Science.gov

Sample records for daylight activated photodynamic

  1. Daylight photodynamic therapy in Scotland.

    PubMed

    Cordey, Helen; Valentine, Ronan; Lesar, Andrea; Moseley, Harry; Eadie, Ewan; Ibbotson, Sally

    2017-05-01

    Chronic sun-induced dysplastic skin changes (actinic keratoses) are extremely common in fair-skinned people in Scotland. These changes are a major cause of morbidity and may develop into skin cancer. Actinic keratoses are often extensive and pose a therapeutic challenge as field-directed treatment is required for chronic disease management. One such treatment approach is hospital-based photodynamic therapy, which is a well-established treatment in Scotland for actinic keratoses, using a photosensitiser pro-drug and red LED light irradiation. However, photodynamic therapy using daylight as the activating light source is increasingly and effectively used in continental Europe, but had not been explored in Scotland until we initiated this in 2013. We report our experience of daylight photodynamic therapy in 64 patient-treatment courses and demonstrate that this can be an effective, well-tolerated treatment, which is liked by patients. Our most recent data show that most patients (73%) achieved clearance or at least a good response to treatment and had high levels of satisfaction with daylight photodynamic therapy. Daylight exposure measurements indicated that treatment is feasible in Scotland between April to September. Daylight photodynamic therapy is an important advancement in treatment options for Scottish patients with extensive pre-cancerous field changes and provides opportunities for home-based treatment and increased efficiency of photodynamic therapy services.

  2. ADASY (Active Daylighting System)

    NASA Astrophysics Data System (ADS)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  3. Alternatives to Outdoor Daylight Illumination for Photodynamic Therapy--Use of Greenhouses and Artificial Light Sources.

    PubMed

    Lerche, Catharina M; Heerfordt, Ida M; Heydenreich, Jakob; Wulf, Hans Christian

    2016-02-29

    Daylight-mediated photodynamic therapy (daylight PDT) is a simple and pain free treatment of actinic keratoses. Weather conditions may not always allow daylight PDT outdoors. We compared the spectrum of five different lamp candidates for indoor "daylight PDT" and investigated their ability to photobleach protoporphyrin IX (PpIX). Furthermore, we measured the amount of PpIX activating daylight available in a glass greenhouse, which can be an alternative when it is uncomfortable for patients to be outdoors. The lamps investigated were: halogen lamps (overhead and slide projector), white light-emitting diode (LED) lamp, red LED panel and lamps used for conventional PDT. Four of the five light sources were able to photobleach PpIX completely. For halogen light and the red LED lamp, 5000 lux could photobleach PpIX whereas 12,000 lux were needed for the white LED lamp. Furthermore, the greenhouse was suitable for daylight PDT since the effect of solar light is lowered only by 25%. In conclusion, we found four of the five light sources and the greenhouse usable for indoor daylight PDT. The greenhouse is beneficial when the weather outside is rainy or windy. Only insignificant ultraviolet B radiation (UVB) radiation passes through the greenhouse glass, so sun protection is not needed.

  4. Alternatives to Outdoor Daylight Illumination for Photodynamic Therapy—Use of Greenhouses and Artificial Light Sources

    PubMed Central

    Lerche, Catharina M.; Heerfordt, Ida M.; Heydenreich, Jakob; Wulf, Hans Christian

    2016-01-01

    Daylight-mediated photodynamic therapy (daylight PDT) is a simple and pain free treatment of actinic keratoses. Weather conditions may not always allow daylight PDT outdoors. We compared the spectrum of five different lamp candidates for indoor “daylight PDT” and investigated their ability to photobleach protoporphyrin IX (PpIX). Furthermore, we measured the amount of PpIX activating daylight available in a glass greenhouse, which can be an alternative when it is uncomfortable for patients to be outdoors. The lamps investigated were: halogen lamps (overhead and slide projector), white light-emitting diode (LED) lamp, red LED panel and lamps used for conventional PDT. Four of the five light sources were able to photobleach PpIX completely. For halogen light and the red LED lamp, 5000 lux could photobleach PpIX whereas 12,000 lux were needed for the white LED lamp. Furthermore, the greenhouse was suitable for daylight PDT since the effect of solar light is lowered only by 25%. In conclusion, we found four of the five light sources and the greenhouse usable for indoor daylight PDT. The greenhouse is beneficial when the weather outside is rainy or windy. Only insignificant ultraviolet B radiation (UVB) radiation passes through the greenhouse glass, so sun protection is not needed. PMID:26938525

  5. Daylight photodynamic therapy with methyl-aminolevulinate for the treatment of actinic cheilitis.

    PubMed

    Fai, Dario; Romanello, Eugenio; Brumana, Marta Benedetta; Fai, Carlotta; Vena, Gino Antonio; Cassano, Nicoletta; Piaserico, Stefano

    2015-01-01

    Actinic cheilitis (AC) is a common premalignant condition that requires an effective treatment to reduce the risk of malignant transformation. Photodynamic therapy (PDT) has been recently added to the armamentarium available for AC treatment. Daylight PDT (D-PDT) is a novel PDT modality in which the activation of the topical photosensitizer is induced by the exposure to natural daylight instead of artificial light sources without preliminary occlusion. This simplified procedure was found to be more tolerated as compared to conventional PDT. We report our preliminary experience on the use of D-PDT using methyl-aminolevulinate cream in 10 patients with refractory AC of the lower lip. Patients received two consecutive D-PDT sessions with an interval of 7-14 days. At 3 months after therapy, a complete response was observed in seven patients, with sustained results in five patients over an observational period of 6-12 months. Treatment was well tolerated.

  6. Artificial White Light vs Daylight Photodynamic Therapy for Actinic Keratoses: A Randomized Clinical Trial.

    PubMed

    O'Gorman, Susan M; Clowry, Julianne; Manley, Michael; McCavana, Jackie; Gray, Linda; Kavanagh, Ann; Lally, Aoife; Collins, Paul

    2016-06-01

    Daylight photodynamic therapy using topical methyl 5-aminolevulinic acid (MAL) for actinic keratoses (AKs) is as effective as conventional photodynamic therapy but has the advantage of being almost pain free. Daylight photodynamic therapy, however, requires dry and warm weather conditions. To establish if topical MAL photodynamic therapy using a white light light-emitting diode (LED) lamp is as effective and well-tolerated as daylight photodynamic therapy for the treatment of AKs. Overall, 22 men with significant photodamage and a high number of AKs were enrolled in this prospective, randomized, single-blind study, employing a split-scalp design, comparing the effectiveness and adverse effects of daylight photodynamic therapy and artificial white light (AWL) LED photodynamic therapy for the treatment of AKs on the forehead and scalp. Organ transplant recipients were excluded. Patients were treated and evaluated at an academic tertiary referral dermatology center. Treatment lasted from April 2014 to July 2014 and follow-up visits occurred for 9 months posttreatment. Two symmetrical treatment fields were defined and AKs counted, mapped, and photographed at baseline, 1, 3, 6, and 9 months. Patients had half of their scalp treated with daylight photodynamic therapy and the other half treated with AWL photodynamic therapy 1 week apart and randomly allocated. MAL was applied, and treatment commenced 30 minutes later and lasted 2 hours. Irradiance, illuminance, and light spectra measurements were performed. The integrated dose in J/cm2 was measured. The effective light dose, weighted to the absorption spectrum for protoporphyrin IX, was calculated. The primary end point was the reduction in total AK count per treatment field. Secondary end points included adverse effects and patient satisfaction. We enrolled 22 men with a median age of 72 years (range, 47-85 years) at baseline, the total (median of AKs per field) were 469 (20.5) for the DPDT group and 496 (20.5) for the

  7. Switching From Conventional Photodynamic Therapy to Daylight Photodynamic Therapy For Actinic Keratoses: Systematic Review and Meta-analysis.

    PubMed

    Tomás-Velázquez, A; Redondo, P

    2017-05-01

    Actinic keratosis is a precursor lesion to the most common nonmelanoma skin cancer. Conventional photodynamic therapy (PDT) has been shown to be effective, but the procedure is time-consuming, can be very painful, and requires infrastructure. These shortcomings led to the emergence of daylight PDT. To obtain a global estimate of efficacy, we undertook a systematic literature review and performed a meta-analysis of the available evidence on the efficacy and safety of daylight PDT as compared to conventional PDT in the treatment of actinic keratosis and/or field cancerization. The conclusion is that the difference in efficacy is clinically negligible (global estimate of the mean response rate difference, -3.69%; 95% CI, -6.54% to -0.84%). The adverse effects of daylight PDT are mild and localized (79% of patients report no discomfort), and patients report less pain (P<.001). Daylight PDT gives good to excellent cosmetic results in more than 90% of patients, and patient satisfaction is greater (P<.001). Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. [Procedure for daylight methyl aminolevulinate photodynamic therapy to treat actinic keratoses].

    PubMed

    Girard, C; Adamski, H; Basset-Séguin, N; Beaulieu, P; Dreno, B; Riboulet, J-L; Lacour, J-P

    2016-04-01

    Actinic keratosis (AK), also known as solar keratosis or pre-cancerous keratosis, is frequently observed in areas of skin exposed to sunlight, particularly in light-skinned patients. In France, photodynamic therapy using red light (conventional PDT) and methylamino 5-levulinate (MAL) is indicated in the treatment of thin or non-hyperkeratotic and non-pigmented multiple AK lesions or large zones covered with AK lesions. It is well-known for its efficacy but also for its side effects, especially pain during illumination, which can limit its use. An alternative to PDT using natural daylight has recently been proposed to treat actinic keratosis lesions, and results in greater flexibility as well as significant reduction in pain. The lesions are prepared as for conventional PDT, with MAL cream being applied by the physician or the patient, after which they are exposed to natural daylight for 2hours. The lesions are then gently cleansed and protected from natural light for 24hours. This paper seeks to provide a precise description of the daylight PDT procedure for the treatment of AK.

  9. Consensus recommendations on the use of daylight photodynamic therapy with methyl aminolevulinate cream for actinic keratoses in Australia.

    PubMed

    See, Jo-Ann; Shumack, Stephen; Murrell, Dedee F; Rubel, Diana M; Fernández-Peñas, Pablo; Salmon, Robert; Hewitt, Daniel; Foley, Peter; Spelman, Lynda

    2016-08-01

    Australia has the highest prevalence of actinic keratoses (AK) worldwide. Because of the risk of transformation of AK to invasive squamous cell carcinomas, consensus guidelines recommend that AK are removed using appropriate therapies to prevent progression to invasive disease. Daylight photodynamic therapy (PDT) is emerging as an efficacious treatment for AK, particularly for patients who require treatment of large areas of chronic actinic damage that can be exposed easily to daylight. Daylight PDT with methyl aminolevulinate (MAL) cream is a simple treatment for AK, almost painless, well tolerated and convenient, requiring minimal time in the clinic. Randomised controlled studies from northern Europe and Australia support the use of daylight PDT as an effective therapy for grade I and II AK on the face and scalp. There is sufficient daylight to conduct daylight PDT in Australia at any time of the year and during most weather conditions. Hence, daylight PDT with MAL can be included as an effective and well-tolerated new treatment option for the treatment of AK in Australia. These consensus recommendations provide guidelines for Australian clinicians on the use of daylight PDT in the treatment of diagnosed AK. © 2015 The Authors. Australasian Journal of Dermatology published by Wiley Publishing Asia Pty Ltd on behalf of Australasian College of Dermatologists.

  10. Consensus recommendations on the use of daylight photodynamic therapy with methyl aminolevulinate cream for actinic keratoses in Australia

    PubMed Central

    Shumack, Stephen; Murrell, Dedee F; Rubel, Diana M; Fernández‐Peñas, Pablo; Salmon, Robert; Hewitt, Daniel; Foley, Peter; Spelman, Lynda

    2015-01-01

    Abstract Australia has the highest prevalence of actinic keratoses (AK) worldwide. Because of the risk of transformation of AK to invasive squamous cell carcinomas, consensus guidelines recommend that AK are removed using appropriate therapies to prevent progression to invasive disease. Daylight photodynamic therapy (PDT) is emerging as an efficacious treatment for AK, particularly for patients who require treatment of large areas of chronic actinic damage that can be exposed easily to daylight. Daylight PDT with methyl aminolevulinate (MAL) cream is a simple treatment for AK, almost painless, well tolerated and convenient, requiring minimal time in the clinic. Randomised controlled studies from northern Europe and Australia support the use of daylight PDT as an effective therapy for grade I and II AK on the face and scalp. There is sufficient daylight to conduct daylight PDT in Australia at any time of the year and during most weather conditions. Hence, daylight PDT with MAL can be included as an effective and well‐tolerated new treatment option for the treatment of AK in Australia. These consensus recommendations provide guidelines for Australian clinicians on the use of daylight PDT in the treatment of diagnosed AK. PMID:26033230

  11. Daylight photodynamic therapy - Experience and safety in treatment of actinic keratoses of the face and scalp in low latitude and high brightness region*

    PubMed Central

    Galvão, Luiz Eduardo Garcia; Gonçalves, Heitor de Sá; Botelho, Karine Paschoal; Caldas, Juliana Chagas

    2017-01-01

    Daylight photodynamic therapy has been used in countries with high latitudes during the summer for actinic keratoses treatment with reports of similar efficacy to conventional photodynamic therapy. We evaluate its safety in 20 patients in the city of Fortaleza, a local with low latitude and high brightness. Sixteen patients did not report any discomfort due to the procedure. Daylight photodynamic therapy is an easy application method with great tolerability by the patient and has the possibility of being performed throughout the year in these regions. It can mean a promising tool in the control of skin cancer. PMID:28225978

  12. Daylight-mediated photodynamic therapy for actinic damage in Latin America: consensus recommendations.

    PubMed

    Grinblat, Beni; Galimberti, Gaston; Chouela, Edgardo; Sanclemente, Gloria; Lopez, Miguel; Alcala, Daniel; Torezan, Luís; Pantoja, Gonzalo

    2016-03-01

    Although conventional photodynamic therapy (c-PDT) using methyl aminolevulinate cream (MAL) is effective for the treatment of grade I-II facial and scalp actinic keratosis (AK), it is associated with treatment-related pain for some patients. Daylight-mediated PDT (DL-PDT) has shown similar efficacy to c-PDT, was nearly painless, and was well tolerated. Overall, DL-PDT effectively treats AK and offers a simpler and better tolerated treatment option than c-PDT. This consensus panel provided recommendations on the use of DL-PDT in Latin America (LATAM) for the treatment of actinic damage associated with few or multiple AKs. The panel was comprised of eight dermatologists from different LATAM countries who have experience using PDT for the treatment of actinic damage. The panel reviewed the relevant literature and provided personal expertise with regard to using DL-PDT for the treatment of photodamage with or without AK. The recommendations formulated by the expert panel provide evidence-based guidelines on all aspects of DL-PDT for the treatment of actinic damage associated with AK in different regions of LATAM. These recommendations provide guidance for dermatologists to ensure maintenance of efficacy and safety of DL-PDT when treating actinic damage, associated with few or multiple AKs in sun-exposed skin.

  13. In vivo confocal microscopy efficacy assessment of daylight photodynamic therapy in actinic keratosis patients.

    PubMed

    Seyed Jafari, S M; Timchik, T; Hunger, R E

    2016-08-01

    Reflectance confocal microscopy (RCM) is a noninvasive diagnostic technique with an acceptable sensitivity and specificity for actinic keratosis (AK). We evaluated efficacy of daylight photodynamic therapy (DL-PDT) in patients with AK using a new RCM atypia scoring system. All patients with AK lesions (Grade I-II) were included in our study (2012-15). Baseline clinical, dermoscopy and RCM evaluations were followed by DL-PDT. In the first follow-up, clinical examination, dermoscopy and RCM imaging of the treated area were carried out. Atypia scoring and cell size measurements were used to compare before and after RCM images. From 40 lesions (20 patients with mean age of 75·5 years), complete resolution and partial response of the actinic damage was detected in 80% and 17·5% of lesions, respectively. No cellular atypia was seen in the follow-up RCM images of 57·5% of lesions (n = 23), while in 40% of lesions (n = 16) minimal changes to the honeycomb pattern of the epidermis were seen in the follow-up RCM images (atypia score 1). Only one lesion showed minimal or no clinical response, and a persistent moderate amount of atypia in RCM. Furthermore, atypia score and mean cell size decreased significantly in the follow-up DL-PDT RCM images (P < 0·001, P = 0·001, respectively). RCM features of actinic damage at cellular level have been shown to correlate well with the results of a clinical assessment of AK lesions. This study confirms that in vivo RCM technology might be an additional technique to monitor the efficacy of DL-PDT for AK. © 2016 British Association of Dermatologists.

  14. MAL Daylight Photodynamic Therapy for Actinic Keratosis: Clinical and Imaging Evaluation by 3D Camera.

    PubMed

    Cantisani, Carmen; Paolino, Giovanni; Pellacani, Giovanni; Didona, Dario; Scarno, Marco; Faina, Valentina; Gobello, Tommaso; Calvieri, Stefano

    2016-07-11

    Non-melanoma skin cancer is the most common skin cancer with an incidence that varies widely worldwide. Among them, actinic keratosis (AK), considered by some authors as in situ squamous cell carcinoma (SCC), are the most common and reflect an abnormal multistep skin cell development due to the chronic ultraviolet (UV) light exposure. No ideal treatment exists, but the potential risk of their development in a more invasive form requires prompt treatment. As patients usually present with multiple AK on fields of actinic damage, there is a need for effective, safe, simple and short treatments which allow the treatment of large areas. To achieve this, daylight photodynamic therapy (DL-PDT) is an innovative treatment for multiple mild actinic keratosis, well tolerated by patients. Patients allocated to the PDT unit, affected by multiple mild-moderate and severe actinic keratosis on sun-exposed areas treated with DL-PDT, were clinically evaluated at baseline and every three months with an Antera 3D, Miravex(©) camera. Clinical and 3D images were performed at each clinical check almost every three months. In this retrospective study, 331 patients (56.7% male, 43.3% female) were treated with DL-PDT. We observed a full clearance in more than two-thirds of patients with one or two treatments. Different responses depend on the number of lesions and on their severity; for patients with 1-3 lesions and with grade I or II AK, a full clearance was reached in 85% of cases with a maximum of two treatments. DL-PDT in general improved skin tone and erased sun damage. Evaluating each Antera 3D images, hemoglobin concentration and pigmentation, a skin color and tone improvement in 310 patients was observed. DL-PDT appears as a promising, effective, simple, tolerable and practical treatment for actinic damage associated with AK, and even treatment of large areas can be with little or no pain. The 3D imaging allowed for quantifying in real time the aesthetic benefits of DL

  15. MAL Daylight Photodynamic Therapy for Actinic Keratosis: Clinical and Imaging Evaluation by 3D Camera

    PubMed Central

    Cantisani, Carmen; Paolino, Giovanni; Pellacani, Giovanni; Didona, Dario; Scarno, Marco; Faina, Valentina; Gobello, Tommaso; Calvieri, Stefano

    2016-01-01

    Non-melanoma skin cancer is the most common skin cancer with an incidence that varies widely worldwide. Among them, actinic keratosis (AK), considered by some authors as in situ squamous cell carcinoma (SCC), are the most common and reflect an abnormal multistep skin cell development due to the chronic ultraviolet (UV) light exposure. No ideal treatment exists, but the potential risk of their development in a more invasive form requires prompt treatment. As patients usually present with multiple AK on fields of actinic damage, there is a need for effective, safe, simple and short treatments which allow the treatment of large areas. To achieve this, daylight photodynamic therapy (DL-PDT) is an innovative treatment for multiple mild actinic keratosis, well tolerated by patients. Patients allocated to the PDT unit, affected by multiple mild−moderate and severe actinic keratosis on sun-exposed areas treated with DL-PDT, were clinically evaluated at baseline and every three months with an Antera 3D, Miravex© camera. Clinical and 3D images were performed at each clinical check almost every three months. In this retrospective study, 331 patients (56.7% male, 43.3% female) were treated with DL-PDT. We observed a full clearance in more than two-thirds of patients with one or two treatments. Different responses depend on the number of lesions and on their severity; for patients with 1–3 lesions and with grade I or II AK, a full clearance was reached in 85% of cases with a maximum of two treatments. DL-PDT in general improved skin tone and erased sun damage. Evaluating each Antera 3D images, hemoglobin concentration and pigmentation, a skin color and tone improvement in 310 patients was observed. DL-PDT appears as a promising, effective, simple, tolerable and practical treatment for actinic damage associated with AK, and even treatment of large areas can be with little or no pain. The 3D imaging allowed for quantifying in real time the aesthetic benefits of DL

  16. Daylight methyl-aminolevulinate photodynamic therapy versus ingenol mebutate for the treatment of actinic keratoses: an intraindividual comparative analysis.

    PubMed

    Genovese, Giovanni; Fai, Dario; Fai, Carlotta; Mavilia, Luciano; Mercuri, Santo R

    2016-05-01

    Daylight-photodynamic therapy (D-PDT) and ingenol mebutate (IM) are novel therapies directed to actinic keratoses (AK). The purpose of our study was to compare effectiveness, tolerability, cosmetic outcome and patient preference of D-PDT versus IM in the treatment of grade I and II AK. Twenty-seven patients with AK on the face or scalp were enrolled. Each patient received, in a 25 cm(2) target area, D-PDT on right side and IM on left side. Overall 323 AK were treated. Both target areas achieved complete response in 40.47% of the cases and average AK clearance rate was similar for D-PDT and IM (p=0.74). In D-PDT areas mean grade II AK clearance rate was lower compared with that of grade I AK (p=0.015). In IM areas grade I and II AK average clearance rates were similar (p=0.28). At week 1 and month 1, mean local skin responses (LSR) score were higher in areas treated with IM. IM areas showed more severe pain and cosmetic sequelae. D-PDT had similar effectiveness to IM, even if IM demonstrated higher grade II AK clearance rate. Tolerability profile was superior for D-PDT in terms of LSR and pain. D-PDT was more cosmetically acceptable. Patients preferred D-PDT to IM in most cases. © 2016 Wiley Periodicals, Inc.

  17. Feasibility of daylight-mediated photodynamic therapy for actinic keratosis throughout the year in Central and South America: a meteorological study.

    PubMed

    Grinblat, Beni; Galimberti, Gaston; Pantoja, Gonzalo; Sanclemente, Gloria; Lopez, Miguel; Alcala, Daniel; Torezan, Luís; Kerob, Delphine; Pascual, Thierry; Chouela, Edgardo

    2016-09-01

    Daylight-mediated photodynamic therapy (DL-PDT) is an efficacious treatment option for thin actinic keratosis (AK) that offers advantages over conventional PDT in terms of tolerability, treatment duration, and cost. A clinical study conducted in Australia determined the mean irradiance during a 2-hour exposure to be 305.8 W/m(2) (range: 40-585 W/m(2) ). The protoporphyrin IX light dose is influenced by latitude, weather conditions, and time of year. A recent study of meteorological data concluded that DL-PDT can be performed effectively throughout the year in Australia. Based on the same hypothesis and applying the same methodology, the present study investigated the suitability of daylight to perform DL-PDT in Central and South America. Solar radiation and weather data were gathered and analyzed to assess daylight irradiance (light intensity) throughout a full year across 32 geographical locations in Central and South America. The minimum average daily solar irradiance reported was above 305.8 W/m(2) in all locations investigated throughout the year. Annual averages of daily irradiance ranged from 578 W/m(2) in Chihuahua, Mexico, to 321 W/m(2) in Puerto Montt, Chile. Daylight-mediated PDT for AK can be performed effectively throughout the year in Central and South America given that weather conditions permit a comfortable 2-hour direct exposure to daylight. © 2016 The Authors. International Journal of Dermatology published by John Wiley & Sons Ltd on behalf of International Society of Dermatology.

  18. A double-blind randomized controlled trial to assess the efficacy of daylight photodynamic therapy with methyl-aminolevulinate vs. Placebo and daylight in patients with facial photodamage.

    PubMed

    Sanclemente, G; Mancilla, G A; Hernandez, G

    2016-04-01

    Daylight PDT (dPDT) is easy to use and does not require light equipment. Such therapy has been exhaustively proved to be successful in the treatment of actinic keratosis, but its use in skin photodamage remains unclear. To evaluate dPDT's efficacy in skin facial photodamage. This was a parallel-group double-blind, randomized placebo-controlled trial. Sixty participants with symmetric facial photodamage were allocated to topical methyl aminolevulinate (MAL) and daylight vs. matching placebo and daylight. Primary outcome was global photodamage improvement/failure 1 month after the third session. Secondary outcomes included: pain evaluation; specific photodamage severity scores; sun irradiance quantification and Skindex-29 scores. Adverse events were also investigated. Primary analysis included all randomized patients. All patients sun-exposed for 120min in 3 sessions. The risk of failure was lower in the MAL-dPDT group than in the placebo plus daylight group (RR: 0.18; 95% CI: 0.08-0.41). Mean solar irradiance (W/m(2)) during the first, second and third sessions was 480.82, 430.07 and 435.84, respectively. Items 5 and 14 of Skindex-29 in the MAL-dPDT group showed statistical significant differences. Two patients in the MAL-dPDT group had serious and non-serious events not directly related to the product. dPDT with MAL was un-painful, effective and safe for the treatment of facial photodamage. Herpes simplex prophylaxis should be considered before sessions. Copyright © 2015 AEDV. Published by Elsevier España, S.L.U. All rights reserved.

  19. The power of policy to influence behaviour change: daylight saving and its effect on physical activity.

    PubMed

    Rosenberg, Michael; Wood, Lisa

    2010-02-01

    To measure the impact of the introduction of daylight saving in Western Australia in December 2006 on when during the day adults engaged in physical activity. In early December 2006, 1,300 Western Australian adults were telephoned and asked about how the introduction of daylight saving would influence when during the day they typically engaged in physical activity. At the end of the daylight saving period in March 2007, 1,083 of the baseline cohort agreed to answer questions relating to how daylight saving had affected when during the day they were physically active. Almost half the cohort (45.5%) reported that daylight saving had affected when during the day they were physically active. During daylight saving fewer people exercised in the morning and more people exercised in the evening. When analysed at the individual level, 23% of the cohort ceased to exercise in the morning during daylight saving and 22% exercised in the evening only during daylight saving. In addition, to changes in when during the day people exercised, there was also an overall reduction in the average number of daily exercise sessions, with 8% not exercising at all during daylight saving. The results suggest that the introduction of daylight saving, a relatively modest compulsory change to increase daylight by one hour had an impact on patterns of when during the day people were physically active. The study results reinforce the value of focusing on policy as an effective means of supporting population behaviour change. © 2010 The Authors. Journal Compilation © 2010 Public Health Association of Australia.

  20. Capturing the Daylight Dividend

    SciTech Connect

    Peter Boyce; Claudia Hunter; Owen Howlett

    2006-04-30

    Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

  1. Bucher's indirect comparison of daylight photodynamic therapy with methyl aminolevulinate cream versus diclofenac plus hyaluronic acid gel for the treatment of multiple actinic keratosis.

    PubMed

    Calzavara-Pinton, Piergiacomo; Zane, Cristina; Pacou, Maud; Szeimies, Rolf-Markus

    2016-10-01

    Actinic keratosis (AK) is a pre-cancerous condition characterised by patches of thick, scaly skin developing on sun-exposed areas of the body. When multiple AKs develop on severely photodamaged skin, commonly used treatments include photodynamic therapy and diclofenac plus hyaluronic acid gel (DHA). Methyl aminolevulinate daylight photodynamic therapy (MAL DL-PDT) is an alternative to conventional photodynamic therapy (MAL c-PDT). Trials have indicated that MAL DL-PDT is as effective as MAL c-PDT but reduces treatment-related pain and dermatological side effects. To indirectly compare between MAL DL-PDT and DHA in patients with AK. A total of three randomised trials were collected using a systematic literature review. An adjusted indirect comparison was conducted on complete lesion response rate at 12 weeks. The data indicated that mild lesions, moderate lesions, and mild and moderate lesions treated with MAL DL-PDT were more than four times more likely to undergo a complete response than lesions treated with DHA at 12 weeks, with ORs ranging from 4.23 to 4.81. Results were all statistically significant. This is the first indirect comparison demonstrating the effectiveness of MAL-PDT over DHA for the treatment of AK, and further research is needed to assess the long-term efficacy of these interventions (i.e. six months and beyond), as well as safety and patient-reported outcomes.

  2. Treatment of face and scalp solar (actinic) keratosis with daylight-mediated photodynamic therapy is possible throughout the year in Australia: Evidence from a clinical and meteorological study.

    PubMed

    Spelman, Lynda; Rubel, Diana; Murrell, Dedee F; See, Jo-Ann; Hewitt, Daniel; Foley, Peter; Salmon, Robert; Kerob, Delphine; Pascual, Thierry; Shumack, Stephen; Fernandez-Penas, Pablo

    2016-02-01

    Solar (actinic) keratosis (AK) is an emergent concern worldwide and is associated with an increased risk of development of non-melanoma skin cancer, especially squamous cell carcinoma. Daylight-mediated photodynamic therapy (DL-PDT) using methyl aminolaevulinate cream has proved to be an effective, nearly painless, and more convenient alternative to conventional PDT for the treatment of AK. In a phase III, randomised, controlled trial performed in Australia, the mean irradiance (light intensity) received by patients during DL-PDT treatment, assessed via a spectroradiometer, was 305 W/m(2) (min. 40 to max. 585 W/m(2) ) with similar efficacy irrespective of intensity or dose. The objective of the present meteorological study was to assess the suitability of natural daylight to perform DL-PDT for the treatment of face and scalp AK during different periods of the year and different geographical locations and latitudes across Australia. To determine daylight irradiance during a complete year in eight different geographical locations throughout Australia, we used meteorological software (Meteonorm, Meteotest, Bern, Switzerland), and available solar radiation and weather data from 1986-2005. The average daily irradiance remained within the levels (40-585 W/m(2) ) measured during the clinical DL-PDT study in Australia, throughout the year and in all geographical locations investigated (yearly average from Darwin 548 W/m(2) to Hobart 366 W/m(2) ). DL-PDT for the treatment of face and scalp AK in Australia can be performed effectively throughout the entire year as long as weather conditions permit daylight exposure and allow participants to remain under direct light for 2 h. © 2015 The Australasian College of Dermatologists.

  3. Transitions into and out of daylight saving time compromise sleep and the rest-activity cycles

    PubMed Central

    Lahti, Tuuli A; Leppämäki, Sami; Lönnqvist, Jouko; Partonen, Timo

    2008-01-01

    Background The aim of this study was to analyze the effects of transition out of and into daylight saving time on the rest-activity cycles and sleep. Rest-activity cycles of nine healthy participants aged 20 to 40 years were measured around transitions out of and into daylight saving time on fall 2005 and spring 2006 respectively. Rest-activity cycles were measured using wrist-worn accelerometers. The participants filled in the Morningness-Eveningness and Seasonal Pattern Assessment Questionnaires before starting the study and kept a sleep diary during the study. Results Fall transition was more disturbing for the more morning type and spring transition for the more evening type of persons. Individuals having a higher global seasonality score suffered more from the transitions. Conclusion Transitions out of and into daylight saving time enhanced night-time restlessness and thereby compromised the quality of sleep. PMID:18269740

  4. Transitions into and out of daylight saving time compromise sleep and the rest-activity cycles.

    PubMed

    Lahti, Tuuli A; Leppämäki, Sami; Lönnqvist, Jouko; Partonen, Timo

    2008-02-12

    The aim of this study was to analyze the effects of transition out of and into daylight saving time on the rest-activity cycles and sleep. Rest-activity cycles of nine healthy participants aged 20 to 40 years were measured around transitions out of and into daylight saving time on fall 2005 and spring 2006 respectively. Rest-activity cycles were measured using wrist-worn accelerometers. The participants filled in the Morningness-Eveningness and Seasonal Pattern Assessment Questionnaires before starting the study and kept a sleep diary during the study. Fall transition was more disturbing for the more morning type and spring transition for the more evening type of persons. Individuals having a higher global seasonality score suffered more from the transitions. Transitions out of and into daylight saving time enhanced night-time restlessness and thereby compromised the quality of sleep.

  5. Photodynamic Therapy for Actinic Keratoses: A Randomized Prospective Non-sponsored Cost-effectiveness Study of Daylight-mediated Treatment Compared with Light-emitting Diode Treatment.

    PubMed

    Neittaanmäki-Perttu, Noora; Grönroos, Mari; Karppinen, Toni; Snellman, Erna; Rissanen, Pekka

    2016-02-01

    Daylight-mediated photodynamic therapy (DL-PDT) is considered as effective as conventional PDT using artificial light (light-emitting diode (LED)-PDT) for treatment of actinic keratoses (AK). This randomized prospective non-sponsored study assessed the cost-effectiveness of DL-PDT compared with LED-PDT. Seventy patients with 210 AKs were randomized to DL-PDT or LED-PDT groups. Effectiveness was assessed at 6 months. The costs included societal costs and private costs, including the time patients spent in treatment. Results are presented as incremental cost-effectiveness ratio (ICER). The total costs per patient were significantly lower for DL-PDT (€132) compared with LED-PDT (€170), giving a cost saving of €38 (p = 0.022). The estimated probabilities for patients' complete response were 0.429 for DL-PDT and 0.686 for LED-PDT; a difference in probability of being healed of 0.257. ICER showed a monetary gain of €147 per unit of effectiveness lost. DL-PDT is less costly and less effective than LED-PDT. In terms of cost-effectiveness analysis, DL-PDT provides lower value for money compared with LED-PDT.

  6. Mechanism of photodynamic activity of pheophorbides.

    PubMed

    Tanielian, C; Kobayashi, M; Wolff, C

    2001-04-01

    Plasmid DNA is efficiently photocleaved by sodium pheophorbides (Na-Phdes) a and b in the absence of oxygen as well as in the presence of oxygen. Fluorescence microscopic observation shows a rapid incorporation of Na-Phde a into nuclei, mitochondria, and lysosome of human oral mucosa cells. In contrast Na-Phde b is incorporated only into the plasma membrane. The photodynamic activity of these pigments in living tissues is probably determined by the monomeric pigment molecules formed in hydrophobic cellular structures and involves two types of reactions: (i) direct electron transfer between DNA bases (especially guanine) and pheophorbide singlet excited state, and (ii) indirect reactions mediated by reactive oxygen species, including singlet oxygen whose production from molecular oxygen is sensitized by the Na-Phdes triplet state. A preliminary report has appeared in "Photodynamic Therapy of Cancer II," Proc. SPIE 2325, 416-424 (1994).

  7. Transition into daylight saving time influences the fragmentation of the rest-activity cycle.

    PubMed

    Lahti, Tuuli A; Leppämäki, Sami; Ojanen, Sanna-Maria; Haukka, Jari; Tuulio-Henriksson, Annamari; Lönnqvist, Jouko; Partonen, Timo

    2006-01-19

    Daylight saving time is widely adopted. Little is known about its influence on the daily rest-activity cycles. We decided to explore the effects of transition into daylight saving time on the circadian rhythm of activity. We monitored the rest-activity cycles with the use of wrist-worn accelerometer on a sample of ten healthy adults for ten days around the transition into summer time. Identical protocols were carried out on the same individuals in two consecutive years, yielding data on 200 person-days for analysis in this study. There was no significant effect on the rest-activity cycle in the sample as a whole. Fragmentation of the rest-activity cycle was enhanced in a subgroup of persons having sleep for eight hours or less (P = 0.04) but reduced in those who preferred to sleep for more than eight hours per night (P = 0.05). The average level of motor activity was increased in persons having the morning preference for daily activity patterns (P = 0.01). Transition into daylight saving time may have a disruptive effect on the rest-activity cycle in those healthy adults who are short-sleepers or more of the evening type.

  8. Transition into daylight saving time influences the fragmentation of the rest-activity cycle

    PubMed Central

    Lahti, Tuuli A; Leppämäki, Sami; Ojanen, Sanna-Maria; Haukka, Jari; Tuulio-Henriksson, Annamari; Lönnqvist, Jouko; Partonen, Timo

    2006-01-01

    Background Daylight saving time is widely adopted. Little is known about its influence on the daily rest-activity cycles. We decided to explore the effects of transition into daylight saving time on the circadian rhythm of activity. Methods We monitored the rest-activity cycles with the use of wrist-worn accelerometer on a sample of ten healthy adults for ten days around the transition into summer time. Identical protocols were carried out on the same individuals in two consecutive years, yielding data on 200 person-days for analysis in this study. Results There was no significant effect on the rest-activity cycle in the sample as a whole. Fragmentation of the rest-activity cycle was enhanced in a subgroup of persons having sleep for eight hours or less (P = 0.04) but reduced in those who preferred to sleep for more than eight hours per night (P = 0.05). The average level of motor activity was increased in persons having the morning preference for daily activity patterns (P = 0.01). Conclusion Transition into daylight saving time may have a disruptive effect on the rest-activity cycle in those healthy adults who are short-sleepers or more of the evening type. PMID:16423282

  9. Treatment of ichthyophthiriasis with photodynamically active chlorophyllin.

    PubMed

    Häder, D-P; Schmidl, J; Hilbig, R; Oberle, M; Wedekind, H; Richter, P R

    2016-04-01

    Water-soluble chlorophyll (chlorophyllin) exerts pronounced photodynamic activity on fish parasites. In order to determine its potential as a remedy against ectoparasites in fish carps were incubated in water with defined concentrations of chlorophyllin. The main focus of the experiments was on the ciliate Ichthyophthirius multifiliis (Fouquet) which is responsible for considerable losses in livestock in aquaculture. As malachite green, which in the past efficiently cured infected fishes, is banned because of its possible carcinogenicity; no effective remedy is presently available in aquaculture to treat ichthyophthiriasis. Using chlorophyllin, the number of trophonts was significantly reduced (more than 50 %) after 3 h incubation of infested fish at 2 and 4 mg/L and subsequent irradiation with simulated solar radiation. The lack of reinfection after light treatment indicates that also the remaining parasites have lost their multiplication capacity. In the controls (no chlorophyllin and no light, light but no chlorophyllin, or chlorophyllin but no light), no reduction of the I. multifiliis infection was observed. We propose that chlorophyllin (or other photodynamic substances) is a possible effective countermeasure against I. multifiliis and other ectoparasites in aquaculture.

  10. Holographic daylighting

    NASA Astrophysics Data System (ADS)

    Ludman, Jacques E.; Riccobono, Juanita R.; Savant, Gajendra D.; Jannson, Joanna L.; Campbell, Eugene W.; Hall, Robyn

    1995-09-01

    Daylighting techniques are an effective means of reducing both lighting and cooling costs; however, many of the standard techniques have flaws which reduce their effectiveness. Daylighting holograms are an efficient and effective method for diffracting sunlight up onto the ceiling, deep in a room, without diffracting the light at eye-level. They need only cover the top half of a window to produce significant energy savings. They may be used as part of a new glazing system or as a retrofit to existing windows. These holograms are broadband and are able to passively track the movement of the sun across the sky, throughout the day and year.

  11. Monoglycoconjugated phthalocyanines: effect of sugar and linkage on photodynamic activity.

    PubMed

    Lafont, Dominique; Zorlu, Yunus; Savoie, Huguette; Albrieux, Florian; Ahsen, Vefa; Boyle, Ross W; Dumoulin, Fabienne

    2013-09-01

    Click chemistry can be advantageously used to graft carbohydrates on phthalocyanines which are potent photosensitisers, but the effect of the presence of triazole moieties on photodynamic efficiency was not investigated systematically to date. The nature and linkage of the sugar were investigated in order to define structure-activity relationships. Two sets of monoglycoconjugated water-soluble phthalocyanines have been designed and their photodynamic activity and uptake investigated in HT-29 human colon adenocarcinoma cells. Carbohydrates: galactose, mannose or lactose were grafted onto Zn(II) phthalocyanines either by glycosylation or by click reaction. The triazole linkage formed by click conjugation lowered the biological efficiency for mannose and galactose, compared to classical glycosylation grafting. The mannose conjugate formed by glycosylation was the most photodynamically active, without correlation with the photosensitiser cell uptake. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Charge dependent photodynamic activity of alanine based zinc phthalocyanines.

    PubMed

    Wang, Ao; Li, Yejing; Zhou, Lin; Yuan, Linxin; Lu, Shan; Lin, Yun; Zhou, Jiahong; Wei, Shaohua

    2014-12-01

    In this paper, to minimize the effects of different structure, three alanine-based zinc phthalocyanines (Pcs) of differing charges were engineered and synthesized with the same basic structure. On this premise, the relationship between nature of charge and photodynamic activity was studied. Besides, further verification and explanation of some inconsistent results were also carried out. The results showed that charge can influence the aggregation state, singlet oxygen generation ability and cellular uptake of Pcs, thereby affecting their photodynamic activity. In addition, the biomolecules inside cells may interact with Pcs of differing charges, which can also influence the aggregation state and singlet oxygen generation of the Pcs, and then influence the relationship between nature of charge and photodynamic activity.

  13. [Photodynamic reaction and oxidative stress - influence of the photodynamic effect on the activity antioxidant enzymes].

    PubMed

    Romiszewska, Anna; Nowak-Stępniowska, Agata

    2014-01-01

    The interaction of light with a photosensitizer, accumulated in a tissue in the presence of oxygen, leads to formation of reactive oxygen species, mainly of singlet oxygen and free radicals. These factors react with biomolecules producing their oxidized states. Reactive oxygen species, such as singlet oxygen and free radicals are able to damage membranes, DNA, enzymes, structural peptides and other cellular structures leading to cell death. An antioxidant protection of cell is formed by enzymes belonging to the family of oxidoreductases: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). Photodynamic therapy leads to the increased production of oxidizing toxic forms. It is important to analyze impact of PDT on the activity of antioxidant enzymes, such as SOD, CAT, GPx. The activity of antioxidant enzymes during the photodynamic effect is influenced by both the light energy dose and the concentration of photosensitizer. The presence only of the photosensitizer or only the light energy may also result in changes in the activity of these enzymes. The differences in changes in the activity of these enzymes depend on the type of used photosensitizer. A phenomenon of selective accumulation of photosensitizer in tumor tissues is used in the photodynamic method of tumor diagnosis and treatment.

  14. Fall Chinook Salmon Spawning Activity Versus Daylight and Flow in the Tailrace of a Large Hydroelectric Dam

    SciTech Connect

    McMichael, Geoffrey A.; McKinstry, Craig A.; Vucelick, Jessica A.; Lukas, Joe

    2005-05-01

    We deployed an acoustic system during the fall Chinook salmon (Oncorhynchus tshawytscha) spawning season in 2001 to determine whether fall Chinook salmon spawning activity in a hydroelectric dam tailrace area was affected by daylight or river flow dynamics. The system was deployed following a randomized study design to record fall Chinook salmon spawning activity during day and night periods in two index areas downstream of Wanapum Dam on the Columbia River in Washington, USA. One index area was a deepwater spawning area located (river kilometer (rkm) 663) in 9 to 11 m of water. The other index site was a moderate depth mid-channel bar, where water depths ranged from 2.5 to 6 m. The acoustic system was used to collect spawning activity data during free-drifts in a boat through the index areas. Spawning activity was defined as digs per minute from underwater sound recordings. Fall Chinook salmon spawning activity in the Wanapum Dam tailrace was influenced by daylight and river discharge. Results showed there was a substantial amount of spawning activity occurring during both daylight and darkness. However, there was significantly more spawning activity during daylight than at night in both index areas. Spawning activity was also affected by flow. Project discharge had a pronounced non-linear effect on spawning activity. Spawning activity was generally highest at project discharges between 1,700 and 2266 m3 sec-1 in both spawning areas, with reduced activity as discharge increased to between 3,400 and 4,250 m3 sec-1. We concluded that fall Chinook salmon spawning activity in highly variable environments was affected more by flow (and velocity) than by daylight.

  15. Fighting fish parasites with photodynamically active chlorophyllin.

    PubMed

    Häder, D-P; Schmidl, J; Hilbig, R; Oberle, M; Wedekind, H; Richter, P

    2016-06-01

    Water-soluble chlorophyll (chlorophyllin) was used in a phototoxic reaction against a number of fish ectoparasites such as Ichtyobodo, Dactylogyrus, Trichodina, and Argulus. Chlorophyllin is applied to the water at concentrations of several micrograms per milliliter for a predefined incubation time, and afterwards, the parasites are exposed to simulated solar radiation. Application in the dark caused only little damage to the parasites; likewise, light exposure without the addition of the photosensitizer was ineffective. In Ichthyobodo, 2 μg/mL proved sufficient with subsequent simulated solar radiation to almost quantitatively kill the parasites, while in Dactylogyrus, a concentration of about 6 μg/mL was necessary. The LD50 value for this parasite was 1.02 μg/mL. Trichodina could be almost completely eliminated at 2 μg/mL. Only in the parasitic crustacean Argulus, no killing could be achieved by a photodynamic reaction using chlorophyllin. Chlorophyllin is non-toxic, biodegradable, and can be produced at low cost. Therefore, we propose that chlorophyllin (or other photodynamic substances) are a possible effective countermeasure against several ectoparasites in ponds and aquaculture since chemical remedies are either forbidden and/or ineffective.

  16. Anion exchange nanofiber materials activated by daylight with a dual antibacterial effect.

    PubMed

    Plíštil, L; Henke, P; Kubát, P; Mosinger, J

    2014-09-01

    Anion exchange polystyrene nanofiber materials (AE) were prepared by electrospinning followed by two-step functionalization of the nanofiber surface by chlorosulfonic acid and ethylendiamine. The photoactive character of these materials was introduced through adsorption of the tetra-anionic 5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrin photosensitizer (TPPS-AE) on the nanofiber surface or by encapsulation of the nonpolar 5,10,15,20-tetraphenylporphyrin photosensitizer (AE(TPP)) into the nanofibers. Anion exchange nanofiber materials with porphyrins are characterized by a high ion-exchange capacity, photogeneration of singlet oxygen O2((1)Δg), and singlet oxygen-sensitized delayed fluorescence. Due to the photogeneration of cytotoxic O2((1)Δg), the nanofibers exhibited oxidation of the external substrates in aqueous solution and an efficient antibacterial effect when activated by simulated daylight. Adsorption of both TPPS and I(-) on the surface of AE led to the formation of more efficient I-TPPS-AE materials. Rapid photooxidation of I(-) by O2((1)Δg), and the formation of another cytotoxic species, I3(-), on the surface of the nanofibers were responsible for the increased antibacterial properties of I-TPPS-AE and the prolonged antibacterial effect in the dark.

  17. When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds

    PubMed Central

    Steiger, Silke S.; Valcu, Mihai; Spoelstra, Kamiel; Helm, Barbara; Wikelski, Martin; Kempenaers, Bart

    2013-01-01

    Circadian clocks are centrally involved in the regulation of daily behavioural and physiological processes. These clocks are synchronized to the 24 h day by external cues (Zeitgeber), the most important of which is the light–dark cycle. In polar environments, however, the strength of the Zeitgeber is greatly reduced around the summer and winter solstices (continuous daylight or continuous darkness). How animals time their behaviour under such conditions has rarely been studied in the wild. Using a radio-telemetry-based system, we investigated daily activity rhythms under continuous daylight in Barrow, Alaska, throughout the breeding season in four bird species that differ in mating system and parental behaviour. We found substantial diversity in daily activity rhythms depending on species, sex and breeding stage. Individuals exhibited either robust, entrained 24 h activity cycles, were continuously active (arrhythmic) or showed ‘free-running’ activity cycles. In semipalmated sandpipers, a shorebird with biparental incubation, we show that the free-running rhythm is synchronized between pair mates. The diversity of diel time-keeping under continuous daylight emphasizes the plasticity of the circadian system, and the importance of the social and life-history context. Our results support the idea that circadian behaviour can be adaptively modified to enable species-specific time-keeping under polar conditions. PMID:23782884

  18. When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds.

    PubMed

    Steiger, Silke S; Valcu, Mihai; Spoelstra, Kamiel; Helm, Barbara; Wikelski, Martin; Kempenaers, Bart

    2013-08-07

    Circadian clocks are centrally involved in the regulation of daily behavioural and physiological processes. These clocks are synchronized to the 24 h day by external cues (Zeitgeber), the most important of which is the light-dark cycle. In polar environments, however, the strength of the Zeitgeber is greatly reduced around the summer and winter solstices (continuous daylight or continuous darkness). How animals time their behaviour under such conditions has rarely been studied in the wild. Using a radio-telemetry-based system, we investigated daily activity rhythms under continuous daylight in Barrow, Alaska, throughout the breeding season in four bird species that differ in mating system and parental behaviour. We found substantial diversity in daily activity rhythms depending on species, sex and breeding stage. Individuals exhibited either robust, entrained 24 h activity cycles, were continuously active (arrhythmic) or showed 'free-running' activity cycles. In semipalmated sandpipers, a shorebird with biparental incubation, we show that the free-running rhythm is synchronized between pair mates. The diversity of diel time-keeping under continuous daylight emphasizes the plasticity of the circadian system, and the importance of the social and life-history context. Our results support the idea that circadian behaviour can be adaptively modified to enable species-specific time-keeping under polar conditions.

  19. New sensitizers and rapid monitoring of their photodynamic activity

    NASA Astrophysics Data System (ADS)

    Torshina, Nadezgda L.; Posypanova, Anna M.; Volkova, Anna I.

    1996-04-01

    At present, there are lots and lots of chemical compounds that are, to a certain extent, photodynamically active. Therefore, the task of carrying out the expressive screening of such compounds has been raised sharply enough. The primary screening in vitro of compounds, with the help of biological liquids, is notable for quickness and cheapness at the same time, it is possible to determine the comparative characteristics of compounds by their photodynamical activity. Decomposition of albumins of a mixture of photosensitizer and biological liquid when irradiating with light is the basis of this method. Efficiency of decomposition of components of biological liquids is determined using biochemical reactions (e.g., those for determining the total albumins or blood hemoglobin). Subsequently, with a sufficient efficiency of a photosensitizer, it will be possible to carry out a study in vivo, with the purpose of establishing accumulation of preparations in tumor.

  20. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders.

    PubMed

    Zhou, Minghua; Yu, Jiaguo

    2008-04-15

    A simple method for preparing highly daylight-induced photoactive nanocrystalline C,N,S-tridoped TiO2 powders was developed by a solid-phase reaction. The as-prepared TiO2 powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra, N2 adsorption-desorption measurements and transmission electron microscopy (TEM). The photocatalytic activity was evaluated by the photocatalytic oxidation of formaldehyde under daylight irradiation in air. The results show that daylight-induced photocatalytic activities of the as-prepared TiO2 powders were improved by C,N,S-tridoping. The C,N,S-tridoped TiO2 powders exhibited stronger absorption in the near UV and visible-light region with red shift in the band-gap transition. When the molar ratio of CS(NH2)2 to xerogel TiO2 powders (prepared by hydrolysis of Ti(OC4H9)4 in distilled water) (R) was kept in 3, the daylight-induced photocatalytic activities of the as-prepared C,N,S-tridoped TiO2 powders were about more than six times greater than that of Degussa P25 and un-doped TiO2 powders. The high activities of the C,N,S-tridoped TiO2 can be attributed to the results of the synergetic effects of strong absorption in the near UV and visible-light region, red shift in adsorption edge and two phase structures of un-doped TiO2 and C,N,S-tridoped TiO2.

  1. Improvement of photodynamic activity of aluminium sulphophthalocyanine due to biotinylation

    NASA Astrophysics Data System (ADS)

    Meerovich, Irina G.; Jerdeva, Victoria V.; Derkacheva, Valentina M.; Meerovich, Gennadii A.; Lukyanets, Eugeny A.; Kogan, Eugenia A.; Savitsky, Alexander P.

    2003-09-01

    The photodynamic activity of dibiotinylated aluminium sulphophthalocyanine in vitro and in vivo were studied. It was obtained that in vitro dibiotinylated aluminium sulphophthalocyanine provides the effective damage of small cell lung carcinoma OAT-75. In vivo dibiotinylated aluminium sulphophthalocyanine causes destruction of tumor (Erlich carcinoma), results in total necrosis of tumor tissue and expresses vascular damage (trombosis and destruction of vascular walls) even in concentration 0.25 mg/kg of a body weight.

  2. THE DAYLIGHTING SOLUTION

    SciTech Connect

    Selkowitz, Stephen; Johnson, Richard

    1980-08-01

    The topic of daylighting, particularly in commercial buildings, is discussed, including economic aspects, control of daylight, fenestration functions, data gathering, design tools and methods, and lighting controls.

  3. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  4. Conventional vs. Daylight Photodynamic Therapy for patients with actinic keratosis on face and scalp: 12-month follow-up results of a randomized, intraindividual comparative analysis.

    PubMed

    Sotiriou, Elena; Evagelou, George; Papadavid, Evangelia; Apalla, Zoe; Vrani, Fotini; Vakirlis, Efstratios; Panagiotou, Maro; Stefanidou, Maria; Pombou, Tsampikos; Krasagakis, Konstantinos; Rigopoulos, Dimitrios; Ioannides, Demetrios

    2017-10-03

    Daylight PDT (DLPDT) is a new PDT procedure. Several trials demonstrate that DLPDT achieves similar response rates with conventional PDT (CPDT) in the treatment of nonhyperkeratotic actinic keratoses (AKs) in a nearly painless way. It seems that DLPDT represents a more convenient and equally effective treatment modality. Data on long-term efficacy of DLPDT are limited. To compare short- and long-term efficacy, safety and tolerability of DLPDT with that of CPDT in face and scalp AKs. The study, an intraindividual right-left comparison study, was conducted in 3 centers in North, Center and South Greece. Eligible patients received either DLPDT or CPDT randomly allocated to alternate sides of face or scalp. Patients were evaluated at baseline, 3 and 12 months after treatment. Assessments included lesion response at 3 and 12 months, PDT associated pain during PDT session, local skin reactions 3 days after treatment as well as patients' preference 3 months after treatment. A total of 46 patients completed the study. Three months after treatment the overall lesion complete response rate was 78% for DLPDT and 80.6% for CPDT. At the 12-months follow-up response rate decreased to 71.8% and 73.7% for DLPDT and CPDT accordingly. Regarding response based on lesion grade, response rates obtained in grade I lesions were higher with DLPDT, while treatment with CPDT resulted to higher rates of cured grade II lesions at both follow-up visits. Results were not supported by statistical significance. DLPDT was associated with significantly lower pain and reduced severity of local skin reactions. Patients' preference favored DLPDT. Our study demonstrated that DLPDT is similar to CPDT in terms of long-term efficacy and recurrence rates in the treatment of face and scalp AKs. DLPDT demonstrated a better tolerability profile as it was associated with lower pain and less severe adverse events. This article is protected by copyright. All rights reserved. This article is protected by

  5. Daylight saving time as a potential public health intervention: an observational study of evening daylight and objectively-measured physical activity among 23,000 children from 9 countries.

    PubMed

    Goodman, Anna; Page, Angie S; Cooper, Ashley R

    2014-10-23

    It has been proposed that introducing daylight saving measures could increase children's physical activity, but there exists little research on this issue. This study therefore examined associations between time of sunset and activity levels, including using the bi-annual 'changing of the clocks' as a natural experiment. 23,188 children aged 5-16 years from 15 studies in nine countries were brought together in the International Children's Accelerometry Database. 439 of these children were of particular interest for our analyses as they contributed data both immediately before and after the clocks changed. All children provided objectively-measured physical activity data from Actigraph accelerometers, and we used their average physical activity level (accelerometer counts per minute) as our primary outcome. Date of accelerometer data collection was matched to time of sunset, and to weather characteristics including daily precipitation, humidity, wind speed and temperature. Adjusting for child and weather covariates, we found that longer evening daylight was independently associated with a small increase in daily physical activity. Consistent with a causal interpretation, the magnitude of these associations was largest in the late afternoon and early evening and these associations were also evident when comparing the same child just before and just after the clocks changed. These associations were, however, only consistently observed in the five mainland European, four English and two Australian samples (adjusted, pooled effect sizes 0.03-0.07 standard deviations per hour of additional evening daylight). In some settings there was some evidence of larger associations between daylength and physical activity in boys. There was no evidence of interactions with weight status or maternal education, and inconsistent findings for interactions with age. In Europe and Australia, evening daylight seems to play a causal role in increasing children's activity in a relatively

  6. Daylight photodynamic therapy with MAL cream for large-scale photodamaged skin based on the concept of 'actinic field damage': recommendations of an international expert group.

    PubMed

    Philipp-Dormston, W G; Sanclemente, G; Torezan, L; Tretti Clementoni, M; Le Pillouer-Prost, A; Cartier, H; Szeimies, R M; Bjerring, P

    2016-01-01

    Conventional PDT (c-PDT) is a widely used and approved non-invasive treatment for actinic keratosis (AK). Recent clinical, histological and immunohistochemical observations have shown that c-PDT with methyl aminolevulinate (MAL) may also partially reverse the signs of photodamage. However, pain and the need for special light source equipment are limiting factors for its use, especially in the treatment of large areas. More recently, daylight PDT (DL-PDT) has been shown to be similar to c-PDT in the treatment of AK, nearly painless and more convenient to perform. To establish consensus on recommendations for the use of MAL DL-PDT in patients with large-scale photodamaged skin. The expert group was comprised of eight dermatologists. Consensus was developed based on the personal experience of the experts in c-PDT and DL-PDT, and results of an extensive literature review. MAL DL-PDT for large areas of photodamaged skin was evaluated and recommendations based on broad clinical experience were provided. As supported by evidence-based data from multicentre studies conducted in Australia and Europe, the authors defined the concept of 'actinic field damage' which refers to photodamage associated with actinic epidermal dysplasia, and provide comprehensive guidelines for the optimal use of DL-PDT in the treatment of actinic field damage. The authors concluded that MAL DL-PDT has a similar efficacy to c-PDT at 3-month (lesion complete response rate of 89% vs. 93% in the Australian study and 70% vs. 74% in the European study (95% C.I. = [-6.8;-0.3] and [-9.5;2.4] respectively) and 6-month follow-ups (97% maintenance of complete lesion response) in the treatment of AKs. The authors agree that DL-PDT is not only efficacious but also nearly pain-free and easy to perform, and therefore results in high patient acceptance especially for the treatment of areas of actinic field damage.

  7. Active and passive control of zinc phthalocyanine photodynamics.

    PubMed

    Sharma, Divya; Huijser, Annemarie; Savolainen, Janne; Steen, Gerwin; Herek, Jennifer L

    2013-01-01

    In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of both of these control experiments is the same: to enhance the yield of the functional pathway and to minimize loss channels. The aim of the active control experiments is to increase the intersystem crossing yield in ZnPc, which is important for application in photodynamic therapy (PDT). Pulse shaping allowed an improvement in triplet to singlet ratio of 15% as compared to a transform-limited pulse. This effect is ascribed to a control mechanism that utilizes multiphoton pathways to higher-lying states from where intersystem crossing is more likely to occur. The passive control experiments are performed on ZnPc derivatives deposited onto TiO2, serving as a model system of a dye-sensitized solar cell (DSSC). Modification of the anchoring ligand of the molecular structure resulted in an increased rate for electron injection into TiO2 and slower back electron transfer, improving the DSSC efficiency.

  8. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-02-23

    The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer-methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.

  9. Bioluminescence-Activated Deep-Tissue Photodynamic Therapy of Cancer

    PubMed Central

    Kim, Yi Rang; Kim, Seonghoon; Choi, Jin Woo; Choi, Sung Yong; Lee, Sang-Hee; Kim, Homin; Hahn, Sei Kwang; Koh, Gou Young; Yun, Seok Hyun

    2015-01-01

    Optical energy can trigger a variety of photochemical processes useful for therapies. Owing to the shallow penetration of light in tissues, however, the clinical applications of light-activated therapies have been limited. Bioluminescence resonant energy transfer (BRET) may provide a new way of inducing photochemical activation. Here, we show that efficient bioluminescence energy-induced photodynamic therapy (PDT) of macroscopic tumors and metastases in deep tissue. For monolayer cell culture in vitro incubated with Chlorin e6, BRET energy of about 1 nJ per cell generated as strong cytotoxicity as red laser light irradiation at 2.2 mW/cm2 for 180 s. Regional delivery of bioluminescence agents via draining lymphatic vessels killed tumor cells spread to the sentinel and secondary lymph nodes, reduced distant metastases in the lung and improved animal survival. Our results show the promising potential of novel bioluminescence-activated PDT. PMID:26000054

  10. Bioluminescence-activated deep-tissue photodynamic therapy of cancer.

    PubMed

    Kim, Yi Rang; Kim, Seonghoon; Choi, Jin Woo; Choi, Sung Yong; Lee, Sang-Hee; Kim, Homin; Hahn, Sei Kwang; Koh, Gou Young; Yun, Seok Hyun

    2015-01-01

    Optical energy can trigger a variety of photochemical processes useful for therapies. Owing to the shallow penetration of light in tissues, however, the clinical applications of light-activated therapies have been limited. Bioluminescence resonant energy transfer (BRET) may provide a new way of inducing photochemical activation. Here, we show that efficient bioluminescence energy-induced photodynamic therapy (PDT) of macroscopic tumors and metastases in deep tissue. For monolayer cell culture in vitro incubated with Chlorin e6, BRET energy of about 1 nJ per cell generated as strong cytotoxicity as red laser light irradiation at 2.2 mW/cm(2) for 180 s. Regional delivery of bioluminescence agents via draining lymphatic vessels killed tumor cells spread to the sentinel and secondary lymph nodes, reduced distant metastases in the lung and improved animal survival. Our results show the promising potential of novel bioluminescence-activated PDT.

  11. Cyanines as efficient photosensitizers in photodynamic reaction: photophysical properties and in vitro photodynamic activity.

    PubMed

    Kulbacka, J; Pola, A; Mosiadz, D; Choromanska, A; Nowak, P; Kotulska, M; Majkowski, M; Hryniewicz-Jankowska, A; Purzyc, L; Saczko, J

    2011-04-01

    The purpose of the present study was to explore the potential application of cyanines in photodynamic treatment. The photophysical features of four cyanines (KF570, HM118, FBF-749, and ER-139) were investigated by elemental and spectral analyses. Two malignant cell lines (MCF-7/WT and MCF-7/DOX) were used to test the potential for use in the photodynamic therapy. The cytotoxic effects of these dyes were determined by the MTT assay after 4 and 24 h of incubation with the cyanine. KF570 and HM118 were irradiated with red light (630-nm filter) and FBF-749 and ER-139 with green light (435-nm filter). The results showed that the cyanine HM118 demonstrated a major phototoxic effect. It was also noted that the efficiency of photodynamic therapy was higher in the doxorubicin-resistant cell line (MCF-7/DOX).

  12. Photodynamic effect on specific antitumor immune activity

    NASA Astrophysics Data System (ADS)

    Vonarx-Coinsmann, Veronique; Foultier, Marie-Therese; Morlet, Laurent; de Brito, Leonor X.; Patrice, Thierry

    1995-03-01

    In this study the effect of PDT on the antitumoral specific immunologic response was evaluated. We compared the specific cytolytic activity (CLA) by a chromium release assay of primed mouse spleen T lymphocytes sensitized against syngeneic mastocytoma P511 cells. P511 cells, or lymphocytes, or both cells were treated or not with photofrin and/or light (514 nm). Photofrin II alone (1 (mu) g/ml, 2 hours) reduced CLA 59% when P511 were treated. Photofrin II (1 (mu) g/ml) followed by light (25 Joules/sq cm) also reduced CLA 35%. Photofrin II alone (0.5 (mu) g/ml, 2 hours) reduced CLA 8% when only lymphocytes were treated. And Photofrin II (0.5 (mu) g/ml) followed by light (25 Joules/sq cm) also reduced CLA 45%. When both cells were treated with Photofrin II alone or followed by light (25 Joules/sq cm) the CLA was also reduced respectively 19, 41%.

  13. Results of a research study on the impact of active daylighting on operating results of a retail business. Final report

    SciTech Connect

    Not Available

    1993-04-01

    In preliminary evaluations of So-Luminaire`s (SI) product in 1985 and 1986, DOE concluded that it warranted further research and evaluation and was worthy of receiving governmental financial and structural support therefor. SI, along with Safeway, had known intuitively that the So-Luminaire systems which had been previously installed in several of their Phoenix-area stores had resulted in a marked reduction in electrical energy consumption. However, a definitive determination of energy savings had been utilized in previous installations. Further, SI and Safeway both hypothesized that the high quality of natural light provided by these systems displayed goods to greater advantage and contributed to an overall increase in store sales, all other factors being held constant. A study to attempt to objectively determine these two presumed benefits of active daylighting in a commercial application was begun.

  14. Results of a research study on the impact of active daylighting on operating results of a retail business

    SciTech Connect

    Not Available

    1993-01-01

    In preliminary evaluations of So-Luminaire's (SI) product in 1985 and 1986, DOE concluded that it warranted further research and evaluation and was worthy of receiving governmental financial and structural support therefor. SI, along with Safeway, had known intuitively that the So-Luminaire systems which had been previously installed in several of their Phoenix-area stores had resulted in a marked reduction in electrical energy consumption. However, a definitive determination of energy savings had been utilized in previous installations. Further, SI and Safeway both hypothesized that the high quality of natural light provided by these systems displayed goods to greater advantage and contributed to an overall increase in store sales, all other factors being held constant. A study to attempt to objectively determine these two presumed benefits of active daylighting in a commercial application was begun.

  15. Photodynamic activity of plant extracts from Sarawak, Borneo.

    PubMed

    Jong, Wan Wui; Tan, Pei Jean; Kamarulzaman, Fadzly Adzhar; Mejin, Michele; Lim, Diana; Ang, Ida; Naming, Margarita; Yeo, Tiong Chia; Ho, Anthony Siong Hock; Teo, Soo Hwang; Lee, Hong Boon

    2013-08-01

    Photodynamic therapy (PDT) is a medical treatment that involves the irradiation of an administered photosensitizing drug with light of a particular wavelength to activate the photosensitizer to kill abnormal cells. To date, only a small number of photosensitizers have been clinically approved for PDT, and researchers continue to look for new molecules that have more desirable properties for clinical applications. Natural products have long been important sources of pharmaceuticals, and there is a great potential for discovery of novel chemotypes from under-explored biodiversities in the world. The objective of this study is to mine the terrestrial plants in Sarawak, Borneo Island, for new photosensitizers for PDT. In a screening program from 2004 to 2008, we prepared and studied 2,400 extracts from 888 plants for their photosensitizing activities. This report details the bioprospecting process, preparation and testing of extracts, analysis of the active samples, fractionation of four samples, and isolation and characterization of photosensitizers. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells

    PubMed Central

    Laptev, R; Nisnevitch, M; Siboni, G; Malik, Z; Firer, M A

    2006-01-01

    Photodynamic therapy (PDT) involves a two-stage process. A light-absorbing photosensitiser (Ps) is endocytosed and then stimulated by light, inducing transfer of energy to a cytoplasmic acceptor molecule and the generation of reactive oxygen species that initiate damage to cellular membrane components and cytolysis. The expanded use of PDT in the clinic is hindered by the lack of Ps target-cell specificity and the limited tissue penetration by external light radiation. This study demonstrates that bioconjugates composed of transferrin and haematoporphyrin (Tf–Hp), significantly improve the specificity and efficiency of PDT for erythroleukemic cells by a factor of almost seven-fold. Fluorescence microscopy showed that the conjugates accumulate in intracellular vesicles whereas free Hp was mostly membrane bound. Experiments with cells deliberately exposed to Tf–Hp at activation by incubating the cells with luminol either before or together with Tf–Hp. This novel chemical means of PDT activation induced cytotoxicity in 95% of cells. These combined approaches provide an opportunity to develop broader and more effective applications of PDT. PMID:16819545

  17. Energy 101: Daylighting

    ScienceCinema

    None

    2016-07-12

    Daylighting—the use of windows or skylights for natural lighting and temperature regulation—is one building strategy that can save money for homeowners and businesses. Highly efficient, strategically placed windows maximize the use of natural daylight in a building, lowering the need for artificial lighting without causing heating or cooling problems.

  18. Selectively lighting up two-photon photodynamic activity in mitochondria with AIE-active iridium(iii) complexes.

    PubMed

    Liu, Jiangping; Jin, Chengzhi; Yuan, Bo; Liu, Xingguo; Chen, Yu; Ji, Liangnian; Chao, Hui

    2017-02-07

    Herein a series of mitochondria-targeted AIE (aggregation-induced emission)-active Ir(iii) complexes were designed to selectively exert one-/two-photon photodynamic activities in mitochondria to address the issues which current PDT are confronted with (i.e., shallow penetration depth of routinely used irradiation; systematic toxicity associated with effective drug concentration; concentration-quenched photodynamic activity at the target, etc.).

  19. Mreg Activity in Tumor Response to Photodynamic Therapy and Photodynamic Therapy-Generated Cancer Vaccines

    PubMed Central

    Korbelik, Mladen; Banáth, Judith; Zhang, Wei

    2016-01-01

    Myeloid regulatory cells (Mregs) are, together with regulatory T cells (Tregs), a dominant effector population responsible for restriction of the duration and strength of antitumor immune response. Photodynamic therapy (PDT) and cancer vaccines generated by PDT are modalities whose effectiveness in tumor destruction is closely dependent on the associated antitumor immune response. The present study investigated whether the immunodepletion of granulocytic Mregs in host mice by anti-GR1 antibody would improve the response of tumors to PDT or PDT vaccines in these animals. Anti-GR1 administration immediately after Temoporfin-PDT of mouse SCCVII tumors abrogated curative effect of PDT. The opposite effect, increasing PDT-mediated tumor cure-rates was attained by delaying anti-GR1 treatment to 1 h post PDT. With PDT vaccines, multiple anti-GR1 administrations (days 0, 4, and 8 post vaccination) improved the therapy response with SCCVII tumors. The results with PDT suggest that neutrophils (boosting antitumor effect of this therapy) that are engaged immediately after photodynamic light treatment are within one hour replaced with a different myeloid population, presumably Mregs that hampers the therapy-mediated antitumor effect. Anti-GR1 antibody, when used with optimal timing, can improve the efficacy of both PDT of tumors in situ and PDT-generated cancer vaccines. PMID:27754452

  20. Investigation of photodynamic activity of water-soluble porphyrins in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghambaryan, Sona S.; Amelyan, Gayane V.; Ghazaryan, Robert K.; Arsenyan, Flora H.; Gyulkhandanyan, Aram G.

    2006-02-01

    Photodynamic therapy (PDT) is the method of photosensitized tumor treatment. It is based on the photosensitizer (PS) selective accumulation in tumors, its subsequent activation under the light influence and oxygen active form formation that results in tumor destruction. Photodynamic action of some new water-soluble porphyrins was investigated in our laboratory. Dose-dependent effect of these porphyrins was shown on PC-12 murine pheochromocytoma cell line. The results revealed that the efficiency of the investigated porphyrins decreased in the following way: TOEPyP (meso-tetra-(4-N-oxyethylpyridyl)porphyrin) > Zn-TOEPyP > Ag-TOEPyP. It was shown that TOEPyP possessed nearly the same photodynamic activity (LD50) as well-known photosensitizer chlorin e6. These porphyrins have also demonstrated quite high photodynamic activity in vivo. The results were obtained in the experiments on white mice with engrafted C-180 (Croker's sarcoma). Antitumor activity of these porphyrins in the dark was 30-40%, whereas photodynamic activity was 45-60%.

  1. [Photophysical properties and photodynamic activity of nanostructured aluminium phthalocyanines].

    PubMed

    Udartseva, O O; Lobanov, A V; Andeeva, E R; Dmitrieva, G S; Mel'nikov, M Ia; Buravkova, L B

    2014-01-01

    We developed water-soluble supramolecular complexes of aluminium phthalocyanine based on mesoporous silica nanoparticles and polyvinylpirrolidone containing rare photoactive nanoaggregates. Radiative lifetimes, extinction coefficients and energy of electronic transitions of isolated and associated metal phthalocyanine complexes were calculated. Nontoxic concentrations of synthesized nanocomposite photosensibilizers were in vitro determined. In present study we compared photodynamic treatment efficacy using different modifications of aluminium phthalocyanine (Photosens®, AlPc-nSiO2 and AlPc-PVP). Mesenchymal stromal cells were used as a model for photodynamic treatment. Intracellular accumulation of aluminium phthalocyanine based on mesoporous silica nanoparticles AlPc-nSiO2 was the most efficient. Illumination of phthalocyanine-loaded cells led to reactive oxygen species generation and subsequent apoptotic cell death. Silica nanoparticles provided a significant decrease of effective phthalocyanine concentration and enhanced cytotoxicity of photodynamic treatment.

  2. Silylation improves the photodynamic activity of tetraphenylporphyrin derivatives in vitro and in vivo.

    PubMed

    Horiuchi, Hiroaki; Hosaka, Masahiro; Mashio, Hiroyuki; Terata, Motoki; Ishida, Shintaro; Kyushin, Soichiro; Okutsu, Tetsuo; Takeuchi, Toshiyuki; Hiratsuka, Hiroshi

    2014-05-12

    The effects of silyl and hydrophilic groups on the photodynamic properties of tetraphenylporphyrin (TPP) derivatives have been studied in vitro and in vivo. Silylation led to an improvement in the quantum yield of singlet oxygen sensitization for both sulfo and carboxy derivatives, although the silylation did not affect other photophysical properties. Silylation also improved the cellular uptake efficiency for both sulfo and carboxy derivatives, enhancing the in vitro photodynamic activity of the photosensitizer in U251 human glioma cells. The carboxy derivative (SiTPPC4 ) was found to show higher cellular uptake efficiency and in vitro photodynamic activity than the corresponding sulfo derivative (SiTPPS4 ), which indicates that the carboxy group is a more promising hydrophilic group than the sulfo group in the silylated porphyrin. SiTPPC4 was found to show high selective accumulation efficiency in tumors, although almost no tumor selectivity was observed for the nonsilylated porphyrin. The concentration of SiTPPC4 in tumors was 13 times higher than that in muscle 12 h after drug administration. We also studied tumor response after treatment and found that silylation enhanced in vivo photodynamic activity significantly. SiTPPC4 shows higher photodynamic activity than NPe6 with white light irradiation.

  3. Effect of dividing daylight in symmetric prismatic daylight collector

    NASA Astrophysics Data System (ADS)

    Yeh, Shih-Chuan; Lu, Ju-Lin; Cheng, Yu-Chin

    2017-04-01

    This paper presented a symmetric prismatic daylight collector to collect daylight for the natural light illumination system. We analyzed the characteristics of the emerging light when the parallel light beam illuminate on the horizontally placed symmetric prismatic daylight collector. The ratio of the relative intensities of collected daylight that emerging from each surface of the daylight collector shown that the ratio is varied with the incident angle during a day. The simulation of the emerging light of the daylight collector shown that the ratio of emerging light is varied with the tilted angle when sunshine illuminated on a symmetric prismatic daylight collector which was not placed horizontally. The integration of normalized intensity is also varied with the tilted angle. The symmetric prismatic daylight collector with the benefits of reducing glare and dividing intensity of incident daylight, it is applicable to using in the natural light illumination system and hybrid system for improving the efficiency of utilizing of solar energy.

  4. Lunar Daylight Exploration

    NASA Technical Reports Server (NTRS)

    Griffin, Brand Norman

    2010-01-01

    With 1 rover, 2 astronauts and 3 days, the Apollo 17 Mission covered over 30 km, setup 10 scientific experiments and returned 110 kg of samples. This is a lot of science in a short time and the inspiration for a barebones, return-to-the-Moon strategy called Daylight Exploration. The Daylight Exploration approach poses an answer to the question, What could the Apollo crew have done with more time and today s robotics? In contrast to more ambitious and expensive strategies that create outposts then rely on pressurized rovers to drive to the science sites, Daylight Exploration is a low-overhead approach conceived to land near the scientific site, conduct Apollo-like exploration then leave before the sun goes down. A key motivation behind Daylight Exploration is cost reduction, but it does not come at the expense of scientific exploration. As a goal, Daylight Exploration provides access to the top 10 science sites by using the best capabilities of human and robotic exploration. Most science sites are within an equatorial band of 26 degrees latitude and on the Moon, at the equator, the day is 14 Earth days long; even more important, the lunar night is 14 days long. Human missions are constrained to 12 days because the energy storage systems required to operate during the lunar night adds mass, complexity and cost. In addition, short missions are beneficial because they require fewer consumables, do not require an airlock, reduce radiation exposure, minimize the dwell-time for the ascent and orbiting propulsion systems and allow a low-mass, campout accommodations. Key to Daylight Exploration is the use of piloted rovers used as tele-operated science platforms. Rovers are launched before or with the crew, and continue to operate between crew visits analyzing and collecting samples during the lunar daylight

  5. In vivo uptake and photodynamic activity of porphycenes

    NASA Astrophysics Data System (ADS)

    Kimel, Sol; Gottfried, Varda; Davidi, Ronit; Averbuj, Claudia

    1994-03-01

    Novel porphyrinoid photosensitizers are currently being considered for use in photodynamic therapy (PDT) of cancer. This class of sensitizers combines high absorption characteristics at the therapeutic wavelengths ((lambda) > 600 nm) and good tumor targeting properties. We have investigated the in-vivo uptake and photodynamic damage of several porphycenes. Our model system was the chick chorioallantoic membrane (CAM) which we have adapted for use in PDT studies. The CAM assay allows fast screening of novel drugs and obtaining statistically relevant results with minute quantities of the drug. Sensitizers were `trapped' in EPC (egg phosphatidylcholine) or in DPPC (dipalmitoyl phosphatidylcholine); their efficiencies were independent of the vehicle used for application of the sensitizer. The efficiencies of various porphycenes in PDT, as a function of drug and light dose, compare well with those of standard porphyrins and phthalocyanines.

  6. Structure-photodynamic activity relationships of substituted zinc trisulfophthalocyanines.

    PubMed

    Cauchon, Nicole; Tian, Hongjian; Langlois, Réjean; La Madeleine, Carole; Martin, Stephane; Ali, Hasrat; Hunting, Darel; van Lier, Johan E

    2005-01-01

    To identify optimal features of metalated sulfophthalocyanine dyes for their use as photosensitizers in the photodynamic therapy of cancer, we synthesized a series of alkynyl-substituted trisulfonated phthalocyanines and compared their amphiphilic properties to a number of parameters related to their photodynamic potency. Varying the length of the substituted alkynyl side-chain modulates the hydrophobic/hydrophilic properties of the dyes providing a linear relationship between their n-octanol/water partition coefficients and retention times on reversed-phase HPLC. Aggregate formation of the dyes in aqueous solution increased with increasing hydrophobicity while monomer formation was favored by the addition of serum proteins or organic solvent. Trisulfonated zinc phthalocyanines bearing hexynyl and nonynyl substituents exhibited high cellular uptake with strong localization at the mitochondrial membranes, which coincided with effective photocytotoxicity toward EMT-6 murine mammary tumor cells. Further increase in the length of the alkynyl chains (dodecynyl, hexadecynyl) did not improve their phototoxicity, likely resulting from extensive aggregation of the dyes in aqueous medium and reduced cell uptake. Aggregation was evident from shifts in the electronic spectra and reduced capacity to generate singlet oxygen. When monomerized through the addition of Cremophor EL all sulfonated zinc phthalocyanines gave similar singlet oxygen yields. Accordingly, differences in the tendency of the dyes to aggregate do not appear to be a determining factor in their photodynamic potency. Our results confirm that the latter in particular relates to their amphiphilic properties, which facilitate cell uptake and intracellular localization at photosensitive sites such as the mitochondria. Combined, these factors play a significant role in the overall photodynamic potency of the dyes.

  7. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters.

    PubMed

    Wu, Juan; Hou, Wei; Cao, Binbin; Zuo, Tao; Xue, Changhu; Leung, Albert Wingnang; Xu, Chuanshan; Tang, Qing-Juan

    2015-09-01

    Norovirus (NoV) is one of the most important seafood- and water-borne viruses, and is a major cause of acute gastroenteritis outbreaks. In the present study we investigated the effect of curcumin as a sensitizer to photodynamic treatment both in buffer and in oysters against murine norovirus 1 (MNV-1), a surrogate of NoV. MNV-1 cultured in buffer and MNV-1 bio-accumulated in oysters were irradiated with a novel LED light source with a wavelength of 470nm and an energy of 3.6J/cm(2). Inactivation of MNV-1 was investigated by plaque assays. After virus was extracted from the gut of oysters treated over a range of curcumin concentrations, the ultrastructural morphology of the virus was observed using electron microscopy, and the integrity of viral nucleic acids and stability of viral capsid proteins were also determined. Results showed that the infectivity of MNV-1 was significantly inhibited by 1-3logPFU/ml, with significant damage to viral nucleic acids in a curcumin dose-dependent manner after photodynamic activation. Virus morphology was altered after the photodynamic treatment with curcumin, presumably due to the change of the viral capsid protein structures. The data suggest that treatment of oysters with photodynamic activation of curcumin is a potentially efficacious and cost-effective method to inactivate food-borne NoV. Further studies are necessary to evaluate the toxicology of this approach in detail and perform sensory evaluation of the treated product.

  8. Photodynamic Anticancer Activity of CoFe2O4 Nanoparticles Conjugated with Hematoporphyrin.

    PubMed

    Park, Bong Joo; Choi, Kyong-Hoon; Nam, Ki Chang; Min, Jeeeun; Lee, Kyu-Dong; Uhm, Han Sup; Choi, Eun Ha; Kim, Ho-Joong; Jung, Jin-Seung

    2015-10-01

    This work reports the synthesis and the characterization of water-soluble and biocompatible photosensitizer (PS)-conjugated magnetic nanoparticles composed of a cobalt ferrite (CoFe2O4) magnetic core coated with a biocompatible hematoporphyrin (HP) shell. The photo-functional cobalt ferrite magnetic nanoparticles (CoFe2O4@HP) were uniform in size, stable against PS leaching, and highly efficient in the photo-generation of cytotoxic singlet oxygen under visible light. With the CoFe2O4@HP, we acquired in vitro MR images of cancer cells (PC-3) and confirmed good biocompatibility of the CoFe2O4@HP in both normal and cancer cells. In addition, we confirmed the potential of the CoFe2O4@HP as an agent for photodynamic therapy (PDT) applications. The photodynamic anticancer activities in 25, 50, and 100 μg/mL of CoFe2O4@HP were measured and found to exceed 99% (99.0, 99.4, and 99.5%) (p < 0.002). The photodynamic anticancer activity was 81.8% (p < 0.003). From these results, we suggest that our CoFe2O4@HP can be used safely as a type of photodynamic cancer therapy with potential as a therapeutic agent having good biocompatibility. Moreover, these photo-functional magnetic nanoparticles are highly promising for applications in versatile imaging diagnosis and as a therapy tool in biomedical engineering.

  9. Daylighting in Classrooms.

    ERIC Educational Resources Information Center

    Willi, John G.

    2003-01-01

    Describes how one elementary school was designed to be a flexible, innovative campus that connects learning and the learning environment. The celebration of nature is carried out in many ways within the building. Students are exposed to great vistas from every interior location. Daylighting is infused throughout the school to reinforce the desire…

  10. Energy 101: Daylighting

    SciTech Connect

    2011-01-01

    Daylighting—the use of windows or skylights for natural lighting and temperature regulation—is one building strategy that can save money for homeowners and businesses. Highly efficient, strategically placed windows maximize the use of natural daylight in a building, lowering the need for artificial lighting without causing heating or cooling problems.

  11. High Patient Satisfaction with Daylight-Activated Methyl Aminolevulinate Cream in the Treatment of Multiple Actinic Keratoses: Results of an Observational Study in Australia.

    PubMed

    See, Jo-Ann; Gebauer, Kurt; Wu, Jason K; Manoharan, Shobhan; Kerrouche, Nabil; Sullivan, John

    2017-09-13

    Actinic keratoses (AK) are treated to reduce the risk of progression to squamous cell carcinoma and for symptomatic and cosmetic benefits. The objective of this observational study was to generate real-life data on the use of daylight photodynamic therapy with methyl aminolevulinate cream (MAL DL-PDT) in treating mild to moderate facial/scalp AK. A multicenter, prospective, observational study was conducted in Australia in patients receiving a single treatment of MAL DL-PDT for mild to moderate AK. Efficacy was assessed 3 months after treatment by investigator-assessed improvement and patient- and physician-completed satisfaction questionnaires. Adverse events were recorded throughout the study. Overall, 81 patients were enrolled of mean age 62.7 years, mostly men (76.5%) with skin phototype I (64.2%) or II (35.8%) and a long history of AK (mean duration 16.8 years). Most had multiple lesions (82.7% had >10 lesions) of predominantly grade I (75.3%). At 3 months after treatment, almost half the patients (46.8%) required no further treatment. The proportions of patients and physicians satisfied to very satisfied with the MAL DL-PDT treatment were 79.7% and 83.3%, respectively. After receiving the treatment, 74.1% of patients indicated via the questionnaire that they were not bothered at all by the pain. Related AEs were reported in 48.1% of patients, mainly mild erythema (44.4%). In clinical practice in Australia, the use of MAL DL-PDT in treating multiple mild to moderate non-hyperkeratotic AK of the face and/or scalp results in high levels of patient and physician satisfaction reflecting the good efficacy and tolerability of this almost painless, convenient procedure. ClinicalTrials.gov identifier, NCT02674048. Galderma R&D.

  12. Formation of β-(1,3-1,6)-d-glucan-complexed [70]fullerene and its photodynamic activity towards macrophages.

    PubMed

    Ikeda, Atsushi; Akiyama, Motofusa; Sugikawa, Kouta; Koumoto, Kazuya; Kashijima, Yuta; Li, Jiawei; Suzuki, Toshio; Nagasaki, Takeshi

    2017-03-01

    [70]Fullerene was dissolved in water by complexation with β-1,3-glucan using a mechanochemical high-speed vibration milling apparatus. The photodynamic activity of β-1,3-glucan-complexed C70 was highly dependent on the expression level of dectin-1 on the cell surfaces of macrophages. The photodynamic activity increased as a result of a synergistic effect between β-1,3-glucan-complexed 1'-acetoxychavicol acetate and the C70 complex.

  13. Antimicrobial Activity of Photodynamic Therapy Against Enterococcus faecalis Before and After Reciprocating Instrumentation in Permanent Molars.

    PubMed

    Pinheiro, Sérgio Luiz; Azenha, Giuliana Rodrigues; Democh, Yasmin Marialva; Nunes, Daniela Camila; Provasi, Silvia; Fontanetti, Giovana Masiero; Duarte, Danilo Antônio; Fontana, Carlos Eduardo; da Silveira Bueno, Carlos Eduardo

    2016-12-01

    The present study sought to evaluate the antimicrobial activity against Enterococcus faecalis of photodynamic therapy applied before and after reciprocating instrumentation of permanent molars. Apical extrusion of debris can cause flare-ups due to introduction of bacteria into the periapical tissues. Eighteen mesial roots from permanent mandibular molars were selected. The crowns were removed to obtain a standard root length of 15 mm. The included mesial roots had an angulation of 10°-40° and canals with independent foramina. The orifice of each mesiolingual canal was sealed with light-curing resin, and the working length was established visually, 1 mm short of the apical foramen. The roots were rendered impermeable and sterilized, and the mesiobuccal canals were contaminated with a standard strain of E. faecalis for 21 days. Specimens were randomly divided into three groups (n = 6): G1, photodynamic therapy performed before instrumentation and irrigation with 0.9% NaCl (saline) solution; G2, photodynamic therapy performed after instrumentation and irrigation with 0.9% NaCl; and G3 (control), instrumentation and irrigation with 2.5% NaOCl (sodium hypochlorite) solution. Canals were shaped with a WaveOne primary file (25.08) and irrigated with 0.9% NaCl. E. faecalis samples were collected before and after each procedure, and the results were analyzed using descriptive statistics and the Kruskal-Wallis and Wilcoxon tests. Significant reductions in E. faecalis were observed when photodynamic therapy was performed before and after instrumentation of the root canal system (p < 0.05). Reciprocating instrumentation significantly reduced E. faecalis colonies in experimentally contaminated root canal systems (p < 0.05). Photodynamic therapy was effective in removing E. faecalis from the root canal system, whether performed before or after reciprocating instrumentation.

  14. Influence of ultrasonic activation on photodynamic therapy over root canal system infected with Enterococcus faecalis--an in vitro study.

    PubMed

    Ghinzelli, Guilherme Cavagnoli; Souza, Matheus Albino; Cecchin, Doglas; Farina, Ana Paula; de Figueiredo, José Antônio Poli

    2014-12-01

    The purpose of this study was to evaluate, in vitro, the influence of ultrasonic activation on photodynamic therapy over root canal system infected with Enterococcus faecalis. The root canals of 50 single-rooted human extracted teeth were enlarged up to a file 60, autoclaved, inoculated with Enterococcus faecalis and incubated for 30 days. The samples were divided into five groups (n=10) according to the protocol of decontamination: G1 (control group) - no procedure was performed; G2 - photosensitizer (0.01% methylene blue); G3 - ultrasonic activation of photosensitizer (0.01% methylene blue); G4 - photodynamic therapy with no ultrasonic activation; and G5 - photodynamic therapy with ultrasonic activation. Microbiological tests (CFU counting) and scanning electron microscopy (SEM) were performed to evaluate and illustrate, respectively, the effectiveness of proposed treatments. Data were subjected to one-way ANOVA followed by post hoc Tukey test (α=0.05). The microbiological test demonstrated that G5 (photodynamic therapy with ultrasonic activation) showed the lowest mean contamination (3.17 log CFU/mL), which was statistically different from all other groups (p<0.05). G4 (photodynamic therapy) showed a mean of contamination of 3.60 log CFU/mL, which was statistically different from groups 1, 2 and 3 (p<0.05). The use of ultrasonic activation on photodynamic therapy improved its potential for decontamination, resulting in the higher elimination Enterococcus faecalis from the root canal space. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. On the Origin of Photodynamic activity of Perylene Quinone Framework

    NASA Astrophysics Data System (ADS)

    Parida, Dibyajyoti; Pancharatna, Pattath D.; Balakrishnarajan, Musiri M.

    2016-10-01

    The basic skeleton of perylenequinone is surprisingly ubiquitous in several naturally occurring pigments, such as Hypocrellins, Cercosporin, etc. to name a few. Several of these molecules and their derivatives are also experimentally characterized as potent candidates for photodynamic therapy and are predicted to be aiding the formation singlet Oxygen. Theoretical calculations that unravel the mystery behind the perylenequinone motif in these bio-molecules. Perylenequinone framework has a unique frontier MOs that aid in facile intersystem crossing of the π-π* excitation. The resulting triplet state remarkably resists phosphorescence that presumably leads to high quantum yield of singlet oxygen production. The excitation assisted change in the nature of conjugation and the attendant out-of-plane distortion of the perylene framework is found to be the general characteristic of all these systems and the substituents at the bay region favourably assist the excited state behavior as shown by time dependent/ independent DFT calculations.

  16. Effect of axial ligands on the molecular configurations, stability, reactivity, and photodynamic activities of silicon phthalocyanines.

    PubMed

    Luan, Liqiang; Ding, Lanlan; Shi, Jiawei; Fang, Wenjuan; Ni, Yuxing; Liu, Wei

    2014-12-01

    To demonstrate the effect of axial ligands on the structure-activity relationship, a series of axially substituted silicon phthalocyanines (SiPcs) have been synthesized with changes to the axial ligands. The reactivity of the axial ligand upon shielding by the phthalocyanine ring current, along with their stability, photophysical, and photodynamic therapy (PDT) activities were compared and evaluated for the first time. As revealed by single-crystal XRD analysis, rotation of the axial -OMe ligands was observed in SiPc 3, which resulted in two molecular configurations coexisting synchronously in both the solid and solution states and causing a split of the phthalocyanine α protons in the (1)H NMR spectra that is significantly different from all SiPcs reported so far. The remarkable photostability, good singlet oxygen quantum yield, and efficient in vitro photodynamic activity synergistically show that compound 3 is one of the most promising photosensitizers for PDT.

  17. Synthesis, photodynamic activity, and quantitative structure-activity relationship modelling of a series of BODIPYs.

    PubMed

    Caruso, Enrico; Gariboldi, Marzia; Sangion, Alessandro; Gramatica, Paola; Banfi, Stefano

    2017-02-01

    Here we report the synthesis of eleven new BODIPYs (14-24) characterized by the presence of an aromatic ring on the 8 (meso) position and of iodine atoms on the pyrrolic 2,6 positions. These molecules, together with twelve BODIPYs already reported by us (1-12), represent a large panel of BODIPYs showing different atoms or groups as substituent of the aromatic moiety. Two physico-chemical features ((1)O2 generation rate and lipophilicity), which can play a fundamental role in the outcome as photosensitizers, have been studied. The in vitro photo-induced cell-killing efficacy of 23 PSs was studied on the SKOV3 cell line treating the cells for 24h in the dark then irradiating for 2h with a green LED device (fluence 25.2J/cm(2)). The cell-killing efficacy was assessed with the MTT test and compared with that one of meso un-substituted compound (13). In order to understand the possible effect of the substituents, a predictive quantitative structure-activity relationship (QSAR) regression model, based on theoretical holistic molecular descriptors, was developed. The results clearly indicate that the presence of an aromatic ring is fundamental for an excellent photodynamic response, whereas the electronic effects and the position of the substituents on the aromatic ring do not influence the photodynamic efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Photodynamic Therapy

    PubMed Central

    Dougherty, Thomas J.; Gomer, Charles J.; Henderson, Barbara W.; Jori, Giulio; Kessel, David; Korbelik, Mladen; Moan, Johan; Peng, Qian

    2015-01-01

    Photodynamic therapy involves administration of a tumor-localizing photosensitizing agent, which may require metabolic synthesis (i.e., a prodrug), followed by activation of the agent by light of a specific wavelength. This therapy results in a sequence of photochemical and photobiologic processes that cause irreversible photodamage to tumor tissues. Results from preclinical and clinical studies conducted worldwide over a 25-year period have established photodynamic therapy as a useful treatment approach for some cancers. Since 1993, regulatory approval for photodynamic therapy involving use of a partially purified, commercially available hematoporphyrin derivative compound (Photofrin®) in patients with early and advanced stage cancer of the lung, digestive tract, and genitourinary tract has been obtained in Canada, The Netherlands, France, Germany, Japan, and the United States. We have attempted to conduct and present a comprehensive review of this rapidly expanding field. Mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed. Technical issues regarding light dosimetry are also considered. PMID:9637138

  19. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation

    PubMed Central

    Kushibiki, Toshihiro; Tu, Yupeng; Abu-Yousif, Adnan O.; Hasan, Tayyaba

    2015-01-01

    In photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells. To investigate further the use of photochemically triggered manipulation of such pathways, we exposed mouse osteoblast precursor cells and rat primary mesenchymal stromal cells to low-dose PDT. Our results demonstrate that low-dose PDT can promote osteoblast differentiation via the activation of activator protein-1 (AP-1). Although PDT has been used primarily as an anti-cancer therapy, the use of light as a photochemical “molecular switch” to promote differentiation should expand the utility of this method in basic research and clinical applications. PMID:26279470

  20. Activation of photodynamic therapy in vitro with Cerenkov luminescence generated from Yttrium-90 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2016-03-01

    Translation of photodynamic therapy to the clinical setting has primarily been limited to easily accessible and/or superficial diseases where traditional light delivery can be performed noninvasively. Cerenkov luminescence, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively in order to overcome this depth limitation. We report on the use of Cerenkov luminescence generated from Yttrium-90 as a means to active the photodynamic therapy process in monolayer tumor cell cultures. The current study investigates the utility of Cerenkov luminescence for activating both the clinically relevant aminolevulinic acid at 1.0 mM and also the more efficient photosensitizer TPPS2a at 1.2 µM. Cells were incubated with aminolevulinic acid for 6 hours prior to radionuclide addition, as well as additional daily treatments for three days. TPPS2a was delivered as a single treatment with an 18 hour incubation time before radionuclide addition. Experiments were completed for both C6 glioma cells and MDA-MB-231 breast tumor cells. Although aminolevulinic acid proved ineffective for generating a therapeutic effect at any activity for either cell line, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 µCi/well for the C6 cell line. Current results demonstrate that it may be possible to generate a therapeutic effect in vivo using Cerenkov luminescence to activate the photodynamic therapy process with clinically relevant photosensitizers.

  1. Photodynamic Anticancer Activities of Multifunctional Cobalt Ferrite Nanoparticles in Various Cancer Cells.

    PubMed

    Park, Bong Joo; Choi, Kyong-Hoon; Nam, Ki Chang; Ali, Anser; Min, Joe Eun; Son, Hyungbin; Uhm, Han S; Kim, Ho-Joong; Jung, Jin-Seung; Choi, Eun Ha

    2015-02-01

    To develop novel multifunctional magnetic nanoparticles (MNPs) with good magnetic properties, biocompatibility, and anticancer activities by photodynamic therapy (PDT), we synthesized multifunctional cobalt ferrite (CoFe2O4) nanoparticles (CoFe2O4-HPs-FAs) functionalized by coating them with hematoporphyrin (HP) for introducing photo-functionality and by conjugating with folic acid (FA) for targeting cancer cells. We evaluated the activities of the CoFe2O4-HPs-FAs by checking magnetic resonance imaging (MRI) in vitro, its biocompatibility, and photodynamic anticancer activities on FA receptor (FR)-positive and FR-negative cancer cell lines, Hela, KB, MCF-7, and PC-3 cells, to use for clinical applications. In this study, we have demonstrated that the CoFe2O4-HPs-FAs have good MRI and biocompatibility with non-cytotoxicity, and remarkable photodynamic anticancer activities at very low concentrations regardless of cell types. Particularly, the photo-killing abilities in 3.13 μg/mL of CoFe2O4-HPs-FAs were measured to be 91.8% (p < 0.002) for Hela, 94.5% (p < 0.007) for KB, 79.1% (p < 0.003) for MCF-7, and 71.3% (p < 0.006) for PC-3. The photodynamic anticancer activities in 6.25 and 12.5 μg/mL of CoFe2O4-HPs-FAs were measured to be over 95% (p < 0.004) to almost 100% regardless of cell types. The newly developed multifunctional CoFe2O4-HPs-FAs are effective for PDT and have potential as therapeutic agents for MRI-based PDT, because they have a high saturation value of magnetization and superparamagnetism.

  2. Daylight Redirecting Window Films

    DTIC Science & Technology

    2013-09-01

    with human factor evaluations. Thus there is a need to evaluate daylight redirecting films or systems under a variety of conditions and a thorough...one on the right without. The increase in brightness even in the corners of the room is remarkable. As evident from Figures 1 and 2, the light...backed up nightly for extra redundancy. Some data was lost due to equipment failure and human error. Despite tests showing loggers were fully

  3. Bis(pyrene)-Doped Cationic Dipeptide Nanoparticles for Two-Photon-Activated Photodynamic Therapy.

    PubMed

    Sun, Bingbing; Wang, Lei; Li, Qi; He, Pingping; Liu, Huiling; Wang, Hao; Yang, Yang; Li, Junbai

    2017-08-25

    At present, one of main problems for photodynamic therapy (PDT) is how to improve the treatment depth. Two-photon activated (TPA) developed recently provide a possible solution for it. In this work, we report the energy-transferring assembled cationic dipeptide nanoparticles for two-photon activated photodynamic therapy (TPA-PDT). In the nanoparticles, the coencapsulated two-photon fluorescent dye bis(pyrene) (BP) is an energy donor, and a photosensitizer rose bengal (RB) is an acceptor based on an intraparticle fluorescence resonance energy transfer (FRET) mechanism. BP in the nanoparticles can be excited by one- or two- photon laser. And then, the energy of BP was transferred to RB, which highly enhanced the generation of singlet oxygen. The cellular experiments indicated that this nanosystem can induce the cytotoxicity under one- and two-photon irradiation, which allows further applications of FRET-based biomaterials for TPA-PDT.

  4. Luminescent Solar Concentrator Daylighting

    NASA Astrophysics Data System (ADS)

    Bornstein, Jonathan G.

    1984-11-01

    Various systems that offer potential solutions to the problem of interior daylighting have been discussed in the literature. Virtually all of these systems rely on some method of tracking the sun along its azimuth and elevation, i.e., direct imaging of the solar disk. A simpler approach, however, involves a nontracking nonimaging device that effectively eliminates moving parts and accepts both the diffuse and direct components of solar radiation. Such an approach is based on a system that combines in a common luminaire the light emitted by luminescent solar concentrators (LSC), of the three primary colors, with a highly efficient artificial point source (HID metal halide) that automatically compensates for fluctuations in the LSC array via a daylight sensor and dimming ballast. A preliminary analysis suggests that this system could supply 90% of the lighting requirement, over the course of an 8 hour day, strictly from the daylight component under typical insolation con-ditions in the Southwest United States. In office buildings alone, the total aggregate energy savings may approach a half a quad annually. This indicates a very good potential for the realization of substantial savings in building electric energy consumption.

  5. Multiphoton excitation and photodynamic activity of macromolecular derivatized mTHPC

    NASA Astrophysics Data System (ADS)

    Schneider, Marc; Graschew, Georgi; Roelofs, Theo A.; Balanos, Evangelos; Rakowsky, Stefan; Sinn, Hanns-joerg; Schlag, Peter M.

    2000-03-01

    Multiphoton excitation of photosensitizers in photodynamic therapy constitutes a promising approach, because of the increasing tissue penetration for longer wavelength of illumination. In this contribution the photodynamic activity of polyethylene glycol macromolecular derivatized mTHPC upon two-photon excitation is established. To test the photo- activity of the photosensitizer, human colon carcinoma cells, HCT-116, were incubated with 2 (mu) g/ml of mTHPC- CMPEG4 in the nutrition medium. Subsequent pulsed laser irradiation at 784 nm focused down on growing cell monolayers restricts cell vitality clearly within 24 hours after irradiation. To investigate whether an anoxic or euoxic energy transfer mechanism is involved, a uric acid assay was performed to test for the generation of singlet oxygen. Upon single-photon excitation mTHPC-CMPEG4 in TriPEG decomposed uric acid via the generation of singlet oxygen. Using femtosecond pulsed laser irradiation no decomposition of the uric acid was found, implying an anoxic energy transfer mechanism after tow-photon excitation. However, at present, we cannot exclude local hyperthermic effects in the cells containing the photosensitizer to contribute to the photodynamic activity upon two-photon excitation.

  6. Enhanced photodynamic leishmanicidal activity of hydrophobic zinc phthalocyanine within archaeolipids containing liposomes

    PubMed Central

    Perez, Ana Paula; Casasco, Agustina; Schilrreff, Priscila; Defain Tesoriero, Maria Victoria; Duempelmann, Luc; Altube, Maria Julia; Higa, Leticia; Morilla, Maria Jose; Petray, Patricia; Romero, Eder L

    2014-01-01

    In this work, the in vitro anti-Leishmania activity of photodynamic liposomes made of soybean phosphatidylcholine, sodium cholate, total polar archaeolipids (TPAs) extracted from the hyperhalophile archaea Halorubrum tebenquichense and the photosensitizer zinc phthalocyanine (ZnPcAL) was compared to that of ultradeformable photodynamic liposomes lacking TPAs (ZnPcUDLs). We found that while ZnPcUDLs and ZnPcALs (130 nm mean diameter and −35 mV zeta potential) were innocuous against promastigotes, a low concentration (0.01 μM ZnPc and 7.6 μM phospholipids) of ZnPcALs irradiated at a very low-energy density (0.2 J/cm2) eliminated L. braziliensis amastigotes from J774 macrophages, without reducing the viability of the host cells. In such conditions, ZnPcALs were harmless for J774 macrophages, HaCaT keratinocytes, and bone marrow-derived dendritic cells. Therefore, topical photodynamic treatment would not likely affect skin-associated lymphoid tissue. ZnPcALs were extensively captured by macrophages, but ZnPcUDLs were not, leading to 2.5-fold increased intracellular delivery of ZnPc than with ZnPcUDLs. Despite mediating low levels of reactive oxygen species, the higher delivery of ZnPc and the multiple (caveolin- and clathrin-dependent plus phagocytic) intracellular pathway followed by ZnPc would have been the reason for the higher antiamastigote activity of ZnPcALs. The leishmanicidal activity of photodynamic liposomal ZnPc was improved by TPA-containing liposomes. PMID:25045264

  7. Enhanced photodynamic leishmanicidal activity of hydrophobic zinc phthalocyanine within archaeolipids containing liposomes.

    PubMed

    Perez, Ana Paula; Casasco, Agustina; Schilrreff, Priscila; Tesoriero, Maria Victoria Defain; Duempelmann, Luc; Pappalardo, Juan Sebastián; Altube, Maria Julia; Higa, Leticia; Morilla, Maria Jose; Petray, Patricia; Romero, Eder L

    2014-01-01

    In this work, the in vitro anti-Leishmania activity of photodynamic liposomes made of soybean phosphatidylcholine, sodium cholate, total polar archaeolipids (TPAs) extracted from the hyperhalophile archaea Halorubrum tebenquichense and the photosensitizer zinc phthalocyanine (ZnPcAL) was compared to that of ultradeformable photodynamic liposomes lacking TPAs (ZnPcUDLs). We found that while ZnPcUDLs and ZnPcALs (130 nm mean diameter and -35 mV zeta potential) were innocuous against promastigotes, a low concentration (0.01 μM ZnPc and 7.6 μM phospholipids) of ZnPcALs irradiated at a very low-energy density (0.2 J/cm(2)) eliminated L. braziliensis amastigotes from J774 macrophages, without reducing the viability of the host cells. In such conditions, ZnPcALs were harmless for J774 macrophages, HaCaT keratinocytes, and bone marrow-derived dendritic cells. Therefore, topical photodynamic treatment would not likely affect skin-associated lymphoid tissue. ZnPcALs were extensively captured by macrophages, but ZnPcUDLs were not, leading to 2.5-fold increased intracellular delivery of ZnPc than with ZnPcUDLs. Despite mediating low levels of reactive oxygen species, the higher delivery of ZnPc and the multiple (caveolin- and clathrin-dependent plus phagocytic) intracellular pathway followed by ZnPc would have been the reason for the higher antiamastigote activity of ZnPcALs. The leishmanicidal activity of photodynamic liposomal ZnPc was improved by TPA-containing liposomes.

  8. Kinetics of tumor necrosis factor production by photodynamic-therapy-activated macrophages

    NASA Astrophysics Data System (ADS)

    Pass, Harvey I.; Evans, Steven; Perry, Roger; Matthews, Wilbert

    1990-07-01

    The ability of photodynamic therapy (PDT) to activate macrophages and produce cytokines, specifically tumor necrosis factor (TNF), is unknown. Three day thioglycolate elicited macrophages were incubated with 25 ug/mi Photofrin II (P11) for 2 hour, after which they were subjected to 630 nm light with fluences of 0-1800 J/m. The amount of TNF produced in the system as well as macrophage viability was measured 1, 3, 6, and 18 hours after POT. The level of TNF produced by the macrophages was significantly elevated over control levels 6 hours after POT and the absolute level of tumor necrosis factor production was influenced by the treatment energy and the resulting macrophage cytotoxicity. These data suggest that POT therapy induced cytotoxicity in vivo may be amplified by macrophage stimulation to secrete cytokines and these cytokines may also participate in other direct/indirect photodynamic therapy effects, i.e. immunosuppression, vascular effects.

  9. Investigation of Water-Soluble X-ray Luminescence Nanoparticles for Photodynamic Activation

    SciTech Connect

    Liu, Yuanfang; Chen, Wei; Wang, Shaopeng; Joly, Alan G.

    2008-01-28

    In this letter, we report the synthesis of LaF3:Tb3+-MTCP (meso-Tetra(4-carboxyphenyl) porphine) nanoparticle conjugates and investigate the energy transfer as well as singlet oxygen generation following X-ray irradiation. Our observations indicate that LaF3:Tb3+-MTCP nanoparticle conjugates are efficient photodynamic agents that can be initiated by X-rays at a reasonably low dose. The addition of folic acid to facilitate targeting to folate receptors on tumor cells has no effect on the quantum yield of singlet oxygen in the nanoparticle-MTCP conjugates. Our pilot studies indicate that water-soluble scintillation nanoparticles can be potentially used to activate photodynamic therapy as a promising deep cancer treatment.

  10. Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes.

    PubMed

    Antonenko, Yuri N; Kotova, Elena A; Omarova, Elena O; Rokitskaya, Tatyana I; Ol'shevskaya, Valentina A; Kalinin, Valery N; Nikitina, Roza G; Osipchuk, Julia S; Kaplan, Mikhail A; Ramonova, Alla A; Moisenovich, Mikhail M; Agapov, Igor I; Kirpichnikov, Mikhail P

    2014-03-01

    Photodynamic tumor-destroying activity of the boronated chlorin e6 derivative BACE (chlorin e6 13(1)-N-{2-[N-(1-carba-closo-dodecaboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl ester), previously described in Moisenovich et al. (2010) PLoS ONE 5(9) e12717, was shown here to be enormously higher than that of unsubstituted chlorin e6, being supported by the data on much higher photocytotoxicity of BACE in M-1 sarcoma cell culture. To validate membrane damaging effect as the basis of the enhanced tumoricidal activity, BACE was compared with unsubstituted chlorin e6 in the potency to photosensitize dye leakage from liposomes, transbilayer lipid flip-flop, inactivation of gramicidin A ionic channels in planar lipid membranes and erythrocyte hemolysis. In all the models comprising artificial and cellular membranes, the photodynamic effect of BACE exceeded that of chlorin e6. BACE substantially differed from chlorin e6 in the affinity to liposomes and erythrocytes, as monitored by fluorescence spectroscopy, flow cytometry and centrifugation. The results support the key role of membrane binding in the photodynamic effect of the boronated chlorin e6 amide.

  11. Spacer intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles.

    PubMed

    Ma, Xing; Sreejith, Sivaramapanicker; Zhao, Yanli

    2013-12-26

    Hydrophobic photosensitizer zinc(II) phthalocyanine (ZnPc) was loaded into adamantane (Ad) modified nanochannels of mesoporous silica nanoparticles (MSNPs). The Ad units on the surface of MSNPs were complexed with amino-substituted β-cyclodextrin to enhance the solubility of the hybrid in aqueous solution. The amino groups on β-cyclodextrin also provide functional sites for further conjugation with targeting ligands toward targeted cancer therapy. Since the intercalation of the Ad spacer isolates loaded ZnPc and prevents its aggregation inside MSNPs, ZnPc exhibits its monomeric characteristics to effectively generate cytotoxic singlet oxygen ((1)O2) upon light irradiation (675 nm) in aqueous conditions, leading to efficient photodynamic activity for successful cancer treatment in vitro. Current research presents a convenient approach to maintain the monomeric state of hydrophobic photosensitizer ZnPc by rationally utilizing multifunctional MSNPs as the carriers. The novel hybrid with targeting capability achieves active photodynamic property of monomeric ZnPc in aqueous solution under light irradiation, which may find its way for practical photodynamic therapy in the future.

  12. Daylighting and productivity at Lockheed

    SciTech Connect

    Thayer, B.M.

    1995-05-01

    A daylight office building built for Lockheed Martin near San Francisco has saved half a million dollars on energy bills and several times more due to reduced absenteeism and improved employee productivity. The building design incorporates soft daylight throughout the interior of the building. This article discusses the following topics in relationship to the building design: design for the climate; deep daylighting; integrated electric lighting; mechanical system; energy performance; the productivity story.

  13. Daylighting: six Aalto libraries

    SciTech Connect

    Moore, F. )

    1991-01-01

    In this paper, the author analyzes six libraries designed by the Finnish architect, Alvar Aalto (1898-1976) to illustrate the principles of daylighting. Aalto used vertical clerestories, roof monitors with 'scoops', and skylights with wells to minimize direct sunlight penetration. However, most of his buildings were designed during a time of abundant energy with little regard for problems of excessive heat loss or gain. For contemporary architects, the most valuable principle to be gleaned from Aalto is the use of white surfaces as diffuse, secondary illumination sources.

  14. Comparison between 5,10,15,20-tetraaryl- and 5,15-diarylporphyrins as photosensitizers: synthesis, photodynamic activity, and quantitative structure-activity relationship modeling.

    PubMed

    Banfi, Stefano; Caruso, Enrico; Buccafurni, Loredana; Murano, Roberto; Monti, Elena; Gariboldi, Marzia; Papa, Ester; Gramatica, Paola

    2006-06-01

    The synthesis of a panel of seven nonsymmetric 5,10,15,20-tetraarylporphyrins, 13 symmetric and nonsymmetric 5,15-diarylporphyrins, and one 5,15-diarylchlorin is described. In vitro photodynamic activities on HCT116 human colon adenocarcinoma cells were evaluated by standard cytotoxicity assays. A predictive quantitative structure-activity relationship (QSAR) regression model, based on theoretical holistic molecular descriptors, of a series of 34 tetrapyrrolic photosensitizers (PSs), including the 24 compounds synthesized in this work, was developed to describe the relationship between structural features and photodynamic activity. The present study demonstrates that structural features significantly influence the photodynamic activity of tetrapyrrolic derivatives: diaryl compounds were more active with respect to the tetraarylporphyrins, and among the diaryl derivatives, hydroxy-substituted compounds were more effective than the corresponding methoxy-substituted ones. Furthermore, three monoarylporphyrins, isolated as byproducts during diarylporphyrin synthesis, were considered for both photodynamic and QSAR studies; surprisingly they were found to be particularly active photosensitizers.

  15. In Vitro and in Vivo Demonstration of Photodynamic Activity and Cytoplasm Imaging through TPE Nanoparticles.

    PubMed

    Jayaram, Dhanya T; Ramos-Romero, Sara; Shankar, Balaraman H; Garrido, Cristina; Rubio, Nuria; Sanchez-Cid, Lourdes; Gómez, Salvador Borros; Blanco, Jeronimo; Ramaiah, Danaboyina

    2016-01-15

    We synthesized novel tetraphenylethene (TPE) conjugates, which undergo unique self-assembly to form spherical nanoparticles that exhibited aggregation induced emission (AIE) in the near-infrared region. These nanoparticles showed significant singlet oxygen generation efficiency, negligible dark toxicity, rapid cellular uptake, efficient localization in cytoplasm, and high in vitro photocytotoxicity as well as in vivo photodynamic activity against a human prostate tumor animal model. This study demonstrates, for the first time, the power of the self-assembled AIE active tetraphenylethene conjugates in aqueous media as a nanoplatform for future therapeutic applications.

  16. Photodynamic activity of aluminium (III) and zinc (II) phthalocyanines in Leishmania promastigotes.

    PubMed

    Escobar, Patricia; Hernández, Indira P; Rueda, Cesar M; Martínez, Fernando; Páez, Edgar

    2006-10-01

    Photodynamic therapy is a two-step procedure, involving the use of photosensitizing agents followed by selective illumination of the target lesion with visible light. It produces highly reactive oxygen species and subsequent cellular damage. This study was designed to determine whether Leishmania chagasi and L. panamensis promastigotes were sensitive to photodynamic therapy in vitro. Leishmania promastigotes were treated with aluminium phthalocyanine chloride and zinc phthalocyanine photosensitizers before illumination with visible light at 670 nm. The parasite photoactivity was calculated by sigmoidal regression analysis. Leishmania chagasi promastigotes were highly photosensitive to aluminium phthalocyanine chloride treatment with effective inhibitory dose50 (ED50) concentration values of 0.0033, 0.0083 and 0.0093 microM upon exposure to 10.0, 5.0, and 2.5 J/cm2 light intensities respectively. By contrast, the activity of aluminium phthalocyanine chloride on L. panamensis was significantly lower (P < 0.01) with ED50 values of 0.17, 0.25, 0.34 microM at the same light intensities. Zinc phthalocyanine activity was significantly (P < 0.01) less active than aluminium phthalocyanine chloride on both strains of these two species and no differences in zinc phthalocyanine activity were found between them. A dose-response phototoxic effect with both phthalocyanines was observed. Parasite inhibition was not observed after aluminium phthalocyanine chloride or zinc phthalocyanine treatment in the dark. The reference drugs hexadecylphosphocholine and amphotericin B were not photoactive. Treatment of Leishmania promastigotes with aluminium phthalocyanine chloride and zinc phthalocyanine followed by illumination with visible light at 670 nm inhibited in vitro growth of promastigotes of L. chagasi and L. panamensis. Photodynamic therapy against Leishmania could be a promising strategy for leishmaniasis treatment.

  17. Synthesis and photodynamic activities of modified benzochlorin derivatives on nasopharyngeal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Chang, Chi K.; Lau, Yan-Kin; Lai, Tat-Shing; Yeung, Lam-Lung; Leung, Wing-Nang; Mak, Nai-Ki

    2004-06-01

    Nasopharyngeal carcinoma (NPC), endemic in Southern China, is ranked as the fourth leading cause of cancer deaths in Hong Kong. In an effort to develop new PDT agents for cancer treatment, with a particular emphasis on the NPC, we have investigated the benzochlorin-type photosensitizers. The chromophore is functionalized with side chains containing polar and/or cationic groups. Synthetic methods have been developed for such purposes; e.g. 5-chlorosulfonyloctaethylbenzochlorin and 5-bromooctaethylbenzochlorin are used as versatile precursors for the preparation of ammonium and amidinium salts. Preliminary in vitro study of the photodynamic activity of the synthetic compounds indicated that the cationic benzochlorin derivatives display significant photocytotoxicity towards NPC cells.

  18. Biological activities of phthalocyanines--XVI. Tetrahydroxy- and tetraalkylhydroxy zinc phthalocyanines. Effect of alkyl chain length on in vitro and in vivo photodynamic activities.

    PubMed Central

    Boyle, R. W.; Leznoff, C. C.; van Lier, J. E.

    1993-01-01

    Zinc phthalocyanine substituted with four hydroxyl groups attached to the macrocycle, either directly or via spacer chains of three or six carbon atoms, were tested for their photodynamic ability to inactivate Chinese hamster lung fibroblasts (line V-79) in vitro, and to induce regression of EMT-6 tumours grown subcutaneously in Balb/c mice. Their potential to inflict direct cell killing during photodynamic therapy was investigated by examining vascular stasis immediately following photoirradiation using fluorescein as a marker, and also by an in vivo/in vitro EMT-6 cell survival assay. Both of the tetraalkylhydroxy substituted zinc phthalocyanines are effective photodynamic sensitisers in vivo with the tetrapropylhydroxy compound exhibiting about twice the activity of the tetrahexylhydroxy analogue. The differences in activities were accentuated in vitro, the tetrapropylhydroxy compound was two orders of magnitude more potent than the tetrahexylhydroxy analogue in photoinactivating V-79 cells. The tetrahydroxy compound lacking spacer chains failed to exhibit photodynamic activity in either system. Tumour response with the active compounds was preceded by vascular stasis immediate following irradiation which suggests, together with the absence of activity in the in vivo/in vitro assay, that tumour regression involves an indirect response to the photodynamic action rather than direct cell killing. These data demonstrate the importance of the spatial orientation of functional groups around the macrocycle of photosensitisers for their efficacy in the photodynamic therapy of cancer. PMID:8512803

  19. Healing of Perforating Rat Corneal Incisions Closed With Photodynamic Laser-Activated Tissue Glue

    PubMed Central

    Khadem, John; Martino, Michael; Anatelli, Florencia; Dana, M. Reza; Hamblin, Michael R.

    2011-01-01

    Background and Objectives Laser-activated photodynamic biologic tissue glues may be useful for closing incisions in ophthalmology. We report on the use of two such preparations to close perforating corneal incisions in living rats. Study Design/Materials and Methods A previously described preparation containing a covalent albumin-chlorin e6 (ce6) conjugate (bovine serum albumin (BSA)–ce6), and a novel mixture of albumin and Janus Green (BSA/JG), both activated with a 665-nm diode laser were used to glue mouse skin ex vivo. The optimized glues were then used to seal incisions in rat corneas and results were compared to control incisions. Rats were sacrificed at day 1, 7, and 14 and eyes tested for leaking pressure and examined histopathologically. Results One day after treatment eyes closed with BSA–ce6 had a leaking pressure (in mmHg) of 357 compared to 193 for control incisions (P<0.01); closure with BSA/JG gave a leaking pressure of 430 (P<0.05 compared to BSA–ce6, and P<0.001 compared to control). Histological examination showed eyes sealed with BSA/JG have less inflammation present than untreated eyes at 7 days. Conclusions These data demonstrate that photodynamic laser activated tissue glues can be used to effectively seal corneal incisions in living animals without thermal damage or undue inflammation. PMID:15493025

  20. Photodynamic activity of a glucoconjugated silicon(IV) phthalocyanine on human colon adenocarcinoma.

    PubMed

    Chan, Crystal M H; Lo, Pui-Chi; Yeung, Sin-Lui; Ng, Dennis K P; Fong, Wing-Ping

    2010-07-15

    Photodynamic therapy (PDT) involves the use of a non-toxic photosensitizer which exhibits a killing effect upon activation by light. In the past few years, we have synthesized a number of novel second generation photosensitizers with superior properties, most of them are phthalocyanines. Among them, the glucoconjugated silicon(IV) phthalocyanine (SiPcGlu) shows potent phototoxicity against human colorectal adenocarcinoma HT29 cells. In the present study, its action mechanism was investigated. The initiation of apoptosis by SiPcGlu-PDT, subsequent to reactive oxygen species production, was shown by the results of TUNEL assay, annexin V and propidium iodide staining and DNA ladder pattern analysis. Confocal microscopy revealed the presence of SiPcGlu in lysosome, mitochondria and endoplasmic reticulum. SiPcGlu-PDT did not cause any damage to the lysosomal membrane; whereas in the mitochondria, it caused membrane depolarization and the release of cytochrome c into the cytosol, which subsequently brought about caspase-3 activation. In the endoplasmic reticulum, the treatment led to Ca(2+) release and an increase in the expression level of the chaperone protein GRP78. These observations suggest that SiPcGlu-PDT triggered the apoptotic pathways in both mitochondria and endoplasmic reticulum, but not the lysosome. A preliminary study of the photodynamic activity of SiPcGlu in the in vivo animal model was also carried out. It retarded tumor growth in HT29 tumor-bearing nude mice while causing no apparent toxicity to the animal.

  1. Photodynamic activity of substituted zinc trisulfophthalocyanines: role of plasma membrane damage.

    PubMed

    Cauchon, Nicole; Nader, Moni; Bkaily, Ghassan; van Lier, Johan E; Hunting, Darel

    2006-01-01

    We recently reported that variations in cellular phototoxicity among a series of alkynyl-substituted zinc trisulfophthalocyanines (ZnPcS3Cn) correlates with their hydrophobicity, with the most amphiphilic derivatives showing the highest cell uptake and phototoxicity. In this study we address the role of the plasma membrane in the photodynamic response as it relates to the overall hydrophobicity of the photosensitizer. The membrane tracker dye 1-[4(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), which is incorporated into plasma membranes by endocytosis, was used to establish plasma membrane uptake by EMT-6 cells of the ZnPcS3C, by colocalization, and TMA-DPH membrane uptake rates after photodynamic therapy were used to quantify membrane damage. TMA-DPH colocalization patterns show plasma membrane uptake of the photosensitizers after short 1 h incubation periods. TMA-DPH plasma membrane uptake rates after illumination of the photosensitizer-treated cells show a parabolic relationship with photosensitizer hydrophobicity that correlates well with the phototoxicity of the ZnPcS3C,. After a 1 h incubation period, overall phototoxicity correlates closely with the postillumination rate of TMA-DPH incorporation into the cell membrane, suggesting a major role of plasma membrane damage in the overall PDT effect. In contrast, after a 24 h incubation, phototoxicity shows a stronger but imperfect correlation with total cellular photosensitizer uptake rather than TMA-DPH membrane uptake, suggesting a partial shift in the cellular damage responsible for photosensitization from the plasma membrane to intracellular targets. We conclude that plasma membrane localization of the amphiphilic ZnPcS3C6-C9 is a major factor in their overall photodynamic activity.

  2. Teaching Science: Beats the Daylight Out of Me.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1995-01-01

    Presents activities for observing, measuring, collecting, and graphing data about times of sunrise and sunset to teach an understanding about arrival of Daylight Savings Time in April. Also discusses seasonal affective disorder (SAD). (TM)

  3. N-acetyl Glucosamine Distribution and Mitochondrial Activity of Tumor Cell Exposed to Photodynamic Therapy.

    PubMed

    Pinto, G P; Lopes, K A R; Salles, N G; Pacheco-Soares, C

    2016-11-01

    The use of lectins can play an important role for tracking modification on cell surface components, since lectins can be easily complexed with radioisotopes, biotin or fluorescein, facilitating the evaluation of carbohydrates distribution in the cell and mitochondrial activity. The aim of this study was to evaluate photodynamic therapy effects on indirect distribution of N-acetyl-glucosamine terminal glycoproteins, in human laryngeal carcinoma HEp-2 cell line surface, using lectin wheat germ agglutinin (WGA) and on mitochondrial activity, for the same cell line, using MitoTracker. The photosensitizer Aluminum Phthalocyanine Tetrasulfonate (AlPcS4) was administrated at 10 μM/mL, followed by an incubation period for its accumulation in the tumor cells, which were irradiated with laser diode λ = 685 nm and energy density of 4.5 J/cm(2). Our results indicated that, after Photodynamic Therapy (PDT), it was observed N-acetyl glucosamine terminal glycoprotein expression and mitochondrial O2 production, compared to the control group. Based on these results, we suggest that PDT influences the O2 mitochondrial production and the presence of surface glycoproteins N-acetyl glucosamine terminals.

  4. Methylene Blue Doped Films of Wool Keratin with Antimicrobial Photodynamic Activity.

    PubMed

    Aluigi, Annalisa; Sotgiu, Giovanna; Torreggiani, Armida; Guerrini, Andrea; Orlandi, Viviana T; Corticelli, Franco; Varchi, Greta

    2015-08-12

    In this work, keratin films doped with different amounts of methylene blue (MB) were developed in order to prepare new biodegradable and biocompatible materials for tissue engineering and wound healing, able to exert antimicrobial photodynamic activity upon irradiation with visible light. Preliminary results indicated that the swelling ratio, as well as the MB release, increases by increasing the pH. Moreover, the generation of reactive oxygen species (ROS) and singlet oxygen can be easily triggered and controlled by a fine-tuning of the irradiation time and MB concentration in the films. As concerns the photodynamic effects on keratin, the ROS attack does not induce any significant photodegradation on the protein, even if a slight photo-oxidation of sulfonated amino acids occurs. Finally, the film with the highest MB concentration (400 μg per gram of keratin) displays a significant photobactericidal activity against Staphylococcus aureus with a bacterial reduction that increases by increasing the irradiation time. In particular, the irradiation of KFMB400 film incubated with S. aureus at a concentration of 10(8) cfu mL(-1) determined the 99.9% killing rate and the killing effect increased proportionally with irradiation time.

  5. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania.

    PubMed

    Nadhman, Akhtar; Nazir, Samina; Khan, Malik Ihsanullah; Arooj, Syeda; Bakhtiar, Muhammad; Shahnaz, Gul; Yasinzai, Masoom

    2014-12-01

    We describe daylight responsive silver (Ag) doped semiconductor nanoparticles of zinc oxide (DSNs) for photodynamic therapy (PDT) against Leishmania. The developed materials were characterized by X-ray diffraction analysis (XRD), Rutherford backscattering (RBS), diffused reflectance spectroscopy (DRS), and band-gap analysis. The Ag doped semiconductor nanoparticles of zinc oxide were PEGylated to enhance their biocompatibility. The DSNs demonstrated effective daylight response in the PDT of Leishmania protozoans, through the generation of reactive oxygen species (ROS) with a quantum yield of 0.13 by nondoped zinc oxide nanoparticles (NDSN) whereas 0.28 by DSNs. None of the nanoparticles have shown any antileishmanial activity in dark, confirming that only ROS produced in the daylight were involved in the killing of leishmanial cells. Furthermore, the synthesized nanoparticles were found biocompatible. Using reactive oxygen species scavengers, cell death was attributable mainly to 77-83% singlet oxygen and 18-27% hydroxyl radical. The nanoparticles caused permeability of the cell membrane, leading to the death of parasites. Further, the uptake of nanoparticles by Leishmania cells was confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). We believe that these DSNs are widely applicable for the PDT of leishmaniasis, cancers, and other infections due to daylight response.

  6. Beyond Photodynamic Therapy: Light-Activated Cancer Chemotherapy.

    PubMed

    Szymanski, Wiktor; Reeßing, Friederike

    2016-09-06

    Light-activatable cytotoxic agents present a novel approach in targeted cancer therapy. The selectivity in addressing cancer cells is a crucial aspect in minimizing unwanted side effects that stem from unspecific cytotoxic activity of cancer chemotherapeutics. Photoactivated chemotherapy is based on the use of inactive prodrugs whose biological activity is significantly increased upon exposure to light. As light can be delivered with a very high spatiotemporal resolution, this technique is a promising approach to selectively activate cytotoxic drugs at their site of action and thus to improve the tolerability and safety of chemotherapy. This innovative strategy can be applied to both cytotoxic metal complexes and organic compounds. In the first case, the photoresponsive element can either be part of the ligand backbone or be the metal center itself. In the second case, the activity of a known organic, cytotoxic compound is caged with a photocleavable protecting group, providing the release of the active compound upon irradiation. Besides these approaches, also the use of photoswitchable (photopharmacological) chemotherapeutics, which allow an "on" and "off" switching of biological activity, is being developed. The aim of this review is to present the current state of photoactivated cancer therapy and to identify its challenges and opportunities.

  7. Comparative in vitro study of photodynamic activity of hypericin and hypericinates in MCF-7 cells.

    PubMed

    de Andrade, Gislaine Patricia; Manieri, Tania Maria; Nunes, Emilene Arusievicz; Viana, Gustavo Monteiro; Cerchiaro, Giselle; Ribeiro, Anderson Orzari

    2017-08-24

    In this work we present a comparative in vitro study of photodynamic activity between hypericin (HYP) and some hypericinates (hypericin ionic pair with lysine or N-methylglucamine) in human mammary adenocarcinoma cells (MCF-7). The toxicity and phototoxicity of hypericin and hypericinates were compared, as well as their cellular uptake and localization and mutagenic, genotoxic and clonogenic capacity. Our results demonstrate that different cationic moieties promote differences in the hypericinate solubility in a biological environment, and can influence the cellular localization and the phototoxicity of the photosensitizer. It was verified that hypericinates have better efficiency to generate singlet oxygen than HYP, and a lower aggregation in biological medium. In vitro assays have shown that HYP and the hypericinates are able to permeate the MCF-7 cell membrane and accumulated in organelles near the nucleus. The difference in location, however, was not determinant to the cell death mechanism, and a higher prevalence of apoptosis for all studied compounds occurred. The photodynamic studies indicated that hypericinates were more effective than HYP and were able to inhibit the formation of cellular colonies, suggesting a possible ability to prevent the recurrence of tumors. It also appears that all compounds have relative safety for mutagenicity and genotoxicity, which opens up a further safe route for application in in vivo studies. Copyright © 2017. Published by Elsevier B.V.

  8. Evaluation of photodynamic activity, photostability and in vitro drug release of zinc phthalocyanine-loaded nanocapsules.

    PubMed

    de Souza, Thiane Deprá; Ziembowicz, Francieli Isa; Müller, Debora Friedrich; Lauermann, Sâmera Cristina; Kloster, Carmen Luisa; Santos, Roberto Christ Vianna; Lopes, Leonardo Quintana Soares; Ourique, Aline Ferreira; Machado, Giovanna; Villetti, Marcos Antonio

    2016-02-15

    Nanocapsule formulations containing zinc phthalocyanine (ZnPc) were investigated as drug delivery systems for use in photodynamic therapy (PDT). ZnPc loaded chitosan, PCL, and PCL coated with chitosan nanocapsules were prepared and characterized by means of their physicochemical properties, photodynamic activity, photostability and drug release profile. All formulations presented nanometric hydrodynamic radius, around 100 nm, low polydispersity index (0.08-0.24), slightly negative zeta potential for PCL nanoparticles and positive zeta potential for suspension containing chitosan. Encapsulation efficiencies were higher than 99%. The capacity of ZnPc loaded nanocapsules to produce cytotoxic singlet oxygen ((1)O2) by irradiation with red laser was monitored using 1.3-diphenylisobenzofuran as a probe. The singlet oxygen quantum yields (ΦΔ) for ZnPc loaded chitosan nanocapsules were high and similar to that of the standard (ZnPc in DMSO), displaying excellent ability to generate (1)O2. The photosensitizer loaded nanocapsules are photostable in the timescale usually utilized in PDT and only a small photobleaching event was observed when a light dose of 610J/cm(2) was applied. The in vitro drug release studies of ZnPc from all nanocapsules demonstrated a sustained release profile controlled by diffusion, without burst effect. The nature of the polymer and the core type of the nanocapsules regulated ZnPc release. Thus, the nanocapsules developed in this work are a promising strategy to be employed in PDT. Copyright © 2015. Published by Elsevier B.V.

  9. Photodynamic therapy for cancer and activation of immune response

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  10. Treatment of actinic cheilitis by photodynamic therapy with 5-aminolevulinic acid and blue light activation.

    PubMed

    Zaiac, Martin; Clement, Annabelle

    2011-11-01

    Actinic cheilitis (AC), a common disorder of the lower lip, should be treated early to prevent progression to invasive squamous cell carcinoma. This study evaluated the safety and efficacy of photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) activated by blue light for the treatment of AC. Fifteen patients with clinically evident or biopsy-proven AC received two treatments with ALA PDT with blue light activation. Treatments were spaced three to five weeks apart. Most patients achieved 65% to 75% clearance three to five weeks after the first treatment and all achieved more than 75% clearance one month after the second treatment. Three patients achieved complete clearance. Pain and burning during irradiation were absent or mild. All patients said they would repeat the procedure. ALA PDT with 417 nm blue light is a promising option for the treatment of AC of the lower lip.

  11. Uredinorubellins and caeruleoramularin, photodynamically active anthraquinone derivatives produced by two species of the genus ramularia.

    PubMed

    Miethbauer, Sebastian; Günther, Wolfgang; Schmidtke, Kai-Uwe; Heiser, Ingrid; Gräfe, Susanna; Gitter, Burkhard; Liebermann, Bernd

    2008-08-01

    Both the phytopathogenic fungus Ramularia collo-cygni and the hyperparasite R. uredinicola biosynthesize a number of red and yellow anthraquinone derivatives called rubellins. The new compounds uredinorubellins I and II, which were isolated from R. uredinicola, contribute to understanding the biosynthesis pathway that leads from simple anthraquinones to the rubellins. In addition, we isolated for the first time such simple compounds as chrysophanol and helminthsporin from both Ramularia species. A blue compound isolated from the mycelium of R. collo-cygni was revealed to be a unique 9,4-anthracenedione derivative. Structure elucidation by (1)H and (13)C NMR of the new but unstable compound caeruleoramularin was possible only by feeding the fungus different labeled (13)C acetates. The photodynamic activity of the uredinorubellins was comparable to rubellin D, whereas chrysophanol and caeruleoramularin did not display such activity.

  12. Evaluation of toxicological properties and photodynamic activity of Photolon ointment: an experimental study

    NASA Astrophysics Data System (ADS)

    Shliakhtsin, Siarhei V.; Trukhachova, Tatsiana V.; Istomin, Yuriy P.; Dunetz, Ludmila N.; Kuvshinov, Andrey V.; Naumovich, Semen A.

    2009-06-01

    The purpose of the present study was to evaluate toxicological properties and photodynamic activity of a new ready form of the photosensitizer Photolon (Fotolon) - an ointment for topical use. The data obtained show the use of topicaly applied photosensitizer provides sufficient penetration and accumulation of the active compound in tumor tissue as well as in affected periodontal tissues for the effective PDT. There are several advantages of PDT with topical application of the photosensitizer such as absence of systemic toxic and photosensitive reactions, relatively low cost of the treatment and etc. We have shown that PDT of affected periodontal tissues with local application of Photolon/Fotolon ointment provides an ability of local destruction of microbial cell, located as on the gum surface as in the spatium intercellulare what is extremely important for successful treatment of acute and chronic periodontitis.

  13. X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Zou, Xiaoju; Bui, Brian; Chen, Wei; Song, Kwang Hyun; Solberg, Timothy

    2014-07-01

    Copper and cobalt co-doped ZnS (ZnS:Cu,Co) afterglow nanoparticles were conjugated to photosensitizer tetrabromorhodamine-123 (TBrRh123) and efficient energy transfer from the nanoparticles to TBrRh123 was observed. In addition to their X-ray excited luminescence, the ZnS:Cu,Co nanoparticles also show long lasting afterglow, which continuously serve as a light source for photodynamic therapy (PDT) activation. Compared to TBrRh123 or ZnS:Cu,Co alone, the ZnS:Cu,Co-TBrRh123 conjugates show low dark toxicity but high X-ray induced toxicity to human prostate cancer cells. The results indicate that the ZnS:Cu,Co afterglow nanoparticles have a good potential for PDT activation.

  14. LED-activated methylene blue-loaded Pluronic-nanogold hybrids for in vitro photodynamic therapy.

    PubMed

    Simon, Timea; Boca-Farcau, Sanda; Gabudean, Ana-Maria; Baldeck, Patrice; Astilean, Simion

    2013-12-01

    In this work we introduce a new class of multifunctional photodynamic agents based on the coupling of photosensitizer molecules with noble metal nanoparticles, which can be efficiently activated under low light intensity. The favourable modification of the photophysical properties of methylene blue (MB) in MB-loaded Pluronic-nanogold hybrids (Au-PF127-MB) increases the probability of singlet oxygen generation, which in turn allows the use of a light emitting diode (LED) irradiation source instead of commonly used, more invasive lasers. In this regard, Au-PF127-MB treated human lung carcinoma cells (HTB 177) were irradiated at different light doses, using a 660 nm LED source, the results indicating a dose dependent therapeutic effect, decreasing the cell viability down to 13%. Owing to their effectiveness, biocompatibility and integrated imaging and therapeutic functionalities, Au-PF127-MB could represent an important development in the field of biophotonic applications.

  15. Formation of gold decorated porphyrin nanoparticles and evaluation of their photothermal and photodynamic activity.

    PubMed

    Chen, Ruey-Juen; Chen, Po-Chung; Prasannan, Adhimoorthy; Vinayagam, Jayaraman; Huang, Chun-Chiang; Chou, Peng-Yi; Weng, Cheng-Chih; Tsai, Hsieh Chih; Lin, Shuian-Yin

    2016-06-01

    A core-shell gold (Au) nanoparticle with improved photosensitization have been successfully fabricated using Au nanoparticles and 5,10,15,20 tetrakis pentafluorophenyl)-21H,23H-porphine (PF6) dye, forming a dyad through molecular self-assembly. Au nanoparticles were decorated on the shell and PF6 was placed in the core of the nanoparticles. Highly stable Au nanoparticles were achieved using PF6 with poly(N-vinylcaprolactam-co-N-vinylimidazole)-g-poly(D,L-lactide) graft copolymer hybridization. This was compared with hybridization using cetyltrimethylammonium bromide and polyethylene glycol-b-poly(D,L-lactide) for shell formation with PF6-Au. The resulting PF6-poly(N-vinylcaprolactam-co-N-vinylimidazole)-g-poly(D,L-lactide)-Au core-shell nanoparticle were utilized for photothermal and photodynamic activities. The spectroscopic analysis and zeta potential values of micelles revealed the presence of a thin Au layer coated on the PF6 nanoparticle surface, which generally enhanced the thermal stability of the gold nanoparticles and the photothermal effect of the shell. The core-shell PF6-Au nanoparticles were avidly taken up by cells and demonstrated cellular phototoxicity upon irradiation with 300W halogen lamps. The structural arrangement of PF6 dyes in the core-shell particles assures the effectiveness of singlet oxygen production. The study verifies that PF6 particles when companied with Au nanoparticles as PF6-Au have possible combinational applications in photodynamic and photothermal therapies for cancer cells because of their high production of singlet oxygen and heat.

  16. Colour Mixing Based on Daylight

    ERIC Educational Resources Information Center

    Meyn, Jan-Peter

    2008-01-01

    Colour science is based on the sensation of monochromatic light. In contrast to that, surface colours are caused by reflection of wide sections of the daylight spectrum. Non-spectral colours like magenta and purple appear homologous to colours with spectral hue, if the approach of mixing monochromatic light is abandoned. It is shown that a large…

  17. Colour Mixing Based on Daylight

    ERIC Educational Resources Information Center

    Meyn, Jan-Peter

    2008-01-01

    Colour science is based on the sensation of monochromatic light. In contrast to that, surface colours are caused by reflection of wide sections of the daylight spectrum. Non-spectral colours like magenta and purple appear homologous to colours with spectral hue, if the approach of mixing monochromatic light is abandoned. It is shown that a large…

  18. Stress-activated signaling responses leading to apoptosis following photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; He, Jin; Xue, Liang-yan; Separovic, Duska

    1998-05-01

    Photodynamic treatment with the phthalocyanine Pc 4, a mitochondrially localizing photosensitizer, is an efficient inducer of cell death by apoptosis, a cell suicide pathway that can be triggered by physiological stimuli as well as by various types of cellular damage. Upon exposure of the dye- loaded cells to red light, several stress signalling pathways are rapidly activated. In murine L5178Y-R lymphoblasts, caspase activation and other hallmarks of the final phase of apoptosis are observed within a few minutes post-PDT. In Chinese hamster CHO-K1 cells, the first signs of apoptosis are not observed for 1 - 2 hours. The possible involvement of three parallel mitogen-activated protein kinase (MAPK) signalling pathways has been investigated. The extracellular- regulated kinases (ERK-1 and ERK-2), that are thought to promote cell growth, are not appreciably altered by PDT. However, PDT causes marked activation of the stress-activated protein kinase (SAPK) cascade in both cell types and of the p38/HOG-type kinase in CHO cells. Both of these latter pathways have been demonstrated to be associated with apoptosis. A specific inhibitor of the ERK pathway did not alter PDT-induced apoptosis; however, an inhibitor of the p38 pathway partially blocked PDT-induced apoptosis. Blockage of the SAPK pathway is being pursued by a genetic approach. It appears that the SAPK and p38 pathways may participate in signaling apoptosis in response to PDT with Pc 4.

  19. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90

    PubMed Central

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2017-01-01

    The translation of photodynamic therapy (PDT) to the clinical setting has primarily been limited to easily accessible and/or superficial diseases, for which traditional light delivery can be performed noninvasively. Cerenkov radiation, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively to overcome this depth limitation. This article investigates the utility of Cerenkov radiation, as generated from the radionuclide yttrium-90, for activating the PDT process using clinically approved aminolevulinic acid at 1.0 mm and also the more efficient porphyrin-based photosensitizer mesotetraphenylporphine with two sulfonate groups on adjacent phenyl rings (TPPS2a) at 1.2 μM. Experiments were conducted with monolayer cultured glioma and breast tumor cell lines. Although aminolevulinic acid proved to be ineffective for generating a therapeutic effect at all but the highest activity levels, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 μCi/well for the C6 glioma cell line. Importantly, these results demonstrate for the first time, to our knowledge, that Cerenkov radiation generated from a radionuclide can be used to activate PDT using clinically relevant photosensitizers. These results therefore provide evidence that it may be possible to generate a phototherapeutic effect in vivo using Cerenkov radiation and clinically relevant photosensitizers. PMID:27481495

  20. ROS-responsive activatable photosensitizing agent for imaging and photodynamic therapy of activated macrophages.

    PubMed

    Kim, Hyunjin; Kim, Youngmi; Kim, In-Hoo; Kim, Kyungtae; Choi, Yongdoo

    2013-01-01

    The optical properties of macrophage-targeted theranostic nanoparticles (MacTNP) prepared from a Chlorin e6 (Ce6)-hyaluronic acid (HA) conjugate can be activated by reactive oxygen species (ROS) in macrophage cells. MacTNP are nonfluorescent and nonphototoxic in their native state. However, when treated with ROS, especially peroxynitrite, they become highly fluorescent and phototoxic. In vitro cell studies show that MacTNP emit near-infrared (NIR) fluorescence inside activated macrophages. The NIR fluorescence is quenched in the extracellular environment. MacTNP are nontoxic in macrophages up to a Ce6 concentration of 10 μM in the absence of light. However, MacTNP become phototoxic upon illumination in a light dose-dependent manner. In particular, significantly higher phototoxic effect is observed in the activated macrophage cells compared to human dermal fibroblasts and non-activated macrophages. The ROS-responsive MacTNP, with their high target-to-background ratio, may have a significant potential in selective NIR fluorescence imaging and in subsequent photodynamic therapy of atherosclerosis with minimum side effects.

  1. In vivo photodynamic activity of photosensitizer-loaded nanoparticles: formulation properties, administration parameters and biological issues involved in PDT outcome.

    PubMed

    Vargas, Angelica; Eid, Michael; Fanchaouy, Mohammed; Gurny, Robert; Delie, Florence

    2008-05-01

    Encapsulation of hydrophobic photosensitizers (PS) into polymeric nanoparticles (NP) has proven to be an effective alternative to organic solvents for their formulation. As NP size controls NP passage through endothelial barriers, it is a key parameter for achieving passive targeting of cancer tissues and choroidal neovascularization, secondary to age-related macular degeneration, the main applications of photodynamic therapy. In the present study, a hydrophobic PS, the meso-tetra(p-hydroxyphenyl)porphyrin, was encapsulated into biodegradable NP made of poly(D,L-lactide-co-glycolide) 50:50 via an emulsification-diffusion technique. NP batches having mean diameters of 117, 285, and 593 nm were obtained with narrow size distribution. Using the chorioallantoic membrane (CAM) of the developing chick embryo, it was demonstrated that the increase in the NP size decreased photodynamic activity in vivo. The activity of PS-loaded NP was not influenced by the volume of injection and was kept intact at least 6h after NP reconstitution. Investigation of NP circulation after IV administration by fluorescence measurements revealed that 117 nm NP reached Tmax earlier than larger NP. Confocal imaging of CAM vessels demonstrated PS uptake by endothelial cells after NP administration. It was concluded that NP size controls the photodynamic activity of the encapsulated PS.

  2. In vitro Activity of Linezolid in Combination with Photodynamic Inactivation Against Staphylococcus aureus Biofilms

    PubMed Central

    Kashef, Nasim; Akbarizare, Mahboobeh; Razzaghi, Mohammad Reza

    2017-01-01

    Background: Biofilm infections are a major challenge in medical practice. Bacteria that live in a biofilm phenotype are more resistant to both antimicrobial therapy and host immune responses compared to their planktonic counterparts. So, there is need for new therapeutic strategies to combat these infections. A promising approach [known as Photodynamic Inactivation (PDI)] to kill bacteria growing as biofilms uses light in combination with a photosensitizer to induce a phototoxic reaction which produces reactive oxygen species that can destroy lipids and proteins causing cell death. PDI does not always guarantee full success, so, combination of PDI with antibiotics may give increased efficiency. This study aimed to determine if PDI was effective in the eradication of Staphylococcus aureus (S. aureus) biofilms in combination with linezolid. Methods: The susceptibility of biofilm cultures of three S. aureus strains to Methylene Blue (MB) and Toluidine Blue O (TBO)-mediated PDI was determined alone and in combination with linezolid. Results: Bactericidal activity (≥3 log10 reduction in viable cell count) was not achieved with MB/TBO-PDI or antibiotic treatment alone. When antibiotic treatment was combined with TBO-PDI, a greater reduction in viable count than antibiotic alone was observed for two strains. Conclusion: This study showed that although TBO-PDI did not have good bactericidal activity against S. aureus biofilms; it increased the antimicrobial activity of linezolid against these bacteria. PMID:28090280

  3. Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N-methyl morpholiniumethoxy substituents in non-peripheral positions.

    PubMed

    Dlugaszewska, Jolanta; Szczolko, Wojciech; Koczorowski, Tomasz; Skupin-Mrugalska, Paulina; Teubert, Anna; Konopka, Krystyna; Kucinska, Malgorzata; Murias, Marek; Düzgüneş, Nejat; Mielcarek, Jadwiga; Goslinski, Tomasz

    2017-07-01

    Photodynamic therapy involves the use of a photosensitizer that is irradiated with visible light in the presence of oxygen, resulting in the formation of reactive oxygen species. A novel phthalocyanine derivative, the quaternary iodide salt of magnesium(II) phthalocyanine with N-methyl morpholiniumethoxy substituents, was synthesized, and characterized. The techniques used included mass spectrometry (MALDI TOF), UV-vis, NMR spectroscopy, and photocytotoxicity against bacteria, fungi and cancer cells. The phthalocyanine derivative possessed typical characteristics of compounds of the phthalocyanine family but the effect of quaternization was observed on the optical properties, especially in terms of absorption efficiency. The results of the photodynamic antimicrobial effect study demonstrated that cationic phthalocyanine possesses excellent photodynamic activity against planktonic cells of both Gram-positive and Gram-negative bacteria. The bactericidal effect was dose-dependent and all bacterial strains tested were killed to a significant degree by irradiated phthalocyanine at a concentration of 1×10(-4)M. There were no significant differences in the susceptibility of Gram-positive and Gram-negative bacteria to the applied photosensitizer. The photosensitivity of bacteria in the biofilm was lower than that in planktonic form. No correlation was found between the degree of biofilm formation and susceptibility to antimicrobial photodynamic inactivation. The anticancer activity of the novel phthalocyanine derivative was tested using A549 adenocarcinomic alveolar basal epithelial cells and the human oral squamous cell carcinoma cells derived from tongue (HSC3) or buccal mucosa (H413). No significant decrease in cell viability was observed under different conditions or with different formulations of the compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Photodynamic therapy using a protease-mediated theranostic agent reduces cathepsin-B activity in mouse atheromata in vivo.

    PubMed

    Shon, Soo-Min; Choi, Yongdoo; Kim, Jeong-Yeon; Lee, Dong Kun; Park, Jin-Yong; Schellingerhout, Dawid; Kim, Dong-Eog

    2013-06-01

    To investigate whether an intravenously injected cathepsin-B activatable theranostic agent (L-SR15) would be cleaved in and release a fluorescent agent (chlorin-e6) in mouse atheromata, allowing both the diagnostic visualization and therapeutic application of these fluorophores as photosensitizers during photodynamic therapy to attenuate plaque-destabilizing cathepsin-B activity by selectively eliminating macrophages. Thirty-week-old apolipoprotein E knock-out mice (n=15) received intravenous injection of L-SR15 theranostic agent, control agent D-SR16, or saline 3× (D0, D7, D14). Twenty-four hours after each injection, the bilateral carotid arteries were exposed, and Cy5.5 near-infrared fluorescent imaging was performed. Fluorescent signal progressively accumulated in the atheromata of the L-SR15 group animals only, indicating that photosensitizers had been released from the theranostic agent and were accumulating in the plaque. After each imaging session, photodynamic therapy was applied with a continuous-wave diode-laser. Additional near-infrared fluorescent imaging at a longer wavelength (Cy7) with a cathepsin-B-sensing activatable molecular imaging agent showed attenuation of cathepsin-B-related signal in the L-SR15 group. Histological studies demonstrated that L-SR15-based photodynamic therapy decreased macrophage infiltration by inducing apoptosis without significantly affecting plaque size or smooth muscle cell numbers. Toxicity studies (n=24) showed that marked erythematous skin lesion was generated in C57/BL6 mice at 24 hours after intravenous injection of free chlorin-e6 and ultraviolet light irradiation; however, L-SR15 or saline did not cause cutaneous phototoxicity beyond that expected of ultraviolet irradiation alone, neither did we observe systemic toxicity or neurobehavioral changes. This is the first study showing that macrophage-secreted cathepsin-B activity in atheromata could be attenuated by photodynamic therapy using a protease

  5. Synthesis, X-ray crystal structure, antimicrobial activity and photodynamic effects of some thiabendazole complexes.

    PubMed

    Mothilal, K K; Karunakaran, Chandran; Rajendran, Ayyapan; Murugesan, Ramachandran

    2004-02-01

    An interesting series of metal complexes of thiabendazole (tbz) is synthesized and characterized by elemental analyses and spectroscopic studies. The crystal structure of the hydrogen bonded one dimensional Co(II) complex, namely [Co(tbz)(2)(NO(3))(H(2)O)](NO(3)) is solved by single crystal X-ray diffraction. The complex crystallizes in monoclinic space group P2(1)/a with unit cell parameters, a=14.366(2), b=11.459(4), c=15.942(3) A, beta=113.78(3) degrees and z=4. The unit cell packing reveals an extensive hydrogen bonding involving a water molecule, nitrate ligands and the protonated nitrogen atoms of the tbz ligands, resulting in a one dimensional hydrogen bonding pattern. The antimicrobial activity of the complexes against selected bacteria (Escherichia coli and Bacillus subtilis) and yeast (Aspergillus flavues) is estimated. The relationship between the enzymatic production of ROS and antimicrobial activity of the complexes is examined, and a good correlation between two factors is found. Photodynamic quantum yields of singlet oxygen production (RNO bleaching assay) and rate of superoxide generation (SOD inhibitable ferricytochrome c reduction assay and EPR spin trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide as spin trap) by the metal complexes have been studied.

  6. Impact of crosslinking/riboflavin-UVA-photodynamic inactivation on viability, apoptosis and activation of human keratocytes in vitro

    PubMed Central

    Stachon, Tanja; Wang, Jiong; Song, Xufei; Langenbucher, Achim; Seitz, Berthold; Szentmáry, Nóra

    2015-01-01

    Abstract Riboflavin-UVA photodynamic inactivation is a potential treatment alternative in therapy resistant infectious keratitis. The purpose of our study was to determine the impact of riboflavin-UVA photodynamic inactivation on viability, apoptosis and activation of human keratocytes in vitro. Primary human keratocytes were isolated from human corneal buttons and cultured in DMEM/Ham's F12 medium supplemented with 10% fetal calf serum. Keratocytes underwent UVA light illumination (375 nm) for 4.10 minutes (2 J/cm2) during exposure to different concentrations of riboflavin. Twenty-four hours after treatment, cell viability was evaluated photometrically, whereas apoptosis, CD34 and alpha-smooth muscle actin (α-SMA) expression were assessed using flow cytometry. We did not detect significant changes in cell viability, apoptosis, CD34 and α-SMA expression in groups only treated with riboflavin or UVA light. In the group treated with riboflavin-UVA-photodynamic inactivation, viability of keratocytes decreased significantly at 0.1% riboflavin (P<0.01) while the percentage of CD34 (P<0.01 for both 0.05% and 0.1% riboflavin) and alpha-SMA positive keratocytes (P<0.01 and P<0.05 for 0.05% and 0.1% riboflavin, respectively) increased significantly compared to the controls. There was no significant change in the percentage of apoptotic keratocytes compared to controls at any of the used riboflavin concentrations (P = 0.09 and P = 0.13). We concluded that riboflavin-UVA-photodynamic-inactivation decreases viability of myofibroblastic transformation and multipotent haematopoietic stem cell transformation; however, it does not have an impact on apoptosis of human keratocytes in vitro. PMID:26243519

  7. Annihilation of Leishmania by daylight responsive ZnO nanoparticles: a temporal relationship of reactive oxygen species-induced lipid and protein oxidation.

    PubMed

    Nadhman, Akhtar; Khan, Malik Ihsanullah; Nazir, Samina; Khan, Momin; Shahnaz, Gul; Raza, Abida; Shams, Dilawar Farhan; Yasinzai, Masoom

    2016-01-01

    Lipid and protein oxidation are well-known manifestations of free radical activity and oxidative stress. The current study investigated extermination of Leishmania tropica promastigotes induced by lipid and protein oxidation with reactive oxygen species produced by PEGylated metal-based nanoparticles. The synthesized photodynamic therapy-based doped and nondoped zinc oxide nanoparticles were activated in daylight that produced reactive oxygen species in the immediate environment. Lipid and protein oxidation did not occur in dark. The major lipid peroxidation derivatives comprised of conjugated dienes, lipid hydroperoxides, and malondialdehyde whereas water, ethane, methanol, and ethanol were found as the end products. Proteins were oxidized to carbonyls, hydroperoxides, and thiol degrading products. Interestingly, lipid hydroperoxides were produced by more than twofold of the protein hydroperoxides, indicating higher degradation of lipids compared to proteins. The in vitro evidence represented a significant contribution of the involvement of both lipid and protein oxidation in the annihilated antipromastigote effect of nanoparticles.

  8. Annihilation of Leishmania by daylight responsive ZnO nanoparticles: a temporal relationship of reactive oxygen species-induced lipid and protein oxidation

    PubMed Central

    Nadhman, Akhtar; Khan, Malik Ihsanullah; Nazir, Samina; Khan, Momin; Shahnaz, Gul; Raza, Abida; Shams, Dilawar Farhan; Yasinzai, Masoom

    2016-01-01

    Lipid and protein oxidation are well-known manifestations of free radical activity and oxidative stress. The current study investigated extermination of Leishmania tropica promastigotes induced by lipid and protein oxidation with reactive oxygen species produced by PEGylated metal-based nanoparticles. The synthesized photodynamic therapy-based doped and nondoped zinc oxide nanoparticles were activated in daylight that produced reactive oxygen species in the immediate environment. Lipid and protein oxidation did not occur in dark. The major lipid peroxidation derivatives comprised of conjugated dienes, lipid hydroperoxides, and malondialdehyde whereas water, ethane, methanol, and ethanol were found as the end products. Proteins were oxidized to carbonyls, hydroperoxides, and thiol degrading products. Interestingly, lipid hydroperoxides were produced by more than twofold of the protein hydroperoxides, indicating higher degradation of lipids compared to proteins. The in vitro evidence represented a significant contribution of the involvement of both lipid and protein oxidation in the annihilated antipromastigote effect of nanoparticles. PMID:27330288

  9. Simultaneous two-photon activation of type-I photodynamic therapy agents.

    PubMed

    Fisher, W G; Partridge, W P; Dees, C; Wachter, E A

    1997-08-01

    The excitation and emission properties of several psoralen derivatives are compared using conventional single-photon excitation and simultaneous two-photon excitation (TPE). Two-photon excitation is effected using the output of a mode-locked titanium: sapphire laser, the near infrared output of which is used to promote nonresonant TPE directly. Specifically, the excitation spectra and excited-state properties of 8-methoxypsoralen and 4'-aminomethyl-4,5,8-trimethylpsoralen are shown to be equivalent using both modes of excitation. Further, in vitro feasibility of two-photon photodynamic therapy (PDT) is demonstrated using Salmonella typhimurium. Two-photon excitation may be beneficial in the practice of PDT because it would allow replacement of visible or UV excitation light with highly penetrating, nondamaging near infrared light and could provide a means for improving localization of therapy. Comparison of possible laser excitation sources for PDT reveals the titanium: sapphire laser to be exceptionally well suited for nonlinear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate that together provide efficient PDT activation and greatly reduced potential for biological damage.

  10. Preparation and in vitro photodynamic activity of novel silicon(IV) phthalocyanines conjugated to serum albumins.

    PubMed

    Huang, Jian-Dong; Lo, Pui-Chi; Chen, Yan-Mei; Lai, Janice C; Fong, Wing-Ping; Ng, Dennis K P

    2006-05-01

    The interactions of four novel silicon(IV) phthalocyanines (SiPc), namely SiPc[OC(3)H(5)(NMe(2))(2)](2) (1), SiPc[OC(3)H(5)(NMe(2))(2)](OMe) (2), {SiPc[OC(3)H(5)(NMe(3))(2)](2)}I(4) (3), and {SiPc[OC(3)H(5)(NMe(3))(2)](OMe)}I(2) (4) with human serum albumin (HSA), bovine serum albumin (BSA), and maleylated bovine serum albumin (mBSA) were studied by fluorescence spectroscopy. The fluorescence emission of the serum albumins was effectively quenched by these phthalocyanines mainly through a static quenching mechanism. The higher Stern-Volmer quenching constants for the unsymmetrically substituted phthalocyanines 2 and 4 suggested that they have a stronger interaction with these proteins than the symmetrically substituted analogues 1 and 3. A series of non-covalent BSA or mBSA conjugates of these phthalocyanines were also prepared and evaluated for their in vitro photodynamic activity against HepG2 human hepatocarcinoma cells. The bioconjugation could enhance the photocytotoxicity of 1 and 4 by up to eight folds, but the effects on 2 and 3 were negligible. The results could be partly explained by two counter-balancing effects, namely the enhanced uptake and increased aggregation tendency of phthalocyanine due to BSA conjugation. As shown by absorption spectroscopy, the tetracationic phthalocyanine 3 was significantly aggregated in the protein cavity and its photocytotoxicity remained the lowest among the four photosensitizers.

  11. Synthesis, characterization and in vitro photodynamic antimicrobial activity of basic amino acid-porphyrin conjugates.

    PubMed

    Meng, Shuai; Xu, Zengping; Hong, Ge; Zhao, Lihui; Zhao, Zhanjuan; Guo, Jianghong; Ji, Haiying; Liu, Tianjun

    2015-03-06

    Photodynamic antimicrobial chemotherapy (PACT), as a novel and effective modality for the treatment of infection with the advantage of circumventing multidrug resistance, receives great attention in recent years. The photosensitizer is the crucial element in PACT, and cationic porphyrins have been demonstrated to usually be more efficient than neutral and negatively charged analogues towards bacteria in PACT. In this work, three native basic amino acids, l-lysine, l-histidine and l-arginine, were conjugated with amino porphyrins as cationic auxiliary groups, and 13 target compounds were synthesized. This paper reports their syntheses, structural characterizations, oil-water partition coefficients, singlet oxygen generation yields, photo-stability, as well as their photo inactivation efficacies against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa in vitro. The preliminary structure-activity relationship was discussed. Compound 4i, with porphyrin bearing four lysine moieties, displays the highest photo inactivation efficacy against the tested bacterial strains at 3.91 μM with a low light dose (6 J/cm(2)), and it is stable in serum and lower cytotoxicity to A929 cells. These basic amino acid-porphyrin conjugates are potential photosensitizers for PACT. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3

    PubMed Central

    Edmonds, Christine; Hagan, Sarah; Gallagher-Colombo, Shannon M.; Busch, Theresa M.; Cengel, Keith A.

    2012-01-01

    Patients with serosal (pleural or peritoneal) spread of malignancy have few definitive treatment options and consequently have a very poor prognosis. We have previously shown that photodynamic therapy (PDT) can be an effective treatment for these patients, but that the therapeutic index is relatively narrow. Here, we test the hypothesis that EGFR and STAT3 activation increase survival following PDT, and that inhibiting these pathways leads to increased PDT-mediated direct cellular cytotoxicity by examining BPD-PDT in OvCa and NSCLC cells. We found that BPD-mediated PDT stimulated EGFR tyrosine phosphorylation and nuclear translocation, and that EGFR inhibition by erlotinib resulted in reduction of PDT-mediated EGFR activation and nuclear translocation. Nuclear translocation and PDT-mediated activation of EGFR were also observed in response to BPD-mediated PDT in multiple cell lines, including OvCa, NSCLC and head and neck cancer cells, and was observed to occur in response to porfimer sodium-mediated PDT. In addition, we found that PDT stimulates nuclear translocation of STAT3 and STAT3/EGFR association and that inhibiting STAT3 signaling prior to PDT leads to increased PDT cytotoxicity. Finally, we found that inhibition of EGFR signaling leads to increased PDT cytotoxicity through a mechanism that involves increased apoptotic cell death. Taken together, these results demonstrate that PDT stimulates the nuclear accumulation of both EGFR and STAT3 and that targeting these survival pathways is a potentially promising strategy that could be adapted for clinical trials of PDT for patients with serosal spread of malignancy. PMID:22986230

  13. Daylight vision repair by cell transplantation.

    PubMed

    Santos-Ferreira, Tiago; Postel, Kai; Stutzki, Henrike; Kurth, Thomas; Zeck, Günther; Ader, Marius

    2015-01-01

    Human daylight vision depends on cone photoreceptors and their degeneration results in visual impairment and blindness as observed in several eye diseases including age-related macular degeneration, cone-rod dystrophies, or late stage retinitis pigmentosa, with no cure available. Preclinical cell replacement approaches in mouse retina have been focusing on rod dystrophies, due to the availability of sufficient donor material from the rod-dominated mouse retina, leaving the development of treatment options for cone degenerations not well studied. Thus, an abundant and traceable source for donor cone-like photoreceptors was generated by crossing neural retina leucine zipper-deficient (Nrl(-/-) ) mice with an ubiquitous green fluorescent protein (GFP) reporter line resulting in double transgenic tg(Nrl(-/-); aGFP) mice. In Nrl(-/-) retinas, all rods are converted into cone-like photoreceptors that express CD73 allowing their enrichment by CD73-based magnetic activated cell sorting prior transplantation into the subretinal space of adult wild-type, cone-only (Nrl(-/-)), or cone photoreceptor function loss 1 (Cpfl1) mice. Donor cells correctly integrated into host retinas, acquired mature photoreceptor morphology, expressed cone-specific markers, and survived for up to 6 months, with significantly increased integration rates in the cone-only Nrl(-/-) retina. Individual retinal ganglion cell recordings demonstrated the restoration of photopic responses in cone degeneration mice following transplantation suggesting, for the first time, the feasibility of daylight vision repair by cell replacement in the adult mammalian retina. © 2014 AlphaMed Press.

  14. Daylight saving time in psychiatric illness.

    PubMed

    Shapiro, C M; Blake, F; Fossey, E; Adams, B

    1990-07-01

    It has been reported that the change in photoperiod induced by the occurrence of daylight saving time has an effect on psychiatric presentation. We therefore investigated the impact of daylight saving time in three conditions: (1) parasuicide presentations; (2) psychiatric outpatient contacts, and inpatient admissions; (3) registered suicides. Results indicate that neither the change in photoperiod nor the effect of a small change in circadian rhythm associated with daylight saving time has an effect on 'cases' in any of the three conditions.

  15. Daylight metrics and energy savings

    SciTech Connect

    Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

    2009-12-31

    The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

  16. Nitric oxide-mediated activity in anti-cancer photodynamic therapy.

    PubMed

    Rapozzi, Valentina; Della Pietra, Emilia; Zorzet, Sonia; Zacchigna, Marina; Bonavida, Benjamin; Xodo, Luigi Emilio

    2013-04-01

    Cell recurrence in cancer photodynamic therapy (PDT) is an important issue that is poorly understood. It is becoming clear that nitric oxide (NO) is a modulator of PDT. By acting on the NF-κB/Snail/RKIP survival/anti-apoptotic loop, NO can either stimulate or inhibit apoptosis. We found that pheophorbide a/PDT (Pba/PDT) induces the release of NO in B78-H1 murine amelanotic melanoma cells in a concentration-dependent manner. Low-dose PDT induces low NO levels by stimulating the anti-apoptotic nature of the above loop, whereas high-dose PDT stimulates high NO levels inhibiting the loop and activating apoptosis. When B78-H1 cells are treated with low-dose Pba/PDT and DETA/NO, an NO-donor, intracellular NO increases and cell growth is inhibited according to scratch-wound and clonogenic assays. Western blot analyses showed that the combined treatment reduces the expression of the anti-apoptotic NF-κB and Snail gene products and increases the expression of the pro-apoptotic RKIP gene product. The combined effect of Pba and DETA/NO was also tested in C57BL/6 mice bearing a syngeneic B78-H1 melanoma. We used pegylated Pba (mPEG-Pba) due to its better pharmacokinetics compared to free Pba. mPEG-Pba (30 mg/Kg) and DETA/NO (0.4 mg/Kg) were i.p. injected either as a single molecule or in combination. After photoactivation at 660 nM (fluence of 193 J/cm(2)), the combined treatment delays tumor growth more efficiently than each individual treatment (p<0.05). Taken together, our results showed that the efficacy of PDT is strengthened when the photosensitizer is used in combination with an NO donor.

  17. Photodynamic activities of silicon phthalocyanines against achromic M6 melanoma cells and healthy human melanocytes and keratinocytes.

    PubMed

    Decreau, R; Richard, M J; Verrando, P; Chanon, M; Julliard, M

    1999-01-01

    Dichlorosilicon phthalocyanine (Cl2SiPc) and bis(tri-n-hexylsiloxy) silicon phthalocyanine (HexSiPc) have been evaluated in vitro as potential photosensitizers for photodynamic therapy (PDT) against the human amelanotic melanoma cell line M6. Each photosensitizer is dissolved in a solvent-PBS mixture, or entrapped in egg-yolk lecithin liposomes or in Cremophor EL micelles. The cells are incubated for 1 h with the sensitizer and then irradiated for 20 min, 1 h or 2 h (lambda > 480 nm, 10 mW cm-2). The photocytotoxic effect is dependent on the photosensitizer concentration and the light dose. Higher phototoxicity is observed after an irradiation of 2 h: treatment with a solution of photosensitizer (2 x 10(-9) M) leads to 10% (HexSiPc in egg-yolk lecithin liposomes) or 20% (Cl2SiPc in DMF-PBS solution) cell viability. After 1 h incubation and 20 min of light exposure, the photodynamic effect is connected with the type of delivery system used. For HexSiPc, lower cell viability is found when this photosensitizer is entrapped in egg-yolk lecithin instead of solvent-PBS or for Cremophor EL micelles with Cl2SiPc. Liposome-delivered HexSiPc leads to lipid damage in M6 cells, illustrated by an increase of thiobarbituric acid-reacting substances (TBARs), but the change is not significant with Cremophor EL. The same is observed for the antioxidative defences after photodynamic stress. The cells irradiated with HexSiPc entrapped in liposomes display an increase of superoxide dismutase (SOD) activity and a decrease of glutathione (GSH) level, glutathione peroxidase (GSHPx) and catalase (Cat) activities.

  18. Photodynamic Therapy (PDT): PDT Mechanisms

    PubMed Central

    Allison, Ron R.

    2013-01-01

    Photodynamic therapy (PDT) is a light based therapy used to ablate tumors. As practiced in oncology a photosensitizing agent is applied and then activated by a specific wavelength and energy of light. This light energy in the presence of oxygen will lead to the creation of the photodynamic reaction which is cyto and vasculo toxic. This paper will review the mechanisms of action of PDT and how they may be manipulated to improve clinical outcome in cancer patients. PMID:23422955

  19. 14 CFR 103.11 - Daylight operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Daylight operations. 103.11 Section 103.11... AND GENERAL OPERATING RULES ULTRALIGHT VEHICLES Operating Rules § 103.11 Daylight operations. (a) No... anticollision light visible for at least 3 statute miles; and (2) All operations are conducted in...

  20. Daylighting Strategies Promote Healthy High Performance Buildings

    ERIC Educational Resources Information Center

    Gille, Steve

    2010-01-01

    There are many reasons to incorporate daylighting into the building or renovation of K-16 learning facilities. Benefits include increased productivity for students and staff, improved health, a better connection to the outdoors, energy savings and better quality of light. Add the role daylighting can play in LEED certification and it's clear that…

  1. Daylighting Strategies Promote Healthy High Performance Buildings

    ERIC Educational Resources Information Center

    Gille, Steve

    2010-01-01

    There are many reasons to incorporate daylighting into the building or renovation of K-16 learning facilities. Benefits include increased productivity for students and staff, improved health, a better connection to the outdoors, energy savings and better quality of light. Add the role daylighting can play in LEED certification and it's clear that…

  2. Photodynamic therapy for cancer

    MedlinePlus

    ... that is treated. The side effects are temporary. Alternative Names Phototherapy; Photochemotherapy; Photoradiation therapy; Cancer of the esophagus-photodynamic; Esophageal cancer-photodynamic; Lung ...

  3. Antitumor activity of photodynamic therapy performed with nanospheres containing zinc-phthalocyanine.

    PubMed

    Portilho, Flávia Arruda; Cavalcanti, Cláudio Eduardo de Oliveira; Miranda-Vilela, Ana Luisa; Estevanato, Luciana Landim Carneiro; Longo, João Paulo Figueiró; Almeida Santos, Maria de Fátima Menezes; Bocca, Anamélia Lorenzetti; Martins, Olímpia Paschoal; Simioni, Andreza R; Morais, Paulo César; Azevedo, Ricardo Bentes; Tedesco, Antonio Claudio; Lacava, Zulmira Guerrero Marques

    2013-12-16

    The increasing incidence of cancer and the search for more effective therapies with minimal collateral effects have prompted studies to find alternative new treatments. Among these, photodynamic therapy (PDT) has been proposed as a very promising new modality in cancer treatment with the lowest rates of side effects, revealing itself to be particularly successful when the photosensitizer is associated with nanoscaled carriers. This study aimed to design and develop a new formulation based on albumin nanospheres containing zinc-phthalocyanine tetrasulfonate (ZnPcS4-AN) for use in the PDT protocol and to investigate its antitumor activity in Swiss albino mice using the Ehrlich solid tumor as an experimental model for breast cancer. Ehrlich tumor's volume, histopathology and morphometry were used to assess the efficacy of intratumoral injection of ZnPcS4-AN in containing tumor aggressiveness and promoting its regression, while the toxicity of possible treatments was assessed by animal weight, morphological analysis of the liver and kidneys, hemogram, and serum levels of total bilirubin, direct bilirubin, indirect bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transferase (GGT), alkaline phosphatase, creatinine and urea. In order to evaluate the efficacy of PDT, groups of animals treated with intratumoral injection of doxorubicin (Dox) were also investigated. Intratumoral injection of ZnPcS4-AN was found to be efficient in mediating PDT to refrain tumor aggressiveness and to induce its regression. Although tumor volume reduction was not significant, PDT induced a remarkable increase in the necrosis area seen in the tumor's central region, as in other experimental groups, including tumor and Dox treated groups, but also in the tumor's peripheral region. Further, PDT showed minimal adverse effects. Indeed, the use of ZnPcS4-AN in mediating PDT revealed anti-neoplastic activity similar to that obtained while using intratumoral

  4. Antitumor activity of photodynamic therapy performed with nanospheres containing zinc-phthalocyanine

    PubMed Central

    2013-01-01

    Background The increasing incidence of cancer and the search for more effective therapies with minimal collateral effects have prompted studies to find alternative new treatments. Among these, photodynamic therapy (PDT) has been proposed as a very promising new modality in cancer treatment with the lowest rates of side effects, revealing itself to be particularly successful when the photosensitizer is associated with nanoscaled carriers. This study aimed to design and develop a new formulation based on albumin nanospheres containing zinc-phthalocyanine tetrasulfonate (ZnPcS4-AN) for use in the PDT protocol and to investigate its antitumor activity in Swiss albino mice using the Ehrlich solid tumor as an experimental model for breast cancer. Methods Ehrlich tumor’s volume, histopathology and morphometry were used to assess the efficacy of intratumoral injection of ZnPcS4-AN in containing tumor aggressiveness and promoting its regression, while the toxicity of possible treatments was assessed by animal weight, morphological analysis of the liver and kidneys, hemogram, and serum levels of total bilirubin, direct bilirubin, indirect bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transferase (GGT), alkaline phosphatase, creatinine and urea. In order to evaluate the efficacy of PDT, groups of animals treated with intratumoral injection of doxorubicin (Dox) were also investigated. Results Intratumoral injection of ZnPcS4-AN was found to be efficient in mediating PDT to refrain tumor aggressiveness and to induce its regression. Although tumor volume reduction was not significant, PDT induced a remarkable increase in the necrosis area seen in the tumor’s central region, as in other experimental groups, including tumor and Dox treated groups, but also in the tumor’s peripheral region. Further, PDT showed minimal adverse effects. Indeed, the use of ZnPcS4-AN in mediating PDT revealed anti-neoplastic activity similar to that

  5. Photophysical behavior and photodynamic therapy activity of conjugates of zinc monocarboxyphenoxy phthalocyanine with human serum albumin and chitosan

    NASA Astrophysics Data System (ADS)

    Oluwole, David O.; Prinsloo, Earl; Nyokong, Tebello

    2017-02-01

    Zinc monocarboxyphenoxy phthalocyanine (ZnMCPPc) was linked to human serum albumin (HSA) and chitosan via amide bond formation. The photophysical behavior and photodynamic therapy (PDT) activity (against human breast adenocarcinoma cell line (MCF-7 cells) of ZnMCPPc alone and its conjugates were investigated. The conjugates showed improved fluorescence, triplet and singlet oxygen quantum yields when compared to ZnMCPPc alone. The in vitro dark cytotoxicity and PDT studies were carried out at a dose of 3.6 μg/mL to 57.1 μg/mL. The in vitro dark cytotoxicity studies of ZnMCPPc showed cell viability < 50% at 28.6 μg/mL and 57.1 μg/mL, while the conjugates showed > 50% in all their tested concentrations (3.6 to 57.1) μg/mL. Thus, conjugation of ZnMCPPc to HSA and chitosan improves its dark cytotoxicity, an important criteria for molecules meant for photodynamic therapy. Complex 1 showed the most efficacious PDT activity with cell viability < 50% at concentration range of (14.3 to 57.1) μg/mL in comparison to the conjugates which only showed < 50% cell viability at 28.6 μg/mL and 57.1 μg/mL for 1-HSA and 57.1 μg/mL for 1-Chitosan.

  6. Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Zou, Xiaoju; Hossu, Marius; Chen, Wei

    2016-08-01

    Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag+ luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment.

  7. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-04-06

    In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.

  8. Synthesis and in vitro anticancer activity of zinc(II) phthalocyanines conjugated with coumarin derivatives for dual photodynamic and chemotherapy.

    PubMed

    Zhou, Xiao-Qin; Meng, Lu-Bo; Huang, Qi; Li, Jun; Zheng, Ke; Zhang, Feng-Ling; Liu, Jian-Yong; Xue, Jin-Ping

    2015-02-01

    The combination of photodynamic therapy and chemotherapy is a promising strategy to overcome growing problems in contemporary medicine, such as low therapeutic efficacy and drug resistance. Four zinc(II) phthalocyanine-coumarin conjugates were synthesized and characterized. In these complexes, zinc(II) phthalocyanine was used as the photosensitizing unit, and a coumarin derivative was selected as the cytostatic moiety; the two components were linked via a tri(ethylene glycol) chain. These conjugates exhibit high photocytotoxicity against HepG2 human hepatocarcinoma cells, with low IC50 values in the range of 0.014-0.044 μM. The high photodynamic activities of these conjugates are in accordance with their low aggregation tendency and high cellular uptake. One of these conjugates exhibits high photocytotoxicity and significantly higher chemocytotoxicity. The results clearly show that the two antitumor components in these conjugates work in a cooperative fashion. As shown by confocal microscopy, the conjugates can localize in the mitochondria and lysosomes, and one of the conjugates can also localize in the cell nuclei.

  9. Synthesis, spectroscopic properties and photodynamic activity of porphyrin-fullerene C60 dyads with application in the photodynamic inactivation of Staphylococcus aureus.

    PubMed

    Ballatore, M Belén; Spesia, Mariana B; Milanesio, M Elisa; Durantini, Edgardo N

    2014-08-18

    A covalently linked porphyrin-fullerene C60 dyad 5 was synthesized by 1,3-dipolar cycloaddition using 5-(4-formylphenyl)-10,15,20-tris[3-(N-ethylcarbazoyl)]porphyrin, N-methylglycine and fullerene C60. Methylation of 5 was used to obtain a cationic dyad 6. Spectroscopic properties were compared in toluene, N,N-dimethylformamide (DMF) and toluene/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water reverse micelles. Absorption spectra of the dyads were essentially a superposition of the spectra of the porphyrin and fullerene reference compounds, indicating a very weak interaction between the chromophores in the ground state. The fluorescence emission of the porphyrin moiety in the dyads was strongly quenched by the attached fullerene C60 unit. The singlet molecular oxygen, O2((1)Δg), productions (ΦΔ) were strongly dependent on the solvent polarity. Similar ΦΔ values were obtained for 5,10,15,20-tetrakis[3-(N-ethylcarbazoyl)]porphyrin (TCP) in both solvents. Also, dyad 5 showed a high O2((1)Δg) generation in toluene. However, O2((1)Δg) production mediated by 5 considerably diminished in the more polar solvent DMF. Also, a high photodynamic activity involving O2((1)Δg) was found for both dyads in a simple biomimetic system formed by AOT reverse micelles. The photoinactivation ability of these dyads was investigated in Staphylococcus aureus cell suspensions. Photosensitized inactivation of S. aureus by dyad 6 exhibits a 4.5 log decrease of cell survival (99.997% cell inactivation), when the cultures are treated with 5 μM photosensitizer and irradiated with visible light (350-800 nm) for 30 min. Under these conditions, a lower photocytotoxic effect was found for 5 (3.2 log decrease). Furthermore, photoinactivation induced by 6 was higher than those obtained with the separate moieties of the dyad. Therefore, molecular structures formed by porphyrin-fullerene C60 dyads represent interesting photosensitizers to inactivate S. aureus. Copyright © 2014 Elsevier Masson

  10. In Vitro Photodynamic Therapy and Quantitative Structure–Activity Relationship Studies with Stable Synthetic Near-Infrared-Absorbing Bacteriochlorin Photosensitizers

    PubMed Central

    Huang, Ying-Ying; Mroz, Pawel; Zhiyentayev, Timur; Sharma, Sulbha K.; Balasubramanian, Thiagarajan; Ruzié, Christian; Krayer, Michael; Fan, Dazhong; Borbas, K. Eszter; Yang, Eunkyung; Kee, Hooi Ling; Kirmaier, Christine; Diers, James R.; Bocian, David F.; Holten, Dewey; Lindsey, Jonathan S.; Hamblin, Michael R.

    2010-01-01

    Photodynamic therapy (PDT) is a rapidly developing approach to treating cancer that combines harmless visible and near-infrared light with a nontoxic photoactivatable dye, which upon encounter with molecular oxygen generates the reactive oxygen species that are toxic to cancer cells. Bacteriochlorins are tetrapyrrole compounds with two reduced pyrrole rings in the macrocycle. These molecules are characterized by strong absorption features from 700 to >800 nm, which enable deep penetration into tissue. This report describes testing of 12 new stable synthetic bacteriochlorins for PDT activity. The 12 compounds possess a variety of peripheral substituents and are very potent in killing cancer cells in vitro after illumination. Quantitative structure–activity relationships were derived, and subcellular localization was determined. The most active compounds have both low dark toxicity and high phototoxicity. This combination together with near-infrared absorption gives these bacteriochlorins great potential as photosensitizers for treatment of cancer. PMID:20441223

  11. The elusive challenge of daylighted buildings

    SciTech Connect

    Selkowitz, Steve

    1998-02-01

    As we approach the end of the decade of the 1990s, daylighting is increasingly promoted as a design strategy and building solution that can save energy and improve human performance and satisfaction in indoor spaces. Similar claims were made in the 1970s in the aftermath of the oil embargo. Twenty-five years later, in a world newly concerned about carbon emissions, global warming, and sustainable design, daylighted buildings are again proposed as a ''solution.'' While it is possible to find some examples of well daylighted buildings that have been built in the last 25 years, the fact that there are so few suggests that the optimistic outlook for daylighting needs to be critically (re)examined. In 1978 and again in 1986 the author examined [Selkowitz 1979, Selkowitz 1986] the gap between the potential benefits claimed for daylighted buildings and the actual achievements in building practice. That gap remains in 1998. The first challenge is to define performance expectations for a daylighted space. Many definitions of daylighted buildings and the associated performance expectations are used interchangeably: Architectural definition: the interplay of natural light and building form to provide a visually stimulating, healthful, and productive interior environment; Lighting Energy Savings definition: the replacement of indoor electric illumination needs by daylight, resulting in reduced annual energy consumption for lighting; Building Energy Consumption definition: the use of fenestration systems and responsive electric lighting controls to reduce overall building energy requirements (heating, cooling, lighting); Load Management definition: dynamic control of fenestration and lighting to manage and control building peak electric demand and load shape; Cost definition: the use of daylighting strategies to minimize operating costs and maximize output, sales, or productivity. Each of these (and others) is a legitimate perspective, but it is important to be clear about

  12. Daylight and absenteeism--evidence from Norway.

    PubMed

    Markussen, Simen; Røed, Knut

    2015-01-01

    Based on administrative register data from Norway, we examine the impact of hours of daylight on sick-leave absences among workers. Our preferred estimates imply that an additional hour of daylight increases the daily entry rate to absenteeism by 0.5 percent and the corresponding recovery rate by 0.8 percent, ceteris paribus. The overall relationship between absenteeism and daylight hours is negative. Absenteeism is also sensitive to weather conditions. Heavy snowfall raises the incidence of absence during the winter, while warm weather reduces the probability of returning to work during the summer.

  13. Heliostat design for the daylighting system.

    PubMed

    Chang, Chih-Hung; Hsiso, Horng-Ching; Chang, Cheng-Ming; Wang, Chen-You; Lin, Tzung-Han; Chen, Yi-Yung; Lai, Yi-Lung; Yen, Cho-Jung; Chen, Kuan-Yu; Whang, Allen Jong-Woei

    2014-10-10

    The daylighting system is designed to guide sunlight into buildings for illumination. It has the best illumination performance when sunlight vertically impinges on the collector of the daylighting system, while it has low performance when sunlight impinges obliquely. To overcome the problem, this paper investigates the design of a heliostat that reflects sunlight vertically onto a daylighting system. This study proposes a 3×3 mirror matrix heliostat, which is different from the traditional heliostat with one single mirror. With the heliostat, the system efficiency increases as high as 3.32 times.

  14. Transcriptional activation of HIF-1 by a ROS-ERK axis underlies the resistance to photodynamic therapy

    PubMed Central

    Pansa, María Florencia; Vera, Renzo Emanuel; Fernández-Zapico, Martín Ernesto; Rumie Vittar, Natalia Belén; Rivarola, Viviana Alicia

    2017-01-01

    Photodynamic therapy (PDT), a promising treatment option for cancer, involves the activation of a photosensitizer (PS) by local irradiation with visible light. Excitation of the PS leads to a series of photochemical reactions and consequently the local generation of harmful reactive oxygen species (ROS) causing limited or none systemic defects. However, the development of resistance to this promising therapy has slowed down its translation into the clinical practice. Thus, there is an increase need in understanding of the molecular mechanism underlying resistance to PDT. Here, we aimed to examine whether a relationship exists between PDT outcome and ROS-involvement in the resistance mechanism in photosensitized cancer cells. In order to recapitulate tumor architecture of the respective original tumor, we developed a multicellular three-dimensional spheroid system comprising a normoxic periphery, surrounding a hypoxic core. Using Me-ALA, a prodrug of the PS PpIX, in human colorectal spheroids we demonstrate that HIF-1 transcriptional activity was strongly up-regulated and mediates PDT resistant phenotype. RNAi knockdown of HIF-1 impairs resistance to PDT. Oxidative stress-mediated activation of ERK1/2 followed PDT was involved on positive modulation of HIF-1 transcriptional activity after photodynamic treatment. ROS scavenging and MEK/ERK pathway inhibition abrogated the PDT-mediated HIF-1 upregulation. Together our data demonstrate that resistance to PDT is in part mediated by the activation of a ROS-ERK1/2-HIF-1 axis, thus, identifying novel therapeutic targets that could be used in combination with PDT. PMID:28545088

  15. Transcriptional activation of HIF-1 by a ROS-ERK axis underlies the resistance to photodynamic therapy.

    PubMed

    Lamberti, María Julia; Pansa, María Florencia; Vera, Renzo Emanuel; Fernández-Zapico, Martín Ernesto; Rumie Vittar, Natalia Belén; Rivarola, Viviana Alicia

    2017-01-01

    Photodynamic therapy (PDT), a promising treatment option for cancer, involves the activation of a photosensitizer (PS) by local irradiation with visible light. Excitation of the PS leads to a series of photochemical reactions and consequently the local generation of harmful reactive oxygen species (ROS) causing limited or none systemic defects. However, the development of resistance to this promising therapy has slowed down its translation into the clinical practice. Thus, there is an increase need in understanding of the molecular mechanism underlying resistance to PDT. Here, we aimed to examine whether a relationship exists between PDT outcome and ROS-involvement in the resistance mechanism in photosensitized cancer cells. In order to recapitulate tumor architecture of the respective original tumor, we developed a multicellular three-dimensional spheroid system comprising a normoxic periphery, surrounding a hypoxic core. Using Me-ALA, a prodrug of the PS PpIX, in human colorectal spheroids we demonstrate that HIF-1 transcriptional activity was strongly up-regulated and mediates PDT resistant phenotype. RNAi knockdown of HIF-1 impairs resistance to PDT. Oxidative stress-mediated activation of ERK1/2 followed PDT was involved on positive modulation of HIF-1 transcriptional activity after photodynamic treatment. ROS scavenging and MEK/ERK pathway inhibition abrogated the PDT-mediated HIF-1 upregulation. Together our data demonstrate that resistance to PDT is in part mediated by the activation of a ROS-ERK1/2-HIF-1 axis, thus, identifying novel therapeutic targets that could be used in combination with PDT.

  16. Focus group discussions of daylighting practices

    SciTech Connect

    Roberson, B.F.; Harkreader, S.A.

    1988-11-01

    This research was sponsored by the US Department of Energy (DOE) Office of Buildings and Community systems and conducted by Pacific Northwest Laboratory (PNL) as part of an ongoing effort to enhance the commercial use of federally developed technologies. One such technology is the use of daylighting practices in the design of nonresidential buildings. This document is a report of the findings from meetings of focus groups conducted to gain insight into building designers' perceptions and attitudes about daylighting systems.

  17. Photodynamic antitumor agents: beta-methoxyethyl groups give access to functionalized porphycenes and enhance cellular uptake and activity.

    PubMed

    Richert, C; Wessels, J M; Müller, M; Kisters, M; Benninghaus, T; Goetz, A E

    1994-08-19

    Porphycene photosensitizers bearing two or four methoxyethyl side chains were synthesized in nine steps from commercially available starting materials. Ether cleavage led to (hydroxyethyl)- and (bromoethyl)porphycenes that were converted to vinyl and benzo derivatives. Five of the side chain-functionalized porphycenes were biologically studied in comparison with two tetra-n-propylporphycenes. Porphycenes were incorporated in small unilamellar liposomes and incubated with cultivated SSK2 murine fibrosarcoma cells. Cellular uptake and phototoxicity 24 h after 5 J/cm2 laser light treatment were determined. The porphycenes tested were between 17 and 220 times more photodynamically active than the currently clinically used sensitizer Photofrin, although extinction coefficients of the porphycenes' irradiated bands are only approximately 10-fold higher. The LD50 concentration for SSK2 cells in the incubation medium was as low as (8.5 +/- 2.8) x 10(-9) M for tetrakis(methoxyethyl)porphycene. Two methoxy or hydroxy groups enhanced cellular uptake, three or four methoxy groups both enhanced and accelerated cellular uptake of tetraalkylporphycenes. Half-life times of the uptake processes varied between (0.14 +/- 0.04) and (14 +/- 4) h and cellular saturation levels between (1.2 +/- 0.2) and (26 +/- 3) pmol/10(5) cells. When individual uptake rates were accounted for, all porphycenes had a similar "cellular" phototoxicity, pointing toward a common mechanism of action. Evidence is presented for the assumption that cell membranes are the primary targets of the tested porphycenes and that membrane solubility may play a critical role in their photodynamic efficiency. The results show that nonionic polar side chain functionalities can strongly enhance cellular uptake and antitumor activity of lipophilic porphyrinoids and thus that the known lipophilicity/activity relationship can be reversed for very hydrophobic sensitizers.

  18. Photodynamic immune modulation (PIM)

    NASA Astrophysics Data System (ADS)

    North, John R.; Hunt, David W. C.; Simkin, Guillermo O.; Ratkay, Leslie G.; Chan, Agnes H.; Lui, Harvey; Levy, Julia G.

    1999-09-01

    Photodynamic Therapy (PDT) is accepted for treatment of superficial and lumen-occluding tumors in regions accessible to activating light and is now known to be effective in closure of choroidal neovasculature in Age Related Macular Degeneration. PDT utilizes light absorbing drugs (photosensitizers) that generate the localized formation of reactive oxygen species after light exposure. In a number of systems, PDT has immunomodulatory effects; Photodynamic Immune Modulation (PIM). Using low- intensity photodynamic regimens applied over a large body surface area, progression of mouse autoimmune disease could be inhibited. Further, this treatment strongly inhibited the immunologically- medicated contact hypersensitivity response to topically applied chemical haptens. Immune modulation appears to result from selective targeting of activated T lymphocytes and reduction in immunostimulation by antigen presenting cells. Psoriasis, an immune-mediated skin condition, exhibits heightened epidermal cell proliferation, epidermal layer thickening and plaque formation at different body sites. In a recent clinical trial, approximately one-third of patients with psoriasis and arthritis symptoms (psoriatic arthritis) displayed a significant clinical improvement in several psoriasis-related parameters after four weekly whole-body PIM treatments with verteporfin. The safety profile was favorable. The capacity of PIM to influence other human immune disorders including rheumatoid arthritis is under extensive evaluation.

  19. Biosynthesis of photodynamically active rubellins and structure elucidation of new anthraquinone derivatives produced by Ramularia collo-cygni.

    PubMed

    Miethbauer, Sebastian; Haase, Susann; Schmidtke, Kai-Uwe; Günther, Wolfgang; Heiser, Ingrid; Liebermann, Bernd

    2006-06-01

    Here we present the first isolation of the anthrachinone derivative rubellin A out of mycelium and culture filtrate of Ramularia collo-cygni. Furthermore, two compounds, rubellin E and 14-dehydro rubellin D were isolated and their structures elucidated. In comparison to the other rubellins, rubellin A shows increased photodynamic oxygen activation. By incorporating both [1-(13)C]-acetate and [2-(13)C]-acetate into the rubellins, we showed that such anthraquinone derivatives were biosynthesised via the polyketide pathway. The labelling pattern after being fed [U-(13)C(6)]-glucose proved the existence of fungal folding mode of the poly-beta-keto chain. The ability to produce rubellins is not limited to R. collo-cygni in the anamorph genus Ramularia.

  20. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy.

    PubMed

    Chen, Nai-Tzu; Tang, Kuo-Chun; Chung, Ming-Fang; Cheng, Shih-Hsun; Huang, Ching-Mao; Chu, Chia-Hui; Chou, Pi-Tai; Souris, Jeffrey S; Chen, Chin-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2014-01-01

    The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer.

  1. Enhanced Plasmonic Resonance Energy Transfer in Mesoporous Silica-Encased Gold Nanorod for Two-Photon-Activated Photodynamic Therapy

    PubMed Central

    Chen, Nai-Tzu; Tang, Kuo-Chun; Chung, Ming-Fang; Cheng, Shih-Hsun; Huang, Ching-Mao; Chu, Chia-Hui; Chou, Pi-Tai; Souris, Jeffrey S.; Chen, Chin-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2014-01-01

    The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer. PMID:24955141

  2. Synthesis and photodynamic activities of silicon 2,3-naphthalocyanine derivatives.

    PubMed

    Brasseur, N; Nguyen, T L; Langlois, R; Ouellet, R; Marengo, S; Houde, D; van Lier, J E

    1994-02-04

    Bis(tert-butyldimethylsiloxy)- (7), bis(dimethylthexylsiloxy)- (8), bis(tri-n-hexylsiloxy)- (9), and bis(dimethyloctadecylsiloxy)silicon 2,3-naphthalocyanines (10) were prepared via substitution of the bis(hydroxy) precursor with the corresponding chlorosilane ligands and characterized by spectroscopic and combustion analyses. They show strong absorption around 780 nm where tissues exhibit optimal transparency. Compounds 7-10 are capable of producing singlet oxygen. They are relatively photostable although less stable than the analogous phthalocyanine, i.e., the bis-(dimethylthexylsiloxy)silicon phthalocyanine (12). They were evaluated as potential photosensitizers for the photodynamic therapy (PDT) of cancer in vitro against V-79 cells and in vivo against the EMT-6 tumor in Balb/c mice. In vitro all four dyes showed limited phototoxicity combined with substantial dark toxicity. Surprisingly, in vivo (i.v., 0.1 mumol/kg, 24 h prior to the photoirradiation of the tumor with 780-nm light, 190 mW/cm2, 400 J/cm2) all dyes induced tumor regression in at least 50% of mice whereas compound 8 gave a complete tumor response in 80% of mice without apparent systemic toxicity at doses as high as 10 mumol/kg. At 24 h postinjection, compound 8 showed a favorable tumor to muscle ratio of 7, assuring minimal damage to the healthy tissue surrounding the tumor during PDT. Our data confirm the potential of silicon naphthalocyanines as far-red-shifted photosensitizers for the PDT of cancer and indicate the importance of the selection of the two axial silicon ligands for optimal photodynamic efficacy.

  3. Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299).

    PubMed

    Crescenzi, Elvira; Chiaviello, Angela; Canti, Gianfranco; Reddi, Elena; Veneziani, Bianca Maria; Palumbo, Giuseppe

    2006-03-01

    We compared the effects of monotherapy (photodynamic therapy or chemotherapy) versus combination therapy (photodynamic therapy plus a specific drug) on the non-small cell lung cancer cell line H1299. Our aim was to evaluate whether the additive/synergistic effects of combination treatment were such that the cytostatic dose could be reduced without affecting treatment efficacy. Photodynamic therapy was done by irradiating Photofrin-preloaded H1299 p53/p16-null cells with a halogen lamp equipped with a bandpass filter. The cytotoxic drugs used were cis-diammine-dichloroplatinum [II] (CDDP or cisplatin) and 2',2'-difluoro-2'-deoxycytidine (gemcitabine). Various treatment combinations yielded therapeutic effects (trypan blue dye exclusion test) ranging from additive to clearly synergistic, the most effective being a combination of photodynamic therapy and CDDP. To gain insight into the cellular response mechanisms underlying favorable outcomes, we analyzed the H1299 cell cycle profiles and the expression patterns of several key proteins after monotherapy. In our conditions, we found that photodynamic therapy with Photofrin targeted G0-G1 cells, thereby causing cells to accumulate in S phase. In contrast, low-dose CDDP killed cells in S phase, thereby causing an accumulation of G0-G1 cells (and increased p21 expression). Like photodynamic therapy, low-dose gemcitabine targeted G0-G1 cells, which caused a massive accumulation of cells in S phase (and increased cyclin A expression). Although we observed therapeutic reinforcement with both drugs and photodynamic therapy, reinforcement was more pronounced when the drug (CDDP) and photodynamic therapy exert disjointed phase-related cytotoxic activity. Thus, if photodynamic therapy is appropriately tuned, the dose of the cytostatic drug can be reduced without compromising the therapeutic response.

  4. The Role of Daylighting in Skilled Nursing Short-Term Rehabilitation Facilities.

    PubMed

    Gharaveis, Arsalan; Shepley, Mardelle McCuskey; Gaines, Kristi

    2016-01-01

    The aim of this study is to investigate the best placement of windows in short-term rehabilitation facilities in terms of daylighting and outdoor views by exploring the impact of windows on resident perception of stress, mood, activities, and satisfaction. The physiological and psychological benefits of daylighting have made it an increasingly important topic in multidisciplinary research. Although multiple studies have been written about the impact of daylight on physiological responses, few investigations have been made into the nonvisual effects related to resident mood, satisfaction, and stress level. In addition, researchers typically propose recommendations for quantitative aspects of illuminance, rather than addressing the behavioural outcomes. A combination of qualitative and quantitative methodologies were used to address the research questions. Thirty-four participants, who were living temporarily in the inpatient rehabilitation units of two skilled nursing facilities, were subjects in semistructured interviews and a 7-question 5-scale survey. While residents expressed the need to have direct visual access to the outdoors, they indicated that daylight was of even higher benefit. Additionally, they noted that size and location of windows impacted their stress levels, moods, and activities. More than half of the facility residents reported changing their postures for either better outdoor views or less light disturbance while sleeping. The results of this study emphasize the importance of daylighting for residents in rehabilitation units. Architects should acknowledge the role of daylighting and window views in the design of rehabilitation facilities. © The Author(s) 2015.

  5. Water-Solubilization of Fullerene Derivatives by β-(1,3-1,6)-D-Glucan and Their Photodynamic Activities toward Macrophages.

    PubMed

    Ikeda, Atsushi; Iizuka, Tatsuya; Maekubo, Naotake; Nobusawa, Kazuyuki; Sugikawa, Kouta; Koumoto, Kazuya; Suzuki, Toshio; Nagasaki, Takeshi; Akiyama, Motofusa

    2017-03-06

    Anionic and neutral fullerene derivatives were dissolved in water by β-(1,3-1,6)-D-glucan (β-1,3-glucan) as a solubilizing agent. In the water-solubilized complexes, the concentrations of fullerene derivatives were ca. 0.30 mM and the average particle sizes were ca. 90 nm. The β-1,3-glucan complexed fullerene derivative with a carboxylic acid was found to have higher photodynamic activity toward macrophages under visible-light irradiation (λ > 610 nm) when compared with that of other β-1,3-glucan-complexed fullerene derivatives. This result suggests that carboxylic acid moieties in the complex enhance the binding affinity with β-1,3-glucan-receptors on the surface of macrophages when β-1,3-glucan is recognized. In contrast, all β-1,3-glucan complexed fullerene derivatives showed no photodynamic activity toward HeLa cells under the same conditions.

  6. Photodynamic Therapy for Cancer

    MedlinePlus

    ... Related to Cancer Off-Label Drug Use in Cancer Treatment Complementary & Alternative Medicine (CAM) CAM for Patients CAM for Health Professionals Questions to Ask about Your Treatment Research Photodynamic Therapy for Cancer On This Page What is photodynamic ...

  7. Cystic acne improved by photodynamic therapy with short-contact 5-aminolevulinic acid and sequential combination of intense pulsed light and blue light activation.

    PubMed

    Melnick, Stuart

    2005-01-01

    Photodynamic therapy with short-contact 5-aminolevulinic acid (Levulan Kerastick, Dusa Pharmaceuticals, Inc.) and activation by intense pulsed light in an initial treatment and blue light in 3 subsequent treatments has resulted in significant improvement in severity of acne, reduction in the number of lesions, improvement in skin texture, and smoothing of scar edges in an Asian patient with severe (class 4) facial cystic acne and scarring.

  8. [Historical development of photodynamic therapy].

    PubMed

    Kick, G; Messer, G; Plewig, G

    1996-08-01

    Photodynamic therapy is based on the accumulation of photosensitizing drugs in tumours and subsequent activation by visible light, leading to the release of singlet oxygen in photochemical reactions. Besides the treatment of precancerous lesions and malignant tumours in superficial sites, new experimental indications, such as psoriasis, are being investigated. The development of new photosensitizing agents for topical application and appropriate light sources has led to increasing interest in this promising treatment modality among dermatologists. This historical review deals with the scientific investigations of photodynamic therapy and diagnosis that started with the experiments of Oscar Raab at the end of the nineteenth century.

  9. Aluminium-phthalocyanine chloride nanoemulsions for anticancer photodynamic therapy: Development and in vitro activity against monolayers and spheroids of human mammary adenocarcinoma MCF-7 cells.

    PubMed

    Muehlmann, Luis Alexandre; Rodrigues, Mosar Corrêa; Longo, João Paulo Figueiró; Garcia, Mônica Pereira; Py-Daniel, Karen Rapp; Veloso, Aline Bessa; de Souza, Paulo Eduardo Narciso; da Silva, Sebastião William; Azevedo, Ricardo Bentes

    2015-05-13

    Photodynamic therapy (PDT) combines light, molecular oxygen and a photosensitizer to induce oxidative stress in target cells. Certain hydrophobic photosensitizers, such as aluminium-phthalocyanine chloride (AlPc), have significant potential for antitumor PDT applications. However, hydrophobic molecules often require drug-delivery systems, such as nanostructures, to improve their pharmacokinetic properties and to prevent aggregation, which has a quenching effect on the photoemission properties in aqueous media. As a result, this work aims to develop and test the efficacy of an AlPc in the form of a nanoemulsion to enable its use in anticancer PDT. The nanoemulsion was developed using castor oil and Cremophor ELP®, and a monodisperse population of nanodroplets with a hydrodynamic diameter of approximately 25 nm was obtained. While free AlPc failed to show significant activity against human breast adenocarcinoma MCF-7 cells in an in vitro PDT assay, the AlPc in the nanoemulsion showed intense photodynamic activity. Photoactivated AlPc exhibited a 50 % cytotoxicity concentration (CC50) of 6.0 nM when applied to MCF-7 cell monolayers and exerted a powerful cytotoxic effect on MCF-7 cell spheroids. Through the use of spontaneous emulsification, a stable AlPc nanoemulsion was developed that exhibits strong in vitro photodynamic activity on cancer cells.

  10. Comparison of membrane-protective activity of antioxidants quercetine and Gratiola Officinalis L. extract under conditions of photodynamic haemolysis

    NASA Astrophysics Data System (ADS)

    Tkachenko, N. V.; Bykova, E. V.; Pravdin, A. B.; Navolokin, N. A.; Polukonova, N. V.; Bucharskaya, A. B.; Mudrak, D. A.; Prilepskii, A. Y.

    2016-04-01

    In the present work the effectiveness of antioxidants quercetine (a pure chemical) and Gratiola officinalis extract, which is obtained by a new method of extraction from plant material, is investigated on the model of photodynamic haemolysis that is a rather convenient method to monitor the rate of cell membranes oxidative destruction. The effect of these antioxidants on the rate of photodynamic haemolysis is considered as a measure of membranoprotective efficiency.

  11. Upholstery textile performance following exposure to daylight

    SciTech Connect

    Butler, S.; Guerin, D.

    1986-01-01

    This research investigated the effects of exposure to daylight on upholstery textiles. Eleven fabrics preferred by consumers were exposed to daylight in outdoor test cabinets for six months. Exposed and unexposed specimens were tested for tensile strength, elongation, abrasion resistance, and colorfastness. Statistical analysis indicated highly significant fabric/exposure interactive effects; significant losses in warp and filling strength, warp and filling elongation, and the resistance to abrasion in most of the exposed upholstery textiles tested. Color change was also found in the majority of exposed fabrics. Results indicate that careful selection of upholstery fabrics is required by energy-conscious consumers and designers.

  12. An in vivo photodynamic therapy with diode laser to cell activation of kidney dysfunction

    NASA Astrophysics Data System (ADS)

    Dyah Astuti, Suryani; Indra Prasaja, Brahma; Anggono Prijo, Tri

    2017-05-01

    This study aims to analyze the effect of photodynamic therapy (PDT) low level laser therapy (LLLT) 650 nm in the experimental animals mice (Musmuculus) suffering from kidney organ damage in mice (Musmuculus) in vivo. Exposure laser acupuncture was performed on the kidney BL-23. The conditioning of kidney damage in mice used carbofuraan 35 at a dose of 0.041697 mg/mice. LLLT 650 nm exposure was done on a wide variety of energy (0.5; 1.0; 1.5; 2.0; 4.0; 5.0; 6.0; 7.0) J. The histopathological kidney cells in mice renal impairment showed that exposure to 650 nm laser energy 1 Joule resulted in the reduction of damaged cells (necrosis) and normal cells were increased with the improvement of renal tubular cells (64.14 ± 8:02)%. Therefore, exposure to 650 nm LLLT on acupuncture points Shenshu (BL-23) has the ability to proliferation of renal tubular cells of mice.

  13. Preparation and In Vitro Photodynamic Activity of Glucosylated Zinc(II) Phthalocyanines as Underlying Targeting Photosensitizers.

    PubMed

    Liu, Jian-Yong; Wang, Chen; Zhu, Chun-Hui; Zhang, Zhi-Hong; Xue, Jin-Ping

    2017-05-19

    Two novel glucosylated zinc(ІІ) phthalocyanines 7a-7b, as well as the acetyl-protected counterparts 6a-6b, have been synthesized by the Cu(I)-catalyzed 1,3-dipolar cycloaddition between the propargylated phthalocyanine and azide-substituted glucoses. All of these phthalocyanines were characterized with various spectroscopic methods and studied for their photo-physical, photo-chemical, and photo-biological properties. With glucose as the targeting unit, phthalocyanines 7a-7b exhibit a specific affinity to MCF-7 breast cancer cells over human embryonic lung fibroblast (HELF) cells, showing higher cellular uptake. Upon illumination, both photosensitizers show high cytotoxicity with IC50 as low as 0.032 µM toward MCF-7 cells, which are attributed to their high cellular uptake and low aggregation tendency in the biological media, promoting the generation of intracellular reactive oxygen species (ROS). Confocal laser fluorescence microscopic studies have also revealed that they have high and selective affinities to the lysosomes, but not the mitochondria, of MCF-7 cells. The results show that these two glucosylated zinc(II) phthalocyanines are potential anticancer agents for targeting photodynamic therapy.

  14. Antimicrobial Photodynamic Therapy with Functionalized Fullerenes: Quantitative Structure-activity Relationships

    PubMed Central

    Mizuno, Kazue; Zhiyentayev, Timur; Huang, Liyi; Khalil, Sarwat; Nasim, Faria; Tegos, George P; Gali, Hariprasad; Jahnke, Ashlee; Wharton, Tim; Hamblin, Michael R

    2011-01-01

    Photosensitive dyes or photo sensitizers (PS) in combination with visible light and oxygen produce reactive oxygen species that kill cells in the process known as photodynamic therapy (PDT). Antimicrobial PDT employs PS that is selective for microbial cells and is a new treatment for infections. Most antimicrobial PS is based on tetrapyrrole or phenothiazinium structures that have been synthesized to carry quaternary cationic charges or basic amino groups. However we recently showed that cationic-substituted fullerene derivative were highly effective in killing a broad spectrum of microbial cells after illumination with white light. In the present report we compared a new group of synthetic fullerene derivatives that possessed either basic or quaternary amino groups as antimicrobial PS against Gram-positive (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli) and fungi (Candida albicans). Quantitative structure-function relationships were derived with LogP and hydrophilic lipophilic balance parameters. Compounds with non-quaternary amino groups tended to form nanoaggregates in water and were only effective against S. aureus. The most important determinant of effectiveness was an increased number of quaternary cationic groups that were widely dispersed around the fullerene cage to minimize aggregation. S. aureus was most susceptible; E. coli was intermediate, while C. albicans was the most resistant species tested. The high effectiveness of antimicrobial PDT with quaternized fullerenes suggest they may have applications in treatment of superficial infections (for instance in wounds and burns) where light penetration into tissue is not problematic. PMID:21743839

  15. Iron chelators in photodynamic therapy revisited: synergistic effect by novel highly active thiosemicarbazones.

    PubMed

    Mrozek-Wilczkiewicz, Anna; Serda, Maciej; Musiol, Robert; Malecki, Grzegorz; Szurko, Agnieszka; Muchowicz, Angelika; Golab, Jakub; Ratuszna, Alicja; Polanski, Jaroslaw

    2014-04-10

    In photodynamic therapy (PDT), a noninvasive anticancer treatment, visible light, is used as a magic bullet selectively destroying cancer cells by a photosensitizer that is nontoxic in the dark. Protoporphyrin IX (PpIX) is a natural photosensitizer synthesized in the cell, which is also a chelating agent that if bonded to Fe(2+) forms heme, a central component of hemoglobin. Therefore, xenobiotic iron chelators can disturb iron homeostasis, increasing the accumulation of PpIX, obstructing the last step of heme biosynthesis, and enhancing PDT efficiency. However, the attempts to use this promising idea have not proved to be hugely successful. Herein, we revisited this issue by analyzing the application of iron chelators highly toxic in the dark, which should have higher Fe(2+) affinity than the nontoxic chelators used so far. We have designed and prepared thiosemicarbazones (TSC) with the highest dark cellular cytotoxicity among TSCs ever reported. We demonstrate that compound 2 exerts powerful PDT enhancement when used in combination with 5-aminolevulinic acid (ALA), a precursor of PpIX.

  16. Iron Chelators in Photodynamic Therapy Revisited: Synergistic Effect by Novel Highly Active Thiosemicarbazones

    PubMed Central

    2014-01-01

    In photodynamic therapy (PDT), a noninvasive anticancer treatment, visible light, is used as a magic bullet selectively destroying cancer cells by a photosensitizer that is nontoxic in the dark. Protoporphyrin IX (PpIX) is a natural photosensitizer synthesized in the cell, which is also a chelating agent that if bonded to Fe2+ forms heme, a central component of hemoglobin. Therefore, xenobiotic iron chelators can disturb iron homeostasis, increasing the accumulation of PpIX, obstructing the last step of heme biosynthesis, and enhancing PDT efficiency. However, the attempts to use this promising idea have not proved to be hugely successful. Herein, we revisited this issue by analyzing the application of iron chelators highly toxic in the dark, which should have higher Fe2+ affinity than the nontoxic chelators used so far. We have designed and prepared thiosemicarbazones (TSC) with the highest dark cellular cytotoxicity among TSCs ever reported. We demonstrate that compound 2 exerts powerful PDT enhancement when used in combination with 5-aminolevulinic acid (ALA), a precursor of PpIX. PMID:24900837

  17. Photodynamic activity of nanostructured fabrics grafted with xanthene and thiazine dyes against opportunistic fungi.

    PubMed

    Kim, Joo Ran; Michielsen, Stephen

    2015-09-01

    Fungi are an important class of human pathogens for which considerable research has gone into defeating them. The photodynamic effects of rose bengal (RB), phloxine B (PB), azure A (AA), and toluidine blue O (TBO) dyes to inhibit Aspergillus fumigatus, Aspergillus niger, Trichoderma viride, Penicillium funiculosum, and Chaetomium globosum were investigated grafted to nano- and micro-structured fabrics. Three antifungal tests conducted: broth microdilution test of free dyes, zone of inhibition and quantitative antifungal assays on fabrics grafted with dyes. In the broth microdilution test, free RB displayed the lowest MIC at 32 μM to inhibit visible hyphal growth and germination but the antifungal ability of MIC for other photosensitizers below 63 μM was insignificant. RB and PB showed lower MIC than AA and TBO. In the inhibition zone tests, nanostructured fabrics grafted with RB and PB did not display fungal growth on the surface. Most microstructured fabrics grafted with AA and TBO showed little inhibition. In quantitative antifungal assay, nanostructured fabrics grafted with RB has the largest inhibition rate on T. viride and the lowest inhibition rate on P. funiculosum and the results showed the increasing inhibition rate in the order of AA < TBO < PB < RB. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Identification of ROS produced by photodynamic activity of chlorophyll/cyclodextrin inclusion complexes.

    PubMed

    Cellamare, Barbara M; Fini, Paola; Agostiano, Angela; Sortino, Salvatore; Cosma, Pinalysa

    2013-01-01

    Photodynamic therapy (PDT) is a way of treating malignant tumors and hyperproliferative diseases. It is based on the use of photosensitizer, herein the chlorophyll a (chl a), and a light of an appropriate wavelength. The interaction of the photosensitizer (PS) with the light produces reactive oxygen species (ROS), powerful oxidizing agents, which cause critical damage to the tissue. To solubilize chl a in aqueous solution and to obtain it as monomer, we have used cyclodextrins, carriers which are able to interact with the pigment and form the inclusion complex. The aim of this study is to examine which types of ROS are formed by Chl a/cyclodextrin complexes in phosphate buffered solution and cell culture medium, using specific molecules, called primary acceptors, which react selectively with the reactive species. In fact the changes of the absorption and the emission spectra of these molecules after the illumination of the PS provide information on the specific ROS formation. The (1) O2 formation has been tested using chemical methods based on the use of Uric Acid (UA), 9,10-diphenilanthracene (DPA) and Singlet oxygen sensor green (SOSG) and by direct detection of Singlet Oxygen ((1) O2 ) luminescence decay at 1270 nm. Moreover, 2,7-dichlorofluorescin and ferricytochrome c (Cyt Fe(3+) ) have been used to detect the formation of hydrogen peroxide and superoxide radical anion, which reduces Fe(3+) of the ferricytochrome to Fe(2+) , respectively.

  19. Photodynamic therapy laser system

    NASA Astrophysics Data System (ADS)

    Shu, Xiaoqin; Lin, Qing; Wang, Feng; Shu, Chao; Wang, Jianhua

    2009-08-01

    Photodynamic therapy (PDT) treatment is a new treatment for tumour and Dermatology. With the successful development of the second-generation photosensitizer and the significant manifestations in clinics, PDT has shown a more extensive application potentials. To activate the photosensitizer, in this paper, we present a GaAs-based diode laser system with a wavelength of 635 nm. In this system, to prolong the working life-time of the diode lasers, we use specific feedback algorithm to control the current and the temperature of the diode laser with high precision. The clinic results show an excellent effect in the treatment of Condyloma combined with 5-ALA.

  20. Photodynamic Therapy and Non-Melanoma Skin Cancer

    PubMed Central

    Griffin, Liezel L.; Lear, John T.

    2016-01-01

    Non-melanoma skin cancer (NMSC) is the most common malignancy among the Caucasian population. Photodynamic therapy (PDT) is gaining popularity for the treatment of basal cell carcinoma (BCC), Bowen’s disease (BD) and actinic keratosis (AK). A topical or systemic exogenous photosensitiser, results in selective uptake by malignant cells. Protoporphyrin IX (PpIX) is produced then activated by the introduction of a light source. Daylight-mediated MAL (methyl aminolaevulinate) PDT for AKs has the advantage of decreased pain and better patient tolerance. PDT is an effective treatment for superficial BCC, BD and both individual and field treatment of AKs. Excellent cosmesis can be achieved with high patient satisfaction. Variable results have been reported for nodular BCC, with improved outcomes following pretreatment and repeated PDT cycles. The more aggressive basisquamous, morphoeic infiltrating subtypes of BCC and invasive squamous cell carcinoma (SCC) are not suitable for PDT. Prevention of “field cancerization” in organ transplant recipients on long-term immunosuppression and patients with Gorlin syndrome (naevoid basal cell carcinoma syndrome) is a promising development. The optimisation of PDT techniques with improved photosensitiser delivery to target tissues, new generation photosensitisers and novel light sources may expand the future role of PDT in NMSC management. PMID:27782094

  1. The in vitro photodynamic effect of laser activated gallium, indium and iron phthalocyanine chlorides on human lung adenocarcinoma cells.

    PubMed

    Maduray, K; Odhav, B

    2013-11-05

    Metal-based phthalocyanines currently are utilized as a colorant for industrial applications but their unique properties also make them prospective photosensitizers. Photosensitizers are non-toxic drugs, which are commonly used in photodynamic therapy (PDT), for the treatment of various cancers. PDT is based on the principle that, exposure to light shortly after photosensitizer administration predominately leads to the production of reactive oxygen species for the eradication of cancerous cells and tissue. This in vitro study investigated the photodynamic effect of gallium (GaPcCl), indium (InPcCl) and iron (FePcCl) phthalocyanine chlorides on human lung adenocarcinoma cells (A549). Experimentally, 2 × 10(4)cells/ml were seeded in 24-well tissue culture plates and allowed to attach overnight, after which cells were treated with different concentrations of GaPcCl, InPcCl and FePcCl ranging from 2 μg/ml to 100 μg/ml. After 2h, cells were irradiated with constant light doses of 2.5 J/cm(2), 4.5 J/cm(2) and 8.5 J/cm(2) delivered from a diode laser (λ = 661 nm). Post-irradiated cells were incubated for 24h before cell viability was measured using the MTT Assay. At 24h after PDT, irradiation with a light dose of 2.5 J/cm(2) for each photosensitizing concentration of GaPcCl, InPcCl and FePcCl produced a significant decrease in cell viability, but when the treatment light dose was further increased to 4.5 J/cm(2) and 8.5 J/cm(2) the cell survival was less than 40%. Results also showed that photoactivated FePcCl decreased cell survival of A549 cells to 0% with photosensitizing concentrations of 40 μg/ml and treatment light dose of 2.5 J/cm(2). A 20 μg/ml photosensitizing concentration of FePcCl in combination with an increased treatment light dose of either 4.5 J/cm(2) or 8.5 J/cm(2) also resulted in 0% cell survival. This PDT study concludes that low concentrations on GaPcCl, InPcCl and FePcCl activated with low level light doses can be used for the effective in

  2. Water-soluble aluminium phthalocyanine–polymer conjugates for PDT: photodynamic activities and pharmacokinetics in tumour-bearing mice

    PubMed Central

    Brasseur, N; Ouellet, R; Madeleine, C La; Lier, J E van

    1999-01-01

    The potential use of unsubstituted aluminium phthalocyanine (AlClPc) as a sensitizer for photodynamic therapy (PDT) of cancer has not been fully exploited in spite of its higher efficiency as compared to the sulphonated derivatives. This is largely due to the strong hydrophobic character of AlClPc which renders the material difficult to formulate for in vivo administration. We prepared two water-soluble derivatives of AlClPc by axial coordination of polyethyleneglycol (PEG, MW 2000) or polyvinylalcohol (PVA, MW 13 000–23 000) to the central aluminium ion. Their photodynamic activities were evaluated in vitro against the EMT-6 mouse mammary tumour cells and in vivo against the EMT-6 and the colon carcinoma Colo-26 tumours implanted intradermally in Balb/c mice. Pharmacokinetics were studied in the EMT-6 tumour-bearing mice. After 1 h incubation, the light dose required to kill 90% of cells (LD90) was at least three times less for AlClPc (Cremophor emulsion) as compared to AlPc–PEG and AlPc–PVA, while after 24 h incubation all three preparations were highly phototoxic. All three dye preparations induced complete EMT-6 tumour regression in 75–100% of animals at a low drug dose (0.25 μmol kg−1) following PDT (400 J cm−2, 650–700 nm) at 24 h pi. Complete tumour regression in the Colo-26 tumour model was obtained in 30% of mice at a dose of 2 μmol kg−1. In the non-cured animals, AlPc–PVA induced the most significant tumour growth delay. This dye showed a prolonged plasma half-life (6.8 h) as compared to AlClPc (2.6 h) and AlPc–PEG (23 min), lower retention by liver and spleen and higher tumour-to-skin and tumour-to-muscle ratios. Our data demonstrate that addition of hydrophilic axial ligands to AlPc, while modifying in vitro and in vivo kinetics, does not reduce the PDT efficiency of the parent molecule. Moreover, in the case of the polyvinylalcohol derivative, axial coordination confers advantageous pharmacokinetics to AlPc, which makes this

  3. Evaluation of antimicrobial activity of association of chlorhexidine to photosensitizer used in photodynamic therapy in root canals infected by Enterococcus faecalis.

    PubMed

    Souza, Matheus Albino; Lima, Guilherme; Pazinatto, Bianca; Bischoff, Karolina Frick; Palhano, Huriel Scartazzini; Cecchin, Doglas

    2017-09-01

    The aim of the present study was to evaluate, in vitro, the influence of the addition of chlorhexidine to photosensitiser in the antimicrobial activity of photodynamic therapy in root canals infected by Enterococcus faecalis. The root canals of 50 single-rooted human extracted teeth were enlarged up to a file F3 of Pro-Taper system, autoclaved, inoculated with Enterococcus faecalis and incubated for 14days. The samples were divided into five groups (n=10) according to the protocol of decontamination: G1 (control group) - no procedure was performed; G2-photosensitiser (0.01% methylene blue); G3-2% chlorhexidine gel; G4-photodynamic therapy; and G5-photodynamic therapy with photosensitiser modified by chlorhexidine. Microbiological test (CFU counting) was performed to evaluate the effectiveness of proposed treatments. Data were subjected to one-way ANOVA followed by post-hoc Tukey test (α=0.05). Group 3 (CHX) showed the lowest mean contamination (2.03 log10 CFU/mL), being statistically different from all other all groups (p<0.05). There was no statistically significant difference between groups 4 (PDT) and 5 (PDT+CHX) (p<0.05), being more effectives against E. faecalis when compared to groups 1 (NT) and 2 (MB), and less effective when compared to group 2 (CHX). The addition of chlorhexidine to photosensitiser did not result in a better decontamination potential of photodynamic therapy alone over root canals infected by E. faecalis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Near-Infrared Light Triggered ROS-activated Theranostic Platform based on Ce6-CPT-UCNPs for Simultaneous Fluorescence Imaging and Chemo-Photodynamic Combined Therapy.

    PubMed

    Yue, Caixia; Zhang, Chunlei; Alfranca, Gabriel; Yang, Yao; Jiang, Xinquan; Yang, Yuming; Pan, Fei; de la Fuente, Jesús M; Cui, Daxiang

    2016-01-01

    Many drug controlled release methods have been integrated in multifunctional nanoparticles, such as pH-, redox-, temperature-, enzyme-, and light-responsive release. However, few report is associated with the ROS responsive drug controlled release. Herein, a thioketal linker-based ROS responsive drug (camptothecin conjugated with thioketal linker, abbreviated as TL-CPT) was prepared and the thioketal linker could be cleaved by ROS(reactive oxygen species). To achieve cancer simultaneous optical imaging, photodynamic therapy and chemotherapy, the photosensitizer Chlorin e6(Ce6), TL-CPT and carboxyl-mPEG were loaded on the upconversion nanoparticles (UCNPs), which were named as Ce6-CPT-UCNPs. Under 980 nm laser irradiation, Ce6-CPT-UCNPs emitted a narrow emission band at 645-675 nm which was overlapped with Ce6 absorption peak. Ce6 absorbed the light to produce ROS, which was used for photodynamic therapy and to cleave the thioketal linker in Ce6-CPT-UCNPs to release camptothecin for chemotherapy. Meanwhile, Ce6 absorbed the light, was used for near-infrared fluorescence imaging. The in vivo biodistribution studies showed that the prepared nanoparticles had high orthotopic lung cancer targeting efficiency. The in vivo therapeutic results demonstrated that NCI-H460 lung cancers could be completely eliminated by combining chemo- and photodynamic therapy under 980 nm laser irradiation. The prepared multifunctional Ce6-CPT-UCNPs have great potential in applications such as cancer targeted fluorescent imaging, simultaneous ROS activated chemo- and photodynamic therapy in near future.

  5. Near-Infrared Light Triggered ROS-activated Theranostic Platform based on Ce6-CPT-UCNPs for Simultaneous Fluorescence Imaging and Chemo-Photodynamic Combined Therapy

    PubMed Central

    Yue, Caixia; Zhang, Chunlei; Alfranca, Gabriel; Yang, Yao; Jiang, Xinquan; Yang, Yuming; Pan, Fei; de la Fuente, Jesús M.; Cui, Daxiang

    2016-01-01

    Many drug controlled release methods have been integrated in multifunctional nanoparticles, such as pH-, redox-, temperature-, enzyme-, and light-responsive release. However, few report is associated with the ROS responsive drug controlled release. Herein, a thioketal linker-based ROS responsive drug (camptothecin conjugated with thioketal linker, abbreviated as TL-CPT) was prepared and the thioketal linker could be cleaved by ROS(reactive oxygen species). To achieve cancer simultaneous optical imaging, photodynamic therapy and chemotherapy, the photosensitizer Chlorin e6(Ce6), TL-CPT and carboxyl-mPEG were loaded on the upconversion nanoparticles (UCNPs), which were named as Ce6-CPT-UCNPs. Under 980 nm laser irradiation, Ce6-CPT-UCNPs emitted a narrow emission band at 645-675 nm which was overlapped with Ce6 absorption peak. Ce6 absorbed the light to produce ROS, which was used for photodynamic therapy and to cleave the thioketal linker in Ce6-CPT-UCNPs to release camptothecin for chemotherapy. Meanwhile, Ce6 absorbed the light, was used for near-infrared fluorescence imaging. The in vivo biodistribution studies showed that the prepared nanoparticles had high orthotopic lung cancer targeting efficiency. The in vivo therapeutic results demonstrated that NCI-H460 lung cancers could be completely eliminated by combining chemo- and photodynamic therapy under 980 nm laser irradiation. The prepared multifunctional Ce6-CPT-UCNPs have great potential in applications such as cancer targeted fluorescent imaging, simultaneous ROS activated chemo- and photodynamic therapy in near future. PMID:26941840

  6. In vitro studies of the efficiency of two-photon activation of photodynamic therapy agents

    NASA Astrophysics Data System (ADS)

    Khurana, Mamta; Karotki, Aliaksandr; Collins, Hazel; Anderson, Harry L.; Wilson, Brian C.

    2006-09-01

    Age related macular degeneration (AMD) is a major cause of severe vision loss in the older population, due to ingrowth of new leaky blood vessels (neovasculature) from the choriocapillaris, which results in destruction of photoreceptors in the fovea and loss of central vision. "Standard" one-photon (1-γ) photodynamic therapy (PDT) using Visudyne (R) is an approved method of AMD treatment but has the potential to damage healthy tissues lying above and below the neovasculature due to photosensitizer accumulation and its wide-beam 1-γ excitation. Highly-targeted two-photon (2-γ) excitation may avoid this, since, due to its non-linear intensity dependence, the probability of 2-γ excitation is greatest in the focal plane, which intrinsically avoids out-of-focus damage to healthy tissues. The aim of the present study is to evaluate the 2-γ efficiency of Visudyne and to compare it to the archetypal photosensitizer Photofrin (R). Since neovascular endothelium is targeted in AMD, an endothelial cell line (YPEN-1) was selected as the in vitro model. 2-γ PDT was delivered using tightly focused ~300 fs laser pulses from a Ti:sapphire laser operating at 850 nm with 90 MHz pulse repetition rate. An assay was developed for quantification of the cellular damage using the permeability stain Hoechst 33258 and the viability stain SYTOX. Visudyne (LD 50= dose to kill 50% of cells: 500 J/cm2, 10 M, 7.2 μg/ml) was about an order of magnitude more effective than Photofrin (LD50 : 7500 J/cm2, ~42 μM, 25 μg/ml). We also demonstrate for the first time the quadratic dependence of the cellular response to 2-γ PDT. This in vitro work will lead to the design of optimized in vivo studies in animal models of AMD.

  7. Fine structure of carcinosarcoma cells and peritoneal macrophages activated by photodynamic therapy during their interaction in vivo

    NASA Astrophysics Data System (ADS)

    Dima, Vasile F.; Ionescu, Mircea D.; Vasiliu, Virgil V.; Coman, Niculina; Dima, Stefan V.

    1996-12-01

    The interaction of the photodynamic therapy activated macrophages (PDT-AM0) of the host and rat Walker-256 carcinosarcoma target cells (ascitic form) was investigated. The periotoneal macrophages were sensitized with different concentrations of Photofrin II (0.1 to 12 (mu) g/2.5 multiplied by 106 cells) and irradiated with He-Ne laser (632.8 nm; 10 mW) at different dose fluences varying between 1.5 and 15 kJ/m2. The degree of macrophage activation by PDT was estimated by means of the following parameters: (1) in vitro assay of cytotoxic and cytostatic activities and (2) observation at the electron microscopy. The results obtained indicate the following: (1) the highest rate of cytotoxic activity against Walker-256 (39.7%) and K562 (21.6%) cells was found in Photofrin II sensitized with 0.8 mg and exposure to He-Ne laser irradiation (3.0 kJ/m2): (2) the cytostatic activity of PDT-AM0 was higher against murine Walker-256 (54.7%) and lower on human K562 (28.1%) cells, in comparison with normal macrophages (NM0); (3) during interaction of PDT-AM0 in peritoneal cavity, the tumor cells were accompanied by strong changes in nuclear and cytoplasmic fine structure. Summing up, in photobioactivated macrophages by PDT some functional activities (cytotoxic, cytostatic and phagocytosis) were enhanced and induced ultrastructural changes in Walker-256 ascites carcinosarcoma cells by their interaction 'in vivo.'

  8. Anti-tumour activity of photodynamic therapy in combination with mitomycin C in nude mice with human colon adenocarcinoma.

    PubMed Central

    Ma, L. W.; Moan, J.; Steen, H. B.; Iani, V.

    1995-01-01

    The interaction of photodynamic therapy (PDT) and a chemotherapeutic drug, mitomycin C (MMC), was investigated using WiDr human colon adenocarcinoma tumours implanted on Balb/c athymic nude mice. The WiDr tumours were treated with PDT alone, MMC alone or with both. It was found that the combined treatment produced a greater retardation in the growth of the WiDr tumour than monotherapy with MMC or PDT. The synergistic effect was especially prominent when PDT was used in combination with a low dose of MMC (1 mg kg-1), since treatment of 1 mg kg-1 MMC alone had no effect on the tumour. The anti-tumour activity of PDT was found to be increased with MMC of 5 mg kg-1. The response of normal skin on mice feet to PDT slightly greater when PDT was combined with 5 mg kg-1 MMC than when PDT was applied alone, while no detectable additional effect on skin photosensitivity was observed when PDT was combined with 1 mg kg-1 MMC. An enhanced uptake of Photofrin in tumours was found 12 h and 24 h after administration of MMC. The effect of MMC on the cell cycle distribution of cell dissociated directly from the tumours was studied. The results suggest that the increased susceptibility to photoinactivation of Photofrin-sensitised tumours may be due to MMC-induced accumulation of the tumour cells in S-phase. PMID:7734319

  9. Pheophorbide a-mediated photodynamic therapy induces autophagy and apoptosis via the activation of MAPKs in human skin cancer cells.

    PubMed

    Yoon, Hyo-Eun; Oh, Seone-Hee; Kim, Soo-A; Yoon, Jung-Hoon; Ahn, Sang-Gun

    2014-01-01

    Pheophorbide a (Pa), a chlorophyll derivative, is a photosensitizer that can induce significant antitumor effects in several types of tumor cells. The present study investigated the mechanism of Pa-mediated photodynamic therapy (Pa-PDT) in the human skin cancer cell lines A431 and G361. PDT significantly inhibited the cell growth in a Pa-concentration-dependent manner. We observed increased expression of Beclin-1, LC3B and ATG5, which are markers of autophagy, after PDT treatment in A431 cells but not in G361 cells. In G361 cells, Pa-PDT strongly induced PARP cleavage and subsequent apoptosis, which was confirmed using Annexin V/Propidium iodide double staining. Pa-PDT predominantly exhibited its antitumor effects via activation of ERK1/2 and p38 in A431 and G361 cells, respectively. An in vivo study using the CAM xenograft model demonstrated that Pa-PDT strongly induced autophagy and apoptosis in A431-transplanted tumors and/or apoptosis in G361-transplanted tumors. These results may provide a basis for understanding the underlying mechanisms of Pa-PDT and for developing Pa-PDT as a therapy for skin cancer.

  10. Improvement of anti-tumor activity of photodynamic therapy through inhibition of cytoprotective mechanism in tumor cells

    NASA Astrophysics Data System (ADS)

    Nowis, Dominika; Szokalska, Angelika; Makowski, Marcin; Winiarska, Magdalena; Golab, Jakub

    2009-06-01

    Photodynamic therapy (PDT) leads to oxidative damage of cellular macromolecules, including numerous proteins that undergo multiple modifications such as fragmentation, cross-linking and carbonylation that result in protein unfolding and aggregation. Several mechanisms are involved in the protective responses to PDT that include activation of transcription factors, heat shock proteins, antioxidant enzymes and antiapoptotic pathways. Identification of these cytoprotective mechanisms might result in the design of more effective combination strategies to improve the antitumor efficacy of PDT. By using various molecular biology approaches, including microarray-based technologies we have identified genes that are up-regulated following PDT. Subsequent experiments revealed that some of these gene products can become targets for the combined therapeutic regimens encompassing PDT and selective small-molecule inhibitors. These include superoxide dismutase (SOD-2), cyclooxygenase 2 (COX-2), heme oxygenase 1 (HO-1), and proteins engaged in signaling endoplasmatic reticulum (ER) stress and unfolded protein response (UPR). Since a major mechanism for elimination of carbonylated proteins is their degradation by proteasomes, we hypothesized that a combination of PDT with proteasome inhibitors might lead to accumulation of carbonylated proteins in ER, aggravated ER stress and potentiated cytotoxicity towards tumor cells. Indeed, we observed that incubation of tumor cells with three different proteasome inhibitors, including bortezomib, MG132 and PSI gave increased accumulation of carbonylated and ubiquitinated proteins in PDT-treated cells. Proteasome inhibitors effectively sensitized tumor cells to PDT-mediated cytotoxicity and augmented antitumor effects of PDT in vivo.

  11. Ultrasonic activation and chemical modification of photosensitizers enhances the effects of photodynamic therapy against Enterococcus faecalis root-canal isolates.

    PubMed

    Tennert, C; Drews, A M; Walther, V; Altenburger, M J; Karygianni, L; Wrbas, K T; Hellwig, E; Al-Ahmad, A

    2015-06-01

    The aim of this study was to evaluate the effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilms in artificially infected root canals using modified photosensitizers and passive ultrasonic activation. Two hundred and seventy extracted human teeth with one root canal were instrumented utilizing ProTaper files, autoclaved, infected with E. faecalis T9 for 72 h and divided into different groups: irrigation with 3% sodium hypochlorite (NaOCl), 20% ethylenediaminetetraacetic acid (EDTA), or 20% citric acid, PDT without irrigation, PDT accompanied by irrigation with NaOCl, EDTA, or citric acid, PDT using an EDTA-based photosensitizer or a citric-acid-based photosensitizer and PDT with ultrasonic activation of the photosensitizer. A 15 mg/ml toluidine blue served as the photosensitizer, activated by a 100 mW LED light source. Sterile paper points were used for sampling the root canals and dentin chips were collected to assess the remaining contamination after treatment. Samples were cultured on blood agar plates and colony forming units were quantified. PDT alone achieved a reduction in E. faecalis counts by 92.7%, NaOCl irrigation alone and combined with PDT by 99.9%. The antibacterial effects increased by the combination of irrigation using EDTA or citric acid and PDT compared to irrigation alone. More than 99% of E. faecalis were killed using PDT with the modified photosensitizers and ultrasonic activation. NaOCl based disinfection achieved the highest antimicrobial effect. Using PDT with an EDTA-based or citric-acid-based phozosensitizer or activating the photosensitizer with ultrasound resulted in a significantly higher reduction in E. faecalis counts compared to conventional PDT. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Photodynamic therapy: a review.

    PubMed

    McCaughan, J S

    1999-07-01

    Photodynamic therapy (PDT) of malignant tumours is a new technique for treating cancers. After intravenous injection, a photosensitiser is selectively retained by the tumour cells so after time there is more sensitiser in the tumour than in the normal adjacent tissue. The photosensitiser must be able to absorb the wavelength of light being delivered to it, and the amount of light getting to the photosensitiser depends on the characteristics of the tissue it passes through. When exposed to light with the proper wavelength, the sensitiser produces an activated oxygen species, singlet oxygen, that oxidises critical elements of neoplastic cells. Because there is less sensitiser in the adjacent normal tissue, less reaction occurs to it. Since this is an entirely different process, the use of chemotherapy, ionising radiation or surgery does not preclude the use of PDT. Also, unlike ionising irradiation, repeated injections and treatments can be made indefinitely. Different molecules and atoms absorb different wavelengths of energy. Since the light energy must be absorbed to start the photochemical reaction, the absorption spectrum of the photosensitiser determines the wavelength used to initiate the reaction. However, this can be qualified by the tissue the light has to travel through to get to the photosensitiser. The photosensitiser porfimer sodium has a peak absorption in the area of 405 nm (blue-violet) and a much lower absorption peak at 630 nm (red). However, because the longer red wavelength penetrates tissue deeper than 405 nm, we use the red wavelength, usually delivered from a laser system. This permits coupling of the red light beam to quartz fibres which can then be used with modifications to treat external surface tumours, inserted interstitially directly into large tumours, passed though any endoscope to treat intraluminal tumours, or inserted behind the retina to treat tumours of the retina. Twenty years after the pioneering work of Dr. Thomas Doherty, the

  13. Photodynamic Inactivation of Root Canal Bacteria by Light Activation through Human Dental Hard and Simulated Surrounding Tissue.

    PubMed

    Cieplik, Fabian; Pummer, Andreas; Leibl, Christoph; Regensburger, Johannes; Schmalz, Gottfried; Buchalla, Wolfgang; Hiller, Karl-Anton; Maisch, Tim

    2016-01-01

    Photodynamic inactivation of bacteria (PIB) may be a supportive antimicrobial approach for use in endodontics, but sufficient activation of photosensitizers (PS) in root canals is a critical point. Therefore, aim of this study was to evaluate the ability of PS absorbing blue (TMPyP) or red light (Methylene Blue; MB) for light activation through human dental hard and simulated surrounding tissue to inactivate root canal bacteria. A tooth model was fabricated with a human premolar and two molars in an acrylic resin bloc simulating the optical properties of a porcine jaw. The distal root canal of the first molar was enlarged to insert a glass tube (external diameter 2 mm) containing PS and stationary-phase Enterococcus faecalis. Both PS (10 μM) were irradiated for 120 s with BlueV (20 mW/cm(2); λem = 400-460 nm) or PDT 1200L (37.8 mW/cm(2); λem = 570-680 nm; both: Waldmann Medizintechnik), respectively. Irradiation parameters ensured identical numbers of photons absorbed by each PS. Three setups were chosen: irradiating the glass pipette only (G), the glass pipette inside the single tooth without (GT) and with (GTM) simulated surrounding tissues. Colony forming units (CFU) were evaluated. Transmission measurements of the buccal halves of hemisected mandibular first molars were performed by means of a photospectrometer. PIB with both PS led to reduction by ≥ 5 log10 of E. faecalis CFU for each setup. From transmission measurements, a threshold wavelength λth for allowing an amount of light transmission for sufficient activation of PS was determined to be 430 nm. This study can be seen as proof of principle that light activation of given intra-canal PS from outside a tooth may be possible at wavelengths ≥ 430 nm, facilitating clinical application of PIB in endodontics.

  14. Photodynamic Inactivation of Root Canal Bacteria by Light Activation through Human Dental Hard and Simulated Surrounding Tissue

    PubMed Central

    Cieplik, Fabian; Pummer, Andreas; Leibl, Christoph; Regensburger, Johannes; Schmalz, Gottfried; Buchalla, Wolfgang; Hiller, Karl-Anton; Maisch, Tim

    2016-01-01

    Introduction: Photodynamic inactivation of bacteria (PIB) may be a supportive antimicrobial approach for use in endodontics, but sufficient activation of photosensitizers (PS) in root canals is a critical point. Therefore, aim of this study was to evaluate the ability of PS absorbing blue (TMPyP) or red light (Methylene Blue; MB) for light activation through human dental hard and simulated surrounding tissue to inactivate root canal bacteria. Methods: A tooth model was fabricated with a human premolar and two molars in an acrylic resin bloc simulating the optical properties of a porcine jaw. The distal root canal of the first molar was enlarged to insert a glass tube (external diameter 2 mm) containing PS and stationary-phase Enterococcus faecalis. Both PS (10 μM) were irradiated for 120 s with BlueV (20 mW/cm2; λem = 400–460 nm) or PDT 1200L (37.8 mW/cm2; λem = 570–680 nm; both: Waldmann Medizintechnik), respectively. Irradiation parameters ensured identical numbers of photons absorbed by each PS. Three setups were chosen: irradiating the glass pipette only (G), the glass pipette inside the single tooth without (GT) and with (GTM) simulated surrounding tissues. Colony forming units (CFU) were evaluated. Transmission measurements of the buccal halves of hemisected mandibular first molars were performed by means of a photospectrometer. Results: PIB with both PS led to reduction by ≥ 5 log10 of E. faecalis CFU for each setup. From transmission measurements, a threshold wavelength λth for allowing an amount of light transmission for sufficient activation of PS was determined to be 430 nm. Conclusion: This study can be seen as proof of principle that light activation of given intra-canal PS from outside a tooth may be possible at wavelengths ≥ 430 nm, facilitating clinical application of PIB in endodontics. PMID:27379059

  15. Sustained activation of the extracellular signal-regulated kinase pathway protects cells from photofrin-mediated photodynamic therapy.

    PubMed

    Tong, Zhimin; Singh, Gurmit; Rainbow, Andrew J

    2002-10-01

    Photodynamic therapy (PDT) is a cancer therapy in which a photosensitizer selectively accumulates in tumor cells and is subsequently activated by light of a specific wavelength. The activation of the photosensitizer leads to cytotoxic photoproducts that result in tumor regression. PDT can lead to several cellular responses including cell cycle arrest, necrosis, and apoptosis, as well as trigger many signaling pathways. It has been suggested that extracellular signal-activated protein kinases (ERKs), one subfamily of mitogen-activated protein kinases, play a crucial role in the cellular response to radiation therapy and chemotherapy. However, the role of ERKs in the cell survival after PDT is less clear. We have examined the response of the extracellular signal-regulated kinase ERK1/2 in PDT-resistant (LFS087) and PDT-sensitive (GM38A) cells after Photofrin-mediated PDT. ERK1/2 activity was induced rapidly in both cell types after PDT. The PDT-induced ERK1/2 activity was transient in GM38A cells and by 3 h had returned to a level significant lower than basal levels, whereas the induction of ERK1/2 was sustained in LFS087 cells and lasted for at least 11 h. Blocking of the sustained ERK activity with PD98059, an inhibitor of mitogen-activated protein/ERK kinase, significantly decreased cell survival of LFS087 after PDT. PDT also induced the expression of mitogen-activated protein kinase phosphatase, MKP-1, but reduced Raf-1 protein levels in both cell types. In GM38A cells, the substantially induced levels of MKP-1 correlated with the transient activation of ERK1/2 by PDT, and both basal and induced levels of MKP-1 were substantially greater in GM38 compared with Li Fraumeni syndrome cells. These observations suggest that sustained ERK1/2 activation protects cells from Photofrin-mediated phototoxicity and that the duration of ERK1/2 activation is regulated by MKP-1. In addition, the activation of ERK1/2 by Photofrin-mediated PDT is Raf-1 independent.

  16. The challenge of meteor daylight observations

    NASA Astrophysics Data System (ADS)

    Egal, A.; Kwon, M.-K.; Colas, F.; Vaubaillon, J.; Marmo, C.

    2016-01-01

    One of the goals of the FRIPON network is to perform the daylight detection of fireballs. If the cameras used are adapted to these observations, the reduction method still needs to be improved in order to reduce the high number of false detections. To deeply check the daylight reduction software, the FRIPON team is looking for observations of fireballs and atmospheric reentries during the day. For this purpose, the team has organized in emergency (in less than 10 days) an observation campaign of the reentry of the WT1190F space debris in November 2015. Although the bad weather conditions have hampered the success of the mission, it remains a great example of the value of the collaboration between scientists and amateurs, without whom this challenge wouldn't have been overcome.

  17. Photodynamic antimicrobial chemotherapy on Streptococcus mutans using curcumin and toluidine blue activated by a novel LED device.

    PubMed

    Paschoal, Marco Aurelio; Lin, Meng; Santos-Pinto, Lourdes; Duarte, Simone

    2015-02-01

    Photodynamic antimicrobial chemotherapy (PACT) is an antimicrobial approach that uses photosensitizers (PS) in combination with light sources at specific wavelengths aiming the production of reactive oxygen species. The long illumination time necessary to active PS is a challenge in PACT. Thus, this study investigated the antimicrobial effect of a novel single source of light-emitting diode (LED) light that covers the entire spectrum of visible light beyond interchangeable probes at high power intensity. Blue and red LED probes were used into different exposure times to active different concentrations of curcumin (C) and toluidine blue (T) on planktonic suspensions of Streptococcus mutans UA 159 (S. mutans). S. mutans were standardized and submitted to (1) PACT treatment at three concentrations of C and T exposure at three radiant exposures of a blue LED (BL) (C+BL+) and a red LED (RL) (T+RL+), (2) C (C+BL-) or T alone (T+RL-), (3) both LED lights (C-BL+ and T-RL+), and (4) neither PS nor LED illumination (control group: C-BL- and T-RL-). Aliquots of the suspensions were diluted and cultured on blood agar plates. The number of colony-forming units was calculated after 48 h. The groups submitted to PACT presented a lethal photokilling rate to all PS concentrations at tested dosimetries. The comparison to control group when PS and LED lights used alone demonstrated no decrease in the number of viable bacterial counts. The novel LED device in combination with curcumin and toluidine blue promoted an effective photoinactivation of S. mutans suspensions at ultrashort light illumination times.

  18. Photo-activated elimination of Aggregatibacter actinomycetemcomitans in planktonic culture: Comparison of photodynamic therapy versus photothermal therapy method.

    PubMed

    Fekrazad, Reza; Khoei, Farzaneh; Bahador, Abbas; Hakimiha, Neda

    2017-09-01

    Periodontal pathogens are the main factors responsible for periodontal diseases and considering the limitations of conventional mechanical debridement, new treatment approaches are under investigation. This study was designed to evaluate and compare the antibacterial effects of two different systems of photodynamic and photothermal therapy on Aggregatibacter actinomycetemcomitans as the main pathogen involved in aggressive Periodontitis. Cultures of Aggregatibacter actinomycetemcomitans were exposed to 662nm laser in presence of Radachlorin(®) photosensitizer (photodynamic group) or 810nm laser in presence of EmunDo(®) photosensitizer (photothermal group), then bacterial suspension of each well in the study groups were diluted and subcultured on the surface of Muller-Hinton agar plates. subsequently the number of colony forming units per milliliter of the wells were determined and checked by analysis of variance and Tukey test (p<0.05). Aggregatibacter actinomycetemcomitans suspensions showed significant reduction in both groups of photodynamic and photothermal therapy with no priority. Based on the results of this study, photodynamic and photothermal therapy can be proposed as a new promising approaches for bacterial elimination in periodontal diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Daylighting simulation: methods, algorithms, and resources

    SciTech Connect

    Carroll, William L.

    1999-12-01

    This document presents work conducted as part of Subtask C, ''Daylighting Design Tools'', Subgroup C2, ''New Daylight Algorithms'', of the IEA SHC Task 21 and the ECBCS Program Annex 29 ''Daylight in Buildings''. The search for and collection of daylighting analysis methods and algorithms led to two important observations. First, there is a wide range of needs for different types of methods to produce a complete analysis tool. These include: Geometry; Light modeling; Characterization of the natural illumination resource; Materials and components properties, representations; and Usability issues (interfaces, interoperability, representation of analysis results, etc). Second, very advantageously, there have been rapid advances in many basic methods in these areas, due to other forces. They are in part driven by: The commercial computer graphics community (commerce, entertainment); The lighting industry; Architectural rendering and visualization for projects; and Academia: Course materials, research. This has led to a very rich set of information resources that have direct applicability to the small daylighting analysis community. Furthermore, much of this information is in fact available online. Because much of the information about methods and algorithms is now online, an innovative reporting strategy was used: the core formats are electronic, and used to produce a printed form only secondarily. The electronic forms include both online WWW pages and a downloadable .PDF file with the same appearance and content. Both electronic forms include live primary and indirect links to actual information sources on the WWW. In most cases, little additional commentary is provided regarding the information links or citations that are provided. This in turn allows the report to be very concise. The links are expected speak for themselves. The report consists of only about 10+ pages, with about 100+ primary links, but with potentially thousands of indirect links. For purposes of

  20. Synthesis, spectroscopic properties and photodynamic activity of two cationic BODIPY derivatives with application in the photoinactivation of microorganisms.

    PubMed

    Agazzi, Maximiliano L; Ballatore, M Belén; Reynoso, Eugenia; Quiroga, Ezequiel D; Durantini, Edgardo N

    2017-01-27

    Two cationic BODIPYs 3 and 4 were synthesized by acid-catalyzed condensation of the corresponding pyrrole and benzaldehyde, followed by complexation with boron and methylation. Compound 3 contains methyl at the 1,3,5 and 7 positions of the s-indacene ring and a N,N,N-trimethylamino group attached to the phenylene unit, while 4 is not substituted by methyl groups and the cationic group is bound by an aliphatic spacer. UV-visible absorption spectra of these BODIPYs show an intense band at ∼500 nm in solvents of different polarities and n-heptane/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water reverse micelles. Compound 3 exhibits a higher fluorescence quantum yield (ΦF = 0.29) than 4 (ΦF = 0.030) in N,N-dimethylformamide (DMF) due to sterically hindered rotation of the phenylene ring. BODIPYs 3 and 4 induce photosensitized oxidation of 1,3-diphenylisobenzofuran (DPBF) with yields of singlet molecular oxygen of 0.07 and 0.03, respectively. However, the photodynamic activity increases in a microheterogenic medium formed by AOT micelles. Also, both BODIPYs sensitize the photodecomposition of l-tryptophan (Trp). In presence of diazabicyclo[2.2.2]octane (DABCO) or D-mannitol, a reduction in the photooxidation of Trp was found, indicating a contribution of type I photoprocess. Moreover, the addition of KI produces fluorescence quenching of BODIPYs and reduces the photooxidation of DPBF. In contrast, this inorganic salt increases the photoinduced decomposition of Trp, possibly due to the formation of reactive iodine species. The effect of KI was also observed in the potentiation of the photoinactivation of microorganisms. Therefore, the presence of KI could increase the decomposition of biomolecules induced by these BODIPYs in a biological media, leading to a higher cell photoinactivation.

  1. Choriocapillaris photodynamic therapy using indocyanine green.

    PubMed

    Costa, R A; Farah, M E; Freymüller, E; Morales, P H; Smith, R; Cardillo, J A

    2001-10-01

    To evaluate the potential of photodynamic therapy using indocyanine green for occlusion of choroidal neovascularization, the authors studied efficiency and collateral damage of photodynamic therapy-induced photothrombosis in the rabbit choriocapillary layer. Fundus photography, fluorescein angiography, and light and transmission electron microscopy were used to study the efficiency of photodynamic therapy-induced photothrombosis using indocyanine green as the photosensitizer, and to assess the resultant collateral damage. The delivery system consisted of a modified infrared diode laser tuned to 810 nm, near the maximum absorption peak of indocyanine green. Choriocapillary occlusion was achieved at indocyanine green doses of 10 and 20 mg/kg and a radiant as low as 6.3 J/cm(2). When photodynamic therapy was performed with indocyanine green doses of 10 mg/kg, damage to the neural retina was minimal. Only inner photoreceptor segments showed degeneration, probably secondary to choroidal ischemia. Bruch membrane remained intact. Retinal pigment epithelium was invariably damaged, as seen with other photosensitizers. Temporary occlusion of large choroidal vessels occurred at both dye doses. In this experimental study, photodynamic therapy using indocyanine green and 810-nm light irradiation produced endothelium-bound intraluminal photothrombosis, with preservation of the retinal architecture and minimal loss of visual cells. Membrane targetability, hydrophilic and fluorescent properties, and activation at 805 nm suggest indocyanine green as a potential photosensitizer for choroidal neovascularization. These combined considerations point toward further study of photodynamic therapy using indocyanine green for the treatment of choroidal vascular disease.

  2. Transition to daylight saving time reduces sleep duration plus sleep efficiency of the deprived sleep.

    PubMed

    Lahti, Tuuli A; Leppämäki, Sami; Lönnqvist, Jouko; Partonen, Timo

    2006-10-09

    Daylight saving time (DST) is widely adopted. We explored the effects of transition to daylight saving time on sleep. With the use of wrist-worn accelerometers, we monitored the rest-activity cycles on a sample of 10 healthy adults for 10 days around the transition to summer time. Identical measurement protocols were carried out twice on the same individuals during the transitions in the years of 2003 and 2004, yielding data on 200 person-days for analysis. Both sleep duration and sleep efficiency were reduced after the transition both years. After the transition sleep time was shortened by 60.14min (P<0.01) and sleep efficiency was reduced by 10% (P<0.01) on average. Transition to daylight saving time appears to compromise the process of sleep by decreasing both sleep duration and sleep efficiency.

  3. Daylight Adaptive Shading Using Parametric Camshaft Mechanism for SOHO in Jakarta

    NASA Astrophysics Data System (ADS)

    Utama Sjarifudin, Firza; Justina, Laurensia

    2014-03-01

    This research analyzes SOHO (Small Office Home Office) which can adjust to the need of visual comfort for the users through natural daylighting and also can be adapted to standard requirements of 14 creative industry workspace in Jakartas. The method of the research is by simulating the SOHO unit with variation of shading opening angles in order to adapt to each unit. Analysis done to every shading opening angle to get the appropriate daylight intensity level which support the work activities in every unit for the whole day. In order for the shading to be able to adapt to the changing daylight condition, previously developed parametric camshaft mechanism was used. The study found that the visual comfort for SOHO with creative industries workers in Jakarta can be achieve by varying the shading opening angles between 15-75°.

  4. The New York Times headquarters daylighting mockup: Monitoredperformance of the daylighting control system

    SciTech Connect

    Lee, Eleanor S.; Selkowitz, Stephen E.

    2006-02-24

    A nine-month monitored field study of the performance of automated roller shades and daylighting controls was conducted in a 401 m{sup 2} unoccupied, furnished daylighting mockup. The mockup mimicked the southwest corner of a new 110 km{sub 2} commercial building in New York, New York, where The New York Times will be the major tenant. This paper focuses on evaluating the performance of two daylighting control systems installed in separate areas of an open plan office with 1.2-m high workstation partitions: (1) Area A had 0-10 V dimmable ballasts with an open-loop proportional control system and an automated shade controlled to reduce window glare and increase daylight, and (2) Area B had digital addressable lighting interface (DALI) ballasts with a closed-loop integral reset control system and an automated shade controlled to block direct sun. Daylighting control system performance and lighting energy use were monitored. The daylighting control systems demonstrated very reliable performance after they were commissioned properly. Work plane illuminance levels were maintained above 90% of the maximum fluorescent illuminance level for 99.9{+-}0.5% and 97.9{+-}6.1% of the day on average over the monitored period, respectively, in Areas A and B. Daily lighting energy use savings were significant in both Areas over the equinox-to-equinox period compared to a non-daylit reference case. At 3.35 m from the window, 30% average savings were achieved with a sidelit west-facing condition in Area A while 50-60% were achieved with a bilateral daylit south-facing condition in Area B. At 4.57-9.14 m from the window, 5-10% and 25-40% savings were achieved in Areas A and B, respectively. Average savings for the 7-m deep dimming zone were 20-23% and 52-59% for Areas A and B, respectively, depending on the lighting schedule. The large savings and good reliability can be attributed to the automatic management of the interior shades. The DALI-based system exhibited faulty behavior that

  5. Future of oncologic photodynamic therapy.

    PubMed

    Allison, Ron R; Bagnato, Vanderlei S; Sibata, Claudio H

    2010-06-01

    Photodynamic therapy (PDT) is a tumor-ablative and function-sparing oncologic intervention. The relative simplicity of photosensitizer application followed by light activation resulting in the cytotoxic and vasculartoxic photodynamic reaction has allowed PDT to reach a worldwide audience. With several commercially available photosensitizing agents now on the market, numerous well designed clinical trials have demonstrated the efficacy of PDT on various cutaneous and deep tissue tumors. However, current photosensitizers and light sources still have a number of limitations. Future PDT will build on those findings to allow development and refinement of more optimal therapeutic agents and illumination devices. This article reviews the current state of the art and limitations of PDT, and highlight the progress being made towards the future of oncologic PDT.

  6. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  7. Photodynamic activity of aloe-emodin induces resensitization of lung cancer cells to anoikis.

    PubMed

    Lee, Hong-Zin; Yang, Wen-Hui; Hour, Mann-Jen; Wu, Chi-Yu; Peng, Wen-Huang; Bao, Bo-Ying; Han, Ping-Hsiu; Bau, Da-Tian

    2010-12-01

    Aloe-emodin was found to be a photosensitizer and possess anti-tumor activity. However, the detailed mechanism underlying the biological effects of aloe-emodin remains unknown. In this study, we explored the mechanisms of photocytotoxicity induced by aloe-emodin in lung cancer H460 cells. According to the results of the photoactivated aloe-emodin-induced disruption of cytoskeleton, we verify that aloe-emodin with irradiation induces anoikis of H460 cells. Photosensitized aloe-emodin-induced anoikis is associated with the protein expression of α-actinin and mitogen-activated protein (MAP) kinase members. In this study, a rapid opening of the mitochondrial permeability transition pore and the change in apoptosis-related protein expression were involved in photoactivated aloe-emodin-induced cell death. We also demonstrated that anoikis induced by aloe-emodin with irradiation is mediated through the intrinsic and extrinsic death pathways in a caspase-dependent manner in H460 cells.

  8. Light Moves: Integrating Daylight into School Design from the Start

    ERIC Educational Resources Information Center

    Brossy de Dios, Eric; Rogic, Tinka; Vaughn, Wendell

    2010-01-01

    Numerous studies have demonstrated the benefits of daylight on the learning environment. Enhanced student performance and mood, increased teacher and student attendance, reduced energy costs, as well as a positive effect on the environment are some of the improvements seen in school buildings that use well-planned daylighting concepts. Looking at…

  9. Light Moves: Integrating Daylight into School Design from the Start

    ERIC Educational Resources Information Center

    Brossy de Dios, Eric; Rogic, Tinka; Vaughn, Wendell

    2010-01-01

    Numerous studies have demonstrated the benefits of daylight on the learning environment. Enhanced student performance and mood, increased teacher and student attendance, reduced energy costs, as well as a positive effect on the environment are some of the improvements seen in school buildings that use well-planned daylighting concepts. Looking at…

  10. Mono- and tetra-substituted zinc(II) phthalocyanines containing morpholinyl moieties: Synthesis, antifungal photodynamic activities, and structure-activity relationships.

    PubMed

    Zheng, Bi-Yuan; Ke, Mei-Rong; Lan, Wen-Liang; Hou, Lu; Guo, Jun; Wan, Dong-Hua; Cheong, Ling-Zhi; Huang, Jian-Dong

    2016-05-23

    A series of zinc(II) phthalocyanines (ZnPcs) mono-substituted and tetra-substituted with morpholinyl moieties and their quaternized derivatives have been synthesized and evaluated for their antifungal photodynamic activities toward Candida albicans. The α-substituted, quaternized, and mono-substituted ZnPcs are found to have higher antifungal photoactivity than β-substituted, neutral, and tetra-substituted counterparts. The cationic α-mono-substituted ZnPc (6a) exhibits the highest photocytotoxicity. Moreover, it is more potent than axially di-substituted analogue. The different photocytotoxicities of these compounds have also been rationalized by investigating their spectroscopic and photochemical properties, aggregation trend, partition coefficients, and cellular uptake. The IC90 value of 6a against C. albicans cells is as low as 3.3 μM with a light dose of 27 J cm(-2), meaning that 6a is a promising candidate as the antifungal photosensitizer for future investigations.

  11. Photoangioplasty: new applications of photodynamic therapy in atherosclerosis

    NASA Astrophysics Data System (ADS)

    Rockson, Stanley G.

    2000-05-01

    Atherosclerosis has traditionally held appeal as a pathologic entity in which photodynamic therapy might arrest or reverse the manifestations of disease. Earlier attempts to bring photodynamic therapy to the human clinical arena were hampered by the limitations of the photosensitizers under investigation, including the propensity to phototoxic manifestations and light-induced trauma to surrounding, normal vascular tissues. Many of these inherent limitations may be circumvented by newer photosensitizers that are activated at longer, more optimal wavelengths of light energy. Advances in fiberoptic catheter design for the endovascular delivery of light have also contributed to the greater applicability of photodynamic therapy to human atherosclerosis. Initial experiences with one family of photosensitizers, the texaphyrins, indicate that photodynamic therapy of human peripheral arterial atherosclerosis is feasible, safe, and well-tolerated. Photodynamic therapy of atherosclerosis holds promise for the treatment of de novo atherosclerosis and may have future applicability in the treatment, and perhaps prevention, of restenosis.

  12. Graphene-based nanovehicles for photodynamic medical therapy.

    PubMed

    Li, Yan; Dong, Haiqing; Li, Yongyong; Shi, Donglu

    2015-01-01

    Graphene and its derivatives such as graphene oxide (GO) have been widely explored as promising drug delivery vehicles for improved cancer treatment. In this review, we focus on their applications in photodynamic therapy. The large specific surface area of GO facilitates efficient loading of the photosensitizers and biological molecules via various surface functional groups. By incorporation of targeting ligands or activatable agents responsive to specific biological stimulations, smart nanovehicles are established, enabling tumor-triggering release or tumor-selective accumulation of photosensitizer for effective therapy with minimum side effects. Graphene-based nanosystems have been shown to improve the stability, bioavailability, and photodynamic efficiency of organic photosensitizer molecules. They have also been shown to behave as electron sinks for enhanced visible-light photodynamic activities. Owing to its intrinsic near infrared absorption properties, GO can be designed to combine both photodynamic and photothermal hyperthermia for optimum therapeutic efficiency. Critical issues and future aspects of photodynamic therapy research are addressed in this review.

  13. Lighting system combining daylight concentrators and an artificial source

    DOEpatents

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  14. Antiretroviral activities of hypericin and rose bengal: photodynamic effects on Friend leukemia virus infection of mice.

    PubMed

    Stevenson, N R; Lenard, J

    1993-06-01

    The ability of hypericin to protect mice from splenomegaly resulting from infection with Friend leukemia virus (FLV) was re-examined in light of recent evidence showing that light is absolutely required for this drug's antiviral activity. FLV-induced splenomegaly was not prevented or ameliorated in mice injected with 100 micrograms hypericin, either mixed with the FLV inoculum or administered 1 day p.i., either under normal laboratory light or in the dark. These results contradict previous findings. Both hypericin and rose bengal, however, inactivated the FLV inoculum at low doses (< 11 micrograms), provided that the mixture was illuminated for 1 h under a normal fluorescent desk lamp. This procedure protected mice completely from FLV-induced splenomegaly, and provided a possible explanation for the discrepancy between our results and those reported previously. We conclude that for FLV, as for other enveloped viruses studied previously, illumination of hypericin with the virus is absolutely required for hypericin's antiviral (virucidal) effects, thus limiting its potential usefulness as an antiretroviral agent.

  15. Current Advances in 5-Aminolevulinic Acid Mediated Photodynamic Therapy

    PubMed Central

    Thunshelle, Connor; Yin, Rui; Chen, Qiquan

    2016-01-01

    Kennedy and Pottier discovered that photodynamic therapy (PDT) could be carried out using a procedure consisting of topical application of the porphyrin-precursor, 5-aminolevulinic acid (ALA) to the skin, followed after some time by illumination with various light parameters in the 1980s. Since then, ALA-PDT has expanded enormously and now covers most aspects of dermatological disease. The purpose of this review is to discuss a range of ingenious strategies that investigators have devised for improving the overall outcome (higher efficiency and lower side effects) of ALA-PDT. The big advance of using ALA esters instead of the free acid to improve skin penetration was conceived in the 1990s. A variety of more recent innovative approaches can be divided into three broad groups: (a) those relying on improving delivery or penetration of ALA into the skin; (b) those relying on ways to increase the synthesis of protoporphyrin IX inside the skin; (c) those relying on modification of the illumination parameters. In the first group, we have improved delivery of ALA with penetration-enhancing chemicals, iontophoresis, intracutaneous injection, or fractionated laser. There is also a large group of nanotechnology-related approaches with ALA being delivered using liposomes/ethosomes, ALA dendrimers, niosomes, mesoporous silica nanoparticles, conjugated gold nanoparticles, polymer nanoparticles, fullerene nanoparticles, and carbon nanotubes. In the second group, we can find the use of cellular differentiating agents, the use of iron chelators, and the effect of increasing the temperature. In the third group, we find methods designed to reduce pain as well as improve efficiency including fractionated light, daylight PDT, and wearable light sources for ambulatory PDT. This active area of research is expected to continue to provide a range of intriguing possibilities. PMID:28163981

  16. Photodynamic antimicrobial chemotherapy activity of (5,10,15,20-tetrakis(4-(4-carboxyphenycarbonoimidoyl)phenyl)porphyrinato) chloro gallium(III).

    PubMed

    Managa, Muthumuni; Amuhaya, Edith K; Nyokong, Tebello

    2015-12-05

    (5,10,15,20-Tetrakis(4-(4-carboxyphenycarbonoimidoyl)phenyl)porphyrinato) chloro gallium(III) (complex 1) was conjugated to platinum nanoparticles (PtNPs) (represented as 1-PtNPs). The resulting conjugate showed 18 nm red shift in the Soret band when compared to 1 alone. Complex 1 and 1-PtNPs showed promising photodynamic antimicrobial chemotherapy (PACT) activity against Staphylococcus aureus, Escherichia coli and Candida albicans in solution where the log reductions obtained were 4.92, 3.76, and 3.95, respectively for 1-PtNPs. The singlet oxygen quantum yields obtained were higher at 0.56 for 1-PtNPs in DMF while that of 1 was 0.52 in the same solvent. This resulted in improved PACT activity for 1-PtNPs compared to 1 alone.

  17. Mitochondria-targeting cyclometalated iridium(III)-PEG complexes with tunable photodynamic activity.

    PubMed

    Li, Steve Po-Yam; Lau, Chris Tsan-Shing; Louie, Man-Wai; Lam, Yun-Wah; Cheng, Shuk Han; Lo, Kenneth Kam-Wing

    2013-10-01

    We present a new class of phosphorescent cyclometalated iridium(III) polypyridine poly(ethylene glycol) (PEG) complexes [Ir(N(^)C)2(bpy-CONH-PEG)](PF6) (bpy-CONH-PEG = 4-(N-(2-(ω-methoxypoly-(1-oxapropyl))ethyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine, number average molecular weight (Mn) = 5272.23, weight average molecular weight (Mw) = 5317.38, polydispersity index (PDI) = 1.009; HN(^)C = 2-phenylpyridine, Hppy (1a), 2-((1,1'-biphenyl)-4-yl)pyridine, Hpppy (2a), 2-phenylquinoline, Hpq (3a), 2-phenylbenzothiazole, Hbt (4a), 2-(1-naphthyl)benzothiazole, Hbsn (5a)). The photophysical, photochemical, and biological properties of these complexes have been compared with those of their PEG-free counterparts [Ir(N(^)C)2(bpy-CONH-Et)](PF6) (bpy-CONH-Et = 4-(N-ethylaminocarbonyl)-4'-methyl-2,2'-bipyridine; HN(^)C = Hppy (1b), Hpppy (2b), Hpq (3b), Hbt (4b), Hbsn (5b)). Upon irradiation, all the complexes exhibited intense and long-lived green to orange-red emission under ambient conditions. The emission was phosphorescence in nature and can be quenched by O2 with the generation of singlet oxygen ((1)O2). The quantum yields for (1)O2 production of the complexes in aerated DMSO (0.24-0.83) were found to be dependent on the excited-state lifetimes of the complexes, which can be altered using different cyclometalating ligands (N(^)C). Cell-based assays indicated that the PEG complexes were noncytotoxic in the dark (IC50 > 300 μM); however, most of them became significantly cytotoxic upon irradiation (IC50 = 3.4 - 23.2 μM). Laser-scanning confocal microscopy images revealed localization of complex 3a in the mitochondrial region of HeLa cells and the induction of rapid necrotic cell death upon light activation. Additionally, the lack of dark toxicity and potential application of the PEG complexes as a visualizing reagent have been demonstrated using zebrafish (Danio rerio) as an animal model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Nanoparticles in photodynamic therapy: an emerging paradigm.

    PubMed

    Chatterjee, Dev Kumar; Fong, Li Shan; Zhang, Yong

    2008-12-14

    Photodynamic therapy (PDT) has emerged as one of the important therapeutic options in management of cancer and other diseases [M. Triesscheijn, P. Baas, J.H. Schellens, F.A. Stewart, Photodynamic therapy in oncology, Oncologist 11 (2006) 1034-1044]. Most photosensitizers are highly hydrophobic and require delivery systems. Previous classification of delivery systems was based on presence or absence of a targeting molecule on the surface [Y.N. Konan, R. Gurny, E. Allemann, State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B 66 (2002) 89-106]. Recent reports have described carrier nanoparticles with additional active complementary and supplementary roles in PDT. We introduce a functional classification for nanoparticles in PDT to divide them into passive carriers and active participants in photosensitizer excitation. Active nanoparticles are distinguished from non-biodegradable carriers with extraneous functions, and sub-classified mechanistically into photosensitizer nanoparticles, [A.C. Samia, X. Chen, C. Burda, Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc. 125 (2003) 15736-15737, R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa, Y. Baba, Quantum dots as photosensitizers? Nat. Biotechnol. 22 (2004) 1360-1361] self-illuminating nanoparticles [W. Chen, J. Zhang, Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment, J. Nanosci. Nanotechnology 6 (2006) 1159-1166] and upconverting nanoparticles [P. Zhang, W. Steelant, M. Kumar, M. Scholfield, Versatile photosensitizers for photodynamic therapy at infrared excitation, J. Am. Chem. Soc. 129 (2007) 4526-4527]. Although several challenges remain before they can be adopted for clinical use, these active or second-generation PDT nanoparticles probably offer the best hope for extending the reach of PDT to regions deep in the body.

  19. Phthalocyanine-cRGD conjugate: synthesis, photophysical properties and in vitro biological activity for targeting photodynamic therapy.

    PubMed

    Luan, Liqiang; Fang, Wenjuan; Liu, Wei; Tian, Minggang; Ni, Yuxing; Chen, Xi; Yu, Xiaoqiang

    2016-03-14

    An unsymmetrical phthalocyanine conjugated with an RGDyK moiety (6) was synthesized and characterized. Its photophysical properties, including electronic absorption, fluorescence emission (ΦF = 0.20), singlet oxygen quantum yield (ΦΔ = 0.63) and two-photon absorption cross section (TPACS) at different wavelengths were studied. The in vitro cell study data demonstrate that this Pc conjugate possesses significantly high cellular uptake toward the ανβ3 positive DU145 prostate cancer cells along with an efficient photocytotoxicity (IC50 = 0.04 μM), showing this compound is one of the most promising photosensitizers for targeting photodynamic therapy (PDT) of cancer.

  20. Compliant Baffle for Large Telescope Daylight Imaging

    NASA Astrophysics Data System (ADS)

    Griffin, S.; Whiting, A.; Haar, S.

    2014-09-01

    With the recent interest in daylight imaging, a baffle was needed to reduce background light during the day but not impact wind loading induced jitter on the 3.6 m telescope. Analysis was performed to design a compliant baffle out of a synthetic fabric that satisfied these requirements. Initial testing showed that static loading increased as predicted by classical wind drag analysis techniques, and wind induced jitter remained the same or decreased slightly. This paper will present further testing to quantify this effect and offer a physical explanation based on the design analysis models and wind pressure data collected with and without the baffle installed. The metric used to quantify jitter will be a comparison of angular rate sensors and accelerometers mounted on the telescope and track data from stars.

  1. Improving daylight in mosques using domes

    SciTech Connect

    Alturki, I.; Schiler, M.; Boyajian, Y.

    1996-10-01

    This paper studies the possibilities for improving daylight in mosques by measuring the illumination level under various domes in an old mosque ``Mosque of Guzelce Hasan Bey in Hayrabolu`` using an architectural physical model. The illumination level under the domes were tested under three different cases: a dome without openings (the original building), a dome with a central opening, and a dome with openings around the base. It was found that a dome with openings around the base brings an evenly distributed light all over the prayer hall during the critical hours of 12:00 p.m. and 3:00 p.m. In addition, it improves the quality and quantity of light.

  2. Inorganic nanoparticles for enhanced photodynamic cancer therapy.

    PubMed

    Cheng, Shih-Hsun; Lo, Leu-Wei

    2011-09-01

    Photodynamic therapy (PDT) in cancer treatment uses photosensitizers to generate singlet oxygen followed by photoirradiation. The efficacy of PDT is greatly determined by the dosimetry of activation light and the photosensitizer (PS), modulating the photodynamic reaction at depth in diseased tissue. Development of nano-formulated photosensitizer has emerged as a promising field because of the biocompatibility and the accessibility for multi-functionalization of nanoparticles. In this review, we summarize the contemporary progress in use of inorganic nanoparticles for improvement of PDT in cancer therapeutics.

  3. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial.

    PubMed

    Azzouzi, Abdel-Rahmène; Vincendeau, Sébastien; Barret, Eric; Cicco, Antony; Kleinclauss, François; van der Poel, Henk G; Stief, Christian G; Rassweiler, Jens; Salomon, Georg; Solsona, Eduardo; Alcaraz, Antonio; Tammela, Teuvo T; Rosario, Derek J; Gomez-Veiga, Francisco; Ahlgren, Göran; Benzaghou, Fawzi; Gaillac, Bertrand; Amzal, Billy; Debruyne, Frans M J; Fromont, Gaëlle; Gratzke, Christian; Emberton, Mark

    2017-02-01

    Vascular-targeted photodynamic therapy, a novel tissue-preserving treatment for low-risk prostate cancer, has shown favourable safety and efficacy results in single-arm phase 1 and 2 studies. We compared this treatment with the standard of care, active surveillance, in men with low-risk prostate cancer in a phase 3 trial. This randomised controlled trial was done in 47 European university centres and community hospitals. Men with low-risk, localised prostate cancer (Gleason pattern 3) who had received no previous treatment were randomly assigned (1:1) to vascular-targeted photodynamic therapy (4 mg/kg padeliporfin intravenously over 10 min and optical fibres inserted into the prostate to cover the desired treatment zone and subsequent activation by laser light 753 nm with a fixed power of 150 mW/cm for 22 min 15 s) or active surveillance. Randomisation was done by a web-based allocation system stratified by centre with balanced blocks of two or four patients. Best practice for active surveillance at the time of study design was followed (ie, biopsy at 12-month intervals and prostate-specific antigen measurement and digital rectal examination at 3-month intervals). The co-primary endpoints were treatment failure (histological progression of cancer from low to moderate or high risk or death during 24 months' follow-up) and absence of definite cancer (absence of any histology result definitely positive for cancer at month 24). Analysis was by intention to treat. Treatment was open-label, but investigators assessing primary efficacy outcomes were masked to treatment allocation. This trial is registered with ClinicalTrials.gov, number NCT01310894. Between March 8, 2011, and April 30, 2013, we randomly assigned 206 patients to vascular-targeted photodynamic therapy and 207 patients to active surveillance. Median follow-up was 24 months (IQR 24-25). The proportion of participants who had disease progression at month 24 was 58 (28%) of 206 in the vascular

  4. Effects of the position of galactose units to Zn(II) phthalocyanine on the uptake and photodynamic activity towards breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mantareva, V.; Kril, A.; Angelov, I.; Dimitrov, R.; Borisova, E.; Avramov, L.

    2012-06-01

    Zn(II)-phthalocyanines with tetra-substitution of D-galactose group on non-peripheral (nGalPc) and peripheral (pGalPc) positions have been studied as photodynamic sensitizers. The both complexes are water-soluble and highly aggregated in water and cell culture medium. The non-peripheral galactose units attached to the phthalocyanine macrocycle (nGalPc) lead to far red shift of absorbance maximum at 703 nm as compared to peripherally substituted pGalPc with maximum at 683 nm. The fluorescence maxima of the studied GalPcs were red shifted (8-14 nm) depending on the used solvent as compared to the absorption maxima. The relatively low fluorescence quantum yields in dimethylsulfoxide (0.06 for nGalPc and 0.21 for pGalPc) were determined. The singlet oxygen generation was determined with lower quantum yield for pGalPc (0.21) as compared to nGalPc (0.38). The lack of dark toxicity towards breast cancer cell line (MCF-7) in wide concentration range (0.125 - 10 μM) was observed. The uptake into the tumor cells and the subcellular localization in MCF-7 cells were determined with higher accumulation for pGalPc, compared to nGalPc. The in vitro photodynamic activity of GalPcs towards breast cancer cells was investigated for different dye concentrations and soft light parameters of 635 nm irradiation. The antitumor activity of nGalPc was superior to the pGalPc-induced cytotoxicity, due to higher generation of singlet oxygen and other reactive oxygen species.

  5. Photodynamic therapy mediated antiproliferative activity of some metal-doped ZnO nanoparticles in human liver adenocarcinoma HepG2 cells under UV irradiation.

    PubMed

    Ismail, Amel F M; Ali, Mamdouh M; Ismail, Laila F M

    2014-09-05

    Photodynamic therapy (PDT) is a promising new modality for the treatment of cancer through generation of reactive oxygen species (ROS). In this work, human liver adenocarcinoma cells HepG2 were treated with zinc oxide nanoparticles (ZnO-NPs), metal-doped-ZnO-NPs: Fe-ZnO-NPs Ag-ZnO-NPs, Pb-ZnO-NPs, and Co-ZnO-NPs, Silica-coated ZnO-NPs, titanium dioxide nanoparticles (TiO2-NPs), titanium dioxide nano-tubes (TiO2-NTs) and ZnO-NPs/TiO2-NTs nanocomposite under UV irradiation. Doxorubicin was used as a standard drug. The results demonstrated that the ZnO-NPs, Fe-ZnO-NPs, Ag-ZnO-NPs, Pb-ZnO-NPs, and Co-ZnO-NPs showed cytotoxicity against HepG2 cells, with the median growth inhibitory concentrations (IC50) 42.60, 37.20, 45.10, 77.20 and 56.50 μg/ml, respectively, as compared to doxorubicin (IC50: 20.10 μg/ml). Treatment of the cancer cells with ZnO-NPs, Fe-ZnO-NPs, Ag-ZnO-NPs, Pb-ZnO-NPs, and Co-ZnO-NPs resulted in a significant increase in the activity of SOD and the levels of H2O2 and NO than those of control, accompanied with a significant decrease in the activity of CAT and GSH-Px. Also, depletion of reduced GSH, total protein and nucleic acids levels was observed. In conclusion, metal-doped ZnO-NPs may induce antiproliferative effect on HepG2 cells under UV-irradiation due to generation of ROS. Therefore, they could be included in modern clinical trials after in vivo more investigations, using photodynamic therapy technique. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Photodynamic Physiology—Photonanomanipulations in Cellular Physiology with Protein Photosensitizers

    PubMed Central

    Jiang, Hong Ning; Li, Yuan; Cui, Zong Jie

    2017-01-01

    Singlet oxygen generated in a type II photodynamic action, due to its limited lifetime (1 μs) and reactive distance (<10 nm), could regulate live cell function nanoscopically. The genetically-encoded protein photosensitizers (engineered fluorescent proteins such as KillerRed, TagRFP, and flavin-binding proteins such as miniSOG, Pp2FbFPL30M) could be expressed in a cell type- and/or subcellular organelle-specific manner for targeted protein photo-oxidative activation/desensitization. The newly emerged active illumination technique provides an additional level of specificity. Typical examples of photodynamic activation include permanent activation of G protein-coupled receptor CCK1 and photodynamic activation of ionic channel TRPA1. Protein photosensitizers have been used to photodynamically modulate major cellular functions (such as neurotransmitter release and gene transcription) and animal behavior. Protein photosensitizers are increasingly used in photon-driven nanomanipulation in cell physiology research. PMID:28421000

  7. Photosensitizers for photodynamic immune modulation

    NASA Astrophysics Data System (ADS)

    North, John R.; Boch, Ronald; Hunt, David W. C.; Ratkay, Leslie G.; Simkin, Guillermo O.; Tao, Jing-Song; Richter, Anna M.; Levy, Julia G.

    2000-06-01

    PDT may be an effective treatment for certain immune-mediated disorders. The immunomodulatory action of PDT is likely a consequence of effects exerted at a number of levels including stimulation of specific cell signaling pathways, selective depletion of activated immune cells, alteration of receptor expression by immune and non-immune cells, and the modulation of cytokine availability. QLT0074, a potent photosensitizer that exhibits rapid clearance kinetics in vivo, is in development for the treatment of immune disorders. In comparison to the well-characterized and structurally related photosensitizer verteporfin, lower concentrations of QLT0074 were required to induce apoptosis in human blood T cells and keratinocytes using blue light for photoactivation. Both photosensitizers triggered the stress activated protein kinase (SAPK) and p38 (HOG1) pathways but not extracellularly regulated kinase (ERK) activity in mouse Pam212 keratinocytes. In cell signaling responses, QLT0074 was active at lower concentrations than verteporfin. For all in vitro test systems, the stronger photodynamic activity of QLT0074 was associated with a greater cell uptake of this photosensitize than verteporfin. In mouse immune models, sub-erythemogenic doses of QLT0074 in combination with whole body blue light irradiation inhibited the contact hypersensitivity response and limited the development of adjuvant-induced arthritis. QLT0074 exhibits activities that indicate it may be a favorable agent for the photodynamic treatment of human immune disease.

  8. Ray tracing study for non-imaging daylight collectors

    SciTech Connect

    Wittkopf, Stephen; Oliver Grobe, Lars; Geisler-Moroder, David; Compagnon, Raphael; Kaempf, Jerome; Linhart, Friedrich; Scartezzini, Jean-Louis

    2010-06-15

    This paper presents a novel method to study how well non-imaging daylight collectors pipe diffuse daylight into long horizontal funnels for illuminating deep buildings. Forward ray tracing is used to derive luminous intensity distributions curves (LIDC) of such collectors centered in an arc-shaped light source representing daylight. New photometric characteristics such as 2D flux, angular spread and horizontal offset are introduced as a function of such LIDC. They are applied for quantifying and thus comparing different collector contours. (author)

  9. State warehouse daylighting demonstration project in Austin, Texas

    SciTech Connect

    Holder, L.M. IV; Holder, L.M. III

    1996-10-01

    The primary purpose of the State Support Warehouse Daylighting Demonstration Project is to put into practice many different daylighting techniques as possible. Technologies will be incorporated into an existing structure for the purpose of saving energy. The warehouse facility was initially a grocery store and converted into its present condition approximately twenty years ago. Located within the facility are offices, warehouse storage, and an outlet for state supplies. Office areas were void of any natural lighting, consisting of only artificial (fluorescent) illumination. Daylighting existed only in the hallway to the offices. The entire building, warehouse space and offices were conditioned throughout the entire year.

  10. Effects of daylight savings time changes on stock market volatility.

    PubMed

    Berument, M Hakan; Dogan, Nukhet; Onar, Bahar

    2010-04-01

    The presence of daylight savings time effects on stock returns and on stock volatility was investigated using an EGARCH specification to model the conditional variance. The evidence gathered from the major United States stock markets for the period between 1967 and 2007 did not support the existence of the daylight savings time effect on stock returns or on volatility. Returns on the first business day following daylight savings time changes were not lower nor was the volatility higher, as would be expected if there were an effect.

  11. Synthesis, supramolecular behavior, and in vitro photodynamic activities of novel zinc(II) phthalocyanines "side-strapped" with crown ether bridges.

    PubMed

    Chen, Xing-Wei; Ke, Mei-Rong; Li, Xing-Shu; Lan, Wen-Liang; Zhang, Miao-Fen; Huang, Jian-Dong

    2013-12-01

    Two new tetra- or di-α-substituted zinc(II) phthalocyanines 5 and 6 have been prepared through a "side-strapped" method. In the molecules, the adjacent benzene rings of the phthalocyanine core are linked at α-position through a triethylene glycol bridge to form a hybrid aza-/oxa-crown ether. The tetra-α-substituted phthalocyanine 5 shows an eclipsed self-assembly property in CH2Cl2 and the effect on the di-α-substituted analogue 6 is significantly weakened. Furthermore, the crown ethers of these compounds can selectively complex with Fe(3+) or Cu(2+) ion in DMF, leading to formation of J-aggregated nano-assemblies, which can be disaggregated in the presence of some organic or inorganic ligands, such as triethylamine, tetramethylethylenediamine, CH3COO(-), or OH(-). In addition, both compounds are efficient singlet oxygen generators with the singlet oxygen quantum yields (Φ(Δ)) of 0.54-0.74 in DMF relative to unsubstituted zinc(II) phthalocyanine (Φ(Δ)=0.56). They exhibit photodynamic activities toward HepG2 human hepatocarcinoma cells, but the compound 6, which has more than 40-fold lower IC50 value (0.08 μM) compared to the analogue 5 (IC50=3.31 μM), shows remarkablely higher in vitro photocytotoxicity due to its significantly higher cellular uptake and singlet oxygen generation efficiency. The results suggest that these compounds can serve as promising multifunctional materials both in (opto)electronic field and photodynamic therapy.

  12. Photodynamic antimicrobial chemotherapy activity of gallium tetra-(4-carboxyphenyl) porphyrin when conjugated to differently shaped platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Managa, Muthumuni; Nyokong, Tebello

    2015-11-01

    This work reports on the conjugation of differently shaped Pt nanoparticles (PtNPs) with ClGa(III) 5,10,15,20-tetrakis-(4-carboxyphenyl) porphyrin (ClGaTCPP). The resulting conjugates were used for photodynamic antimicrobial chemotherapy against Staphylococcus aureus. The degree of photo-inactivation is dependent on concentration of the conjugates, light dose (fluence) and illumination time. The log reduction obtained for ClGaTCPP when conjugated to cubic PtNPs was 4.64 log (which indicate 99.99% of the bacteria have been killed), which is much higher than 3.94 log unit for ClGaTCPP-Hexagonal PtNPs and 3.31 log units for ClGaTCPP-Unshaped PtNPs. ClGaTCPP alone gave a log unit reduction of less than 3, showing the importance of conjugation to PtNPs.

  13. The effects of daylight and daylight saving time on US pedestrian fatalities and motor vehicle occupant fatalities.

    PubMed

    Coate, Douglas; Markowitz, Sara

    2004-05-01

    This paper analyzes the effects of daylight and daylight saving time (DST) on pedestrian and motor vehicle occupant fatalities in the United States. Multivariate analyses of county level data from the Fatality Analysis Reporting System for 2-week periods in 1998 and 1999 are used. Results show that full year daylight saving time would reduce pedestrian fatalities by 171 per year, or by 13% of all pedestrian fatalities in the 5:00-10.00 a.m. and in the 4:00-9:00 p.m. time periods. Motor vehicle occupant fatalities would be reduced by 195 per year, or 3%, during the same time periods.

  14. Photodynamic activity of BAM-SiPc, an unsymmetrical bisamino silicon(IV) phthalocyanine, in tumour-bearing nude mice

    PubMed Central

    Leung, S C H; Lo, P-C; Ng, D K P; Liu, W-K; Fung, K-P; Fong, W-P

    2008-01-01

    Background and purpose Ever since the discovery of photodynamic therapy, there has been a continuous search for more potent photosensitizers. Towards that end, we have synthesized a number of novel phthalocyanine derivatives. The unsymmetrical bisamino silicon(IV) phthalocyanine BAM-SiPc is one of the most potent compounds. In in vitro cell culture, it exhibits high phototoxicity against a number of cancer cell lines. Experimental approach In the present investigation, the in vivo effect of BAM-SiPc was studied in the tumour-bearing nude mice model. The biodistribution of BAM-SiPc was followed to evaluate its tumour selectivity and rate of clearance. The tumour volume in the hepatocarcinoma HepG2- and the colorectal adenocarcinoma HT29-bearing nude mice was measured after photodynamic therapy. The level of intrinsic toxicity induced was also investigated. Finally, the metabolism of BAM-SiPc in the ‘normal' WRL68 liver cells and the hepatocarcinoma HepG2 cells was compared. Key results The results not only showed significant tumour regression of HepG2 and growth inhibition of HT29 in the tumour-bearing nude mice, but also no apparent hepatic or cardiac injury with the protocol used. Histological analyses showed that apoptosis was induced in the solid tumour. BAM-SiPc could be metabolized by WRL68 liver cells but not by the hepatocarcinoma HepG2 cells. Unfortunately, BAM-SiPc did not show any specific targeting towards the tumour tissue. Conclusions and implications The efficiency of BAM-SiPc in inhibiting tumour growth makes it a good candidate for further evaluation. Enhancement of its uptake in tumour tissue by conjugation with biomolecules is currently under investigation. PMID:18332853

  15. Temperature effects in photodynamic processes

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, Vladimir A.; Avetisyan, Hasmik A.; Mathevosyan, Margarita B.; Elbakyan, Egishe G.

    2005-04-01

    Photodynamic activity of several dyes on Drosophila melanogaster at different temperatures (15-35°C) inside of test-tubes was investigated. Both phototoxic sensitizers (chlorin e6, methylene blue, etc. -group A) and non active compounds (hemoglobin, brilliant green, pyronine, etc.-group B) were used. Dyes of 10-5-10-3 M concentration were added to the food for drosophila 24 hours before irradiation. Solar radiation, narrow-band halogen lamps, LEDs and laser were used as a photo-stimulator. Irradiation parameters: I <= 45mW/cm2 and 0.2photodynamic effect. This, probably, is concerned with the toxic photoproduct suppression by the inactive dye. Experimental model of drosophila allows to investigate photosensitization impact within wide temperature range, to find out the processes, when using combination of dyes, as well as to study photodynamic effect on reproductive functions of insects.

  16. Photodynamic Action of Single-Walled Carbon Nanotubes.

    PubMed

    Murakami, Tatsuya

    2017-01-01

    Photodynamic therapy is achieved by the combination of photosensitizers, harmless visible or near-infrared (NIR) light, and molecular oxygen (O2). Photosensitizers transfer their absorbed light energy to O2 to generate a major active species in photodynamic therapy, singlet oxygen. In this review, I will discuss the possibility of single-walled carbon nanotubes as NIR photosensitizers, while explaining the general photophysics and photochemistry underlying photodynamic therapy as well as summarizing recent advances in the purification technologies for single-walled carbon nanotubes to reduce their toxicity concerns.

  17. Parkinson's patients cope with daylight saving time.

    PubMed

    Fetter, D; Lefaucheur, R; Borden, A; Maltête, D

    2014-02-01

    Disturbances of the circadian timing system following daylight saving time (DST) may influence the symptoms of Parkinson's disease (PD). To address this question, we compared the severity of motor fluctuations and non-motor symptoms both before and after the time change. Total daily "off-time" based on diaries, excessive daytime sleepiness (Epworth Sleepiness Scale), depressive symptoms (Beck Depression Inventory), and psychosis associated with PD were assessed both before and after the DST. Eighty-three PD patients (mean age, 67±7.7years; mean disease duration, 10.4±6.4years) were included. Thirty-six patients had motor fluctuations (mean daily "off-time", 4.8±2.4h/day). There was no significant variation of the total daily "off-time" (2.5±2.6h/day versus 2.5±2.7h/day), ESS (8.3±4.8 versus 8.1±4.9), BDI (10.4±6.2 versus 10.0±6.9), or PAPD (1.4±1.6 versus 1.1±1.6) scores (P>0.05) after DST. Our results suggest that PD patients cope relatively well with DST. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Daylight savings time and myocardial infarction

    PubMed Central

    Sandhu, Amneet; Seth, Milan; Gurm, Hitinder S

    2014-01-01

    Background Prior research has shown a transient increase in the incidence of acute myocardial infarction (AMI) after daylight savings time (DST) in the spring as well as a decrease in AMI after returning to standard time in the fall. These findings have not been verified in a broader population and if extant, may have significant public health and policy implications. Methods We assessed changes in admissions for AMI undergoing percutaneous coronary intervention (PCI) in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) database for the weeks following the four spring and three fall DST changes between March 2010 and September 2013. A negative binomial regression model was used to adjust for trend and seasonal variation. Results There was no difference in the total weekly number of PCIs performed for AMI for either the fall or spring time changes in the time period analysed. After adjustment for trend and seasonal effects, the Monday following spring time changes was associated with a 24% increase in daily AMI counts (p=0.011), and the Tuesday following fall changes was conversely associated with a 21% reduction (p=0.044). No other weekdays in the weeks following DST changes demonstrated significant associations. Conclusions In the week following the seasonal time change, DST impacts the timing of presentations for AMI but does not influence the overall incidence of this disease. PMID:25332784

  19. Free-space quantum cryptography in daylight

    NASA Astrophysics Data System (ADS)

    Hughes, Richard J.; Buttler, William T.; Kwiat, Paul G.; Lamoreaux, Steve K.; Morgan, George L.; Nordholt, Jane E.; Peterson, C. Glen

    2000-05-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics and information-theoretically secure post-processing methods. An adversary can neither successfully tap the quantum transmissions, nor evade detection, owing to Heisenberg's uncertainty principle. In this paper we describe the theory of quantum cryptography, and the most recent results from our experimental free-space system with which we have demonstrated for the first time the feasibility of quantum key generation over a point-to-point outdoor atmospheric path in daylight. We achieved a transmission distance of 0.5 km, which was limited only by the length of the test range. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on orbit. We present a feasibility analysis of surface-to-satellite quantum key generation.

  20. Atmospheric Quantum Key Distribution in Daylight

    NASA Astrophysics Data System (ADS)

    Buttler, William; Hughes, Richard; Morgan, George; Nordholt, Jane; Peterson, Charles

    2001-05-01

    In quantum key distribution (QKD) single-photon transmissions generate the shared, secret random number sequences, known as cryptographic keys, that are used to encrypt and decrypt secret communications. Because the security of QKD is based on principles of quantum physics an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed an experimental QKD system that uses the four-state “BB84” protocol with non-orthogonal photon polarization states and lowest-order adaptive optics to generate shared key material over multi-kilometer atmospheric, line-of-sight paths. We will present results of a daylight demonstration of this system. Key material is built up using the transmission of a photon-pulse per bit of an initial secret random sequence. We will describe the design and operation of the system, present an analysis of the system's security, efficiency and error rate, and describe the prospects for longer-distance applications of free-space QKD.

  1. FREE-SPACE QUANTUM CRYPTOGRAPHY IN DAYLIGHT

    SciTech Connect

    Hughes, R.J.; Buttler, W.T.

    2000-01-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics and information-theoretically secure post-processing methods. An adversary can neither successfully tap the quantum transmissions, nor evade detection, owing to Heisenberg's uncertainty principle. In this paper we describe the theory of quantum cryptography, and the most recent results from our experimental free-space system with which we have demonstrated for the first time the feasibility of quantum key generation over a point-to-point outdoor atmospheric path in daylight. We achieved a transmission distance of 0.5 km, which was limited only by the length of the test range. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on orbit. We present a feasibility analysis of surface-to-satellite quantum key generation.

  2. Aberration of the enzymatic activity of Fhit tumor suppressor protein enhances cancer cell death upon photodynamic therapy similarly to that driven by wild-type Fhit.

    PubMed

    Ferens, Bartosz; Kawiak, Anna; Banecki, Bogdan; Bielawski, Krzysztof P; Zawacka-Pankau, Joanna

    2009-07-18

    The tumor suppressor Fhit protein lost in many human pre-malignant tissues, possesses diadenosine triphosphate activity regulated by a photosensitizer, protoporphyrin IX (PpIX) in vitro. Interestingly, when exogenously restored, the protein suppresses the growth of human cervical carcinoma HeLa cells which is further enhanced by PpIX. Additionally, Fhit production enhances the overall response of cells to PpIX-mediated photodynamic reaction. In the present study, we have estimated, for the first time, the biological activity of two Fhit mutated forms exhibiting aberrant Ap(3)A hydrolase activity in vitro which emphasizes the recent findings that hydrolysis of Ap(3)A is not necessary for Fhit tumor suppression function. Using several biophysical methods we revealed the dynamic nature of mutant Fhit-PpIX complexes in vitro which support our previous hypothesis that Fhit-Ap(3)A-PpIX might be a signaling molecule driving apoptosis in cancer cells. Moreover, according to our findings, substitution at histidine94 in Fhit active site induces the vulnerability of HeLa cells to PpIX-PDT in a similar manner to that caused by wild-type Fhit protein. These results support the view that inhibition of Fhit hydrolase activity might be a crucial element in a Fhit-driven cancer cells death.

  3. In-office Painless Aminolevulinic Acid Photodynamic Therapy

    PubMed Central

    2016-01-01

    Objective: To evaluate the efficacy, safety, and pain of in-office “painless” aminolevulinic acid photodynamic therapy aimed at decreasing treatment-associated pain in patients undergoing removal of actinic keratoses. Design: Prospective split-face study comparing short aminolevulinic acid incubation times of 15 minutes followed by extended exposure (60 minutes) of continuous blue light versus conventional aminolevulinic acid photodynamic therapy. Prospective assessment of pain in patients undergoing in-office “painless” aminolevulinic acid photodynamic therapy. Setting: Clinical practice office. Participants: Three patients with actinic keratoses participated in the split-face study and 101 in the pain assessment study. Measurements: Evaluations in the split-face study included removal of actinic keratoses, skin temperature, and pain measured on a 10-point visual analog scale. Pain was assessed using the visual analog scale in the pain assessment study. Results: In the split-face study, in-office “painless” aminolevulinic acid photodynamic therapy resulted in a 52-percent reduction in lesions versus 44 percent for conventional aminolevulinic acid photodynamic therapy. Maximum pain scores of in-office “painless” aminolevulinic acid photodynamic therapy were all 0 at each time point, and the average score for conventional aminolevulinic acid photodynamic therapy was 7. Baseline skin temperatures increased from a baseline of 29 to 32°C to 34 to 35°C by minute 10 of blue light activation on both sides of the face. Results from the pain assessment study indicated no or minimal (scores 0-2) pain in nearly all patients who received in-office “painless” aminolevulinic acid photodynamic therapy as monotherapy or in combination with 5-fluoruacil or imiquimod used as pretreatments. Conclusions: In-office “painless” aminolevulinic acid photodynamic therapy appears to be effective for removing actinic keratoses and is associated with little or no pain

  4. Photodynamic action of protoporphyrin IX derivatives on Trichophyton rubrum*

    PubMed Central

    Ramos, Rogério Rodrigo; Kozusny-Andreani, Dora Inês; Fernandes, Adjaci Uchôa; Baptista, Mauricio da Silva

    2016-01-01

    BACKGROUND Dermatophytes are filamentous keratinophilic fungi. Trichophyton rubrum is a prevalent infectious agent in tineas and other skin diseases. Drug therapy is considered to be limited in the treatment of such infections, mainly due to low accessibility of the drug to the tissue attacked and development of antifungal resistance in these microorganisms. In this context, Photodynamic Therapy is presented as an alternative. OBJECTIVE Evaluate, in vitro, the photodynamic activity of four derivatives of Protoporphyrin IX by irradiation with LED 400 nm in T. rubrum. METHOD Assays were subjected to irradiation by twelve cycles of ten minutes at five minute intervals. RESULT Photodynamic action appeared as effective with total elimination of UFCs from the second irradiation cycle. CONCLUSION Studies show that the photodynamic activity on Trichophyton rubrum relates to a suitable embodiment of the photosensitizer, which can be maximized by functionalization of peripheral groups of the porphyrinic ring. PMID:27192510

  5. Titan brighter at twilight than in daylight

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.; Lavvas, P.; West, R. A.

    2017-04-01

    Investigating the overall brightness of planets (and moons) provides insights into their envelopes and energy budgets 1-4 . Phase curves (a representation of the overall brightness versus the Sun-object-observer phase angle) for Titan have been published over a limited range of phase angles and spectral passbands 5,6 . Such information has been key to the study of the stratification, microphysics and aggregate nature of Titan's atmospheric haze 7,8 and has complemented the spatially resolved observations showing that the haze scatters efficiently in the forward direction 7,9 . Here, we present Cassini Imaging Science Subsystem whole-disk brightness measurements of Titan from ultraviolet to near-infrared wavelengths. The observations show that Titan's twilight (loosely defined as the view at phase angles ≳150°) outshines its daylight at various wavelengths. From the match between measurements and models, we show that at even larger phase angles, the back-illuminated moon will appear much brighter than when fully illuminated. This behaviour is unique in our Solar System to Titan and is caused by its extended atmosphere and the efficient forward scattering of sunlight by its atmospheric haze. We infer a solar energy deposition rate (for a solar constant of 14.9 W m-2) of (2.84 ± 0.11) × 1014 W, consistent to within one to two standard deviations with Titan's time-varying thermal emission from 2007 to 2013 10,11 . We propose that a forward scattering signature may also occur at large phase angles in the brightness of exoplanets with extended hazy atmospheres and that this signature has a valuable diagnostic potential for atmospheric characterization.

  6. Photodynamic-therapy Activates Immune Response by disrupting Immunity Homeostasis of Tumor Cells, which Generates Vaccine for Cancer Therapy

    PubMed Central

    Zheng, Yuanhong; Yin, Guifang; Le, Vanminh; Zhang, Anle; Chen, Siyu; Liang, Xin; Liu, Jianwen

    2016-01-01

    Photodynamic therapy (PDT), a regulatory approved cancer treatment, is reported to be capable of causing immunogenic apoptosis. The current data reveal PDT can cause the dysregulation of “eat me” and “don't eat me” signal by generating reactive oxygen species (ROS) -mediated endoplasmic reticulum (ER) stress. This dysregulation probably contribute to the increased uptake of PDT-killed Lewis lung carcinoma (LLC) cells by homologous dendritic cells (DCs), accompanied by phenotypic maturation (CD80high, CD86high, and CD40high) and functional stimulation (NOhigh, IL-10absent) of dendritic cells as well as subsequent T-cell responses. Morevover, C57BL/6 mice vaccinated with dendritic cells (DCs) pulsed with PDT-treated LLCs (PDT-DCs) or PDT-treated LLCs alone (PDT-LLCs) exhibited potent immunity against LLC tumors. In the current study, the PDT-induced immune response was characterized as a process related with the dysregulation of “eat me” signal and “don't eat me” signal, revealing the possibility for developing PDT into an antitumor vaccination strategy for personalized cancer immunotherapy. PMID:26722223

  7. Trichophyton rubrum is Inhibited by Free and Nanoparticle Encapsulated Curcumin by Induction of Nitrosative Stress after Photodynamic Activation

    PubMed Central

    Souza, Ana Camila Oliveira; Adler, Brandon L.; Landriscina, Angelo; Musaev, Tagai; Nosanchuk, Joshua D.; Friedman, Adam J.

    2015-01-01

    Antimicrobial photodynamic inhibition (aPI) utilizes radical stress generated from the excitation of a photosensitizer (PS) with light to destroy pathogens. Its use against Trichophyton rubrum, a dermatophytic fungus with increasing incidence and resistance, has not been well characterized. Our aim was to evaluate the mechanism of action of aPI against T. rubrum using curcumin as the PS in both free and nanoparticle (curc-np) form. Nanocarriers stabilize curcumin and allow for enhanced solubility and PS delivery. Curcumin aPI, at optimal conditions of 10 μg/mL of PS with 10 J/cm2 of blue light (417 ± 5 nm), completely inhibited fungal growth (p<0.0001) via induction of reactive oxygen (ROS) and nitrogen species (RNS), which was associated with fungal death by apoptosis. Interestingly, only scavengers of RNS impeded aPI efficacy, suggesting that curcumin acts potently via a nitrosative pathway. The curc-np induced greater NO• expression and enhanced apoptosis of fungal cells, highlighting curc-np aPI as a potential treatment for T. rubrum skin infections. PMID:25803281

  8. Trichophyton rubrum is inhibited by free and nanoparticle encapsulated curcumin by induction of nitrosative stress after photodynamic activation.

    PubMed

    Baltazar, Ludmila Matos; Krausz, Aimee E; Souza, Ana Camila Oliveira; Adler, Brandon L; Landriscina, Angelo; Musaev, Tagai; Nosanchuk, Joshua D; Friedman, Adam J

    2015-01-01

    Antimicrobial photodynamic inhibition (aPI) utilizes radical stress generated from the excitation of a photosensitizer (PS) with light to destroy pathogens. Its use against Trichophyton rubrum, a dermatophytic fungus with increasing incidence and resistance, has not been well characterized. Our aim was to evaluate the mechanism of action of aPI against T. rubrum using curcumin as the PS in both free and nanoparticle (curc-np) form. Nanocarriers stabilize curcumin and allow for enhanced solubility and PS delivery. Curcumin aPI, at optimal conditions of 10 μg/mL of PS with 10 J/cm² of blue light (417 ± 5 nm), completely inhibited fungal growth (p<0.0001) via induction of reactive oxygen (ROS) and nitrogen species (RNS), which was associated with fungal death by apoptosis. Interestingly, only scavengers of RNS impeded aPI efficacy, suggesting that curcumin acts potently via a nitrosative pathway. The curc-np induced greater NO˙ expression and enhanced apoptosis of fungal cells, highlighting curc-np aPI as a potential treatment for T. rubrum skin infections.

  9. Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions.

    PubMed

    Sobotta, Lukasz; Wierzchowski, Marcin; Mierzwicki, Michal; Gdaniec, Zofia; Mielcarek, Jadwiga; Persoons, Leentje; Goslinski, Tomasz; Balzarini, Jan

    2016-02-01

    Manganese(III), cobalt(II), copper(II), magnesium(II), zinc(II) and metal-free phthalocyanines, possessing 1,4,7-trioxanonyl substituents, at their non-peripheral positions, were subjected to photochemical, photodynamic and biological activity studies. Demetallated phthalocyanine and its metallated d-block analogues, with copper(II), cobalt(II), manganese(III) chloride, were found to be less efficient singlet oxygen generators in comparison to the zinc(II) analogue and zinc(II) phthalocyanine reference. Irradiation of several phthalocyanines for short time periods resulted in a substantially increased cytostatic activity against both suspension (leukemic/lymphoma at 85nM) and solid (cervix carcinoma at 72nM and melanoma at 81nM) tumour cell lines (up to 200-fold). Noteworthy is that enveloped viruses, such as for herpesvirus and influenza A virus, but not, non-enveloped virus strains, such as Coxsackie B4 virus and reovirus-1, exposed to irradiation in the presence of the phthalocyanines, markedly lost their infectivity potential.

  10. Killing efficacy of a new silicon phthalocyanine in human melanoma cells treated with photodynamic therapy by early activation of mitochondrion-mediated apoptosis.

    PubMed

    Barge, Jérôme; Decréau, Richard; Julliard, Michel; Hubaud, Jean-Claude; Sabatier, Anne-Sophie; Grob, Jean-Jacques; Verrando, Patrick

    2004-01-01

    Photodynamic therapy (PDT) is a promising therapeutic modality that utilizes a combination of a photosensitizer and visible light for the destruction of diseased tissues. Using human-pigmented melanoma cells, we examined the photokilling efficacy of new silicon-phthalocyanines (SiPc) that bore bulky axial substituents. The bis(cholesteryloxy) derivate (Chol-O-SiPc) displayed the best in vitro photokilling efficacy (LD(50) = 6-8 x 10(-9) M) and was seven to nine times more potent than chloro-aluminium Pc (ClAlPc), a known photosensitizer used as a reference. Although Chol-O-SiPc was half as potent as ClAlPc for promoting photo-oxidative membrane damage in a cell-free assay, early events of mitochondrion-mediated apoptosis upon PDT were triggered much faster, as demonstrated by kinetics studies examining cells with permeabilized mitochondrial membranes, cytochrome c release and caspase-9 activation. Inhibition of caspase-9 activity by a substrate analogue argued for its central role in the proapoptotic events leading to cell death by Chol-O-SiPc PDT. In addition, immunoblots showed that Bcl-2 antiapoptotic oncoprotein was not a primary target of Chol-O-SiPc in M3Dau cells treated with PDT. Conclusively, Chol-O-SiPc is a useful new photosensitizer with the property of triggering cell apoptosis mediated by mitochondria.

  11. Photodynamic therapy with ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Wachter, Eric A.; Petersen, Mark G.; Dees, Craig

    1999-06-01

    The photodynamic properties of several photosensitive compounds have been evaluated in vivo using simultaneous two-photon excitation (TPE) and multi-photon excitation (MPE). TPE and MPE are effected using a mode-locked laser, such as the mode-locked titanium:sapphire or Nd:YLF laser, the near infrared output of which allows direct promotion of various non-resonant transitions. Such lasers are exceptionally well suited for non-linear activation of exogenous or endogenous PDT agents in biological systems due to their extremely short pulse width, modest pulse energy, and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non- specific biological damage, improved spatial localization of activation, and enhanced depth of penetration. Results in several murine models are presented.

  12. Daylight strategies for architectural studio facilities: the literature review

    NASA Astrophysics Data System (ADS)

    Othman, Muhammad Anas Bin; Azfahani Ahmad, Nur; Ajis, Azizah Md

    2017-05-01

    The implementation of daylighting strategies in buildings is a common aspect in architecture. However, due to the availability of inexpensive electricity, natural lighting strategies became insignificant, and been overlooked by designers. With the current concern over rapid increment on electricity cost, many designers now try to revitalized daylighting strategies in buildings. This includes educational buildings. In Malaysian cases, it is a norm that universities; especially during lecture and studio sessions, used artificial lighting throughout the day. Definitely, this is not parallel with the “green” aim made by the Government in the Malaysian Plan. Therefore, this paper aims to explore the impact of daylight strategies for educational studios in universities, by maximising the penetration of natural daylight into the space towards creating a more green-conducive studio. The paper review literature about the types, criteria and benefits of daylight strategies. This paper also presented a pilot study that has been performed in one university in Perak, Malaysia, by selecting architectural studios as the main subject.

  13. Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy.

    PubMed

    Granville, D J; Carthy, C M; Jiang, H; Shore, G C; McManus, B M; Hunt, D W

    1998-10-16

    Photodynamic therapy (PDT) is a clinical approach that utilizes light-activated drugs for the treatment of a variety of pathologic conditions. The initiating events of PDT-induced apoptosis are poorly defined. It has been shown for other proapoptotic stimuli that the integral endoplasmic reticulum protein Bap31 is cleaved by caspases 1 and 8, but not by caspase-3. Further, a 20 kDa Bap31 cleavage fragment is generated which can induce apoptosis. In the current report, we sought to determine whether Bap31 cleavage and generation of p20 is an early event in PDT-induced apoptosis. The mitochondrial release of cytochrome c, involvement of caspases 1, 2, 3, 4, 6, 7, 8, and 10 and the status of several known caspase substrates, including Bap31, were evaluated in PDT-treated HeLa cells. Cytochrome c appeared in the cytosol immediately following light activation of the photosensitizer benzoporphyrin derivative monoacid ring A. Activation of caspases 3, 6, 7, and 8 was evident within 1-2 h post PDT. Processing of caspases 1, 2, 4, and 10 was not observed. Cleavage of Bap31 was observed at 2-3 h post PDT. The caspase-3 inhibitor DEVD-fmk blocked caspase-8 and Bap31 cleavage suggesting that caspase-8 and Bap31 processing occur downstream of caspase-3 activation in PDT-induced apoptosis. These results demonstrate that release of mitochondrial cytochrome c into the cytoplasm is a primary event following PDT, preceding caspase activation and cleavage of Bap31. To our knowledge, this is the first example of a chemotherapeutic agent inducing caspase-8 activation and demonstrates that caspase-8 activation can occur after cytochrome c release.

  14. Synergistic enhancement of the efficacy of the bioreductively activated alkylating agent RSU-1164 in the treatment of prostatic cancer by photodynamic therapy.

    PubMed

    Henry, J M; Isaacs, J T

    1989-07-01

    Bioreductively activated alkylating agents (BAA) require metabolic reduction to become cytotoxic. Hypoxia induces a massive increase in reductive metabolism activating BAA to their cytotoxic form. One of these BAA agents is cis-2,3-dimethyl 1-(2-nitro-1-imidazolyl)-3-(1-aziridinyl)-2-propanol referred to as RSU-1164. In a hypoxic environment, RSU-1164 is activated to a highly reactive bifunctional alkylating agent capable of crosslinking macromolecules which results in cell death. Photodynamic therapy (PDT) is a treatment modality which consists of the initial accumulation of hematoporphyrin derivative (HPD) within a tumor followed by the activation of the HPD by 630 nm. light to induce a cytotoxic response. The precise mechanism of PDT is not known, however, two actions of the activated HPD have been documented. The first is a direct cytotoxic effect, secondary to singlet oxygen production. The second is through vascular collapse and subsequent hypoxia. The combination of a chemotherapeutic agent like RSU-1164, which is activated by hypoxia, with PDT to produce such hypoxia, therefore, should greatly increase the efficiency and utility of RSU-1164. To test this hypothesis, Copenhagen rats bearing established Dunning R-3327 AT-2 prostate cancers were treated with PDT treatment alone (HPD 20 mg./kg. injected IP and then 24 hr. later, the tumor exposed to 630 nm. light at 400 mW/cm.2 for 30 min. [total dose 720 J/cm.2]), RSU-1164 alone (injected IP at a dose of 200 mg./kg.) or with the combination of this PDT treatment plus RSU-1164 given 30 min. before light exposure. These results demonstrated that this combinational treatment synergistically produces a greater retardation in the growth of the AT-2 tumor than either of the monotherapies of RSU-1164 or PDT alone.

  15. Energy and daylighting: A correlation between quality of light and energy consciousness

    SciTech Connect

    Krug, N.

    1997-12-31

    Energy and Daylighting, an advanced topics graduate/professional elective has been established to help the student develop a deeper understanding of Architectural Daylighting, Energy Conserving Design, and Material/Construction/Methods through direct application. After a brief survey of the principles and applications of current and developing attitudes and techniques in energy conservation and natural lighting strategies is conducted (in order to build upon previous courses), an extensive exercise follows which allows the student the opportunity for direct applications. Both computer modeling/analysis and physical modeling (light box simulation with photographic documentation) are employed to focus attention on the interrelationships between natural lighting and passive energy conserving design--all within the context of establishing environmental (interior) quality and (exterior) design direction. As a result, students broaden their understanding of natural light and energy conservation as design tools; the importance of environmental responsibility, both built and natural environments; and using computer analysis as a design tool. This presentation centers around the activities and results obtained from explorations into Energy and Daylighting. Discussion will highlight the course objectives, the methodology involved in the studies, specific requirements and means of evaluation, a slide show of befores and afters (results), and a retrospective look at the course`s value, as well as future directions and implications.

  16. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats.

    PubMed

    Voigt, Christian C; Lewanzik, Daniel

    2011-08-07

    Bats are one of the most successful mammalian groups, even though their foraging activities are restricted to the hours of twilight and night-time. Some studies suggested that bats became nocturnal because of overheating when flying in daylight. This is because--in contrast to feathered wings of birds--dark and naked wing membranes of bats efficiently absorb short-wave solar radiation. We hypothesized that bats face elevated flight costs during daylight flights, since we expected them to alter wing-beat kinematics to reduce heat load by solar radiation. To test this assumption, we measured metabolic rate and body temperature during short flights in the tropical short-tailed fruit bat Carollia perspicillata at night and during the day. Core body temperature of flying bats differed by no more than 2°C between night and daytime flights, whereas mass-specific CO(2) production rates were higher by 15 per cent during daytime. We conclude that increased flight costs only render diurnal bat flights profitable when the relative energy gain during daytime is high and risk of predation is low. Ancestral bats possibly have evolved dark-skinned wing membranes to reduce nocturnal predation, but a low degree of reflectance of wing membranes made them also prone to overheating and elevated energy costs during daylight flights. In consequence, bats may have become trapped in the darkness of the night once dark-skinned wing membranes had evolved.

  17. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats

    PubMed Central

    Voigt, Christian C.; Lewanzik, Daniel

    2011-01-01

    Bats are one of the most successful mammalian groups, even though their foraging activities are restricted to the hours of twilight and night-time. Some studies suggested that bats became nocturnal because of overheating when flying in daylight. This is because—in contrast to feathered wings of birds—dark and naked wing membranes of bats efficiently absorb short-wave solar radiation. We hypothesized that bats face elevated flight costs during daylight flights, since we expected them to alter wing-beat kinematics to reduce heat load by solar radiation. To test this assumption, we measured metabolic rate and body temperature during short flights in the tropical short-tailed fruit bat Carollia perspicillata at night and during the day. Core body temperature of flying bats differed by no more than 2°C between night and daytime flights, whereas mass-specific CO2 production rates were higher by 15 per cent during daytime. We conclude that increased flight costs only render diurnal bat flights profitable when the relative energy gain during daytime is high and risk of predation is low. Ancestral bats possibly have evolved dark-skinned wing membranes to reduce nocturnal predation, but a low degree of reflectance of wing membranes made them also prone to overheating and elevated energy costs during daylight flights. In consequence, bats may have become trapped in the darkness of the night once dark-skinned wing membranes had evolved. PMID:21208959

  18. Daylighting in the Springfield (Ohio) Museum of Art

    SciTech Connect

    Moore, F.

    1996-10-01

    This paper describes daylighting strategies used in the addition to the Springfield Museum of Art, Springfield, Ohio. The interior daylighting illuminances and luminances have been measured and these data are presented. The original museum was built in 1958. This original portion is approximately 18,000 ft{sup 2} (1,674 m{sup 2}) floor area and was remodeled as part of the 1995 addition to house and art school, cataloging, preparation, and administrative functions. The new addition is approximately 10,000 ft{sup 2} (930 m{sup 2}) and is primarily exhibit galleries with some additional administrative offices. Glaser Associated were the architects (Michael Moose, project architect) and the author was the daylighting consultant on the project.

  19. New tools for the evaluation of daylighting strategies and technologies

    SciTech Connect

    Papamichael, K.; Hitchcock, R.; Ehrlich, C.; Carroll, B.

    1998-03-01

    The use of daylight for the illumination of building interiors has the potential to enhance the quality of the environment while providing opportunities to save energy by replacing or supplementing electric lighting. Moreover, it has the potential to reduce heating and cooling loads, which offer additional energy saving opportunities as well as reductions in HVAC equipment sizing and cost. All of these benefits, however, assume proper use of daylighting strategies and technologies, whose performance depends on the context of their application. On the other hand, improper use can have significant negative effects on both comfort and energy requirements, such as increased glare and cooling loads. To ensure proper use, designers need design tools that model the dynamic nature of daylight and accurately predict performance with respect to a multitude of performance criteria, extending beyond comfort and energy to include aesthetics, cost, security, safety, etc.

  20. Photodynamic therapy-induced apoptosis in lymphoma cells: translocation of cytochrome c causes inhibition of respiration as well as caspase activation.

    PubMed

    Varnes, M E; Chiu, S M; Xue, L Y; Oleinick, N L

    1999-02-24

    L5178Y-R mouse lymphoma (LY-R) cells undergo rapid apoptosis when treated with photodynamic therapy (PDT) sensitized with the silicon phthalocyanine Pc 4. In this study we show that cytochrome c is released into the cytosol within 10 min of an LD99.9 dose of PDT. Cellular respiration is inhibited by 42% at 15 min, and 60% at 30 min after PDT treatment, and caspase 3-like protease activity is elevated by 15 min post-PDT. In digitonin-permeabilized cells addition of cytochrome c to the respiration buffer reverses PDT-induced inhibition of state 3 respiration via Complex I by 40-60%, and via Complex III by 50-90%. In contrast, extramitochondrial cytochrome c does not stimulate respiration in permeabilized control cells, and catalyzes only a low rate of oxygen consumption via electron transfer to cytochrome b5 on the outer mitochondrial membrane. These results demonstrate that PDT-induced inhibition of respiration is primarily due to leakage of cytochrome c into the cytosol rather than to damage to the major enzyme complexes of the electron transport chain. Whether or not inhibition of respiration influences the time course or extent of Pc 4-PDT-induced apoptosis in LY-R cells is not clear at the present time.

  1. Photodynamic Cancer Therapy - Recent Advances

    SciTech Connect

    Abrahamse, Heidi

    2011-09-22

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when 'photoradiation therapy' was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first or second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular

  2. Singapore's Zero-Energy Building's daylight monitoring system

    SciTech Connect

    Grobe, Lars; Wittkopf, Stephen; Pandey, Anupama Rana; Xiaoming, Yang; Seng, Ang Kian; Scartezzini, Jean-Louis; Selkowitz, Stephen

    2010-02-28

    A setup to monitor the daylighting performance of different glazing types in Singapore is presented. The glazing is installed in the facade of four dedicated testing chambers in BCAA's Zero Energy Building in Singapore. These test rooms are equipped with sensors that both record illuminances on the work plane, and luminances as seen by occupants. The physical and logical design of the monitoring system is presented. Criteria to assess the daylighting performance are introduced, and initial results of the work in progress are presented.

  3. [Photodynamic therapy vs imiquimod].

    PubMed

    Serra-Guillén, C; Nagore, E; Guillén, C

    2012-01-01

    Photodynamic therapy and imiquimod are highly regarded treatments dermatologists frequently prescribe for actinic keratoses, basal cell carcinoma, and Bowen disease. The scarcity of evidence from comparative trials prevents us from drawing well-founded conclusions about the efficacy, tolerance, and adverse effects of these therapeutic options or to recommend one over the other in any particular type of lesion or patient. On the other hand, in certain conditions (eg, actinic chelitis, immunosuppression, and basal cell carcinoma affecting the eyelids), there is evidence to support the use of photodynamic therapy or imiquimod even though they might initially seem contraindicated. We critically review and compare the use of these 2 treatments in order to suggest which is more appropriate in specific cases.

  4. Photodynamic therapy with fullerenes†

    PubMed Central

    Mroz, Pawel; Tegos, George P.; Gali, Hariprasad; Wharton, Tim; Sarna, Tadeusz; Hamblin, Michael R.

    2010-01-01

    Fullerenes are a class of closed-cage nanomaterials made exclusively from carbon atoms. A great deal of attention has been focused on developing medical uses of these unique molecules especially when they are derivatized with functional groups to make them soluble and therefore able to interact with biological systems. Due to their extended π-conjugation they absorb visible light, have a high triplet yield and can generate reactive oxygen species upon illumination, suggesting a possible role of fullerenes in photodynamic therapy. Depending on the functional groups introduced into the molecule, fullerenes can effectively photoinactivate either or both pathogenic microbial cells and malignant cancer cells. The mechanism appears to involve superoxide anion as well as singlet oxygen, and under the right conditions fullerenes may have advantages over clinically applied photosensitizers for mediating photodynamic therapy of certain diseases. PMID:17973044

  5. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis.

    PubMed

    Jiang, Jing; Li, Hao; Zhang, Lizhi

    2012-05-14

    Noble metal nanoparticles (NPs) are often used as electron scavengers in conventional semiconductor photocatalysis to suppress electron-hole (e(-)-h(+) ) recombination and promote interfacial charge transfer, and thus enhance photocatalytic activity of semiconductors. In this contribution, it is demonstrated that noble metal NPs such as Ag NPs function as visible-light harvesting and electron-generating centers during the daylight photocatalysis of AgBr@Ag. Novel Ag plasmonic photocatalysis could cooperate with the conventional AgBr semiconductor photocatalysis to enhance the overall daylight activity of AgBr@Ag greatly because of an interesting synergistic effect. After a systematic investigation of the daylight photocatalysis mechanism of AgBr@Ag, the synergistic effect was attributed to surface plasmon resonance induced local electric field enhancement on Ag, which can accelerate the generation of e(-)-h(+) pairs in AgBr, so that more electrons are produced in the conduction band of AgBr under daylight irradiation. This study provides new insight into the photocatalytic mechanism of noble metal/semiconductor systems as well as the design and fabrication of novel plasmonic photocatalysts.

  6. Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3: Targeting survival pathways to increase PDT efficacy in ovarian and lung cancer.

    PubMed

    Edmonds, Christine; Hagan, Sarah; Gallagher-Colombo, Shannon M; Busch, Theresa M; Cengel, Keith A

    2012-12-01

    Patients with serosal (pleural or peritoneal) spread of malignancy have few definitive treatment options and consequently have a very poor prognosis. We have previously shown that photodynamic therapy (PDT) can be an effective treatment for these patients, but that the therapeutic index is relatively narrow. Here, we test the hypothesis that EGFR and STAT3 activation increase survival following PDT, and that inhibiting these pathways leads to increased PDT-mediated direct cellular cytotoxicity by examining BPD-PDT in OvCa and NSCLC cells. We found that BPD-mediated PDT stimulated EGFR tyrosine phosphorylation and nuclear translocation, and that EGFR inhibition by erlotinib resulted in reduction of PDT-mediated EGFR activation and nuclear translocation. Nuclear translocation and PDT-mediated activation of EGFR were also observed in response to BPD-mediated PDT in multiple cell lines, including OvCa, NSCLC and head and neck cancer cells, and was observed to occur in response to porfimer sodium-mediated PDT. In addition, we found that PDT stimulates nuclear translocation of STAT3 and STAT3/EGFR association and that inhibiting STAT3 signaling prior to PDT leads to increased PDT cytotoxicity. Finally, we found that inhibition of EGFR signaling leads to increased PDT cytotoxicity through a mechanism that involves increased apoptotic cell death. Taken together, these results demonstrate that PDT stimulates the nuclear accumulation of both EGFR and STAT3 and that targeting these survival pathways is a potentially promising strategy that could be adapted for clinical trials of PDT for patients with serosal spread of malignancy.

  7. Novel applications of diagnostic X-rays in activating a clinical photodynamic drug: Photofrin II through X-ray induced visible luminescence from "rare-earth" formulated particles.

    PubMed

    Abliz, Erkinay; Collins, Joshua E; Bell, Howard; Tata, Darrell B

    2011-01-01

    In this communication we report on a novel non-invasive methodology in utilizing "soft" energy diagnostic X-rays to indirectly activate a photo-agent utilized in photodynamic therapy (PDT): Photofrin II (Photo II) through X-ray induced luminescence from Gadolinium Oxysulfide (20 micron dimension) particles doped with Terbium: Gd_{2}O_{2}S:Tb. Photodynamic agents such as Photo II utilized in PDT possess a remarkable property to become preferentially retained within the tumor's micro-environment. Upon the photo-agent's activation through (visible light) photon absorption, the agents exert their cellular cytotoxicity through type I and type II pathways through extensive generation of reactive oxygen species (ROS); namely, singlet oxygen ^{1}O_{2}, superoxide anion O_{2}^{-}, and hydrogen peroxide H_{2}O_{2}, within the intra-tumoral environment. Unfortunately, due to shallow visible light penetration depth (∼ 2 mm to 5 mm) in tissues, the current PDT strategy has largely been restricted to the treatment of surface tumors, such as the melanomas. Additional invasive strategies through optical fibers are currently utilized in getting the visible light into the intended deep seated targets within the body for PDT. X-ray induced visible luminescence from Gd_{2}O_{2}S:Tb particles were spectroscopically characterized, and the potential in-vitro cellular cytotoxicity of Gd_{2}O_{2}S:Tb particles on human glioblastoma cells (due to 48 Hrs Gd_{2}O_{2}S:Tb particle exposure) was screened through the MTS cellular metabolic assay. In-vitro human glioblastoma cellular exposures in presence of Photo II with Gd_{2}O_{2}S:Tb particles were performed in the dark in sterile 96 well tissue culture plates

  8. Daylight Savings Time May Lower Chances of IVF Success for Some

    MedlinePlus

    ... medlineplus.gov/news/fullstory_163538.html Daylight Savings Time May Lower Chances of IVF Success for Some: ... FRIDAY, Feb. 10, 2017 (HealthDay News) -- Daylight savings time may be associated with an increased risk of ...

  9. The daylight sky and Avogadro’s number

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.

    2015-11-01

    Two methods for estimating Avogadro’s number from the observation of the daylight sky are presented, both suitable for undergraduate students. One is very simple and based on simple naked-eye observation, and the other exploits a common digital camera as a photometer.

  10. Field Commissioning of a Daylight-Dimming Lighting System.

    ERIC Educational Resources Information Center

    Floyd, David B.; Parker, Danny S.

    A Florida elementary school cafeteria, retrofitted with a fluorescent lighting system that dims in response to available daylight, was evaluated through real time measurement of lighting and air conditioning power, work plane illumination, and interior/exterior site conditions. The new system produced a 27 percent reduction in lighting power due…

  11. Daylight Saving Time Transitions and Road Traffic Accidents

    PubMed Central

    Lahti, Tuuli; Nysten, Esa; Haukka, Jari; Sulander, Pekka; Partonen, Timo

    2010-01-01

    Circadian rhythm disruptions may have harmful impacts on health. Circadian rhythm disruptions caused by jet lag compromise the quality and amount of sleep and may lead to a variety of symptoms such as fatigue, headache, and loss of attention and alertness. Even a minor change in time schedule may cause considerable stress for the body. Transitions into and out of daylight saving time alter the social and environmental timing twice a year. According to earlier studies, this change in time-schedule leads to sleep disruption and fragmentation of the circadian rhythm. Since sleep deprivation decreases motivation, attention, and alertness, transitions into and out of daylight saving time may increase the amount of accidents during the following days after the transition. We studied the amount of road traffic accidents one week before and one week after transitions into and out of daylight saving time during years from 1981 to 2006. Our results demonstrated that transitions into and out of daylight saving time did not increase the number of traffic road accidents. PMID:20652036

  12. Daylight saving time transitions and road traffic accidents.

    PubMed

    Lahti, Tuuli; Nysten, Esa; Haukka, Jari; Sulander, Pekka; Partonen, Timo

    2010-01-01

    Circadian rhythm disruptions may have harmful impacts on health. Circadian rhythm disruptions caused by jet lag compromise the quality and amount of sleep and may lead to a variety of symptoms such as fatigue, headache, and loss of attention and alertness. Even a minor change in time schedule may cause considerable stress for the body. Transitions into and out of daylight saving time alter the social and environmental timing twice a year. According to earlier studies, this change in time-schedule leads to sleep disruption and fragmentation of the circadian rhythm. Since sleep deprivation decreases motivation, attention, and alertness, transitions into and out of daylight saving time may increase the amount of accidents during the following days after the transition. We studied the amount of road traffic accidents one week before and one week after transitions into and out of daylight saving time during years from 1981 to 2006. Our results demonstrated that transitions into and out of daylight saving time did not increase the number of traffic road accidents.

  13. Energy and daylight performance of angular selective glazings

    SciTech Connect

    Sullivan, R.; Beltran,; Lee, E.S.; Rubin, M.; Selkowitz, S.E.

    1998-11-01

    This paper presents the results of a study investigating the energy and daylight performance of anisotropic angular selective glazings. The DOE-2.1E energy simulation program was used to determine the annual cooling, lighting and total electricity use, and peak electric demand. RADIANCE, a lighting simulation program, was used to determine daylight illuminance levels and distribution. We simulated a prototypical commercial office building module located in Blythe, California. We chose three hypothetical conventional windows for comparison: a single-pane tinted window, a double-pane low-E window, and a double-pane spectrally selective window. Daylighting controls were used. No interior shades were modeled in order to isolate the energy effects of the angular selective glazing. Our results show that the energy performance of the prototype angular selective windows is about the same as conventional windows for a 9.14 m (30 ft) deep south-facing perimeter zone with a large-area window in the hot, sunny climate of Blythe. It is theoretically possible to tune the angular selectivity of the glazing to achieve annual cooling energy reductions of 18%, total electricity use reductions of 15%, and peak electric demand reductions of 11% when compared to a conventional glazing with the same solar-optical properties at normal incidence. Angular selective glazings can provide more uniformly distributed daylight, particularly in the area next to the window, which will result in a more visually comfortable work environment.

  14. Analysis of Daylighting Requirements within ASHRAE Standard 90.1

    SciTech Connect

    Athalye, Rahul A.; Xie, YuLong; Liu, Bing; Rosenberg, Michael I.

    2013-08-01

    Pacific Northwest National Laboratory (PNNL), under the Building Energy Codes Program (BECP) funded by U.S. Department of Energy (DOE), provides support to the ASHRAE/IES/IESNA Standard 90.1(Standard 90.1) Standing Standards Project Committee (SSPC 90.1) and its subcommittees. In an effort to provide the ASHRAE SSPC 90.1 with data that will improve the daylighting and fenestration requirements in the Standard, PNNL collaborated with Heschong Mahone Group (HMG), now part of TRC Solutions. Combining EnergyPlus, a whole-building energy simulation software developed by DOE, with Radiance, a highly accurate illumination modeling software (Ward 1994), the daylighting requirements within Standard 90.1 were analyzed in greater detail. The initial scope of the study was to evaluate the impact of the fraction of window area compared to exterior wall area (window-to-wall ratio (WWR)) on energy consumption when daylighting controls are implemented. This scope was expanded to study the impact of fenestration visible transmittance (VT), electric lighting controls and daylighted area on building energy consumption.

  15. Photodynamic therapy for recurrent respiratory papillomatosis.

    PubMed

    Lieder, Anja; Khan, Muhammad K; Lippert, Burkard M

    2014-06-05

    Recurrent respiratory papillomatosis (RRP) is a benign condition of the mucosa of the upper aerodigestive tract. It is characterised by recurrent papillomatous lesions and is associated with human papillomavirus (HPV). Frequent recurrence and rapid papilloma growth are common and in part responsible for the onset of potentially life-threatening symptoms. Most patients afflicted by the condition will require repeated surgical treatments to maintain their airway, and these may result in scarring and voice problems. Photodynamic therapy introduces a light-sensitising agent, which is administered either orally or by injection. This substance (called a photo-sensitiser) is selectively retained in hyperplastic and neoplastic tissue, including papilloma. It is then activated by light of a specific wavelength and may be used as a sole or adjuvant treatment for RRP. To assess the effects of photodynamic therapy in the management of recurrent respiratory papillomatosis (RRP) in children and adults. We searched the Cochrane Ear, Nose and Throat Disorders Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; CINAHL; Web of Science; Cambridge Scientific Abstracts; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 January 2014. Randomised controlled trials utilising photodynamic therapy as sole or adjuvant therapy in participants of any age with proven RRP versus control intervention. Primary outcome measures were symptom improvement (respiratory distress/dyspnoea and voice quality), quality of life improvement and recurrence-free interval. Secondary outcomes included reduction in the frequency of surgical intervention, reduction in disease volume and adverse effects of treatment.   We used the standard methodological procedures expected by The Cochrane Collaboration. Meta-analysis was not possible and results are presented descriptively. We included one trial with a total of 23

  16. Photodynamic therapy of cervical intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Inada, Natalia M.; Lombardi, Welington; Leite, Marieli F. M.; Trujillo, Jose R.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Photodynamic therapy (PDT) is a technique that has been used for the treatment of tumors, especially in Gynecology. The photodynamic reaction is based on the production of reactive oxygen species after the activation of a photosensitizer. Advantages of the PDT in comparison to the surgical resection are: ambulatory treatment and tissue recovery highly satisfactory, through a non-invasive procedure. The cervical intraepithelial neoplasia (CIN) grades I and II presents potential indications for PDT. The aim of the proposed study is to evaluate the safety and efficacy of the PDT for the diagnostics and treatment of CIN I and II. The equipment and the photosensitizer are produced in Brazil with a representative low cost. It is possible to visualize the fluorescence of the cervix and to treat the lesions, without side effects. The proposed clinical protocol shows great potential to become a public health technique.

  17. Daylighting in Schools: Improving Student Performance and Health at a Price Schools Can Afford.

    ERIC Educational Resources Information Center

    Plympton, Patricia; Conway, Susan; Epstein, Kyra

    This document discusses evidence regarding daylighting and student performance and development, and presents four case studies of schools that have cost effectively implemented daylighting into their buildings. Case studies reveal that design and construction strategies that incorporate daylighting do not significantly increase costs over…

  18. EVALUATION OF A PROCEDURE FOR USING DAYLIGHT PROJECTION OF FILM LOOPS IN TEACHING SKILLS.

    ERIC Educational Resources Information Center

    HARBY, S.F.

    EQUIPMENT USING A TRANSLUCENT SCREEN AND REAR PROJECTION HAS MADE IT POSSIBLE TO PROJECT MOTION PICTURES IN DAYLIGHT (DAYLIGHT PROJECTION). FILMS CAN BE SHOWN REPEATEDLY WHEN FORMED INTO A FILM LOOP (CONTINUOUS LOOP PROJECTION). DAYLIGHT PROJECTION AND CONTINUOUS LOOP PROJECTION WERE USED TO INVESTIGATE THE FOLLOWING QUESTIONS--(1) ARE FILM LOOP…

  19. Retinoblastoma: might photodynamic therapy be an option?

    PubMed

    Teixo, Ricardo; Laranjo, Mafalda; Abrantes, Ana Margarida; Brites, Gonçalo; Serra, Arménio; Proença, Rui; Botelho, Maria Filomena

    2015-12-01

    Retinoblastoma is a tumor that mainly affects children under 5 years, all over the world. The origin of these tumors is related with mutations in the RB1 gene, which may result from genetic alterations in cells of the germ line or in retinal somatic cells. In developing countries, the number of retinoblastoma-related deaths is higher due to less access to treatment, unlike what happens in developed countries where survival rates are higher. However, treatments such as chemotherapy and radiotherapy, although quite effective in treating this type of cancer, do not avoid high indices of mortality due to secondary malignances which are quite frequent in these patients. Additionally, treatments such as cryotherapy, thermotherapy, thermochemotherapy, or brachytherapy represent other options for retinoblastoma. When all these approaches fail, enucleation is the last option. Photodynamic therapy might be considered as an alternative, particularly because of its non-mutagenic character. Photodynamic therapy is a treatment modality based on the administration of photosensitizing molecules that only upon irradiation of the tumor with a light source of appropriate wavelength are activated, triggering its antitumor action. This activity may be not only due to direct damage to tumor cells but also due to damage caused to the blood vessels responsible for the vascular supply of the tumor. Over the past decades, several in vitro and in vivo studies were conducted to assess the effectiveness of photodynamic therapy in the treatment of retinoblastoma, and very promising results were achieved.

  20. Synthesis and photodynamic activity of unsymmetrical A3B tetraarylporphyrins functionalized with l-glutamate and their Zn(II) and Cu(II) metal complex derivatives.

    PubMed

    Arredondo-Espinoza, Eder U; López-Cortina, Susana T; Ramírez-Cabrera, Mónica A; Balderas-Rentería, Isaías

    2016-08-01

    Four novel unsymmetrical A3B porphyrins 1, 2, 3 and 4 were synthesized following Lindsey procedure. Porphyrins 3 and 4 include one and three l-glutamate groups, respectively, and all porphyrins were metallated with Zn(II) (1a-4a) or Cu(II) (1b-4b). Porphyrins and metalloporphyrins presented values of singlet oxygen quantum yields (ΦD) ranging from 0.21 to 0.67. The tetraaryl derivatives in this study showed phototoxicity in SiHa cells with IC50 values ranging from <0.01 to 6.56±0.11μM, the metalloporphyrin 4a showed the lowest IC50 value. Comparing the phototoxic activity between all porphyrins, functionalization of porphyrins with glutamate increased 100 times phototoxic activity (1 (IC50 4.81±0.34μM) vs. 3 (IC50 0.04±0.02μM) and 2 (IC50 5.19±0.42μM) vs. 4 (IC50 0.05±0.01μM)). This increased activity could be attributed to reduced hydrophobicity and increased ΦΔ, given by functionalization with l-glutamate. Metalloporphyrins 3a (IC50 0.04±0.01μM) and 4a (IC50<0.01μM) presented the best values ​​of phototoxic activity. Therefore, functionalization and zinc metalation increased the phototoxic activity. SiHa cells treated with porphyrins 3, 4, 3a and 4a at a final concentration of 10μM, showed increased activity of caspase-3 enzyme compared to the negative control; indicating the induction of apoptosis. Differential gene expression pattern in SiHa cells was determined; treatments with metalloporphyrins 4a and 4b were performed, respectively, comparing the expression with untreated control. Treatments in both cases showed similar gene expression pattern in upregulated genes, since they share about 25 biological pathways and a large number of genes. According to the new photophysical properties related to the structural improvement and phototoxic activity, these molecules may have the potential application as photosensitizers in the photodynamic therapy.

  1. Daylighting Update: A Brief Guide to the Process of Designing Energy Conserving Schools through the Use of Daylighting.

    ERIC Educational Resources Information Center

    Hill, Alva L.; Lawrence, Jerry

    In recent years one of the most prevalent requests directed to design architects by teachers and administrative personnel is to include in the architectural program for their new school provisions for admitting more daylight into their classrooms. This guide by the American Institute of Architects National Committee on Architecture for Education…

  2. Natural extracellular nanovesicles and photodynamic molecules: is there a future for drug delivery?

    PubMed

    Kusuzaki, Katsuyuki; Matsubara, Takao; Murata, Hiroaki; Logozzi, Mariantonia; Iessi, Elisabetta; Di Raimo, Rossella; Carta, Fabrizio; Supuran, Claudiu T; Fais, Stefano

    2017-12-01

    Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.

  3. Upconversion nanoparticle-mediated photodynamic therapy induces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway

    PubMed Central

    Zhu, Xing; Wang, Hao; Zheng, Longbin; Zhong, Zhaoyu; Li, Xuesong; Zhao, Jing; Kou, Jiayuan; Jiang, Yueqing; Zheng, Xiufeng; Liu, Zhongni; Li, Hongxia; Cao, Wenwu; Tian, Ye; Wang, You; Yang, Liming

    2015-01-01

    Atherosclerosis (AS) is the most vital cardiovascular disease, which poses a great threat to human health. Macrophages play an important role in the progression of AS. Photodynamic therapy (PDT) has emerged as a useful therapeutic modality not only in the treatment of cancer but also in the treatment of AS. The purpose of this study was to determine the molecular mechanisms underlying the activity of PDT, using mesoporous-silica-coated upconversion fluorescent nanoparticles encapsulating chlorin e6 (UCNPs-Ce6) in the induction of apoptosis in THP-1 macrophages. Here, we investigated the ability of UCNPs-Ce6-mediated PDT to induce THP-1 macrophage apoptosis by facilitating the induction of reactive oxygen species (ROS) and regulation of mitochondrial permeability transition pore (MPTP) to depolarize mitochondrial membrane potential (MMP). Both Bax translocation and the release of cytochrome C were examined using immunofluorescence and Western blotting. Our results indicated that the levels of ROS were significantly increased in the PDT group, resulting in both MPTP opening and MMP depolarization, which led to apoptosis. In addition, immunofluorescence and Western blotting revealed that PDT induced both Bax translocation and the release of cytochrome C, as well as upregulation of cleaved caspase-9, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase. Therefore, we demonstrated that UCNPs-Ce6-mediated PDT induces apoptosis in THP-1 macrophages via ROS bursts. The proapoptotic factor Bax subsequently translocates from the cytosol to the mitochondria, resulting in the MPTP opening and cytochrome C release. This study demonstrated the great potential of UCNPs-Ce6-mediated PDT in the treatment of AS. PMID:26045663

  4. Silicon(IV) phthalocyanines substituted axially with different nucleoside moieties. Effects of nucleoside type on the photosensitizing efficiencies and in vitro photodynamic activities.

    PubMed

    Zheng, Bi-Yuan; Shen, Xiao-Min; Zhao, Dong-Mei; Cai, Yi-Bin; Ke, Mei-Rong; Huang, Jian-Dong

    2016-06-01

    A series of new silicon(IV) phthalocyanines (SiPcs) di-substituted axially with different nucleoside moieties have been synthesized and evaluated for their singlet oxygen quantum yields (ΦΔ) and in vitro photodynamic activities. The adenosine-substituted SiPc shows a lower photosensitizing efficiency (ΦΔ=0.35) than the uridine- and cytidine-substituted analogs (ΦΔ=0.42-0.44), while the guanosine-substituted SiPc exhibits a weakest singlet oxygen generation efficiency with a ΦΔ value down to 0.03. On the other hand, replacing axial adenosines with chloro-modified adenosines and purines can result in the increase of photogenerating singlet oxygen efficiencies of SiPcs. The formed SiPcs 1 and 2, which contain monochloro-modified adenosines and dichloro-modified purines respectively, appear as efficient photosensitizers with ΦΔ of 0.42-0.44. Both compounds 1 and 2 present high photocytotoxicities against HepG2 and BGC823 cancer cells with IC50 values ranging from 9nM to 33nM. The photocytotoxicities of these two compounds are remarkably higher than the well-known anticancer photosensitizer, chlorin e6 (IC50=752nM against HepG2 cells) in the same condition. As revealed by confocal microscopy, for both cell lines, compound 1 can essentially bind to mitochondria, while compound 2 is just partially localized in mitochondria. In addition, the two compounds induce cell death of HepG2 cells likely through apoptosis.

  5. Small molecule-initiated light-activated semiconducting polymer dots: an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells.

    PubMed

    Zhang, Yanrong; Pang, Long; Ma, Chao; Tu, Qin; Zhang, Rui; Saeed, Elray; Mahmoud, Abd Elaal; Wang, Jinyi

    2014-03-18

    Photodynamic therapy (PDT) is a noninvasive and light-activated method for cancer treatment. Two of the vital parameters that govern the efficiency of PDT are the light irradiation to the photosensitizer and visual detection of the selective accumulation of the photosensitizer in malignant cells. Herein, we prepared an integrated nanoplatform for targeted PDT and imaging of cancer cells using folic acid and horseradish peroxidase (HRP)-bifunctionalized semiconducting polymer dots (FH-Pdots). In the FH-Pdots, meta-tetra(hydroxyphenyl)-chlorin (m-THPC) was used as photosensitizer to produce cytotoxic reactive oxygen species (ROS); fluorescent semiconducting polymer poly[2-methoxy-5-((2-ethylhexyl)oxy)-p-phenylenevinylene] was used as light antenna and hydrophobic matrix for incorporating m-THPC, and amphiphilic Janus dendrimer was used as a surface functionalization agent to conjugate HRP and aminated folic acid onto the surface of FH-Pdots. Results indicated that the doped m-THPC can be simultaneously excited by the on-site luminol-H2O2-HRP chemiluminescence system through two paths. One is directly through chemiluminescence resonance energy transfer (CRET), and the other is through CRET and subsequent fluorescence resonance energy transfer. In vitro PDT and specificity studies of FH-Pdots using a standard transcriptional and translational assay against MCF-7 breast cancer cells, C6 glioma cells, and NIH 3T3 fibroblast cells demonstrated that cell viability decreased with increasing concentration of FH-Pdots. At the same concentration of FH-Pdots, the decrease in cell viability was positively relevant with increasing folate receptor expression. Results from in vitro fluorescence imaging exhibited that more FH-Pdots were internalized by cancerous MCF-7 and C6 cells than by noncancerous NIH 3T3 cells. All the results demonstrate that the designed semiconducting FH-Pdots can be used as an integrated nanoplatform for targeted PDT and on-site imaging of cancer cells.

  6. Phases of daylight and the stability of color perception in the near peripheral human retina.

    PubMed

    Panorgias, Athanasios; Kulikowski, Janus J; Parry, Neil R A; McKeefry, Declan J; Murray, Ian J

    2012-03-01

    Typical daylight extends from blue (morning sky) to orangey red (evening sky) and is represented mathematically as the Daylight Locus in color space. In this study, we investigate the impact of this daylight variation on human color vision. Thirty-eight color normal human observers performed an asymmetric color match in the near peripheral visual field. Unique hues were identified using a naming paradigm. The observers' performance for matching was almost perfectly coincident with the Daylight Locus but declined markedly in other regions. Interobserver variability reached a conspicuous minimum adjacent to the Daylight Locus and was maximal in the red and yellowish-green regions. In the naming task, unique blue and yellow were virtually coincident with the Daylight Locus. The results suggest that the mechanisms of color perception mediated by the phylogenetically older (blue-yellow) color pathway have been strongly influenced by the different phases of daylight.

  7. From dark to bright: novel daylighting applications in solid state lighting

    NASA Astrophysics Data System (ADS)

    Adler, Helmar G.

    2011-10-01

    The term "daylighting" is used in various ways, on one hand in a more architectural sense, i.e. using existing daylight to illuminate spaces, and on the other, more recently, for using light sources to replicate daylight. The emergence of solid state lighting (SSL) opens up a large number of new avenues for daylighting. SSL allows innovative controllability of intensity and color for artificial light sources that can be advantageously applied to daylighting. With the assistance of these new technologies the combination of natural and artificial lighting could lead to improvements in energy savings and comfort of living beings. Thus it is imperative to revisit or even improve daylighting research so that building networks of the future with their sensor, energy (e.g. HVAC) and lighting requirements can benefit from the emerging capabilities. This paper will briefly review existing daylighting concepts and technology and discuss new ideas. An example of a tunable multi-color SSL system will be shown.

  8. Daylighting as a design and energy strategy: Overview of opportunities and conflicts

    NASA Astrophysics Data System (ADS)

    Selkowitz, S.

    1981-06-01

    The potentials and problems associated with using daylight both to improve visual performance and interior aesthetics and to reduce electrical lighting energy consumption and peak electric loads are reviewed. Use of daylighting as a design strategy is not always synonymous with effective use of daylighting as an energy-saving strategy unless both approaches are jointly pursued by the design team. Criteria for visual performance, disability and discomfort glare, historical perspectives on daylight utilization, building form as a limit to daylight penetration, beam sunlighting strategies, luminous efficacy of daylight versus efficient electric light sources, comparative thermal impacts, peak load and load management potential, and nonenergy benefits are reviewed. Although the energy benefits of daylighting can be oversold, it is concluded that in most cases a solid understanding of the energy and design issues should produce energy efficiency and pleasing working environments.

  9. Photodynamic therapy for polypoidal choroidal vasculopathy secondary to choroidal nevus

    PubMed Central

    Wong, James G; Lai, Xin Jie; Sarafian, Richard Y; Wong, Hon Seng; Smith, Jeremy B

    2017-01-01

    We report a case of a Caucasian female who developed active polypoidal choroidal vasculopathy (PCV) at the edge of a stable choroidal nevus and was successfully treated with verteporfin photodynamic therapy. No active polyp was detectable on indocyanine green angiography 2 years after treatment, and good vision was maintained. Indocyanine green angiography is a useful investigation to diagnose PCV and may be underutilized. Unlike treatment of choroidal neovascularization secondary to choroidal nevus, management of PCV secondary to nevus may not require intravitreal anti-vascular endothelial growth factor therapy. Photodynamic monotherapy may be an effective treatment of secondary PCV. PMID:28243154

  10. [Adoptive laser immunotherapy and photodynamic therapy in ORL oncology].

    PubMed

    Antoniv, V F; Dmitriev, A A; Daĭkhes, N A; Ivanov, A V; Davudov, Kh Sh; Perekosova, Iu V; Laptev, V P

    1990-01-01

    Present-day developments in oncological applications of laser therapy are adaptive laser immunotherapy (ALIT) and photodynamic therapy (PDT). ALIT (helium-neon laser) was used in 35 ENT-cancer patients to irradiate immunocompetent leukocytes isolated from blood in an Amino cell separator. The use of ALIT in the combined treatment of our patients improved their health condition. Cytological, immunochemical and immunological examinations of blood revealed an increased count of activated lymphocytes, normalization of acute-phase proteins, stimulation of cell-mediated immunity and nonspecific resistance. The pharmacokinetics and photodynamic activity of porphyrin compounds in mice with inoculated tumors were investigated. Experimental observations demonstrated that the application of photodynamic therapy of hematoporphyrins in ENT-oncology seems very promising.

  11. Photodynamic therapy in dermatology.

    PubMed

    Ceburkov, O; Gollnick, H

    2000-01-01

    Application of non-ionising radiation with or without photosensitizers is rather common in dermatology. Though the method itself was described in ancient times, its routine use in medicine based on scientific research started in the second half of the 20th century. Light can be used in three different patterns: phototherapy (UV-A or UV-B light), photochemotherapy (combination of psoralens with UV-A light) and photodynamic therapy (combination of photosensitizers with UV- and/or visible light). The following article deals with the photodynamic therapy or PDT. Using PDT implies the understanding of light dosimetry and calculation of light dose using different light sources and photosensitizers. The number of PDT sensitisers under investigation is rapidly increasing. The PDT itself, being a relatively new modality, quickly spreads its list of applications covering new indications in different areas of medicine. Though the main part of this list is made up of dermatological conditions, the use of PDT in other disciplines is also discussed to make dermatologists familiar with different aspects of the issue. PDT, like any treatment modality, has its benefits and adverse effects. The future of PDT is closely related to teamwork in physical, biochemical and clinical research which could provide better understanding of underlying mechanisms and help to create protocols for higher therapeutic efficacy.

  12. Actively targeting D-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) nanoparticles as vesicles for chemo-photodynamic combination therapy of doxorubicin-resistant breast cancer.

    PubMed

    Jiang, Di; Gao, Xiaoling; Kang, Ting; Feng, Xingye; Yao, Jianhui; Yang, Mengshi; Jing, Yixian; Zhu, Qianqian; Feng, Jingxian; Chen, Jun

    2016-02-07

    Drug resistance is the major reason for therapeutic failure during cancer treatment. Chemo-photodynamic combination therapy has potential to improve the treatment efficiency in drug-resistant cancers, but is limited by the incompatible physical properties of the photosensitizer with a chemo-drug and poor accumulation of both drugs into the inner areas of the tumor. Herein, a novel drug delivery system was designed by incorporating the photosensitizer, chlorine 6, chemically in the shell and the chemo-drug, doxorubicin, physically in the core of D-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) (TPGS-PLA) nanoparticles with a targeting ligand, tLyp-1 peptide, decorated over the surface (tLyp-1-NP). This nanoparticle with a high drug loading capacity of both the photosensitizer and chemo-drug is expected to realize chemo-photodynamic combination therapy of drug-resistant cancer and simultaneously achieve the specific deep penetration and accumulation of drugs into the inner areas of tumor. tLyp-1-NP was prepared via a nanoprecipitation method and it exhibited a uniformly spherical morphology with a size of approximately 130 nm. After appropriate irradiation, tLyp-1-NP showed high cellular uptake and strong cytotoxicity in both human umbilical vein endothelial cells (HUVEC cells) and doxorubicin-resistant human breast adenocarcinoma cells (MCF-7/ADR cells) in vitro. After intravenous administration, compared with the unmodified NPs, tLyp-1-NP was found to have superior tumor targeting ability and more potent reversion of doxorubicin-resistant cancer. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and the hematoxylin and eosin staining of the treated tumors further demonstrated the anti-tumor efficacy of tLyp-1-NP in the presence of a laser. These observations collectively suggest the potential of tLyp-1-NP for the actively targeting chemo-photodynamic combination therapy of drug-resistant cancer.

  13. Multispectral synthesis of daylight using a commercial digital CCD camera.

    PubMed

    Nieves, Juan L; Valero, Eva M; Nascimento, Sérgio M C; Hernández-Andrés, Javier; Romero, Javier

    2005-09-20

    Performance of multispectral devices in recovering spectral data has been intensively investigated in some applications, as in spectral characterization of art paintings, but has received little attention in the context of spectral characterization of natural illumination. This study investigated the quality of the spectral estimation of daylight-type illuminants using a commercial digital CCD camera and a set of broadband colored filters. Several recovery algorithms that did not need information about spectral sensitivities of the camera sensors nor eigenvectors to describe the spectra were tested. Tests were carried out both with virtual data, using simulated camera responses, and real data obtained from real measurements. It was found that it is possible to recover daylight spectra with high spectral and colorimetric accuracy with a reduced number of three to nine spectral bands.

  14. Development of daylighting systems with non-imaging concentrator

    NASA Astrophysics Data System (ADS)

    Vu, Ngoc Hai; Shin, Seoyong

    2015-08-01

    We present a cost-effective and large scale optical fiber daylighting system using non-imaging optics device such as array of linear Fresnel lenses and stepped-thickness waveguide as concentrator. The stepped-thickness waveguide is an optical component that can redirect focused sunlight from vertical to horizontal and guide light to the optical fiber. Our simulation results demonstrate an optical efficiency of up to 56.4% when the concentration ratio of the system is fixed at 100. The simulation also shows that this design has high tolerance for input angle of sunlight. The high tolerance allows replacing a dual axis sun tracking system with a single axis sun-tracking system as a cost-effective solution. Therefore, our results provide an important breakthrough for the commercialization of optical fiber daylighting systems that are faced with challenges related to high costs.

  15. Balancing solar shading, daylighting and glare with translucent louvers

    SciTech Connect

    Jackaway, A.; Davies, M.

    1997-12-31

    Successful design of comfortable low-energy office buildings implicitly requires careful consideration for solar shading, daylighting, and the control of glare. Yet these inherently intertwined issues often demand conflicting design responses that pose difficult challenges for designers who frequently discover that successfully addressing one issue means sacrificing the performance with another. This is most commonly observed when excessive shading and glare control strategies reduce interior daylighting so significantly that electric lighting is operated at full capacity directly adjacent to fully glazed facades. The new Phoenix office building at England`s Building Research Establishment (BRE) employs an operable external translucent louver system along its southern facade to achieve a reasonable balance of these issues without significantly sacrificing individual performance. This paper describes the configuration and developmental processes for this system.

  16. Byron G. Rogers Federal Building Harvests Daylight and Super Savings

    SciTech Connect

    2017-01-01

    Case study describes how the Byron G. Rogers Federal Building replaced existing T12 and T8 luminaires with LED dedicated troffers with advanced controls. Together these measures cut lighting energy use by nearly 60% in the 18-story, 791,000-square-foot facility. The new lighting control system provides automated dimming of lights down to 0% output when daylight provides adequate light levels. The project earned GSA an award for exemplary performance from the Interior Lighting Campaign in 2016.

  17. Use of Optical and Thermal Sights in Daylight Target Detection

    DTIC Science & Technology

    1983-02-01

    demonstrated in this research (see Table 1), it is clear that this variable had an effect on performance. Second , the proportion of t arge t perimeter... Research Report 1358 0- Use of Optical and Thermal Sights in Daylight Target Detection,, Brian L. Kottas and David W. Bessemer ARI Field Unit at Fort...Knox, Kentucky Training Research Laboratory DTIC ":1 Al ELECTE APR20 984 O3 U. S. Army Research Institute for the Behavioral and Social Sciences

  18. Graphene-based nanovehicles for photodynamic medical therapy

    PubMed Central

    Li, Yan; Dong, Haiqing; Li, Yongyong; Shi, Donglu

    2015-01-01

    Graphene and its derivatives such as graphene oxide (GO) have been widely explored as promising drug delivery vehicles for improved cancer treatment. In this review, we focus on their applications in photodynamic therapy. The large specific surface area of GO facilitates efficient loading of the photosensitizers and biological molecules via various surface functional groups. By incorporation of targeting ligands or activatable agents responsive to specific biological stimulations, smart nanovehicles are established, enabling tumor-triggering release or tumor-selective accumulation of photosensitizer for effective therapy with minimum side effects. Graphene-based nanosystems have been shown to improve the stability, bioavailability, and photodynamic efficiency of organic photosensitizer molecules. They have also been shown to behave as electron sinks for enhanced visible-light photodynamic activities. Owing to its intrinsic near infrared absorption properties, GO can be designed to combine both photodynamic and photothermal hyperthermia for optimum therapeutic efficiency. Critical issues and future aspects of photodynamic therapy research are addressed in this review. PMID:25848263

  19. Daylight saving time transitions and acute myocardial infarction.

    PubMed

    Čulić, Viktor

    2013-06-01

    Most recently, the possible impact of transitions to and from daylight saving time (DST) on the increased incidence of acute myocardial infarction (AMI) has been suggested. The goal of this report was to analyze independent influence of DST transitions on the incidence of AMI with simultaneous control for the confounding presence of situational triggers such as physical exertion, emotional stress, heavy meals, and sexual intercourse, as well as for other clinical factors. Detailed information was obtained from 2412 patients and included baseline characteristics, working status, exact time of AMI, possible external triggers, cardiovascular risk factors, and prehospital medication. AMI incidence on days after the DST was compared with incidence during control periods and patient characteristics, cardiovascular medication, and circumstances of AMI were evaluated to identify potential risk modifiers. Relative risks of AMI and differences in patient characteristics were expressed through incidence ratios and odds ratios, respectively, with 95% confidence intervals (CIs). Multivariate analysis was performed by using a stepwise multiple regression to assess the independent predictive significance of the characteristics of patients for the AMI occurring in the posttransitional period. The incidence ratio for AMI for the first four workdays after the spring DST transition was 1.29 (95% CI: 1.09-1.49) and the excess was particularly prominent on Monday. In autumn, the incidence ratio for AMI for this 4-d period was 1.44 (95% CI: 1.19-1.69), with peaks on Tuesday and Thursday. The independent predictors for AMI during this period in spring were male sex (p = 0.03) and nonengagement in physical activity (p = 0.02) and there was a trend for the lower risk of incident among those taking calcium antagonists (p = 0.07). In autumn, the predictors were female sex (p = 0.04), current employment (p = 0.006), not taking β-blocker (p = 0.03), and nonengagement in physical activity (p

  20. Differences in geometry of pedestrian crashes in daylight and darkness.

    PubMed

    Sullivan, John M; Flannagan, Michael J

    2011-02-01

    Previous studies have shown that increased risk in darkness is particularly great for pedestrian crashes, suggesting that attempts to improve headlighting should focus on factors that likely influence those crashes. The current analysis was designed to provide information about how details of pedestrian crashes may differ between daylight and darkness. All pedestrian crashes that occurred in daylight or dark conditions in Michigan during 2004 were analyzed in terms of the variables included in the State of Michigan crash database. Additional analysis of the narratives and diagrams in police accident reports was performed for a subset of 400 of those crashes-200 sampled from daylight and 200 sampled from darkness. Several differences were found that appear to be related to the characteristic asymmetry of low-beam headlamps, which (in the United States) distributes more light on the passenger's side than the driver's side of the vehicle. These results provide preliminary quantification of the how the photometric differences between the right and left sides of typical headlamps may affect pedestrian crash risk. The results suggest that efforts to provide supplemental forward vehicle lighting in turns may have safety benefits for pedestrians. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Between the Dark and the Daylight.

    ERIC Educational Resources Information Center

    Morneau, Robert F.

    1998-01-01

    Asserts that, unless we balance work and contemplation, we lose control of our lives and ourselves. Offers three ideas to return equilibrium to our lives for consideration: specificity, accountability, and expectations. Suggests specific activities, such as committing to a time-management program, as processes for reaching a harmony of action and…

  2. Activated T cells exhibit increased uptake of silicon phthalocyanine Pc 4 and increased susceptibility to Pc 4-photodynamic therapy-mediated cell death.

    PubMed

    Soler, David C; Ohtola, Jennifer; Sugiyama, Hideaki; Rodriguez, Myriam E; Han, Ling; Oleinick, Nancy L; Lam, Minh; Baron, Elma D; Cooper, Kevin D; McCormick, Thomas S

    2016-06-08

    Photodynamic therapy (PDT) is an emerging treatment for malignant and inflammatory dermal disorders. Photoirradiation of the silicon phthalocyanine (Pc) 4 photosensitizer with red light generates singlet oxygen and other reactive oxygen species to induce cell death. We previously reported that Pc 4-PDT elicited cell death in lymphoid-derived (Jurkat) and epithelial-derived (A431) cell lines in vitro, and furthermore that Jurkat cells were more sensitive than A431 cells to treatment. In this study, we examined the effectiveness of Pc 4-PDT on primary human CD3(+) T cells in vitro. Fluorometric analyses of lysed T cells confirmed the dose-dependent uptake of Pc 4 in non-stimulated and stimulated T cells. Flow cytometric analyses measuring annexin V and propidium iodide (PI) demonstrated a dose-dependent increase of T cell apoptosis (6.6-59.9%) at Pc 4 doses ranging from 0-300 nM. Following T cell stimulation through the T cell receptor using a combination of anti-CD3 and anti-CD28 antibodies, activated T cells exhibited increased susceptibility to Pc 4-PDT-induced apoptosis (10.6-81.2%) as determined by Pc 4 fluorescence in each cell, in both non-stimulated and stimulated T cells, Pc 4 uptake increased with Pc 4 dose up to 300 nM as assessed by flow cytometry. The mean fluorescence intensity (MFI) of Pc 4 uptake measured in stimulated T cells was significantly increased over the uptake of resting T cells at each dose of Pc 4 tested (50, 100, 150 and 300 nM, p < 0.001 between 50 and 150 nM, n = 8). Treg uptake was diminished relative to other T cells. Cutaneous T cell lymphoma (CTCL) T cells appeared to take up somewhat more Pc 4 than normal resting T cells at 100 and 150 nm Pc 4. Confocal imaging revealed that Pc 4 localized in cytoplasmic organelles, with approximately half of the Pc 4 co-localized with mitochondria in T cells. Thus, Pc 4-PDT exerts an enhanced apoptotic effect on activated CD3(+) T cells that may be exploited in targeting T cell-mediated skin

  3. Prodrugs in photodynamic anticancer therapy.

    PubMed

    Musiol, Robert; Serda, Maciej; Polanski, Jaroslaw

    2011-01-01

    Photodynamic therapy (PDT), the concept of cancer treatment through the selective uptake of a light-sensitive agent followed by exposure to a specific wavelength, is limited by the transport of a photosensitizer (PS) to the tumor tissue. Porphyrin, an important PS class, can be used in PDT in the form of its prodrug molecule 5-aminolevulinic acid (5-ALA). Unfortunately, its poor pharmacokinetic properties make this compound difficult to administer. Two different methods for eliminating this problem can be distinguished. The first approach is to play with its formulation in order to improve the drug's applicability. The second approach, which is to find possible 5- ALA prodrugs, is an example of the double-prodrug method, a strategy often used in modern drug design. In this approach, the biological mechanisms in a long biosynthetic pathway involving several steps must be completed before the active drug appears. Recently, an idea of enhancing PDT sensitization using the so-called iron chelators seemed to increase the accumulation of protoporphyrin in cells. At the same time, iron chelators can destroy tumor cells by producing active oxygen after the formation of an active drug by chelating iron in the cancer cells. Thus, in the latter case, the therapy resembles a prodrug strategy. The mechanism can be explained by the Fenton reaction. Vitamin C is another example of a potential anticancer agent of this type.

  4. Hormonal component of tumor photodynamic therapy response

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Merchant, Soroush

    2008-02-01

    The involvement of adrenal glucocorticoid hormones in the response of the treatment of solid tumors by photodynamic therapy (PDT) comes from the induction of acute phase response by this modality. This adrenal gland activity is orchestrated through the engagement of the hypothalamic-pituitary-adrenal hormonal axis incited by stress signals emanating from the PDT-treated tumor. Glucocorticoid hormone activity engendered within the context of PDT-induced acute phase response performs multiple important functions; among other involvements they beget acute phase reactant production, systemic neutrophil mobilization, and control the production of inflammation-modulating and immunoregulatory proteins.

  5. Photodynamic inactivation of prions by disulfonated hydroxyaluminium phthalocyanine.

    PubMed

    Janouskova, Olga; Rakusan, Jan; Karaskova, Marie; Holada, Karel

    2012-11-01

    Sulfonated phthalocyanines (Pcs) are cyclic tetrapyrroles that constitute a group of photosensitizers. In the presence of visible light and diatomic oxygen, Pcs produce singlet oxygen and other reactive oxygen species that have known degradation effects on lipids, proteins and/or nucleic acids. Pcs have been used successfully in the treatment of bacterial, yeast and fungal infections, but their use in the photodynamic inactivation of prions has never been reported. Here, we evaluated the photodynamic activity of the disodium salt of disulfonated hydroxyaluminium phthalocyanine (PcDS) against mouse-adapted scrapie RML prions in vitro. PcDS treatment of RML brain homogenate resulted in a time- and dose-dependent inactivation of prions. The photodynamic potential of Pcs offers a new way to inactivate prions using biodegradable compounds at room temperature and normal pressure, which could be useful for treating thermolabile materials and liquids.

  6. [Observation and Analysis of Ground Daylight Spectra of China's Different Light Climate Partitions].

    PubMed

    Liang, Shu-ying; Yang, Chun-yu

    2015-12-01

    The territory of China is vast, so the daylight climates of different regions are not the same. In order to expand theutilization scope and improve the utilization efficiency of solar energy and daylight resources, this article observed and analyzed the ground daylight spectra of China's different light climate partitions. Using a portable spectrum scanner, this article did a tracking observation of ground direct daylight spectra in the period of 380-780 nm visible spectrum of different solar elevation angles during one day in seven representative cities of china's different light climate partitions. The seven representative cities included Kunming, Xining, Beijing, Shenzhen, Nanjing, Nanchang and Chongqing. According to the observation results, this article analyzed the daylight spectrum changing law, compared the daylight spectrum curves of different light climate partitions cities, and summarized the influence factors of daylight spectral radiation intensity. The Analysis of the ground direct daylight spectra showed that the daylight spectral radiation intensity of different solar elevation angles during one day of china's different light climate partitions cities was different, but the distribution and trend of daylight power spectra were basically the same which generally was first increased and then decreased. The maximum peak of spectral power distribution curve appeared at about 475 nm, and there were a steep rise between 380-475 nm and a smooth decline between 475-700 nm while repeatedly big ups and downs appearing after 700 nm. The distribution and trend of daylight power spectra of china's different light climate partitions cities were basically the same, and there was no obvious difference between the daylight spectral power distribution curves and the different light climate partitions. The daylight spectral radiation intensity was closely related to the solar elevation angle and solar surface condition.

  7. The human circadian clock's seasonal adjustment is disrupted by daylight saving time.

    PubMed

    Kantermann, Thomas; Juda, Myriam; Merrow, Martha; Roenneberg, Till

    2007-11-20

    A quarter of the world's population is subjected to a 1 hr time change twice a year (daylight saving time, DST). This reflects a change in social clocks, not environmental ones (e.g., dawn). The impact of DST is poorly understood. Circadian clocks use daylight to synchronize (entrain) to the organism's environment. Entrainment is so exact that humans adjust to the east-west progression of dawn within a given time zone. In a large survey (n = 55,000), we show that the timing of sleep on free days follows the seasonal progression of dawn under standard time, but not under DST. In a second study, we analyzed the timing of sleep and activity for 8 weeks around each DST transition in 50 subjects who were chronotyped (analyzed for their individual phase of entrainment). Both parameters readily adjust to the release from DST in autumn but the timing of activity does not adjust to the DST imposition in spring, especially in late chronotypes. Our data indicate that the human circadian system does not adjust to DST and that its seasonal adaptation to the changing photoperiods is disrupted by the introduction of summer time. This disruption may extend to other aspects of seasonal biology in humans.

  8. Photodynamic therapy in China

    NASA Astrophysics Data System (ADS)

    Li, Junheng

    1993-03-01

    After the pioneering work of photodynamic therapy of malignant tumors had been reported by Dr. Dougherty and his colleagues, applications of hematoporphyrin derivative for the diagnosis and treatment of human cancers has been reported by Professor Hayata et al. Chinese HpD was first made by Shi-Lin Xu, an engineer of Beijing Institute of Pharmaceutical Industry in 1980. The first patient to receive the PDT in China was a case of basal cell carcinoma of the lower eyelid, treated in 1981 by Dr. Ping Zhu a physician in Tong Ren Hospital in Beijing using a Chinese made laser. In 1982, research groups of PDT were established under the sponsorships of the State Science and Technology Commission of China, Beijing Commission for Science and Technology, etc. Physics, chemistry, preclinical and clinical research studies of PDT were then started widely.

  9. Photodynamic action of LED-activated pyropheophorbide-α methyl ester in cisplatin-resistant human ovarian carcinoma cells

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Xu, C. S.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; He, Y.; Leung, A. W. N.

    2009-04-01

    Cisplatin-resistance is a major obstacle for the successful therapy to ovarian cancer, and exploring novel approach to deactivate cisplatin-resistant ovarian cells will improve the clinical outcomes. Our present study showed that there was no dark cytotoxicity of MPPa in the COC1/DDP cells at the dose of 0.25 - 4 μM, and LED-activated MPPa resulted in drug dose- and light-dependent cytotoxicity. Apoptotic rate 6 h after LED-activated MPPa (2 μM) increased to 16.71% under the light energy of 1 J/cm2. Confocal laser scanning microscopy showed that MPPa mainly localized in the intracellular membrane system, namely the endoplasmic reticulum, Golgi apparatus, lysosomes and mitochondria in the COC1/DDP cells. Mitochondrial membrane potential (ΔΨm) was collapsed when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. These data demonstrated that LED-activated MPPa significantly deactivated cisplatin-resistant ovarian cell line COC1/DDP cells and enhanced apoptosis and decreased ΔΨm, which suggests LED is an efficient light source for PDT and LED-activated MPPa can be developed as new modality for treating cisplatin-resistant ovarian.

  10. Photodynamic Therapy Treatment to Enhance Fracture Healing

    DTIC Science & Technology

    2012-10-01

    AD_________________ Award Number: W81XWH-10-1-0997 TITLE: Photodynamic Therapy treatment to...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Photodynamic Therapy treatment to Enhance Fracture Healing 5b. GRANT NUMBER W81XWH-10-1-0997 5c...13. SUPPLEMENTARY NOTES 14. ABSTRACT Long bone fractures resulting from high impact trauma can result in delayed healing. Photodynamic therapy

  11. Enhanced Photocatalytic Degradation of Methyl Orange Dye under the Daylight Irradiation over CN-TiO₂ Modified with OMS-2.

    PubMed

    Hassan, Mohamed Elfatih; Chen, Jing; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo

    2014-12-12

    In this study, CN-TiO₂ was modified with cryptomelane octahedral molecular sieves (OMS-2) by the sol-gel method based on the self-assembly technique to enhance its photocatalytic activity under the daylight irradiation. The synthesized samples were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and porosimeter analysis. The results showed that the addition of OMS-2 in the sol lead to higher Brunauer-Emmett-Teller (BET) surface area, pore volume, porosity of particle after heat treatment and the specific surface area, porosity, crystallite size and pore size distribution could be controlled by adjusting the calcination temperature. Compared to the CN-TiO₂-400 sample, CN-TiO₂/OMS-2-400 exhibited greater red shift in absorption edge of samples in visible region due to the OMS-2 coated. The enhancement of photocatalytic activity of CN-TiO₂/OMS-2 composite photocatalyst was subsequently evaluated for the degradation of the methyl orange dye under the daylight irradiation in water. The results showed that the methyl orange dye degradation rate reach to 37.8% for the CN-TiO₂/OMS-2-400 sample under the daylight irradiation for 5 h, which was higher than that of reference sample. The enhancement in daylight photocatalytic activities of the CN-TiO₂/OMS samples could be attributed to the synergistic effects of OMS-2 coated, larger surface area and red shift in adsorption edge of the prepared sample.

  12. Systematic analysis of in vitro photo-cytotoxic activity in extracts from terrestrial plants in Peninsula Malaysia for photodynamic therapy.

    PubMed

    Ong, Cheng Yi; Ling, Sui Kiong; Ali, Rasadah Mat; Chee, Chin Fei; Samah, Zainon Abu; Ho, Anthony Siong Hock; Teo, Soo Hwang; Lee, Hong Boon

    2009-09-04

    One hundred and fifty-five extracts from 93 terrestrial species of plants in Peninsula Malaysia were screened for in vitro photo-cytotoxic activity by means of a cell viability test using a human leukaemia cell-line HL60. These plants which can be classified into 43 plant families are diverse in their type of vegetation and their natural habitat in the wild, and may therefore harbour equally diverse metabolites with potential pharmaceutical properties. Of these, 29 plants, namely three from each of the Clusiaceae, Leguminosae, Rutaceae and Verbenaceae families, two from the Piperaceae family and the remaining 15 are from Acanthaceae, Apocynaceae, Bignoniaceae, Celastraceae, Chrysobalanaceae, Irvingiaceae, Lauraceae, Lythraceae, Malvaceae, Meliaceae, Moraceae, Myristicaceae, Myrsinaceae, Olacaceae and Sapindaceae. Hibiscus cannabinus (Malvaceae), Ficus deltoidea (Moraceae), Maranthes corymbosa (Chrysobalanaceae), Micromelum sp., Micromelum minutum and Citrus hystrix (Rutaceae), Cryptocarya griffithiana (Lauraceae), Litchi chinensis (Sapindaceae), Scorodocarpus bornensis (Olacaceae), Kokoona reflexa (Celastraceae), Irvingia malayana (Irvingiaceae), Knema curtisii (Myristicaceae), Dysoxylum sericeum (Meliaceae), Garcinia atroviridis, Garcinia mangostana and Calophyllum inophyllum (Clusiaceae), Ervatamia hirta (Apocynaceae), Cassia alata, Entada phaseoloides and Leucaena leucocephala (Leguminosae), Oroxylum indicum (Bignoniaceae), Peronema canescens,Vitex pubescens and Premna odorata (Verbenaceae), Piper mucronatum and Piper sp. (Piperaceae), Ardisia crenata (Myrsinaceae), Lawsonia inermis (Lythraceae), Strobilanthes sp. (Acanthaceae) were able to reduce the in vitro cell viability by more than 50% when exposed to 9.6J/cm(2) of a broad spectrum light when tested at a concentration of 20 microg/mL. Six of these active extracts were further fractionated and bio-assayed to yield four photosensitisers, all of which are based on the pheophorbide-a and -b core structures

  13. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    PubMed

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  14. Photodynamic triggering of calcium oscillation in the isolated rat pancreatic acini.

    PubMed Central

    Cui, Z J; Kanno, T

    1997-01-01

    1. Photodynamic agents, due to their photon-dependent selective activation, can selectively activate a number of physiological processes and may directly modulate signal transduction in a number of cells including pancreatic acinar cells. 2. Activation of the photodynamic agent sulphonated aluminium phthalocyanine (SALPC) triggered recurrent cytosolic calcium ([Ca2+]i) spiking in pancreatic acinar cells. 3. The photodynamically triggered calcium spiking could be blocked by phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitor U73122, but not by phosphatidylcholine-specific phospholipase C inhibitor D609. 4. Removal of extracellular Ca2+ abolished spiking, as did 2-aminoethoxydiphenylborate (2-APB), an inhibitory modulator of IP3-mediated Ca2+ release from intracellular stores. 5. These data suggest that SALPC photodynamic action may permanently fix PI-PLC in an active conformation, and this produced recurrent [Ca2+]i spiking. PMID:9350616

  15. Nanoparticle Self-Lighting Photodynamic Therapy For Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2011-03-01

    Photodynamic therapy has been designated as a ``promising new modality in the treatment of cancer'' since the early 1980s. Light must be delivered in order to activate photodynamic therapy. Most photosensitizers have strong absorption in the ultraviolet -- blue range, therefore, UV -blue light is needed for their activation. Unfortunately, UV-blue light has minimal penetration into tissue and its application for in vivo activation is a problem. To solve the problem and to enhance the PDT treatment for deep cancers, we introduce a new PDT system in which the light is generated by afterglow nanoparticles with attached photosensitizers. When the nanoparticle-photosensitizer conjugates are targeted to tumor, the light from afterglow nanoparticles will activate the photosensitizers for photodynamic therapy. Therefore, no external light is required for treatment. More importantly, it can be used to treat deep tumor such as breast cancer because the light source is attached to the photosensitizers and are delivered to the tumor cells all together. This modality is referred as nanoparticle self-lighting photodynamic therapy.

  16. Nanoparticle Self-Lighting Photodynamic Therapy For Deep Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Hossu, Marius; Chen, Wei

    2009-10-01

    Photodynamic therapy (PDT) has been designated as a ``promising new modality in the treatment of cancer'' since the early 1980s. Light must be delivered in order to activate photodynamic therapy. Most photosensitizers have strong absorption in the ultraviolet (UV) -- blue range, therefore, UV -blue light is needed for their activation. Unfortunately, UV-blue light has minimal penetration into tissue and its application for in vivo activation is a problem. Here, we introduce a new PDT system in which the light is generated by afterglow nanoparticles with attached photosensitizers. When the nanoparticle-photosensitizer conjugates are targeted to tumor, the light from afterglow nanoparticles will activate the photosensitizers for photodynamic therapy. Therefore, no external light is required for treatment. More importantly, it can be used to treat deep tumor such as breast cancer because the light source is attached to the photosensitizers and are delivered to the tumor cells all together. This new modality is refereed as Nanoparticle Self-Lighting Photodynamic Therapy (NSLPDT).

  17. New photosensitizers for photodynamic therapy.

    PubMed

    Abrahamse, Heidi; Hamblin, Michael R

    2016-02-15

    Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound.

  18. New photosensitizers for photodynamic therapy

    PubMed Central

    Abrahamse, Heidi; Hamblin, Michael R.

    2016-01-01

    Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound. PMID:26862179

  19. Daylighting in schools: Improving student performance and health at a price schools can afford: Preprint

    SciTech Connect

    Plympton, P.; Conway, S.; Epstein, K.

    2000-06-14

    Over the next seven years, at least 5,000 new schools will be designed and constructed to meet the needs of American students in kindergarten through grade 12. National efforts are underway to encourage the use of daylighting, energy efficiency, and renewable energy technologies in school designs, which can significantly enhance the learning environment. Recent rigorous statistical studies, involving 21,000 students in three states, reveal that students perform better in daylit classrooms and indicate the health benefits of daylighting. This paper discusses the evidence regarding daylighting and student performance and development, and presents four case studies of schools that have cost effectively implemented daylighting into their buildings.

  20. Synthesis, characterisation and in vitro investigation of photodynamic activity of 5-(4-octadecanamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride on HeLa cells using low light fluence rate.

    PubMed

    Malatesti, Nela; Harej, Anja; Kraljević Pavelić, Sandra; Lončarić, Martin; Zorc, Hrvoje; Wittine, Karlo; Andjelkovic, Uros; Josic, Djuro

    2016-09-01

    Photodynamic therapy (PDT) is a treatment that aims to kill cancer cells by reactive oxygen species, mainly singlet oxygen, produced through light activation of a photosensitiser (PS). Amongst photosensitisers that attracted the most attention in the last decade are cationic and amphiphilic molecules based on porphyrin, chlorin and phthalocyanine structures. Our aim was to join this search for more optimal balance of the lipophilic and hydrophilic moieties in a PS. A new amphiphilic porphyrin, 5-(4-octadecanamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride (5) was synthesised and characterised by (1)H NMR, UV-vis and fluorescence spectroscopy, and by MALDI-TOF/TOF spectrometry. In vitro photodynamic activity of 5 was evaluated on HeLa cell lines and compared to the activity of the hydrophilic 5-(4-acetamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride (7). Low fluence rate (2mWcm(-2)) of red light (643nm) was used for the activation, and both porphyrins showed a drug dose-response as well as a light dose-response relationship, but the amphiphilic porphyrin was presented with significantly lower IC50 values. The obtained IC50 values for 5 were 1.4μM at 15min irradiation time and 0.7μM when the time of irradiation was 30min, while for 7 these values were 37 and 6 times higher, respectively. These results confirm the importance of the lipophilic component in a PS and show a potential for 5 to be used as a PS in PDT applications.

  1. [Photodynamic therapy for actinic cheilitis].

    PubMed

    Castaño, E; Comunión, A; Arias, D; Miñano, R; Romero, A; Borbujo, J

    2009-12-01

    Actinic cheilitis is a subtype of actinic keratosis that mainly affects the lower lip and has a higher risk of malignant transformation. Its location on the labial mucosa influences the therapeutic approach. Vermilionectomy requires local or general anesthetic and is associated with a risk of an unsightly scar, and the treatment with 5-fluorouracil or imiquimod lasts for several weeks and the inflammatory reaction can be very intense. A number of authors have used photodynamic therapy as an alternative to the usual treatments. We present 3 patients with histologically confirmed actinic cheilitis treated using photodynamic therapy with methyl aminolevulinic acid as the photosensitizer and red light at 630 nm. The clinical response was good, with no recurrences after 3 to 6 months of follow-up. Our experience supports the use of photodynamic therapy as a good alternative for the treatment of actinic cheilitis.

  2. Photodynamic impact on the epiphyseal plates.

    PubMed

    Kurchenko, S; Shashko, A; Dudin, M; Mikhailov, V; Netylko, G; Ashmarov, V

    2012-01-01

    This study was carried out to prove the possibility of inhibition of long bones epiphyseal plates activity with photodynamic impact. Comparative analysis of the Chlorin E6 accumulation with transcutaneous and intraperitoneal administration mode, carried out on 175 laboratory mice showed the drug accumulates selectively in the epiphyseal plates of long bones, regardless of the mode of administration. 15 mice (males and females) at the age of active grownig were subjected to the single laser radiation impact on the knee joints area: 5 ones with transcutaneous Chlorine E6 administration, another 5 ones with intraperitoneal administration and the rest 5 without the drug. Histological samples of 15 experimental mice epiphyseal plates were examined by light microscopy, compared with 10 intact control mice. Influence of the laser radiation without administration of Chlorin E6 leads to intracellular swelling of epiphyseal plates chondrocytes. Influence of the laser radiation after transcutaneous or intraperitoneal injection of Chlorine E6 reduces significantly the total number of epiphyseal plates chondrocytes, without reducing the proportion of terminally-differentiated chondrocytes. Thus, the photodynamic impact inhibits the activity of epiphyseal plates of the mice.

  3. A spatially augmented reality sketching interface for architectural daylighting design.

    PubMed

    Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara

    2011-01-01

    We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society

  4. Potential new photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ho, Yau-Kwan; Pandey, Ravindra K.; Sumlin, Adam B.; Missert, Joseph R.; Bellnier, David A.; Dougherty, Thomas J.

    1990-07-01

    In continuation of the effort to search for an ideal photosensitizer, two groups of potential new photosensitizers were synthesized and investigated for their photodynamic actions against tumors in mice. These were derivatives of methyl pheophorbide-a and of silicon naphthalocyanine. Of the former group, the 2 (1-0--hexyl) ethyl-desvinyl--methyl pheophorbide-a, or }IEDP, was the most active sensitizer. HEDP could be readily produced in large quantities and showed an optimum photodynamic action at 665 mu where it absorbs strongly. Also HEDP was cleared from the mouse skin within 4 days after administration, thus possibly alleviating the long-term phototoxic side-effects observed in Photofrin-based therapy. Of the second group of photosensitizers, the bis (dimethyl hydroxypropylsiloxy) silicon naphthalocyanine (HPSiNc) , and the corresponding acetoxy derivative (APSiNc) were of particular interest. At a drug-light dose of 1.0 mg/kg-135 J/cm2 (delivered by a laser at 772 nm), they showed antitumor activities comparable to that of PhotofrinTM. Further studies on these photosensitizers are warranted.

  5. Role of multidrug resistance in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Diddens, Heyke C.

    1992-06-01

    Multidrug resistance in cancer chemotherapy is a well established phenomenon. One of the most common phenotypical changes in acquired or intrinsic multidrug resistance in human tumor cells is the overexpression of the mdrl gene product P-glycoprotein, which acts as an active efflux pump. Increased levels of P-glycoprotein are associated with resistance to a variety of anticancer drugs commonly used in tumor chemotherapy like anthracyclins, vinca- alcaloids, epipodophyllotoxins or actinomycin D. We investigated the efficacy or photodynamic therapy in the treatment of tumor cells expressing the multidrug resistance phenotype. Our data show that multidrug resistant cells are highly cross resistant to the phototoxic stain rhodamine 123 but exhibit only low degrees of cross resistance (2 - 3 -folds) to the photosensitizers Photosan-3, Clorin-2, methylene blue and meso-tetra (4- sulfonatophenyl) porphine (TPPS4). Resistance is associated with a decrease in intracellular accumulation of the photosensitizer. Verapamil, a membrane active compound known to enhance drug sensitivity in multidrug resistant cells by inhibition of P-glycoprotein, also increases phototoxicity in multidrug resistant cells. Our results imply that tumors expressing the multidrug resistance phenotype might fail to respond to photochemotherapy with rhodamine 123. On the other hand, multidrug resistance may not play an important role in photodynamic therapy with Photosan-3, Chlorin-2, methylene blue or TPPS4.

  6. Daylighting Concepts for University Libraries and Their Influences on Users' Satisfaction

    ERIC Educational Resources Information Center

    Kilic, Didem Kan; Hasirci, Deniz

    2011-01-01

    Daylighting, a controlled architectural tool that influences users' perception and behavior, in university libraries and their influences on users' preference and satisfaction was examined in this study. The effects of daylighting in coordination with visual comfort, on university library users were measured in relation to four environmental…

  7. Daylighting Concepts for University Libraries and Their Influences on Users' Satisfaction

    ERIC Educational Resources Information Center

    Kilic, Didem Kan; Hasirci, Deniz

    2011-01-01

    Daylighting, a controlled architectural tool that influences users' perception and behavior, in university libraries and their influences on users' preference and satisfaction was examined in this study. The effects of daylighting in coordination with visual comfort, on university library users were measured in relation to four environmental…

  8. Daylighting practices of the architectural industry (baseline results of a national survey)

    SciTech Connect

    Hattrup, M.P.

    1990-05-01

    A national survey of over 300 commercial design architects was conducted to develop baseline information on their knowledge, perceptions, and use of daylighting in commercial building designs. Pacific Northwest Laboratory conducted the survey for the US Department of Energy's (DOE) Office of Building and Community Systems (BCS). In the survey daylighting was defined as the intentional use of natural light as a partial substitute for artificially generated light. The results suggested that architects need to be educated about the true benefits of daylighting and the impacts it can have on a building's energy performance. Educational programs that will increase the architects' understanding and awareness of modern daylighting technologies and practices should be developed by utilities, stage agencies, and the federal government. If more architects can be made aware of the true effectiveness and positive attributes of daylighting systems and technologies, daylighting may be used in more commercial buildings. The results of the survey show that the more familiar architects feel they are with daylighting, the more they use daylighting. 3 refs., 19 tabs.

  9. Photodynamic therapy by in situ nonlinear photon conversion

    NASA Astrophysics Data System (ADS)

    Kachynski, A. V.; Pliss, A.; Kuzmin, A. N.; Ohulchanskyy, T. Y.; Baev, A.; Qu, J.; Prasad, P. N.

    2014-06-01

    In photodynamic therapy, light is absorbed by a therapy agent (photosensitizer) to generate reactive oxygen, which then locally kills diseased cells. Here, we report a new form of photodynamic therapy in which nonlinear optical interactions of near-infrared laser radiation with a biological medium in situ produce light that falls within the absorption band of the photosensitizer. The use of near-infrared radiation, followed by upconversion to visible or ultraviolet light, provides deep tissue penetration, thus overcoming a major hurdle in treatment. By modelling and experiment, we demonstrate activation of a known photosensitizer, chlorin e6, by in situ nonlinear optical upconversion of near-infrared laser radiation using second-harmonic generation in collagen and four-wave mixing, including coherent anti-Stokes Raman scattering, produced by cellular biomolecules. The introduction of coherent anti-Stokes Raman scattering/four-wave mixing to photodynamic therapy in vitro increases the efficiency by a factor of two compared to two-photon photodynamic therapy alone, while second-harmonic generation provides a fivefold increase.

  10. Medical complex for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Soldatov, Anatoly N.; Domanov, Michail S.; Lyabin, Nikolay A.; Chursin, Alexandr D.; Mirza, Sergey Y.; Sukhanov, Viktor B.; Polunin, Yu. P.; Ivanov, Aleksandr I.; Kirilov, Anatoly E.; Rubanov, Sergey N.

    2002-03-01

    Experimental results of initial testing dye-laser 'MLK-02' pumped by a copper vapor laser 'Kulon-10' are presented. Output parameters obtained are the following: average power - 1 and 1.5 W, efficiency - 17.6 and 18.7% at the wavelengths of 670 and 725 nm, respectively. The laser apparatus is supposed to be used for methods of photodynamic therapy.

  11. Daylight saving time and motor vehicle crashes: the reduction in pedestrian and vehicle occupant fatalities.

    PubMed

    Ferguson, S A; Preusser, D F; Lund, A K; Zador, P L; Ulmer, R G

    1995-01-01

    Fatal crashes were tabulated for 6-hour periods around sunrise and sunset, from 13 weeks before the fall change to standard time until 9 weeks after the spring change to daylight saving time. Fatal-crash occurrence was related to changes in daylight, whether these changes occurred abruptly with the fall and spring time changes or gradually with the changing seasons of the year. During daylight saving time, which shifts an hour of daylight to the busier evening traffic hours, there were fewer fatal crashes. An estimated 901 fewer fatal crashes (727 involving pedestrians, 174 involving vehicle occupants) might have occurred if daylight saving time had been retained year-round from 1987 through 1991.

  12. Daylight saving time and motor vehicle crashes: the reduction in pedestrian and vehicle occupant fatalities.

    PubMed Central

    Ferguson, S A; Preusser, D F; Lund, A K; Zador, P L; Ulmer, R G

    1995-01-01

    Fatal crashes were tabulated for 6-hour periods around sunrise and sunset, from 13 weeks before the fall change to standard time until 9 weeks after the spring change to daylight saving time. Fatal-crash occurrence was related to changes in daylight, whether these changes occurred abruptly with the fall and spring time changes or gradually with the changing seasons of the year. During daylight saving time, which shifts an hour of daylight to the busier evening traffic hours, there were fewer fatal crashes. An estimated 901 fewer fatal crashes (727 involving pedestrians, 174 involving vehicle occupants) might have occurred if daylight saving time had been retained year-round from 1987 through 1991. PMID:7832269

  13. Photonic metallic nanostructures in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ion, Rodica-Mariana; Fierascu, R. C.; Dumitriu, Irina

    2009-01-01

    Plasmons are resonant modes that involve the interaction between free charges and light. Nanoparticle-based photonic explorers have been developed for photodynamic therapy (PDT). PDT has been widely used in both oncological (e.g., tumors) and nononcological (e.g., age-related macular degeneration, localized infection, and nonmalignant skin conditions) applications. Three primary components are involved in PDT: light, a photosensitizing drug, and oxygen. The photosensitizer adsorbs light energy, which it then transfers to molecular oxygen to create an activated form of oxygen called singlet oxygen. The singlet oxygen is a cytotoxic agent and reacts rapidly with cellular components to cause damage that ultimately leads to cell death and tumor destruction. The changed topography of the film surface after deposition is caused by a local material transport and a material separation between formed particles (probably AgNO3) and an embedding polymer matrix as chitosan. This paper focuses on the current use of injectable in situ Au/(Ag)/chitosan hydrogels in cancer photodynamic treatment. Formulation protocols for their cytotoxic properties, their effect on cell growth in vitro and inhibition of tumor growth in vivo using mouse models, are discussed.

  14. Nanoparticle Based Photodynamic Therapy for Cancer

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2006-10-01

    This presentation describes research into a new approach to cancer treatment through a combination of radiation and photodynamic therapy. Under this concept, scintillation or persistent luminescence nanoparticles with attached photosensitizers, such as porphyrins, are used as an in vivo agent for photodynamic therapy. The nanoparticle PDT agents are delivered to the treatment site. Upon exposure to ionizing radiation such as X-rays, the nanoparticles emit scintillation or luminescence, which in turn activates the photosensitizers; as a consequence, singlet oxygen (^1O2) is produced. Studies have shown that ^1O2 can be effective in killing cancer cells. The innovation described in this study involves the use of in vivo luminescent nanoparticles so that an external light source is not required to support PDT. Consequently, application of the therapy can be more localized and the potential of damage to healthy cells is reduced. This new modality will provide an efficient, low-cost approach to PDT while still offering the benefits of augmented radiation therapy at lower doses.

  15. Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Luo, Zhenyu; Zheng, Mingbin; Zhao, Pengfei; Chen, Ze; Siu, Fungming; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2016-03-01

    Photodynamic therapy has been increasingly applied in clinical cancer treatments. However, native hypoxic tumoural microenvironment and lacking oxygen supply are the major barriers hindering photodynamic reactions. To solve this problem, we have developed biomimetic artificial red cells by loading complexes of oxygen-carrier (hemoglobin) and photosensitizer (indocyanine green) for boosted photodynamic strategy. Such nanosystem provides a coupling structure with stable self-oxygen supply and acting as an ideal fluorescent/photoacoustic imaging probe, dynamically monitoring the nanoparticle biodistribution and the treatment of PDT. Upon exposure to near-infrared laser, the remote-triggered photosensitizer generates massive cytotoxic reactive oxygen species (ROS) with sufficient oxygen supply. Importantly, hemoglobin is simultaneously oxidized into the more active and resident ferryl-hemoglobin leading to persistent cytotoxicity. ROS and ferryl-hemoglobin synergistically trigger the oxidative damage of xenograft tumour resulting in complete suppression. The artificial red cells with self-monitoring and boosted photodynamic efficacy could serve as a versatile theranostic platform.

  16. Electrochemical microsensor system for cancer research on photodynamic therapy in vitro

    NASA Astrophysics Data System (ADS)

    Marzioch, J.; Kieninger, J.; Sandvik, J. A.; Pettersen, E. O.; Peng, Q.; Urban, G.

    2016-10-01

    An electrochemical microsensor system to investigate photodynamic therapy of cancer cells in vitro was developed and applied to monitor the cellular respiration during and after photodynamic therapy. The redox activity and therefore influence of the photodynamic drug on the sensor performance was investigated by electrochemical characterization. It was shown, that appropriate operation conditions avoid cross-sensitivity of the sensors to the drug itself. The presented system features a cell culture chamber equipped with microsensors and a laser source to photodynamically treat the cells while simultaneous monitoring of metabolic parameter in situ. Additionally, the optical setup allows to read back fluorescence signals from the photosensitizer itself or other marker molecules parallel to the microsensor readings.

  17. Zinc phthalocyanine-conjugated with bovine serum albumin mediated photodynamic therapy of human larynx carcinoma

    NASA Astrophysics Data System (ADS)

    Silva, E. P. O.; Santos, E. D.; Gonçalves, C. S.; Cardoso, M. A. G.; Soares, C. P.; Beltrame, M., Jr.

    2016-10-01

    Phthalocyanines, which are classified as second-generation photosensitizers, have advantageous photophysical properties, and extensive studies have demonstrated their potential applications in photodynamic therapy. The present work describes the preparation of a new zinc phthalocyanine conjugated to bovine serum albumin (compound 4a) and its photodynamic efficiency in human larynx-carcinoma cells (HEp-2 cells). The unconjugated precursor (compound 4) was also studied. Compounds 4 and 4a penetrated efficiently into the cell, exhibiting cytoplasmic localization, and showed no cytotoxicity in the dark. However, high photodynamic activities were observed in HEp-2 cells after treatments with 5 µM photosensitizers and 4.5 J cm-2 light. These conditions were sufficient to decrease the cell viability to 57.93% and 32.75% for compounds 4 and 4a, respectively. The present results demonstrated high photodynamic efficiency of zinc phthalocyanine conjugated with bovine serum albumin in destroying the larynx-carcinoma cells.

  18. Optimal integration of daylighting and electric lighting systems using non-imaging optics

    NASA Astrophysics Data System (ADS)

    Scartezzini, J.-L.; Linhart, F.; Kaegi-Kolisnychenko, E.

    2007-09-01

    Electric lighting is responsible for a significant fraction of electricity consumption within non-residential buildings. Making daylight more available in office and commercial buildings can lead as a consequence to important electricity savings, as well as to the improvement of occupants' visual performance and wellbeing. Over the last decades, daylighting technologies have been developed for that purpose, some of them having proven to be highly efficient such as anidolic daylighting systems. Based on non-imaging optics these optical devices were designed to achieve an efficient collection and redistribution of daylight within deep office rooms. However in order to benefit from the substantial daylight provision obtained through these systems and convert it into effective electricity savings, novel electric lighting strategies are required. An optimal integration of high efficacy light sources and efficient luminaries based on non-imaging optics with anidolic daylighting systems can lead to such novel strategies. Starting from the experience gained through the development of an Anidolic Integrated Ceiling (AIC), this paper presents an optimal integrated daylighting and electric lighting system. Computer simulations based on ray-tracing techniques were used to achieve the integration of 36W fluorescent tubes and non-imaging reflectors with an advanced daylighting system. Lighting power densities lower than 4 W/m2 can be achieved in this way within the corresponding office room. On-site monitoring of an integrated daylighting and electric lighting system carried out on a solar experimental building confirmed the energy and visual performance of such a system: it showed that low lighting power densities can be achieved by combining an anidolic daylighting system with very efficient electric light sources and luminaries.

  19. Photoactivated hypericin increases the expression of SOD-2 and makes MCF-7 cells resistant to photodynamic therapy.

    PubMed

    Kimáková, Patrícia; Solár, Peter; Fecková, Barbora; Sačková, Veronika; Solárová, Zuzana; Ilkovičová, Lenka; Kello, Martin

    2017-01-01

    Photoactivated hypericin increased production of reactive oxygen species in human breast adenocarcinoma MCF-7 as well as in MDA-MB-231 cells 1h after photodynamic therapy. On the other hand, reactive oxygen species dropped 3h after photodynamic therapy with hypericin, but only in MCF-7 cells, whereas in MDA-MB-231 cells remained elevated. The difference in the dynamics of reactive oxygen species after hypericin activation was related to increased activity of SOD-2 in MCF-7 cells compared to MDA-MB-231 cells. Indeed, photodynamic therapy with hypericin significantly increased SOD-2 activity in MCF-7 cells, but only slightly in MDA-MB-231 cells. In this regard, SOD-2 activity correlated well with enhanced both mRNA expression as well as SOD-2 protein level in MCF-7 cells. The role of SOD-2 in the resistance of MCF-7 cells to photodynamic therapy with hypericin was monitored using SOD-2 inhibitor - 2-methoxyestradiol. Interestingly, the combination of photodynamic therapy with hypericin and methoxyestradiol sensitized MCF-7 cells to photodynamic therapy and significantly reduced its clonogenic ability. Furthermore, methoxyestradiol potentiated the activation of caspase 3/7 and apoptosis induced by photodynamic therapy with hypericin. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Impact of Windows and Daylight Exposure on Overall Health and Sleep Quality of Office Workers: A Case-Control Pilot Study

    PubMed Central

    Boubekri, Mohamed; Cheung, Ivy N.; Reid, Kathryn J.; Wang, Chia-Hui; Zee, Phyllis C.

    2014-01-01

    Study Objective: This research examined the impact of daylight exposure on the health of office workers from the perspective of subjective well-being and sleep quality as well as actigraphy measures of light exposure, activity, and sleep-wake patterns. Methods: Participants (N = 49) included 27 workers working in windowless environments and 22 comparable workers in workplaces with significantly more daylight. Windowless environment is defined as one without any windows or one where workstations were far away from windows and without any exposure to daylight. Well-being of the office workers was measured by Short Form-36 (SF-36), while sleep quality was measured by Pittsburgh Sleep Quality Index (PSQI). In addition, a subset of participants (N = 21; 10 workers in windowless environments and 11 workers in workplaces with windows) had actigraphy recordings to measure light exposure, activity, and sleep-wake patterns. Results: Workers in windowless environments reported poorer scores than their counterparts on two SF-36 dimensions—role limitation due to physical problems and vitality—as well as poorer overall sleep quality from the global PSQI score and the sleep disturbances component of the PSQI. Compared to the group without windows, workers with windows at the workplace had more light exposure during the workweek, a trend toward more physical activity, and longer sleep duration as measured by actigraphy. Conclusions: We suggest that architectural design of office environments should place more emphasis on sufficient daylight exposure of the workers in order to promote office workers' health and well-being. Citation: Boubekri M, Cheung IN, Reid KJ, Wang CH, Zee PC. Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. J Clin Sleep Med 2014;10(6):603-611. PMID:24932139

  1. Work-related accidents and daylight saving time in Finland.

    PubMed

    Lahti, T; Sysi-Aho, J; Haukka, J; Partonen, T

    2011-01-01

    Recent research has indicated that transitions into and out of daylight saving time (DST) unbalance the physiological circadian rhythm and may lead to sleep disturbance. Sleep deprivation may have negative effects on motivation, attention and alertness and thus it is possible that transitions into and out of DST may increase accident rates. To explore the impact of DST transitions on the number of occupational accidents in Finland. For the study, we analysed all occupational accidents that happened in Finland 1 week before and 1 week after DST transitions during the years 2002-06. Transitions into and out of DST did not significantly increase the number of occupational accidents. It seems that sleep deprivation after DST transition is not harmful enough to impact on occupational accident rates.

  2. LeRoy Doggett and Daylight Saving Time: A Reminiscence

    NASA Astrophysics Data System (ADS)

    Bartky, I. R.

    1997-12-01

    Daylight Saving Time (DST) has been a concern of Congress ever since its adoption in 1918. Yet, not until 1976 did Members of Congress have astronomical, geographic and demographic information in terms of the country's Standard Time zones. This information and various impact analyses were developed by the National Bureau of Standards (NBS) at the request of the House of Representatives, which was reviewing the effects of a two-year, DST experiment on the American public. The displays in the study gave legislators a way to consider alternate observance periods in a systematic manner. The leader of the DST study team will detail LeRoy Doggett's involvement during the hectic, three-month analysis period that culminated with NBS officials testifying before Congress.

  3. Photodynamic therapy for basal cell carcinoma.

    PubMed

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma.

  4. Actively targeting d-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) nanoparticles as vesicles for chemo-photodynamic combination therapy of doxorubicin-resistant breast cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Di; Gao, Xiaoling; Kang, Ting; Feng, Xingye; Yao, Jianhui; Yang, Mengshi; Jing, Yixian; Zhu, Qianqian; Feng, Jingxian; Chen, Jun

    2016-01-01

    Drug resistance is the major reason for therapeutic failure during cancer treatment. Chemo-photodynamic combination therapy has potential to improve the treatment efficiency in drug-resistant cancers, but is limited by the incompatible physical properties of the photosensitizer with a chemo-drug and poor accumulation of both drugs into the inner areas of the tumor. Herein, a novel drug delivery system was designed by incorporating the photosensitizer, chlorine 6, chemically in the shell and the chemo-drug, doxorubicin, physically in the core of d-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) (TPGS-PLA) nanoparticles with a targeting ligand, tLyp-1 peptide, decorated over the surface (tLyp-1-NP). This nanoparticle with a high drug loading capacity of both the photosensitizer and chemo-drug is expected to realize chemo-photodynamic combination therapy of drug-resistant cancer and simultaneously achieve the specific deep penetration and accumulation of drugs into the inner areas of tumor. tLyp-1-NP was prepared via a nanoprecipitation method and it exhibited a uniformly spherical morphology with a size of approximately 130 nm. After appropriate irradiation, tLyp-1-NP showed high cellular uptake and strong cytotoxicity in both human umbilical vein endothelial cells (HUVEC cells) and doxorubicin-resistant human breast adenocarcinoma cells (MCF-7/ADR cells) in vitro. After intravenous administration, compared with the unmodified NPs, tLyp-1-NP was found to have superior tumor targeting ability and more potent reversion of doxorubicin-resistant cancer. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and the hematoxylin and eosin staining of the treated tumors further demonstrated the anti-tumor efficacy of tLyp-1-NP in the presence of a laser. These observations collectively suggest the potential of tLyp-1-NP for the actively targeting chemo-photodynamic combination therapy of drug-resistant cancer.Drug resistance is the

  5. Daylighting in the workplace: Two new buildings offer a guiding light

    SciTech Connect

    Jackaway, A.; Littler, J.

    1996-10-01

    As environmental pressures intensify and energy efficiency remains paramount, there has been renewed interest in daylighting the workplace. Interestingly, daylighting`s resurgence is being furthered by mounting evidence of occupant dissatisfaction with predominantly electrically-lit offices, and two recent reports support growing concern that the lack of daylighting in these interiors has led not only to unhappy workers, but to potentially significant reductions in workplace productivity. Clearly pressure is mounting on designers to produce buildings responding to these concerns, and as the role of precedents in the evolution of design practice is unquestioned, demand has been increasing for publication of office-based daylighting case studies. In an attempt to address this need, this paper examines two recently completed British buildings in which daylight has explicitly informed the architecture, and although data concerning the resulting energy savings is not yet available, these projects currently offer the design community two excellent examples of workplace daylighting where compelling visual environments are generating noteworthy occupant satisfaction.

  6. Photodynamic Cancer Therapy—Recent Advances

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2011-09-01

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when "photoradiation therapy" was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first or second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular

  7. Quantum dot-folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer.

    PubMed

    Morosini, Vincent; Bastogne, Thierry; Frochot, Céline; Schneider, Raphaël; François, Aurélie; Guillemin, François; Barberi-Heyob, Muriel

    2011-05-01

    This study examined the in vitro potential of bioconjugated quantum dots (QDs) as photosensitizers for photodynamic therapy (PDT). According to our previous approaches using photosensitizers, folic acid appears to be an optimal targeting ligand for selective delivery of attached therapeutic agents to cancer tissues. We synthesized hydrophilic near infrared emitting CdTe(S)-type QDs conjugated with folic acid using different spacers. Photodynamic efficiency of QDs conjugated or not with folic acid was evaluated on KB cells, acting as a positive control due to their overexpression of FR-α, and HT-29 cells lacking FR-α, as negative control. A design of experiments was suggested as a rational solution to evaluate the impacts of each experimental factor (QD type and concentration, light fluence and excitation wavelength, time of contact before irradiation and cell phenotype). We demonstrated that, for concentrations lower than 10 nM, QDs displayed practically no cytotoxic effect without light exposure for both cell lines. Whereas QDs at 2.1 nM displayed a weak photodynamic activity, a concentration of 8 nM significantly enhanced the photodynamic efficiency characterized by a light dose-dependent response. A statistically significant difference in photodynamic efficiency between KB and HT-29 cells was evidenced in the case of folic acid-conjugated QDs. Optimal conditions led to an enhanced photocytotoxicity response, allowing us to validate the ability of QDs to generate a photodynamic effect and of folic acid-conjugated QDs for targeted PDT.

  8. Daylighting calculations for non-rectangular interior spaces with shading devices

    SciTech Connect

    Modest, M. F.

    1981-06-01

    Employing a general numerical model for the calculation of daylighting in interior spaces the sensitivity of daylighting to nonrectangular rooms, such as L-shaped rooms, and to other internal visual obstructions, such as light-shelves, is discussed. In addition, the model has been expanded to allow the treatment of opaque, semi-transparent, and translucent window overhangs, which may be positioned at any or all sides of a window. Further, the model has now the capability of graphical output. Thus, all results are shown in the form of contour plots, showing room outline, sunny areas, and constant-illumination or constant-daylight factor lines.

  9. Photodynamic therapy: novel third-generation photosensitizers one step closer?

    PubMed

    Josefsen, L B; Boyle, R W

    2008-05-01

    Photodynamic sensitizers are drugs activated by light of a specific wavelength and are used in the photodynamic therapy (PDT) of certain diseases. Second- and third-generation photosensitizers with improved PDT properties are now under investigation. In this issue of the British Journal of Pharmacology, Leung et al. have described the synthesis and investigation of a second-generation photosensitizer (BAM-SiPc) targeted towards the cells of HepG2 and HT29 tumours. BAM-SiPc is selectively functionalized with bis-amino groups and has demonstrated potent PDT activity in a small animal model. However, it also exhibited non-selective distribution and accumulation in multiple animal (small mouse) organs and tissue. These issues highlight the importance and need for good biodistribution and localization properties for an efficacious photosensitizer. The lack of tumour specificity may have a significant impact on the potential BAM-SiPc has in clinical PDT.

  10. A luminous efficiency function, V*(lambda), for daylight adaptation.

    PubMed

    Sharpe, Lindsay T; Stockman, Andrew; Jagla, Wolfgang; Jägle, Herbert

    2005-12-21

    We propose a new luminosity function, V*(lambda), that improves upon the original CIE 1924 V(lambda) function and its modification by D. B. Judd (1951) and J. J. Vos (1978), while being consistent with a linear combination of the A. Stockman & L. T. Sharpe (2000) long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) cone fundamentals. It is based on experimentally determined 25 Hz, 2 degrees diameter, heterochromatic (minimum) flicker photometric data obtained from 40 observers (35 males, 5 females) of known genotype, 22 with the serine variant L(ser180), 16 with the alanine L(ala180) variant, and 2 with both variants of the L-cone photopigment. The matches, from 425 to 675 nm in 5-nm steps, were made on a 3 log troland xenon white (correlated color temperature of 5586 K but tritanopically metameric with CIE D65 standard daylight for the Stockman and Sharpe L- and M-cone fundamentals in quantal units) adapting field of 16 degrees angular subtense, relative to a 560-nm standard. Both the reference standard and test lights were kept near flicker threshold so that, in the region of the targets, the total retinal illuminance averaged 3.19 log trolands. The advantages of the new function are as follows: it forms a consistent set with the new proposed CIE cone fundamentals (which are the Stockman & Sharpe 2000 cone fundamentals); it is based solely on flicker photometry, which is the standard method for defining luminance; it corresponds to a central 2 degrees viewing field, for which the basic laws of brightness matching are valid for flicker photometry; its composition of the serine/alanine L-cone pigment polymorphism (58:42) closely matches the reported incidence in the normal population (56:44; Stockman & Sharpe, 1999); and it specifies luminance for a reproducible, standard daylight condition. V*(lambda) is defined as 1.55L(lambda) + M(lambda), where L(lambda) and M(lambda) are the Stockman & Sharpe L- & M-cone (quantal) fundamentals. It is extrapolated

  11. Treatment of rheumatoid arthritis using photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Hendrich, Christian; Diddens, Heyke C.; Nosir, Hany R.; Siebert, Werner E.

    1995-03-01

    The only early therapy of rheumatoid arthritis in orthopedic surgery is a synovectomy, which is restricted to more or less big joints. A laser-synovectomy of small joints is ineffective yet. An alternative method may be photodynamic therapy. In our study we describe the photodynamic effect of Photosan 3 in a cell culture study.

  12. Photodynamic Diagnosis and Therapy of Cancer

    SciTech Connect

    Subiel, Anna

    2010-01-05

    This paper gives brief information about photodynamic method used in diagnosis and therapy for cancer and other human body disorders. In particular it concentrates on detection and analysis of fluorescent dye, i.e. protoporphyrin IX (PpIX) and its two-photon excitation (TPE) process, which offers photodynamic method many fascinating possibilities.

  13. Photodynamic action on some pathogenic microorganisms of oral cavity

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Ilya S.; Tuchin, Valery V.

    2001-10-01

    The work is devoted to an analysis of pre-clinical and clinical experiments on photodynamic action of HeNe laser radiation in aggregate with a cation thiazinium dye Methylene Blue (MB) on a mix of pathogenic and conditionally pathogenic aerobic bacteria being activators of pyoinflammatory diseases of oral cavity. Concentration of photosensitizes at which there is no own bactericidal influence on dying microflora, and parameters of influence at which the efficiency of irradiated microflora defeat reaches 99 % are determined.

  14. PHOTODYNAMIC THERAPY OF CANCER: AN UPDATE

    PubMed Central

    Agostinis, Patrizia; Berg, Kristian; Cengel, Keith A.; Foster, Thomas H.; Girotti, Albert W.; Gollnick, Sandra O.; Hahn, Stephen M.; Hamblin, Michael R.; Juzeniene, Asta; Kessel, David; Korbelik, Mladen; Moan, Johan; Mroz, Pawel; Nowis, Dominika; Piette, Jacques; Wilson, Brian C.; Golab, Jakub

    2011-01-01

    Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative particularly in early-stage tumors. It can prolong survival in inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment. PMID:21617154

  15. Scope of photodynamic therapy in periodontics.

    PubMed

    Kumar, Vivek; Sinha, Jolly; Verma, Neelu; Nayan, Kamal; Saimbi, C S; Tripathi, Amitandra K

    2015-01-01

    Periodontal disease results from inflammation of the supporting structure of the teeth and in response to chronic infection caused by various periodontopathic bacteria. The mechanical removal of this biofilm and adjunctive use of antibacterial disinfectants and antibiotics have been the conventional methods of periodontal therapy. However, the removal of plaque and the reduction in the number of infectious organisms can be impaired in sites with difficult access. Photodynamic therapy (PDT) is a powerful laser-initiated photochemical reaction, involving the use of a photoactive dye (photosensitizer) activated by light of a specific wavelength in the presence of oxygen. Application of PDT in periodontics such as pocket debridement, gingivitis, and aggressive periodontitis continue to evolve into a mature clinical treatment modality and is considered as a promising novel approach for eradicating pathogenic bacteria in periodontitis.

  16. Irradiation system for interstitial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Pacheco, L.; Stolik, S.; De la Rosa, J.

    2013-11-01

    Interstitial Photodynamic Therapy (IPDT) is a promising form of treatment of deep-seated and bulky malignant tumors, based on the lethal cell response to the photochemical reactions when drug is light activated in presence of oxygen. In order to accomplish an effective internal illumination, laser sources are preferably used because of two important reasons: the monochromatic light can be confined to the narrow absorption band of the drug and the laser beam is easily focused into optical fibers. In this work the development of a diode-laser-light-source is presented. The system is tuned by temperature to get a better match in the 5-ALA absorption band. This system also comprises a trifurcated fiber system to accomplish interstitial illumination.

  17. Photodynamic therapy in dermatology: history and horizons.

    PubMed

    Taub, Amy Forman

    2004-01-01

    Photodynamic therapy (PDT) uses a photosensitizer, light, and molecular oxygen to selectively kill cells. When localized in the target tissue, the photosensitizer is activated by light to produce oxygen intermediates that destroy target tissue cells. The easy access of skin to light-based therapy has led dermatologists to apply PDT to cutaneous disorders. In dermatology, PDT has been most successful in treating actinic keratoses, basal cell carcinoma, and Bowen's disease. The introduction of aminolevulinic acid, which does not make patients susceptible to phototoxicity for extended periods, has reduced morbidity associated with PDT. This has led to new interest in PDT not only for nonmelanoma skin cancer and premalignant lesions but also in the treatment of acne and as an adjuvant to photorejuvenation procedures. This review examines the historical roots of PDT and the research evaluating different light and laser sources as well as reports on new horizons for PDT in dermatology.

  18. [New light on skin photodynamic therapy].

    PubMed

    Kuonen, François; Gaide, Olivier

    2014-04-02

    Photodynamic therapy (PDT) relies on the cellular toxicity of an exogenous porphyrin that is activated by light rays. Its specificity depends on its cellular uptake, which is typically high in cells with a high metabolism, such as cancer cells and several microbial pathogens. Both the diffusion of the substrate and the penetration of the light in the tissue limit its efficiency to the first few millimeters of the skin. This explains why this technique is used for the treatment of superficial skin cancers (actinic keratosis and basal cell carcinomas), but also for selected skin inflammatory diseases (psoriasis) or infections (leishmaniosis). However, at the bedside, the limitations of PDT are rather the complexity and the pain associated with the treatment. Herein, we present the new developments, in particular concerning the new light sources, which make PDT a better option for our patients.

  19. Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer.

    PubMed

    Luo, Ting; Zhang, Qinrong; Lu, Qing-Bin

    2017-06-05

    Indocyanine green (ICG) has been reported as a potential near-infrared (NIR) photosensitizer for photodynamic therapy (PDT) of cancer. However the application of ICG-mediated PDT is both intrinsically and physiologically limited. Here we report a combination of ICG-PDT with a chemotherapy drug etoposide (VP-16), aiming to enhance the anticancer efficacy, to circumvent limitations of PDT using ICG, and to reduce side effects of VP-16. We found in controlled in vitro cell-based assays that this combination is effective in killing non-small-cell lung cancer cells (NSCLC, A549 cell line). We also found that the combination of ICG-PDT and VP-16 exhibits strong synergy in killing non-small-cell lung cancer cells partially through inducing more DNA double-strand breaks (DSBs), while it has a much weaker synergy in killing human normal cells (GM05757). Furthermore, by studying the treatment sequence dependence and the cytotoxicity of laser-irradiated mixtures of ICG and VP-16, we found that the observed synergy involves direct/indirect reactions between ICG and VP-16. We further propose that there exists an electron transfer reaction between ICG and VP-16 under irradiation. This study therefore shows the anticancer efficacy of ICG-PDT combined with VP-16. These findings suggest that ICG-mediated PDT may be applied in combination with the chemotherapy drug VP-16 to treat some cancers, especially the non-small-cell lung cancer.

  20. Photodynamic therapy of diseased bone

    NASA Astrophysics Data System (ADS)

    Bisland, Stuart K.; Yee, Albert; Siewerdsen, Jeffery; Wilson, Brian C.; Burch, Shane

    2005-08-01

    Objective: Photodynamic therapy (PDT) defines the oxygen-dependent reaction that occurs upon light-mediated activation of a photosensitizing compound, culminating in the generation of cytotoxic, reactive oxygen species, predominantly, singlet oxygen. We are investigating PDT treatment of diseased bone. Methods: Using a rat model of human breast cancer (MT-1)-derived bone metastasis we confirmed the efficacy of benzoporphyrin-derivative monoacid (BPD-MA)-PDT for treating metastatic lesions within vertebrae or long bones. Results: Light administration (150 J) 15 mins after BPDMA (2.5 mg/Kg, i.v.) into the lumbar (L3) vertebra of rats resulted in complete ablation of the tumour and surrounding bone marrow 48 hrs post-PDT without paralysis. Porcine vertebrae provided a model comparable to that of human for light propagation (at 150 J/cm) and PDT response (BPD-MA; 6 mg/m2, i.v.) in non-tumour vertebrae. Precise fibre placement was afforded by 3-D cone beam computed tomography. Average penetration depth of light was 0.16 +/- 0.04 cm, however, the necrotic/non-necrotic interface extended 0.6 cm out from the treatment fiber with an average incident fluence rate of 4.3 mW/cm2. Non-necrotic tissue damage was evident 2 cm out from the treatment fiber. Current studies involving BPD-MA-PDT treatment of primary osteosarcomas in the forelimbs of dogs are very promising. Magnetic resonance imaging 24 hr post treatment reveal well circumscribed margins of treatment that encompass the entire 3-4 cm lesion. Finally, we are also interested in using 5-aminolevulinic acid (ALA) mediated PDT to treat osteomyelitis. Response to therapy was monitored as changes in bioluminescence signal of staphylococcus aureus (SA)-derived biofilms grown onto 0.5 cm lengths of wire and subjected to ALA-PDT either in vitro or in vivo upon implant into the intramedullary space of rat tibia. Transcutaneous delivery of PDT (75 J/cm2) effectively eradicated SAbiofilms within bone. Conclusions: Results support

  1. Photodynamic therapy in endodontics: a literature review.

    PubMed

    Trindade, Alessandra Cesar; De Figueiredo, José Antônio Poli; Steier, Liviu; Weber, João Batista Blessmann

    2015-03-01

    Recently, several in vitro and in vivo studies demonstrated promising results about the use of photodynamic therapy during root canal system disinfection. However, there is no consensus on a standard protocol for its incorporation during root canal treatment. The purpose of this study was to summarize the results of research on photodynamic therapy in endodontics published in peer-reviewed journals. A review of pertinent literature was conducted using the PubMed database, and data obtained were categorized into sections in terms of relevant topics. Studies conducted in recent years highlighted the antimicrobial potential of photodynamic therapy in endodontics. However, most of these studies were not able to confirm a significant improvement in root canal disinfection for photodynamic therapy as a substitute for current disinfection methods. Its indication as an excellent adjunct to conventional endodontic therapy is well documented, however. Data suggest the need for protocol adjustments or new photosensitizer formulations to enhance photodynamic therapy predictability in endodontics.

  2. Somatostatin Analogues for Receptor Targeted Photodynamic Therapy

    PubMed Central

    Kaščáková, Slávka; Hofland, Leo J.; De Bruijn, Henriette S.; Ye, Yunpeng; Achilefu, Samuel; van der Wansem, Katy; van der Ploeg-van den Heuvel, Angelique; van Koetsveld, Peter M.; Brugts, Michael P.; van der Lelij, Aart-Jan; Sterenborg, Henricus J. C. M.; ten Hagen, Timo L. M.; Robinson, Dominic J.; van Hagen, Martin P.

    2014-01-01

    Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2+ AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate. PMID:25111655

  3. Effects of telomerase expression on photodynamic therapy of Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Wang, Kenneth K.; Anderson, Marlys; Buttar, Navtej; WongKeeSong, Louis-Michel; Borkenhagen, Lynn; Lutzke, Lori

    2003-06-01

    Photodynamic therapy has been applied to Barrett's esophagus and has been shown in prospective randomized studies to eliminate dysplasia as well as decrease the occurrence of cancer. However, the therapy isnot always effective and there are issues with residual areas of Barrett's mucosa despite therapy. There has not been a good explanation for these residual areas and they seem to imply that there may exist a biological mechanisms by which these cells may be resistant to photodynamic therapy. It was our aim to determine if known abnormalities in Barrett's mucosa could be correlated with the lack of response of some of these tissues. We examined the tissue from mulitpel patients who had resonse to therapy as well as those who did not respond. We assessed the tissue for p53 mutations, inactivatino of p16, ploidy status, cell proliferation, telomerase activity, and degree of dysplasia. Interestingly, the only genetic marker than was found to be correlated with lack of reonse was p53 and telomerase activity. This suggests that cells that have lost mechanisms for cell death such as apoptosis or telomere shortengin may be more resistant to photodynamic therapy. In this study, we examined patients before and after PDT for telomerase activity.

  4. Daylight Observations of Venus with Naked Eye in the Goryeosa

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Won

    2017-03-01

    In this paper, we investigate the observations of Venus in daytime that are recorded in the Goryeosa (History of the Goryeo Dynasty, A.D. 918-1392). There are a total of 167 accounts of such observations in this historical book, spanning a period of 378 yr (from 1014 to 1392). These include six accounts where the days of the observation are not specified and two accounts where the phase angles are outside the calculation range of the equation used in our study. We analyze the number distribution of 164 accounts in 16 yr intervals covering the period from 1023 to 1391. We find that this distribution shows its minimum at around 1232, when the Goryeo dynasty moved the capital to the Ganghwa Island because of the Mongol invasion, and its maximum at around 1390, about the time when the dynasty fell. In addition, we calculate the azimuth, altitude, solar elongation, and apparent magnitude of Venus at sunset for 159 observations, excluding the eight accounts mentioned above, using the DE 406 ephemeris and modern astronomical algorithms. We find that the average elongation and magnitude of Venus on the days of those accounts were and -4.5, respectively, whereas the minimum magnitude was -3.8. The results of this study are useful for estimating the practical conditions for observing Venus in daylight with the naked eye and they also provide additional insight into the corresponding historical accounts contained in the Goryeosa.

  5. Phase-diffractive coating for daylight control on smart window

    NASA Astrophysics Data System (ADS)

    Perennes, Frederic; Twardowski, Patrice J.; Gesbert, D.; Meyrueis, Patrick

    1992-11-01

    Daylight can be processed by a smart window in a transmission, reflective, refractive, and diffractive mode. In the future an optimization will be realized by a mixing of these approaches depending on the applied cases. Non-imaging diffractive optics has its roots in the work done in holographic diffractive coating for head up displays (HUD) and helmet mounted displays. For having globally good results on smart window with diffractive coating, a very high diffraction efficiency must be reached close to 100% without having a too important lowering of the control of other parameters of the light processed by a smart window (direction and frequency control essentially). We propose a method for designing, realizing, and using diffractive coating for a smart window that is based on a new organic material and diffractive model that were already validated in HUD. Potential low cost is possible for mass production on a large surface with an adapted investment. We describe the present technology and its limits and the ones that can be reached in the future. In this work, we present a holographic way to modify the slant of sun rays through a window, and to filter infrared radiations by using dichromated gelatin material. In this way it would be able to ensure a more uniform lighting and a more pleasant temperature inside buildings or vehicles, without using dye or photochromics glasses.

  6. Daylight operation of a sodium laser guide star

    NASA Astrophysics Data System (ADS)

    Hart, Michael; Jefferies, Stuart; Murphy, Neil

    2016-07-01

    We report photometric measurements of a sodium resonance guide star against the daylight sky when observed through a tuned magneto-optical filter (MOF). The MOF comprises a sodium vapor cell in a kilogauss-level magnetic field between crossed polarizers and has a very narrow transmission profile at the sodium D2 resonance of approximately 0.008 nm. Our observations were made with the 1.5 m Kuiper telescope on Mt. Bigelow, AZ, which has a separately mounted guide star laser projecting a circularly polarized single-frequency beam of approximately 6.5 W at 589.16 nm. Both the beam projector and the 1.5 m telescope were pointed close to zenith; the baseline between them is approximately 5 m. Measurements of the guide star were made on the morning of 2016 March 24 using an imaging camera focused on the beacon and looking through the full aperture of the telescope. The guide star flux was estimated at 1.20×106 photon/m2/s while at approximately 45 minutes after sunrise, the sky background through the MOF was 1100 photon/m2/s/arcsec2. We interpret our results in terms of thermal infrared observations with adaptive optics on the next generation of extremely large telescopes now being built.

  7. Ground-based electro-optical detection of artificial satellites in daylight from reflected sunlight

    NASA Astrophysics Data System (ADS)

    Rork, E. W.; Lin, S. S.; Yakutis, A. J.

    1982-05-01

    An electro-optical sensor consisting of the ETS 31-inch f/5 telescope, a readily-available silicon vidicon TV camera, and a video signal processing system was used to acquire and track low altitude satellites in daylight from reflected sunlight. The limiting magnitude was 8m3. In demonstrating this, a total of 20 satellite tracks on 18 different satellites was achieved in full daylight during one day, and accurate precision positional data on 13 of the tracks were sent to the NORAD Space Defense Center. This demonstrated proof-of-concept might provide an enhanced GEODSS daylight operation. In connection with experiments in daylight space surveillance, an atmospheric phenomenon was encountered which consists primarily of point images, apparently windblown, moving through the field-of-view. The leading candidates are seed vehicles, insects, and ice crystals. A parallax technique has been demonstrated to separate these objects, dubbed "angels,' from artificial satellites.

  8. A Framework for Daylighting Optimization in Whole Buildings with OpenStudio

    SciTech Connect

    2016-08-12

    We present a toolkit and workflow for leveraging the OpenStudio (Guglielmetti et al. 2010) platform to perform daylighting analysis and optimization in a whole building energy modeling (BEM) context. We have re-implemented OpenStudio's integrated Radiance and EnergyPlus functionality as an OpenStudio Measure. The OpenStudio Radiance Measure works within the OpenStudio Application and Parametric Analysis Tool, as well as the OpenStudio Server large scale analysis framework, allowing a rigorous daylighting simulation to be performed on a single building model or potentially an entire population of programmatically generated models. The Radiance simulation results can automatically inform the broader building energy model, and provide dynamic daylight metrics as a basis for decision. Through introduction and example, this paper illustrates the utility of the OpenStudio building energy modeling platform to leverage existing simulation tools for integrated building energy performance simulation, daylighting analysis, and reportage.

  9. How to Keep a Spring in Your Step with Daylight Saving Time

    MedlinePlus

    ... a Spring in Your Step With Daylight Saving Time Expert advice on ways to weather the lost ... Clocks will spring ahead one hour with the time change on Sunday morning, but medical experts have ...

  10. Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress

    SciTech Connect

    Belzer, D. B.; Hadley, S. W.; Chin, S-M.

    2008-10-01

    The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called for the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings

  11. Delight2 Daylighting Analysis in Energy Plus: Integration and Preliminary User Results

    SciTech Connect

    Carroll, William L.; Hitchcock, Robert J.

    2005-04-26

    DElight is a simulation engine for daylight and electric lighting system analysis in buildings. DElight calculates interior illuminance levels from daylight, and the subsequent contribution required from electric lighting to meet a desired interior illuminance. DElight has been specifically designed to integrate with building thermal simulation tools. This paper updates the DElight capability set, the status of integration into the simulation tool EnergyPlus, and describes a sample analysis of a simple model from the user perspective.

  12. Calculating Correlated Color Temperatures Across the Entire Gamut of Daylight and Skylight Chromaticities

    DTIC Science & Technology

    1999-09-20

    c o i b f t c c c c w n c s p t s Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities Javier...temperature ~CCT!, yet existing equations for calculating CCT from chromaticity coordinates span only part of this range. To improve both the gamut and accuracy...00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Calculating correlated color temperatures across the entire gamut of daylight and skylight

  13. Immune Response Following Photodynamic Therapy For Bladder Cancer

    NASA Astrophysics Data System (ADS)

    Raymond K.

    1989-06-01

    This study was undertaken to determine if photodynamic therapy (PDT) produces an immunologic response in patients treated for bladder cancer. Gamma interferon, interleukin 1-beta, interleukin 2 and tumor necrosis factor-alpha were assayed in the urine of four patients treated with photodynamic therapy for bladder cancer, in seven patients undergoing transurethral procedures, and in five healthy control subjects. Quantifiable concentrations of all cytokines, except gamma interferon, were measured in urine samples from the PDT patients treated with the highest light energies, while no urinary cytokines were found in the PDT patient who received the lowest light energy or in the control subjects. These findings suggest that a local immunologic response may occur following PDT for bladder cancer. Such an immunologic response activated by PDT may be an additional mechanism involved in bladder tumor destruction.

  14. Optimized Photodynamic Therapy with Multifunctional Cobalt Magnetic Nanoparticles

    PubMed Central

    Choi, Kyong-Hoon; Nam, Ki Chang; Kim, Un-Ho; Cho, Guangsup; Jung, Jin-Seung; Park, Bong Joo

    2017-01-01

    Photodynamic therapy (PDT) has been adopted as a minimally invasive approach for the localized treatment of superficial tumors, representing an improvement in the care of cancer patients. To improve the efficacy of PDT, it is important to first select an optimized nanocarrier and determine the influence of light parameters on the photosensitizing agent. In particular, much more knowledge concerning the importance of fluence and exposure time is required to gain a better understanding of the photodynamic efficacy. In the present study, we synthesized novel folic acid-(FA) and hematoporphyrin (HP)-conjugated multifunctional magnetic nanoparticles (CoFe2O4-HPs-FAs), which were characterized as effective anticancer reagents for PDT, and evaluated the influence of incubation time and light exposure time on the photodynamic anticancer activities of CoFe2O4-HPs-FAs in prostate cancer cells (PC-3 cells). The results indicated that the same fluence at different exposure times resulted in changes in the anticancer activities on PC-3 cells as well as in reactive oxygen species formation. In addition, an increase of the fluence showed an improvement for cell photo-inactivation. Therefore, we have established optimized conditions for new multifunctional magnetic nanoparticles with direct application for improving PDT for cancer patients. PMID:28604596

  15. X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy

    PubMed Central

    Wang, Geoffrey D.; Nguyen, Ha T.; Chen, Hongmin; Cox, Phillip B.; Wang, Lianchun; Nagata, Koichi; Hao, Zhonglin; Wang, Andrew; Li, Zibo; Xie, Jin

    2016-01-01

    Conventional photodynamic therapy (PDT)'s clinical application is limited by depth of penetration by light. To address the issue, we have recently developed X-ray induced photodynamic therapy (X-PDT) which utilizes X-ray as an energy source to activate a PDT process. In addition to breaking the shallow tissue penetration dogma, our studies found more efficient tumor cell killing with X-PDT than with radiotherapy (RT) alone. The mechanisms behind the cytotoxicity, however, have not been elucidated. In the present study, we investigate the mechanisms of action of X-PDT on cancer cells. Our results demonstrate that X-PDT is more than just a PDT derivative but is essentially a PDT and RT combination. The two modalities target different cellular components (cell membrane and DNA, respectively), leading to enhanced therapy effects. As a result, X-PDT not only reduces short-term viability of cancer cells but also their clonogenecity in the long-run. From this perspective, X-PDT can also be viewed as a unique radiosensitizing method, and as such it affords clear advantages over RT in tumor therapy, especially for radioresistant cells. This is demonstrated not only in vitro but also in vivo with H1299 tumors that were either subcutaneously inoculated or implanted into the lung of mice. These findings and advances are of great importance to the developments of X-PDT as a novel treatment modality against cancer. PMID:27877235

  16. Feasibility of chemiluminescence as photodynamic therapy dosimetor

    NASA Astrophysics Data System (ADS)

    Qin, Yanfang; Xing, Da; Zhong, Xueyun; Zhou, Jin; Luo, Shiming; Chen, Qun

    2006-09-01

    Photodynamic therapy (PDT) utilizes light energy of a proper wavelength to activate a pre-administered photosensitizer in a target tissue to achieve a localized treatment effect. Current treatment protocol of photodynamic therapy (PDT) is defined by empirical values such as irradiation light fluence, fluence rate and the amount of administered photosensitizer. It is well known that Singlet oxygen is the most important cytotoxic agent responsible for PDT biological effects. An in situ monitoring of singlet oxygen production during PDT would provide a more accurate dosimeter for PDT. The presented study has investigated the feasibility of using Fhioresceinyl Cypridina Luciferin Analog (FCLA), a singlet oxygen specific chemiluminescence (CL) probe, as a dosimetric tool for PDT. Raji lymphoma cell suspensions were sensitized with Photofrin (R) of various concentrations and irradiated with 635 nm laser light at different fluence rates. FCLA-CL from singlet oxygen produced by the treatment was measured, in real time, with a photon multiplier tube (PMT) system, and linked to the cytotoxicity resulting from the treatment. We have observed that the CL intensity of FCLA is dependent on the PDT treatment parameters. After each PDT treatment and CL measurement, the irradiated cells were evaluated by MIT assay for their Viability. The results show that the cell viability is highly related to the accumulated CL. With 10 II quencher, we confirmed that the CL was mainly related to PDT produced 10 II The results suggest that the FCLA-CL system can be an effective means in measuring PDT 1O II production and may provide an alternative dosimetry technique for PDT.

  17. Photophysical and redox properties of a series of phthalocyanines: relation with their photodynamic activities on TF-1 and Daudi leukemic cells.

    PubMed

    Daziano, J P; Steenken, S; Chabannon, C; Mannoni, P; Chanon, M; Julliard, M

    1996-10-01

    The photodynamic therapy (PDT) efficiency of five phthalocyanines, chloroaluminum phthalocyanine (AlPc), dichlorosilicon phthalocyanine (SiPc), bis(tri-n-hexylsiloxy)silicon phthalocyanine (PcHEX), bis(triphenylsiloxy)silicon phthalocyanine (PcPHE) and nickel phthalocyanine (NiPc), was assessed on two leukemic cell lines TF-1 and erythroleukemic and B lymphoblastic cell lines, Daudi, respectively. AlPc showed the best photocytotoxicity leading to 0.008 surviving fraction at 2 x 10(-9) M for TF-1 and 4 x 10(-9) M for Daudi. A1 5 x 10(-7) M, SiPc and PcHEX induced a significant photokilling, whereas NiPc and PcPHE were inactive. Laser flash photolysis and photoredox properties of the phthalocyanines were investigated to try to relate these parameters with the biological effects. AlPc showed the longest triplet life-time: 484 microseconds in dimethyl sulfoxide/H2O. This value was increased up to 820 microseconds when AlPc was complexed with human serum albumin used as a membrane model. Such an enhancement was not observed with the silicon phthalocyanines. Upon irradiation, all the phthalocyanines generated singlet oxygen with 0.29-0.37 quantum yield values. The reduction potentials of the excited states obtained from measurement in the ground state and energy of the excited triplets show that AlPc is the best electron acceptor. The in vitro photocytotoxicity observed and the measured parameters are in agreement with a key role of electron transfer in PDT assays involving these phthalocyanines.

  18. Superoxide dismutase is upregulated in Staphylococcus aureus following protoporphyrin-mediated photodynamic inactivation and does not directly influence the response to photodynamic treatment

    PubMed Central

    2010-01-01

    Background Staphylococcus aureus, a major human pathogen causes a wide range of disease syndromes. The most dangerous are methicillin-resistant S. aureus (MRSA) strains, resistant not only to all β-lactam antibiotics but also to other antimicrobials. An alarming increase in antibiotic resistance spreading among pathogenic bacteria inclines to search for alternative therapeutic options, for which resistance can not be developed easily. Among others, photodynamic inactivation (PDI) of S. aureus is a promising option. Photodynamic inactivation is based on a concept that a non toxic chemical, called a photosensitizer upon excitation with light of an appropriate wavelength is activated. As a consequence singlet oxygen and other reactive oxygen species (e.g. superoxide anion) are produced, which are responsible for the cytotoxic effect towards bacterial cells. As strain-dependence in photodynamic inactivation of S. aureus was observed, determination of the molecular marker(s) underlying the mechanism of the bacterial response to PDI treatment would be of great clinical importance. We examined the role of superoxide dismutases (Sod) in photodynamic inactivation of S. aureus as enzymes responsible for oxidative stress resistance. Results The effectiveness of photodynamic inactivation towards S. aureus and its Sod isogenic mutants deprived of either of the two superoxide dismutase activities, namely SodA or SodM or both of them showed similar results, regardless of the Sod status in TSB medium. On the contrary, in the CL medium (without Mn++ ions) the double SodAM mutant was highly susceptible to photodynamic inactivation. Among 8 clinical isolates of S. aureus analyzed (4 MRSA and 4 MSSA), strains highly resistant and strains highly vulnerable to photodynamic inactivation were noticed. We observed that Sod activity as well as sodA and sodM transcript level increases after protoporphyrin IX-based photodynamic treatment but only in PDI-sensitive strains. Conclusions We

  19. Changes in ischemic stroke occurrence following daylight saving time transitions.

    PubMed

    Sipilä, Jussi O T; Ruuskanen, Jori O; Rautava, Päivi; Kytö, Ville

    Circadian rhythm disruption has been associated with increased risk of ischemic stroke (IS). Daylight saving time (DST) transitions disrupt circadian rhythms and shifts the pattern of diurnal variation in stroke onset, but effects on the incidence of IS are unknown. Effects of 2004-2013 DST transitions on IS hospitalizations and in-hospital mortality were studied nationwide in Finland. Hospitalizations during the week following DST transition (study group, n = 3033) were compared to expected hospitalizations (control group, n = 11,801), calculated as the mean occurrence during two weeks prior to and two weeks after the index week. Hospitalizations for IS increased during the first two days (Relative Risk 1.08; CI 1.01-1.15, P = 0.020) after transition, but difference was diluted when observing the whole week (RR 1.03; 0.99-1.06; P = 0.069). Weekday-specific increase was observed on the second day (Monday; RR 1.09; CI 1.00-1.90; P = 0.023) and fifth day (Thursday; RR 1.11; CI 1.01-1.21; P = 0.016) after transition. Women were more susceptible than men to temporal changes during the week after DST transitions. Advanced age (>65 years) (RR 1.20; CI 1.04-1.38; P = 0.020) was associated with increased risk during the first two days, and malignancy (RR 1.25; CI 1.00-1.56; P = 0.047) during the week after DST transition. DST transitions appear to be associated with an increase in IS hospitalizations during the first two days after transitions but not during the entire following week. Susceptibility to effects of DST transitions on occurrence of ischemic stroke may be modulated by gender, age and malignant comorbidities. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Clinical efficacy of photodynamic therapy

    PubMed Central

    Park, Ye-Kyu

    2016-01-01

    Objective The management of cervical intraepithelial neoplasia (CIN) and early invasive cancer of the uterine cervix is very difficult to approach, especially in case of young woman who wants to preserve her fertility. Conization of the cervix may have various kinds of disadvantage. The objective of this clinical retrospective study is to investigate the therapeutic effects and clinical efficacy of photodynamic therapy (PDT) including combined chemo-photodynamic therapy in patients with pre-malignant CIN and malignant invasive cervical cancer. Methods Total number of PDT trial case was 50 cases and total number of patient was 22 patients who registered to PDT clinic. We used photogem sensitizer and 632 nm diode laser in early two cases. After then we performed PDT using photofrin sensitizer and 630 nm diode laser in other cases. We used flat-cut, microlens, cylindrical diffuser, and interstitial type optic fibers in order to irradiate the lesions. 240 J/cm2 energy was irradiated to the lesions. Results CIN 2 were 4 cases (18.2%) and CIN 3 were 15 (68.2%) and invasive cervical cancer were 3 (13.6%). Complete remission (CR) was found in 20 patients (91%). One case of 19 patients with CIN lesion recurred at 18 months after PDT treatment. CR was found in 18 cases in the patients with CIN lesions (95%). CR was found in 2 cases in the patients with invasive cervical cancer (67%). Conclusion Our data showed that CR rate was fantastic in CIN group (95%). This study suggests that PDT can be recommended as new optimistic management modality on the patients with pre-malignant CIN lesions including carcinoma in situ and relatively early invasive cancer of the uterine cervix. Combined chemo-photodynamic therapy is essential in case of invasive cervical cancer. For the young age group who desperately want to preserve their fertility and have a healthy baby, PDT can be a beacon of hope. PMID:27896250

  1. Clinical efficacy of photodynamic therapy.

    PubMed

    Park, Ye-Kyu; Park, Choong-Hak

    2016-11-01

    The management of cervical intraepithelial neoplasia (CIN) and early invasive cancer of the uterine cervix is very difficult to approach, especially in case of young woman who wants to preserve her fertility. Conization of the cervix may have various kinds of disadvantage. The objective of this clinical retrospective study is to investigate the therapeutic effects and clinical efficacy of photodynamic therapy (PDT) including combined chemo-photodynamic therapy in patients with pre-malignant CIN and malignant invasive cervical cancer. Total number of PDT trial case was 50 cases and total number of patient was 22 patients who registered to PDT clinic. We used photogem sensitizer and 632 nm diode laser in early two cases. After then we performed PDT using photofrin sensitizer and 630 nm diode laser in other cases. We used flat-cut, microlens, cylindrical diffuser, and interstitial type optic fibers in order to irradiate the lesions. 240 J/cm(2) energy was irradiated to the lesions. CIN 2 were 4 cases (18.2%) and CIN 3 were 15 (68.2%) and invasive cervical cancer were 3 (13.6%). Complete remission (CR) was found in 20 patients (91%). One case of 19 patients with CIN lesion recurred at 18 months after PDT treatment. CR was found in 18 cases in the patients with CIN lesions (95%). CR was found in 2 cases in the patients with invasive cervical cancer (67%). Our data showed that CR rate was fantastic in CIN group (95%). This study suggests that PDT can be recommended as new optimistic management modality on the patients with pre-malignant CIN lesions including carcinoma in situ and relatively early invasive cancer of the uterine cervix. Combined chemo-photodynamic therapy is essential in case of invasive cervical cancer. For the young age group who desperately want to preserve their fertility and have a healthy baby, PDT can be a beacon of hope.

  2. Nuclear targets of photodynamic tridentate ruthenium complexes.

    PubMed

    Zhao, Ran; Hammitt, Richard; Thummel, Randolph P; Liu, Yao; Turro, Claudia; Snapka, Robert M

    2009-12-28

    Octahedral ruthenium complexes, capable of photodynamic singlet oxygen production at near 100% efficiency, were shown to cause light-dependent covalent crosslinking of p53 and PCNA subunits in mammalian cells and cell lysates. Azide, a singlet oxygen quencher, greatly reduced the p53 photocrosslinking, consistent with the idea that singlet oxygen is the reactive oxygen species involved in p53 photocrosslinking. A photodynamically inactive ruthenium complex, [Ru(tpy)(2)](2+) (tpy = [2,2';6',2'']-terpyridine), had no effect on p53 or PCNA photocrosslinking. Photodynamic damage to p53 has particular relevance since p53 status is an important determinant of phototoxicity and the effectiveness of photodynamic cancer therapy. The two photodynamic complexes studied, [Ru(tpy)(pydppn)](2+), where pydppn = (3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene, and [Ru(pydppn)(2)](2+), differed in their efficiency of p53 and PCNA photocrosslinking in cells, but showed similar efficiency of photocrosslinking in cell lysates, suggesting that they differ in their ability to enter cells. Photocrosslinking of PCNA by [Ru(tpy)(pydppn)](2+) increased linearly with concentration, time of uptake, or light exposure. Both [Ru(tpy)(pydppn)](2+) and [Ru(pydppn)(2)](2+) caused photodynamic protein-DNA crosslinking in cells, but [Ru(tpy)(pydppn)](2+) was more efficient. The efficiency of photodynamic protein-DNA crosslinking by [Ru(tpy)(pydppn)](2+) in cells increased with increasing levels of photodynamic damage. Photodynamic damage by [Ru(tpy)(pydppn)](2+) caused inhibition of DNA replication in a classical biphasic response, suggesting that DNA damage signaling and cell cycle checkpoint pathways were still operative after significant damage to nuclear proteins.

  3. Photodynamic therapy for actinic keratoses.

    PubMed

    Kalisiak, Michal S; Rao, Jaggi

    2007-01-01

    Actinic keratoses (AKs) are one of the most common conditions that are treated by dermatologists and they have the potential to progress to squamous cell carcinoma if left untreated. Photodynamic therapy (PDT) has emerged as a novel and versatile method of treating those lesions. Topical preparations of aminolevulinic acid and methyl aminolevulinate are commercially available photosensitizers, and numerous light sources may be used for photoactivation. This article focuses on practical aspects of PDT in the treatment of AKs, outcomes of relevant clinical trials, and special applications of PDT in transplant recipients and other who are predisposed to AK formation. Step-by-step descriptions of PDT sessions are presented.

  4. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods.

    PubMed

    Rajendran, M

    2016-03-01

    Photodynamic therapy (PDT) is based on the dye-sensitized photooxidation of biological matter in the target tissue, and utilizes light activated drugs for the treatment of a wide variety of malignancies. Quinones and porphyrins moiety are available naturally and involved in the biological process. Quinone metabolites perform a variety of key functions in plants which includes pathogen protection, oxidative phosphorylation, and redox signaling. Quinones and porphyrin are biologically accessible and will not create any allergic effects. In the field of photodynamic therapy, porphyrin derivatives are widely used, because it absorb in the photodynamic therapy window region (600-900 nm). Hence, researchers synthesize drugs based on porphyrin structure. Benzoquinone and its simple polycyclic derivatives such as naphthaquinone and anthraquinones absorb at lower wavelength region (300-400 nm), which is lower than porphyrin. Hence they are not involved in PDT studies. However, higher polycyclic quinones absorb in the photodynamic therapy window region (600-900 nm), because of its conjugation and can be used as PDT agents. Redox cycling has been proposed as a possible mechanism of action for many quinone species. Quinones are involved in the photodynamic as well as enzymatic generation of reactive oxygen species (ROS). Generations of ROS may be measured by optical, phosphorescence and EPR methods. The photodynamically generated ROS are also involved in many biological events. The photo-induced DNA cleavage by quinones correlates with the ROS generating efficiencies of the quinones. In this review basic reactions involving photodynamic generation of ROS by quinones and their biological applications were discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Susceptibility of Candida Species to Photodynamic Effects of Photofrin

    PubMed Central

    Bliss, Joseph M.; Bigelow, Chad E.; Foster, Thomas H.; Haidaris, Constantine G.

    2004-01-01

    The in vitro susceptibility of pathogenic Candida species to the photodynamic effects of the clinically approved photosensitizing agent Photofrin was examined. Internalization of Photofrin by Candida was confirmed by confocal fluorescence microscopy, and the degree of uptake was dependent on incubation concentration. Uptake of Photofrin by Candida and subsequent sensitivity to irradiation was influenced by culture conditions. Photofrin uptake was poor in C. albicans blastoconidia grown in nutrient broth. However, conversion of blastoconidia to filamentous forms by incubation in defined tissue culture medium resulted in substantial Photofrin uptake. Under conditions where Photofrin was effectively taken up by Candida, irradiated organisms were damaged in a drug dose- and light-dependent manner. Uptake of Photofrin was not inhibited by azide, indicating that the mechanism of uptake was not dependent on energy provided via electron transport. Fungal damage induced by Photofrin-mediated photodynamic therapy (PDT) was determined by evaluation of metabolic activity after irradiation. A strain of C. glabrata took up Photofrin poorly and was resistant to killing after irradiation. In contrast, two different strains of C. albicans displayed comparable levels of sensitivity to PDT. Furthermore, a reference strain of C. krusei that is relatively resistant to fluconazole compared to C. albicans was equally sensitive to C. albicans at Photofrin concentrations of ≥3 μg/ml. The results indicate that photodynamic therapy may be a useful adjunct or alternative to current anti-Candida therapeutic modalities, particularly for superficial infections on surfaces amenable to illumination. PMID:15155191

  6. Photodynamic therapy in the treatment of basal cell carcinoma.

    PubMed

    Matei, C; Tampa, M; Poteca, T; Panea-Paunica, G; Georgescu, S R; Ion, R M; Popescu, S M; Giurcaneanu, C

    2013-03-15

    Photodynamic therapy (PDT) is a medical procedure based on the activation of the molecules of various exogenous or endogenous chemical substances called photosensitizers by a light source emitting radiation of an adequate wavelength, usually situated in the visible spectrum; photosensitizers are chemical compounds bearing the capacity to selectively concentrate in the neoplastic cells. The energy captured by the molecules of these substances pervaded in the tumor cells is subsequently discharged in the surrounding tissue, triggering certain photodynamic reactions that result in the destruction of the tumor. The procedure is applicable in numerous medical fields. Skin basal cell carcinoma (BCC), the most frequent type of cancer of the human species, is a cutaneous tumor that responds very well to this innovative treatment method. By reviewing numerous recent studies in the field, this article aims to present the role and the indications of photodynamic therapy in the management of basal cell carcinoma, as well as the most important results achieved so far by this therapy in the field of dermato-oncology.

  7. Enhanced Photocatalytic Degradation of Methyl Orange Dye under the Daylight Irradiation over CN-TiO2 Modified with OMS-2

    PubMed Central

    Hassan, Mohamed Elfatih; Chen, Jing; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo

    2014-01-01

    In this study, CN-TiO2 was modified with cryptomelane octahedral molecular sieves (OMS-2) by the sol-gel method based on the self-assembly technique to enhance its photocatalytic activity under the daylight irradiation. The synthesized samples were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and porosimeter analysis. The results showed that the addition of OMS-2 in the sol lead to higher Brunauer-Emmett-Teller (BET) surface area, pore volume, porosity of particle after heat treatment and the specific surface area, porosity, crystallite size and pore size distribution could be controlled by adjusting the calcination temperature. Compared to the CN-TiO2-400 sample, CN-TiO2/OMS-2-400 exhibited greater red shift in absorption edge of samples in visible region due to the OMS-2 coated. The enhancement of photocatalytic activity of CN-TiO2/OMS-2 composite photocatalyst was subsequently evaluated for the degradation of the methyl orange dye under the daylight irradiation in water. The results showed that the methyl orange dye degradation rate reach to 37.8% for the CN-TiO2/OMS-2-400 sample under the daylight irradiation for 5 h, which was higher than that of reference sample. The enhancement in daylight photocatalytic activities of the CN-TiO2/OMS samples could be attributed to the synergistic effects of OMS-2 coated, larger surface area and red shift in adsorption edge of the prepared sample. PMID:28788288

  8. Polymeric photosensitizer-embedded self-expanding metal stent for repeatable endoscopic photodynamic therapy of cholangiocarcinoma.

    PubMed

    Bae, Byoung-chan; Yang, Su-Geun; Jeong, Seok; Lee, Don Haeng; Na, Kun; Kim, Joon Mee; Costamagna, Guido; Kozarek, Richard A; Isayama, Hiroyuki; Deviere, Jacques; Seo, Dong Wan; Nageshwar Reddy, D

    2014-10-01

    Photodynamic therapy (PDT) is a new therapeutic approach for the palliative treatment of malignant bile duct obstruction. In this study, we designed photosensitizer-embedded self-expanding nonvascular metal stent (PDT-stent) which allows repeatable photodynamic treatment of cholangiocarcinoma without systemic injection of photosensitizer. Polymeric photosensitizer (pullulan acetate-conjugated pheophorbide A; PPA) was incorporated in self-expanding nonvascular metal stent. Residence of PPA in the stent was estimated in buffer solution and subcutaneous implantation on mouse. Photodynamic activity of PDT-stent was evaluated through laserexposure on stent-layered tumor cell lines, HCT-116 tumor-xenograft mouse models and endoscopic intervention of PDT-stent on bile duct of mini pigs. Photo-fluorescence imaging of the PDT-stent demonstrated homogeneous embedding of polymeric Pheo-A (PPA) on stent membrane. PDT-stent sustained its photodynamic activities at least for 2 month. And which implies repeatable endoscopic PDT is possible after stent emplacement. The PDT-stent after light exposure successfully generated cytotoxic singlet oxygen in the surrounding tissues, inducing apoptotic degradation of tumor cells and regression of xenograft tumors on mouse models. Endoscopic biliary in-stent photodynamic treatments on minipigs also suggested the potential efficacy of PDT-stent on cholangiocarcinoma. In vivo and in vitro studies revealed our PDT-stent, allows repeatable endoscopic biliary PDT, has the potential for the combination therapy (stent plus PDT) of cholangiocarcinoma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Prevention of Distant Lung Metastasis After Photodynamic Therapy Application in a Breast Cancer Tumor Model.

    PubMed

    Longo, João Paulo Figueiró; Muehlmann, Luis Alexandre; Miranda-Vilela, Ana Luisa; Portilho, Flávia Arruda; de Souza, Ludmilla Regina; Silva, Jaqueline Rodrigues; Lacava, Zulmira Guerrero Marques; Bocca, Anamelia Lorenzetti; Chaves, Sacha Braun; Azevedo, Ricardo Bentes

    2016-04-01

    The objective of this study was to investigate the activity of photodynamic therapy mediated by aluminum-chlorophthalocyanine contained in a polymeric nanostructured carrier composed by methyl vinyl ether-co-maleic anhydride (PVM/MA) against local subcutaneous breast cancer tumors and its effects against distant metastasis in a mouse tumor model. In our results, we observed a decrease in breast cancer tumor growth, prevention of distant lung metastases, and a significant increased survival in mice treated with photodynamic therapy. In addition to these results, we observed that tumor-bearing mice without treatment developed a significant extension of liver hematopoiesis that was significantly reduced in mice treated with photodynamic therapy. We hypothesized and showed that this reduction in (1) metastasis and (2) liver hematopoiesis may be related to the systemic activity of immature hematopoietic cells, specifically the myeloid-derived suppressor cells, which were suppressed in mice treated with photodynamic therapy. These cells produce a tolerogenic tumor environment that protects tumor tissues from immunological surveillance. Therefore, we suggest that photodynamic therapy could be employed in combination with other conventional therapies; such as surgery and radiotherapy, to improve the overall survival of patients diagnosed with breast cancer, as observed in our experimental resuIts.

  10. Oxidative photodamage induced by photodynamic therapy with methoxyphenyl porphyrin derivatives in tumour-bearing rats.

    PubMed

    Daicoviciu, D; Filip, A; Ion, R M; Clichici, S; Decea, N; Muresan, A

    2011-01-01

    The oxidative effects of photodynamic therapy with 5,10,15,20-tetrakis(4-methoxyphenyl) porphyrin (TMP) and Zn-5,10,15,20-tetrakis(4-methoxyphenyl) porphyrin (ZnTMP) were evaluated in Wistar rats subcutaneously inoculated with Walker 256 carcinoma. The animals were irradiated with red light (λ = 685 nm; D = 50 J/cm2; 15 min) 3 h after intra-peritoneal administration of 10 mg/kg body weight of porphyrins. The presence of free radicals in tumours after photodynamic therapy with TMP and ZnTMP revealed by chemiluminescence of luminol attained the highest level at 18 h after irradiation. Lipid peroxides measured as thiobarbituric-reactive substances and protein carbonyls, which are indices of oxidative effects produced on susceptible biomolecules, were significantly increased in tumour tissues of animals 24 h after photodynamic therapy. The levels of thiol groups and total antioxidant capacity in the tumours were decreased. The activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were also increased in tumour tissues after photodynamic therapy. Increased levels of plasma lipid peroxides as well as changes in the levels of erythrocyte antioxidant enzyme activities suggest possible systemic effects of photodynamic therapy with TMP and ZnTMP.

  11. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In2S3 nanoflowers: dye charge-dependent roles of reactive species

    NASA Astrophysics Data System (ADS)

    Ge, Suxiang; Cai, Lejuan; Li, Dapeng; Fa, Wenjun; Zhang, Yange; Zheng, Zhi

    2015-12-01

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In2S3 nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In2S3 nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  12. Photodynamic action of bonellin, an integumentary chlorin of Bonellia viridis, Rolando (Echiura, Bonelliidae).

    PubMed

    Agius, L; Jaccarini, V; Ballantine, J A; Ferrito, V; Pelter, A; Psaila, A F; Zammit, V A

    1979-01-01

    1. The photodynamic activity of bonellin, an integumentary chlorin of Bonellia viridis, is investigated. 2. 10(-6) M bonellin solutions haemolyze erythrocytes only in the presence of light. Previous illumination (tungsten lamp 2000-4000 lux for 1 hr) of the bonellin solutions does not affect the results. Under lowered oxygen tensions the bioactivity is depressed. Benzoquinone and singlet oxygen quenchers delay the photodynamic effect. 3. Bonellin (2 x 10(-6) M) destroys echinoid gamete function, depresses oxygen uptake of spermatozoa, and arrests development of echinoid and Bonellia eggs. These effects are produced only in the presence of light. 4. Copper bonellin is not photodynamically active. The role of copper may be to protect against photosensitization.

  13. Vascular effect of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fyodorov, Svyatoslav N.; Kopayeva, V. G.; Andreev, J. B.; Ponomarev, Gelii V.; Stranadko, Eugeny P.; Suchin, H. M.

    1996-01-01

    Vascular effect of PDT has been studied in patients with corneal vascularized leucomas (10 patients) and in patients with corneal neovascularized transplant (3 patients). For vascularized leucomas the method of photodynamic therapy consisted of the local injection of dimegin (deiteroporphyrin derivative) into the space of the newly-formed vessels under operating microscope (opton) with the microneedle (diameter 200 microns) and corneal irradiation by the operating microscope light. For corneal neovascularized transplant the injection of photogem (hematoporphyrin derivative) intravenously were made with subsequent irradiation by light of dye laser (5 hours after the injection) with light density of 150 mW/cm2 for 15 minutes. In all the cases at the time of irradiation the aggregated blood flow was appeared, followed by blood flow stasis. In postoperative period the vessels disintegrated into separate fragments which disappeared completely after 10 - 15 days. Taking into account the data of light microscopy, the disappearance of the vessels took place as a result of the vascular endothelium lisis along the vascular walls. Neovascularized cornea and newly-formed vessels in tumor stroms have much in common. The vessel alterations study presented in this paper, may serve to specify the mechanism of photodynamic destruction of neovascularized stroma of tumor.

  14. Rapid microwave-assisted nonaqueous synthesis and growth mechanism of AgCl/Ag, and its daylight-driven plasmonic photocatalysis.

    PubMed

    Jiang, Jing; Zhang, Lizhi

    2011-03-21

    We report on a rapid microwave-assisted nonaqueous synthesis and the growth mechanism of AgCl/Ag with controlled size and shape. By rationally varying the reaction temperature and the microwave irradiation time, we achieved the transformation of nanocubes to rounded triangular pyramids by a combined process of "oriented attachment" and Ostwald ripening. The surface plasmon resonance (SPR) properties of the as-prepared AgCl/Ag have been found to be somewhat dependent on the size, morphology, and composition. The as-prepared AgCl/Ag exhibits high photocatalytic activity and good reusability for decomposing organic pollutants (such as methyl orange (MO), rhodamine B (RhB), and pentachlorophenol (PCP)) under indoor artificial daylight illumination (ca. 1 mW cm(-2)). The AgCl/Ag has also been found to display a superior ability to harvest diffuse indoor daylight (ca. 5 mW cm(-2)), and could complete the degradation of 10 mg  L(-1) MO within 15 min. Experiments involving the trapping of active species have shown that the photocatalytic degradation of organic pollutants in the AgCl/Ag system may proceed through direct hole transfer. This study has revealed that plasmonic daylight photocatalysis may open a new frontier for indoor pollutant control around the clock under fluorescent lamp illumination. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Photodynamic therapy toward selective endometrial ablation

    NASA Astrophysics Data System (ADS)

    Tadir, Yona; Tromberg, Bruce J.; Krasieva, Tatiana B.; Berns, Michael W.

    1993-05-01

    Potential applications of photodynamic therapy for endometrial disease are discussed. Experimental models that may lead to diagnosis and treatment of endometriosis as well as selective endometrial ablation are summarized.

  16. A new method for photodynamic disinfection of prosthetic constructions and impressions in prosthetic dentistry.

    PubMed

    Vlahova, Angelina P; Kisov, Christo K; Popova, Elka V; Haydushka, Irina A; Mantareva, Vanya N

    2012-01-01

    Photodynamic therapy is a topical treatment of pathogens that involves the use of a photoactive dye (photosensitizer), which is non-toxic when not exposed to light and activated by light of a specific wavelength in the presence of oxygen. The highly cytotoxic oxygen species generated by the induced photophysical processes inactivate the pathogenic cells. The PURPOSE of this study was to present a new method we developed for photodynamic disinfection of prostheses and impressions in prosthetic dentistry and to assess its effectiveness in comparison with some conventional methods of disinfection. The method was developed on the basis of series of experimental studies (30 experiments for each type of disinfectant, 30 controls with no disinfection for each material, and 30 direct cultures of each test microorganism--MRSA, P. aeruginosa and C. albicans) using standard test specimens made of prosthesis plastic and impression materials. The new method of photodynamic disinfection with GaPc1 as photosensitizer was 100% efficient in C-silicones, A-silicones and polyethers, but not in alginates (40%). To plastics the photodynamic method shows the same efficiency as the conventional disinfectants of hypochlorite solutions and denture cleansing tablets (100% effect). The method of photodynamic disinfection we developed is a good therapeutic choice against orally transmitted diseases in prosthetic dentistry.

  17. Photodynamic Therapy with Hypericin Improved by Targeting HSP90 Associated Proteins

    PubMed Central

    Solár, Peter; Chytilová, Mária; Solárová, Zuzana; Mojžiš, Ján; Ferenc, Peter; Fedoročko, Peter

    2011-01-01

    In this study we have focused on the response of SKBR-3 cells to both single 17-DMAG treatment as well as its combination with photodynamic therapy with hypericin. Low concentrations of 17-DMAG without any effect on survival of SKBR-3 cells significantly reduced metabolic activity, viability and cell number when combined with photodynamic therapy with hypericin. Moreover, IC10 concentation of 17-DMAG resulted in significant increase of SKBR-3 cells in G1 phase of the cell cycle, followed by an increase of cells in G2 phase when combined with photodynamic therapy. Furthermore, 17-DMAG already decreased HER2, Akt, P-Erk1/2 and survivin protein levels in SKBR-3 cells a short time after its application. In this regard, 17-DMAG protected also SKBR-3 cells against both P-Erk1/2 as well as survivin upregulations induced by photodynamic therapy with hypericin. Interestingly, IC10 concentration of 17-DMAG led to total depletion of Akt, P-Erk1/2 proteins and to decrease of survivin level at 48 h. On the other hand, 17-DMAG did not change HER2 relative expression in SKBR-3 cells, but caused a significant decrease of HER2 mRNA in MCF-7 cells characterized by low HER2 expression. These results show that targeting HSP90 client proteins increases the efficiency of antineoplastic effect of photodynamic therapy in vitro. PMID:27721334

  18. Photosensitizers and light sources for photodynamic therapy of the Bowen's disease.

    PubMed

    Calin, M A; Diaconeasa, A; Savastru, D; Tautan, M

    2011-04-01

    Bowen's disease is a neoplastic skin disease, known as squamous cell carcinoma in situ. The treatment options for Bowen's disease are: cryotherapy, curettage, surgery, topical therapy and radiotherapy. In the past recent years, photodynamic therapy was used as a new treatment method. The purpose of this paper is to summarize the results of clinical and research studies with respect to the photodynamic therapy of Bowen's disease. A search of three databases was conducted using specific keywords and explicit inclusion and exclusion criteria for the study of photosensitizers, light sources and their efficacy in photodynamic therapy of Bowen's disease. Two photosensitizers have been used mainly for photodynamic therapy of Bowen's disease therapy: δ-aminolevulinic acid and methyl aminolevulinate. These photosensitizers have been activated with both coherent (lasers) and non-coherent (lamps and LEDs) light sources. Fluence has been set in a large domain (10-240 J/cm(2)) and irradiance was 0.23-100 mW/cm(2). All these light sources have the same efficacy. The high response rates were obtained using methyl aminolevulinate and light emitting diode as light source. These results have demonstrated that photodynamic therapy using methyl aminolevulinate as photosensitizer could be considered as one of the first therapeutic options for Bowen' disease.

  19. Performance of Integrated Systems of Automated Roller Shade Systems and Daylight Responsive Dimming Systems

    SciTech Connect

    Park, Byoung-Chul; Choi, An-Seop; Jeong, Jae-Weon; Lee, Eleanor S.

    2010-07-08

    Daylight responsive dimming systems have been used in few buildings to date because they require improvements to improve reliability. The key underlying factor contributing to poor performance is the variability of the ratio of the photosensor signal to daylight workplane illuminance in accordance with sun position, sky condition, and fenestration condition. Therefore, this paper describes the integrated systems between automated roller shade systems and daylight responsive dimming systems with an improved closed-loop proportional control algorithm, and the relative performance of the integrated systems and single systems. The concept of the improved closed-loop proportional control algorithm for the integrated systems is to predict the varying correlation of photosensor signal to daylight workplane illuminance according to roller shade height and sky conditions for improvement of the system accuracy. In this study, the performance of the integrated systems with two improved closed-loop proportional control algorithms was compared with that of the current (modified) closed-loop proportional control algorithm. In the results, the average maintenance percentage and the average discrepancies of the target illuminance, as well as the average time under 90percent of target illuminance for the integrated systems significantly improved in comparison with the current closed-loop proportional control algorithm for daylight responsive dimming systems as a single system.

  20. Daylight saving time transitions and hospital treatments due to accidents or manic episodes

    PubMed Central

    Lahti, Tuuli A; Haukka, Jari; Lönnqvist, Jouko; Partonen, Timo

    2008-01-01

    Background Daylight saving time affects millions of people annually but its impacts are still widely unknown. Sleep deprivation and the change of circadian rhythm can trigger mental illness and cause higher accident rates. Transitions into and out of daylight saving time changes the circadian rhythm and may cause sleep deprivation. Thus it seems plausible that the prevalence of accidents and/or manic episodes may be higher after transition into and out of daylight saving time. The aim of this study was to explore the effects of transitions into and out of daylight saving time on the incidence of accidents and manic episodes in the Finnish population during the years of 1987 to 2003. Methods The nationwide data were derived from the Finnish Hospital Discharge Register. From the register we obtained the information about the hospital-treated accidents and manic episodes during two weeks before and two weeks after the transitions in 1987–2003. Results The results were negative, as the transitions into or out of daylight saving time had no significant effect on the incidence of accidents or manic episodes. Conclusion One-hour transitions do not increase the incidence of manic episodes or accidents which require hospital treatment. PMID:18302734

  1. Daylight saving time transitions and hospital treatments due to accidents or manic episodes.

    PubMed

    Lahti, Tuuli A; Haukka, Jari; Lönnqvist, Jouko; Partonen, Timo

    2008-02-26

    Daylight saving time affects millions of people annually but its impacts are still widely unknown. Sleep deprivation and the change of circadian rhythm can trigger mental illness and cause higher accident rates. Transitions into and out of daylight saving time changes the circadian rhythm and may cause sleep deprivation. Thus it seems plausible that the prevalence of accidents and/or manic episodes may be higher after transition into and out of daylight saving time. The aim of this study was to explore the effects of transitions into and out of daylight saving time on the incidence of accidents and manic episodes in the Finnish population during the years of 1987 to 2003. The nationwide data were derived from the Finnish Hospital Discharge Register. From the register we obtained the information about the hospital-treated accidents and manic episodes during two weeks before and two weeks after the transitions in 1987-2003. The results were negative, as the transitions into or out of daylight saving time had no significant effect on the incidence of accidents or manic episodes. One-hour transitions do not increase the incidence of manic episodes or accidents which require hospital treatment.

  2. Seasonal blood pressure changes: an independent relationship with temperature and daylight hours.

    PubMed

    Modesti, Pietro Amedeo; Morabito, Marco; Massetti, Luciano; Rapi, Stefano; Orlandini, Simone; Mancia, Giuseppe; Gensini, Gian Franco; Parati, Gianfranco

    2013-04-01

    Seasonal blood pressure (BP) changes have been found to be related to either outdoor or indoor temperature. No information regarding the independent effects of temperature measured proximally to the patient, the personal-level environmental temperature (PET), is available. Inclusion of daylight hours in multivariate analysis might allow exploring the independent interaction of BP with seasonality. To investigate whether ambulatory BP monitoring is affected by PET or by seasonality, 1897 patients referred to our hypertension units underwent ambulatory BP monitoring with a battery-powered temperature data logger fitted to the carrying pouch of the monitor. Predictors of 24-hour daytime and nighttime BP and of morning BP surge were investigated with a multivariate stepwise regression model, including age, sex, body mass index, antihypertensive treatment, office BP, ambulatory heart rate, PET, relative humidity, atmospheric pressure, and daylight hours as independent variables. At adjusted regression analysis, daytime systolic BP was negatively related to PET (-0.14; 95% confidence interval, -0.25 to -0.02); nighttime BP was positively related to daylight hours (0.63; 0.37-0.90); and morning BP surge was negatively related to daylight hours (-0.54; -0.87 to -0.21). These results provide new evidence that PET and seasonality (daylight hours) are 2 independent predictors of ambulatory BP monitoring.

  3. Daylighting performance evaluation of a bottom-up motorized roller shade

    SciTech Connect

    Kapsis, K.; Athienitis, A.K.; Zmeureanu, R.G.; Tzempelikos, A.

    2010-12-15

    This paper presents an experimental and simulation study for quantifying the daylighting performance of bottom-up roller shades installed in office spaces. The bottom-up shade is a motorized roller shade that opens from top to bottom operating in the opposite direction of a conventional roller shade, so as to cover the bottom part of the window, while allowing daylight to enter from the top part of the window, reaching deeper into the room. A daylighting simulation model, validated with full-scale experiments, was developed in order to establish correlations between the shade position, outdoor illuminance and work plane illuminance for different outdoor conditions. Then, a shading control algorithm was developed for application in any location and orientation. The validated model was employed for a sensitivity analysis of the impact of shade optical properties and control on the potential energy savings due to the use of daylighting. The results showed that Daylight Autonomy for the bottom-up shade is 8-58% higher compared to a conventional roller shade, with a difference of 46% further away from the facade, where the use of electric lighting is needed most of the time. The potential reduction in energy consumption for lighting is 21-41%. (author)

  4. Photodynamic effect of curcumin on Vibrio parahaemolyticus.

    PubMed

    Wu, Juan; Mou, Haijin; Xue, Changhu; Leung, Albert Wingnang; Xu, Chuanshan; Tang, Qing-Juan

    2016-09-01

    Vibrio parahaemolyticus (V. parahaemolyticus) is currently a major cause of bacterial diarrhoea associated with seafood consumption. The objective of this study was to determine the inactivation effect of curcumin-mediated photodynamic action on V. parahaemolyticus. First of all, V. parahaemolyticus suspended in PBS buffer was irradiated by a visible light from a LED light source with an energy density of 3.6J/cm(2). Colony forming units (CFU) were counted and the viability of V. parahaemolyticus cells was calculated after treatment. Singlet oxygen ((1)O2) production after photodynamic action of curcumin was evaluated using 9,10-Anthracenediyl-bis (methylene) dimalonic acid (ADMA). Bacterial outer membrane protein was extracted and analyzed using electrophoresis SDS-PAGE. DNA and RNA of V. parahaemolyticus were also extracted and analyzed using agarose gel electrophoresis after photodynamic treatment. Finally, the efficacy of photodynamic action of curcumin was preliminarily evaluated in the decontamination of V. parahaemolyticus in oyster. Results showed that the viability of V. parahaemolyticus was significantly decreased to non-detectable levels over 6.5-log reductions with the curcumin concentration of 10 and 20μM. Photodynamic action of curcumin significantly increased the singlet oxygen level with the curcumin concentration of 10μM. Notable damage was found to bacterial outer membrane proteins and genetic materials after photodynamic treatment. Photodynamic action of curcumin reduced the number of V. parahaemolyticus contaminating in oyster to non-detectable level. Our findings demonstrated that photodynamic action of curcumin could be a potentially good method to inactivate Vibrio parahaemolyticus contaminating in oyster.

  5. Involvement of Bim in Photofrin-mediated photodynamically induced apoptosis.

    PubMed

    Wang, Xianwang; He, Xiaobing; Hu, Shujuan; Sun, Anbang; Lu, Chengbiao

    2015-01-01

    Photodynamic therapy (PDT) is a promising noninvasive technique, which has been successfully applied to the treatment of human cancers. Studies have shown that the Bcl-2 family proteins play important roles in PDT-induced apoptosis. However, whether Bcl-2-interacting mediator of cell death (Bim) is involved in photodynamic treatment remains unknown. In this study, we attempt to determine the effect of Bim on Photofrin photodynamic treatment (PPT)-induced apoptosis in human lung adenocarcinoma ASTC-a-1 cells. The translocation of Bim/Bax of the cells were monitored by laser confocal scanning microscope. The levels of Bim protein and activated caspase-3 in cells were detected by western blot assay. Caspase-3 activities were measured by Caspase-3 Fluorogenic Substrate (Ac-DEVD-AFC) analysis. The induction of apoptosis was detected by Hoechst 33258 and PI staining as well as flow cytometry analysis. The effect of Bim on PPT-induced apoptosis was determined by RNAi. BimL translocated to mitochondria in response to PPT, similar to the downstream pro-apoptotic protein Bax activation. PPT increased the level of Bim and activated caspase-3 in cells and that knockdown of Bim by RNAi significantly protected against caspase-3 activity. PPT-induced apoptosis were suppressed in cells transfected with shRNA-Bim. We demonstrated the involvement of Bim in PPT-induced apoptosis in human ASTC-a-1 lung adenocarcinoma cells and suggested that enhancing Bim activity might be a potential strategy for treating human cancers. © 2015 S. Karger AG, Basel.

  6. Mitochondria-targeting for improved photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ngen, Ethel J.

    , other strategies to target mitochondria for improved photodynamic activity were investigated. In a continuing project, we evaluated the ability of delocalized lipophilic cationic dyes to deliver photosensitizers to mitochondria by exploiting the membrane potential difference between the cytoplasm and mitochondria. Two conjugates: a porphyrin--rhodamine B conjugate (TPP--Rh) and a porphyrin-acridine orange conjugate (TPP--AO), each possessing a single delocalized lipophilic cation, were designed and synthesized. The conjugates were synthesized by conjugating a monohydroxy porphyrin (TPP-OH) to rhodamine B (Rh B) and acridine orange base (AO), respectively, via saturated hydrocarbon linkers. To evaluate the efficiency of the conjugates as photosensitizers, their photophysical properties and in vitro photodynamic activities were studied in comparison to those of TPP-OH, the parent porphyrin photosensitizer. Although fluorescence energy transfer (FRET) was observed in the conjugates, they were capable of generating singlet oxygen at rates comparable to TPP-OH. In a final project, we evaluated the photophysical potential of TPP-Rh to act as a two-photon photosensitizer for PDT. Two-photon PDT is a rational approach used to improve light penetration through the skin. Rhodamine B is an effective two-photon chromophore and could significantly improve the two-photon absorption of the porphyrin photosensitizer in the TPP-Rh dyad system following energy transfer. Thus the porphyrin--rhodamine B dyad (TPP--Rh), previously demonstrated to preferentially accumulate in the mitochondria, was photophysically evaluated as a potential two-photon photosensitizer. To evaluate the efficiency of TPP-Rh as a two-photon photosensitizer, its two-photon photophysical properties were compared with those of its individual components (Rh B and TPP-OH). This included: the two-photon cross sections (sigma 2), RET kinetics and dynamics and rates of singlet oxygen generation. A FRET efficiency of ~99

  7. Photodynamic antimicrobial effects of bis-indole alkaloid indigo from Indigofera truxillensis Kunth (Leguminosae).

    PubMed

    Andreazza, Nathalia Luiza; de Lourenço, Caroline C; Stefanello, Maria Élida Alves; Atvars, Teresa Dib Zambon; Salvador, Marcos José

    2015-05-01

    Multidrug-resistant microbial infections represent an exponentially growing problem affecting communities worldwide. Photodynamic therapy is a promising treatment based on the combination of light, oxygen, and a photosensitizer that leads to reactive oxygen species production, such as superoxide (type I mechanism) and singlet oxygen (type II mechanism) that cause massive oxidative damage and consequently the host cell death. Indigofera genus has gained considerable interest due its mutagenic, cytotoxic, and genotoxic activity. Therefore, this study was undertaken to investigate the effect of crude extracts, alkaloidal fraction, and isolated substance derived from Indigofera truxillensis in photodynamic antimicrobial chemotherapy on the viability of bacteria and yeast and evaluation of mechanisms involved. Our results showed that all samples resulted in microbial photoactivation in subinhibitory concentration, with indigo alkaloid presenting a predominant photodynamic action through type I mechanism. The use of CaCl2 and MgCl2 as cell permeabilizing additives also increased gram-negative bacteria susceptibility to indigo.

  8. Photodynamic inactivation of microorganisms which cause pulmonary diseases with infrared light: an in vitro study

    NASA Astrophysics Data System (ADS)

    Leite, Ilaiáli S.; Geralde, Mariana C.; Salina, Ana C.; Medeiros, Alexandra I.; Kurachi, Cristina; Bagnato, Vanderlei S.; Inada, Natalia M.

    2014-03-01

    Lower respiratory infections are among the leading causes of death worldwide. In this study, it was evaluated the interaction of indocyanine green, a photosensitizer activated by infrared light, with alveolar macrophages and the effectiveness of the photodynamic therapy using this compound against Streptococcus pneumoniae . Initial experiments analyzed indocyanine green toxicity to alveolar macrophages in the dark with different drug concentrations and incubation times, and macrophage viability was obtained with the MTT method. The average of the results showed viability values below 90% for the two highest concentrations. Experiments with Streptococcus pneumoniae showed photodynamic inactivation with 10 μM indocyanine green solution. Further experiments with the bacteria in co-culture with AM will be conducted verifying the photodynamic inactivation effectiveness of the tested drug concentrations and incubation periods using infrared light.

  9. Luminol as in situ light source in meso-tetraphenylporphyrin-mediated photodynamic therapy.

    PubMed

    Huang, L; Chen, Ti-Chen; Lin, Feng-Huei

    2013-01-01

    The light sources used in current photodynamic therapy are mainly lasers or light emitting diodes, which are not suitable to treat large-volume tumors and those located in the inner body. To overcome the limitation, we propose an in situ light source to activate the photosensitizer and kill the cancer cells directly. In the present work, we use luminol as light source and meso-tetraphenylporphyrin as the photosensitizer. According to the results, cells incubated with meso-tetraphenylporphyrin, subsequently triggered by luminol, decreased significantly in assays including cell viability and cytotoxicity, while the other groups showed only minor differences. The flow cytometric and fluorescent microscopy analysis showed similar results as well. In the analysis of cell death pathway, cell shrinkage was noticed after photodynamic therapy treatment, which might refer to apoptosis. Briefly, we suggest that luminol is a promising light source in meso-tetraphenylporphyrin-mediated photodynamic therapy for its greater penetration depth and well matched emission wavelength.

  10. Investigation of myocardial photodynamic revascularization method on ischemic rat myocardium model

    NASA Astrophysics Data System (ADS)

    Vasilchenko, S. Yu.; Stratonnikov, A. A.; Volkova, A. I.; Loschenov, V. B.; Sheptak, E. A.; Kharnas, S. S.

    2006-08-01

    Ischemic heart disease is one of the leading reasons of invalidisation and death rate of able-bodied citizens in the world. There are many various surgical and medicamentous methods of its treatment for today, however all these methods have restrictions in application. Our work was directed at initiation possibility clarification of ischemic myocardium revascularization by means of making necrosis with photodynamic therapy. The investigation was carried out in rats with the ischemia artificial made by means of left coronary artery ligation. Level of Photosense photosensitizer accumulation in ischemic and normal rat myocardium zones was defined. Myocardial photodynamic revascularization procedure of ischemic rat myocardium was carried out. Morphological analysis of the myocardium preparations showed the presence of active revascularization of ischemic myocardium after photodynamic therapy. The method of ischemia level estimation based on spectral optical definition of blood oxygen saturation was developed.

  11. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects.

    PubMed

    Wang, Shunhao; Riedinger, Andreas; Li, Hongbo; Fu, Changhui; Liu, Huiyu; Li, Linlin; Liu, Tianlong; Tan, Longfei; Barthel, Markus J; Pugliese, Giammarino; De Donato, Francesco; Scotto D'Abbusco, Marco; Meng, Xianwei; Manna, Liberato; Meng, Huan; Pellegrino, Teresa

    2015-02-24

    Recently, plasmonic copper sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention as materials for photothermal therapy (PTT). Previous reports have correlated photoinduced cell death to the photothermal heat mechanism of these NCs, and no evidence of their photodynamic properties has been reported yet. Herein we have prepared physiologically stable near-infrared (NIR) plasmonic copper sulfide NCs and analyzed their photothermal and photodynamic properties, including therapeutic potential in cultured melanoma cells and a murine melanoma model. Interestingly, we observe that, besides a high PTT efficacy, these copper sulfide NCs additionally possess intrinsic NIR induced photodynamic activity, whereupon they generate high levels of reactive oxygen species. Furthermore, in vitro and in vivo acute toxic responses of copper sulfide NCs were also elicited. This study highlights a mechanism of NIR light induced cancer therapy, which could pave the way toward more effective nanotherapeutics.

  12. Integrating window pyranometer for beam daylighting measurements in scale-model buildings

    SciTech Connect

    Bauman, F.; Place, W.; Thornton, J.; Howard, T.C.

    1985-12-01

    An experimental device has been developed to measure the total amount of solar radiation transmitted through glazed apertures in scale-model buildings. The device, an integrating window pyranometer (IWP), has two distinguishing characteristics: (1) it provides a measure of transmitted solar radiation integrated over a representative portion of the model glazing, accounting for nonuniform radiation distributions; and (2) it is spectrally independent. In applications to scale-model daylighting experiments, the IWP, together with photometric sensors mounted in the model, allows the direct measurement of the fraction of transmitted solar gains reaching the work plane as useful illumination, a convenient measure of the daylighting system performance. The IWP has been developed as part of an outdoor experimental facility to perform beam daylighting measurements in scale-model buildings. In this paper, the integrating window pyranometer is described; the results of calibration tests are presented and evaluated; the advantages and limitations of the device are discussed.

  13. An integrating window pyranometer for beam daylighting measurements in scale-model buildings

    SciTech Connect

    Baumann, F.S.; Place, J.W.; Thornton, J.; Howard, T.C.

    1986-01-01

    An experimental device has been developed to measure the total amount of solar radiation transmitted through glazed apertures in scale-model buildings. The device, an integrating window pyranometer (IWP), has two distinguishing characteristics: (1) it provides a measure of transmitted solar radiation integrated over a representative portion of the model glazing, accounting for nonuniform radiation distributions; and (2) it is spectrally independent. In applications to scale model daylighting experiments, the IWP, together with photometric sensors mounted in the model, allows the direct measurement of the fraction of transmitted solar gains reaching the work plane as useful illumination, a convenient measure of the daylighting system performance. The IWP has been developed as part of an outdoor experimental facility to perform beam daylighting measurements in scale-model buildings. In this paper, the integrating window pyranometer is described; the results of calibration tests are presented and evaluated; the advantages and limitations of the device are discussed.

  14. A sensor-less LED dimming system based on daylight harvesting with BIPV systems.

    PubMed

    Yoo, Seunghwan; Kim, Jonghun; Jang, Cheol-Yong; Jeong, Hakgeun

    2014-01-13

    Artificial lighting in office buildings typically requires 30% of the total energy consumption of the building, providing a substantial opportunity for energy savings. To reduce the energy consumed by indoor lighting, we propose a sensor-less light-emitting diode (LED) dimming system using daylight harvesting. In this study, we used light simulation software to quantify and visualize daylight, and analyzed the correlation between photovoltaic (PV) power generation and indoor illumination in an office with an integrated PV system. In addition, we calculated the distribution of daylight illumination into the office and dimming ratios for the individual control of LED lights. Also, we were able directly to use the electric power generated by PV system. As a result, power consumption for electric lighting was reduced by 40 - 70% depending on the season and the weather conditions. Thus, the dimming system proposed in this study can be used to control electric lighting to reduce energy use cost-effectively and simply.

  15. Salutogenic effects of the environment: review of health protective effects of nature and daylight.

    PubMed

    Beute, Femke; de Kort, Yvonne A W

    2014-03-01

    Both nature and daylight have been found to positively influence health. These findings were, however, found in two separate research domains. This paper presents an overview of effects found for daylight and nature on health and the health-related concepts stress, mood, and executive functioning and self-regulation. Because of the overlap in effects found and the co-occurrence of both phenomena, the paper points to the need to consider daylight factors when investigating effects of nature and vice versa. Furthermore, the existence of possibly shared underlying mechanisms is discussed and the need to unify the research paradigms and dependent variables used between the two research fields. Last, in view of the beneficial effects of both phenomena on health, our objective is to raise awareness amongst the general public, designers, and health practitioners to use these naturally available phenomena to their full potential.

  16. A Study on the Optimal Duration of Daylight Saving Time (DST) in Korea

    NASA Astrophysics Data System (ADS)

    Mihn, Byeong-Hee; Ahn, Young Sook; Kim, Dong-Bin; Yang, Hong-Jin

    2009-09-01

    Daylight saving time aims at spending effective daylight in summer season. Korea had enforced daylight saving time twelve times from 1948 to 1988. Since 1988, it is not executed, but it is recently discussed the resumption of DST. In this paper, we investigate the trend of DST in other countries, review the history of DST in Korea, and suggest the optimal DST duration in terms of astronomical aspects (times of sunrise and sunset). We find that the starting day of DST in Korea is apt for the second Sunday in May or the second Sunday in April according to the time of sunrise or to the difference between Korean standard meridian and observer's, respectively. We also discuss time friction that might be caused by time difference between DST and Korea Standard Time (KST).

  17. Gold-Nanoclustered Hyaluronan Nano-Assemblies for Photothermally Maneuvered Photodynamic Tumor Ablation.

    PubMed

    Han, Hwa Seung; Choi, Ki Young; Lee, Hansang; Lee, Minchang; An, Jae Yoon; Shin, Sol; Kwon, Seunglee; Lee, Doo Sung; Park, Jae Hyung

    2016-12-27

    Optically active nanomaterials have shown great promise as a nanomedicine platform for photothermal or photodynamic cancer therapies. Herein, we report a gold-nanoclustered hyaluronan nanoassembly (GNc-HyNA) for photothermally boosted photodynamic tumor ablation. Unlike other supramolecular gold constructs based on gold nanoparticle building blocks, this system utilizes the nanoassembly of amphiphilic hyaluronan conjugates as a drug carrier for a hydrophobic photodynamic therapy agent verteporfin, a polymeric reducing agent, and an organic nanoscaffold upon which gold can grow. Gold nanoclusters were selectively installed on the outer shell of the hyaluronan nanoassembly, forming a gold shell. Given the dual protection effect by the hyaluronan self-assembly as well as by the inorganic gold shell, verteporfin-encapsulated GNc-HyNA (Vp-GNc-HyNA) exhibited outstanding stability in the bloodstream. Interestingly, the fluorescence and photodynamic properties of Vp-GNc-HyNA were considerably quenched due to the gold nanoclusters covering the surface of the nanoassemblies; however, photothermal activation by 808 nm laser irradiation induced a significant increase in temperature, which empowered the PDT effect of Vp-GNc-HyNA. Furthermore, fluorescence and photodynamic effects were recovered far more rapidly in cancer cells due to certain intracellular enzymes, particularly hyaluronidases and glutathione. Vp-GNc-HyNA exerted a great potential to treat tumors both in vitro and in vivo. Tumors were completely ablated with a 100% survival rate and complete skin regeneration over the 50 days following Vp-GNc-HyNA treatment in an orthotopic breast tumor model. Our results suggest that photothermally boosted photodynamic therapy using Vp-GNc-HyNA can offer a potent therapeutic means to eradicate tumors.

  18. Photodynamic therapy: first responses

    NASA Astrophysics Data System (ADS)

    Kessel, David; Price, Michael

    2009-06-01

    During the irradiation of photosensitized cells, reactive oxygen species (ROS) are generated leading to a variety of effects including apoptosis and autophagy. These responses can occur within minutes after irradiation. Apoptosis is an irreversible pathway to death that can be triggered by release of cytochrome c from mitochondria. Autophagy is a recycling process that can occur as a result of Bcl-2 photodamage or as a response to organelle disruption. We have reported that autophagy is associated with a 'shoulder' on the PDT dose-response curve. Although predominantly a survival pathway, autophagy can also play a role in cell death if cells attempt an excessive amount of recycling, beyond their ability to repair photodamage. Recent studies have been directed toward assessing the role of different ROS in the immediate response to PDT. While singlet oxygen is considered to be the major phototoxic ROS, it appears that catalase activity is also a determinant of the apoptotic response and that H2O2•OH can amplify the effects of singlet oxygen. An early response to PDT also involves inhibition of membrane trafficking systems related to the endocytic pathway. The extent and nature of these early responses appear to be among the determinants of subsequent tumor eradication.

  19. Photodynamic inactivation of verrucae vulgares. II.

    PubMed

    Veien, N K; Genner, J; Brodthagen, H; Wettermark, G

    1977-01-01

    Photodynamic inactivation therapy, consisting of a double-blind, paired comparison treatment schedule, was used in treating 56 patients for recalcitrant, symmetrical verrucae vulgares. 0.1% proflavine in 100% dimethylsulphoxide (DMSO) and 0.1% neutral red in 100% DMSO were used as active dyes, and 1% picric acid in 100% DMSO and 1% color ruber in 100% DMSO and 1% color ruber in 100% DMSO served as corresponding placebos. A Westinghouse sunlamp and black light were used to irradiate the warts dyed with proflavine and its placebo, and the warts dyed with neutral red and its placebo were irradiated with an ordinary light bulb (Osram 588597). 50 patients completed the treatment. 10 of the 27 patients treated with proflavine and 10 of the 23 patients treated with neutral red were cured by the end of an 8 week period, with the warts disappearing simultaneously from the actively as well as the placebo-treated side. Complement fixing antibodies against wart virus were detected in one of the cured patients and 2 who were treatment failures.

  20. Photodynamic therapy of acne vulgaris.

    NASA Astrophysics Data System (ADS)

    Ershova, Ekaterina Y.; Karimova, Lubov N.; Kharnas, Sergey S.; Kuzmin, Sergey G.; Loschenov, Victor B.

    2003-06-01

    Photodynamic therapy (PDT) with topical 5-aminolevulinic acid (ALA) was tested for the treatment of acne vulgaris. Patients with acne were treated with ALA plus red light. Ten percent water solution of ALA was applied with 1,5-2 h occlusion and then 18-45 J/cm2 630 nm light was given. Bacterial endogenous porphyrins fluorescence also was used for acne therapy. Treatment control and diagnostics was realized by fluorescence spectra and fluorescence image. Light sources and diagnostic systems were used: semiconductor laser (λ=630 nm, Pmax=1W), (LPhT-630-01-BIOSPEC); LED system for PDT and diagnostics with fluorescent imager (λ=635 nm, P=2W, p=50 mW/cm2), (UFPh-630-01-BIOSPEC); high sensitivity CCD video camera with narrow-band wavelength filter (central wavelength 630 nm); laser electronic spectrum analyzer for fluorescent diagnostics and photodynamic therapy monitoring (LESA-01-BIOSPEC). Protoporphyrin IX (PP IX) and endogenous porphyrins concentrations were measured by fluorescence at wavelength, correspondingly, 700 nm and 650 nm. It was shown that topical ALA is converted into PP IX in hair follicles, sebaceous glands and acne scars. The amount of resulting PP IX is sufficient for effective PDT. There was good clinical response and considerable clearance of acne lesion. ALA-PDT also had good cosmetic effect in treatment acne scars. PDT with ALA and red light assist in opening corked pores, destroying Propionibacterium acnes and decreasing sebum secretion. PDT treatment associated with several adverse effects: oedema and/or erytema for 3-5 days after PDT, epidermal exfoliation from 5th to 10th day and slight pigmentation during 1 month after PDT. ALA-PDT is effective for acne and can be used despite several side effects.

  1. Design of a high-efficiency collection structure for daylight illumination applications.

    PubMed

    Tsai, Meng-Che; Whang, Allen Jong-Woei; Lee, Tsung-Xian

    2013-12-20

    In developing a high-quality natural light illumination system (NLIS), the primary considerations include how to increase system efficiency and broaden its applications. This paper describes the conception, design, and analysis of a daylight collector that presents the combined advantages of excellent efficiency and a compact size. The collector structure consists of extendable two-channel collecting units, a planar light guide, and a central coupler to improve light collection efficiency and increase surface area. In this study, two types of daylight collectors are proposed for illumination applications with different light patterns. With these collectors, the NLIS can now provide sufficiently powerful light for indoor illumination.

  2. Daylighting estimation and analysis in residential apartment building: GIS based approach

    NASA Astrophysics Data System (ADS)

    Sonawane, Mahesh B.; Mhaske, Sumedh Y.

    2016-06-01

    The openings in the building envelope have a great influence on daylighting in the internal area of the building spaces. The amount of opening area, its orientation, outside obstruction & positioning of building affects the inside illumination. Most of the energy consumption occurs during the building's operational phase for heating, cooling & lighting purposes. This paper aims to provide a simplified analytical and GIS based approach to evaluate the potential of daylight inside the room under clear sky conditions. The work evaluates the intensity of internal illumination in residential apartment building from available outside external illumination.

  3. On the development of new SPMN diurnal video systems for daylight fireball monitoring

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.; Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.

    2008-09-01

    Daylight fireball video monitoring High-sensitivity video devices are commonly used for the study of the activity of meteor streams during the night. These provide useful data for the determination, for instance, of radiant, orbital and photometric parameters ([1] to [7]). With this aim, during 2006 three automated video stations supported by Universidad de Huelva were set up in Andalusia within the framework of the SPanish Meteor Network (SPMN). These are endowed with 8-9 high sensitivity wide-field video cameras that achieve a meteor limiting magnitude of about +3. These stations have increased the coverage performed by the low-scan allsky CCD systems operated by the SPMN and, besides, achieve a time accuracy of about 0.01s for determining the appearance of meteor and fireball events. Despite of these nocturnal monitoring efforts, we realised the need of setting up stations for daylight fireball detection. Such effort was also motivated by the appearance of the two recent meteorite-dropping events of Villalbeto de la Peña [8,9] and Puerto Lápice [10]. Although the Villalbeto de la Peña event was casually videotaped, and photographed, no direct pictures or videos were obtained for the Puerto Lápice event. Consequently, in order to perform a continuous recording of daylight fireball events, we setup new automated systems based on CCD video cameras. However, the development of these video stations implies several issues with respect to nocturnal systems that must be properly solved in order to get an optimal operation. The first of these video stations, also supported by University of Huelva, has been setup in Sevilla (Andalusia) during May 2007. But, of course, fireball association is unequivocal only in those cases when two or more stations recorded the fireball, and when consequently the geocentric radiant is accurately determined. With this aim, a second diurnal video station is being setup in Andalusia in the facilities of Centro Internacional de Estudios y

  4. In vivo photodynamic therapy with meso-tetra(m-hydroxyphenyl)chlorin (mTHPC): influence of light intensity and optimization of photodynamic efficiency

    NASA Astrophysics Data System (ADS)

    Rezzoug, Hadjira; A'Amar, Ousama M.; Barberi-Heyob, Muriel; Merlin, Jean-Louis; Guillemin, Francois H.

    1996-12-01

    Photodynamic therapy (PDT) consists in administering a photosensitizer generating cytotoxic radical species when submitted to light irradiation. One of the difficulties encountered in PDT is to find a photosensitizer absorbing at a wavelength penetrating tissues deeply. Meso-tetra(m- hydroxyphenyl)chlorin(mTHPC) presents this characteristic since it is activated at 650 nm. The photodynamic efficiency of mTHPC (0.3 mg/kg) was evaluated 72 hrs after intraperitoneal injection in HT29 human tumor bearing mice. This interval has been determined by a biodistribution study using fluorescence spectroscopy and HPLC. Mice were irradiated at 650 nm, 10 J/cm2 using a dye laser. The photodynamic efficiency was evaluated by two methods: tumor growth after photodynamic treatment and macroscopic measurement of necrosis depth after tumoral resection using in vivo staining procedure with Evans blue dye. The normalization of the tumor volume (V equals 1/6 pi D3) to the initial volume showed no significant difference of control and treated mice, no regression was observed. Secondly the necrosis depth was determined 24 hrs after irradiation using Evans blue which circulates in vessels not damaged by the treatment. Only tumors from treated animals presented measurable necrosis area, mostly localized in surface around the irradiated site with a mean depth of 3.0 plus or minus 0.3 mm. No prolonged tumoral regression was observed. Unexpectedly, the photodynamic activity was higher when using a low irradiance (32 mW/cm2) than when using a higher one (160 mW/cm2). These results were not related to intratumoral mTHPC photodestruction. Tumor eradication may occur either in tumors measuring less than 3 mm, with a small light intensity, or through fractionated irradiation.

  5. Photodynamic Therapy Using Endogenous Photosensitization for Gastrointestinal Tumors

    PubMed Central

    Webber, John; Kessel, David; Fromm, David

    1997-01-01

    Photodynamic therapy (PDT) is a novel approach in the treatment of carcinomas of the gastrointestinal tract. This review defines PDT, discusses means of photosensitization and considers the mechanisms by which PDT causes cell death of the target tissue while at the same time avoid damage to normal tissues. Additional considerations include the time of PDT application, activation of the photosensitizer, effectiveness and toxicity of PDT, potential need for additional modalities of treatment and concludes with application of PDT principals to the early detection of malignancy. Data regarding the long term effectiveness of PDT for digestive tract adenocarcinomas are lacking because this field is still in its infancy.

  6. THE PHOTODYNAMIC ACTION OF EOSIN AND ERYTHROSIN UPON SNAKE VENOM

    PubMed Central

    Noguchi, Hideyo

    1906-01-01

    Since the hæmolysins of the several venoms respond differently to photodynamic action, they may be regarded as possessing different chemical constitutions. As regards stability, cobra hæmolysin ranks first, daboia second, and Crotalus third. The toxicity of all the venoms is more or less diminished by eosin and erythrosin in sunlight. This reduction in toxicity depends upon chemical changes, of more or less profound nature, taking place in certain of the active principles of the venom. The more stabile the predominant active principles the less the reduction in toxicity, and vice versa. Venom-neurotoxins are highly resistant to photodynamic action, venom-hæmolysins are less resistant, while the hæmorrhagin and thrombokinase of Crotalus and daboia venoms exhibit weak powers of resistance to their action. Hence it follows that while cobra venom remained almost unaltered, rattlesnake and daboia venoms were greatly reduced in toxicity when mixed with the fluorescent dyes and exposed to sunlight. There is an interesting parallel between the action of eosin and erythrosin upon the different venoms and their reactions to other injurious agencies. For example, the hæmolysins of cobra and daboia venoms are more heat resistant than the hæmolysin of Crotalus venom, and the former are less injured by the dyes than the latter. The neurotoxin of the former venoms is also more heat stabile than that of the rattlesnake, and the same relative degree of resistance holds for this substance and the anilines. Just as the hæmorrhagin of rattlesnake venom and the thrombokinase of daboia venom are destroyed by a temperature of 75° C., so are they readily inactivated by the photo dynamic substances employed. The globulin-precipitating and blood corpuscle-protecting principle of cobra venom is relatively thermostabile and in contradistinction to the immunity-precipitins it is also unaffected by eosin and erythrosin. This study of the action of photodynamic substances upon snake

  7. Combination immunotherapy and photodynamic therapy for cancer

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; Castano, Ana P.; Mroz, Pawel

    2006-02-01

    Cancer is a leading cause of death among modern people largely due to metastatic disease. The ideal cancer treatment should target both the primary tumor and the metastases with minimal toxicity towards normal tissue. This is best accomplished by priming the body's immune system to recognize the tumor antigens so that after the primary tumor is destroyed, distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the tumor with red light producing reactive oxygen species leading to vascular shutdown and tumor cell death. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, generation of tumor-specific antigens, and induction of heat-shock proteins. Combination regimens using PDT and immunostimulating treatments are likely to even further enhance post-PDT immunity. These immunostimulants are likely to include products derived from pathogenic microorganisms that are effectively recognized by Toll-like receptors and lead to upregulation of transcription factors for cytokines and inflammatory mediators. The following cascade of events causes activation of macrophages, dendritic and natural killer cells. Exogenous cytokine administration can be another way to increase PDT-induced immunity as well as treatment with a low dose of cyclophosphamide that selectively reduces T-regulatory cells. Although so far these combination therapies have only been used in animal models, their use in clinical trials should receive careful consideration.

  8. Novel Photodynamics in Phytochrome & Cyanobacteriochrome Photosensory Proteins

    NASA Astrophysics Data System (ADS)

    Larsen, Delmar

    2015-03-01

    The photodynamics of recently characterized phytochrome and cyanobacteriochrome photoreceptors are discussed. Phytochromes are red/far-red photosensory proteins that utilize the photoisomerization of a linear tetrapyrrole (bilin) chromophore to detect the red to far-red light ratio. Cyanobacteriochromes (CBCRs) are distantly related cyanobacterial photosensors with homologous bilin-binding GAF domains, but exhibit greater spectral diversity. The excited-state mechanisms underlying the initial photoisomerization in the forward reactions of the cyanobacterial photoreceptor Cph1 from Synechocystis, the RcaE CBCR from Fremyella diplosiphon, and Npr6012g4 CBCR from Nostoc punctiforme were contrasted via multipulse pump-dump-probe transient spectroscopy. A rich excited-state dynamics are resolved involving a complex interplay of excited-state proton transfer, photoisomerization, multilayered inhomogeneity, and reactive intermediates, and Le Chatelier redistribution. NpR6012g4 exhibits a high quantum yield for its forward photoreaction (40%) that was ascribed to the activity of hidden, productive ground-state intermediates via a ``second chance initiation dynamics'' (SCID) mechanism. This work was supported by a grant from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, United States Department of Energy (DOE DE-FG02-09ER16117).

  9. Photodynamic Antimicrobial Polymers for Infection Control

    PubMed Central

    McCoy, Colin P.; O’Neil, Edward J.; Cowley, John F.; Carson, Louise; De Baróid, Áine T.; Gdowski, Greg T.; Gorman, Sean P.; Jones, David S.

    2014-01-01

    Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens. Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires direct intervention. In this study we demonstrate the preparation and performance of materials with inherent photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high density poly(ethylene) (HDPE) using hot-melt extrusion, which require no external intervention except a source of visible light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens, thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach. The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log colony forming units (CFU) per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA), and by up to 1.51 Log CFU/cm2 for Escherichia coli. Potential applications for the technology are in antimicrobial coatings for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical equipment found in the healthcare setting. PMID:25250740

  10. Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations.

    PubMed

    Pearce, Bradley; Crichton, Stuart; Mackiewicz, Michal; Finlayson, Graham D; Hurlbert, Anya

    2014-01-01

    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed.

  11. Simplified Daylight Spectrum Approximation by Blending Two Light Emitting Diode Sources

    DTIC Science & Technology

    2012-03-01

    Office Buildings. 2004. [2] J. Hernández-Andrés, J. Romero, J. L. Nieves and R. L. Lee Jr. Color and spectral analysis of daylight in southern...performance and sleepiness. Lighting Res. Technol. 2011 43: 349- 369. [6] Hernandez-Andres J, Romero J, Nieves JL, Lee Jr, R.L. Color and spectral

  12. Change in the Classroom Deportment of Children Following Change From Daylight Saving Time.

    ERIC Educational Resources Information Center

    Hicks, Robert A.; And Others

    1980-01-01

    The deportment of each student in a third-grade classroom was rated by the teacher before and after the fall change from daylight savings time, to see if this disruption in circadian rhythms alters behavior. The deportment of boys improved significantly while the deportment of girls was significantly disrupted. (Author/SJL)

  13. ETR, TRA642. ON GROUND FLOOR. CANAL HAS RISEN TO DAYLIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. ON GROUND FLOOR. CANAL HAS RISEN TO DAYLIGHT AND THE GROUND FLOOR. CAMERA FACES SOUTH. FRAMING AND SIDING FOR ETR BUILDING HAVE NOT BEEN COMPLETED. INL NEGATIVE NO. 56-1537. Jack L. Anderson, Photographer, 5/15/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Monitored Energy Performance of Electrochromic Windows Controlledfor Daylight and Visual Comfort

    SciTech Connect

    Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

    2005-09-23

    A 20-month field study was conducted to measure the energy performance of south-facing large-area tungsten-oxide absorptive electrochromic (EC) windows with a broad switching range in a private office setting. The EC windows were controlled by a variety of means to bring in daylight while minimizing window glare. For some cases, a Venetian blind was coupled with the EC window to block direct sun. Some tests also involved dividing the EC window wall into zones where the upper EC zone was controlled to admit daylight while the lower zone was controlled to prevent glare yet permit view. If visual comfort requirements are addressed by EC control and Venetian blinds, a 2-zone EC window configuration provided average daily lighting energy savings of 10 {+-} 15% compared to the reference case with fully lowered Venetian blinds. Cooling load reductions were 0 {+-} 3%. If the reference case assumes no daylighting controls, lighting energy savings would be 44 {+-} 11%. Peak demand reductions due to window cooling load, given a critical demand-response mode, were 19-26% maximum on clear sunny days. Peak demand reductions in lighting energy use were 0% or 72-100% compared to a reference case with and without daylighting controls, respectively. Lighting energy use was found to be very sensitive to how glare and sun is controlled. Additional research should be conducted to fine-tune EC control for visual comfort based on solar conditions so as to increase lighting energy savings.

  15. Electric Lighting and Daylighting in Schools. IssueTrak: A CEFPI Brief on Educational Facility Issues.

    ERIC Educational Resources Information Center

    Grocoff, Paul N.

    This report examines both electric lighting and daylighting, listing criteria to determine the correct equipment for a school renovation or building project. Specific topics examine use of prismatic lenses; parabolic louvers; and indirect lighting, including the cost savings of using indirect lighting. The report indicates there is no clear answer…

  16. Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

    PubMed Central

    Pearce, Bradley; Crichton, Stuart; Mackiewicz, Michal; Finlayson, Graham D.; Hurlbert, Anya

    2014-01-01

    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed. PMID:24586299

  17. Hardware-in-the-Loop Modeling and Simulation Methods for Daylight Systems in Buildings

    NASA Astrophysics Data System (ADS)

    Mead, Alex Robert

    This dissertation introduces hardware-in-the-loop modeling and simulation techniques to the daylighting community, with specific application to complex fenestration systems. No such application of this class of techniques, optimally combining mathematical-modeling and physical-modeling experimentation, is known to the author previously in the literature. Daylighting systems in buildings have a large impact on both the energy usage of a building as well as the occupant experience within a space. As such, a renewed interest has been placed on designing and constructing buildings with an emphasis on daylighting in recent times as part of the "green movement.''. Within daylighting systems, a specific subclass of building envelope is receiving much attention: complex fenestration systems (CFSs). CFSs are unique as compared to regular fenestration systems (e.g. glazing) in the regard that they allow for non-specular transmission of daylight into a space. This non-specular nature can be leveraged by designers to "optimize'' the times of the day and the days of the year that daylight enters a space. Examples of CFSs include: Venetian blinds, woven fabric shades, and prismatic window coatings. In order to leverage the non-specular transmission properties of CFSs, however, engineering analysis techniques capable of faithfully representing the physics of these systems are needed. Traditionally, the analysis techniques available to the daylighting community fall broadly into three classes: simplified techniques, mathematical-modeling and simulation, and physical-modeling and experimentation. Simplified techniques use "rules-of-thumb'' heuristics to provide insights for simple daylighting systems. Mathematical-modeling and simulation use complex numerical models to provide more detailed insights into system performance. Finally, physical-models can be instrumented and excited using artificial and natural light sources to provide performance insight into a daylighting system

  18. Changing to daylight saving time cuts into sleep and increases workplace injuries.

    PubMed

    Barnes, Christopher M; Wagner, David T

    2009-09-01

    The authors examine the differential influence of time changes associated with Daylight Saving Time on sleep quantity and associated workplace injuries. In Study 1, the authors used a National Institute for Occupational Safety and Health database of mining injuries for the years 1983-2006, and they found that in comparison with other days, on Mondays directly following the switch to Daylight Saving Time-in which 1 hr is lost-workers sustain more workplace injuries and injuries of greater severity. In Study 2, the authors used a Bureau of Labor Statistics database of time use for the years 2003-2006, and they found indirect evidence for the mediating role of sleep in the Daylight Saving Time-injuries relationship, showing that on Mondays directly following the switch to Daylight Saving Time, workers sleep on average 40 min less than on other days. On Mondays directly following the switch to Standard Time-in which 1 hr is gained-there are no significant differences in sleep, injury quantity, or injury severity.

  19. Change in the Classroom Deportment of Children Following Change From Daylight Saving Time.

    ERIC Educational Resources Information Center

    Hicks, Robert A.; And Others

    1980-01-01

    The deportment of each student in a third-grade classroom was rated by the teacher before and after the fall change from daylight savings time, to see if this disruption in circadian rhythms alters behavior. The deportment of boys improved significantly while the deportment of girls was significantly disrupted. (Author/SJL)

  20. In vitro evaluation of photodynamic therapy using curcumin on Leishmania major and Leishmania braziliensis.

    PubMed

    Pinto, Juliana Guerra; Fontana, Letícia Correa; de Oliveira, Marco Antonio; Kurachi, Cristina; Raniero, Leandro José; Ferreira-Strixino, Juliana

    2016-07-01

    Cutaneous leishmaniasis is an infectious disease caused by the Leishmania protozoan. The conventional treatment is long-lasting and aggressive, in addition to causing harmful effect. Photodynamic therapy has emerged as a promising alternative treatment, which allows local administration with fewer side effects. This study investigated the photodynamic activity of curcumin on Leishmania major and Leishmania braziliensis promastigote. Both species were submitted to incubation with curcumin in serial dilutions from 500 μg/ml up to 7.8 μg/ml. Control groups were kept in the dark while PDT groups received a fluency of 10 J/cm(2) at 450 nm. Mitochondrial activity was assessed by MTT assay 18 h after light treatment, and viability was measured by Trypan blue dye exclusion test. Morphological alterations were observed by Giemsa staining. Confocal microscopy showed the uptake of curcumin by both tested Leishmania species. Mitochondrial activity was inconclusive to determine viability; however, Trypan blue test was able to show that curcumin photodynamic treatment had a significant effect on viability of parasites. The morphology of promastigotes was highly affected by the photodynamic therapy. These results indicated that curcumin may be a promising alternative photosensitizer, because it presents no toxicity in the dark; however, further tests in co-culture with macrophages and other species of Leishmania should be conducted to determine better conditions before in vivo tests are performed.

  1. A tumor-targeted activatable phthalocyanine-tetrapeptide-doxorubicin conjugate for synergistic chemo-photodynamic therapy.

    PubMed

    Ke, Mei-Rong; Chen, Shao-Fang; Peng, Xiao-Hui; Zheng, Qiao-Feng; Zheng, Bi-Yuan; Yeh, Chih-Kuang; Huang, Jian-Dong

    2017-02-15

    Chemo-photodynamic therapy is a promising strategy for cancer treatments. However, it remains a challenge to develop a chemo-photodynamic therapeutic agent with little side effect, high tumor-targeting, and efficient synergistic effect simultaneously. Herein, we report a zinc(II) phthalocyanine (ZnPc)-doxorubicin (DOX) prodrug linked with a fibroblast activation protein (FAP)-responsive short peptide with the sequence of Thr-Ser-Gly-Pro for chemo-photodynamic therapy. In the conjugate, both photosensitizing activity of ZnPc and cytotoxicity of DOX are inhibited obviously. However, FAP-triggered separation of the photosensitizer and DOX can enhance fluorescence emission, singlet oxygen generation, dark- and photo-cytotoxicity significantly, and lead to a synergistic anticancer efficacy against HepG2 cells. The prodrug can also be specifically and efficiently activated in tumor tissue of mice. Thus, this prodrug shows great potential for clinical application in chemo-photodynamic therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Does photodynamic therapy enhance standard antibacterial therapy in dentistry?

    PubMed

    Javed, Fawad; Romanos, Georgios E

    2013-11-01

    The aim of this study was to assess whether or not photodynamic therapy enhanced standard antibacterial therapy in dentistry. Photodynamic therapy when used as an adjunct to conventional periodontal therapy kills more bacteria than when conventional periodontal therapy is used alone. To address the focused question, "Does photodynamic therapy enhance killing of oral bacteria?" PubMed/MEDLINE(®) and Google Scholar databases were explored. Original human and experimental studies and studies using photodynamic therapy for killing oral bacteria were included. Letters to the Editor, historic reviews, and unpublished data were excluded. Photodynamic therapy significantly reduces periodontopathogenic bacteria including Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Porphyromonas gingivalis. Photodynamic therapy kills cariogenic bacteria (such as Streptococcus mutans and Streptococcus sanguis), bacteria associated with infected root canals, and those associated with periimplantitis. Photodynamic therapy, when used as an adjunct to conventional oral disinfection protocols, enhances standard antibacterial therapy in dentistry.

  3. Influence of summer daylight saving time on scattered erythemal solar ultraviolet exposures.

    PubMed

    Parisi, A V; Turner, J; Turnbull, D J; Schouten, P; Downs, N

    2008-04-25

    The research question of whether there are any influences in the scattered or diffuse erythemal UV exposures to a horizontal plane over a five month period due to the change from standard time to daylight saving time, has been investigated by using physical measurements and applying them to both standard time and daylight saving time. The diffuse erythemal UV was considered for fixed lunch break times and fixed morning and afternoon break times. The cases considered were for groups of the population who are predominantly indoors and who spend their break times outdoors in shade. The biggest influence on the diffuse UV exposures of changing to daylight saving time is the timing of the outdoor meal and break times. The change causes a reduction in diffuse erythemal exposure for early or morning breaks and an increase in the diffuse erythemal exposure for late or afternoon breaks. Similarly, for the lunch break times, the changes in exposure are influenced by the timing of the break with respect to solar noon. Indoor workers who take their breaks outside in a shaded area may have a change in their exposure to diffuse UV due to a shift to daylight saving time, however the magnitude of this change and whether it is a positive or negative change in exposure will depend on the timing of the break. The increase in diffuse UV exposure due to the afternoon break may be negated by the decrease in exposure due to the morning break. In this case, the effect on diffuse UV exposures due to changing to daylight saving time will be minimal.

  4. Photodynamic inactivation of mammalian viruses and bacteriophages.

    PubMed

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  5. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  6. Abrupt shift of the pattern of diurnal variation in stroke onset with daylight saving time transitions.

    PubMed

    Foerch, Christian; Korf, Horst-Werner; Steinmetz, Helmuth; Sitzer, Matthias

    2008-07-15

    Stroke onset shows a pattern of diurnal variation, with a peak in morning hours. Rhythmic changes in blood pressure, hormones, and other parameters have been suggested as underlying mechanisms, but exogenous factors such as increasing physical activity after awakening may also be of relevance. To characterize the impact of external clock changes on the rhythmic variation in stroke onset, this parameter was recorded in patients during transition periods into and out of Daylight Saving Time (DST). The present study was based on a prospective stroke registry in Germany that contains time points of stroke onset from 44 251 patients admitted between 2000 and 2005. To achieve a uniform timeline, time points of stroke onset were set back from Central European Summer Time (CEST) to Central European Time (CET) for patients admitted during DST periods. Compared with the last week before the clock change, transition to or from DST resulted in an immediate shift of stroke onset time points within the first week after the clock change in reference to the uniform timeline (transition from CET to CEST -60 minutes for the time points in both the 25th and 50th percentiles of the diurnal pattern, P<0.001; transition from CEST to CET +60 minutes for the time points in both the 25th and 50th percentiles, P<0.001; patients pooled on a weekly basis). A significant shift was already present the first and second day after the transitions (ie, Monday and Tuesday). Transition to or from DST is coupled with an immediate shift in the time pattern of stroke onset. This strengthens the idea that exogenous factors associated with awakening are important determinants of the pattern of diurnal variation of stroke onset, because entrainment of the human circadian clock within hours is unlikely.

  7. Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics

    PubMed Central

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed. PMID:23650479

  8. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics.

    PubMed

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed.

  9. Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica.

    PubMed

    Al-Qahtani, Ahmed; Alkahtani, Saad; Kolli, Bala; Tripathi, Pankaj; Dutta, Sujoy; Al-Kahtane, Abdullah A; Jiang, Xiong-Jie; Ng, Dennis K P; Chang, Kwang Poo

    2016-04-01

    Photodynamic inactivation ofLeishmaniaspp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency againstLeishmania tropicapromastigotes and axenic amastigotesin vitro The uptake of these PCs by bothLeishmaniastages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation ofLeishmaniaspp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitizedLeishmania tropicastrains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ∼650 nm) at a fluence of 1 to 2 J cm(-2) Quantitative fluorescence assays based on the loss of GFP/CFSE from liveLeishmania tropicashowed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay.Leishmania tropicastrains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation ofLeishmaniaspp. for use as vaccines or vaccine carriers. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Adjuvant Intraoperative Photodynamic Therapy in Head and Neck Cancer

    PubMed Central

    Rigual, Nestor R.; Shafirstein, Gal; Frustino, Jennifer; Seshadri, Mukund; Cooper, Michele; Wilding, Gregory; Sullivan, Maureen A.; Henderson, Barbara

    2015-01-01

    IMPORTANCE There is an immediate need to develop local intraoperative adjuvant treatment strategies to improve outcomes in patients with cancer who undergo head and neck surgery. OBJECTIVES To determine the safety of photodynamic therapy with 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in combination with surgery in patients with head and neck squamous cell carcinoma. DESIGN, SETTING, AND PARTICIPANTS Nonrandomized, single-arm, single-site, phase 1 study at a comprehensive cancer center among 16 adult patients (median age, 65 years) with biopsy-proved primary or recurrent resectable head and neck squamous cell carcinoma. INTERVENTIONS Intravenous injection of HPPH (4.0 mg/m2), followed by activation with 665-nm laser light in the surgical bed immediately after tumor resection. MAIN OUTCOMES AND MEASURES Adverse events and highest laser light dose. RESULTS Fifteen patients received the full course of treatment, and 1 patient received HPPH without intraoperative laser light because of an unrelated myocardial infarction. Disease sites included larynx (7 patients), oral cavity (6 patients), skin (1 patient), ear canal (1 patient), and oropharynx (1 patient, who received HPPH only). The most frequent adverse events related to photodynamic therapy were mild to moderate edema (9 patients) and pain (3 patients). One patient developed a grade 3 fistula after salvage laryngectomy, and another patient developed a grade 3 wound infection and mandibular fracture. Phototoxicity reactions included 1 moderate photophobia and 2 mild to moderate skin burns (2 due to operating room spotlights and 1 due to the pulse oximeter). The highest laser light dose was 75 J/cm2. CONCLUSIONS AND RELEVANCE The adjuvant use of HPPH-photodynamic therapy and surgery for head and neck squamous cell carcinoma seems safe and deserves further study. PMID:23868427

  11. Efficient Photodynamic Therapy on Human Retinoblastoma Cell Lines

    PubMed Central

    Walther, Jan; Schastak, Stanislas; Dukic-Stefanovic, Sladjana; Wiedemann, Peter; Neuhaus, Jochen; Claudepierre, Thomas

    2014-01-01

    Photodynamic therapy (PDT) has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS) regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma. PMID:24498108

  12. Photodynamic therapy potentiates the paracrine endothelial stimulation by colorectal cancer

    NASA Astrophysics Data System (ADS)

    Lamberti, María Julia; Florencia Pansa, María; Emanuel Vera, Renzo; Belén Rumie Vittar, Natalia; Rivarola, Viviana Alicia

    2014-11-01

    Colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer death worldwide. Recurrence is a major problem and is often the ultimate cause of death. In this context, the tumor microenvironment influences tumor progression and is considered as a new essential feature that clearly impacts on treatment outcome, and must therefore be taken into consideration. Photodynamic therapy (PDT), oxygen, light and drug-dependent, is a novel treatment modality when CRC patients are inoperable. Tumor vasculature and parenchyma cells are both potential targets of PDT damage modulating tumor-stroma interactions. In biological activity assessment in photodynamic research, three-dimensional (3D) cultures are essential to integrate biomechanical, biochemical, and biophysical properties that better predict the outcome of oxygen- and drug-dependent medical therapies. Therefore, the objective of this study was to investigate the antitumor effect of methyl 5-aminolevulinic acid-PDT using a light emitting diode for the treatment of CRC cells in a scenario that mimics targeted tissue complexity, providing a potential bridge for the gap between 2D cultures and animal models. Since photodynamic intervention of the tumor microenvironment can effectively modulate the tumor-stroma interaction, it was proposed to characterize the endothelial response to CRC paracrine communication, if one of these two populations is photosensitized. In conclusion, we demonstrated that the dialogue between endothelial and tumor populations when subjected to lethal PDT conditions induces an increase in angiogenic phenotype, and we think that it should be carefully considered for the development of PDT therapeutic protocols.

  13. Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica

    PubMed Central

    Al-Qahtani, Ahmed; Alkahtani, Saad; Kolli, Bala; Tripathi, Pankaj; Dutta, Sujoy; Al-Kahtane, Abdullah A.; Jiang, Xiong-Jie; Ng, Dennis K. P.

    2016-01-01

    Photodynamic inactivation of Leishmania spp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency against Leishmania tropica promastigotes and axenic amastigotes in vitro. The uptake of these PCs by both Leishmania stages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation of Leishmania spp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitized Leishmania tropica strains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ∼650 nm) at a fluence of 1 to 2 J cm−2. Quantitative fluorescence assays based on the loss of GFP/CFSE from live Leishmania tropica showed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Leishmania tropica strains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation of Leishmania spp. for use as vaccines or vaccine carriers. PMID:26824938

  14. In-office Painless Aminolevulinic Acid Photodynamic Therapy: A Proof of Concept Study and Clinical Experience in More Than 100 Patients.

    PubMed

    Martin, George M

    2016-02-01

    To evaluate the efficacy, safety, and pain of in-office "painless" aminolevulinic acid photodynamic therapy aimed at decreasing treatment-associated pain in patients undergoing removal of actinic keratoses. Prospective split-face study comparing short aminolevulinic acid incubation times of 15 minutes followed by extended exposure (60 minutes) of continuous blue light versus conventional aminolevulinic acid photodynamic therapy. Prospective assessment of pain in patients undergoing in-office "painless" aminolevulinic acid photodynamic therapy. Clinical practice office. Three patients with actinic keratoses participated in the split-face study and 101 in the pain assessment study. Evaluations in the split-face study included removal of actinic keratoses, skin temperature, and pain measured on a 10-point visual analog scale. Pain was assessed using the visual analog scale in the pain assessment study. In the split-face study, in-office "painless" aminolevulinic acid photodynamic therapy resulted in a 52-percent reduction in lesions versus 44 percent for conventional aminolevulinic acid photodynamic therapy. Maximum pain scores of in-office "painless" aminolevulinic acid photodynamic therapy were all 0 at each time point, and the average score for conventional aminolevulinic acid photodynamic therapy was 7. Baseline skin temperatures increased from a baseline of 29 to 32°C to 34 to 35°C by minute 10 of blue light activation on both sides of the face. RESULTS from the pain assessment study indicated no or minimal (scores 0-2) pain in nearly all patients who received in-office "painless" aminolevulinic acid photodynamic therapy as monotherapy or in combination with 5-fluoruacil or imiquimod used as pretreatments. In-office "painless" aminolevulinic acid photodynamic therapy appears to be effective for removing actinic keratoses and is associated with little or no pain in nearly all patients. This procedure should be evaluated in large-scale controlled trials.

  15. Inorganic Nanoparticles for Photodynamic Therapy.

    PubMed

    Colombeau, L; Acherar, S; Baros, F; Arnoux, P; Gazzali, A Mohd; Zaghdoudi, K; Toussaint, M; Vanderesse, R; Frochot, C

    2016-01-01

    Photodynamic therapy (PDT) is a well-established technique employed to treat aged macular degeneration and certain types of cancer, or to kill microbes by using a photoactivatable molecule (a photosensitizer, PS) combined with light of an appropriate wavelength and oxygen. Many PSs are used against cancer but none of them are highly specific. Moreover, most are hydrophobic, so are poorly soluble in aqueous media. To improve both the transportation of the compounds and the selectivity of the treatment, nanoparticles (NPs) have been designed. Thanks to their small size, these can accumulate in a tumor because of the well-known enhanced permeability effect. By changing the composition of the nanoparticles it is also possible to achieve other goals, such as (1) targeting receptors that are over-expressed on tumoral cells or neovessels, (2) making them able to absorb two photons (upconversion or biphoton), and (3) improving singlet oxygen generation by the surface plasmon resonance effect (gold nanoparticles). In this chapter we describe recent developments with inorganic NPs in the PDT domain. Pertinent examples selected from the literature are used to illustrate advances in the field. We do not consider either polymeric nanoparticles or quantum dots, as these are developed in other chapters.

  16. Can nanotechnology potentiate photodynamic therapy?

    PubMed Central

    Huang, Ying-Ying; Sharma, Sulbha K.; Dai, Tianhong; Chung, Hoon; Yaroslavsky, Anastasia; Garcia-Diaz, Maria; Chang, Julie; Chiang, Long Y.

    2015-01-01

    Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposomes, lipoplexes, nanoemulsions, micelles, polymer nanoparticles (degradable and nondegradable), and silica nanoparticles. In some cases (fullerenes and quantum dots), the actual nanoparticle itself is the PS. Targeting ligands such as antibodies and peptides can be used to increase specificity. Gold and silver nanoparticles can provide plasmonic enhancement of PDT. Two-photon excitation or optical upconversion can be used instead of one-photon excitation to increase tissue penetration at longer wavelengths. Finally, after sections on in vivo studies and nanotoxicology, we attempt to answer the title question, “can nano-technology potentiate PDT?” PMID:26361572

  17. Functionalized Fullerenes in Photodynamic Therapy

    PubMed Central

    Huang, Ying-Ying; Sharma, Sulbha K.; Yin, Rui; Agrawal, Tanupriya; Chiang, Long Y.; Hamblin, Michael R.

    2014-01-01

    Since the discovery of C60 fullerene in 1985, scientists have been searching for biomedical applications of this most fascinating of molecules. The unique photophysical and photochemical properties of C60 suggested that the molecule would function well as a photosensitizer in photodynamic therapy (PDT). PDT uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that kill unwanted cells. However the extreme insolubility and hydrophobicity of pristine C60, mandated that the cage be functionalized with chemical groups that provided water solubility and biological targeting ability. It has been found that cationic quaternary ammonium groups provide both these features, and this review covers work on the use of cationic fullerenes to mediate destruction of cancer cells and pathogenic microorganisms in vitro and describes the treatment of tumors and microbial infections in mouse models. The design, synthesis, and use of simple pyrrolidinium salts, more complex decacationic chains, and light-harvesting antennae that can be attached to C60, C70 and C84 cages are covered. In the case of bacterial wound infections mice can be saved from certain death by fullerene-mediated PDT. PMID:25544837

  18. Dye Sensitizers for Photodynamic Therapy

    PubMed Central

    Ormond, Alexandra B.; Freeman, Harold S.

    2013-01-01

    Photofrin® was first approved in the 1990s as a sensitizer for use in treating cancer via photodynamic therapy (PDT). Since then a wide variety of dye sensitizers have been developed and a few have been approved for PDT treatment of skin and organ cancers and skin diseases such as acne vulgaris. Porphyrinoid derivatives and precursors have been the most successful in producing requisite singlet oxygen, with Photofrin® still remaining the most efficient sensitizer (quantum yield = 0.89) and having broad food and drug administration (FDA) approval for treatment of multiple cancer types. Other porphyrinoid compounds that have received approval from US FDA and regulatory authorities in other countries include benzoporphyrin derivative monoacid ring A (BPD-MA), meta-tetra(hydroxyphenyl)chlorin (m-THPC), N-aspartyl chlorin e6 (NPe6), and precursors to endogenous protoporphyrin IX (PpIX): 1,5-aminolevulinic acid (ALA), methyl aminolevulinate (MAL), hexaminolevulinate (HAL). Although no non-porphyrin sensitizer has been approved for PDT applications, a small number of anthraquinone, phenothiazine, xanthene, cyanine, and curcuminoid sensitizers are under consideration and some are being evaluated in clinical trials. This review focuses on the nature of PDT, dye sensitizers that have been approved for use in PDT, and compounds that have entered or completed clinical trials as PDT sensitizers. PMID:28809342

  19. Photodynamic therapy for esophageal tumors.

    PubMed

    McCaughan, J S; Nims, T A; Guy, J T; Hicks, W J; Williams, T E; Laufman, L R

    1989-01-01

    Between 1982 and 1987, 40 patients with esophageal tumors (19 adenocarcinomas, 19 squamous carcinomas, and two melanomas) in whom conventional treatments were unsuccessful were treated with photodynamic therapy (PDT) after injection with either hematoporphyrin derivative or dihematoporphyrin ether. Patients underwent endoscopy again two to three days and one month after PDT and as needed when symptoms recurred. At one month, the average minimal diameter opening of 28 assessable tumors increased from 6 to 9 mm. Of the 35 patients who could be evaluated one month after PDT, the average improvement in food intake was from a liquid to a soft diet. Average survival time (from time of first treatment) was 7.7 months (n = 17) for adenocarcinoma, 5.8 months (n = 12) for squamous cell carcinoma, and 25 months (n = 2) for melanoma. Two patients with stage I adenocarcinoma were alive with no evidence of disease at 11 and 23 months. One patient with stage I squamous cell cancer died 18 months after PDT, with recurrence of tumor above the treated area noted eight months after treatment. One patient with stage I melanoma died of a synchronous colon cancer 31 months after PDT, with no evidence of residual melanoma.

  20. Liposomes in topical photodynamic therapy.

    PubMed

    Dragicevic-Curic, Nina; Fahr, Alfred

    2012-08-01

    Topical photodynamic therapy (PDT) refers to topical application of a photosensitizer onto the site of skin disease which is followed by illumination and results in death of selected cells. The main problem in topical PDT is insufficient penetration of the photosensitizer into the skin, which limits its use to superficial skin lesions. In order to overcome this problem, recent studies tested liposomes as delivery systems for photosensitizers. This paper reviews the use of different types of liposomes for encapsulating photosensitizers for topical PDT. Liposomes should enhance the photosensitizers' penetration into the skin, while decreasing its absorption into systemic circulation. Only few photosensitizers have currently been encapsulated in liposomes for topical PDT: 5-aminolevulinic acid (5-ALA), temoporfin (mTHPC) and methylene blue. Investigated liposomes enhanced the skin penetration of 5-ALA and mTHPC, reduced their systemic absorption and reduced their cytotoxicity compared with free drugs. Their high tissue penetration should enable the treatment of deep and hyperkeratotic skin lesions, which is the main goal of using liposomes. However, liposomes still do not attract enough attention as drug carriers in topical PDT. In vivo studies of their therapeutic effectiveness are needed in order to obtain enough evidence for their potential clinical use as carriers for photosensitizers in topical PDT.

  1. Photodynamic therapy to treat periimplantitis.

    PubMed

    Bombeccari, Gian Paolo; Guzzi, Gianpaolo; Gualini, Federico; Gualini, Sara; Santoro, Franco; Spadari, Francesco

    2013-12-01

    : Periimplantitis is a bacterial complication after dental implants implantation. Photodynamic therapy (PDT) implies the use of low-power laser in combination with appropriate photosensitizer to increase the detoxification of the implant surfaces. Little information exists about PDT in the treatment of periimplantitis. A randomized comparative case-control study has been conducted with 20 patients and 20 controls to compare the efficacy of antimicrobial PDT versus surgical therapy in patients with periimplantitis, who have received dental implants with rough surfaces. In the surgery group, mucoperiosteal flap surgery was used with scaling on implant surfaces and debridement of granulation tissue. Microbiologic testing was evaluated before and after intervention treatment, at 12 and 24 weeks in the study subjects. Total anaerobic counts of bacteria did not differ significantly between patients assigned to receive PDT and those assigned to receive surgical therapy (mean, 95.2% and 80.85%, respectively). PDT was associated with a significant decrease in bleeding scores (P = 0.02) as well as inflammatory exudation (P = 0.001). Treatment with PDT in patients with periimplantitis was not associated with major reduction of total anaerobic bacteria on the rough surfaces of dental implants as compared with surgical therapy. A significantly lower proinflammatory index of periimplantitis was observed in the PDT group at 24 weeks of follow-up.

  2. Can nanotechnology potentiate photodynamic therapy?

    PubMed

    Huang, Ying-Ying; Sharma, Sulbha K; Dai, Tianhong; Chung, Hoon; Yaroslavsky, Anastasia; Garcia-Diaz, Maria; Chang, Julie; Chiang, Long Y; Hamblin, Michael R

    2012-03-01

    Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposomes, lipoplexes, nanoemulsions, micelles, polymer nanoparticles (degradable and nondegradable), and silica nanoparticles. In some cases (fullerenes and quantum dots), the actual nanoparticle itself is the PS. Targeting ligands such as antibodies and peptides can be used to increase specificity. Gold and silver nanoparticles can provide plasmonic enhancement of PDT. Two-photon excitation or optical upconversion can be used instead of one-photon excitation to increase tissue penetration at longer wavelengths. Finally, after sections on in vivo studies and nanotoxicology, we attempt to answer the title question, "can nano-technology potentiate PDT?"

  3. [Photodynamic therapy for severe myopia].

    PubMed

    Krebs, I; Binder, S; Stolba, U; Abri, A

    2004-01-01

    In the modern western world quality of life depends on the ability of reading. Our study was designed to prove the possibility of stabilization of reading acuity, central visual field and multifocal electroretinogram (mERG) after photodynamic therapy (PDT) in cases of pathologic myopia. In our study 20 eyes were included. At baseline, after 6 weeks,3 months and afterwards every 3 months we investigated distance acuity, reading acuity, 10 degrees static threshold perimetry, mERG, optical coherence tomography and fluorescence angiograophy. After 1 year 85% of eyes lost less than 1.5 lines of distance acuity, the reading acuity could be stabilized in 80%, the central visual field in 60% and the ERG in 55%. Patients less than 60 years old showed better results than older patients. PDT was found to be very effective because the membranes were classic without any occult parts in 100%. They were small and superficially located and the scotomas were small. There was a good correlation between functional and morphological results.

  4. Photodynamic therapy for skin cancer

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Julius, Clark E.; Hartman, Donald L.

    1996-04-01

    Photodynamic therapy was used to treat 111 lesions in 27 cases with squamous and basal cell carcinoma. There were 82 squamous cell carcinomas and 29 basal cell carcinomas. Photofrin was administered intravenously at either 1.0 mg/kg or 0.75 mg/kg. An argon/dye laser was used to deliver 630 nm light to the lesion superficially at either 215 J/cm2 or 240 J/cm2. In some cases the laser light was delivered both superficially and interstitially. The laser light was delivered two to four days after the Photofrin injection. There were 105 complete responses and 5 partial responses. One patient was lost to follow-up. Among partial responses were basal cell carcinoma on the tip of the nose and morphea basal cell carcinoma of the left cheek. Another partial response occurred in a basal cell carcinoma patient where insufficient margins were treated due to the proximity to the eye. When 0.75 mg/kg drug dose was used, the selectivity of tumor necrosis was improved. Decreased period of skin photosensitivity was documented in some cases.

  5. Computer model for photodynamic therapy of the prostate

    NASA Astrophysics Data System (ADS)

    Jankun, Jerzy; Zaim, Amjad; Jankun-Kelly, Monika; Keck, Rick W.; Selman, Steven H.

    2000-05-01

    Photodynamic therapy (PDT) is an emerging minimally invasive treatment that can be employed in many human diseases including prostate cancer. This treatment of human prostate cancer depends on the localization of a drug (photosensitizer) into the prostate. The photosensitizer is activated by high- energy laser light and the active drug destroys cancerous tissue. The success of PDT depends on precise placement of light diffusers in the prostate. Since the prostate is irregular in shape, with different dimensions, a transurethral light delivery that is circular in distribution cannot be used in most cases of carcinoma of the prostate. Sources of light and their spatial distribution must be tailored to each individual patient. More uniform, therapeutic light distribution can be achieved by interstitial light irradiation. In this case, the light is delivered by diffusers placed within the substance of the prostate parallel to the urethra at a distance optimized to deliver adequate levels of light and to create the desired photodynamic effect. For this reason, we are developing a computer program that can calculate the distribution of energy depending on the number of light sources placed in the prostate, their position in the gland, the dimension of the prostate, and the attenuation coefficient. A patient's three-dimensional prostate model is built based on ultrasound images. Then the program is being designated to predict the best set of parameters and position of light diffusers in space, displays them in graphical form or in numerical form. The program is amenable for interfacing with robotic treatment systems.

  6. Optical Imaging, Photodynamic Therapy and Optically-Triggered Combination Treatments

    PubMed Central

    Hasan, Tayyaba

    2015-01-01

    Optical imaging is becoming increasingly promising for real-time image-guided resections and combined with photodynamic therapy (PDT), a photochemistry-based treatment modality, optical approaches can be intrinsically “theranostic”. Challenges in PDT include precise light delivery, dosimetry and photosensitizer tumor localization to establish tumor selectivity, and like all other modalities, incomplete treatment and subsequent activation of molecular escape pathways are often attributable to tumor heterogeneity. Key advances in molecular imaging, target-activatable photosensitizers and optically active nanoparticles that provide both cytotoxicity and a drug release mechanism, have opened exciting avenues to meet these challenges. The focus of the review is optical imaging in the context of PDT but the general principles presented are applicable to many of the conventional approaches to cancer management. We highlight the role of optical imaging in providing structural, functional and molecular information regarding photodynamic mechanisms of action, thereby advancing PDT and PDT-based combination therapies of cancer. These advances represent a PDT renaissance with increasing applications of clinical PDT as a frontline cancer therapy working in concert with fluorescence-guided surgery, chemotherapy and radiation. PMID:26049699

  7. Laser effect in photodynamic therapy of tumors

    NASA Astrophysics Data System (ADS)

    Ion, Rodica-Mariana; Brezoi, Dragos-Viorel; Neagu, Monica; Manda, Gina; Constantin, Carolina

    2007-03-01

    Photodynamic therapy is a method that provides a reasonable alternative to other treatment modalities for patients with certain cancers, and in some cases may be the preferred treatment. The therapy implies the intravenous administration of a light-sensitive substance, the photosensitizer. The used sensitizer must absorb at long wavelength. For these purposes, the carbon dioxide laser, He-Ne and the argon laser are particularly suitable. In this study we evaluate in vitro the cytotoxic activity of three synthesized metallo-phthalocyanines with absorption bands in the red part of the spectrum: zinc-di-sulphonated phthalocyanine (ZnS IIPc), zinc-tri-sulphonated phthalocyanine (ZnS 3Pc) and zinc-tetrasulphonated phthalocyanine (ZnS 4Pc). Some cellular models have been used in this paper, in order to optimize the conditions of this method, as we are presenting in this paper (LSR-SF(SR) - transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin; LSCC-SF(Mc29) - transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29, MCF-7 cell line (human breast adenocarcinoma) derived from a patient with metastatic breast cancer, 8-MG-BA - glioblastoma multiforme 8-MG-BA, K562 - lymphoblastic human cell line, LLC-WRC 256 - Walker epithelial carcinoma. Activation of these photosensitizers retained in the cancerous cells, by red light emitted from a He-Ne laser at λ= 632.8 nm laser system, or by a diode laser emitting at 672 nm, produces a photochemical reaction that results in the selective destruction of tumor cells.

  8. Synergistic interaction of photodynamic treatment with the sensitizer aluminum phthalocyanine and hyperthermia on loss of clonogenicity of CHO cells.

    PubMed

    Rasch, M H; Tijssen, K; VanSteveninck, J; Dubbelman, T M

    1996-09-01

    When CHO cells were exposed to hyperthermia and subsequently to photodynamic treatment, the combined effects were additive but in the reverse sequence the interaction was synergistic. The synergistic interaction comprised two quite different components: (1) photodynamically induced sensitization of cellular proteins and/or supramolecular structures for thermal inactivation and (2) a photodynamically induced inhibition of the cellular repair system for sublethal thermal damage. The first component of the synergistic interaction was reflected by a change of the Arrhenius parameters of thermal cell killing. A lowering of the activation energy of this process was responsible for the synergistic interactions, whereas a concomitant decrease of the frequency factor, opposing this effect, actually caused a much lower degree of synergism at higher temperatures. This component of the synergistic interaction did not respond to the insertion of an intermediate incubation period between the two treatments. The second component of the synergistic interaction, viz the interference with the ability of cells to survive sublethal thermal damage, was reversible, as an intermediate incubation between photodynamic treatment and hyperthermia resulted in its repair. The photodynamically induced inhibition of the ability of cells to survive sublethal thermal damage was not related to ATP or glutathione depletion, inhibition of de novo protein synthesis or impairment of degradation of damaged protein molecules. Restoration of the repair system for sublethal damage depended on a metabolic process and required free intracellular Ca2+, suggesting that a cell signaling pathway may be involved. Thus, in a practical sense the magnitude of the synergistic interaction between photodynamic treatment and hyperthermia depends on the length of the interval between the two treatments and on the temperature and duration of the subsequent thermal treatment. This may have significant consequences for the

  9. Optimizing indoor illumination quality and energy efficiency using a spectrally tunable lighting system to augment natural daylight.

    PubMed

    Hertog, W; Llenas, A; Carreras, J

    2015-11-30

    This article demonstrates the benefits of complementing a daylight-lit environment with a spectrally tunable illumination system. The spectral components of daylight present in the room are measured by a low-cost miniature spectrophotometer and processed through a number of optimization algorithms, carefully trading color fidelity for energy efficiency. Spectrally-tunable luminaires provide only those wavelengths that ensure that either the final illumination spectrum inside the room is kept constant or carefully follows the dynamic spectral pattern of natural daylight. Analyzing the measured data proves that such a hybrid illumination system brings both unprecendented illumination quality and significant energy savings.

  10. Reduction of lighting energy consumption in office buildings through improved daylight design

    NASA Astrophysics Data System (ADS)

    Papadouri, Maria Violeta Prado

    This study aims to investigate the lighting energy consumption in office buildings and the options for its reduction. One way to reduce lighting energy consumption is by improving the daylight design. A better use of daylight in buildings might be an outcome from the effort made in different directions. Like the improvement of a building's fabric and layout, the materials, even the furniture in a space influences the daylight quality considerably. Also very important role in lighting energy consumption has the development of more efficient lighting technology like the electric lighting control systems, such as photo sensors and occupancy sensors. Both systems are responsible so that the electric light is not used without reason. As the focusing area of this study, is to find ways to improve the daylight use in buildings, a consequent question is which are the methods provided in order to achieve this The accuracy of the methodology used is also an important issue in order to achieve reliable results. The methodology applied in this study includes the analysis of a case study by taking field measurements and computer simulations. The first stage included gathering information about the lighting design of the building and monitoring the light levels, both from natural and from the electric lighting. The second stage involved testing with computer simulations, different parameters that were expected to improve the daylight exploitation of the specific area. The results of the field measurements showed that the main problems of the space were the low natural light levels and the poor daylight distribution. The annual electric lighting energy consumption, as it was calculated with the use of computer simulations, represented the annual energy consumption of a typical air-conditioned prestige office building (energy consumption guide 19, for energy use in offices, 2000). After several computer simulations, the results showed that initial design parameters of the building

  11. Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections

    PubMed Central

    Baltazar, Ludmila M.; Ray, Anjana; Santos, Daniel A.; Cisalpino, Patrícia S.; Friedman, Adam J.; Nosanchuk, Joshua D.

    2015-01-01

    Skin mycoses are caused mainly by dermatophytes, which are fungal species that primarily infect areas rich in keratin such as hair, nails, and skin. Significantly, there are increasing rates of antimicrobial resistance among dermatophytes, especially for Trichophyton rubrum, the most frequent etiologic agent worldwide. Hence, investigators have been developing new therapeutic approaches, including photodynamic treatment. Photodynamic therapy (PDT) utilizes a photosensitive substance activated by a light source of a specific wavelength. The photoactivation induces cascades of photochemicals and photobiological events that cause irreversible changes in the exposed cells. Although photodynamic approaches are well established experimentally for the treatment of certain cutaneous infections, there is limited information about its mechanism of action for specific pathogens as well as the risks to healthy tissues. In this work, we have conducted a comprehensive review of the current knowledge of PDT as it specifically applies to fungal diseases. The data to date suggests that photodynamic treatment approaches hold great promise for combating certain fungal pathogens, particularly dermatophytes. PMID:25821448

  12. Application of benzo[a]phenoxazinium chlorides in Antimicrobial Photodynamic Therapy of Candida albicans biofilms.

    PubMed

    Lopes, Marisa; Alves, Carlos Tiago; Rama Raju, B; Gonçalves, M Sameiro T; Coutinho, Paulo J G; Henriques, Mariana; Belo, Isabel

    2014-12-01

    The use of Antimicrobial Photodynamic Therapy (APDT) as a new approach to treat localized Candida infections is an emerging and promising field nowadays. The aim of this study was to verify the efficacy of photodynamic therapy using two new benzo[a]phenoxazinium photosensitizers against Candida albicans biofilms: N-(5-(3-hydroxypropylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSc) and N-(5-(11-hydroxyundecylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSd). The photodynamic activity of dyes against C. albicans biofilms was evaluated by incubating biofilms with dyes in the range of 100-300 μM for 3 or 18 h followed by illumination at 12 or 36 J cm(-2), using a xenon arc lamp (600 ± 2 nm). A total photoinactivation of C. albicans biofilm cells was achieved using 300 μM of FSc with 18 h of incubation, followed by illumination at 36 J cm(-2). Contrarily, FSd had insignificant effect on biofilms inactivation by APDT. The higher uptake of FSc than FSd dye by biofilms during the dark incubation may explain the greater photodynamic effectiveness achieved with FSc. The results obtained stresses out the FSc-mediated APDT potential use to treat C. albicans infections.

  13. Photodynamic application in neurosurgery: present and future

    NASA Astrophysics Data System (ADS)

    Kostron, Herwig

    2009-06-01

    Photodynamic techniques such as photodynamic diagnosis (PDD), fluorescence guided tumor resection (FGR) and photodynamic therapy (PDT) are currently undergoing intensive clinical investigations as adjunctive treatment for malignant brain tumours. This review provides an overview on the current clinical data and trials as well as on photosensitisers, technical developments and indications for photodynamic application in Neurosurgery. Furthermore new developments and clinical significance of FGR for neurosurgery will be discussed. Over 1000 patients were enrolled in various clinical phase I/II trials for PDT for malignant brain tumours. Despite various treatment protocols, variation of photosensitisers and light dose there is a clear trend towards prolonging median survival after one single PDT as compared to conventional therapeutic modalities. The median survival after PDT for primary glioblastoma multiforme WHO IV was 19 months and for recurrent GBM 9 months as compared to standard convential treatment which is 15 months and 3 months, respectively. FGR in combination with adjunctive radiation was significantly superior to standard surgical resection followed by radiation. The combination of FGR/PDD and intraoperative PDT increased significantly survival in recurrent glioblastoma patients. The combination of PDD/ FGR and PDT offers an exciting approach to the treatment of malignant brain tumours "to see and to treat." PDT was generally well tolerated and side effects consisted of occasionally increased intracranial pressure and prolonged skin sensitivity against direct sunlight. This review covers the current available data and draws the future potential of PDD and PDT for its application in neurosurgery.

  14. Comparison of three light doses in the photodynamic treatment of actinic keratosis using mathematical modeling

    NASA Astrophysics Data System (ADS)

    Vignion-Dewalle, Anne-Sophie; Betrouni, Nacim; Tylcz, Jean-Baptiste; Vermandel, Maximilien; Mortier, Laurent; Mordon, Serge

    2015-05-01

    Photodynamic therapy (PDT) is an emerging treatment modality for various diseases, especially for cancer therapy. Although high efficacy is demonstrated for PDT using standardized protocols in nonhyperkeratotic actinic keratoses, alternative light doses expected to increase efficiency, to reduce adverse effects or to expand the use of PDT, are still being evaluated and refined. We propose a comparison of the three most common light doses in the treatment of actinic keratosis with 5-aminolevulinic acid PDT through mathematical modeling. The proposed model is based on an iterative procedure that involves determination of the local fluence rate, updating of the local optical properties, and estimation of the local damage induced by the therapy. This model was applied on a simplified skin sample model including an actinic keratosis lesion, with three different light doses (red light dose, 37 J/cm2, 75 mW/cm2, 500 s blue light dose, 10 J/cm2, 10 mW/cm2, 1000 s and daylight dose, 9000 s). Results analysis shows that the three studied light doses, although all efficient, lead to variable local damage. Defining reference damage enables the nonoptimal parameters for the current light doses to be refined and the treatment to be more suitable.

  15. Modelling topical photodynamic therapy treatment including the continuous production of Protoporphyrin IX

    NASA Astrophysics Data System (ADS)

    Campbell, C. L.; Brown, C. T. A.; Wood, K.; Moseley, H.

    2016-11-01

    Most existing theoretical models of photodynamic therapy (PDT) assume a uniform initial distribution of the photosensitive molecule, Protoporphyrin IX (PpIX). This is an adequate assumption when the prodrug is systematically administered; however for topical PDT this is no longer a valid assumption. Topical application and subsequent diffusion of the prodrug results in an inhomogeneous distribution of PpIX, especially after short incubation times, prior to light illumination. In this work a theoretical simulation of PDT where the PpIX distribution depends on the incubation time and the treatment modality is described. Three steps of the PpIX production are considered. The first is the distribution of the topically applied prodrug, the second in the conversion from the prodrug to PpIX and the third is the light distribution which affects the PpIX distribution through photobleaching. The light distribution is modelled using a Monte Carlo radiation transfer model and indicates treatment depths of around 2 mm during daylight PDT and approximately 3 mm during conventional PDT. The results suggest that treatment depths are not only limited by the light penetration but also by the PpIX distribution.

  16. Comparison of three light doses in the photodynamic treatment of actinic keratosis using mathematical modeling.

    PubMed

    Vignion-Dewalle, Anne-Sophie; Betrouni, Nacim; Tylcz, Jean-Baptiste; Vermandel, Maximilien; Mortier, Laurent; Mordon, Serge

    2015-05-01

    Photodynamic therapy (PDT) is an emerging treatment modality for various diseases, especially for cancer therapy. Although high efficacy is demonstrated for PDT using standardized protocols in nonhyperkeratotic actinic keratoses, alternative light doses expected to increase efficiency, to reduce adverse effects or to expand the use of PDT, are still being evaluated and refined. We propose a comparison of the three most common light doses in the treatment of actinic keratosis with 5-aminolevulinic acid PDT through mathematical modeling. The proposed model is based on an iterative procedure that involves determination of the local fluence rate, updating of the local optical properties, and estimation of the local damage induced by the therapy. This model was applied on a simplified skin sample model including an actinic keratosis lesion, with three different light doses (red light dose, 37 J∕cm2, 75 mW∕cm2, 500 s; blue light dose, 10 J∕cm2, 10 mW∕cm2, 1000 s; and daylight dose, 9000 s). Results analysis shows that the three studied light doses, although all efficient, lead to variable local damage. Defining reference damage enables the nonoptimal parameters for the current light doses to be refined and the treatment to be more suitable.

  17. Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy.

    PubMed

    Li, Ke; Qiu, Ling; Liu, Qingzhu; Lv, Gaochao; Zhao, Xueyu; Wang, Shanshan; Lin, Jianguo

    2017-09-01

    In order to improve the efficacy of photodynamic therapy (PDT), biotin was axially conjugated with silicon(IV) phthalocyanine (SiPc) skeleton to develop a new tumor-targeting photosensitizer SiPc-biotin. The target compound SiPc-biotin showed much higher binding affinity toward BR-positive (biotin receptor overexpressed) HeLa human cervical carcinoma cells than its precursor SiPc-pip. However, when the biotin receptors of HeLa cells were blocked by free biotin, >50% uptake of SiPc-biotin was suppressed, demonstrating that SiPc-biotin could selectively accumulate in BR-positive cancer cells via the BR-mediated internalization. The confocal fluorescence images further confirmed the target binding ability of SiPc-biotin. As a consequence of specificity of SiPc-biotin toward BR-positive HeLa cells, the photodynamic effect was also largely dependent on the BR expression level of HeLa cells. The photodynamic activities of SiPc-biotin against HeLa cells were dramatically reduced when the biotin receptors were blocked by the free biotin (IC50: 0.18μM vs. 0.46μM). It is concluded that SiPc-biotin can selectively damage BR-positive cancer cells under irradiation. Furthermore, the dark toxicity of SiPc-biotin toward human normal liver cell lines LO2 was much lower than that of its precursor SiPc-pip. The targeting photodynamic activity and low dark toxicity suggest that SiPc-biotin is a promising photosensitizer for tumor-targeting photodynamic therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. pH-responsive metallo-supramolecular nanogel for synergistic chemo-photodynamic therapy.

    PubMed

    Yao, Xuemei; Chen, Li; Chen, Xiaofei; Xie, Zhigang; Ding, Jianxun; He, Chaoliang; Zhang, Jingping; Chen, Xuesi

    2015-10-01

    Benefited from the high orientation of coordinated interaction, metallo-supramolecular materials have attracted enormous interest in many fields. Herein, a novel metallo-supramolecular nanogel (SNG)-based drug delivery system for synergistic chemo-photodynamic therapy is explored to enhance anticancer efficacy. It is fabricated by the metallo-supramolecular-coordinated interaction between tetraphenylporphyrin zinc (Zn-Por) and histidine. It can respond to tumor acid microenvironment to release the co-delivered anticancer drug and photosensitizer to kill the lesion cells. Zn-Por moieties in SNG keep the photosensitivity in the range of visible wavelength and possess the ability of generating active oxygen species for photodynamic therapy. The drug-loaded SNG provides a di-functional platform for chemotherapy and photodynamic therapy. Compared with the single chemotherapy of free doxorubicine (DOX) or photodynamic therapy of Zn-Por in SNG, DOX-loaded SNG with irradiation shows higher in vitro cytotoxicity and in vivo anticancer therapeutic activity, endowing the SNG with great potential in cancer treatments. A combination of multiple non-cross-resistant anticancer agents has been widely applied clinically. Applying multiple drugs with different molecular targets can raise the genetic barriers and delay the cancer adaption process. Multiple drugs targeting different cellular pathways can function synergistically, giving higher therapeutic efficacy and target selectivity. Overall, developing a combination therapeutic approach might even be the key to enhance anticancer efficacy and overcome chemo-resistance. Herein, a novel metallo-supramolecular nanogel (SNG) is fabricated by the metallo-supramolecular-coordinated interaction between tetraphenylporphyrin zinc (Zn-Por) and histidine. The DOX-loaded SNG provides a di-functional platform for chemotherapy and photodynamic therapy because it can respond to tumor acid microenvironment to release the co-delivered anticancer

  19. Mechanisms of Resistance to Photodynamic Therapy

    PubMed Central

    Casas, Adriana; Di Venosa, Gabriela; Hasan, Tayyaba; Batlle, Alcira

    2013-01-01

    Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells. The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization. Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms. In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells. PMID:21568910

  20. Conjugation of 2-(1'-hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to carbohydrates changes its subcellular distribution and enhances photodynamic activity in vivo.

    PubMed

    Zheng, Xiang; Morgan, Janet; Pandey, Suresh K; Chen, Yihui; Tracy, Erin; Baumann, Heinz; Missert, Joseph R; Batt, Carrie; Jackson, Jennifer; Bellnier, David A; Henderson, Barbara W; Pandey, Ravindra K

    2009-07-23

    The carbohydrate moieties on conjugating with 3-(1'-hexyloxyethyl)-3-devinyl pyropeophorbide-a (HPPH) altered the uptake and intracellular localization from mitochondria to lysosomes. In vitro, HPPH-Gal 9 PDT showed increased PDT efficacy over HPPH-PDT as detectable by the oxidative cross-linking of nonphosphorylated STAT3 and cell killing in ABCG2-expressing RIF cells but not in ABCG2-negative Colon26 cells. This increased efficacy in RIF cells could at least partially be attributed to increased cellular accumulation of 9, suggesting a role of the ABCG2 transporter for which HPPH is a substrate. While such differences in the accumulation in HPPH derivatives by tumor tissue in vivo were not detectable, 9 still showed an elevated light dose-dependent activity compared to HPPH in mice bearing RIF as well as Colon26 tumors. Further optimization of the carbohydrate conjugates at variable treatment parameters in vivo is currently underway.

  1. Conjugation of 2-(1′-Hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to Carbohydrates Changes its Subcellular Distribution and Enhances Photodynamic Activity in Vivo†

    PubMed Central

    Zheng, Xiang; Morgan, Janet; Pandey, Suresh K.; Chen, Yihui; Tracy, Erin; Baumann, Heinz; Missert, Joseph R.; Batt, Carrie; Jackson, Jennifer; Bellnier, David A.; Henderson, Barbara W.; Pandey, Ravindra K.

    2010-01-01

    The carbohydrate moieties on conjugating with 3-(1′-hexyloxyethyl)-3-devinyl pyropeophorbide-a (HPPH) altered the uptake and intracellular localization from mitochondria to lysosomes. In vitro, HPPH-Gal 9 PDT showed increased PDT efficacy over HPPH–PDT as detectable by the oxidative cross-linking of nonphosphorylated STAT3 and cell killing in ABCG2-expressing RIF cells but not in ABCG2-negative Colon26 cells. This increased efficacy in RIF cells could at least partially be attributed to increased cellular accumulation of 9, suggesting a role of the ABCG2 transporter for which HPPH is a substrate. While such differences in the accumulation in HPPH derivatives by tumor tissue in vivo were not detectable, 9 still showed an elevated light dose-dependent activity compared to HPPH in mice bearing RIF as well as Colon26 tumors. Further optimization of the carbohydrate conjugates at variable treatment parameters in vivo is currently underway. PMID:19507863

  2. Simultaneous two-photon excitation of photodynamic therapy agents

    NASA Astrophysics Data System (ADS)

    Wachter, Eric A.; Partridge, W. P., Jr.; Fisher, Walter G.; Dees, Craig; Petersen, Mark G.

    1998-07-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type I and type II photodynamic therapy (PDT) agents are examined. In general, while SPE and TPE selection rules may be somewhat different, the excited state photochemical properties are equivalent for both modes of excitation. In vitro promotion of a two-photon photodynamic effect is demonstrated using bacterial and human breast cancer models. These results suggest that use of TPE may be beneficial for PDT, since the technique allows replacement of visible or ultraviolet excitation with non- damaging near infrared light. Further, a comparison of possible excitation sources for TPE indicates that the titanium:sapphire laser is exceptionally well suited for non- linear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non-specific biological damage.

  3. Merocyanine-540 mediated photodynamic effects on Staphylococcus epidermidis biofilms

    NASA Astrophysics Data System (ADS)

    Sbarra, Maria Sonia; Di Poto, Antonella; Saino, Enrica; Visai, Livia; Minzioni, Paolo; Bragheri, Francesca; Cristiani, Ilaria

    2009-07-01

    Staphylococci are important causes of nosocomial and medical-device-related infections. Their virulence is attributed to the elaboration of biofilms that protect the organisms from immune system clearance and to increased resistance to phagocytosis and antibiotics. Photodynamic treatment (PDT) has been proposed as an alternative approach for the inactivation of bacteria in biofilms. In this study, we evaluated the antimicrobial activity of merocyanine 540 (MC 540), a photosensitizing dye that is used for purging malignant cells from autologous bone marrow grafts, against Staphylococcus epidermidis biofilms. We evaluated the effect of the combined photodynamic action of MC 540 and 532 nm laser on the viability and structure of biofilms of two Staphylococcus epidermidis strains. Significant inactivation of cells was observed in the biofilms treated with MC-540 and then exposed to laser radiation. Furthermore we found that the PDT effect, on both types of cells, was significantly dependent on both the light-dose and on the impinging lightintensity. Disruption of PDT-treated biofilm was confirmed by scanning electron microscopy (SEM).

  4. Photodynamic therapy: a review of applications in neurooncology and neuropathology

    NASA Astrophysics Data System (ADS)

    Uzdensky, Anatoly B.; Berezhnaya, Elena; Kovaleva, Vera; Neginskaya, Marya; Rudkovskii, Mikhail; Sharifulina, Svetlana

    2015-06-01

    Photodynamic therapy (PDT) effect is a promising adjuvant modality for diagnosis and treatment of brain cancer. It is of importance that the bright fluorescence of most photosensitizers provides visualization of brain tumors. This is successfully used for fluorescence-guided tumor resection according to the principle "to see and to treat." Non-oncologic application of PDT effect for induction of photothrombotic infarct of the brain tissue is a well-controlled and reproducible stroke model, in which a local brain lesion is produced in the predetermined brain area. Since normal neurons and glial cells may also be damaged by PDT and this can lead to unwanted neurological consequences, PDT effects on normal neurons and glial cells should be comprehensively studied. We overviewed the current literature data on the PDT effect on a range of signaling and epigenetic proteins that control various cell functions, survival, necrosis, and apoptosis. We hypothesize that using cell-specific inhibitors or activators of some signaling proteins, one can selectively protect normal neurons and glia, and simultaneously exacerbate photodynamic damage of malignant gliomas.

  5. Photodynamic evaluation of tetracarboxy-phthalocyanines in model systems.

    PubMed

    Alonso, Lais; Sampaio, Renato N; Souza, Thalita F M; Silva, Rodrigo C; Neto, Newton M Barbosa; Ribeiro, Anderson O; Alonso, Antonio; Gonçalves, Pablo J

    2016-08-01

    The present work reports the synthesis, photophysical and photochemical characterization and photodynamic evaluation of zinc, aluminum and metal free-base tetracarboxy-phthalocyanines (ZnPc, AlPc and FbPc, respectively). To evaluate the possible application of phthalocyanines as a potential photosensitizer the photophysical and photochemical characterization were performed using aqueous (phosphate-buffered solution, PBS) and organic (dimethyl sulfoxide, DMSO) solvents. The relative lipophilicity of the compounds was estimated by the octanol-water partition coefficient and the photodynamic activity evaluated through the photooxidation of a protein and photohemolysis. The photooxidation rate constants (k) were obtained and the hemolytic potential was evaluated by the maximum percentage of hemolysis achieved (Hmax) and the time (t50) to reach 50% of the Hmax. Although these phthalocyanines are all hydrophilic and possess very low affinity for membranes (log PO/W=-2.0), they led to significant photooxidation of bovine serum albumin (BSA) and photohemolysis. Our results show that ZnPc was the most efficient photosensitizer, followed by AlPc and FbPc; this order is the same as the order of the triplet and singlet oxygen quantum yields (ZnPc>AlPc>FbPc). Furthermore, together, the triplet, fluorescence and singlet oxygen quantum yields of zinc tetracarboxy-phthalocyanines suggest their potential for use in theranostic applications, which simultaneously combines photodiagnosis and phototherapy.

  6. Applications of photothermic methods in photodynamic therapy investigations

    NASA Astrophysics Data System (ADS)

    Frąckowiak, D.; Dudkowiak, A.; Wiktorowicz, K.

    2003-06-01

    The applications of steady state photoacoustic and time resolved photothermal methods are carried out in our laboratory. Based on these methods, the selection of optimal sensitizers for photodynamic therapy and photodynamic diagnosis of cancer were described. Additionally, in order to establish the fate of absorbed energy, the absorption and fluorescence spectra were measured. All spectra were measure using natural and/or linearly polarized light because of polarized spectroscopy delivers information about the sample structures. Spectral and photochemical properties of selected sensitizers (merocyanines, porphyrines and phthalocyanines) were investigated. All dyes were first investigated in model systems (fluid solutions or rigid matrix) and later incorporated into resting or stimulated cells as well as into cancer cells delivered from cell lines. Stimulated cells could serve as models of malignant tissue and the properties of these cells at various procedures of stimulation were compared. It was shown that steady state photoacoustic, which is less perturbed by scattering than absorption, is very useful in the establishment of the efficiency of sensitizer incorporation into cells whereas a time resolved photothermal method (laser induced optoacoustic spectroscopy) enabled the establishment of a yield of dye triplet states generation. The triplet states are very active in photochemical reactions. Therefore, on the basis of their yield, it is possible to predict the efficiency of light induced lesions of malignant cells.

  7. Ground-based electro-optical surveillance of satellites in daylight by detection of reflected sunlight

    NASA Astrophysics Data System (ADS)

    Rork, E. W.; Bergemann, R. J.; Lin, S. S.; Sorvari, J. M.; Yakutis, A. J.

    An MIT Lincoln Laboratory computer-controlled 31-in. f/5 telescope, used with a readily-available silicon vidicon TV camera and a video processing system, can easily acquire and track low altitude satellites during daytime by detection of reflected sunlight to a limiting magnitude of 8.3 mag. On Oct. 22, 1981, a total of 20 satellite tracks on 18 different satellites was achieved in the daytime, and accurate positional data on 13 of the tracks were sent to the NORAD Space Defense Center. This demonstrated proof-of-concept for a daylight mission for the new Air Force Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) system. Experiments in daylight space surveillance indicated that the atmosphere is cluttered with small objects which have to be discriminated from satellites if the trajectory of the satellite is not known. A parallax apparatus was constructed which successfully accomplished this.

  8. Multiframe blind deconvolution for imaging in daylight and strong turbulence conditions

    NASA Astrophysics Data System (ADS)

    Hart, Michael; Jefferies, Stuart; Hope, Douglas; Hege, E. Keith; Briguglio, Runa; Pinna, Enrico; Puglisi, Alfio; Quiros, Fernando; Xompero, Marco

    2011-09-01

    We describe results from new computational techniques to extend the reach of large ground-based optical telescopes, enabling high resolution imaging of space objects under daylight conditions. Current state-of-the-art systems, even those employing adaptive optics, dramatically underperform in such conditions because of strong turbulence generated by diurnal solar heating of the atmosphere, characterized by a ratio of telescope diameter to Fried parameter as high as 70. Our approach extends previous advances in multi-frame blind deconvolution (MFBD) by exploiting measurements from a wavefront sensor recorded simultaneously with high-cadence image data. We describe early results with the new algorithm which may be used with seeing-limited image data or as an adjunct to partial compensation with adaptive optics to restore imaging to the diffraction limit even under the extreme observing conditions found in daylight.

  9. Multi-Frame Myopic Deconvolution for Imaging in Daylight and Strong Turbulence Conditions

    NASA Astrophysics Data System (ADS)

    Jefferies, S.; Hart, M.; Hope, D.; Hege, E.; Briguglio, R.; Pinna, E.; Puglisi, A.; Quiros, F.; Xompero, M.

    2011-09-01

    We describe results from new computational techniques to extend the reach of large ground-based optical telescopes, enabling high resolution imaging of space objects under daylight conditions. Current state-of-the-art systems, even those employing adaptive optics, dramatically underperform in such conditions because of strong turbulence generated by diurnal solar heating of the atmosphere, characterized by a ratio of telescope diameter to Fried parameter as high as 70. Our approach extends previous advances in multi-frame blind deconvolution (MFBD) by exploiting measurements from a wavefront sensor recorded simultaneously with high-cadence image data. We describe early results with the new algorithm which may be used with seeing-limited image data or as an adjunct to partial compensation with adaptive optics to restore imaging to the diffraction limit even under the extreme observing conditions found in daylight.

  10. Effects of daylight-saving time changes on stock market volatility: a comment.

    PubMed

    Kamstra, Mark J; Kramer, Lisa A; Levi, Maurice D

    2010-12-01

    In a recent article in this journal, Berument, Dogan, and Onar (2010) challenged the existence of the previously documented daylight-saving effect. Kamstra, Kramer, and Levi's original finding (2000) was that average stock market returns on Mondays following time changes are economically and statistically significantly lower than typical Monday returns. Kamstra, et al. hypothesized that the effect may arise due to heightened anxiety or risk aversion on the part of market participants after they experience a 1-hr. disruption in their sleep habits, in accordance with prior findings in the psychology literature linking sleep desynchronosis with anxiety. Berument, et al. replicated the original findings using ordinary least squares estimation, but when they modeled the mean of returns using a method prone to producing biased estimates, they obtained puzzling results. The analysis here, based on standard, unbiased modeling techniques, shows that the daylight-saving effect remains intact in the U.S.

  11. Flight directions of passerine migrants in daylight and darkness: A radar and direct visual study

    NASA Technical Reports Server (NTRS)

    Gauthreaux, S. A., Jr.

    1972-01-01

    The application of radar and visual techniques to determine the migratory habits of passerine birds during daylight and darkness is discussed. The effects of wind on the direction of migration are examined. Scatter diagrams of daytime and nocturnal migration track directions correlated with wind direction are presented. It is concluded that migratory birds will fly at altitudes where wind direction and migratory direction are nearly the same. The effects of cloud cover and solar obscuration are considered negligible.

  12. Driver behaviour data linked with vehicle, weather, road surface, and daylight data.

    PubMed

    Hjelkrem, Odd André; Ryeng, Eirin Olaussen

    2017-02-01

    In this data set, vehicle observations have been linked to data containing weather and road surface conditions. A total of 311 908 observations are collected and classified in categories of precipitation type, road status information, and daylight condition. The data is collected for a long period of time, so that several different weather situations are present, ranging from dry summer to adverse winter weather conditions.

  13. Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer

    SciTech Connect

    Zuo, Wangda; McNeil, Andrew; Wetter, Michael; Lee, Eleanor S.

    2013-05-23

    Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can take hours or even days using a personal computer. This paper describes how to accelerate the matrix multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was implemented in parallel using OpenCL. The speed of new approach was evaluated using various daylighting simulation cases on a multicore central processing unit and a graphics processing unit. Based on the measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be achieved by using fast I/O devices and storing the data in a binary format.

  14. Improving cytotoxicity against cancer cells by chemo-photodynamic combined modalities using silver-graphene quantum dots nanocomposites.

    PubMed

    Habiba, Khaled; Encarnacion-Rosado, Joel; Garcia-Pabon, Kenny; Villalobos-Santos, Juan C; Makarov, Vladimir I; Avalos, Javier A; Weiner, Brad R; Morell, Gerardo

    2016-01-01

    The combination of chemotherapy and photodynamic therapy has emerged as a promising strategy for cancer therapy due to its synergistic effects. In this work, PEGylated silver nanoparticles decorated with graphene quantum dots (Ag-GQDs) were tested as a platform to deliver a chemotherapy drug and a photosensitizer, simultaneously, in chemo-photodynamic therapy against HeLa and DU145 cancer cells in vitro. Ag-GQDs have displayed high efficiency in delivering doxorubicin as a model chemotherapy drug to both cancer cells. The Ag-GQDs exhibited a strong antitumor activity by inducing apoptosis in cancer cells without affecting the viability of normal cells. Moreover, the Ag-GQDs exhibited a cytotoxic effect due to the generation of the reactive singlet oxygen upon 425 nm irradiation, indicating their applicability in photodynamic therapy. In comparison with chemo or photodynamic treatment alone, the combined treatment of Ag-GQDs conjugated with doxorubicin under irradiation with a 425 nm lamp significantly increased the death in DU145 and HeLa. This study suggests Ag-GQDs as a multifunctional and efficient therapeutic system for chemo-photodynamic modalities in cancer therapy.

  15. Improving cytotoxicity against cancer cells by chemo-photodynamic combined modalities using silver-graphene quantum dots nanocomposites