well suited to this study, as they have the following features.: - dayglow has been subtracted on dayside aurora - electron energy flux and mean energy are pre-calculated - individual arcs have been identified through image processing. In order to intercompare data from multiple satellites, we must first ensure that the instrument calibrations are consistent. In this work we show that the instruments are consistently calibrated, and that results generated from the SSUSI data products can be trusted. Several examples of storm time asymmetries captured by the SSUSI instruments will be discussed. Fillingim, M. O., G. K. Parks, H. U. Frey, T. J. Immel, and S. B. Mende (2005), Hemispheric asymmetry of the afternoon electron aurora, Geophys. Res. Lett., 32, L03113, doi:10.1029/2004GL021635. Gjerloev, J., Schaefer, R., Paxton, L, and Zhang, Y. (2014), A comprehensive empirical model of the ionospheric conductivity derived from SSUSI/GUVI, SuperMAG and SuperDARN data, SM51G-4339, Fall 2014 AGU meeting, San Francisco. Newell, P. T., and C.-I. Meng (1988), Hemispherical asymmetry in cusp precipitation near solstices, J. Geophys. Res., 93(A4), 2643-2648, doi:10.1029/JA093iA04p02643. Sotirelis, T., Korth, H., Hsieh, S. - Y., Zhang, Y., Morrison, D., and Paxton, L., (2013), "Empirical relationship between electron precipitation and far-ultraviolet auroral emissions from DMSP observations", Journal of Geophysical Research: Space Physics, vol. 118, no. 3, pp. 1203 - 1209.

  14. 2D-model of oxygen emissions lines for Europa

    NASA Astrophysics Data System (ADS)

    Cessateur, Gaël; Barthelemy, Mathieu; Lilensten, Jean; Rubin, Martin; Maggiolo, Romain; De Keyser, Johan

    2017-04-01

    The Jovian moon Europa is an interesting case study as an archetype for icy satellites, and will be one of the primary targets of the ESA JUICE mission which should be launched in 2022. Hosting a thin neutral gas atmosphere mainly composed of O2 and H2O, Europa can be studied by its airglow and dayglow emissions. A 1D photochemistry model has first been developed to assess the impact of the solar UV flux on the visible emission, such as the red and green oxygen lines (Cessateur et al. 2016). For limb polar viewing, red line emissions can reach a few hundreds of Rayleigh close to the surface. The impact of the precipitating electrons has also been studied. The density and temperature of the electrons are first derived from the multifluid MHD model from Rubin et al. (2015). A 2D emission model has thus been developed to estimate the airglow emissions. When electrons are the major source of the visible emissions, the solar UV flux can be responsible for up to 15% of those emissions for some specific line of sight. Oxygen emission lines in the UV have also been considered, such as 130.5 and 135.6 nm. For the latter, we did estimate some significant line emissions reaching 700 Rayleigh for a polar limb viewing angle close to the surface. Oxygen emission lines are significant (higher than 10 R) for altitudes lower than 100 km for all lines, except for the red line emissions where emissions are still above 10 R up to 200 km from the surface. A sensitivity study has also been performed in order to assess the impact of the uncertainties relative to the dissociative-excitation cross sections. Cessateur G, Barthelemy M & Peinke I. Photochemistry-emission coupled model for Europa and Ganymede. J. Space Weather Space Clim., 6, A17, 2016 Rubin, M., et al. Self-consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere, J. Geophys. Res. Space Physics, 120, 3503-3524, 2015

  15. HST STIS Images of the H-Lyman Alpha Emission and Disk-Reflected FUV Sunlight from the Upper Atmosphere of Uranus

    NASA Astrophysics Data System (ADS)

    Ballester, G. E.; Ben-Jaffel, L.; Clarke, J. T.; Gladstone, R.; Miller, S.; Trafton, L. M.; Trauger, J. T.

    1998-09-01

    An excess of H-Lyalpha emission from Uranus' sunlit hemisphere was detected by the IUE satellite in 1982, and some excess was confirmed with the Voyager 2 UVS during the 1986 encounter with Uranus. Radiative transfer modeling has shown that the Voyager H-Lyalpha observations did require emission additional to the scattered solar and IPM H-Lyalpha , and thus produced by internal processes in the upper atmosphere, such as aurora or other unidentified mechanisms. Subsequent IUE observations showed very large short- and long-term intensity variations that support an auroral source. However, although Voyager did identify UV auroral emissions by H_2 in the sunlit hemisphere, it did not detect a large H-Lyalpha auroral emission there, making it impossible to provide conclusive evidence that the H-Lyalpha enhancements observed by IUE are due to aurora. Auroral emissions are spatially confined, and resolution of the emission distribution could yield the needed evidence, or could alternatively provide observational clues to other possible causes of dayglow variations in the upper atmosphere. Uranus intrinsically weak H-Lyalpha emission ( ~ 1600 R on average) had not allowed for such an experiment in the past, but the high sensitivity in the FUV of the Space Telescope Imaging Spectrograph (STIS) on HST has now provided first images of Uranus in the FUV. The observations made on 29-30 July 1998 consisted of a FUV MAMA image in the open mode (25MAMA) and a consecutive image filtering out the H-Lyalpha (F25SRF2) to measure and subtract the disk reflected sunlight above 1250 Ang. A quick look at the data shows the H-Lyalpha emission and disk-reflected sunlight, with additional noise from the geocoronal background. We will present the results from these data, taking advantage of the time-tagging information to subtract the geocoronal background, and modeling of the underlying disk background. Four new observations will hopefully be made before October 1998 which will cover the full planet in longitude, and will use a different technique to improve the s/n of the H-Lyalpha detection.

  16. Line Profile of H Lyman (alpha) from Dissociative Excitation of H2 with Application to Jupiter

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Kasnik, Isik; Ahmed, Syed M.; Clarke, John T.

    1995-01-01

    Observations of the H Lyman(alpha) (Ly-alpha) emission from Jupiter have shown pronounced emissions, exceeding solar fluorescence, in the polar aurora and equatorial "bulge" regions. The H Ly-alpha line profiles from these regions are broader than expected, indicating high-energy processes producing fast atoms as determined from the observed Doppler broadening. Toward understanding that process a high-resolution ultraviolet (UV) spectrometer was employed for the first measurement of the H Ly-alpha emission Doppler profile from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak of 40 +/- 4 mA full width at half maximum and a broad pedestal base about 240 mA wide. Two distinct dissociation mechanisms account for this Doppler structure. Slow H(2p) atoms characterized by a distribution function with peak energy near 80 meV produce the peak profile, which is nearly independent of the electron impact energy. Slow H(2p) atoms arise from direct dissociation and predissociation of singly excited states which have a dissociation limit of 14.68 eV. The wings of H Ly-alpha arise from dissociative excitation of a series of doubly excited states which cross the Franck-Condon region between 23 and 40 eV. The profile of the wings is dependent on the electron impact energy, and the distribution function of fast H(2p) atoms is therefore dependent on the electron impact energy. The fast atom kinetic energy distribution at 100 eV electron impact energy spans the energy range from 1 to 10 eV with a peak near 4 eV. For impact energies above 23 eV the fast atoms contribute to a slightly asymmetric structure of the line profile. The absolute cross sections of the H Ly-alpha line peak and wings were measured over the range from 0 to 200 eV. Analytic model coefficients are given for the measured cross sections which can be applied to planetary atmosphere auroral and dayglow calculations. The dissociative excitation process, while one contributing process, appears insufficient by itself to explain the line broadening observed at Jupiter.

  17. A FUSE Search for Argon on Titan

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Link, R.; Stern, S. A.; Festou, M.; Waite, J. H.

    2002-09-01

    The origin of Titan's thick nitrogen and methane atmosphere is a compelling enigma. One key and still missing observable concerns the abundances of noble gases in general, and argon in particular. Detection of sufficient argon could indicate that the N2 and CO now found in the atmosphere came in with ice during Titan's accretion. Alternatively, if there is very little argon, then we have to turn to models starting with frozen ammonia, methane and water ice, indicating a more important role for the Saturn sub-nebula, and requiring subsequent modification by photochemistry. Current estimates on the fraction of argon in Titan's atmosphere are crude, and based only on indirect evidence, and range up to 25%. On Sept. 21, 2000, using the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, we performed an observation of Titan to search for argon and to make a survey of Titan's dayglow in the 90--115 nm FUSE bandpass. No emissions were found in the 18 ks exposure, although only 7.4 ks were obtained when FUSE was in Earth's shadow where terrestrial airglow contamination is minimal. While no Ar, N, or N2 emissions were detected, 2-σ upper limits of 4 R (for Ar 104.8 nm) and 20 R (for N 113.4 nm) are found using the best of the FUSE data. There is a bump on the terrestrial geocorona H Lyβ emission at 102.5 nm which may be due to Titan and a Titan Torus. The signal in the bump is about 400 R. Model estimates suggest that the Lyβ brightness of Titan should be about 20 R and the Titan Torus in the 30--700 R range. For an assumed argon abundance of 5% the 104.8 nm emission is predicted to be 7 R, so the argon estimate is constraining already. The nitrogen estimate is very close to the model expectation of 15 R. An accurate determination of the abundance of argon on Titan would be useful in preparing for the arrival of the Cassini orbiter and Huygens probe at the Saturn system, so further FUSE observations of Titan are planned. We gratefully acknowledge support from NASA through FUSE grant NAG5-9972.

  18. Mars, Venus, Earth and Titan UV Laboratory Aeronomy by Electron Impact

    NASA Astrophysics Data System (ADS)

    Malone, C. P.; Ajello, J. M.; McClintock, W. E.; Eastes, R.; Evans, J. S.; Holsclaw, G.; Schneider, N. M.; Jain, S.; Gerard, J. C. M. C.; Hoskins, A.

    2017-12-01

    The UV response of the Mars, Earth, Titan and Venus upper atmospheres to the solar radiation fields [solar wind and solar EUV] is the focus of the present generation of Mars, Earth, Titan and Venus missions. These missions are Mars Express (MEX), the Mars Atmosphere and Volatile Evolution Mission (MAVEN), Cassini at Titan, Global-scale Observations of the Limb and Disk (GOLD) mission for Earth and Venus Express (VEX). Each spacecraft is equipped with a UV spectrometer that senses far ultraviolet (FUV) emissions from 110-190 nm, whose dayglow intensities are proportional to three quantities:1) particle (electron, ion) fluxes, 2) the altitude distribution of species in the ionosphere: CO, CO2, O, N2 at Venus and Mars and N2, O and O2 at Titan and Earth and 3) the emission cross section for the interaction process. UV spectroscopy provides a benchmark to the present space environment and indicates pathways for removing upper atmosphere gas (e.g., water escape from Mars and Earth) or N2 escape at Titan over eons. We present a UV laboratory program that utilizes an instrument, unique in the world, at the University of Colorado that can measure excitation mechanisms by particle (electron, ion) impact and the resulting emission cross sections that include processes occurring in a planetary atmosphere, particularly the optically forbidden emissions presented by the Cameron bands, the Lyman Birge Hopfield bands and the OI 135.6 nm multiplet. There are presently uncertainties by a factor of two in the existing measurements of the emission cross section, affecting modeling of electron transport. We have utilized the MAVEN Imaging Ultraviolet Spectrograph (IUVS) engineering model which operates at moderate spectral resolution ( 0.5-1.0nm FWHM) to obtain the full vibrational spectra of the Cameron band system CO(a 3Π → X 1Σ+) from both CO direct excitation and CO2 dissociative excitation, and for the dipole-allowed Fourth Positive band system of CO, while for N2 we have studied molecular nitrogen (N2 LBH bands, a 1Πg → X 1Σg+). We have performed laboratory measurements using mono-energetic electrons in a large chamber to excite band systems by the same processes as occur at low densities in planetary atmospheres. We have ascertained vibrational structure and emission cross sections for the strongest band systems on solar system objects.

  19. Solar Control of Earth's Ionosphere: Observations from Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Doe, R. A.; Thayer, J. P.; Solomon, S. C.

    2005-05-01

    A nine year database of sunlit E-region electron density altitude profiles (Ne(z)) measured by the Sondrestrom ISR has been partitioned over a 30-bin parameter space of averaged 10.7 cm solar radio flux (F10.7) and solar zenith angle (χ) to investigate long-term solar and thermospheric variability, and to validate contemporary EUV photoionization models. A two stage filter, based on rejection of Ne(z) profiles with large Hall to Pedersen ratio, is used to minimize auroral contamination. Resultant filtered mean Ne(z) compares favorably with subauroral Ne measured for the same F10.7 and χ conditions at the Millstone Hill ISR. Mean Ne, as expected, increases with solar activity and decreases with large χ, and the variance around mean Ne is shown to be greatest at low F10.7 (solar minimum). ISR-derived mean Ne is compared with two EUV models: (1) a simple model without photoelectrons and based on the 5 -- 105 nm EUVAC model solar flux [Richards et al., 1994] and (2) the GLOW model [Solomon et al., 1988; Solomon and Abreu, 1989] suitably modified for inclusion of XUV spectral components and photoelectron flux. Across parameter space and for all altitudes, Model 2 provides a closer match to ISR mean Ne and suggests that the photoelectron and XUV enhancements are essential to replicate measured plasma densities below 150 km. Simulated Ne variance envelopes, given by perturbing the Model 2 neutral atmosphere input by the measured extremum in Ap, F10.7, and Te, are much narrower than ISR-derived geophysical variance envelopes. We thus conclude that long-term variability of the EUV spectra dominates over thermospheric variability and that EUV spectral variability is greatest at solar minimum. ISR -- model comparison also provides evidence for the emergence of an H (Lyman β) Ne feature at solar maximum. Richards, P. G., J. A. Fennelly, and D. G. Torr, EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 8981, 1994. Solomon, S. C., P. B. Hays, and V. J. Abreu, The auroral 6300 Å emission: Observations and Modeling, J. Geophys. Res., 93, 9867, 1988. Solomon, S. C. and V. J. Abreu, The 630 nm dayglow, J. Geophys. Res., 94, 6817, 1989.

  20. Extreme Ultraviolet Spectroscopy of the Thermosphere from the RAIDS Experiment on the ISS

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Stephan, A. W.; Christensen, A. B.; Budzien, S. A.; Straus, P. R.; van Epps, Z.

    2009-12-01

    The RAIDS experiment is a suite of eight instruments to be flown aboard the Japanese Experiment Module-Exposed Facility on the International Space Station (ISS) in 2009. One of the sensors is the Extreme Ultraviolet Spectrograph (EUVS). The EUVS measures the radiance of the Earth’s airglow with a f/5 Wadsworth spectrograph fronted by a mechanical grid collimator. The 0.1 x 2.3 degree field of view is imaged onto a wedge-and-strip two dimensional detector and collapsed into a one-dimensional spectrum. The vertical profile is assembled from a series of these spectra obtained as the RAIDS platform scans in altitude. Two grating positions provide coverage of the 50.0-85.0 nm region or the 77.0-110.0 nm region at 1.2 nm spectral resolution. We will present a discussion of the scientific targets for the RAIDS EUVS and, if launched on schedule, also the first spectra observed from this sensor. The EUVS is sensitive to a number of emissions in the Earth’s dayglow including atomic and ionized oxygen and argon, ionized nitrogen, and atomic helium. One of the primary RAIDS science objectives is to use the EUVS to obtain simultaneous OII 83.4 nm and 61.7 nm limb profiles to perform an in-depth investigation of the OII excitation and emission processes in the daytime ionosphere. Some of the more dominant spectral features such as the OI (98.9, 102.7 nm), OII (83.4, 61.7 nm), and NII (108.5, 91.6 nm) lines will provide the opportunity to develop new methods to monitor thermospheric O and N2. The OI (102.7 nm) observations may also be used, in conjunction with other RAIDS measurements, to retrieve the spectrally unresolved H Lyman beta and thus a measure of atomic hydrogen. The argon emissions Ar I (104.8, 106.7 nm) and Ar II (91.96, 93.21 nm) will provide information on its relative abundance in the lower thermosphere. . Combinations of measurements, such as the EUVS OI (98.9 nm) and the RAIDS Near Infrared Spectrometer OI (799.0 nm) emission can be used to probe the details of their associated branching ratios and excitation cross sections. Finally, the very quiet solar minimum period provides a unique opportunity to observe the He I 58.4 nm emission at these altitudes. The initial RAIDS EUVS spectra will highlight this potential wealth of future ionospheric and thermospheric studies that can be accomplished using such a unique dataset.

  1. Atomic oxygen and temperature in the lower thermosphere from the O-STATES sounding rocket project

    NASA Astrophysics Data System (ADS)

    Hedin, Jonas; Gumbel, Jörg; Megner, Linda; Stegman, Jacek; Seo, Mikael; Khaplanov, Mikhail; Slanger, Tom; Kalogerakis, Konstantinos; Friedrich, Martin; Torkar, Klaus; Eberhart, Martin; Löhle, Stefan; Fasoulas, Stefanos

    2016-04-01

    In October 2015 the O-STATES payload was launched twice from Esrange Space Center (67.9° N, 21.1° E) in northern Sweden, first into moderately disturbed and then into calm geomagnetic conditions. The basic idea of O-STATES ("Oxygen Species and Thermospheric Airglow in The Earth's Sky") is that comprehensive information on the composition, specifically atomic oxygen in the ground state O(3P) and first excited state O(1D), and temperature of the lower thermosphere can be obtained from a limited set of optical measurements. Starting point for the analysis are daytime measurements of the O2(b1 ∑ g+ - X3 ∑ g-) Atmospheric Band system in the spectral region 755-780 nm and the O(1D-3P) Red Line at 630 nm. In the daytime lower thermosphere, O(1D) is produced by O2 photolysis and the excited O2(b) state is mainly produced by energy transfer from O(1D) to the O2(X) ground state. In addition to O2 photolysis, both electron impact on O(3P) and dissociative recombination of O2+ are major sources of O(1D) in the thermosphere. Laboratory studies at SRI International have shown that O2(b) production in vibrational level v=1 dominates. While O2(b, v=0) is essentially unquenched, O2(b, v=1) is subject to collisional quenching that is dominated by O at altitudes above 160 km. Hence, the ratio of the Atmospheric Band emission from O2(b, v=1) and O2(b, v=0) is a measure of the O density at sufficiently high altitudes. In addition, the spectral shape of the O2 Atmospheric Band is temperature dependent and spectrally resolved measurements of the Atmospheric Bands thus provide a measure of atmospheric temperature. This O2 Atmospheric Band analysis has been suggested as a new technique for thermospheric remote sensing under the name Global Oxygen and Temperature (GOAT) Mapping. With O-STATES we want to characterize the GOAT technique by in-situ analysis of the O2 Atmospheric Band airglow and the underlying excitation mechanisms. By performing this dayglow analysis from a rocket payload, detailed local altitude profiles of the relevant emissions and interacting species can be obtained. The optical measurements are combined with independent detection of O and O2 (resonance fluorescence and electrochemical detection) as well as measurements of electron and ion densities. In this paper we describe the O-STATES project and present first results.

  2. The O-STATES Sounding Rocket Project - First Results

    NASA Astrophysics Data System (ADS)

    Hedin, J.

    2015-12-01

    In October 2015, the sounding rocket project O-STATES was conducted from Esrange Space Center (67.9°N, 21.1°E) in northern Sweden. The acronym O-STATES stands for "Oxygen Species and Thermospheric Airglow in The Earth's Sky" and the basic idea is that comprehensive information on the composition, specifically atomic oxygen in the ground state O and first excited state O(1D), and temperature of the lower thermosphere can be obtained from a limited set of optical measurements. Starting point for the analysis are daytime measurements of the O2(b1∑g+ - X3∑g-) Atmospheric Band system in the spectral region 755-780 nm and the O(1D-3P) Red Line at 630 nm. In the daytime lower thermosphere O(1D) is produced by O2 photolysis and the excited O2(b) state is mainly produced by energy transfer from O(1D) to the O2(X) ground state. In addition to O2 photolysis, both electron impact on O and dissociative recombination of O2+ are major sources of O(1D) in the thermosphere. Recent laboratory studies at SRI demonstrate that the O2(b) production populates the vibrational levels v=1 and v=0 in a ratio of ~4. While O2(b, v=0) is essentially unquenched, O2(b, v=1) is subject to collisional quenching that is dominated by O at altitudes above 160 km. Hence, the ratio of the Atmospheric Band emission from O2(b, v=1) and O2(b, v=0) is a measure of the O density. Finally, the spectral shape of the O2 Atmospheric Band is temperature dependent and spectrally resolved measurements of the Atmospheric Bands thus provide a measure of atmospheric temperature. This O2 Atmospheric Band analysis has been advocated as a technique for thermospheric remote sensing under the name Global Oxygen and Temperature (GOAT) Mapping. With O-STATES we want to characterize the GOAT technique by in-situ analysis of the O2 Atmospheric Band airglow and the underlying excitation mechanisms. By performing this dayglow analysis from a rocket payload, detailed local altitude profiles of the relevant emissions and interacting species can be obtained. In particular, the optical measurements are combined with independent detection of O and O2 (resonance fluorescence and electrochemical detection) as well as measurements of electron and ion densities. Here we describe the O-STATES project and present first results.

  3. Obituary: Lloyd V. Wallace (1927 - 2015)

    NASA Astrophysics Data System (ADS)

    Born in 1927 in Detroit, Michigan, in humble circumstances, Lloyd developed an early interest in solar and planetary astronomy and was a protégé of Ralph Nichols, a physics professor at the University of Western Ontario. Later he moved back to the United States and obtained his Ph.D in Astronomy at the University of Michigan in 1957 under Leo Goldberg. It was while he was at the University of Michigan that he met and married his wife, Ruth. At various times in his early career, and as the result of a complex series of events, he held Canadian, British, and United States citizenships and even found time to become an expert professional electrician. On acquiring his degree he obtained a position with Joe Chamberlain at the Yerkes Observatory and began a lifetime association with Chamberlain and Don Hunten (then a visitor to Yerkes) in atmospheric and spectroscopic research. In 1962 they moved to Tucson where Chamberlain became the head of the Space Division at the Kitt Peak National Observatory, a unit set up by the first director, Aden Meinel, to apply advances in technology to astronomical research. Lloyd was hired as the principal experimenter in the observatory's sounding rocket program, which was set up by the National Science Foundation to provide staff and visitor access to the upper atmosphere for research purposes. With this program he supervised a series of 39 Aerobee rocket flights from the White Sands Missile range to investigate upper atmosphere emissions, aeronomic processes, and make astronomical observations over a period of about 10 years. He was also involved in the first attempts to establish a remotely controlled 50&rdquo telescope on Kitt Peak and efforts within the Division to create an Earth orbiting astronomical telescope. In parallel with these activities Lloyd conducted research which was largely focused on spectroscopic investigations. In the early days these included measurement of upper atmospheric emissions, particularly visual dayglow, the discovery of Raman lines in Uranus, Lightning spectrum, and auroral emissions. During this time he also pursued theoretical studies of resonant line transfer and some of the first modelling of the thermal structure of outer planet atmospheres. With the conclusion of the rocket program he turned his attention to high-resolution studies of the sun and cool stars and to long-term study of the variability of atmospheric pollutants (HCl, HF. CO2) over Kitt Peak. His solar and cool star studies led to the production of several high-resolution digital atlases extending from the UV to the thermal IR, and in addition, studies of line variability and the molecular content of sunspots. Lloyd was a very private and genuine person, but with a very sharp wit. He was highly productive with 135 published papers bearing his name.

  4. Waves in Airglow

    NASA Image and Video Library

    2017-12-08

    In April 2012, waves in Earth’s “airglow” spread across the nighttime skies of northern Texas like ripples in a pond. In this case, the waves were provoked by a massive thunderstorm. Airglow is a layer of nighttime light emissions caused by chemical reactions high in Earth’s atmosphere. A variety of reactions involving oxygen, sodium, ozone and nitrogen result in the production of a very faint amount of light. In fact, it’s approximately one billion times fainter than sunlight (~10-11 to 10-9 W·cm-2· sr-1). This chemiluminescence is similar to the chemical reactions that light up a glow stick or glow-in-the-dark silly putty. The “day-night band,” of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured these glowing ripples in the night sky on April 15, 2012 (top image). The day-night band detects lights over a range of wavelengths from green to near-infrared and uses highly sensitive electronics to observe low light signals. (The absolute minimum signals detectable are at the levels of nightglow emission.) The lower image shows the thunderstorm as observed by a thermal infrared band on VIIRS. This thermal band, which is sensitive only to heat emissions (cold clouds appear white), is not sensitive to the subtle visible-light wave structures seen by the day-night band. Technically speaking, airglow occurs at all times. During the day it is called “dayglow,” at twilight “twilightglow,” and at night “nightglow.” There are slightly different processes taking place in each case, but in the image above the source of light is nightglow. The strongest nightglow emissions are mostly constrained to a relatively thin layer of atmosphere between 85 and 95 kilometers (53 and 60 miles) above the Earth’s surface. Little emission occurs below this layer since there’s a higher concentration of molecules, allowing for dissipation of chemical energy via collisions rather than light production. Likewise, little emission occurs above that layer because the atmospheric density is so tenuous that there are too few light-emitting reactions to yield an appreciable amount of light. Suomi NPP is in orbit around Earth at 834 kilometers (about 518 miles), well above the nightglow layer. The day-night band imagery therefore contains signals from the direction upward emission of the nightglow layer and the reflection of the downward nightglow emissions by clouds and the Earth’s surface. The presence of these nightglow waves is a graphic visualization of the usually unseen energy transfer processes that occur continuously between the lower and upper atmosphere. While nightglow is a well-known phenomenon, it’s not typically considered by Earth-viewing meteorological sensors. In fact, scientists were surprised at Suomi NPP’s ability to detect it. During the satellite’s check-out procedure, this unanticipated source of visible light was thought to indicate a problem with the sensor until scientists realized that what they were seeing was the faintest of light in the darkness of night. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day-Night Band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Aries Keck and Steve Miller. Instrument: Suomi NPP - VIIRS Credit: NASA Earth Observatory Click here to view all of the Earth at Night 2012 images Click here to read more about this image NASA image use policy. NASA Goddard Space

  5. Methods of atomic oxygen and ozone retrieval from observations of the O2 dayglow emissions in the MLT region

    NASA Astrophysics Data System (ADS)

    Yankovsky, Valentine; Martyshenko, Kseniia; Manuilova, Rada

    2015-04-01

    The problem of creating the new methods of remote sensing of altitude profile of the [O(3P)] and [O3] in the daytime is actual for the mesosphere and lower thermosphere range. Currently there is no reliable method for remote sensing of altitude profile of the [O(3P)], but atomic oxygen is a key component in the mechanism of the atmosphere cooling by quenching of vibrationally excited CO2 molecules and also one of basic quencher of excited components in MLT region. The airglow emission in 1.27 µm IR Atm(0 - 0) band from [O2(a1Δg, v=0)] has been used as a proxy for [O3] in MLT for over a decade. However, lifetime of O2(a1Δg, v=0) is more than 1 hour, therefore this method is not suitable for detecting of relatively rapid [O3] variations which occur due to the variability of the solar spectrum in the UV range (120 - 320 nm) and other space factors. The aim of this study is revealing of proxies for retrievals of [O(3P)] and [O3]. In the framework of developed model of electronic vibrational kinetics of excited products of O3 and O2 photolysis in MLT of the Earth (model YM-2011) [1] we consider the photolysis of O2 in the Schumann-Runge continuum and Lyaman-A H atom and of O3 in Hartley band and for excited products of photolysis ( O2(a1Δg, v=0 - 5), O2(b1Σ+g, v=0, 1, 2) and excited oxygen atom O(1D)) we took into account more than 60 aeronomical reactions of photoexcitation and deexcitation by energy transfer between the excited levels and of quenching of the levels in collisions with O(3P) O2, N2, O(3P), O3, CO2. We tested 5 excited components, namely, O2(b1Σ+g, v=0, 1, 2), O2(a1Δg, v=0 - 5) and O(1D) as the O(3P) and O3 proxies. The total system of kinetic equations for 10 components has been solved and altitude profiles of concentrations of O(1D), O2(b1Σ+g, v=0, 1, 2), and O2(a1Δg, v=0 - 5) have been calculated. To compare characteristics of assumed proxies we used sensitivity analysis of the proxy concentrations altitude profiles to variations of [O3] and [O(3P)] and have calculated the altitude profiles of: 1) photochemical lifetimes of excited states; 2) volume emission rates (VER) of these excited components; 3) the relative uncertainties values of [O(3P)] and [O3] retrieved from intensities of emissions formed by the corresponding radiative transitions. Based on this complex analysis we concluded that the optimal proxy for [O(3P)] retrieval are O2(b1Σ+g, v=0) and/or O2(b1Σ+g, v=2) at 90-150 km, and for [O3] retrieval are O2(b1Σ+g, v=1) and/or O2(a1Δg, v=0) at 40-97 km. It should be noted, that lifetimes of O2(b1Σ+g, v=0, 1, 2) are not more than 10 s in MLT, what gave the opportunity to register the short-period [O(3P)] and [O3] variations 1. Yankovsky V. A., Manuilova R. O., Babaev A. S., Feofilov A. G., Kutepov A. A. 2011. Model of electronic-vibrational kinetics of the O3 and O2 photolysis products in the middle atmosphere: applications to water vapor retrievals from SABER/TIMED 6.3 µm radiance measurements. International Journal of Remote Sensing, V. 33, N. 12, P. 3065-3078.

  6. The molecular oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere.

    NASA Astrophysics Data System (ADS)

    Yankovsky, Valentine A.; Manuilova, Rada; Martyshenko, Kseniia

    Currently there is no reliable method for remote sensing of altitude profile of the [O( (3) P)] in the daytime mesosphere and lower thermosphere, but atomic oxygen is a key component in the mechanism of the atmosphere cooling by quenching of vibrationally excited CO _{2} molecules and also one of basic quencher of electronically excited components in MLT region. On the other hand, airglow emission in 1.27 mum IR Atm(0 - 0) band from O _{2}(a (1) Delta _{g}, v = 0) has been used as a proxy for [O _{3}] in MLT for over a decade. However, this method is not suitable for detecting of relatively rapid [O _{3}] variations which occur due to the variability of the solar spectrum in the UV range (120 - 320 nm) and other space factors. The reason of above mentioned is the large value of photochemical lifetime of the O _{2}(a (1) Delta _{g}, v = 0) molecule which is within tau _{O2(a)} =3 (.) 10 (2) - 1 (.) 10 (3) s in the mesosphere and reaches 3 (.) 10 (3) s in the lower thermosphere. The aim of this study is revealing of proxies for retrievals of [O( (3) P)] and [O _{3}]. In the framework of developed model of electronic vibrational kinetics of excited products of O _{3} and O _{2} photolysis in MLT of the Earth (model YM-2011) [1] we solved direct problem for the system of 10 kinetic equations for populations of electronically-vibrationally excited levels of oxygen molecule O _{2}(a (1) Delta _{g}, v=0 - 5), O _{2}(b (1) Sigma (+) _{g}, v=0, 1, 2) and excited oxygen atom O( (1) D). In whole, more than 60 aeronomical reactions of photoexcitation and deexcitation, of energy transfer between these excited levels and of quenching of the levels in collisions with O( (3) P), O _{2}, N _{2}, O _{3} and CO _{2} are considered. Sensitivity analysis of obtained solutions showed that emissions in 629 nm band of the O _{2}(b (1) Sigma (+) _{g}, v=2) and 762 nm band of the O _{2}(b (1) Sigma (+) _{g}, v=0) molecules can be effective proxies for atomic oxygen in the altitude range 85 - 120 km (logarithmic sensitivity coefficients of intensities of these emissions to [O( (3) P)] variation are S= -0.90±0.05 and S= -0.5±0.1, consequently). Also sensitivity analysis for all the considered excited oxygen components showed that emissions in 770 nm band of the O _{2}(b (1) Sigma (+) _{g}, v=1) and 1.27 mum band of the O _{2}(a (1) Delta _{g}, v = 0) molecules can be effective proxies for [O _{3}] retrieval in the altitude range 50 - 110 km (sensitivity coefficients to [O _{3}] variations are S=+0.95±0.05 for both emissions). Possible alternative candidates of proxies for [O _{3}] namely (O _{2}(b (1) Sigma (+) _{g}, v=2), O _{2}(b (1) Sigma (+) _{g}, v=0) and O _{2}(a (1) Delta _{g}, v=1 - 5)) have the sensitivity coefficients to [O _{3}] variations which are one - two orders of magnitude smaller. It must be emphasized that photochemical lifetimes of emitting O _{2}(b (1) Sigma (+) _{g}, v) molecules do not exceed tau _{O2(b,v}) =1.0 s below the mesopause and 10 s in the lower thermosphere (upto 120 km), while tau _{O2(a)} =3 (.) 10 (2) - 3 (.) 10 (3) s. Based on the results , we can recommend the new methods of [O( (3) P)] and [O _{3}] retrieval in MLT from the measurements of the intensities of O _{2}(b (1) Sigma (+) _{g}, v) emission bands. The methods is suitable for undisturbed conditions as well as for periodic and non-periodic short perturbations in the mesosphere and lower thermosphere. 1. Yankovsky V. A., Manuilova R. O., Babaev A. S., Feofilov A. G., Kutepov A. A. 2011. Model of electronic-vibrational kinetics of the O _{3} and O _{2} photolysis products in the middle atmosphere: applications to water vapor retrievals from SABER/TIMED 6.3 mum radiance measurements. International Journal of Remote Sensing, V. 33, N. 12, P. 3065-3078.

  7. Obituary: Alexander Dalgarno (1928 - 2015)

    NASA Astrophysics Data System (ADS)

    Hartquist, Tom; Babb, James F. Babb; Loeb, Avi

    Alex Dalgarno's major contributions to the understanding of fundamental atomic and molecular processes enabled him to develop diagnostics of the physical conditions of atmospheres and astrophysical sources and to elucidate the roles of such processes in controlling those environments. He greatly influenced the research of physicists, chemists, atmospheric scientists, and astronomers, leading Sir David Bates to write, "There is no greater figure than Alex in the history of atomic physics and its applications." Alex was born and grew up in London. As a child, he enjoyed mathematical puzzles and did well at sports. He was invited to try out for the Tottenham Hotspur soccer team, but his professional sporting career ended due to an injury, which did not prevent Alex playing tennis and squash into his ninth decade. In 1945 Alex began to study Mathematics at University College London (UCL). In 1947 Sir Harrie Massey invited him to work for a PhD in Physics and suggested that Alex investigate collisions of metastable helium atoms in helium gas to determine the cross sections for excitation transfer. Richard Buckingham was Alex's immediate supervisor. After completing his graduate study in 1951, Alex became a member of staff in Applied Mathematics at the Queen's University of Belfast (QUB). He served as the Director of the Computational Laboratory after a 1954 visit to MIT, which had an electronic computer, led Alex to persuade colleagues that QUB needed one. In 1957, the poet Philip Larkin was the best man at the marriage of Alex to Barbara Kane. They had four children, Fergus, Penelope, Piers, and Rebecca, but the marriage dissolved after ten years. Alex's important work during the 1950s on the quantitative evaluation of long-range interactions underpinned his collaborations on precise scattering calculations relevant to ultra-cold collisions and the formation of atomic Bose-Einstein condensates over four decades later. He investigated the theory of atomic and molecular collisions and calculated charge transfer cross sections. Some of these proved later to be important for forming the spectra of diffuse astronomical matter surrounding high mass stars and 100 million solar mass black holes at the centers of active galaxies. In the early 1950s David Bates stimulated Alex's interest in the study of quantum processes occurring in the upper terrestrial atmosphere. Together they considered the sources of the nightglow and dayglow features and concluded that the altitudes previously inferred for them from observations were up to several hundred kilometers too large. Experiments carried on V2 rockets, like those seen by Alex in wartime London, proved him and David to be right. Alex felt that though many theorists believe that "physics is embodied in its equations," it is instead "to be found in the solutions to the equations." He was a master at developing and applying methods that simplified calculations leading to reliable solutions. Exploiting the contemporary advances in electronic computation, by the 1960s Alex and his colleagues were able to address atomic and molecular processes of increasing complexity. Their development and early applications of the S-matrix theory of molecular rotational excitation by particle impact triggered major advances in molecular physics and theoretical chemistry and in the understanding of processes important in many environments, including a wide variety of astrophysical sources. In 1967 Alex became a professor in the Harvard Department of Astronomy and a member of the staff of the Smithsonian Astrophysical Observatory. He was a team member for several Atmosphere Explorer satellite missions, which elucidated the roles of atoms and ions in the upper atmosphere and paved the way for further applications to the other planets. By 1969 Alex was publishing papers on molecular hydrogen (H2) radiative processes, including photodissociation, in which the foundations of molecular astrophysics began to emerge. H2 is the most abundant astrophysical molecule and the main constituent of the regions where stars form. Interstellar H2 was first detected directly in the following year, and data for interstellar H2 began to become abundant in 1973. Alex was well prepared and led efforts to interpret these data, from which he was able to infer the physical properties of diffuse interstellar molecular clouds. At nearly the same time he was involved in work on the ionization and energy deposition in H2 by nearly relativistic and relativistic particles called cosmic rays. The work has relevance to emission in the atmospheres of the giant planets, as well as for conditions in interstellar molecular clouds. Cosmic ray induced ionization initiates much of the basic chemistry in star forming regions, and the emissions of the product molecules control the temperatures and allow the diagnosis of the physical conditions and dynamics of the stellar nurseries. For more than four decades Alex elucidated the chemical networks governing the molecular abundances in a wide variety of astrophysical sources including star forming regions, supernova ejecta, the pregalactic universe, and extreme environments like those in the vicinities of X-ray sources powered by accretion onto black holes. The refinement of the models led to calculations predicting the existence of subsequently discovered negative ions in giant molecular clouds. One of his astrophysical interests that intrigued him late in his career was the emission of soft X-rays by comets and in the heliosphere due to charge transfer with solar wind particles, and he also worked on related processes occurring in the atmospheres of the giant planets. Alex remained very active in fundamental atomic and molecular physics, as well as for its applications to astrophysics and to terrestrial and extraterrestrial planetary atmospheres. Ultra-cold collisions and ultra-cold chemistry were major interests for Alex for much of the latest phase of his career, most recently with pioneering work on atom-molecule collisions. In the early 1980s Alex had concerns about the future of atomic, molecular, and optical (AMO) physics in the United States, where it was inadequately funded and somewhat out of fashion in many of the physics departments providing most of the physicists who became university faculty. Alex played a key role in efforts to address this issue and led a proposal to the National Science Foundation that resulted in the founding on 1 November 1988 of the Institute of Theoretical Atomic and Molecular Physics (ITAMP) at the Harvard-Smithsonian Center for Astrophysics. Alex served for five years as the first ITAMP director. A number of the former ITAMP students and postdoctoral researchers have become leading AMO physicists, and its visitor program and workshops have led to the identification and stimulation of the leading areas of AMO physics. Alex was a Fellow of the Royal Society, a member of the National Academy of Sciences, and a member (Honorary) of the Royal Irish Academy. He received many medals, including the Benjamin Franklin Medal in Physics, the Royal Society's Hughes Medal, the Royal Astronomical Society's Gold Medal, the American Geophysical Society's Fleming Medal, and the Royal Society of Chemistry's Spiers Medal. He served as the editor of the Astrophysical Journal Letters for nearly thirty years starting in 1973, as the Chair of the Harvard Department of Astronomy from 1971 to 1976, and as the Acting Director of Harvard College Observatory and then the Acting Director of the Harvard-Smithsonian Center for Astrophysics from 1971 to 1973 during a critical period of its existence. Alex was a gifted mentor who spoke and wrote with pride of his former students and postdoctoral researchers. He was able to match projects very well with the abilities of the students. He made availability to students a special priority, and despite his supply of problems would encourage students as they developed their own. Alex was very supportive of junior scientists as they developed their careers, and in addition to writing many letters of recommendation he made many visits to colleagues as they were establishing themselves elsewhere. Furthermore, Alex very graciously hosted a number of his former students when they visited. He combined quiet modesty with a confidence that reassured others, and his humor was dry, interactive, and friendly. Alex passed away peacefully on 9 April 2015 in Cambridge, Massachusetts in the company of Fern Creelan, who was his partner for 30 years.

Top