Sample records for daylight activated photodynamic

  1. Alternatives to Outdoor Daylight Illumination for Photodynamic Therapy--Use of Greenhouses and Artificial Light Sources.

    PubMed

    Lerche, Catharina M; Heerfordt, Ida M; Heydenreich, Jakob; Wulf, Hans Christian

    2016-02-29

    Daylight-mediated photodynamic therapy (daylight PDT) is a simple and pain free treatment of actinic keratoses. Weather conditions may not always allow daylight PDT outdoors. We compared the spectrum of five different lamp candidates for indoor "daylight PDT" and investigated their ability to photobleach protoporphyrin IX (PpIX). Furthermore, we measured the amount of PpIX activating daylight available in a glass greenhouse, which can be an alternative when it is uncomfortable for patients to be outdoors. The lamps investigated were: halogen lamps (overhead and slide projector), white light-emitting diode (LED) lamp, red LED panel and lamps used for conventional PDT. Four of the five light sources were able to photobleach PpIX completely. For halogen light and the red LED lamp, 5000 lux could photobleach PpIX whereas 12,000 lux were needed for the white LED lamp. Furthermore, the greenhouse was suitable for daylight PDT since the effect of solar light is lowered only by 25%. In conclusion, we found four of the five light sources and the greenhouse usable for indoor daylight PDT. The greenhouse is beneficial when the weather outside is rainy or windy. Only insignificant ultraviolet B radiation (UVB) radiation passes through the greenhouse glass, so sun protection is not needed.

  2. Alternatives to Outdoor Daylight Illumination for Photodynamic Therapy—Use of Greenhouses and Artificial Light Sources

    PubMed Central

    Lerche, Catharina M.; Heerfordt, Ida M.; Heydenreich, Jakob; Wulf, Hans Christian

    2016-01-01

    Daylight-mediated photodynamic therapy (daylight PDT) is a simple and pain free treatment of actinic keratoses. Weather conditions may not always allow daylight PDT outdoors. We compared the spectrum of five different lamp candidates for indoor “daylight PDT” and investigated their ability to photobleach protoporphyrin IX (PpIX). Furthermore, we measured the amount of PpIX activating daylight available in a glass greenhouse, which can be an alternative when it is uncomfortable for patients to be outdoors. The lamps investigated were: halogen lamps (overhead and slide projector), white light-emitting diode (LED) lamp, red LED panel and lamps used for conventional PDT. Four of the five light sources were able to photobleach PpIX completely. For halogen light and the red LED lamp, 5000 lux could photobleach PpIX whereas 12,000 lux were needed for the white LED lamp. Furthermore, the greenhouse was suitable for daylight PDT since the effect of solar light is lowered only by 25%. In conclusion, we found four of the five light sources and the greenhouse usable for indoor daylight PDT. The greenhouse is beneficial when the weather outside is rainy or windy. Only insignificant ultraviolet B radiation (UVB) radiation passes through the greenhouse glass, so sun protection is not needed. PMID:26938525

  3. Switching From Conventional Photodynamic Therapy to Daylight Photodynamic Therapy For Actinic Keratoses: Systematic Review and Meta-analysis.

    PubMed

    Tomás-Velázquez, A; Redondo, P

    2017-05-01

    Actinic keratosis is a precursor lesion to the most common nonmelanoma skin cancer. Conventional photodynamic therapy (PDT) has been shown to be effective, but the procedure is time-consuming, can be very painful, and requires infrastructure. These shortcomings led to the emergence of daylight PDT. To obtain a global estimate of efficacy, we undertook a systematic literature review and performed a meta-analysis of the available evidence on the efficacy and safety of daylight PDT as compared to conventional PDT in the treatment of actinic keratosis and/or field cancerization. The conclusion is that the difference in efficacy is clinically negligible (global estimate of the mean response rate difference, -3.69%; 95% CI, -6.54% to -0.84%). The adverse effects of daylight PDT are mild and localized (79% of patients report no discomfort), and patients report less pain (P<.001). Daylight PDT gives good to excellent cosmetic results in more than 90% of patients, and patient satisfaction is greater (P<.001). Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Daylight photodynamic therapy with methyl-aminolevulinate for the treatment of actinic cheilitis.

    PubMed

    Fai, Dario; Romanello, Eugenio; Brumana, Marta Benedetta; Fai, Carlotta; Vena, Gino Antonio; Cassano, Nicoletta; Piaserico, Stefano

    2015-01-01

    Actinic cheilitis (AC) is a common premalignant condition that requires an effective treatment to reduce the risk of malignant transformation. Photodynamic therapy (PDT) has been recently added to the armamentarium available for AC treatment. Daylight PDT (D-PDT) is a novel PDT modality in which the activation of the topical photosensitizer is induced by the exposure to natural daylight instead of artificial light sources without preliminary occlusion. This simplified procedure was found to be more tolerated as compared to conventional PDT. We report our preliminary experience on the use of D-PDT using methyl-aminolevulinate cream in 10 patients with refractory AC of the lower lip. Patients received two consecutive D-PDT sessions with an interval of 7-14 days. At 3 months after therapy, a complete response was observed in seven patients, with sustained results in five patients over an observational period of 6-12 months. Treatment was well tolerated. © 2015 Wiley Periodicals, Inc.

  5. Daylight photodynamic therapy with methylene blue in plane warts: a randomized double-blind placebo-controlled study.

    PubMed

    Fathy, Ghada; Asaad, Marwa Kamal; Rasheed, Haval Mohamad

    2017-07-01

    Conventional photodynamic therapy is associated with inconveniently long clinic visits and discomfort during therapy. Daylight-photodynamic therapy (DL-PDT) is an effective treatment, nearly pain free and more convenient for both the clinics and patients. There are no published studies of methylene blue (MB) as a photosensitizer (PS) used in DL-PDT. Forty patients had multiple plane warts; 20 patients were subjected to DL-PDT with topical 10% methylene blue gel, and 20 patients were subjected to DL-PDT with hematoxylin (placebo). Improvement was evaluated by change of the number of warts and the dermoscope picture. A total of 20 (100%) patients in group II showed no response to placebo, 13 patients (65%) in group I showed complete clearance, 2 (10%) patients showed a good response, and 5 (25%) patients had poor response to treatment (P < 0.01). No serious side effects and patients tolerated the pain well. No relapse was detected during the follow-up period (12 months). Daylight exposure was not monitored with a dosimeter. Daylight-PDT using MB is safe, easy to carry out, economic, effective, acceptable cosmetic results with no recurrence, convenient especially for children and nearly painless treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Consensus recommendations on the use of daylight photodynamic therapy with methyl aminolevulinate cream for actinic keratoses in Australia

    PubMed Central

    Shumack, Stephen; Murrell, Dedee F; Rubel, Diana M; Fernández‐Peñas, Pablo; Salmon, Robert; Hewitt, Daniel; Foley, Peter; Spelman, Lynda

    2015-01-01

    Abstract Australia has the highest prevalence of actinic keratoses (AK) worldwide. Because of the risk of transformation of AK to invasive squamous cell carcinomas, consensus guidelines recommend that AK are removed using appropriate therapies to prevent progression to invasive disease. Daylight photodynamic therapy (PDT) is emerging as an efficacious treatment for AK, particularly for patients who require treatment of large areas of chronic actinic damage that can be exposed easily to daylight. Daylight PDT with methyl aminolevulinate (MAL) cream is a simple treatment for AK, almost painless, well tolerated and convenient, requiring minimal time in the clinic. Randomised controlled studies from northern Europe and Australia support the use of daylight PDT as an effective therapy for grade I and II AK on the face and scalp. There is sufficient daylight to conduct daylight PDT in Australia at any time of the year and during most weather conditions. Hence, daylight PDT with MAL can be included as an effective and well‐tolerated new treatment option for the treatment of AK in Australia. These consensus recommendations provide guidelines for Australian clinicians on the use of daylight PDT in the treatment of diagnosed AK. PMID:26033230

  7. A tuneable approach to uniform light distribution for artificial daylight photodynamic therapy.

    PubMed

    O'Mahoney, Paul; Haigh, Neil; Wood, Kenny; Brown, C Tom A; Ibbotson, Sally; Eadie, Ewan

    2018-06-16

    Implementation of daylight photodynamic therapy (dPDT) is somewhat limited by variable weather conditions. Light sources have been employed to provide artificial dPDT indoors, with low irradiances and longer treatment times. Uniform light distribution across the target area is key to ensuring effective treatment, particularly for large areas. A novel light source is developed with tuneable direction of light emission in order to meet this challenge. Wavelength composition of the novel light source is controlled such that the protoporphyrin-IX (PpIX) weighed spectra of both the light source and daylight match. The uniformity of the light source is characterised on a flat surface, a model head and a model leg. For context, a typical conventional PDT light source is also characterised. Additionally, the wavelength uniformity across the treatment site is characterised. The PpIX-weighted spectrum of the novel light source matches with PpIX-weighted daylight spectrum, with irradiance values within the bounds for effective dPDT. By tuning the direction of light emission, improvements are seen in the uniformity across large anatomical surfaces. Wavelength uniformity is discussed. We have developed a light source that addresses the challenges in uniform, multiwavelength light distribution for large area artificial dPDT across curved anatomical surfaces. Copyright © 2018. Published by Elsevier B.V.

  8. Daylight-mediated photodynamic therapy in Spain: advantages and disadvantages.

    PubMed

    Pérez-Pérez, L; García-Gavín, J; Gilaberte, Y

    2014-09-01

    Photodynamic therapy (PDT) is an option for the treatment of actinic keratosis, Bowen disease, and certain types of basal cell carcinoma. It is also used to treat various other types of skin condition, including inflammatory and infectious disorders. The main disadvantages of PDT are the time it takes to administer (both for the patient and for health professionals) and the pain associated with treatment. Daylight-mediated PDT has recently been reported to be an alternative to the conventional approach. Several studies have shown it to be similar in efficacy to and better tolerated than classic PDT for the treatment of mild to moderate actinic keratosis. Nevertheless, most of these studies are from northern Europe, and no data have been reported from southern Europe. The present article reviews the main studies published to date, presents the treatment protocol, and summarizes our experience with a group of treated patients. Copyright © 2013 Elsevier España, S.L.U. y AEDV. All rights reserved.

  9. Spanish-Portuguese consensus statement on use of daylight-mediated photodynamic therapy with methyl aminolevulinate in the treatment of actinic keratosis.

    PubMed

    Gilaberte, Y; Aguilar, M; Almagro, M; Correia, O; Guillén, C; Harto, A; Pérez-García, B; Pérez-Pérez, L; Redondo, P; Sánchez-Carpintero, I; Serra-Guillén, C; Valladares, L M

    2015-10-01

    Daylight-mediated photodynamic therapy (PDT) is a new type of PDT that is as effective as conventional PDT in grade 1 and 2 actinic keratosis but with fewer adverse effects, resulting in greater efficiency. The climatic conditions in the Iberian Peninsula require an appropriately adapted consensus protocol. We describe a protocol for the treatment of grade 1 and 2 actinic keratosis with daylight-mediated PDT and methyl aminolevulinate (MAL) adapted to the epidemiological and clinical characteristics of Spanish and Portuguese patients and the climatic conditions of both countries. Twelve dermatologists from different parts of Spain and Portugal with experience in the treatment of actinic keratosis with PDT convened to draft a consensus statement for daylight-mediated PDT with MAL in these countries. Based on a literature review and their own clinical experience, the group developed a recommended protocol. According to the recommendations adopted, patients with multiple grade 1 and 2 lesions, particularly those at risk of developing cancer, are candidates for this type of therapy. Daylight-mediated PDT can be administered throughout the year, although it is not indicated at temperatures below 10°C or at excessively high temperatures. Likewise, therapy should not be administered when it is raining, snowing, or foggy. The procedure is simple, requiring application of a sunscreen with a protection factor of at least 30 based exclusively on organic filters, appropriate preparation of the lesions, application of MAL without occlusion, and activation in daylight for 2hours. This consensus statement represents a practical and detailed guideline to achieve maximum effectiveness of daylight-mediated PDT with MAL in Spain and Portugal with minimal adverse effects. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  10. Comparison of Blue and White Lamp Light with Sunlight for Daylight-Mediated, 5-ALA Photodynamic Therapy, in vivo.

    PubMed

    Marra, Kayla; LaRochelle, Ethan P; Chapman, M Shane; Hoopes, P Jack; Lukovits, Karina; Maytin, Edward V; Hasan, Tayyaba; Pogue, Brian W

    2018-04-16

    Daylight-mediated photodynamic therapy (d-PDT) as a treatment for actinic keratosis (AK) is an increasingly common technique due to a significant reduction in pain, leading to better patient tolerability. While past studies have looked at different light sources and delivery methods, this study strives to provide equivalent PpIX-weighted light doses with the hypothesis that artificial light sources could be equally as effective as natural sunlight if their PpIX-weighted fluences were equalized. Normal mouse skin was used as the model to compare blue LED light, metal halide white light and natural sunlight, with minimal incubation time between topical ALA application and the onset of light delivery. A total PpIX-weighted fluence of 20 J eff cm -2 was delivered over 2 h, and the efficacy of response was quantified using three acute bioassays for PDT damage: PpIX photobleaching, Stat3 crosslinking and quantitative histopathology. These bioassays indicated blue light was slightly inferior to both sunlight and white light, but that the latter two were not significantly different. The results suggest that metal halide white light could be a reasonable alternative to daylight PDT, which should allow a more controlled treatment that is independent of weather and yet should have similar response rates with limited pain during treatment. © 2018 The American Society of Photobiology.

  11. ADASY (Active Daylighting System)

    NASA Astrophysics Data System (ADS)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  12. Does Daylight Savings Time encourage physical activity?

    PubMed

    Zick, Cathleen D

    2014-07-01

    Extending Daylight Savings Time (DST) has been identified as a policy intervention that may encourage physical activity. However, there has been little research on the question of if DST encourages adults to be more physically active. Data from residents of Arizona, Colorado, New Mexico, and Utah ages 18-64 who participated in the 2003-2009 American Time Use Survey are used to assess whether DST is associated with increased time spent in moderate-to-vigorous physical activity (MVPA). The analysis capitalizes on the natural experiment created because Arizona does not observe DST. Both bivariate and multivariate analyses indicate that shifting 1 hour of daylight from morning to evening does not impact MVPA of Americans living in the southwest. While DST may affect the choices people make about the timing and location of their sports/recreational activities, the potential for DST to serve as a broad-based intervention that encourages greater sports/recreation participation is not supported by this analysis. Whether this null effect would persist in other climate situations is an open question.

  13. The power of policy to influence behaviour change: daylight saving and its effect on physical activity.

    PubMed

    Rosenberg, Michael; Wood, Lisa

    2010-02-01

    To measure the impact of the introduction of daylight saving in Western Australia in December 2006 on when during the day adults engaged in physical activity. In early December 2006, 1,300 Western Australian adults were telephoned and asked about how the introduction of daylight saving would influence when during the day they typically engaged in physical activity. At the end of the daylight saving period in March 2007, 1,083 of the baseline cohort agreed to answer questions relating to how daylight saving had affected when during the day they were physically active. Almost half the cohort (45.5%) reported that daylight saving had affected when during the day they were physically active. During daylight saving fewer people exercised in the morning and more people exercised in the evening. When analysed at the individual level, 23% of the cohort ceased to exercise in the morning during daylight saving and 22% exercised in the evening only during daylight saving. In addition, to changes in when during the day people exercised, there was also an overall reduction in the average number of daily exercise sessions, with 8% not exercising at all during daylight saving. The results suggest that the introduction of daylight saving, a relatively modest compulsory change to increase daylight by one hour had an impact on patterns of when during the day people were physically active. The study results reinforce the value of focusing on policy as an effective means of supporting population behaviour change. © 2010 The Authors. Journal Compilation © 2010 Public Health Association of Australia.

  14. Daylight methyl-aminolevulinate photodynamic therapy versus ingenol mebutate for the treatment of actinic keratoses: an intraindividual comparative analysis.

    PubMed

    Genovese, Giovanni; Fai, Dario; Fai, Carlotta; Mavilia, Luciano; Mercuri, Santo R

    2016-05-01

    Daylight-photodynamic therapy (D-PDT) and ingenol mebutate (IM) are novel therapies directed to actinic keratoses (AK). The purpose of our study was to compare effectiveness, tolerability, cosmetic outcome and patient preference of D-PDT versus IM in the treatment of grade I and II AK. Twenty-seven patients with AK on the face or scalp were enrolled. Each patient received, in a 25 cm(2) target area, D-PDT on right side and IM on left side. Overall 323 AK were treated. Both target areas achieved complete response in 40.47% of the cases and average AK clearance rate was similar for D-PDT and IM (p=0.74). In D-PDT areas mean grade II AK clearance rate was lower compared with that of grade I AK (p=0.015). In IM areas grade I and II AK average clearance rates were similar (p=0.28). At week 1 and month 1, mean local skin responses (LSR) score were higher in areas treated with IM. IM areas showed more severe pain and cosmetic sequelae. D-PDT had similar effectiveness to IM, even if IM demonstrated higher grade II AK clearance rate. Tolerability profile was superior for D-PDT in terms of LSR and pain. D-PDT was more cosmetically acceptable. Patients preferred D-PDT to IM in most cases. © 2016 Wiley Periodicals, Inc.

  15. Effect of dividing daylight in symmetric prismatic daylight collector

    NASA Astrophysics Data System (ADS)

    Yeh, Shih-Chuan; Lu, Ju-Lin; Cheng, Yu-Chin

    2017-04-01

    This paper presented a symmetric prismatic daylight collector to collect daylight for the natural light illumination system. We analyzed the characteristics of the emerging light when the parallel light beam illuminate on the horizontally placed symmetric prismatic daylight collector. The ratio of the relative intensities of collected daylight that emerging from each surface of the daylight collector shown that the ratio is varied with the incident angle during a day. The simulation of the emerging light of the daylight collector shown that the ratio of emerging light is varied with the tilted angle when sunshine illuminated on a symmetric prismatic daylight collector which was not placed horizontally. The integration of normalized intensity is also varied with the tilted angle. The symmetric prismatic daylight collector with the benefits of reducing glare and dividing intensity of incident daylight, it is applicable to using in the natural light illumination system and hybrid system for improving the efficiency of utilizing of solar energy.

  16. Photodynamic activity of natural anthraquinones on fibroblasts

    NASA Astrophysics Data System (ADS)

    Dimmer, Jesica; Ramos Silva, Camila; Núñez Montoya, Susana C.; Cabrera, José Luis; Ribeiro, Martha S.

    2018-02-01

    Natural anthraquinones (AQs) isolated from Heterophyllaea lycioides (Rusby) Sandwith (Rubiaceae) demonstrated to have photodynamic properties: soranjididol (Sor), 5-Chlorosoranjidiol (5-ClSor), bisoranjidiol (Bisor), 7-Chlorobisoranjidiol (7-ClBisor) and lycionine (Lyc). Sor, 5-ClSor and Bisor exhibited photodynamic inactivation on bacteria and parasites. As they could be used in topical application, the aim of this work was to study their photodynamic activity on fibroblasts. AQs were tested at 2.5 μM in darkness and under irradiation conditions. They were photoactivated with violet-blue LED (λ = 410 +/- 10 nm; fluence rate =50 mW/cm2) and exposure time corresponded to a fluence of 27 J/cm2. Negative and positive control (-C and +C, respectively) were included. Mitochondrial activity was determined by using MTT assay that is a measure of the cell viability and it was expressed as a percentage respect to -C (% CV). Results showed that AQs in darkness conditions showed similar metabolic activity as -C, except for 5-ClSor (about 75% CV). Under irradiation, AQs exhibited dissimilar results. Sor and 7-ClBisor maintained cell viability at approximately 100%, Bisor and Lyc around 70%, whereas 5-ClSor reduced cell viability by 90%. Taken together, our results suggest that Sor could mediate photodynamic therapy (PDT) in cutaneous infections since no toxicity was observed in fibroblasts. On the other hand, 5-ClSor could be used for topical PDT of keloids and hypertrophic scars.

  17. Investigation of photodynamic activity of water-soluble porphyrins in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghambaryan, Sona S.; Amelyan, Gayane V.; Ghazaryan, Robert K.; Arsenyan, Flora H.; Gyulkhandanyan, Aram G.

    2006-02-01

    Photodynamic therapy (PDT) is the method of photosensitized tumor treatment. It is based on the photosensitizer (PS) selective accumulation in tumors, its subsequent activation under the light influence and oxygen active form formation that results in tumor destruction. Photodynamic action of some new water-soluble porphyrins was investigated in our laboratory. Dose-dependent effect of these porphyrins was shown on PC-12 murine pheochromocytoma cell line. The results revealed that the efficiency of the investigated porphyrins decreased in the following way: TOEPyP (meso-tetra-(4-N-oxyethylpyridyl)porphyrin) > Zn-TOEPyP > Ag-TOEPyP. It was shown that TOEPyP possessed nearly the same photodynamic activity (LD50) as well-known photosensitizer chlorin e6. These porphyrins have also demonstrated quite high photodynamic activity in vivo. The results were obtained in the experiments on white mice with engrafted C-180 (Croker's sarcoma). Antitumor activity of these porphyrins in the dark was 30-40%, whereas photodynamic activity was 45-60%.

  18. Photodynamic Therapy for Actinic Keratoses: A Randomized Prospective Non-sponsored Cost-effectiveness Study of Daylight-mediated Treatment Compared with Light-emitting Diode Treatment.

    PubMed

    Neittaanmäki-Perttu, Noora; Grönroos, Mari; Karppinen, Toni; Snellman, Erna; Rissanen, Pekka

    2016-02-01

    Daylight-mediated photodynamic therapy (DL-PDT) is considered as effective as conventional PDT using artificial light (light-emitting diode (LED)-PDT) for treatment of actinic keratoses (AK). This randomized prospective non-sponsored study assessed the cost-effectiveness of DL-PDT compared with LED-PDT. Seventy patients with 210 AKs were randomized to DL-PDT or LED-PDT groups. Effectiveness was assessed at 6 months. The costs included societal costs and private costs, including the time patients spent in treatment. Results are presented as incremental cost-effectiveness ratio (ICER). The total costs per patient were significantly lower for DL-PDT (€132) compared with LED-PDT (€170), giving a cost saving of €38 (p = 0.022). The estimated probabilities for patients' complete response were 0.429 for DL-PDT and 0.686 for LED-PDT; a difference in probability of being healed of 0.257. ICER showed a monetary gain of €147 per unit of effectiveness lost. DL-PDT is less costly and less effective than LED-PDT. In terms of cost-effectiveness analysis, DL-PDT provides lower value for money compared with LED-PDT.

  19. Quantifying the radiant exposure and effective dose in patients treated for actinic keratoses with topical photodynamic therapy using daylight and LED white light

    NASA Astrophysics Data System (ADS)

    Manley, M.; Collins, P.; Gray, L.; O'Gorman, S.; McCavana, J.

    2018-02-01

    Daylight photodynamic therapy (dl-PDT) is as effective as conventional PDT (c-PDT) for treating actinic keratoses but has the advantage of reducing patient discomfort significantly. Topical dl-PDT and white light-PDT (wl-PDT) differ from c-PDT by way of light sources and methodology. We measured the variables associated with light dose delivery to skin surface and influence of geometry using a radiometer, a spectral radiometer and an illuminance meter. The associated errors of the measurement methods were assessed. The spectral and spatial distribution of the radiant energy from the LED white light source was evaluated in order to define the maximum treatment area, setup and treatment protocol for wl-PDT. We compared the data with two red LED light sources we use for c-PDT. The calculated effective light dose is the product of the normalised absorption spectrum of the photosensitizer, protoporphyrin IX (PpIX), the irradiance spectrum and the treatment time. The effective light dose from daylight ranged from 3  ±  0.4 to 44  ±  6 J cm-2due to varying weather conditions. The effective light dose for wl-PDT was reproducible for treatments but it varied across the treatment area between 4  ±  0.1 J cm-2 at the edge and 9  ±  0.1 J cm-2 centrally. The effective light dose for the red waveband (615-645 nm) was 0.42  ±  0.05 J cm-2 on a clear day, 0.05  ±  0.01 J cm-2 on an overcast day and 0.9  ±  0.01 J cm-2 using the white light. This compares with 0.95  ±  0.01 and 0.84  ±  0.01 J cm-2 for c-PDT devices. Estimated errors associated with indirect determination of daylight effective light dose were very significant, particularly for effective light doses less than 5 J cm-2 (up to 83% for irradiance calculations). The primary source of error is in establishment of the relationship between irradiance or illuminance and effective dose. Use of the O’Mahoney model is recommended using a

  20. Monoglycoconjugated phthalocyanines: effect of sugar and linkage on photodynamic activity.

    PubMed

    Lafont, Dominique; Zorlu, Yunus; Savoie, Huguette; Albrieux, Florian; Ahsen, Vefa; Boyle, Ross W; Dumoulin, Fabienne

    2013-09-01

    Click chemistry can be advantageously used to graft carbohydrates on phthalocyanines which are potent photosensitisers, but the effect of the presence of triazole moieties on photodynamic efficiency was not investigated systematically to date. The nature and linkage of the sugar were investigated in order to define structure-activity relationships. Two sets of monoglycoconjugated water-soluble phthalocyanines have been designed and their photodynamic activity and uptake investigated in HT-29 human colon adenocarcinoma cells. Carbohydrates: galactose, mannose or lactose were grafted onto Zn(II) phthalocyanines either by glycosylation or by click reaction. The triazole linkage formed by click conjugation lowered the biological efficiency for mannose and galactose, compared to classical glycosylation grafting. The mannose conjugate formed by glycosylation was the most photodynamically active, without correlation with the photosensitiser cell uptake. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Comparison of 10 efficient protocols for photodynamic therapy of actinic keratosis: How relevant are effective light dose and local damage in predicting the complete response rate at 3 months?

    PubMed

    Vignion-Dewalle, Anne-Sophie; Baert, Gregory; Thecua, Elise; Lecomte, Fabienne; Vicentini, Claire; Abi-Rached, Henry; Mortier, Laurent; Mordon, Serge

    2018-04-18

    Topical photodynamic therapy is an established treatment modality for various dermatological conditions, including actinic keratosis. In Europe, the approved protocols for photodynamic therapy of actinic keratosis involve irradiation with either an Aktilite CL 128 lamp or daylight, whereas irradiation with the Blu-U illuminator is approved in the United States. Many other protocols using irradiation by a variety of light sources are also clinically efficient. This paper aims to compare 10 different protocols with clinically proven efficacy for photodynamic therapy of actinic keratosis and the available spectral irradiance of the light source. Effective irradiance, effective light dose, and local damage are compared. We also investigate whether there is an association between the complete response rate at 3 months and the effective light dose or local damage. The effective irradiance, also referred to as protoporphyrin IX-weighted irradiance, is obtained by integrating the spectral irradiance weighted by the normalized absorption spectrum of protoporphyrin IX over the wavelength. Integrating the effective irradiance over the irradiation time yields the effective light dose, which is also known as the protoporphyrin IX-weighted light dose. Local damage, defined as the total cumulative singlet oxygen molecules produced during treatment, is estimated using mathematical modeling of the photodynamic therapy process. This modeling is based on an iterative procedure taking into account the spatial and temporal variations in the protoporphyrin IX absorption spectrum during treatment. The protocol for daylight photodynamic therapy on a clear sunny day, the protocol for daylight photodynamic therapy on an overcast day, the photodynamic therapy protocol for a white LED lamp for operating rooms and the photodynamic therapy protocol for the Blu-U illuminator perform better than the six other protocols-all involving red light illumination-in terms of both effective light dose and

  2. A double-blind randomized controlled trial to assess the efficacy of daylight photodynamic therapy with methyl-aminolevulinate vs. Placebo and daylight in patients with facial photodamage.

    PubMed

    Sanclemente, G; Mancilla, G A; Hernandez, G

    2016-04-01

    Daylight PDT (dPDT) is easy to use and does not require light equipment. Such therapy has been exhaustively proved to be successful in the treatment of actinic keratosis, but its use in skin photodamage remains unclear. To evaluate dPDT's efficacy in skin facial photodamage. This was a parallel-group double-blind, randomized placebo-controlled trial. Sixty participants with symmetric facial photodamage were allocated to topical methyl aminolevulinate (MAL) and daylight vs. matching placebo and daylight. Primary outcome was global photodamage improvement/failure 1 month after the third session. Secondary outcomes included: pain evaluation; specific photodamage severity scores; sun irradiance quantification and Skindex-29 scores. Adverse events were also investigated. Primary analysis included all randomized patients. All patients sun-exposed for 120min in 3 sessions. The risk of failure was lower in the MAL-dPDT group than in the placebo plus daylight group (RR: 0.18; 95% CI: 0.08-0.41). Mean solar irradiance (W/m(2)) during the first, second and third sessions was 480.82, 430.07 and 435.84, respectively. Items 5 and 14 of Skindex-29 in the MAL-dPDT group showed statistical significant differences. Two patients in the MAL-dPDT group had serious and non-serious events not directly related to the product. dPDT with MAL was un-painful, effective and safe for the treatment of facial photodamage. Herpes simplex prophylaxis should be considered before sessions. Copyright © 2015 AEDV. Published by Elsevier España, S.L.U. All rights reserved.

  3. MAL Daylight Photodynamic Therapy for Actinic Keratosis: Clinical and Imaging Evaluation by 3D Camera.

    PubMed

    Cantisani, Carmen; Paolino, Giovanni; Pellacani, Giovanni; Didona, Dario; Scarno, Marco; Faina, Valentina; Gobello, Tommaso; Calvieri, Stefano

    2016-07-11

    Non-melanoma skin cancer is the most common skin cancer with an incidence that varies widely worldwide. Among them, actinic keratosis (AK), considered by some authors as in situ squamous cell carcinoma (SCC), are the most common and reflect an abnormal multistep skin cell development due to the chronic ultraviolet (UV) light exposure. No ideal treatment exists, but the potential risk of their development in a more invasive form requires prompt treatment. As patients usually present with multiple AK on fields of actinic damage, there is a need for effective, safe, simple and short treatments which allow the treatment of large areas. To achieve this, daylight photodynamic therapy (DL-PDT) is an innovative treatment for multiple mild actinic keratosis, well tolerated by patients. Patients allocated to the PDT unit, affected by multiple mild-moderate and severe actinic keratosis on sun-exposed areas treated with DL-PDT, were clinically evaluated at baseline and every three months with an Antera 3D, Miravex(©) camera. Clinical and 3D images were performed at each clinical check almost every three months. In this retrospective study, 331 patients (56.7% male, 43.3% female) were treated with DL-PDT. We observed a full clearance in more than two-thirds of patients with one or two treatments. Different responses depend on the number of lesions and on their severity; for patients with 1-3 lesions and with grade I or II AK, a full clearance was reached in 85% of cases with a maximum of two treatments. DL-PDT in general improved skin tone and erased sun damage. Evaluating each Antera 3D images, hemoglobin concentration and pigmentation, a skin color and tone improvement in 310 patients was observed. DL-PDT appears as a promising, effective, simple, tolerable and practical treatment for actinic damage associated with AK, and even treatment of large areas can be with little or no pain. The 3D imaging allowed for quantifying in real time the aesthetic benefits of DL

  4. MAL Daylight Photodynamic Therapy for Actinic Keratosis: Clinical and Imaging Evaluation by 3D Camera

    PubMed Central

    Cantisani, Carmen; Paolino, Giovanni; Pellacani, Giovanni; Didona, Dario; Scarno, Marco; Faina, Valentina; Gobello, Tommaso; Calvieri, Stefano

    2016-01-01

    Non-melanoma skin cancer is the most common skin cancer with an incidence that varies widely worldwide. Among them, actinic keratosis (AK), considered by some authors as in situ squamous cell carcinoma (SCC), are the most common and reflect an abnormal multistep skin cell development due to the chronic ultraviolet (UV) light exposure. No ideal treatment exists, but the potential risk of their development in a more invasive form requires prompt treatment. As patients usually present with multiple AK on fields of actinic damage, there is a need for effective, safe, simple and short treatments which allow the treatment of large areas. To achieve this, daylight photodynamic therapy (DL-PDT) is an innovative treatment for multiple mild actinic keratosis, well tolerated by patients. Patients allocated to the PDT unit, affected by multiple mild−moderate and severe actinic keratosis on sun-exposed areas treated with DL-PDT, were clinically evaluated at baseline and every three months with an Antera 3D, Miravex© camera. Clinical and 3D images were performed at each clinical check almost every three months. In this retrospective study, 331 patients (56.7% male, 43.3% female) were treated with DL-PDT. We observed a full clearance in more than two-thirds of patients with one or two treatments. Different responses depend on the number of lesions and on their severity; for patients with 1–3 lesions and with grade I or II AK, a full clearance was reached in 85% of cases with a maximum of two treatments. DL-PDT in general improved skin tone and erased sun damage. Evaluating each Antera 3D images, hemoglobin concentration and pigmentation, a skin color and tone improvement in 310 patients was observed. DL-PDT appears as a promising, effective, simple, tolerable and practical treatment for actinic damage associated with AK, and even treatment of large areas can be with little or no pain. The 3D imaging allowed for quantifying in real time the aesthetic benefits of DL

  5. Daylight saving time as a potential public health intervention: an observational study of evening daylight and objectively-measured physical activity among 23,000 children from 9 countries.

    PubMed

    Goodman, Anna; Page, Angie S; Cooper, Ashley R

    2014-10-23

    It has been proposed that introducing daylight saving measures could increase children's physical activity, but there exists little research on this issue. This study therefore examined associations between time of sunset and activity levels, including using the bi-annual 'changing of the clocks' as a natural experiment. 23,188 children aged 5-16 years from 15 studies in nine countries were brought together in the International Children's Accelerometry Database. 439 of these children were of particular interest for our analyses as they contributed data both immediately before and after the clocks changed. All children provided objectively-measured physical activity data from Actigraph accelerometers, and we used their average physical activity level (accelerometer counts per minute) as our primary outcome. Date of accelerometer data collection was matched to time of sunset, and to weather characteristics including daily precipitation, humidity, wind speed and temperature. Adjusting for child and weather covariates, we found that longer evening daylight was independently associated with a small increase in daily physical activity. Consistent with a causal interpretation, the magnitude of these associations was largest in the late afternoon and early evening and these associations were also evident when comparing the same child just before and just after the clocks changed. These associations were, however, only consistently observed in the five mainland European, four English and two Australian samples (adjusted, pooled effect sizes 0.03-0.07 standard deviations per hour of additional evening daylight). In some settings there was some evidence of larger associations between daylength and physical activity in boys. There was no evidence of interactions with weight status or maternal education, and inconsistent findings for interactions with age. In Europe and Australia, evening daylight seems to play a causal role in increasing children's activity in a relatively

  6. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders.

    PubMed

    Zhou, Minghua; Yu, Jiaguo

    2008-04-15

    A simple method for preparing highly daylight-induced photoactive nanocrystalline C,N,S-tridoped TiO2 powders was developed by a solid-phase reaction. The as-prepared TiO2 powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra, N2 adsorption-desorption measurements and transmission electron microscopy (TEM). The photocatalytic activity was evaluated by the photocatalytic oxidation of formaldehyde under daylight irradiation in air. The results show that daylight-induced photocatalytic activities of the as-prepared TiO2 powders were improved by C,N,S-tridoping. The C,N,S-tridoped TiO2 powders exhibited stronger absorption in the near UV and visible-light region with red shift in the band-gap transition. When the molar ratio of CS(NH2)2 to xerogel TiO2 powders (prepared by hydrolysis of Ti(OC4H9)4 in distilled water) (R) was kept in 3, the daylight-induced photocatalytic activities of the as-prepared C,N,S-tridoped TiO2 powders were about more than six times greater than that of Degussa P25 and un-doped TiO2 powders. The high activities of the C,N,S-tridoped TiO2 can be attributed to the results of the synergetic effects of strong absorption in the near UV and visible-light region, red shift in adsorption edge and two phase structures of un-doped TiO2 and C,N,S-tridoped TiO2.

  7. Daylighting in Schools: An Investigation into the Relationship between Daylighting and Human Performance. Detailed Report.

    ERIC Educational Resources Information Center

    Heschong, Lisa

    This study examines the effect of daylighting on human performance, focusing on skylighting as a way to isolate daylight as an illumination source, and separate illumination effects from other qualities associated with daylighting from windows. It establishes a statistical connection between daylighting and student performance and between…

  8. Lunar Daylight Exploration

    NASA Technical Reports Server (NTRS)

    Griffin, Brand Norman

    2010-01-01

    With 1 rover, 2 astronauts and 3 days, the Apollo 17 Mission covered over 30 km, setup 10 scientific experiments and returned 110 kg of samples. This is a lot of science in a short time and the inspiration for a barebones, return-to-the-Moon strategy called Daylight Exploration. The Daylight Exploration approach poses an answer to the question, What could the Apollo crew have done with more time and today s robotics? In contrast to more ambitious and expensive strategies that create outposts then rely on pressurized rovers to drive to the science sites, Daylight Exploration is a low-overhead approach conceived to land near the scientific site, conduct Apollo-like exploration then leave before the sun goes down. A key motivation behind Daylight Exploration is cost reduction, but it does not come at the expense of scientific exploration. As a goal, Daylight Exploration provides access to the top 10 science sites by using the best capabilities of human and robotic exploration. Most science sites are within an equatorial band of 26 degrees latitude and on the Moon, at the equator, the day is 14 Earth days long; even more important, the lunar night is 14 days long. Human missions are constrained to 12 days because the energy storage systems required to operate during the lunar night adds mass, complexity and cost. In addition, short missions are beneficial because they require fewer consumables, do not require an airlock, reduce radiation exposure, minimize the dwell-time for the ascent and orbiting propulsion systems and allow a low-mass, campout accommodations. Key to Daylight Exploration is the use of piloted rovers used as tele-operated science platforms. Rovers are launched before or with the crew, and continue to operate between crew visits analyzing and collecting samples during the lunar daylight

  9. Biological activities of phthalocyanines--XVI. Tetrahydroxy- and tetraalkylhydroxy zinc phthalocyanines. Effect of alkyl chain length on in vitro and in vivo photodynamic activities.

    PubMed Central

    Boyle, R. W.; Leznoff, C. C.; van Lier, J. E.

    1993-01-01

    Zinc phthalocyanine substituted with four hydroxyl groups attached to the macrocycle, either directly or via spacer chains of three or six carbon atoms, were tested for their photodynamic ability to inactivate Chinese hamster lung fibroblasts (line V-79) in vitro, and to induce regression of EMT-6 tumours grown subcutaneously in Balb/c mice. Their potential to inflict direct cell killing during photodynamic therapy was investigated by examining vascular stasis immediately following photoirradiation using fluorescein as a marker, and also by an in vivo/in vitro EMT-6 cell survival assay. Both of the tetraalkylhydroxy substituted zinc phthalocyanines are effective photodynamic sensitisers in vivo with the tetrapropylhydroxy compound exhibiting about twice the activity of the tetrahexylhydroxy analogue. The differences in activities were accentuated in vitro, the tetrapropylhydroxy compound was two orders of magnitude more potent than the tetrahexylhydroxy analogue in photoinactivating V-79 cells. The tetrahydroxy compound lacking spacer chains failed to exhibit photodynamic activity in either system. Tumour response with the active compounds was preceded by vascular stasis immediate following irradiation which suggests, together with the absence of activity in the in vivo/in vitro assay, that tumour regression involves an indirect response to the photodynamic action rather than direct cell killing. These data demonstrate the importance of the spatial orientation of functional groups around the macrocycle of photosensitisers for their efficacy in the photodynamic therapy of cancer. PMID:8512803

  10. Energy 101: Daylighting

    ScienceCinema

    None

    2018-02-14

    Daylighting—the use of windows or skylights for natural lighting and temperature regulation—is one building strategy that can save money for homeowners and businesses. Highly efficient, strategically placed windows maximize the use of natural daylight in a building, lowering the need for artificial lighting without causing heating or cooling problems.

  11. Daylighting Makes a Difference.

    ERIC Educational Resources Information Center

    Heschong, Lisa; Knecht, Carey

    2002-01-01

    Examined the role of daylight in student achievement in three schools and found a uniformly positive and statistically significant correlation between the presence of more daylight and better student test scores. Offers guidelines on designing daylit classrooms. (EV)

  12. Assessment of the actual light dose in photodynamic therapy.

    PubMed

    Schaberle, Fabio A

    2018-06-09

    Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.

  13. Psychological Effect of Daylighting on Behavior

    NASA Astrophysics Data System (ADS)

    Oyama, Yoshie

    In order to facilitate use of daylighting in architectural design, we tried to measure the suitability of luminous environment for various behavior, including not only visual work but also refreshing and rest. An experiment was conducted with 7 luminous conditions including daylighting. The suitability of a luminous environment was measured by asking the subjects to select suitable activities and unsuitable behaviors from a given list of possible activities. The result showed the selection of unsuitable behaviors was more useful than the selection of suitable behaviors. Furthermore, lighting installations offering a steady luminous environments, were not suitable for many behaviors including refreshing and rest. The luminous environments which were bright but had some fluctuation and some non-uniformity of brightness, obtained by use of direct sunlight, were judged to be suitable for negotiating, refreshing, and meeting.

  14. Daylight Makes a Difference: Daylight in the Classroom Can Boost Standardized Test Scores and Learning. [Audiotape].

    ERIC Educational Resources Information Center

    Kosik, Kenneth S.; Heschong, Lisa

    An audiotape presents study analysis of the effect of daylighting on student performance. The study includes a focus on skylighting as a way to isolate daylight as an illumination source, and separate illumination effects from other qualities associated with daylighting from windows. Results from test scores of over 21,000 student records, along…

  15. Holographic daylighting

    NASA Astrophysics Data System (ADS)

    Ludman, Jacques E.; Riccobono, Juanita R.; Savant, Gajendra D.; Jannson, Joanna L.; Campbell, Eugene W.; Hall, Robyn

    1995-09-01

    Daylighting techniques are an effective means of reducing both lighting and cooling costs; however, many of the standard techniques have flaws which reduce their effectiveness. Daylighting holograms are an efficient and effective method for diffracting sunlight up onto the ceiling, deep in a room, without diffracting the light at eye-level. They need only cover the top half of a window to produce significant energy savings. They may be used as part of a new glazing system or as a retrofit to existing windows. These holograms are broadband and are able to passively track the movement of the sun across the sky, throughout the day and year.

  16. The Role of Daylighting in Skilled Nursing Short-Term Rehabilitation Facilities.

    PubMed

    Gharaveis, Arsalan; Shepley, Mardelle McCuskey; Gaines, Kristi

    2016-01-01

    The aim of this study is to investigate the best placement of windows in short-term rehabilitation facilities in terms of daylighting and outdoor views by exploring the impact of windows on resident perception of stress, mood, activities, and satisfaction. The physiological and psychological benefits of daylighting have made it an increasingly important topic in multidisciplinary research. Although multiple studies have been written about the impact of daylight on physiological responses, few investigations have been made into the nonvisual effects related to resident mood, satisfaction, and stress level. In addition, researchers typically propose recommendations for quantitative aspects of illuminance, rather than addressing the behavioural outcomes. A combination of qualitative and quantitative methodologies were used to address the research questions. Thirty-four participants, who were living temporarily in the inpatient rehabilitation units of two skilled nursing facilities, were subjects in semistructured interviews and a 7-question 5-scale survey. While residents expressed the need to have direct visual access to the outdoors, they indicated that daylight was of even higher benefit. Additionally, they noted that size and location of windows impacted their stress levels, moods, and activities. More than half of the facility residents reported changing their postures for either better outdoor views or less light disturbance while sleeping. The results of this study emphasize the importance of daylighting for residents in rehabilitation units. Architects should acknowledge the role of daylighting and window views in the design of rehabilitation facilities. © The Author(s) 2015.

  17. Predicting energy savings attributed to daylighting

    NASA Astrophysics Data System (ADS)

    Robbins, C. L.

    1982-08-01

    A method is described for estimating a building's energy savings attributed to daylighting by predicting the percentage of the year that the electric lighting system is not in use. This depends on the particular control strategy chosen, a standard work year, and the amount of light (as a daylight factor) reaching on daylight and sunlight availability for selected cities in the United States.

  18. Tumor Uptake And Photodynamic Activity Of Sulfonated Metallo Phthalocyanines

    NASA Astrophysics Data System (ADS)

    van Lier, Johan E.; Rousseau, Jacques; Paquette, Benoit; Brasseur, N.; Langlois, Rejean; Ali, Hasrat

    1989-06-01

    Sulfonated metallo phthalocyanines (M-SPC) are extensively studied as sensitizers for photodynamic therapy of cancer. They strongly absorb clinically useful red light with absorption maxima between 670-680 nm. Their photodynamic properties depend on the nature of the central metal ion as well as the degree of substitution on the macrocycle. The zinc, aluminum and gallium complexes are efficient photo-generators of singlet oxygen, the species most likely responsible for their phototoxicity and tumoricidal action. Tissue distribution pattern, cell penetration and dye aggregation are strongly affected by the degree of sulfonation of the dyes. Mono- and disulfonated M-SPC have the highest tendency to form photo-inactive aggregates. However, these lower sulfonated dyes more readily cross cell membranes resulting, in vitro, in enhanced phototoxicity. In vivo, the highly sulfonated hydrophilic M-SPC show the best tumor localization properties but the lower sulfonated dyes still exhibit the best photo-activity. Variations in activities between the differently sulfonated M-SPC are far less pronounced in vivo as compared to in vitro conditions. Such discrepancies are explained by the combined action of numerous vectors including interaction of M-SPC with plasma proteins, vascular versus cellular photo-damage, tumor retention, cell penetration as well as the degree of aggregation of the dye.

  19. [Photophysical properties and photodynamic activity of nanostructured aluminium phthalocyanines].

    PubMed

    Udartseva, O O; Lobanov, A V; Andeeva, E R; Dmitrieva, G S; Mel'nikov, M Ia; Buravkova, L B

    2014-01-01

    We developed water-soluble supramolecular complexes of aluminium phthalocyanine based on mesoporous silica nanoparticles and polyvinylpirrolidone containing rare photoactive nanoaggregates. Radiative lifetimes, extinction coefficients and energy of electronic transitions of isolated and associated metal phthalocyanine complexes were calculated. Nontoxic concentrations of synthesized nanocomposite photosensibilizers were in vitro determined. In present study we compared photodynamic treatment efficacy using different modifications of aluminium phthalocyanine (Photosens®, AlPc-nSiO2 and AlPc-PVP). Mesenchymal stromal cells were used as a model for photodynamic treatment. Intracellular accumulation of aluminium phthalocyanine based on mesoporous silica nanoparticles AlPc-nSiO2 was the most efficient. Illumination of phthalocyanine-loaded cells led to reactive oxygen species generation and subsequent apoptotic cell death. Silica nanoparticles provided a significant decrease of effective phthalocyanine concentration and enhanced cytotoxicity of photodynamic treatment.

  20. Teaching Science: Beats the Daylight Out of Me.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1995-01-01

    Presents activities for observing, measuring, collecting, and graphing data about times of sunrise and sunset to teach an understanding about arrival of Daylight Savings Time in April. Also discusses seasonal affective disorder (SAD). (TM)

  1. Heliostat design for the daylighting system.

    PubMed

    Chang, Chih-Hung; Hsiso, Horng-Ching; Chang, Cheng-Ming; Wang, Chen-You; Lin, Tzung-Han; Chen, Yi-Yung; Lai, Yi-Lung; Yen, Cho-Jung; Chen, Kuan-Yu; Whang, Allen Jong-Woei

    2014-10-10

    The daylighting system is designed to guide sunlight into buildings for illumination. It has the best illumination performance when sunlight vertically impinges on the collector of the daylighting system, while it has low performance when sunlight impinges obliquely. To overcome the problem, this paper investigates the design of a heliostat that reflects sunlight vertically onto a daylighting system. This study proposes a 3×3 mirror matrix heliostat, which is different from the traditional heliostat with one single mirror. With the heliostat, the system efficiency increases as high as 3.32 times.

  2. Daylight and absenteeism--evidence from Norway.

    PubMed

    Markussen, Simen; Røed, Knut

    2015-01-01

    Based on administrative register data from Norway, we examine the impact of hours of daylight on sick-leave absences among workers. Our preferred estimates imply that an additional hour of daylight increases the daily entry rate to absenteeism by 0.5 percent and the corresponding recovery rate by 0.8 percent, ceteris paribus. The overall relationship between absenteeism and daylight hours is negative. Absenteeism is also sensitive to weather conditions. Heavy snowfall raises the incidence of absence during the winter, while warm weather reduces the probability of returning to work during the summer. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Kinetics of tumor necrosis factor production by photodynamic-therapy-activated macrophages

    NASA Astrophysics Data System (ADS)

    Pass, Harvey I.; Evans, Steven; Perry, Roger; Matthews, Wilbert

    1990-07-01

    The ability of photodynamic therapy (PDT) to activate macrophages and produce cytokines, specifically tumor necrosis factor (TNF), is unknown. Three day thioglycolate elicited macrophages were incubated with 25 ug/mi Photofrin II (P11) for 2 hour, after which they were subjected to 630 nm light with fluences of 0-1800 J/m. The amount of TNF produced in the system as well as macrophage viability was measured 1, 3, 6, and 18 hours after POT. The level of TNF produced by the macrophages was significantly elevated over control levels 6 hours after POT and the absolute level of tumor necrosis factor production was influenced by the treatment energy and the resulting macrophage cytotoxicity. These data suggest that POT therapy induced cytotoxicity in vivo may be amplified by macrophage stimulation to secrete cytokines and these cytokines may also participate in other direct/indirect photodynamic therapy effects, i.e. immunosuppression, vascular effects.

  4. Activation of photodynamic therapy in vitro with Cerenkov luminescence generated from Yttrium-90 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2016-03-01

    Translation of photodynamic therapy to the clinical setting has primarily been limited to easily accessible and/or superficial diseases where traditional light delivery can be performed noninvasively. Cerenkov luminescence, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively in order to overcome this depth limitation. We report on the use of Cerenkov luminescence generated from Yttrium-90 as a means to active the photodynamic therapy process in monolayer tumor cell cultures. The current study investigates the utility of Cerenkov luminescence for activating both the clinically relevant aminolevulinic acid at 1.0 mM and also the more efficient photosensitizer TPPS2a at 1.2 µM. Cells were incubated with aminolevulinic acid for 6 hours prior to radionuclide addition, as well as additional daily treatments for three days. TPPS2a was delivered as a single treatment with an 18 hour incubation time before radionuclide addition. Experiments were completed for both C6 glioma cells and MDA-MB-231 breast tumor cells. Although aminolevulinic acid proved ineffective for generating a therapeutic effect at any activity for either cell line, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 µCi/well for the C6 cell line. Current results demonstrate that it may be possible to generate a therapeutic effect in vivo using Cerenkov luminescence to activate the photodynamic therapy process with clinically relevant photosensitizers.

  5. Improvement of photodynamic activity of aluminium sulphophthalocyanine due to biotinylation

    NASA Astrophysics Data System (ADS)

    Meerovich, Irina G.; Jerdeva, Victoria V.; Derkacheva, Valentina M.; Meerovich, Gennadii A.; Lukyanets, Eugeny A.; Kogan, Eugenia A.; Savitsky, Alexander P.

    2003-09-01

    The photodynamic activity of dibiotinylated aluminium sulphophthalocyanine in vitro and in vivo were studied. It was obtained that in vitro dibiotinylated aluminium sulphophthalocyanine provides the effective damage of small cell lung carcinoma OAT-75. In vivo dibiotinylated aluminium sulphophthalocyanine causes destruction of tumor (Erlich carcinoma), results in total necrosis of tumor tissue and expresses vascular damage (trombosis and destruction of vascular walls) even in concentration 0.25 mg/kg of a body weight.

  6. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters.

    PubMed

    Wu, Juan; Hou, Wei; Cao, Binbin; Zuo, Tao; Xue, Changhu; Leung, Albert Wingnang; Xu, Chuanshan; Tang, Qing-Juan

    2015-09-01

    Norovirus (NoV) is one of the most important seafood- and water-borne viruses, and is a major cause of acute gastroenteritis outbreaks. In the present study we investigated the effect of curcumin as a sensitizer to photodynamic treatment both in buffer and in oysters against murine norovirus 1 (MNV-1), a surrogate of NoV. MNV-1 cultured in buffer and MNV-1 bio-accumulated in oysters were irradiated with a novel LED light source with a wavelength of 470nm and an energy of 3.6J/cm(2). Inactivation of MNV-1 was investigated by plaque assays. After virus was extracted from the gut of oysters treated over a range of curcumin concentrations, the ultrastructural morphology of the virus was observed using electron microscopy, and the integrity of viral nucleic acids and stability of viral capsid proteins were also determined. Results showed that the infectivity of MNV-1 was significantly inhibited by 1-3logPFU/ml, with significant damage to viral nucleic acids in a curcumin dose-dependent manner after photodynamic activation. Virus morphology was altered after the photodynamic treatment with curcumin, presumably due to the change of the viral capsid protein structures. The data suggest that treatment of oysters with photodynamic activation of curcumin is a potentially efficacious and cost-effective method to inactivate food-borne NoV. Further studies are necessary to evaluate the toxicology of this approach in detail and perform sensory evaluation of the treated product. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Photodynamic therapy for cancer

    MedlinePlus

    ... Photoradiation therapy; Cancer of the esophagus - photodynamic; Esophageal cancer - photodynamic; Lung cancer - photodynamic ... the light at the cancer cells. PDT treats cancer in the: Lungs, using a bronchoscope Esophagus, using upper endoscopy Doctors ...

  8. Predicting energy savings attributed to daylighting

    NASA Astrophysics Data System (ADS)

    Robbins, C. L.

    1983-11-01

    A method for estimating a building's energy savings attributable to daylighting by predicting the percentage of the year that the electric lighting system is not in use is described. This method depends upon the particular control stragegy chosen, a standard work year, and the amount of light (as a daylight factor, DF) reaching any given station in the building.

  9. Bioluminescence-Activated Deep-Tissue Photodynamic Therapy of Cancer

    PubMed Central

    Kim, Yi Rang; Kim, Seonghoon; Choi, Jin Woo; Choi, Sung Yong; Lee, Sang-Hee; Kim, Homin; Hahn, Sei Kwang; Koh, Gou Young; Yun, Seok Hyun

    2015-01-01

    Optical energy can trigger a variety of photochemical processes useful for therapies. Owing to the shallow penetration of light in tissues, however, the clinical applications of light-activated therapies have been limited. Bioluminescence resonant energy transfer (BRET) may provide a new way of inducing photochemical activation. Here, we show that efficient bioluminescence energy-induced photodynamic therapy (PDT) of macroscopic tumors and metastases in deep tissue. For monolayer cell culture in vitro incubated with Chlorin e6, BRET energy of about 1 nJ per cell generated as strong cytotoxicity as red laser light irradiation at 2.2 mW/cm2 for 180 s. Regional delivery of bioluminescence agents via draining lymphatic vessels killed tumor cells spread to the sentinel and secondary lymph nodes, reduced distant metastases in the lung and improved animal survival. Our results show the promising potential of novel bioluminescence-activated PDT. PMID:26000054

  10. Plant Photodynamic Stress: What's New?

    PubMed Central

    Issawi, Mohammad; Sol, Vincent; Riou, Catherine

    2018-01-01

    In the 1970's, an unconventional stressful photodynamic treatment applied to plants was investigated in two directions. Exogenous photosensitizer treatment underlies direct photodynamic stress while treatment mediating endogenous photosensitizer over-accumulation pinpoints indirect photodynamic stress. For indirect photodynamic treatment, tetrapyrrole biosynthesis pathway was deregulated by 5-aminolevulenic acid or diphenyl ether. Overall, photodynamic stress involves the generation of high amount of reactive oxygen species leading to plant cell death. All these investigations were mainly performed to gain insight into new herbicide development but they were rapidly given up or limited due to the harmfulness of diphenyl ether and the high cost of 5-aminolevulinic acid treatment. Twenty years ago, plant photodynamic stress came back by way of crop transgenesis where for example protoporphyrin oxidases from human or bacteria were overexpressed. Such plants grew without dramatic effects of photodamage suggesting that plants tolerated induced photodynamic stress. In this review, we shed light on the occurrence of plant photodynamic stress and discuss challenging issues in the context of agriculture focusing on direct photodynamic modality. Indeed, we highlighted applications of exogenous PS especially porphyrins on plants, to further develop an emerged antimicrobial photodynamic treatment that could be a new strategy to kill plant pathogens without disturbing plant growth. PMID:29875786

  11. Luminescent Solar Concentrator Daylighting

    NASA Astrophysics Data System (ADS)

    Bornstein, Jonathan G.

    1984-11-01

    Various systems that offer potential solutions to the problem of interior daylighting have been discussed in the literature. Virtually all of these systems rely on some method of tracking the sun along its azimuth and elevation, i.e., direct imaging of the solar disk. A simpler approach, however, involves a nontracking nonimaging device that effectively eliminates moving parts and accepts both the diffuse and direct components of solar radiation. Such an approach is based on a system that combines in a common luminaire the light emitted by luminescent solar concentrators (LSC), of the three primary colors, with a highly efficient artificial point source (HID metal halide) that automatically compensates for fluctuations in the LSC array via a daylight sensor and dimming ballast. A preliminary analysis suggests that this system could supply 90% of the lighting requirement, over the course of an 8 hour day, strictly from the daylight component under typical insolation con-ditions in the Southwest United States. In office buildings alone, the total aggregate energy savings may approach a half a quad annually. This indicates a very good potential for the realization of substantial savings in building electric energy consumption.

  12. Photodynamic immune modulation (PIM)

    NASA Astrophysics Data System (ADS)

    North, John R.; Hunt, David W. C.; Simkin, Guillermo O.; Ratkay, Leslie G.; Chan, Agnes H.; Lui, Harvey; Levy, Julia G.

    1999-09-01

    Photodynamic Therapy (PDT) is accepted for treatment of superficial and lumen-occluding tumors in regions accessible to activating light and is now known to be effective in closure of choroidal neovasculature in Age Related Macular Degeneration. PDT utilizes light absorbing drugs (photosensitizers) that generate the localized formation of reactive oxygen species after light exposure. In a number of systems, PDT has immunomodulatory effects; Photodynamic Immune Modulation (PIM). Using low- intensity photodynamic regimens applied over a large body surface area, progression of mouse autoimmune disease could be inhibited. Further, this treatment strongly inhibited the immunologically- medicated contact hypersensitivity response to topically applied chemical haptens. Immune modulation appears to result from selective targeting of activated T lymphocytes and reduction in immunostimulation by antigen presenting cells. Psoriasis, an immune-mediated skin condition, exhibits heightened epidermal cell proliferation, epidermal layer thickening and plaque formation at different body sites. In a recent clinical trial, approximately one-third of patients with psoriasis and arthritis symptoms (psoriatic arthritis) displayed a significant clinical improvement in several psoriasis-related parameters after four weekly whole-body PIM treatments with verteporfin. The safety profile was favorable. The capacity of PIM to influence other human immune disorders including rheumatoid arthritis is under extensive evaluation.

  13. Photodynamic action of protoporphyrin IX derivatives on Trichophyton rubrum*

    PubMed Central

    Ramos, Rogério Rodrigo; Kozusny-Andreani, Dora Inês; Fernandes, Adjaci Uchôa; Baptista, Mauricio da Silva

    2016-01-01

    BACKGROUND Dermatophytes are filamentous keratinophilic fungi. Trichophyton rubrum is a prevalent infectious agent in tineas and other skin diseases. Drug therapy is considered to be limited in the treatment of such infections, mainly due to low accessibility of the drug to the tissue attacked and development of antifungal resistance in these microorganisms. In this context, Photodynamic Therapy is presented as an alternative. OBJECTIVE Evaluate, in vitro, the photodynamic activity of four derivatives of Protoporphyrin IX by irradiation with LED 400 nm in T. rubrum. METHOD Assays were subjected to irradiation by twelve cycles of ten minutes at five minute intervals. RESULT Photodynamic action appeared as effective with total elimination of UFCs from the second irradiation cycle. CONCLUSION Studies show that the photodynamic activity on Trichophyton rubrum relates to a suitable embodiment of the photosensitizer, which can be maximized by functionalization of peripheral groups of the porphyrinic ring. PMID:27192510

  14. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-02-23

    The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer-methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.

  15. Photoproduct formation of endogeneous protoporphyrin and its photodynamic activity

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert; Rueck, Angelika C.; Auchter, S.

    1991-11-01

    Human skin shows a strong autofluorescence in the red spectral region caused on the porphyrin production of the Gram positive lipophile skin bacterium Propionibacterium acnes. Irradiation of these bacteria reduces the integral fluorescence intensity and induces the formation of fluorescent photoproducts. The fluorescence band at around 670 nm and the decay times of around 1 ns and 5 ns are typical for protoporphyrin products. The photoproduct formation is connected with an increased absorption in the red spectral region. However the photodynamic activity of these photoproducts determined by scattering measurements on human erythrocytes is lower than that of protoporphyrin IX. 1:

  16. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    PubMed

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  17. Autonomous physics-based color learning under daylight

    NASA Astrophysics Data System (ADS)

    Berube Lauziere, Yves; Gingras, Denis J.; Ferrie, Frank P.

    1999-09-01

    An autonomous approach for learning the colors of specific objects assumed to have known body spectral reflectances is developed for daylight illumination conditions. The main issue is to be able to find these objects autonomously in a set of training images captured under a wide variety of daylight illumination conditions, and to extract their colors to determine color space regions that are representative of the objects' colors and their variations. The work begins by modeling color formation under daylight using the color formation equations and the semi-empirical model of Judd, MacAdam and Wyszecki (CIE daylight model) for representing the typical spectral distributions of daylight. This results in color space regions that serve as prior information in the initial phase of learning which consists in detecting small reliable clusters of pixels having the appropriate colors. These clusters are then expanded by a region growing technique using broader color space regions than those predicted by the model. This is to detect objects in a way that is able to account for color variations which the model cannot due to its limitations. Validation on the detected objects is performed to filter out those that are not of interest and to eliminate unreliable pixel color values extracted from the remaining ones. Detection results using the color space regions determined from color values obtained by this procedure are discussed.

  18. Daylighting Strategies Promote Healthy High Performance Buildings

    ERIC Educational Resources Information Center

    Gille, Steve

    2010-01-01

    There are many reasons to incorporate daylighting into the building or renovation of K-16 learning facilities. Benefits include increased productivity for students and staff, improved health, a better connection to the outdoors, energy savings and better quality of light. Add the role daylighting can play in LEED certification and it's clear that…

  19. From dark to bright: novel daylighting applications in solid state lighting

    NASA Astrophysics Data System (ADS)

    Adler, Helmar G.

    2011-10-01

    The term "daylighting" is used in various ways, on one hand in a more architectural sense, i.e. using existing daylight to illuminate spaces, and on the other, more recently, for using light sources to replicate daylight. The emergence of solid state lighting (SSL) opens up a large number of new avenues for daylighting. SSL allows innovative controllability of intensity and color for artificial light sources that can be advantageously applied to daylighting. With the assistance of these new technologies the combination of natural and artificial lighting could lead to improvements in energy savings and comfort of living beings. Thus it is imperative to revisit or even improve daylighting research so that building networks of the future with their sensor, energy (e.g. HVAC) and lighting requirements can benefit from the emerging capabilities. This paper will briefly review existing daylighting concepts and technology and discuss new ideas. An example of a tunable multi-color SSL system will be shown.

  20. Lighting system combining daylight concentrators and an artificial source

    DOEpatents

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  1. Daylight strategies for architectural studio facilities: the literature review

    NASA Astrophysics Data System (ADS)

    Othman, Muhammad Anas Bin; Azfahani Ahmad, Nur; Ajis, Azizah Md

    2017-05-01

    The implementation of daylighting strategies in buildings is a common aspect in architecture. However, due to the availability of inexpensive electricity, natural lighting strategies became insignificant, and been overlooked by designers. With the current concern over rapid increment on electricity cost, many designers now try to revitalized daylighting strategies in buildings. This includes educational buildings. In Malaysian cases, it is a norm that universities; especially during lecture and studio sessions, used artificial lighting throughout the day. Definitely, this is not parallel with the “green” aim made by the Government in the Malaysian Plan. Therefore, this paper aims to explore the impact of daylight strategies for educational studios in universities, by maximising the penetration of natural daylight into the space towards creating a more green-conducive studio. The paper review literature about the types, criteria and benefits of daylight strategies. This paper also presented a pilot study that has been performed in one university in Perak, Malaysia, by selecting architectural studios as the main subject.

  2. Effect of axial ligands on the molecular configurations, stability, reactivity, and photodynamic activities of silicon phthalocyanines.

    PubMed

    Luan, Liqiang; Ding, Lanlan; Shi, Jiawei; Fang, Wenjuan; Ni, Yuxing; Liu, Wei

    2014-12-01

    To demonstrate the effect of axial ligands on the structure-activity relationship, a series of axially substituted silicon phthalocyanines (SiPcs) have been synthesized with changes to the axial ligands. The reactivity of the axial ligand upon shielding by the phthalocyanine ring current, along with their stability, photophysical, and photodynamic therapy (PDT) activities were compared and evaluated for the first time. As revealed by single-crystal XRD analysis, rotation of the axial -OMe ligands was observed in SiPc 3, which resulted in two molecular configurations coexisting synchronously in both the solid and solution states and causing a split of the phthalocyanine α protons in the (1)H NMR spectra that is significantly different from all SiPcs reported so far. The remarkable photostability, good singlet oxygen quantum yield, and efficient in vitro photodynamic activity synergistically show that compound 3 is one of the most promising photosensitizers for PDT. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Daylighting as a design and energy strategy: Overview of opportunities and conflicts

    NASA Astrophysics Data System (ADS)

    Selkowitz, S.

    1981-06-01

    The potentials and problems associated with using daylight both to improve visual performance and interior aesthetics and to reduce electrical lighting energy consumption and peak electric loads are reviewed. Use of daylighting as a design strategy is not always synonymous with effective use of daylighting as an energy-saving strategy unless both approaches are jointly pursued by the design team. Criteria for visual performance, disability and discomfort glare, historical perspectives on daylight utilization, building form as a limit to daylight penetration, beam sunlighting strategies, luminous efficacy of daylight versus efficient electric light sources, comparative thermal impacts, peak load and load management potential, and nonenergy benefits are reviewed. Although the energy benefits of daylighting can be oversold, it is concluded that in most cases a solid understanding of the energy and design issues should produce energy efficiency and pleasing working environments.

  4. Antimicrobial Activity of Photodynamic Therapy Against Enterococcus faecalis Before and After Reciprocating Instrumentation in Permanent Molars.

    PubMed

    Pinheiro, Sérgio Luiz; Azenha, Giuliana Rodrigues; Democh, Yasmin Marialva; Nunes, Daniela Camila; Provasi, Silvia; Fontanetti, Giovana Masiero; Duarte, Danilo Antônio; Fontana, Carlos Eduardo; da Silveira Bueno, Carlos Eduardo

    2016-12-01

    The present study sought to evaluate the antimicrobial activity against Enterococcus faecalis of photodynamic therapy applied before and after reciprocating instrumentation of permanent molars. Apical extrusion of debris can cause flare-ups due to introduction of bacteria into the periapical tissues. Eighteen mesial roots from permanent mandibular molars were selected. The crowns were removed to obtain a standard root length of 15 mm. The included mesial roots had an angulation of 10°-40° and canals with independent foramina. The orifice of each mesiolingual canal was sealed with light-curing resin, and the working length was established visually, 1 mm short of the apical foramen. The roots were rendered impermeable and sterilized, and the mesiobuccal canals were contaminated with a standard strain of E. faecalis for 21 days. Specimens were randomly divided into three groups (n = 6): G1, photodynamic therapy performed before instrumentation and irrigation with 0.9% NaCl (saline) solution; G2, photodynamic therapy performed after instrumentation and irrigation with 0.9% NaCl; and G3 (control), instrumentation and irrigation with 2.5% NaOCl (sodium hypochlorite) solution. Canals were shaped with a WaveOne primary file (25.08) and irrigated with 0.9% NaCl. E. faecalis samples were collected before and after each procedure, and the results were analyzed using descriptive statistics and the Kruskal-Wallis and Wilcoxon tests. Significant reductions in E. faecalis were observed when photodynamic therapy was performed before and after instrumentation of the root canal system (p < 0.05). Reciprocating instrumentation significantly reduced E. faecalis colonies in experimentally contaminated root canal systems (p < 0.05). Photodynamic therapy was effective in removing E. faecalis from the root canal system, whether performed before or after reciprocating instrumentation.

  5. Daylighting in Classrooms.

    ERIC Educational Resources Information Center

    Willi, John G.

    2003-01-01

    Describes how one elementary school was designed to be a flexible, innovative campus that connects learning and the learning environment. The celebration of nature is carried out in many ways within the building. Students are exposed to great vistas from every interior location. Daylighting is infused throughout the school to reinforce the desire…

  6. Fighting fish parasites with photodynamically active chlorophyllin.

    PubMed

    Häder, D-P; Schmidl, J; Hilbig, R; Oberle, M; Wedekind, H; Richter, P

    2016-06-01

    Water-soluble chlorophyll (chlorophyllin) was used in a phototoxic reaction against a number of fish ectoparasites such as Ichtyobodo, Dactylogyrus, Trichodina, and Argulus. Chlorophyllin is applied to the water at concentrations of several micrograms per milliliter for a predefined incubation time, and afterwards, the parasites are exposed to simulated solar radiation. Application in the dark caused only little damage to the parasites; likewise, light exposure without the addition of the photosensitizer was ineffective. In Ichthyobodo, 2 μg/mL proved sufficient with subsequent simulated solar radiation to almost quantitatively kill the parasites, while in Dactylogyrus, a concentration of about 6 μg/mL was necessary. The LD50 value for this parasite was 1.02 μg/mL. Trichodina could be almost completely eliminated at 2 μg/mL. Only in the parasitic crustacean Argulus, no killing could be achieved by a photodynamic reaction using chlorophyllin. Chlorophyllin is non-toxic, biodegradable, and can be produced at low cost. Therefore, we propose that chlorophyllin (or other photodynamic substances) are a possible effective countermeasure against several ectoparasites in ponds and aquaculture since chemical remedies are either forbidden and/or ineffective.

  7. Natural extracellular nanovesicles and photodynamic molecules: is there a future for drug delivery?

    PubMed

    Kusuzaki, Katsuyuki; Matsubara, Takao; Murata, Hiroaki; Logozzi, Mariantonia; Iessi, Elisabetta; Di Raimo, Rossella; Carta, Fabrizio; Supuran, Claudiu T; Fais, Stefano

    2017-12-01

    Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.

  8. Daylighting in the workplace: Two new buildings offer a guiding light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackaway, A.; Littler, J.

    1996-10-01

    As environmental pressures intensify and energy efficiency remains paramount, there has been renewed interest in daylighting the workplace. Interestingly, daylighting`s resurgence is being furthered by mounting evidence of occupant dissatisfaction with predominantly electrically-lit offices, and two recent reports support growing concern that the lack of daylighting in these interiors has led not only to unhappy workers, but to potentially significant reductions in workplace productivity. Clearly pressure is mounting on designers to produce buildings responding to these concerns, and as the role of precedents in the evolution of design practice is unquestioned, demand has been increasing for publication of office-based daylightingmore » case studies. In an attempt to address this need, this paper examines two recently completed British buildings in which daylight has explicitly informed the architecture, and although data concerning the resulting energy savings is not yet available, these projects currently offer the design community two excellent examples of workplace daylighting where compelling visual environments are generating noteworthy occupant satisfaction.« less

  9. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    NASA Astrophysics Data System (ADS)

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  10. Progress toward development of photodynamic vaccination against infectious/malignant diseases and photodynamic mosquitocides

    NASA Astrophysics Data System (ADS)

    Chang, Kwang Poo; Kolli, Bala K.; Fan, Chia-Kwung; Ng, Dennis K. P.; Wong, Clarence T. T.; Manna, Laura; Corso, Raffaele; Shih, Neng-Yao; Elliott, Robert; Jiang, X. P.; Shiao, Shin-Hong; Fu, Guo-Liang

    2018-02-01

    Photodynamic therapy (PDT) uses photosensitizers (PS) that are excited with light to generate ROS in the presence of oxygen for treating various diseases. PS also has the potential use as photodynamic insecticides (PDI) and for light-inactivation of Leishmania for photodynamic vaccination (PDV). PDT-inactivated Leishmania are non-viable, but remain immunologically competent as whole-cell vaccines against leishmaniasis, and as a universal carrier for delivery of add-on vaccines against other infectious and malignant diseases. We have screened novel PS, including Zn- and Si-phthalocyanines (PC) for differential PDT activities against Leishmania, insect and mammalian cells in vitro to assess their PDI and PDV potential. Here, Zn-PC were conjugated with various functional groups. The conjugates were examined for uptake by cells as a prerequisite for their susceptibility to light-inactivation. PDT sensitivity was found to vary with cell types and PS used. PDI potential of several PS was demonstrated by their mosquito larvicidal PDT activities in vitro. PDT-inactivated Leishmania were stored frozen for PDV in several ongoing studies: [1] Open label trial with 20 sick dogs for immunotherapy of canine leishmaniasis after chemotherapy in Naples, Italy. Clinical follow-up for >3 years indicate that the PDV prolongs their survival; [2] PDV of murine models with a human lung cancer vaccine showed dramatic tumor suppression; [3] Open label trial of multiple PDV via compassionate access to 4 advanced cancer patients showed no clinically adverse effects. Two subjects remain alive. Genetic modifications of Leishmania are underway to further enhance their safety and efficacy for PDV by installation of activable mechanisms for self-destruction and spontaneous light-emission.

  11. Daylight Saving Time Transitions and Road Traffic Accidents

    PubMed Central

    Lahti, Tuuli; Nysten, Esa; Haukka, Jari; Sulander, Pekka; Partonen, Timo

    2010-01-01

    Circadian rhythm disruptions may have harmful impacts on health. Circadian rhythm disruptions caused by jet lag compromise the quality and amount of sleep and may lead to a variety of symptoms such as fatigue, headache, and loss of attention and alertness. Even a minor change in time schedule may cause considerable stress for the body. Transitions into and out of daylight saving time alter the social and environmental timing twice a year. According to earlier studies, this change in time-schedule leads to sleep disruption and fragmentation of the circadian rhythm. Since sleep deprivation decreases motivation, attention, and alertness, transitions into and out of daylight saving time may increase the amount of accidents during the following days after the transition. We studied the amount of road traffic accidents one week before and one week after transitions into and out of daylight saving time during years from 1981 to 2006. Our results demonstrated that transitions into and out of daylight saving time did not increase the number of traffic road accidents. PMID:20652036

  12. Electrochemical microsensor system for cancer research on photodynamic therapy in vitro

    NASA Astrophysics Data System (ADS)

    Marzioch, J.; Kieninger, J.; Sandvik, J. A.; Pettersen, E. O.; Peng, Q.; Urban, G.

    2016-10-01

    An electrochemical microsensor system to investigate photodynamic therapy of cancer cells in vitro was developed and applied to monitor the cellular respiration during and after photodynamic therapy. The redox activity and therefore influence of the photodynamic drug on the sensor performance was investigated by electrochemical characterization. It was shown, that appropriate operation conditions avoid cross-sensitivity of the sensors to the drug itself. The presented system features a cell culture chamber equipped with microsensors and a laser source to photodynamically treat the cells while simultaneous monitoring of metabolic parameter in situ. Additionally, the optical setup allows to read back fluorescence signals from the photosensitizer itself or other marker molecules parallel to the microsensor readings.

  13. Optimal integration of daylighting and electric lighting systems using non-imaging optics

    NASA Astrophysics Data System (ADS)

    Scartezzini, J.-L.; Linhart, F.; Kaegi-Kolisnychenko, E.

    2007-09-01

    Electric lighting is responsible for a significant fraction of electricity consumption within non-residential buildings. Making daylight more available in office and commercial buildings can lead as a consequence to important electricity savings, as well as to the improvement of occupants' visual performance and wellbeing. Over the last decades, daylighting technologies have been developed for that purpose, some of them having proven to be highly efficient such as anidolic daylighting systems. Based on non-imaging optics these optical devices were designed to achieve an efficient collection and redistribution of daylight within deep office rooms. However in order to benefit from the substantial daylight provision obtained through these systems and convert it into effective electricity savings, novel electric lighting strategies are required. An optimal integration of high efficacy light sources and efficient luminaries based on non-imaging optics with anidolic daylighting systems can lead to such novel strategies. Starting from the experience gained through the development of an Anidolic Integrated Ceiling (AIC), this paper presents an optimal integrated daylighting and electric lighting system. Computer simulations based on ray-tracing techniques were used to achieve the integration of 36W fluorescent tubes and non-imaging reflectors with an advanced daylighting system. Lighting power densities lower than 4 W/m2 can be achieved in this way within the corresponding office room. On-site monitoring of an integrated daylighting and electric lighting system carried out on a solar experimental building confirmed the energy and visual performance of such a system: it showed that low lighting power densities can be achieved by combining an anidolic daylighting system with very efficient electric light sources and luminaries.

  14. Artificial light sources for simulating natural daylight and skylight.

    PubMed

    Grum, F

    1968-01-01

    A review of the literature reveals the need for reliable and stable artificial light sources that can be used as simulators of daylight and skylight. In quest of such simulators a first requirement is quantitative information on the average spectral distributions of natural sources such as daylight and skylight. Recent investigations of the spectral energy characteristics of natural daylight and skylight made it possible to determine such average conditions. With these conditions established, a search was undertaken for an artificial light source that would simulate these average natural distributions with a minimum of filtering. Certain fluorescent lamps and combinations of them were considered first, but, although it was possible to achieve fairly good visual matches of daylight and skylight, the spectral characteristics and the variability of such combinations are drawbacks to their use in critical scientific work. For this purpose, therefore, xenon arc lamps were found to be superior.

  15. Natural daylight restricted to twilights delays the timing of testicular regression but does not affect the timing of the daily activity rhythm of the house sparrow (Passer domesticus)

    PubMed Central

    Trivedi, Amit K; Rani, Sangeeta; Kumar, Vinod

    2006-01-01

    Background A stable and systematic daily change in light levels at dawn and dusk provides the most reliable indicator of the phase of the day. It is likely that organisms have evolved mechanisms to use these twilight transitions as the primary zeitgeber to adjust their circadian phases. In this study, we investigated under natural illumination conditions the effects of daylight exposure restricted to twilights on the timing of testicular regression and locomotor activity of the house sparrow (Passer domesticus), which possesses a strongly self-sustaining circadian system. Methods and results Two experiments were performed on adult male house sparrows. Beginning in the third week of April, the first experiment examined whether exposure to natural daylight only during twilights influenced the timing of testicular regression and concomitant changes in testosterone-dependent beak color of reproductively mature sparrows. Interestingly, there was a significant delay in testicular regression and depigmentation of the beak in sparrows exposed to natural daylight (NDL) only during twilights as compared to those exposed to NDL all day. The second experiment examined twice in the year, around the equinoxes (March and September), the effects of exposure to twilights only on the daily activity rhythm of sparrows kept in an outdoor aviary. Five of 7 birds continued exhibiting entrained activity rhythms when exposed only to twilights (NDL minus day light from sunrise to sunset) in September, but not in March. Both in NDL and twilight conditions, March birds had significantly lower activity counts than September birds. Conclusion Exposure to natural daylight only during twilights delayed the timing of testicular regression and concomitant depigmentation of the beak but did not affect the daily activity rhythm in male sparrows. This suggests that daily twilights can serve as cues for regulation of the circadian activity rhythm but not for the photoperiodic regulation of testicular

  16. Daylighting in the Springfield (Ohio) Museum of Art

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, F.

    This paper describes daylighting strategies used in the addition to the Springfield Museum of Art, Springfield, Ohio. The interior daylighting illuminances and luminances have been measured and these data are presented. The original museum was built in 1958. This original portion is approximately 18,000 ft{sup 2} (1,674 m{sup 2}) floor area and was remodeled as part of the 1995 addition to house and art school, cataloging, preparation, and administrative functions. The new addition is approximately 10,000 ft{sup 2} (930 m{sup 2}) and is primarily exhibit galleries with some additional administrative offices. Glaser Associated were the architects (Michael Moose, project architect)more » and the author was the daylighting consultant on the project.« less

  17. Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N-methyl morpholiniumethoxy substituents in non-peripheral positions.

    PubMed

    Dlugaszewska, Jolanta; Szczolko, Wojciech; Koczorowski, Tomasz; Skupin-Mrugalska, Paulina; Teubert, Anna; Konopka, Krystyna; Kucinska, Malgorzata; Murias, Marek; Düzgüneş, Nejat; Mielcarek, Jadwiga; Goslinski, Tomasz

    2017-07-01

    Photodynamic therapy involves the use of a photosensitizer that is irradiated with visible light in the presence of oxygen, resulting in the formation of reactive oxygen species. A novel phthalocyanine derivative, the quaternary iodide salt of magnesium(II) phthalocyanine with N-methyl morpholiniumethoxy substituents, was synthesized, and characterized. The techniques used included mass spectrometry (MALDI TOF), UV-vis, NMR spectroscopy, and photocytotoxicity against bacteria, fungi and cancer cells. The phthalocyanine derivative possessed typical characteristics of compounds of the phthalocyanine family but the effect of quaternization was observed on the optical properties, especially in terms of absorption efficiency. The results of the photodynamic antimicrobial effect study demonstrated that cationic phthalocyanine possesses excellent photodynamic activity against planktonic cells of both Gram-positive and Gram-negative bacteria. The bactericidal effect was dose-dependent and all bacterial strains tested were killed to a significant degree by irradiated phthalocyanine at a concentration of 1×10 -4 M. There were no significant differences in the susceptibility of Gram-positive and Gram-negative bacteria to the applied photosensitizer. The photosensitivity of bacteria in the biofilm was lower than that in planktonic form. No correlation was found between the degree of biofilm formation and susceptibility to antimicrobial photodynamic inactivation. The anticancer activity of the novel phthalocyanine derivative was tested using A549 adenocarcinomic alveolar basal epithelial cells and the human oral squamous cell carcinoma cells derived from tongue (HSC3) or buccal mucosa (H413). No significant decrease in cell viability was observed under different conditions or with different formulations of the compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Investigation of photodynamic effect caused by MPPa-PDT on breast cancer Investigation of photodynamic effect caused by MPPa-PDT

    NASA Astrophysics Data System (ADS)

    Tian, Y. Y.; Hu, X. Y.; Leung, W. N.; Yuan, H. Q.; Zhang, L. Y.; Cui, F. A.; Tian, X.

    2012-10-01

    Breast cancer is the common malignant tumor, the incidence increases with age. Photodynamic therapy (PDT) is a new technique applied in tumors, which involves the administration of a tumor localizing photosensitizer and it is followed by the activation of a specific wavelength. Pyropheophorbide-a methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. We are exploring the photodynamic effect caused by MPPa-PDT on breast cancer. The in vitro and in vivo experiments indicate that MPPa is a comparatively ideal photosensitizer which can induce apoptosis in breast cancer.

  19. A New Modality for Cancer Treatment--Nanoparticle Mediated Microwave Induced Photodynamic Therapy.

    PubMed

    Yao, Mengyu; Ma, Lun; Li, Lihua; Zhang, Junying; Lim, Rebecca; Chen, Wei; Zhang, Yu

    2016-10-01

    Photodynamic therapy (PDT) has attracted ever-growing attention as a promising modality for cancer treatment. However, due to poor tissue penetration by light, photodynamic therapy has rarely been used for deeply situated tumors. This problem can be solved if photosensitizers are activated by microwaves (MW) that are able to penetrate deeply into tissues. Here, for the first time, we report microwave-induced photodynamic therapy and exploit copper cysteamine nanoparticles as a new type of photosensitizer that can be activated by microwaves to produce singlet oxygen for cancer treatment. Both in vitro and in vivo studies on a rat osteosarcoma cell line (UMR 106-01) have shown significant cell destruction using copper cysteamine (Cu-Cy) under microwave activation. The heating effects and the release of copper ions from Cu-Cy upon MW stimulation are the main mechanisms for the generation of reactive oxygen species that are lethal bullets for cancer destruction. The copper cysteamine nanoparticle-based microwave-induced photodynamic therapy opens a new door for treating cancer and other diseases.

  20. The role of the peripheral benzodiazepine receptor in photodynamic activity of certain pyropheophorbide ether photosensitizers: albumin site II as a surrogate marker for activity.

    PubMed

    Dougherty, Thomas J; Sumlin, Adam B; Greco, William R; Weishaupt, Kenneth R; Vaughan, Lurine A; Pandey, Ravindra K

    2002-07-01

    A study has been carried out to define the importance of the peripheral benzodiazepine receptor (PBR) as a binding site for a series of chlorin-type photosensitizers, pyropheophorbide-a ethers, the subject of a previous quantitative structure-activity relationship study by us. The effects of the PBR ligand PK11195 on the photodynamic activity have been determined in vivo for certain members of this series of alkyl-substituted ethers: two of the most active derivatives (hexyl and heptyl), the least active derivative (dodecyl [C12]) and one of intermediate activity (octyl [C8]). The photodynamic therapy (PDT) effect was inhibited by PK11195 for both of the most active derivatives, but no effect on PDT activity was found for the less active C12 or C8 ethers. The inhibitory effects of PK11195 were predicted by the binding of only the active derivatives to the benzodiazepine site on albumin, ie. human serum albumin (HSA)-Site II. Thus, as with certain other types of photosensitizers, it has been demonstrated with this series of pyropheophorbide ethers that in vitro binding to HSA-Site II is a predictor of both optimal in vivo activity and binding to the PBR in vivo.

  1. Effects of daylight savings time changes on stock market volatility.

    PubMed

    Berument, M Hakan; Dogan, Nukhet; Onar, Bahar

    2010-04-01

    The presence of daylight savings time effects on stock returns and on stock volatility was investigated using an EGARCH specification to model the conditional variance. The evidence gathered from the major United States stock markets for the period between 1967 and 2007 did not support the existence of the daylight savings time effect on stock returns or on volatility. Returns on the first business day following daylight savings time changes were not lower nor was the volatility higher, as would be expected if there were an effect.

  2. Antimicrobial Photodynamic Inactivation and Antitumor Photodynamic Therapy with Fullerenes

    NASA Astrophysics Data System (ADS)

    de Freitas, Lucas F.

    2016-04-01

    This book provides detailed and current information on using fullerenes (bucky-balls) in photodynamic therapy (PDT), one of the most actively studied applications of photonic science in healthcare. This will serve as a useful source for researchers working in photomedicine and nanomedicine, especially those who are investigating PDT for cancer treatment and infectious disease treatment. The book runs the gamut from an introduction to the history and chemistry of fullerenes and some basic photochemistry, to the application of fullerenes as photosensitizers for cancer and antimicrobial inactivation.

  3. Photodynamic activity of pyropheophorbide methyl ester and pyropheophorbide a in dimethylformamide solution.

    PubMed

    Al-Omari, Saleh; Ali, Ahmad

    2009-03-01

    Comparative spectroscopic study including the photosensitizers of pyropheophorbide methyl ester (PPME) and pyropheophorbide a (PPa) was performed to study their photodynamic activity. The investigated photosensitizers in a homogeneous system of dimethylformamide (DMF) are not photostable upon irradiation. The photobleaching efficiency of PPa is higher than that of PPME. Combining these results with the data obtained by measuring the singlet oxygen quantum yield and the hydroxyl group generation, it was revealed that the photobleaching efficiency could be correlated with the singlet oxygen quantum yield and the hydroxyl group production of the photosensitizer.

  4. Real-Time Dosimetry and Optimization of Prostate Photodynamic Therapy

    DTIC Science & Technology

    2006-09-01

    photodynamic therapy in patients with prostate cancer,” IPA 9th World Congress of Photodynamic Medicine, (2003). 2. Zhu TC, Diana S, Dimofte A...photodynamic therapy,” IPA 9th World Congress of Photodynamic Medicine, (2003). 3. Zhu TC, Altschuler M, Xiao Y, Finlay J, Dimofte A, Hahn SM, “Light...Optimization of treatment plan using Cimmino algorithm in prostate photodynamic therapy,” IPA 10th World Congress of Photodynamic Medicine, Munich

  5. The integration of daylighting with artificial lighting to enhance building energy performance

    NASA Astrophysics Data System (ADS)

    Al-Ashwal, Najib Taher; Hassan, Ahmad Sanusi

    2017-10-01

    In sustainable building designs, daylight is considered as an alternative source of light to artificial lighting. Daylight is an energy-free and efficient-cost lighting source. Natural light is the best source for light due to its good quality, which matches the visual response of the human eyes. Daylight positively affects people by providing a sense of liveliness and brightness in the living space. The positive impact of daylight on the building occupants' visual comfort, health and performance is well recognized. However, daylight is not widely utilized to supplement artificial lighting, because there is a lack of information and tools to evaluate daylighting and potentials for energy savings. The efficient utilization of natural lighting will not only affect the interior environment and the occupants' health and performance but also has a direct impact on the building energy performance. Therefore, this paper reviews and discusses the effects of daylighting on the building energy performance mainly in schools and office buildings. This includes lighting energy performance, total energy consumption, cooling load. The methods, which are used to estimate the possible reduction in total energy consumption, are also reviewed in this research paper. Previous studies revealed that a clear reduction can be obtained in the energy consumed by electric lighting, as well as in the total energy end-use when a suitable lighting control system is applied to utilize the available natural light.

  6. Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine

    PubMed Central

    Pan, Xiaobo; Liang, Xinyue; Yao, Longfang; Wang, Xinyi; Jing, Yueyue; Fei, Yiyan; Chen, Li

    2017-01-01

    TiO2 nanoparticles modified with phthalocyanines (Pc) have been proven to be a potential photosensitizer in the application of photodynamic therapy (PDT). However, the generation of reactive oxygen species (ROS) by TiO2 nanoparticles modified with Pc has not been demonstrated clearly. In this study, nitrogen-doped TiO2 conjugated with Pc (N-TiO2-Pc) were studied by means of monitoring the generation of ROS. The absorbance and photokilling effect on HeLa cells upon visible light of different regions were also studied and compared with non-doped TiO2-Pc and Pc. Both N-TiO2-Pc and TiO2-Pc can be activated by visible light and exhibited much higher photokilling effect on HeLa cells than Pc. In addition, nitrogen-doping can greatly enhance the formation of 1O2 and •O2−, while it suppresses the generation of OH•. This resulted in significant photodynamic activity. Therefore, N-TiO2-Pc can be an excellent candidate for a photosensitizer in PDT with wide-spectrum visible irradiation. PMID:29053580

  7. Daylighting simulation: methods, algorithms, and resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, William L.

    This document presents work conducted as part of Subtask C, ''Daylighting Design Tools'', Subgroup C2, ''New Daylight Algorithms'', of the IEA SHC Task 21 and the ECBCS Program Annex 29 ''Daylight in Buildings''. The search for and collection of daylighting analysis methods and algorithms led to two important observations. First, there is a wide range of needs for different types of methods to produce a complete analysis tool. These include: Geometry; Light modeling; Characterization of the natural illumination resource; Materials and components properties, representations; and Usability issues (interfaces, interoperability, representation of analysis results, etc). Second, very advantageously, there have beenmore » rapid advances in many basic methods in these areas, due to other forces. They are in part driven by: The commercial computer graphics community (commerce, entertainment); The lighting industry; Architectural rendering and visualization for projects; and Academia: Course materials, research. This has led to a very rich set of information resources that have direct applicability to the small daylighting analysis community. Furthermore, much of this information is in fact available online. Because much of the information about methods and algorithms is now online, an innovative reporting strategy was used: the core formats are electronic, and used to produce a printed form only secondarily. The electronic forms include both online WWW pages and a downloadable .PDF file with the same appearance and content. Both electronic forms include live primary and indirect links to actual information sources on the WWW. In most cases, little additional commentary is provided regarding the information links or citations that are provided. This in turn allows the report to be very concise. The links are expected speak for themselves. The report consists of only about 10+ pages, with about 100+ primary links, but with potentially thousands of indirect links. For

  8. Photodynamic therapy for basal cell carcinoma.

    PubMed

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma.

  9. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality.

    PubMed

    Liu, Fang; Li, Zhaojie; Cao, Binbin; Wu, Juan; Wang, Yuming; Xue, Yong; Xu, Jie; Xue, Changhu; Tang, Qing Juan

    2016-09-01

    In this paper, the effect of photodynamic method mediated by curcumin (PDT) on the shelf life and quality of pacific oysters during storage at 5±1°C were analyzed. In our previous study we investigated the optimal treatment conditions of photodynamic method mediated by curcumin to sterilization were 10uM photosensitizer concentration and 5.4J/cm 2 light energy density. Under these conditions, the effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality was researched. The total bacterial counts, TVB-N content and sensory analysis were used to evaluate the effects on oyster shelf life. The oyster shelf life was prolonged from 8days to 12days after photodynamic treatment and the oysters in the treatment group displayed notable odor retention, produced fewer odor corrupting substances when the control group oysters reached the end of their shelf life (day 8). Texture, free amino acid contents and fatty acid levels were applied to estimate the quality of the treated oysters. The texture had no significant change after treated with PDT. At the end of oyster shelf life, compared PDT group (PDT) with control group (control), total free amino acid contents (control: 234.30mg/100g, PDT: 813.02mg/100g) was higher and free fatty acid levels (control: 0.071mEq/L, PDT: 0.0455mEq/L) displayed lower in PDT group. This indicated that the treated oysters oxidized minimally, decayed slowly, decomposed fewer nutrients and had lower metabolic levels of spoilage microorganisms. PDT has a positive effect on prolonging oyster shelf life and its quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Light Moves: Integrating Daylight into School Design from the Start

    ERIC Educational Resources Information Center

    Brossy de Dios, Eric; Rogic, Tinka; Vaughn, Wendell

    2010-01-01

    Numerous studies have demonstrated the benefits of daylight on the learning environment. Enhanced student performance and mood, increased teacher and student attendance, reduced energy costs, as well as a positive effect on the environment are some of the improvements seen in school buildings that use well-planned daylighting concepts. Looking at…

  11. Photodynamic therapy for polypoidal choroidal vasculopathy secondary to choroidal nevus.

    PubMed

    Wong, James G; Lai, Xin Jie; Sarafian, Richard Y; Wong, Hon Seng; Smith, Jeremy B

    2017-01-01

    We report a case of a Caucasian female who developed active polypoidal choroidal vasculopathy (PCV) at the edge of a stable choroidal nevus and was successfully treated with verteporfin photodynamic therapy. No active polyp was detectable on indocyanine green angiography 2 years after treatment, and good vision was maintained. Indocyanine green angiography is a useful investigation to diagnose PCV and may be underutilized. Unlike treatment of choroidal neovascularization secondary to choroidal nevus, management of PCV secondary to nevus may not require intravitreal anti-vascular endothelial growth factor therapy. Photodynamic monotherapy may be an effective treatment of secondary PCV.

  12. Daylighting in Schools: Improving Student Performance and Health at a Price Schools Can Afford.

    ERIC Educational Resources Information Center

    Plympton, Patricia; Conway, Susan; Epstein, Kyra

    This document discusses evidence regarding daylighting and student performance and development, and presents four case studies of schools that have cost effectively implemented daylighting into their buildings. Case studies reveal that design and construction strategies that incorporate daylighting do not significantly increase costs over…

  13. Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belzer, D. B.; Hadley, S. W.; Chin, S-M.

    2008-10-01

    The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called formore » the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy

  14. Fluorescence detection and photodynamic activity of endogenous protoporphyrin in human skin

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Rueck, Angelika C.; Schneckenburger, Herbert

    1992-07-01

    Human skin shows a strong autofluorescence in the red spectral region with main peaks around 600, 620, and 640 nm caused by the porphyrin production of the gram positive lipophile skin bacterium Propionibacterium acnes. Irradiation of these bacteria reduces the integral fluorescence intensity and induces the formation of photoproducts with fluorescence bands around 670 nm and decay times of about 1 and 5 ns. The photoproduct formation is connected with an increased absorption in the red spectral region. The endogenous fluorescent porphyrins act as photosensitizers. Photodestruction of Propionibacteria acnes by visible light appears therefore to be a promising therapy. The photodynamic activity of the photoproducts was lower than that of protoporphyrin IX.

  15. Photodynamic therapy--aspects of pain management.

    PubMed

    Fink, Christine; Enk, Alexander; Gholam, Patrick

    2015-01-01

    Topical photodynamic therapy (PDT) is a highly effective and safe treatment method for actinic keratoses with an excellent cosmetic outcome and is commonly used for the therapy of large areas of photodamaged skin with multiple clinically manifest and subclinical lesions. However, the major drawback of photodynamic therapy is the pain experienced during the treatment that can be intense and sometimes even intolerable for patients, requiring interruption or termination of the process. Several strategies for controlling pain during photodynamic therapy have been studied but few effective methods are currently available. Therefore, this review puts the spotlight on predictors on pain intensity and aspects of pain management during photodynamic therapy. © 2014 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  16. Could Daylight Glare Be Defined Mathematically?Results of Testing the DGIN Method in Japan

    NASA Astrophysics Data System (ADS)

    Nazzal, Ali; Oki, Masato

    Discomfort glare from daylight is a common problem without valid prediction methods so far. A new mathematical DGIN (New Daylight Glare Index) method tries to respond the challenge. This paper reports on experiments carried out in daylit office environment in Japan to test applicability of the method. Slight positive correlation was found between the DGIN and the subjective evaluation. Additionally, a high Ladaptation value together with the small ratio of Lwindow to Ladaptation was obviously experienced sufficient to neutralize the effect of glare discomfort. However, subjective assessments are poor glare indicators and not reliable in testing glare prediction methods. DGIN is a good indicator of daylight glare, and when the DGIN value is analyzed together with the measured illuminance ratios, discomfort glare from daylight can be analyzed in a quantitative manner. The DGIN method could serve architects and lighting designers in testing daylighting systems, and also guide the action of daylight responsive lighting controls.

  17. Photodynamic effect of curcumin on Vibrio parahaemolyticus.

    PubMed

    Wu, Juan; Mou, Haijin; Xue, Changhu; Leung, Albert Wingnang; Xu, Chuanshan; Tang, Qing-Juan

    2016-09-01

    Vibrio parahaemolyticus (V. parahaemolyticus) is currently a major cause of bacterial diarrhoea associated with seafood consumption. The objective of this study was to determine the inactivation effect of curcumin-mediated photodynamic action on V. parahaemolyticus. First of all, V. parahaemolyticus suspended in PBS buffer was irradiated by a visible light from a LED light source with an energy density of 3.6J/cm(2). Colony forming units (CFU) were counted and the viability of V. parahaemolyticus cells was calculated after treatment. Singlet oxygen ((1)O2) production after photodynamic action of curcumin was evaluated using 9,10-Anthracenediyl-bis (methylene) dimalonic acid (ADMA). Bacterial outer membrane protein was extracted and analyzed using electrophoresis SDS-PAGE. DNA and RNA of V. parahaemolyticus were also extracted and analyzed using agarose gel electrophoresis after photodynamic treatment. Finally, the efficacy of photodynamic action of curcumin was preliminarily evaluated in the decontamination of V. parahaemolyticus in oyster. Results showed that the viability of V. parahaemolyticus was significantly decreased to non-detectable levels over 6.5-log reductions with the curcumin concentration of 10 and 20μM. Photodynamic action of curcumin significantly increased the singlet oxygen level with the curcumin concentration of 10μM. Notable damage was found to bacterial outer membrane proteins and genetic materials after photodynamic treatment. Photodynamic action of curcumin reduced the number of V. parahaemolyticus contaminating in oyster to non-detectable level. Our findings demonstrated that photodynamic action of curcumin could be a potentially good method to inactivate Vibrio parahaemolyticus contaminating in oyster. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Comprehensive Tutorial on In Vitro Characterization of New Photosensitizers for Photodynamic Antitumor Therapy and Photodynamic Inactivation of Microorganisms

    PubMed Central

    Maisch, Tim; Berneburg, Mark; Plaetzer, Kristjan

    2013-01-01

    In vitro research performed on eukaryotic or prokaryotic cell cultures usually represents the initial step for characterization of a novel photosensitizer (PS) intended for application in photodynamic therapy (PDT) of cancer or photodynamic inactivation (PDI) of microorganisms. Although many experimental steps of PS testing make use of the wide spectrum of methods readily employed in cell biology, special aspects of working with photoactive substances, such as the autofluorescence of the PS molecule or the requirement of light protection, need to be considered when performing in vitro experiments in PDT/PDI. This tutorial represents a comprehensive collection of operative instructions, by which, based on photochemical and photophysical properties of a PS, its uptake into cells, the intracellular localization and photodynamic action in both tumor cells and microorganisms novel photoactive molecules may be characterized for their suitability for PDT/PDI. Furthermore, it shall stimulate the efforts to expand the convincing benefits of photodynamic therapy and photodynamic inactivation within both established and new fields of applications and motivate scientists of all disciplines to get involved in photodynamic research. PMID:23762860

  19. EVALUATION OF A PROCEDURE FOR USING DAYLIGHT PROJECTION OF FILM LOOPS IN TEACHING SKILLS.

    ERIC Educational Resources Information Center

    HARBY, S.F.

    EQUIPMENT USING A TRANSLUCENT SCREEN AND REAR PROJECTION HAS MADE IT POSSIBLE TO PROJECT MOTION PICTURES IN DAYLIGHT (DAYLIGHT PROJECTION). FILMS CAN BE SHOWN REPEATEDLY WHEN FORMED INTO A FILM LOOP (CONTINUOUS LOOP PROJECTION). DAYLIGHT PROJECTION AND CONTINUOUS LOOP PROJECTION WERE USED TO INVESTIGATE THE FOLLOWING QUESTIONS--(1) ARE FILM LOOP…

  20. Daylight Design for Urban Residential Planning in Poland in Regulations and in A Practice. A Comparison Study of Daylight Conditions Observed in the Four Neighbouring Residential Areas

    NASA Astrophysics Data System (ADS)

    Sokol, Natalia; Martyniuk-Peczek, Justyna

    2017-10-01

    This paper reports on the partial results of the research aiming to illustrate how an integration of daylight design into an architectural planning process can help designers to create the residential buildings in respect to the environmental issues, solar and illuminance gains, as well as, the residents’ needs and comfort. It describes how changing daylight recommendations affected the design of the block of flats regarding their orientation, the spacing, the forms, and the size of the windows in the four urban residential areas. The results of this study help to determine more precise characterization of daylight indicators useful in architectural planning.

  1. Daylighting Concepts for University Libraries and Their Influences on Users' Satisfaction

    ERIC Educational Resources Information Center

    Kilic, Didem Kan; Hasirci, Deniz

    2011-01-01

    Daylighting, a controlled architectural tool that influences users' perception and behavior, in university libraries and their influences on users' preference and satisfaction was examined in this study. The effects of daylighting in coordination with visual comfort, on university library users were measured in relation to four environmental…

  2. A Framework for Daylighting Optimization in Whole Buildings with OpenStudio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-08-12

    We present a toolkit and workflow for leveraging the OpenStudio (Guglielmetti et al. 2010) platform to perform daylighting analysis and optimization in a whole building energy modeling (BEM) context. We have re-implemented OpenStudio's integrated Radiance and EnergyPlus functionality as an OpenStudio Measure. The OpenStudio Radiance Measure works within the OpenStudio Application and Parametric Analysis Tool, as well as the OpenStudio Server large scale analysis framework, allowing a rigorous daylighting simulation to be performed on a single building model or potentially an entire population of programmatically generated models. The Radiance simulation results can automatically inform the broader building energy model, andmore » provide dynamic daylight metrics as a basis for decision. Through introduction and example, this paper illustrates the utility of the OpenStudio building energy modeling platform to leverage existing simulation tools for integrated building energy performance simulation, daylighting analysis, and reportage.« less

  3. 78 FR 79498 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-OpenDaylight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Production Act of 1993--OpenDaylight Project, Inc. Notice is hereby given that, on November 13, 2013.... 4301 et seq. (``the Act''), OpenDaylight Project, Inc. (``OpenDaylight'') has filed written.... Membership in this group research project remains open, and OpenDaylight intends to file additional written...

  4. Involvement of Bim in Photofrin-mediated photodynamically induced apoptosis.

    PubMed

    Wang, Xianwang; He, Xiaobing; Hu, Shujuan; Sun, Anbang; Lu, Chengbiao

    2015-01-01

    Photodynamic therapy (PDT) is a promising noninvasive technique, which has been successfully applied to the treatment of human cancers. Studies have shown that the Bcl-2 family proteins play important roles in PDT-induced apoptosis. However, whether Bcl-2-interacting mediator of cell death (Bim) is involved in photodynamic treatment remains unknown. In this study, we attempt to determine the effect of Bim on Photofrin photodynamic treatment (PPT)-induced apoptosis in human lung adenocarcinoma ASTC-a-1 cells. The translocation of Bim/Bax of the cells were monitored by laser confocal scanning microscope. The levels of Bim protein and activated caspase-3 in cells were detected by western blot assay. Caspase-3 activities were measured by Caspase-3 Fluorogenic Substrate (Ac-DEVD-AFC) analysis. The induction of apoptosis was detected by Hoechst 33258 and PI staining as well as flow cytometry analysis. The effect of Bim on PPT-induced apoptosis was determined by RNAi. BimL translocated to mitochondria in response to PPT, similar to the downstream pro-apoptotic protein Bax activation. PPT increased the level of Bim and activated caspase-3 in cells and that knockdown of Bim by RNAi significantly protected against caspase-3 activity. PPT-induced apoptosis were suppressed in cells transfected with shRNA-Bim. We demonstrated the involvement of Bim in PPT-induced apoptosis in human ASTC-a-1 lung adenocarcinoma cells and suggested that enhancing Bim activity might be a potential strategy for treating human cancers. © 2015 S. Karger AG, Basel.

  5. Photodynamic therapy in endodontics: a literature review.

    PubMed

    Trindade, Alessandra Cesar; De Figueiredo, José Antônio Poli; Steier, Liviu; Weber, João Batista Blessmann

    2015-03-01

    Recently, several in vitro and in vivo studies demonstrated promising results about the use of photodynamic therapy during root canal system disinfection. However, there is no consensus on a standard protocol for its incorporation during root canal treatment. The purpose of this study was to summarize the results of research on photodynamic therapy in endodontics published in peer-reviewed journals. A review of pertinent literature was conducted using the PubMed database, and data obtained were categorized into sections in terms of relevant topics. Studies conducted in recent years highlighted the antimicrobial potential of photodynamic therapy in endodontics. However, most of these studies were not able to confirm a significant improvement in root canal disinfection for photodynamic therapy as a substitute for current disinfection methods. Its indication as an excellent adjunct to conventional endodontic therapy is well documented, however. Data suggest the need for protocol adjustments or new photosensitizer formulations to enhance photodynamic therapy predictability in endodontics.

  6. Colour Mixing Based on Daylight

    ERIC Educational Resources Information Center

    Meyn, Jan-Peter

    2008-01-01

    Colour science is based on the sensation of monochromatic light. In contrast to that, surface colours are caused by reflection of wide sections of the daylight spectrum. Non-spectral colours like magenta and purple appear homologous to colours with spectral hue, if the approach of mixing monochromatic light is abandoned. It is shown that a large…

  7. ALA-Butyrate prodrugs for Photo-Dynamic Therapy

    NASA Astrophysics Data System (ADS)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2010-05-01

    The use of 5-aminolevulinic acid (ALA) administration has led to many applications of photodynamic therapy (PDT) in cancer. However, the hydrophilic nature of ALA limits its ability to penetrate the cells and tissues, and therefore the need for ALA derivatives became an urgent research target. In this study we investigated the activity of novel multifunctional acyloxyalkyl ester prodrugs of ALA that upon metabolic hydrolysis release active components such as, formaldehyde, and the histone deacetylase inhibitory moiety, butyric acid. Evaluation of these prodrugs under photo-irradiation conditions showed that butyryloxyethyl 5-amino-4-oxopentanoate (ALA-BAC) generated the most efficient photodynamic destruction compared to ALA. ALA-BAC stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells which resulted in generation of intracellular ROS, reduction of mitochondrial activity, leading to apoptotic and necrotic death of the cells. The apoptotic cell death induced by ALA / ALA-BAC followed by PDT equally activate intrinsic and extrinsic apoptotic signals and both pathways may occur simultaneously. The main advantage of ALA-BAC over ALA stems from its ability to induce photo-damage at a significantly lower dose than ALA.

  8. Photodynamic therapy for recurrent respiratory papillomatosis.

    PubMed

    Lieder, Anja; Khan, Muhammad K; Lippert, Burkard M

    2014-06-05

    Recurrent respiratory papillomatosis (RRP) is a benign condition of the mucosa of the upper aerodigestive tract. It is characterised by recurrent papillomatous lesions and is associated with human papillomavirus (HPV). Frequent recurrence and rapid papilloma growth are common and in part responsible for the onset of potentially life-threatening symptoms. Most patients afflicted by the condition will require repeated surgical treatments to maintain their airway, and these may result in scarring and voice problems. Photodynamic therapy introduces a light-sensitising agent, which is administered either orally or by injection. This substance (called a photo-sensitiser) is selectively retained in hyperplastic and neoplastic tissue, including papilloma. It is then activated by light of a specific wavelength and may be used as a sole or adjuvant treatment for RRP. To assess the effects of photodynamic therapy in the management of recurrent respiratory papillomatosis (RRP) in children and adults. We searched the Cochrane Ear, Nose and Throat Disorders Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; CINAHL; Web of Science; Cambridge Scientific Abstracts; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 January 2014. Randomised controlled trials utilising photodynamic therapy as sole or adjuvant therapy in participants of any age with proven RRP versus control intervention. Primary outcome measures were symptom improvement (respiratory distress/dyspnoea and voice quality), quality of life improvement and recurrence-free interval. Secondary outcomes included reduction in the frequency of surgical intervention, reduction in disease volume and adverse effects of treatment.   We used the standard methodological procedures expected by The Cochrane Collaboration. Meta-analysis was not possible and results are presented descriptively. We included one trial with a total of 23

  9. Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy.

    PubMed

    Li, Ke; Qiu, Ling; Liu, Qingzhu; Lv, Gaochao; Zhao, Xueyu; Wang, Shanshan; Lin, Jianguo

    2017-09-01

    In order to improve the efficacy of photodynamic therapy (PDT), biotin was axially conjugated with silicon(IV) phthalocyanine (SiPc) skeleton to develop a new tumor-targeting photosensitizer SiPc-biotin. The target compound SiPc-biotin showed much higher binding affinity toward BR-positive (biotin receptor overexpressed) HeLa human cervical carcinoma cells than its precursor SiPc-pip. However, when the biotin receptors of HeLa cells were blocked by free biotin, >50% uptake of SiPc-biotin was suppressed, demonstrating that SiPc-biotin could selectively accumulate in BR-positive cancer cells via the BR-mediated internalization. The confocal fluorescence images further confirmed the target binding ability of SiPc-biotin. As a consequence of specificity of SiPc-biotin toward BR-positive HeLa cells, the photodynamic effect was also largely dependent on the BR expression level of HeLa cells. The photodynamic activities of SiPc-biotin against HeLa cells were dramatically reduced when the biotin receptors were blocked by the free biotin (IC 50 : 0.18μM vs. 0.46μM). It is concluded that SiPc-biotin can selectively damage BR-positive cancer cells under irradiation. Furthermore, the dark toxicity of SiPc-biotin toward human normal liver cell lines LO2 was much lower than that of its precursor SiPc-pip. The targeting photodynamic activity and low dark toxicity suggest that SiPc-biotin is a promising photosensitizer for tumor-targeting photodynamic therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy.

    PubMed

    Hammerer, Fabien; Poyer, Florent; Fourmois, Laura; Chen, Su; Garcia, Guillaume; Teulade-Fichou, Marie-Paule; Maillard, Philippe; Mahuteau-Betzer, Florence

    2018-01-01

    The proof of concept for two-photon activated photodynamic therapy has already been achieved for cancer treatment but the efficiency of this approach still heavily relies on the availability of photosensitizers combining high two-photon absorption and biocompatibility. In this line we recently reported on a series of porphyrin-triphenylamine hybrids which exhibit high singlet oxygen production quantum yield as well as high two-photon absorption cross-sections but with a very poor cellular internalization. We present herein new photosensitizers of the same porphyrin-triphenylamine hybrid series but bearing cationic charges which led to strongly enhanced water solubility and thus cellular penetration. In addition the new compounds have been found localized in mitochondria that are preferential target organelles for photodynamic therapy. Altogether the strongly improved properties of the new series combined with their specific mitochondrial localization lead to a significantly enhanced two-photon activated photodynamic therapy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Energy and daylighting: A correlation between quality of light and energy consciousness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, N.

    1997-12-31

    Energy and Daylighting, an advanced topics graduate/professional elective has been established to help the student develop a deeper understanding of Architectural Daylighting, Energy Conserving Design, and Material/Construction/Methods through direct application. After a brief survey of the principles and applications of current and developing attitudes and techniques in energy conservation and natural lighting strategies is conducted (in order to build upon previous courses), an extensive exercise follows which allows the student the opportunity for direct applications. Both computer modeling/analysis and physical modeling (light box simulation with photographic documentation) are employed to focus attention on the interrelationships between natural lighting and passivemore » energy conserving design--all within the context of establishing environmental (interior) quality and (exterior) design direction. As a result, students broaden their understanding of natural light and energy conservation as design tools; the importance of environmental responsibility, both built and natural environments; and using computer analysis as a design tool. This presentation centers around the activities and results obtained from explorations into Energy and Daylighting. Discussion will highlight the course objectives, the methodology involved in the studies, specific requirements and means of evaluation, a slide show of befores and afters (results), and a retrospective look at the course`s value, as well as future directions and implications.« less

  12. Photodynamic therapy of cervical intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Inada, Natalia M.; Lombardi, Welington; Leite, Marieli F. M.; Trujillo, Jose R.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Photodynamic therapy (PDT) is a technique that has been used for the treatment of tumors, especially in Gynecology. The photodynamic reaction is based on the production of reactive oxygen species after the activation of a photosensitizer. Advantages of the PDT in comparison to the surgical resection are: ambulatory treatment and tissue recovery highly satisfactory, through a non-invasive procedure. The cervical intraepithelial neoplasia (CIN) grades I and II presents potential indications for PDT. The aim of the proposed study is to evaluate the safety and efficacy of the PDT for the diagnostics and treatment of CIN I and II. The equipment and the photosensitizer are produced in Brazil with a representative low cost. It is possible to visualize the fluorescence of the cervix and to treat the lesions, without side effects. The proposed clinical protocol shows great potential to become a public health technique.

  13. Impact of Windows and Daylight Exposure on Overall Health and Sleep Quality of Office Workers: A Case-Control Pilot Study

    PubMed Central

    Boubekri, Mohamed; Cheung, Ivy N.; Reid, Kathryn J.; Wang, Chia-Hui; Zee, Phyllis C.

    2014-01-01

    Study Objective: This research examined the impact of daylight exposure on the health of office workers from the perspective of subjective well-being and sleep quality as well as actigraphy measures of light exposure, activity, and sleep-wake patterns. Methods: Participants (N = 49) included 27 workers working in windowless environments and 22 comparable workers in workplaces with significantly more daylight. Windowless environment is defined as one without any windows or one where workstations were far away from windows and without any exposure to daylight. Well-being of the office workers was measured by Short Form-36 (SF-36), while sleep quality was measured by Pittsburgh Sleep Quality Index (PSQI). In addition, a subset of participants (N = 21; 10 workers in windowless environments and 11 workers in workplaces with windows) had actigraphy recordings to measure light exposure, activity, and sleep-wake patterns. Results: Workers in windowless environments reported poorer scores than their counterparts on two SF-36 dimensions—role limitation due to physical problems and vitality—as well as poorer overall sleep quality from the global PSQI score and the sleep disturbances component of the PSQI. Compared to the group without windows, workers with windows at the workplace had more light exposure during the workweek, a trend toward more physical activity, and longer sleep duration as measured by actigraphy. Conclusions: We suggest that architectural design of office environments should place more emphasis on sufficient daylight exposure of the workers in order to promote office workers' health and well-being. Citation: Boubekri M, Cheung IN, Reid KJ, Wang CH, Zee PC. Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. J Clin Sleep Med 2014;10(6):603-611. PMID:24932139

  14. Year-Round Daylight Saving Time Study : Volume 1. Interim Report on the Operation and Effects of Daylight Saving Time

    DOT National Transportation Integrated Search

    1975-06-01

    The analyses of the effects of Year-Round Daylight Saving Time were not conslusive because they could not be reliablyseparated from other changes occuring simultaneously including fuel availability constraints, speed limit reductions, Sunday gasoline...

  15. Daylight levels during the solar eclipse of 11 August 1999

    NASA Astrophysics Data System (ADS)

    Darula, S.; Kambezidis, H. D.; Kittler, R.

    Solar eclipses are unique phenomena not only for astronomical and space observations but also for terrestrial; they create unique conditions of sunbeam blockage which cause not only the reduction of direct sunlight but also the dimming of skylight from the whole sky vault. Very favorable conditions were met during the recent August 1999 solar eclipse in Athens, Greece and Bratislava, Slovakia. General class daylight stations operate within the International Daylight Measurements Program in the two cities. One-minute data of global/diffuse illuminance and zenith luminance from those stations have been used to provide information about their levels and the daylight reduction rate during the eclipse. An approximate formula for the estimation of sunlight and skylight illuminance levels as well as zenith luminance using relative luminance sky patterns is also presented in this work. To achieve this, recently developed sky standards together with their parameterizations are utilized.

  16. Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study.

    PubMed

    Boubekri, Mohamed; Cheung, Ivy N; Reid, Kathryn J; Wang, Chia-Hui; Zee, Phyllis C

    2014-06-15

    This research examined the impact of daylight exposure on the health of office workers from the perspective of subjective well-being and sleep quality as well as actigraphy measures of light exposure, activity, and sleep-wake patterns. Participants (N = 49) included 27 workers working in windowless environments and 22 comparable workers in workplaces with significantly more daylight. Windowless environment is defined as one without any windows or one where workstations were far away from windows and without any exposure to daylight. Well-being of the office workers was measured by Short Form-36 (SF-36), while sleep quality was measured by Pittsburgh Sleep Quality Index (PSQI). In addition, a subset of participants (N = 21; 10 workers in windowless environments and 11 workers in workplaces with windows) had actigraphy recordings to measure light exposure, activity, and sleep-wake patterns. Workers in windowless environments reported poorer scores than their counterparts on two SF-36 dimensions--role limitation due to physical problems and vitality--as well as poorer overall sleep quality from the global PSQI score and the sleep disturbances component of the PSQI. Compared to the group without windows, workers with windows at the workplace had more light exposure during the workweek, a trend toward more physical activity, and longer sleep duration as measured by actigraphy. We suggest that architectural design of office environments should place more emphasis on sufficient daylight exposure of the workers in order to promote office workers' health and well-being.

  17. Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Luo, Zhenyu; Zheng, Mingbin; Zhao, Pengfei; Chen, Ze; Siu, Fungming; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2016-03-01

    Photodynamic therapy has been increasingly applied in clinical cancer treatments. However, native hypoxic tumoural microenvironment and lacking oxygen supply are the major barriers hindering photodynamic reactions. To solve this problem, we have developed biomimetic artificial red cells by loading complexes of oxygen-carrier (hemoglobin) and photosensitizer (indocyanine green) for boosted photodynamic strategy. Such nanosystem provides a coupling structure with stable self-oxygen supply and acting as an ideal fluorescent/photoacoustic imaging probe, dynamically monitoring the nanoparticle biodistribution and the treatment of PDT. Upon exposure to near-infrared laser, the remote-triggered photosensitizer generates massive cytotoxic reactive oxygen species (ROS) with sufficient oxygen supply. Importantly, hemoglobin is simultaneously oxidized into the more active and resident ferryl-hemoglobin leading to persistent cytotoxicity. ROS and ferryl-hemoglobin synergistically trigger the oxidative damage of xenograft tumour resulting in complete suppression. The artificial red cells with self-monitoring and boosted photodynamic efficacy could serve as a versatile theranostic platform.

  18. Photodynamic action of methylene blue in osteosarcoma cells in vitro.

    PubMed

    Guan, Jiemin; Lai, Xiaoping; Wang, Xinna; Leung, Albert Wingnang; Zhang, Hongwei; Xu, Chuanshan

    2014-03-01

    Osteosarcoma is a common malignant bone tumor which threatens the life of young people worldwide. To explore alternative strategy for combating osteosarcoma, a light-emitting diode (LED) that activates methylene blue (MB) was used in the present study to investigate cell death of osteosarcoma-derived UMR106 cells. Photocytotoxicity in UMR106 cells was investigated 24h after photodynamic activation of MB using sulforhodamine B (SRB) assay and light microscopy. Apoptosis induction was observed 24h after photodynamic treatment using a confocal laser scanning microscopy (CLSM) with Hoechst 33342 staining. The change in mitochondrial membrane potential (MMP) was analyzed using a flow cytometry with rhodamine 123 staining. MB under red light irradiation caused a drug-concentration (0-100μM) and light-dose (0-32J/cm(2)) dependent cytotoxicity in UMR106 cells. The SRB assay and light microscopy observed a significant decrease in the number of UMR106 cells attached to the bottom of culture well after LED light-activated MB (100μM, 32J/cm(2)). Nuclear shrinkage, chromatin condensation and fragmentation were found in the treated cells by nuclear staining. In addition, flow cytometry showed that the MMP in UMR106 cells was rapidly reduced by photo-activated MB (100μM, 32J/cm(2)). Photodynamic action of MB under LED irradiation could remarkably kill osteosarcoma cells and induce cell apoptosis as well as MMP collapse. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  19. The design and evaluation of three advanced daylighting systems: Light shelves, light pipes and skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltran, L.O.; Lee, E.S.; Papmichael, K.M.

    1994-03-01

    We present results from the design and evaluation of three advanced daylighting systems: a light shelf, a light pipe, and a skylight. These systems use optical films and an optimized geometry to passively intercept and redirect sunlight further into the building. The objectives of these designs are to increase daylighting illuminance levels at distances of 4.6-9.1 m (15--30 ft) from the window, and to improve the uniformity of the daylight distribution and the luminance gradient across the room under variable sun and sky conditions throughout the year. The designs were developed through a series of computer-assisted ray-tracing studies, photometric measurements,more » and observations using physical scale models. Comprehensive sets of laboratory measurements in combination with analytical routines were then used to simulate daylight performance for any solar position. Results show increased daylight levels and an improved luminance gradient throughout the year -- indicating that lighting energy consumption and cooling energy due of lighting can be substantially reduced with improvements to visual comfort. Future development of the designs may further improve the daylighting performance of these systems.« less

  20. Photodynamic Therapy with Hypericin Improved by Targeting HSP90 Associated Proteins

    PubMed Central

    Solár, Peter; Chytilová, Mária; Solárová, Zuzana; Mojžiš, Ján; Ferenc, Peter; Fedoročko, Peter

    2011-01-01

    In this study we have focused on the response of SKBR-3 cells to both single 17-DMAG treatment as well as its combination with photodynamic therapy with hypericin. Low concentrations of 17-DMAG without any effect on survival of SKBR-3 cells significantly reduced metabolic activity, viability and cell number when combined with photodynamic therapy with hypericin. Moreover, IC10 concentation of 17-DMAG resulted in significant increase of SKBR-3 cells in G1 phase of the cell cycle, followed by an increase of cells in G2 phase when combined with photodynamic therapy. Furthermore, 17-DMAG already decreased HER2, Akt, P-Erk1/2 and survivin protein levels in SKBR-3 cells a short time after its application. In this regard, 17-DMAG protected also SKBR-3 cells against both P-Erk1/2 as well as survivin upregulations induced by photodynamic therapy with hypericin. Interestingly, IC10 concentration of 17-DMAG led to total depletion of Akt, P-Erk1/2 proteins and to decrease of survivin level at 48 h. On the other hand, 17-DMAG did not change HER2 relative expression in SKBR-3 cells, but caused a significant decrease of HER2 mRNA in MCF-7 cells characterized by low HER2 expression. These results show that targeting HSP90 client proteins increases the efficiency of antineoplastic effect of photodynamic therapy in vitro. PMID:27721334

  1. [Photodynamic therapy for actinic cheilitis].

    PubMed

    Castaño, E; Comunión, A; Arias, D; Miñano, R; Romero, A; Borbujo, J

    2009-12-01

    Actinic cheilitis is a subtype of actinic keratosis that mainly affects the lower lip and has a higher risk of malignant transformation. Its location on the labial mucosa influences the therapeutic approach. Vermilionectomy requires local or general anesthetic and is associated with a risk of an unsightly scar, and the treatment with 5-fluorouracil or imiquimod lasts for several weeks and the inflammatory reaction can be very intense. A number of authors have used photodynamic therapy as an alternative to the usual treatments. We present 3 patients with histologically confirmed actinic cheilitis treated using photodynamic therapy with methyl aminolevulinic acid as the photosensitizer and red light at 630 nm. The clinical response was good, with no recurrences after 3 to 6 months of follow-up. Our experience supports the use of photodynamic therapy as a good alternative for the treatment of actinic cheilitis.

  2. Preparation of a chlorophyll derivative and investigation of its photodynamic activities against cholangiocarcinoma.

    PubMed

    Wu, Zhong-Ming; Wang, Li; Zhu, Wei; Gao, Ying-Hua; Wu, Hai-Ming; Wang, Mi; Hu, Tai-Shan; Yan, Yi-Jia; Chen, Zhi-Long

    2017-08-01

    Photodynamic therapy (PDT) is emerging as a promising method for the treatment of various cancer diseases. However, the clinical application of PDT is limited due to the lack of effective photosensitizers. In this study, a novel chlorophyll derivative, N,N-bis(2-carboxyethyl)pyropheophorbide a (BPPA), had been synthesized and characterized. BPPA had a characteristic long wavelength absorption peak at 669nm and a singlet oxygen quantum yield of 0.54. To investigate the photodynamic ability of BPPA against cholangiocarcinoma (CCA), cellular uptake, subcellular location and bio-distribution, in vitro and in vivo PDT efficacy of BPPA were studied. The results showed that BPPA could rapidly accumulate in QBC-939 cells and localize in the cytoplasm. BPPA- PDT was effective in reducing the cell viability in a drug dose- and light dose-dependent manner in vitro. In CCA xenograft nude mouse model, the concentration of BPPA in the plasma lowered rapidly, and the fluorescence signal peaked at 0.5h and 2h after injection in the skin and tumor, respectively. Significant quantities could be observed in the tumor. BPPA followed by irradiation could significantly inhibit growth of tumors, and histological examination revealed necrotic damage in PDT-treated tumors. These results suggested that BPPA could be a promising drug candidate for photodynamic therapy in cholangiocarcinoma. Published by Elsevier Masson SAS.

  3. Recent research on anidolic daylighting systems: highly reflective coating materials and chronobiological properties

    NASA Astrophysics Data System (ADS)

    Linhart, Friedrich; Wittkopf, Stephen K.; Münch, Mirjam; Scartezzini, Jean-Louis

    2009-08-01

    Making daylight more available in buildings is highly desirable for reasons of energy efficiency, visual comfort, occupant well-being and health. The Anidolic Integrated Ceiling (AIC) is a highly efficient daylighting system, designed to gather and redirect daylight from the outside of a building into its interior with minimal losses. The reflective coating materials used within AICs have a major impact on the optical efficiency of such systems. The first part of our article presents a new computer model of an AIC consisting of more than 30 distinct components. We discuss on which of them the use of expensive, highly reflective coatings makes the most sense. We conclude that coating the component "Anidolic element 1" is always a good choice and that considerable financial savings can be obtained by following an appropriate optimization sequence.The second part of our article discusses chronobiological properties of Anidolic Daylighting Systems (ADS). We recorded daytime irradiance values for several weeks from March to May 2009 in an experimental office setup in our laboratory using a portable digital spectroradiometer. Our results showed to which extent different sky conditions influenced daylight exposure of office workers in an ADS-equipped office room. We conclude that for the tested ADS-equipped office room, daylight supply can be considered largely sufficient during long periods on most working days. However, complementary artificial lighting with blue-enriched polychromatic fluorescent tubes might be useful on days with predominantly overcast skies as well as before 09:00 and after 16:30 on all days.

  4. Seasonality in trauma admissions - Are daylight and weather variables better predictors than general cyclic effects?

    PubMed

    Røislien, Jo; Søvik, Signe; Eken, Torsten

    2018-01-01

    Trauma is a leading global cause of death, and predicting the burden of trauma admissions is vital for good planning of trauma care. Seasonality in trauma admissions has been found in several studies. Seasonal fluctuations in daylight hours, temperature and weather affect social and cultural practices but also individual neuroendocrine rhythms that may ultimately modify behaviour and potentially predispose to trauma. The aim of the present study was to explore to what extent the observed seasonality in daily trauma admissions could be explained by changes in daylight and weather variables throughout the year. Retrospective registry study on trauma admissions in the 10-year period 2001-2010 at Oslo University Hospital, Ullevål, Norway, where the amount of daylight varies from less than 6 hours to almost 19 hours per day throughout the year. Daily number of admissions was analysed by fitting non-linear Poisson time series regression models, simultaneously adjusting for several layers of temporal patterns, including a non-linear long-term trend and both seasonal and weekly cyclic effects. Five daylight and weather variables were explored, including hours of daylight and amount of precipitation. Models were compared using Akaike's Information Criterion (AIC). A regression model including daylight and weather variables significantly outperformed a traditional seasonality model in terms of AIC. A cyclic week effect was significant in all models. Daylight and weather variables are better predictors of seasonality in daily trauma admissions than mere information on day-of-year.

  5. In vitro evaluation of photodynamic therapy using curcumin on Leishmania major and Leishmania braziliensis.

    PubMed

    Pinto, Juliana Guerra; Fontana, Letícia Correa; de Oliveira, Marco Antonio; Kurachi, Cristina; Raniero, Leandro José; Ferreira-Strixino, Juliana

    2016-07-01

    Cutaneous leishmaniasis is an infectious disease caused by the Leishmania protozoan. The conventional treatment is long-lasting and aggressive, in addition to causing harmful effect. Photodynamic therapy has emerged as a promising alternative treatment, which allows local administration with fewer side effects. This study investigated the photodynamic activity of curcumin on Leishmania major and Leishmania braziliensis promastigote. Both species were submitted to incubation with curcumin in serial dilutions from 500 μg/ml up to 7.8 μg/ml. Control groups were kept in the dark while PDT groups received a fluency of 10 J/cm(2) at 450 nm. Mitochondrial activity was assessed by MTT assay 18 h after light treatment, and viability was measured by Trypan blue dye exclusion test. Morphological alterations were observed by Giemsa staining. Confocal microscopy showed the uptake of curcumin by both tested Leishmania species. Mitochondrial activity was inconclusive to determine viability; however, Trypan blue test was able to show that curcumin photodynamic treatment had a significant effect on viability of parasites. The morphology of promastigotes was highly affected by the photodynamic therapy. These results indicated that curcumin may be a promising alternative photosensitizer, because it presents no toxicity in the dark; however, further tests in co-culture with macrophages and other species of Leishmania should be conducted to determine better conditions before in vivo tests are performed.

  6. Daylight saving time transitions and hospital treatments due to accidents or manic episodes

    PubMed Central

    Lahti, Tuuli A; Haukka, Jari; Lönnqvist, Jouko; Partonen, Timo

    2008-01-01

    Background Daylight saving time affects millions of people annually but its impacts are still widely unknown. Sleep deprivation and the change of circadian rhythm can trigger mental illness and cause higher accident rates. Transitions into and out of daylight saving time changes the circadian rhythm and may cause sleep deprivation. Thus it seems plausible that the prevalence of accidents and/or manic episodes may be higher after transition into and out of daylight saving time. The aim of this study was to explore the effects of transitions into and out of daylight saving time on the incidence of accidents and manic episodes in the Finnish population during the years of 1987 to 2003. Methods The nationwide data were derived from the Finnish Hospital Discharge Register. From the register we obtained the information about the hospital-treated accidents and manic episodes during two weeks before and two weeks after the transitions in 1987–2003. Results The results were negative, as the transitions into or out of daylight saving time had no significant effect on the incidence of accidents or manic episodes. Conclusion One-hour transitions do not increase the incidence of manic episodes or accidents which require hospital treatment. PMID:18302734

  7. Evaluation of toxicological properties and photodynamic activity of Photolon ointment: an experimental study

    NASA Astrophysics Data System (ADS)

    Shliakhtsin, Siarhei V.; Trukhachova, Tatsiana V.; Istomin, Yuriy P.; Dunetz, Ludmila N.; Kuvshinov, Andrey V.; Naumovich, Semen A.

    2009-06-01

    The purpose of the present study was to evaluate toxicological properties and photodynamic activity of a new ready form of the photosensitizer Photolon (Fotolon) - an ointment for topical use. The data obtained show the use of topicaly applied photosensitizer provides sufficient penetration and accumulation of the active compound in tumor tissue as well as in affected periodontal tissues for the effective PDT. There are several advantages of PDT with topical application of the photosensitizer such as absence of systemic toxic and photosensitive reactions, relatively low cost of the treatment and etc. We have shown that PDT of affected periodontal tissues with local application of Photolon/Fotolon ointment provides an ability of local destruction of microbial cell, located as on the gum surface as in the spatium intercellulare what is extremely important for successful treatment of acute and chronic periodontitis.

  8. Photodynamic therapy in treatment of severe oral lichen planus.

    PubMed

    Rabinovich, O F; Rabinovich, I M; Guseva, A V

    2016-01-01

    The aim of the study was to elaborate the rationale for the application of photodynamic therapy in complex treatment of patient with severe oral lichen planus. Complex clinical and laboratory examination and treatment was performed in 54 patients divided on 3 groups. Diagnosis of oral lichen planus was based on clinical, histological and immunohistochemical features. Group 1 received standard treatment, in the second group photodynamic therapy was conducted in addition to conventional treatment, patients in the third group received only photodynamic therapy. The study results proved photodynamic therapy to be useful tool in complex treatment of severe oral lichen planus.

  9. Immune Response Following Photodynamic Therapy For Bladder Cancer

    NASA Astrophysics Data System (ADS)

    Raymond K.

    1989-06-01

    This study was undertaken to determine if photodynamic therapy (PDT) produces an immunologic response in patients treated for bladder cancer. Gamma interferon, interleukin 1-beta, interleukin 2 and tumor necrosis factor-alpha were assayed in the urine of four patients treated with photodynamic therapy for bladder cancer, in seven patients undergoing transurethral procedures, and in five healthy control subjects. Quantifiable concentrations of all cytokines, except gamma interferon, were measured in urine samples from the PDT patients treated with the highest light energies, while no urinary cytokines were found in the PDT patient who received the lowest light energy or in the control subjects. These findings suggest that a local immunologic response may occur following PDT for bladder cancer. Such an immunologic response activated by PDT may be an additional mechanism involved in bladder tumor destruction.

  10. Project Lateday : The Level of Accidents Under the Effect of Daylight Saving All Year

    DOT National Transportation Integrated Search

    1975-10-01

    Year-round daylight saving time (YRDST) has recently been observed in the United States. The observance of double daylight saving time (DDST) is under some consideration. One of the principal expected effects of the adoption of these time systems is ...

  11. Daylighting Update: A Brief Guide to the Process of Designing Energy Conserving Schools through the Use of Daylighting.

    ERIC Educational Resources Information Center

    Hill, Alva L.; Lawrence, Jerry

    In recent years one of the most prevalent requests directed to design architects by teachers and administrative personnel is to include in the architectural program for their new school provisions for admitting more daylight into their classrooms. This guide by the American Institute of Architects National Committee on Architecture for Education…

  12. Cardiovascular photodynamic therapy: state of the art

    NASA Astrophysics Data System (ADS)

    Woodburn, Kathryn W.; Rockson, Stanley G.

    2000-05-01

    Photodynamic therapy (PDT) has been used traditionally for oncologic and ophthalmic indications. In addition, the enormous potential for the use of PDT agents in cardiovascular diseases is currently being translated into reality. Preclinical studies with various photosensitizers have demonstrated reduction in atheromatous plaque and prevention of intimal hyperplasia. With recent advances in light-based vascular devices and laser diode technology, the clinical use of cardiovascular photodynamic therapy is even more likely. Two photosensitizers, 5-aminolevulinic acid (ALA) and AntrinR (motexafin lutetium) Injection, are under clinical evaluation with many other agents in preclinical testing. Here, preclinical studies are reviewed and the clinical viability of cardiovascular photodynamic therapy is discussed.

  13. Photodynamic therapy influence on anti-cancer immunity

    NASA Astrophysics Data System (ADS)

    Isaeva, O. G.; Osipov, V. A.

    2010-02-01

    The system of partial differential equations describing tumor-immune dynamics with angiogenesis taken into account is presented. For spatially homogeneous case, the steady state analysis of the model is carried out. The effects of single photodynamic impact are numerically simulated. In the case of strong immune response we found that the photodynamic therapy (PDT) gives rise to the substantial shrinkage of tumor size which is accompanied by the increase of IL-2 concentration. On the contrary, the photodynamic stimulation of weak immune response is shown to be insufficient to reduce the tumor. These findings indicate the important role of anti-cancer immune response in the long-term tumor control after PDT.

  14. Photodynamic therapy influence on anti-cancer immunity

    NASA Astrophysics Data System (ADS)

    Isaeva, O. G.; Osipov, V. A.

    2009-10-01

    The system of partial differential equations describing tumor-immune dynamics with angiogenesis taken into account is presented. For spatially homogeneous case, the steady state analysis of the model is carried out. The effects of single photodynamic impact are numerically simulated. In the case of strong immune response we found that the photodynamic therapy (PDT) gives rise to the substantial shrinkage of tumor size which is accompanied by the increase of IL-2 concentration. On the contrary, the photodynamic stimulation of weak immune response is shown to be insufficient to reduce the tumor. These findings indicate the important role of anti-cancer immune response in the long-term tumor control after PDT.

  15. Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics

    PubMed Central

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed. PMID:23650479

  16. Photodynamic action of the red laser on Propionibacterium acnes*

    PubMed Central

    Ramos, Rogério Rodrigo; de Paiva, Jeferson Leandro; Gomes, José Paulo Franco dos Santos; Boer, Nagib Pezati; de Godoy, José Maria Pereira; Batigalia, Fernando

    2017-01-01

    Background Photodynamic therapy is a therapeutic modality that has consolidated its activity in the photooxidation of organic matter, which arises from the activity of reactive oxygen species. Objective To evaluate the effect of red laser 660nm with the photosensitizer methylene blue on Propionibacterium acnes in vitro. Method The experimental design was distributed into four groups (1 - control group without the application of light and without photosensitizer, 2 - application of light, 3 - methylene blue without light, and 4 - methylene blue with light). Tests were subjected to red laser irradiation 660nm by four cycles of 5 minutes at 3-minute intervals. Results It was evidenced the prominence of the fourth cycle (20 minutes) groups 2, 3 and 4. Study limitations Despite the favorable results, the laser irradiation time photosensitizer associated with methylene blue were not sufficient to to completely inhibit the proliferation of bacteria. Conclusion Further studies in vitro are recommended to enable the clinical application of this photosensitizer in photodynamic therapy. PMID:29166495

  17. Hardware-in-the-Loop Modeling and Simulation Methods for Daylight Systems in Buildings

    NASA Astrophysics Data System (ADS)

    Mead, Alex Robert

    This dissertation introduces hardware-in-the-loop modeling and simulation techniques to the daylighting community, with specific application to complex fenestration systems. No such application of this class of techniques, optimally combining mathematical-modeling and physical-modeling experimentation, is known to the author previously in the literature. Daylighting systems in buildings have a large impact on both the energy usage of a building as well as the occupant experience within a space. As such, a renewed interest has been placed on designing and constructing buildings with an emphasis on daylighting in recent times as part of the "green movement.''. Within daylighting systems, a specific subclass of building envelope is receiving much attention: complex fenestration systems (CFSs). CFSs are unique as compared to regular fenestration systems (e.g. glazing) in the regard that they allow for non-specular transmission of daylight into a space. This non-specular nature can be leveraged by designers to "optimize'' the times of the day and the days of the year that daylight enters a space. Examples of CFSs include: Venetian blinds, woven fabric shades, and prismatic window coatings. In order to leverage the non-specular transmission properties of CFSs, however, engineering analysis techniques capable of faithfully representing the physics of these systems are needed. Traditionally, the analysis techniques available to the daylighting community fall broadly into three classes: simplified techniques, mathematical-modeling and simulation, and physical-modeling and experimentation. Simplified techniques use "rules-of-thumb'' heuristics to provide insights for simple daylighting systems. Mathematical-modeling and simulation use complex numerical models to provide more detailed insights into system performance. Finally, physical-models can be instrumented and excited using artificial and natural light sources to provide performance insight into a daylighting system

  18. Photodynamic injury of isolated crayfish neuron and surrounding glial cells: the role of p53

    NASA Astrophysics Data System (ADS)

    Sharifulina, S. A.; Uzdensky, A. B.

    2015-03-01

    The pro-apoptotic transcription factor p53 is involved in cell responses to injurious impacts. Using its inhibitor pifithrin- α and activators tenovin-1, RITA and WR-1065, we studied its potential participation in inactivation and death of isolated crayfish mechanoreceptor neuron and satellite glial cells induced by photodynamic treatment, a strong inducer of oxidative stress. In dark, p53 activation by tenovin-1 or WR-1065 shortened activity of isolated neurons. Tenovin-1 and WR-1065 induced apoptosis of glial cells, whereas pifithrin-α was anti-apoptotic. Therefore, p53 mediated glial apoptosis and suppression of neuronal activity after axotomy. Tenovin-1 but not other p53 modulators induced necrosis of axotomized neurons and surrounding glia, possibly, through p53-independent pathway. Under photodynamic treatment, p53 activators tenovin-1 and RITA enhanced glial apoptosis indicating the pro-apoptotic activity of p53. Photoinduced necrosis of neurons and glia was suppressed by tenovin-1 and, paradoxically, by pifithrin-α. Modulation of photoinduced changes in the neuronal activity and necrosis of neurons and glia was possibly p53-independent. The different effects of p53 modulators on neuronal and glial responses to axotomy and photodynamic impact were apparently associated with different signaling pathways in neurons and glial cells.

  19. Daylight coloring for monochrome infrared imagery

    NASA Astrophysics Data System (ADS)

    Gabura, James

    2015-05-01

    The effectiveness of infrared imagery in poor visibility situations is well established and the range of applications is expanding as we enter a new era of inexpensive thermal imagers for mobile phones. However there is a problem in that the counterintuitive reflectance characteristics of various common scene elements can cause slowed reaction times and impaired situational awareness-consequences that can be especially detrimental in emergency situations. While multiband infrared sensors can be used, they are inherently more costly. Here we propose a technique for adding a daylight color appearance to single band infrared images, using the normally overlooked property of local image texture. The simple method described here is illustrated with colorized images from the visible red and long wave infrared bands. Our colorizing process not only imparts a natural daylight appearance to infrared images but also enhances the contrast and visibility of otherwise obscure detail. We anticipate that this colorizing method will lead to a better user experience, faster reaction times and improved situational awareness for a growing community of infrared camera users. A natural extension of our process could expand upon its texture discerning feature by adding specialized filters for discriminating specific targets.

  20. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-05-01

    In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.

  1. Differences in geometry of pedestrian crashes in daylight and darkness.

    PubMed

    Sullivan, John M; Flannagan, Michael J

    2011-02-01

    Previous studies have shown that increased risk in darkness is particularly great for pedestrian crashes, suggesting that attempts to improve headlighting should focus on factors that likely influence those crashes. The current analysis was designed to provide information about how details of pedestrian crashes may differ between daylight and darkness. All pedestrian crashes that occurred in daylight or dark conditions in Michigan during 2004 were analyzed in terms of the variables included in the State of Michigan crash database. Additional analysis of the narratives and diagrams in police accident reports was performed for a subset of 400 of those crashes-200 sampled from daylight and 200 sampled from darkness. Several differences were found that appear to be related to the characteristic asymmetry of low-beam headlamps, which (in the United States) distributes more light on the passenger's side than the driver's side of the vehicle. These results provide preliminary quantification of the how the photometric differences between the right and left sides of typical headlamps may affect pedestrian crash risk. The results suggest that efforts to provide supplemental forward vehicle lighting in turns may have safety benefits for pedestrians. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Reduction of lighting energy consumption in office buildings through improved daylight design

    NASA Astrophysics Data System (ADS)

    Papadouri, Maria Violeta Prado

    This study aims to investigate the lighting energy consumption in office buildings and the options for its reduction. One way to reduce lighting energy consumption is by improving the daylight design. A better use of daylight in buildings might be an outcome from the effort made in different directions. Like the improvement of a building's fabric and layout, the materials, even the furniture in a space influences the daylight quality considerably. Also very important role in lighting energy consumption has the development of more efficient lighting technology like the electric lighting control systems, such as photo sensors and occupancy sensors. Both systems are responsible so that the electric light is not used without reason. As the focusing area of this study, is to find ways to improve the daylight use in buildings, a consequent question is which are the methods provided in order to achieve this The accuracy of the methodology used is also an important issue in order to achieve reliable results. The methodology applied in this study includes the analysis of a case study by taking field measurements and computer simulations. The first stage included gathering information about the lighting design of the building and monitoring the light levels, both from natural and from the electric lighting. The second stage involved testing with computer simulations, different parameters that were expected to improve the daylight exploitation of the specific area. The results of the field measurements showed that the main problems of the space were the low natural light levels and the poor daylight distribution. The annual electric lighting energy consumption, as it was calculated with the use of computer simulations, represented the annual energy consumption of a typical air-conditioned prestige office building (energy consumption guide 19, for energy use in offices, 2000). After several computer simulations, the results showed that initial design parameters of the building

  3. Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

    2013-08-31

    Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in amore » sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of

  4. ``Smart'' theranostic lanthanide nanoprobes with simultaneous up-conversion fluorescence and tunable T1-T2 magnetic resonance imaging contrast and near-infrared activated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Das, Gautom Kumar; Vijayaragavan, Vimalan; Xu, Qing Chi; Padmanabhan, Parasuraman; Bhakoo, Kishore K.; Tamil Selvan, Subramanian; Tan, Timothy Thatt Yang

    2014-10-01

    The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01717j

  5. A Study on the Optimal Duration of Daylight Saving Time (DST) in Korea

    NASA Astrophysics Data System (ADS)

    Mihn, Byeong-Hee; Ahn, Young Sook; Kim, Dong-Bin; Yang, Hong-Jin

    2009-09-01

    Daylight saving time aims at spending effective daylight in summer season. Korea had enforced daylight saving time twelve times from 1948 to 1988. Since 1988, it is not executed, but it is recently discussed the resumption of DST. In this paper, we investigate the trend of DST in other countries, review the history of DST in Korea, and suggest the optimal DST duration in terms of astronomical aspects (times of sunrise and sunset). We find that the starting day of DST in Korea is apt for the second Sunday in May or the second Sunday in April according to the time of sunrise or to the difference between Korean standard meridian and observer's, respectively. We also discuss time friction that might be caused by time difference between DST and Korea Standard Time (KST).

  6. Fatal alcohol-related traffic crashes increase subsequent to changes to and from daylight savings time.

    PubMed

    Hicks, G J; Davis, J W; Hicks, R A

    1998-06-01

    On the hypothesis that sleepiness and alcohol interact to increase the risk of alcohol-related traffic fatalities, the percentages of alcohol-related fatal traffic crashes were assessed for the entire state of New Mexico for the years 1989-1992, for each of the seven days that preceded the changes to and from Daylight Savings Time and for each of the 14 days which followed the changes to and from Daylight Savings Time. Consistent with our hypothesis the percentage of alcohol-related fatal crashes increased significantly during the first seven days after these changes in Daylight Savings Time.

  7. Preparation and characterization of bioadhesive system containing hypericin for local photodynamic therapy.

    PubMed

    Borghi-Pangoni, Fernanda Belincanta; Junqueira, Mariana Volpato; de Souza Ferreira, Sabrina Barbosa; Silva, Larissa Lachi; Rabello, Bruno Ribeiro; de Castro, Lidiane Vizioli; Baesso, Mauro Luciano; Diniz, Andréa; Caetano, Wilker; Bruschi, Marcos Luciano

    2017-09-01

    Hypericin (Hyp) is a natural photoactive pigment utilized in the treatment of different types of cancer and antimicrobial inactivation using photodynamic therapy (PDT). Hyp is poorly soluble in water leading to problems of administration, getting close contact with the site, and bio-availability. Therefore, this study aimed to develop bioadhesive thermoresponsive system containing Hyp for local PDT. Carbomer 934P, poloxamer 407, and Hyp were used to prepare the thermoresponsive bioadhesive formulations. They were characterized for sol-gel transition temperature, mechanical, mucoadhesive, rheological (continuous flow and oscillatory) and dielectric properties, syringeability, in vitro Hyp release kinetics, ex vivo permeability, and photodynamic activity. The formulations displayed suitable gelation temperature and rheological characteristics. The compressional, mechanical and mucoadhesive properties, as well the syringeability showed the easiness of administration and the permanence of the system adhered to the mucosa or skin. The dielectric analysis helped to understand the Hyp availability, and its release presented an anomalous behavior. The system did not permeate the pig skin nor rat intestine and showed good biological photodynamic activity. Therefore, data obtained from the bioadhesive system indicate a potentially useful role as a platform for local hypericin delivery in PDT, suggesting it is worthy of in vivo evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Photodynamic inactivation of microorganisms which cause pulmonary diseases with infrared light: an in vitro study

    NASA Astrophysics Data System (ADS)

    Leite, Ilaiáli S.; Geralde, Mariana C.; Salina, Ana C.; Medeiros, Alexandra I.; Kurachi, Cristina; Bagnato, Vanderlei S.; Inada, Natalia M.

    2014-03-01

    Lower respiratory infections are among the leading causes of death worldwide. In this study, it was evaluated the interaction of indocyanine green, a photosensitizer activated by infrared light, with alveolar macrophages and the effectiveness of the photodynamic therapy using this compound against Streptococcus pneumoniae . Initial experiments analyzed indocyanine green toxicity to alveolar macrophages in the dark with different drug concentrations and incubation times, and macrophage viability was obtained with the MTT method. The average of the results showed viability values below 90% for the two highest concentrations. Experiments with Streptococcus pneumoniae showed photodynamic inactivation with 10 μM indocyanine green solution. Further experiments with the bacteria in co-culture with AM will be conducted verifying the photodynamic inactivation effectiveness of the tested drug concentrations and incubation periods using infrared light.

  9. Evaluation of photodynamic activity, photostability and in vitro drug release of zinc phthalocyanine-loaded nanocapsules.

    PubMed

    de Souza, Thiane Deprá; Ziembowicz, Francieli Isa; Müller, Debora Friedrich; Lauermann, Sâmera Cristina; Kloster, Carmen Luisa; Santos, Roberto Christ Vianna; Lopes, Leonardo Quintana Soares; Ourique, Aline Ferreira; Machado, Giovanna; Villetti, Marcos Antonio

    2016-02-15

    Nanocapsule formulations containing zinc phthalocyanine (ZnPc) were investigated as drug delivery systems for use in photodynamic therapy (PDT). ZnPc loaded chitosan, PCL, and PCL coated with chitosan nanocapsules were prepared and characterized by means of their physicochemical properties, photodynamic activity, photostability and drug release profile. All formulations presented nanometric hydrodynamic radius, around 100 nm, low polydispersity index (0.08-0.24), slightly negative zeta potential for PCL nanoparticles and positive zeta potential for suspension containing chitosan. Encapsulation efficiencies were higher than 99%. The capacity of ZnPc loaded nanocapsules to produce cytotoxic singlet oxygen ((1)O2) by irradiation with red laser was monitored using 1.3-diphenylisobenzofuran as a probe. The singlet oxygen quantum yields (ΦΔ) for ZnPc loaded chitosan nanocapsules were high and similar to that of the standard (ZnPc in DMSO), displaying excellent ability to generate (1)O2. The photosensitizer loaded nanocapsules are photostable in the timescale usually utilized in PDT and only a small photobleaching event was observed when a light dose of 610J/cm(2) was applied. The in vitro drug release studies of ZnPc from all nanocapsules demonstrated a sustained release profile controlled by diffusion, without burst effect. The nature of the polymer and the core type of the nanocapsules regulated ZnPc release. Thus, the nanocapsules developed in this work are a promising strategy to be employed in PDT. Copyright © 2015. Published by Elsevier B.V.

  10. In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space.

    PubMed

    Gu, Bobo; Pliss, Artem; Kuzmin, Andrey N; Baev, Alexander; Ohulchanskyy, Tymish Y; Damasco, Jossana A; Yong, Ken-Tye; Wen, Shuangchun; Prasad, Paras N

    2016-10-01

    This paper introduces the concept of in-situ upconversion of deep penetrating near infrared light via second harmonic generation from ZnO nanocrystals delivered into cells to effect photo activated therapies, such as photodynamic therapy, which usually require activation by visible light with limited penetration through biological tissues. We demonstrated this concept by subcellular activation of a photodynamic therapy drug, Chlorin e6, excited within its strong absorption Soret band by the second harmonic (SH) light, generated at 409 nm by ZnO nanocrystals, which were targeted to cancer cells and internalized through the folate-receptor mediated endocytosis. By a combination of theoretical modeling and experimental measurements, we show that SH light, generated in-situ by ZnO nanocrystals significantly contributes to activation of photosensitizer, leading to cell death through both apoptotic and necrotic pathways initiated in the cytoplasm. This targeted photodynamic action was studied using label-free Coherent Anti-Stokes Raman Scattering imaging of the treated cells to monitor changes in the distribution of native cellular proteins and lipids. We found that initiation of photodynamic therapy with upconverted light led to global reduction in the intracellular concentration of macromolecules, likely due to suppression of proteins and lipids synthesis, which could be considered as a real-time indicator of cellular damage from photodynamic treatment. In prospective applications this in-situ photon upconversion could be further extended using ZnO nanocrystals surface functionalized with a specific organelle targeting group, provided a powerful approach to identify and consequently maximize a cellular response to phototherapy, selectively initiated in a specific cellular organelle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Photodynamic Cancer Therapy—Recent Advances

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2011-09-01

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when "photoradiation therapy" was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first or second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular

  12. Photodynamic Cancer Therapy - Recent Advances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamse, Heidi

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when 'photoradiation therapy' was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first ormore » second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known

  13. Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives.

    PubMed

    Cormick, M Paula; Alvarez, M Gabriela; Rovera, Marisa; Durantini, Edgardo N

    2009-04-01

    The photodynamic action of 5-(4-trifluorophenyl)-10,15,20-tris(4-trimethylammoniumphenyl)porphyrin iodide (TFAP(3+)) and 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin p-tosylate (TMAP(4+)) has been studied in vitro on Candida albicans. The results of these cationic porphyrins were compared with those of 5,10,15,20-tetra(4-sulphonatophenyl)porphyrin (TPPS(4-)), which characterizes an anionic sensitizer. In vitro investigations show that these cationic porphyrins are rapidly bound to C. albicans cells, reaching a value of approximately 1.4 nmol/10(6) cells, when the cellular suspensions were incubated with 5 microM sensitizer for 30 min. In contrast, TPPS(4-) is poorly uptaken by yeast cells. The fluorescence spectra of these sensitizers into the cells confirm this behaviour. The amount of porphyrin binds to cells is dependent on both sensitizer concentrations (1-5 microM) and cells densities (10(6)-10(8) cells/mL). Photosensitized inactivation of C. albicans cellular suspensions increases with sensitizer concentration, causing a approximately 5 log decrease of cell survival, when the cultures are treated with 5 microM of cationic porphyrin and irradiated for 30 min. However, the photocytotoxicity decreases with an increase in the cell density, according to its low binding to cells. Under these conditions, the photodynamic activity of TFAP(3+) is quite similar to that produced by TMAP(4+), whereas no important inactivation effect was found for TPPS(4)(-). The high photodynamic activity of cationic porphyrins was confirmed by growth delay experiments. Thus, C. albicans cell growth was not detected in the presence of 5 microM TFAP(3+). Photodynamic inactivation capacities of these sensitizers were also evaluated on C. albicans cells growing in colonies on agar surfaces. Cationic porphyrins produce a growth delay of C. albicans colonies and viability of cells was not observed after 3 h irradiation, indicating a complete inactivation of yeast cells

  14. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  15. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90

    PubMed Central

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2017-01-01

    The translation of photodynamic therapy (PDT) to the clinical setting has primarily been limited to easily accessible and/or superficial diseases, for which traditional light delivery can be performed noninvasively. Cerenkov radiation, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively to overcome this depth limitation. This article investigates the utility of Cerenkov radiation, as generated from the radionuclide yttrium-90, for activating the PDT process using clinically approved aminolevulinic acid at 1.0 mm and also the more efficient porphyrin-based photosensitizer mesotetraphenylporphine with two sulfonate groups on adjacent phenyl rings (TPPS2a) at 1.2 μM. Experiments were conducted with monolayer cultured glioma and breast tumor cell lines. Although aminolevulinic acid proved to be ineffective for generating a therapeutic effect at all but the highest activity levels, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 μCi/well for the C6 glioma cell line. Importantly, these results demonstrate for the first time, to our knowledge, that Cerenkov radiation generated from a radionuclide can be used to activate PDT using clinically relevant photosensitizers. These results therefore provide evidence that it may be possible to generate a phototherapeutic effect in vivo using Cerenkov radiation and clinically relevant photosensitizers. PMID:27481495

  16. Field Commissioning of a Daylight-Dimming Lighting System.

    ERIC Educational Resources Information Center

    Floyd, David B.; Parker, Danny S.

    A Florida elementary school cafeteria, retrofitted with a fluorescent lighting system that dims in response to available daylight, was evaluated through real time measurement of lighting and air conditioning power, work plane illumination, and interior/exterior site conditions. The new system produced a 27 percent reduction in lighting power due…

  17. Calculating Correlated Color Temperatures Across the Entire Gamut of Daylight and Skylight Chromaticities

    DTIC Science & Technology

    1999-09-20

    c o i b f t c c c c w n c s p t s Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities Javier...temperature ~CCT!, yet existing equations for calculating CCT from chromaticity coordinates span only part of this range. To improve both the gamut and accuracy...00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Calculating correlated color temperatures across the entire gamut of daylight and skylight

  18. Solution-combustion synthesis of doped TiO2 compounds and its potential antileishmanial activity mediated by photodynamic therapy.

    PubMed

    Lopera, A A; Velásquez, A M A; Clementino, L C; Robledo, S; Montoya, A; de Freitas, L M; Bezzon, V D N; Fontana, C R; Garcia, C; Graminha, M A S

    2018-06-01

    Photodynamic therapy has emerged as an alternative treatment for cutaneous leishmaniasis, and compounds with photocatalytic behavior are promising candidates to develop new therapeutic strategies for the treatment of this parasitic disease. Titanium dioxide TiO 2 is a semiconductor ceramic material that shows excellent photocatalytic and antimicrobial activity under Ultraviolet irradiation. Due to the harmful effects of UV radiation, many efforts have been made in order to enhance both photocatalytic and antimicrobial properties of TiO 2 in the visible region of the spectrum by doping or through modifications in the route of synthesis. Herein, Fe-, Zn-, or Pt- doped TiO 2 nanostructures were synthesized by solution-combustion route. The obtained compounds presented aggregates of 100 nm, formed by particles smaller than 20 nm. Doping compounds shift the absorption spectrum towards the visible region, allowing production of reactive oxygen species in the presence of oxygen and molecular water when the system is irradiated in the visible spectrum. The Pt (EC 50  = 18.2 ± 0.8 μg/mL) and Zn (EC 50  = 16.4 ± 0.3 μg/mL) -doped TiO 2 presented the higher antileishmanial activities under visible irradiation and their application as photosensitizers in photodynamic therapy (PDT) strategies for the treatment of cutaneous leishmaniasis should be considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  20. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes

    PubMed Central

    Hamblin, Michael R

    2016-01-01

    Photodynamic therapy (PDT) uses photosensitizers (non-toxic dyes) that are activated by absorption of visible light to form reactive oxygen species (including singlet oxygen) that can oxidize biomolecules and destroy cells. Antimicrobial photodynamic inactivation (aPDI) can treat localized infections. aPDI neither causes any resistance to develop in microbes, nor is affected by existing drug resistance status. We discuss some recent developments in aPDI. New photosensitizers including polycationic conjugates, stable synthetic bacteriochlorins and functionalized fullerenes are described. The microbial killing by aPDI can be synergistically potentiated (several logs) by harmless inorganic salts via photochemistry. Genetically engineered bioluminescent microbial cells allow PDT to treat infections in animal models. Photoantimicrobials have a promising future in the face of the unrelenting increase in antibiotic resistance. PMID:27421070

  1. Photophysicochemical properties and photodynamic therapy activity of highly water-soluble Zn(II) phthalocyanines.

    PubMed

    Oluwole, David O; Sarı, Fatma Aslıhan; Prinsloo, Earl; Dube, Edith; Yuzer, Abdulcelil; Nyokong, Tebello; Ince, Mine

    2018-05-29

    The syntheses of two zinc(II) phthalocyanines (ZnPcs) having either imidazole (ZnPc 1) or pyridiloxy (ZnPc 2) moieties as their macrocycle substituents are reported. Quaternization of the ZnPcs with methyl iodide afforded water soluble cationic phthalocyanines. The photophysical, photochemical properties and photodynamic therapy (PDT) activity of the ZnPcs were studied in solution. The fluorescence quantum yield and lifetime of ZnPc 1 were higher as compared to ZnPc 2. ZnPc 2 afforded higher triplet state (Φ T ) and singlet oxygen quantum yields (Φ Δ ) in comparison to ZnPc 1. The PDT activity of ZnPcs was investigated against human breast adenocarcinoma cells (MCF-7). The two compounds afforded a very minimal in vitro dark cytotoxicity with 85% viable cells at concentration ≤80 μM. On irradiation of the cells having the ZnPcs, ≥50% cell death was recorded for ZnPc 1 which was also evidenced by the cells photo-micrograph. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Daylighting with Fluorescent Concentrators and Highly Reflective Silver-Coated Plastic Films: A New Application for New Materials

    NASA Astrophysics Data System (ADS)

    Zastrow, Armin; Wittwer, Volker

    1986-09-01

    The interest in efficient daylighting systems has grown recently, due to their potential for saving a considerable amount of electrical energy used for lighting purposes. In this paper we discuss the properties of daylighting systems based on either fluorescent planar concentrators and transparent light guiding plates or light pipes coated with highly reflective silver coated plastic films. Finally we give first results from a demonstration project, daylighting systems in the students' living quarters in Stuttgart-Hohenheim, which is supported by the Commission of the European Communities.

  3. Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica

    PubMed Central

    Al-Qahtani, Ahmed; Alkahtani, Saad; Kolli, Bala; Tripathi, Pankaj; Dutta, Sujoy; Al-Kahtane, Abdullah A.; Jiang, Xiong-Jie; Ng, Dennis K. P.

    2016-01-01

    Photodynamic inactivation of Leishmania spp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency against Leishmania tropica promastigotes and axenic amastigotes in vitro. The uptake of these PCs by both Leishmania stages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation of Leishmania spp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitized Leishmania tropica strains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ∼650 nm) at a fluence of 1 to 2 J cm−2. Quantitative fluorescence assays based on the loss of GFP/CFSE from live Leishmania tropica showed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Leishmania tropica strains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation of Leishmania spp. for use as vaccines or vaccine carriers. PMID:26824938

  4. Daylight characterization through vision-based sensing of lighting conditions in buildings

    NASA Astrophysics Data System (ADS)

    di Dio, Joseph, III

    A new method for describing daylight under unknown weather conditions, as captured in images of a room, is proposed. This method considers pixel brightness information to be a linear combination of diffuse and directional light components, as received by a web cam from the walls and ceiling of an occupied office. The nature of these components in each image is determined by building orientation, room geometry, neighboring structures and the position of the sun. Considering daylight in this manner also allows for an estimation of the sky conditions at a given instant to be made, and presents a means to uncover seasonal trends in the behavior of light simply by monitoring the brightness variations of points on the walls and ceiling. Significantly, this daylight characterization method also allows for an estimation of the illumination level on a target surface to be made from image data. Currently, illumination at a target surface is estimated through the use of a ceiling-mounted photosensor, as part of a lighting control system, in the hopes of achieving a suitable balance between daylight and electrical lighting in a space. Improving the ability of a sensor to estimate the illumination is of great importance to those who wish to minimize unnecessary energy consumption, as a significant percentage of all U.S. electricity is currently consumed by light fixtures. A photosensor detects light that falls on its location, which does not necessarily correspond in a fixed manner to the light level on the target areas that the photosensor is meant to monitor. Additionally, a photosensor cannot discern variations in light distribution across a room, which often occur with daylight. By considering pixel brightness information to be a linear combination of diffuse and directional light components at selected pixels in an image, information about the light reaching these pixels can be extracted from observed patterns of brightness, under different light conditions. In this manner

  5. Treatment of actinic cheilitis by photodynamic therapy with 5-aminolevulinic acid and blue light activation.

    PubMed

    Zaiac, Martin; Clement, Annabelle

    2011-11-01

    Actinic cheilitis (AC), a common disorder of the lower lip, should be treated early to prevent progression to invasive squamous cell carcinoma. This study evaluated the safety and efficacy of photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) activated by blue light for the treatment of AC. Fifteen patients with clinically evident or biopsy-proven AC received two treatments with ALA PDT with blue light activation. Treatments were spaced three to five weeks apart. Most patients achieved 65% to 75% clearance three to five weeks after the first treatment and all achieved more than 75% clearance one month after the second treatment. Three patients achieved complete clearance. Pain and burning during irradiation were absent or mild. All patients said they would repeat the procedure. ALA PDT with 417 nm blue light is a promising option for the treatment of AC of the lower lip.

  6. Daylight Savings Time Transitions and the Incidence Rate of Unipolar Depressive Episodes.

    PubMed

    Hansen, Bertel T; Sønderskov, Kim M; Hageman, Ida; Dinesen, Peter T; Østergaard, Søren D

    2017-05-01

    Daylight savings time transitions affect approximately 1.6 billion people worldwide. Prior studies have documented associations between daylight savings time transitions and adverse health outcomes, but it remains unknown whether they also cause an increase in the incidence rate of depressive episodes. This seems likely because daylight savings time transitions affect circadian rhythms, which are implicated in the etiology of depressive disorder. Therefore, we investigated the effects of daylight savings time transitions on the incidence rate of unipolar depressive episodes. Using time series intervention analysis of nationwide data from the Danish Psychiatric Central Research Register from 1995 to 2012, we compared the observed trend in the incidence rate of hospital contacts for unipolar depressive episodes after the transitions to and from summer time to the predicted trend in the incidence rate. The analyses were based on 185,419 hospital contacts for unipolar depression and showed that the transition from summer time to standard time were associated with an 11% increase (95% CI = 7%, 15%) in the incidence rate of unipolar depressive episodes that dissipated over approximately 10 weeks. The transition from standard time to summer time was not associated with a parallel change in the incidence rate of unipolar depressive episodes. This study shows that the transition from summer time to standard time was associated with an increase in the incidence rate of unipolar depressive episodes. Distress associated with the sudden advancement of sunset, marking the coming of a long period of short days, may explain this finding. See video abstract at, http://links.lww.com/EDE/B179.

  7. Photodynamic inactivation of multiresistant bacteria (KPC) using zinc(II)phthalocyanines.

    PubMed

    Miretti, Mariana; Clementi, Romina; Tempesti, Tomas C; Baumgartner, María T

    2017-09-15

    The worldwide increase in antibiotic resistance has led to search of alternatives anti-microbial therapies such as photodynamic inactivation. The aim of this paper was to evaluate the photodynamic activity in vitro of a neutral and two cationic Zn phthalocyanines. Their photokilling activity was tested on Escherichia coli ATCC 25922 and Klebsiella pneumoniae Carbapenemase (KPC)-producing. After treating bacteria with phthalocyanines, the cultures were irradiated with white light. As a result, the bacteria were inactivated in presence of cationic phthalocyanines. The photoinactivation was dependent of the irradiation time and phthalocyanine concentration. The most effective photosensitizer on KPC-producing was Zinc(II)tetramethyltetrapyridino[2,3-b:2',3'-g:2″,3″-l:2‴,3‴-q]porphyrazinium methylsulfate (ZnTM2,3PyPz). After irradiation using the water soluble ZnTM2,3PyPz (3μM) the viability of KPC (30min of irradiation) and E. coli (10min of irradiation) decreased ≈99.995%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. How daylight influences high-order chromatic descriptors in natural images.

    PubMed

    Ojeda, Juan; Nieves, Juan Luis; Romero, Javier

    2017-07-01

    Despite the global and local daylight changes naturally occurring in natural scenes, the human visual system usually adapts quite well to those changes, developing a stable color perception. Nevertheless, the influence of daylight in modeling natural image statistics is not fully understood and has received little attention. The aim of this work was to analyze the influence of daylight changes in different high-order chromatic descriptors (i.e., color volume, color gamut, and number of discernible colors) derived from 350 color images, which were rendered under 108 natural illuminants with Correlated Color Temperatures (CCT) from 2735 to 25,889 K. Results suggest that chromatic and luminance information is almost constant and does not depend on the CCT of the illuminant for values above 14,000 K. Nevertheless, differences between the red-green and blue-yellow image components were found below that CCT, with most of the statistical descriptors analyzed showing local extremes in the range 2950 K-6300 K. Uniform regions and areas of the images attracting observers' attention were also considered in this analysis and were characterized by their patchiness index and their saliency maps. Meanwhile, the results of the patchiness index do not show a clear dependence on CCT, and it is remarkable that a significant reduction in the number of discernible colors (58% on average) was found when the images were masked with their corresponding saliency maps. Our results suggest that chromatic diversity, as defined in terms of the discernible colors, can be strongly reduced when an observer scans a natural scene. These findings support the idea that a reduction in the number of discernible colors will guide visual saliency and attention. Whatever the modeling is mediating the neural representation of natural images, natural image statistics, it is clear that natural image statistics should take into account those local maxima and minima depending on the daylight illumination and

  9. A sensor-less LED dimming system based on daylight harvesting with BIPV systems.

    PubMed

    Yoo, Seunghwan; Kim, Jonghun; Jang, Cheol-Yong; Jeong, Hakgeun

    2014-01-13

    Artificial lighting in office buildings typically requires 30% of the total energy consumption of the building, providing a substantial opportunity for energy savings. To reduce the energy consumed by indoor lighting, we propose a sensor-less light-emitting diode (LED) dimming system using daylight harvesting. In this study, we used light simulation software to quantify and visualize daylight, and analyzed the correlation between photovoltaic (PV) power generation and indoor illumination in an office with an integrated PV system. In addition, we calculated the distribution of daylight illumination into the office and dimming ratios for the individual control of LED lights. Also, we were able directly to use the electric power generated by PV system. As a result, power consumption for electric lighting was reduced by 40 - 70% depending on the season and the weather conditions. Thus, the dimming system proposed in this study can be used to control electric lighting to reduce energy use cost-effectively and simply.

  10. A new therapeutic proposal for inoperable osteosarcoma: Photodynamic therapy.

    PubMed

    de Miguel, Guilherme Chohfi; Abrantes, Ana Margarida; Laranjo, Mafalda; Grizotto, Ana Yoshie Kitagawa; Camporeze, Bruno; Pereira, José Aires; Brites, Gonçalo; Serra, Arménio; Pineiro, Marta; Rocha-Gonsalves, António; Botelho, Maria Filomena; Priolli, Denise Gonçalves

    2018-03-01

    Osteosarcoma, a malignant tumor characterized by bone or osteoid formation, is the second most common primary bone neoplasm. Clinical symptoms include local and surrounding pain, unrelieved by rest or anesthesia. Osteosarcoma has a poor chemotherapeutic response with prognosis dependent on complete tumor excision. Therefore, for inoperable osteosarcoma new therapeutic strategies are needed. The present study aimed to develop murine models of cranial and vertebral osteosarcoma that facilitate simple clinical monitoring and real-time imaging to evaluate the outcome of photodynamic therapy based on a previously developed photosensitizer. Balb/c nude mice were divided into two groups: the cranial and vertebral osteosarcoma groups. Each group was further subdivided into the photodynamic therapy-treated and untreated groups. Images were obtained by scintigraphy with 99m Tc-MIBI and radiography. Tumor growth, necrotic area, osteoid matrix area, and inflammatory infiltration were analyzed. Cranial and vertebral tumors could be macroscopically observed and measured. Radiographic and scintigraphic images showed tumor cells present at the inoculation sites. After photodynamic therapy, scintigraphy showed lower tumoral radiopharmaceutical uptake, which correlated histologically with increased necrosis. Osteoid matrix volume increased, and tumor size decreased in all photodynamic therapy-treated animals. Cranial and vertebral osteosarcoma models in athymic mice are feasible and facilitate in vivo monitoring for the development of new therapies. Photodynamic therapy is a potential antitumoral treatment for surgically inoperable osteosarcoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Daylight exposure and the other predictors of burnout among nurses in a University Hospital.

    PubMed

    Alimoglu, Mustafa Kemal; Donmez, Levent

    2005-07-01

    The purpose of the study was to investigate if daylight exposure in work setting could be placed among the predictors of job burnout. The sample was composed of 141 nurses who work in Akdeniz University Hospital in Antalya, Turkey. All participants were asked to complete a personal data collection form, the Maslach Burnout Inventory, the Work Related Strain Inventory and the Work Satisfaction Questionnaire to collect data about their burnout, work-related stress (WRS) and job satisfaction (JS) levels in addition to personal characteristics. Descriptive statistics, parametric and non-parametric tests and correlation analysis were used in statistical analyses. Daylight exposure showed no direct effect on burnout but it was indirectly effective via WRS and JS. Exposure to daylight at least 3h a day was found to cause less stress and higher satisfaction at work. Suffering from sleep disorders, younger age, job-related health problems and educational level were found to have total or partial direct effects on burnout. Night shifts may lead to burnout via work related strain and working in inpatient services and dissatisfaction with annual income may be effective via job dissatisfaction. This study confirmed some established predictors of burnout and provided data on an unexplored area. Daylight exposure may be effective on job burnout.

  12. Daylight time-resolved photographs of lightning.

    PubMed

    Qrville, R E; Lala, G G; Idone, V P

    1978-07-07

    Lightning dart leaders and return strokes have been recorded in daylight with both good spatial resolution and good time resolution as part of the Thunder-storm Research International Program. The resulting time-resolved photographs are apparently equivalent to the best data obtained earlier only at night. Average two-dimensional return stroke velocities in four subsequent strokes between the ground and a height of 1400 meters were approximately 1.3 x 10(8) meters per second. The estimated systematic error is 10 to 15 percent.

  13. Comparison of three light doses in the photodynamic treatment of actinic keratosis using mathematical modeling

    NASA Astrophysics Data System (ADS)

    Vignion-Dewalle, Anne-Sophie; Betrouni, Nacim; Tylcz, Jean-Baptiste; Vermandel, Maximilien; Mortier, Laurent; Mordon, Serge

    2015-05-01

    Photodynamic therapy (PDT) is an emerging treatment modality for various diseases, especially for cancer therapy. Although high efficacy is demonstrated for PDT using standardized protocols in nonhyperkeratotic actinic keratoses, alternative light doses expected to increase efficiency, to reduce adverse effects or to expand the use of PDT, are still being evaluated and refined. We propose a comparison of the three most common light doses in the treatment of actinic keratosis with 5-aminolevulinic acid PDT through mathematical modeling. The proposed model is based on an iterative procedure that involves determination of the local fluence rate, updating of the local optical properties, and estimation of the local damage induced by the therapy. This model was applied on a simplified skin sample model including an actinic keratosis lesion, with three different light doses (red light dose, 37 J/cm2, 75 mW/cm2, 500 s blue light dose, 10 J/cm2, 10 mW/cm2, 1000 s and daylight dose, 9000 s). Results analysis shows that the three studied light doses, although all efficient, lead to variable local damage. Defining reference damage enables the nonoptimal parameters for the current light doses to be refined and the treatment to be more suitable.

  14. A Review of Progress in Clinical Photodynamic Therapy

    PubMed Central

    Huang, Zheng

    2005-01-01

    Photodynamic therapy (PDT) has received increased attention since the regulatory approvals have been granted to several photosensitizing drugs and light applicators world-wide. Much progress has been seen in basic sciences and clinical photodynamics in recent years. This review will focus on new developments of clinical investigation and discuss the usefulness of various forms of PDT techniques for curative or palliative treatment of malignant and non-malignant diseases. PMID:15896084

  15. Optimizing indoor illumination quality and energy efficiency using a spectrally tunable lighting system to augment natural daylight.

    PubMed

    Hertog, W; Llenas, A; Carreras, J

    2015-11-30

    This article demonstrates the benefits of complementing a daylight-lit environment with a spectrally tunable illumination system. The spectral components of daylight present in the room are measured by a low-cost miniature spectrophotometer and processed through a number of optimization algorithms, carefully trading color fidelity for energy efficiency. Spectrally-tunable luminaires provide only those wavelengths that ensure that either the final illumination spectrum inside the room is kept constant or carefully follows the dynamic spectral pattern of natural daylight. Analyzing the measured data proves that such a hybrid illumination system brings both unprecendented illumination quality and significant energy savings.

  16. Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency.

    PubMed

    Lima, Adriel M; Pizzol, Carine Dal; Monteiro, Fabíola B F; Creczynski-Pasa, Tânia B; Andrade, Gislaine P; Ribeiro, Anderson O; Perussi, Janice R

    2013-08-05

    The hydrophobicity of some photosensitizers can induce aggregation in biological systems, which consequently reduces photodynamic activity. The conjugation of photosensitizers with nanocarrier systems can potentially be used to overcome this problem. The objective of this study was to prepare and characterise hypericin-loaded solid lipid nanoparticles (Hy-SLN) for use in photodynamic therapy (PDT). SLN were prepared using the ultrasonication technique, and their physicochemical properties were characterised. The mean particle size was found to be 153 nm, with a low polydispersity index of 0.28. One of the major advantages of the SLN formulation is its high entrapment efficiency (EE%). Hy-SLN showed greater than 80% EE and a drug loading capacity of 5.22% (w/w). To determine the photodynamic efficiency of Hy before and after encapsulation in SLN, the rate constants for the photodecomposition of two (1)O2 trapping reagents, DPBF and AU, were determined. These rate constants exhibited an increase of 60% and 50% for each method, respectively, which is most likely due to an increase in the lifetime of the triplet state caused by the increase in solubility. Hy-SLN presented a 30% increase in cell uptake and a correlated improvement of 26% in cytotoxicity. Thus, all these advantages suggest that Hy-loaded SLN has potential for use in PDT. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. New hybrid composites for photodynamic therapy: synthesis, characterization and biological study

    NASA Astrophysics Data System (ADS)

    Kutsevol, N.; Naumenko, A.; Harahuts, Yu.; Chumachenko, V.; Shton, I.; Shishko, E.; Lukianova, N.; Chekhun, V.

    2018-04-01

    Photodynamic therapy is a procedure that uses a photosensitizing drug to apply light therapy selectively to target cancer treatment. This study is focused on a synthesis and characterization of a new hybrid nanocomposites based on the branched copolymers dextran-polyacrylamide in nonionic, D-g-PAA and anionic D-g-PAA(PE) form, with incorporated gold nanoparticles (AuNPs) and photosensitizer chlorin e6 (Ce6) simultaneously. Double polymer/AuNPs and trial polymer/AuNPs/Ce6 were studied by TEM, UV-visible, SOSG fluorescence. It was found the drastic difference for absorbance for trial nanosystems synthesized in nonionic and anionic polymers matrices. It was established that for the nanocomposite synthesised in anionic polymer matrix with the Ce6:Au mass ratio 1:10 generation of singlet oxygen (1O2) was quite close to that for free Ce6. The study of ability of this nanosystem to sensitize MT-4 cells to photodynamic damage has shown that the nanocomposite, that contained AuNPs during the synthesis of which HAuCl4:NaBH4 mass ratio was 1:2 showed higher photodynamic activity, than Ce6 itself. Nanosystem D70-g-PAA(PE)/AuNPs/Ce6 can be recommended to experiment in vivo.

  18. Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linhart, Friedrich; Scartezzini, Jean-Louis

    2010-04-15

    Electric lighting is responsible for up to one third of an office building's electricity needs. Making daylight more available in office buildings can not only contribute to significant energy savings but also enhance the occupants' performance and wellbeing. Anidolic Daylighting Systems (ADS) are one type of very effective facade-integrated daylighting systems. All south-facing office rooms within the LESO solar experimental building in Lausanne (Switzerland) are equipped with a given type of ADS. A recent study has shown that these offices' occupants are highly satisfied with their lighting environment. The most energy-efficient south-facing offices have a lighting power density of lessmore » than 5W/m{sup 2}. The lighting situation within these ''best practice''-offices has been assessed using the lighting simulation software RELUX Vision. Because this lighting situation is very much appreciated by the occupants, it was used as a starting point for developing even more energy-efficient office lighting designs. Two new lighting designs, leading to lighting power densities of 3.9W/m{sup 2} and 3W/m{sup 2}, respectively, have been suggested and simulated with RELUX Vision. Simulation results have shown that the expected performances of these new systems are comparable to that of the current lighting installation within the ''best practice''-offices or even better. These simulation results have been confirmed during experiments on 20 human subjects in a test office room recently set up within the LESO building. This article gives engineers, architects and light planers valuable information and ideas on how to design energy-efficient and comfortable electric lighting systems in office rooms with abundant access to daylight. (author)« less

  19. Year-Round Daylight Saving Time Study : Volume 2. Supporting Studies

    DOT National Transportation Integrated Search

    1975-06-01

    This volume contains detailed background material in support of findings of the Interim Report. It includes the findings of a survey of attifudes towards daylight saving conducted by the National Opinion Research Center; description of sunrise and su...

  20. Photodynamic application in neurosurgery: present and future

    NASA Astrophysics Data System (ADS)

    Kostron, Herwig

    2009-06-01

    Photodynamic techniques such as photodynamic diagnosis (PDD), fluorescence guided tumor resection (FGR) and photodynamic therapy (PDT) are currently undergoing intensive clinical investigations as adjunctive treatment for malignant brain tumours. This review provides an overview on the current clinical data and trials as well as on photosensitisers, technical developments and indications for photodynamic application in Neurosurgery. Furthermore new developments and clinical significance of FGR for neurosurgery will be discussed. Over 1000 patients were enrolled in various clinical phase I/II trials for PDT for malignant brain tumours. Despite various treatment protocols, variation of photosensitisers and light dose there is a clear trend towards prolonging median survival after one single PDT as compared to conventional therapeutic modalities. The median survival after PDT for primary glioblastoma multiforme WHO IV was 19 months and for recurrent GBM 9 months as compared to standard convential treatment which is 15 months and 3 months, respectively. FGR in combination with adjunctive radiation was significantly superior to standard surgical resection followed by radiation. The combination of FGR/PDD and intraoperative PDT increased significantly survival in recurrent glioblastoma patients. The combination of PDD/ FGR and PDT offers an exciting approach to the treatment of malignant brain tumours "to see and to treat." PDT was generally well tolerated and side effects consisted of occasionally increased intracranial pressure and prolonged skin sensitivity against direct sunlight. This review covers the current available data and draws the future potential of PDD and PDT for its application in neurosurgery.

  1. Implicit dosimetry of microorganism photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Tamošiūnas, Mindaugas; Kuliešienė, Neringa; Daugelavičius, Rimantas

    2017-12-01

    Photosensitization based antibacterial treatment is efficient against a broad range of pathogens but it utilizes suboptimal dosimetry with an explicit (and very broad range) determination of sensitizer concentration, light dose and fluence rates. In this study we verified the implicit dosimetry approach for pathogen photodynamic treatment, employing protoporphyrin IX (ppIX) photobleaching to assess the killing efficacy against Staphylococcus aureus and Candida albicans cells. The results show that there was an increased kill of S. aureus and C. albicans at higher degree of ppIX fluorescence decay. Therefore ppIX photobleaching can be incorporated into the PDI dose metric offering to predict the pathogen killing efficacy during photodynamic treatment.

  2. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    NASA Astrophysics Data System (ADS)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  3. Photodynamic therapy for the treatment of folliculitis decalvans.

    PubMed

    Castaño-Suárez, Esther; Romero-Maté, Alberto; Arias-Palomo, Dolores; Borbujo, Jesús

    2012-04-01

    Folliculitis decalvans is a chronic form of deep folliculitis that occurs on the scalp as patches of scarring alopecia at the expanding margins of which are follicular pustules. Treatment of folliculitis decalvans is extremely difficult with a resultant poor prognosis. Photodynamic therapy has been reported to be effective in disorders as acne or folliculitis. We report one patient with folliculitis decalvans who was successfully treated with photodynamic therapy. © 2012 John Wiley & Sons A/S.

  4. Daylighting with Mirror Light Pipes and with Fluorescent Planar Concentrators. First Results from the Demonstration Project Stuttgart-Hohenheim

    NASA Astrophysics Data System (ADS)

    Zastrow, Armin; Wittwer, Volker

    1987-02-01

    Efficient daylighting systems have recently attracted increasing interest due to their potential for saving a condiderable amount of electrical energy used for lighting purposes. In this paper we discuss the properties of daylighting systems based on either fluorescent planar concentrators (FPC's) and transparent light guiding plates or light pipes coated with a highly reflective silver coated plastic film (3M Silverlux film). First results on daylighting systems in the students' living quarters in Stuttgart-Hohenheim will be presented. This is a demonstration project which is supported by the Commission of the European Communities.

  5. An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy.

    PubMed

    Henderson, B W; Bellnier, D A; Greco, W R; Sharma, A; Pandey, R K; Vaughan, L A; Weishaupt, K R; Dougherty, T J

    1997-09-15

    An in vivo quantitative structure-activity relationship (QSAR) study was carried out on a congeneric series of pyropheophorbide photosensitizers to identify structural features critical for their antitumor activity in photodynamic therapy (PDT). The structural elements evaluated in this study include the length and shape (alkyl, alkenyl, cyclic, and secondary analogs) of the ether side chain. C3H mice, harboring the radiation-induced fibrosarcoma tumor model, were used to study three biological response endpoints: tumor growth delay, tumor cell lethality, and vascular perfusion. All three endpoints revealed highly similar QSAR patterns that constituted a function of the alkyl ether chain length and drug lipophilicity, which is defined as the log of the octanol:water partition coefficient (log P). When the illumination of tumor, tumor cells, or cutaneous vasculature occurred 24 h after sensitizer administration, activities were minimal with analogs of log P < or = 5, increased dramatically between log P of 5-6, and peaked between log P of 5.6-6.6. Activities declined gradually with higher log P. The lack of activity of the least-lipophilic analogs was explained in large part by their poor biodistribution characteristics, which yielded negligible tumor and plasma drug levels at the time of treatment with light. The progressively lower potencies of the most lipophilic analogs cannot be explained through the overall tumor and plasma pharmacokinetics of photosensitizer because tumor and plasma concentrations progressively increased with lipophilicity. When compensated for differences in tumor photosensitizer concentration, the 1-hexyl derivative (optimal lipophilicity) was 5-fold more potent than the 1-dodecyl derivative (more lipophilic) and 3-fold more potent than the 1-pentyl analog (less lipophilic), indicating that, in addition to the overall tumor pharmacokinetics, pharmacodynamic factors may influence PDT activity. Drug lipophilicity was highly predictive for

  6. Photodynamic therapy: the role of paraptosis

    NASA Astrophysics Data System (ADS)

    Kessel, David; Cho, Won-Jin; Kim, Hyeong-Reh

    2018-02-01

    Apoptosis is a pathway to cell death frequently observed after photodynamic therapy (PDT). Sub-cellular photodamage to mitochondria, lysosomes, the ER, or combinations of these targets, can lead to apoptotic death. We have recently investigated another pathway to cell death after PDT termed `paraptosis'. This is characterized by extensive cytoplasmic vacuolization, does not involve caspase activation or nuclear fragmentation, requires a brief interval of continued protein synthesis and appears to derive from ER stress. Determinants and further characteristics of PDT-derived paraptosis are explored in the A549 non small-cell lung cancer cell line and in cells derived from head and neck cancer tissues. We provide evidence that ER photodamage and JNK pathway activation are involved in PDT-mediated paraptosis.

  7. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment

    PubMed Central

    Shi, Jinjin; Ma, Rourou; Wang, Lei; Zhang, Jing; Liu, Ruiyuan; Li, Lulu; Liu, Yan; Hou, Lin; Yu, Xiaoyuan; Gao, Jun; Zhang, Zhenzhong

    2013-01-01

    Carbon nanotubes (CNTs) have shown great potential in both photothermal therapy and drug delivery. In this study, a CNT derivative, hyaluronic acid-derivatized CNTs (HA-CNTs) with high aqueous solubility, neutral pH, and tumor-targeting activity, were synthesized and characterized, and then a new photodynamic therapy agent, hematoporphyrin monomethyl ether (HMME), was adsorbed onto the functionalized CNTs to develop HMME-HA-CNTs. Tumor growth inhibition was investigated both in vivo and in vitro by a combination of photothermal therapy and photodynamic therapy using HMME-HA-CNTs. The ability of HMME-HA-CNT nanoparticles to combine local specific photodynamic therapy with external near-infrared photothermal therapy significantly improved the therapeutic efficacy of cancer treatment. Compared with photodynamic therapy or photothermal therapy alone, the combined treatment demonstrated a synergistic effect, resulting in higher therapeutic efficacy without obvious toxic effects to normal organs. Overall, it was demonstrated that HMME-HA-CNTs could be successfully applied to photodynamic therapy and photothermal therapy simultaneously in future tumor therapy. PMID:23843694

  8. Photodynamic therapy for periodontal disease

    NASA Astrophysics Data System (ADS)

    Weersink, Robert A.

    2002-05-01

    Periodontal disease is a family of chronic inflammatory conditions caused by bacterial infections.' It is manifested in red, swollen gingiva (gums) and can lead to destruction of the connective tissue and bone that hold teeth in place. Conventional treatments typically require some form of invasive surgery, depending on the disease stage at time of detection. Photodynamic Therapy (PDT) is the use of light-activated drugs (photosensitizers) for treatment of a variety of conditions 2 such as solid tumors, pre-malignancies, macular degeneration and actinic keratitis. There have been a number of studies of PDT as an antibacterial agent. 3'4 Depending on the photosensitizer and strain of bacteria, significant killing (several LOGS) can be achieved.

  9. The impact of windows and daylight on acute-care nurses' physiological, psychological, and behavioral health.

    PubMed

    Zadeh, Rana Sagha; Shepley, Mardelle McCuskey; Williams, Gary; Chung, Susan Sung Eun

    2014-01-01

    To investigate the physiological and psychological effects of windows and daylight on registered nurses. To date, evidence has indicated that appropriate environmental lighting with characteristics similar to natural light can improve mood, alertness, and performance. The restorative effects of windows also have been documented. Hospital workspaces generally lack windows and daylight, and the impact of the lack of windows and daylight on healthcare employees' well being has not been thoroughly investigated. Data were collected using multiple methods with a quasi-experimental approach (i.e., biological measurements, behavioral mapping, and analysis of archival data) in an acute-care nursing unit with two wards that have similar environmental and organizational conditions, and similar patient populations and acuity, but different availability of windows in the nursing stations. Findings indicated that blood pressure (p < 0.0001) decreased and body temperature increased (p = 0.03). Blood oxygen saturation increased (p = 0.02), but the difference was clinically insignificant. Communication (p < 0.0001) and laughter (p = 0.03) both increased, and the subsidiary behavior indicators of sleepiness and deteriorated mood (p = 0.02) decreased. Heart rate (p = 0.07), caffeine intake (p = 0.3), self-reported sleepiness (p = 0.09), and the frequency of medication errors (p = 0.14) also decreased, but insignificantly. The findings support evidence from laboratory and field settings of the benefits of windows and daylight. A possible micro-restorative effect of windows and daylight may result in lowered blood pressure and increased oxygen saturation and a positive effect on circadian rhythms (as suggested by body temperature) and morning sleepiness. Critical care/intensive care, lighting, nursing, quality care, work environment.

  10. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy.

    PubMed

    Chen, Nai-Tzu; Tang, Kuo-Chun; Chung, Ming-Fang; Cheng, Shih-Hsun; Huang, Ching-Mao; Chu, Chia-Hui; Chou, Pi-Tai; Souris, Jeffrey S; Chen, Chin-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2014-01-01

    The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer.

  11. [Application of photodynamic therapy in dentistry – literature review].

    PubMed

    Oruba, Zuzanna; Chomyszyn-Gajewska, Maria

    Photodynamic therapy (PDT) is based on the principle that the target cells are destroyed by means of toxic reactive oxygen species generated upon the interaction of a photosensitizer, light and oxygen. This method is nowadays widely applied in various branches of medicine, mainly in oncology and dermatology. It is also applied in dentistry in the treatment of oral potentially malignant disorders (like lichen planus or leukoplakia) and infectious conditions (periodontitis, herpetic cheilitis, root canal disinfection). The application of the photodynamic therapy in the abovementioned indications is worth attention, as the method is noninvasive, painless, and the results of the published studies seem promising. The present article aims at presenting the principle of the photodynamic therapy and, based on the literature, the possibilities and results of its application in dentistry.

  12. Photodynamic toxicity of hematoporphyrin derivatives to human keratinocytes in culture.

    PubMed

    Kappus, H; Reinhold, C; Artuc, M

    Human keratinocytes in culture were able to take up hematoporphyrin derivatives (HPDs) used during photodynamic chemotherapy of tumors. In the absence of light, HPDs showed no cytotoxic effects to keratinocytes. However, after irradiation with visible light, HPDs induced immediate cytotoxicity as measured by the neutral red uptake assay. On the other hand, cell attachment as measured by protein estimation was not affected. When the cells treated with HPDs and irradiated with light were cultured for a further 72 h, they partially lost their ability to attach to the collagen surface. Most of the cells remaining attached after 72 h were no longer viable following treatment with HPDs and light. All parameters measured depended on the intracellular concentration of HPDs used (7-50 ng/10(5) cells) and the time of irradiation (0-30 min). These results suggest that human keratinocytes are a good model to study cytotoxic effects of photodynamically active drugs. Further, keratinocytes were unable to recover after damage caused by HPDs and light.

  13. Integrating daylighting into a 3,000 seat church auditorium and network quality television production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holder, L.M. III; Holder, L.M. IV

    1999-07-01

    The project was designed by the Overland Partners Architectural Firm for Riverbend Church of Austin as an Auditorium for Sunday Services and a venue for special theatrical presentations for the church and the community as well. It is an amphitheater on a hillside overlooking the Colorado River Valley. The amphitheater was selected as the building form to keep the audience closer to the speaker. A 175 ft wide by 60 ft tall arched window was installed on the north face to allow the audience to see the panorama views of the tree covered hills on the other side of themore » valley in the Texas Hill Country. Although the design is quite effective in achieving the program goals, these characteristics make it difficult to achieve effective daylighting without glare for the audience and television cameras since both face the north glazing. The design team was faced with providing quality daylighting for the audience and television cameras from the wall behind the stage. Most television studios have carefully controlled lighting systems with the major lighting component from behind the cameras. Virtually all television facilities with daylight contributing to the production lighting are in a building with high shading coefficient glass producing illumination on all areas equally or almost all glass and daylighting from skylights and clearstories above. All television networks have requirements for control of the quality of the video images to parallel those conditions for the program to be aired.« less

  14. Low levels of vitamin D poorly responsive to daylight exposure in patients with therapy-resistant schizophrenia.

    PubMed

    Bogers, Jan P.A.M.; Bostoen, Tijmen; Broekman, Theo G.

    2016-01-01

    Low vitamin D levels are associated with schizophrenia, but the possible association between vitamin D levels and illness severity or duration of exposure to daylight has barely been investigated. To compare vitamin D levels in therapy-refractory severely ill schizophrenia patients and members of staff. To investigate the influence of daylight exposure on vitamin D levels in patients. Vitamin D was measured in patients with therapy-resistant schizophrenia in April, after the winter, and in patients and staff members in June, after an exceptionally sunny spring. Vitamin D levels in April and June were compared in patients, and levels in June were compared in patients and staff. The influence of daylight was taken into account by comparing the time patients spent outdoors during the day with the recommended minimum time for adequate vitamin D synthesis, and by comparing time spent outdoors in patients and staff. Patients had high rates of vitamin D deficiency (79-90%) and lower levels of vitamin D than staff members (p < 0.001), independent of skin pigmentation. In patients, vitamin D levels did not normalize, despite the considerably longer than recommended exposure of the skin to daylight (p < 0.001) and the longer exposure in patients than in staff members (p = 0.003). The vitamin D deficiency of therapy-resistant schizophrenia patients is pronounced and cannot be explained by differences in skin pigmentation or by an inactive, indoor lifestyle on the ward. Even theoretically sufficient exposure of the patients to daylight did not ameliorate the low vitamin D levels. While vitamin D deficiency probably plays a role in somatic health problems, it may also play a role in schizophrenia. Interestingly, exposure to daylight during an unusually sunny spring was not sufficient to correct the vitamin D deficiency seen in the patients. This emphasizes the need to measure and correct vitamin D levels in these patients.

  15. Biochemical transformation of mouse cells by herpes simplex virus type 2: enhancement by means of low-level photodynamic treatment.

    PubMed Central

    Verwoerd, D W; Rapp, F

    1978-01-01

    The biochemical transformation of thymidine kinase-deficient cells by UV-inactivated herpes simplex virus is enhanced by low-level photodynamic treatment of the infected cells. At the concentration of proflavine used, the virus was not inactivated and both virus and cellular DNA syntheses were only marginally inhibited. The observed enhancement of the transfer of a virus gene to the cell genome suggests a possible cocarcinogenic role for photodynamically active dyes at very low concentrations. PMID:206727

  16. Effects of ionic strength on the antimicrobial photodynamic efficiency of methylene blue.

    PubMed

    Núñez, Silvia Cristina; Garcez, Aguinaldo Silva; Kato, Ilka Tiemy; Yoshimura, Tania Mateus; Gomes, Laércio; Baptista, Maurício Silva; Ribeiro, Martha Simões

    2014-03-01

    Antimicrobial photodynamic therapy (APDT) may become a useful clinical tool to treat microbial infections, and methylene blue (MB) is a well-known photosensitizer constantly employed in APDT studies, and although MB presents good efficiency in antimicrobial studies, some of the MB photochemical characteristics still have to be evaluated in terms of APDT. This work aimed to evaluate the role of MB solvent's ionic strength regarding dimerization, photochemistry, and photodynamic antimicrobial efficiency. Microbiological survival fraction assays on Escherichia coli were employed to verify the solution's influence on MB antimicrobial activity. MB was evaluated in deionized water and 0.9% saline solution through optical absorption spectroscopy; the solutions were also analysed via dissolved oxygen availability and reactive oxygen species (ROS) production. Our results show that bacterial reduction was increased in deionized water. Also we demonstrated that saline solution presents less oxygen availability than water, the dimer/monomer ratio for MB in saline is smaller than in water and MB presented a higher production of ROS in water than in 0.9% saline. Together, our results indicate the importance of the ionic strength in the photodynamic effectiveness and point out that this variable must be taken into account to design antimicrobial studies and to evaluate similar studies that might present conflicting results.

  17. Engineering a Cell-surface Aptamer Circuit for Targeted and Amplified Photodynamic Cancer Therapy

    PubMed Central

    Han, Da; Zhu, Guizhi; Wu, Cuichen; Zhu, Zhi; Chen, Tao; Zhang, Xiaobing

    2013-01-01

    Photodynamic therapy (PDT) is one of the most promising and noninvasive methods for clinical treatment of different malignant diseases. Here, we present a novel strategy of designing an aptamer-based DNA nanocircuit capable of the selective recognition of cancer cells, controllable activation of photosensitizer and amplification of photodynamic therapeutic effect. The aptamers can selectively recognize target cancer cells and bind to the specific proteins on cell membranes. Then the overhanging catalyst sequence on aptamer can trigger a toehold-mediated catalytic strand displacement to activate photosensitizer and achieve amplified therapeutic effect. The specific binding-induced activation allows the DNA circuit to distinguish diseased cells from healthy cells, reducing damage to nearby healthy cells. Moreover, the catalytic amplification reaction will only take place close to the target cancer cells, resulting in a high local concentration of singlet oxygen to selectively kill the target cells. The principle employed in this study demonstrated the feasibility of assembling a DNA circuit on cell membranes and could further broaden the utility of DNA circuits for applications in biology, biotechnology, and biomedicine. PMID:23397942

  18. Use of Daylight and Aesthetic Image of Glass Facades in Contemporary Buildings

    NASA Astrophysics Data System (ADS)

    Roginska-Niesluchowska, Malgorzata

    2017-10-01

    The paper deals with the architecture of contemporary buildings in respect to their aesthetic image created by the use of natural light. Sustainability is regarded as a governing principle of contemporary architecture, where daylighting is an important factor as it affects energy consumption and environmental quality of the space inside a building. Environmental awareness of architecture, however, involves a much wider and more holistic view of design. The quality of sustainable architecture can be considered in its aesthetic and cultural context with regard to landscape, local tradition, and connection to the surrounding world. This approach is associated with the social mission of architecture, i.e. providing appropriate space for living, facilitating social relations and having positive impact on people. The purpose of the research is to study the use of daylight in creating an aesthetic image of contemporary buildings. The author focuses mainly on public buildings largely dedicated to art and culture which satisfy high functional and aesthetic requirements. The paper examines the genesis and current trends in the aesthetic image of modern buildings which use daylight as the main design strategy, focusing on the issues of glass facades. The main attention is given to the shaping of representative public areas which feature the glass facades. The research has been based on a case study, critical review of literature review, observation and synthesis. The study identifies and classifies different approaches to using daylight in these areas and highlights changes in the aesthetics of architecture made of glass, which uses daylight as the main design strategy. These changes are primarily caused by the development and spreading of new glazing materials and the use of digital method of design. The influence of light and its mode depends on glass materials but also on the local conditions of the site, and has a significant impact on the relationship between

  19. [Photodynamic therapy of urinary bladder cancer using a chlorin based photosensitizer].

    PubMed

    Iagudaev, D M; Martov, A G; Sorokatyĭ, A E; Geĭnits, A V

    2006-01-01

    Photodynamic therapy (PDT) is a modem, low-invasive method of urinary bladder (UB) cancer treatment. PDT can induce complete or partial destruction of the tumor, reduce recurrence rate, provide assistance to elderly patients with compromised somatic status who are not radically operable. A combined technique improves the results of photodynamic therapy in patients with surface and invasive UB cancer of stage T2 because photodynamic impact affects not only the tumor but also all UB mucosa by light fiber with cylindric diffusor introduced in a silicon balloon with water. This leads to tumor destruction and a recurrence rate decrease.

  20. "Smart" theranostic lanthanide nanoprobes with simultaneous up-conversion fluorescence and tunable T1-T2 magnetic resonance imaging contrast and near-infrared activated photodynamic therapy.

    PubMed

    Zhang, Yan; Das, Gautom Kumar; Vijayaragavan, Vimalan; Xu, Qing Chi; Padmanabhan, Parasuraman; Bhakoo, Kishore K; Selvan, Subramanian Tamil; Tan, Timothy Thatt Yang

    2014-11-07

    The current work reports a type of "smart" lanthanide-based theranostic nanoprobe, NaDyF4:Yb(3+)/NaGdF4:Yb(3+),Er(3+), which is able to circumvent the up-converting poisoning effect of Dy(3+) ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.

  1. Photodynamic therapy toward selective endometrial ablation

    NASA Astrophysics Data System (ADS)

    Tadir, Yona; Tromberg, Bruce J.; Krasieva, Tatiana B.; Berns, Michael W.

    1993-05-01

    Potential applications of photodynamic therapy for endometrial disease are discussed. Experimental models that may lead to diagnosis and treatment of endometriosis as well as selective endometrial ablation are summarized.

  2. Mono- and tetra-substituted zinc(II) phthalocyanines containing morpholinyl moieties: Synthesis, antifungal photodynamic activities, and structure-activity relationships.

    PubMed

    Zheng, Bi-Yuan; Ke, Mei-Rong; Lan, Wen-Liang; Hou, Lu; Guo, Jun; Wan, Dong-Hua; Cheong, Ling-Zhi; Huang, Jian-Dong

    2016-05-23

    A series of zinc(II) phthalocyanines (ZnPcs) mono-substituted and tetra-substituted with morpholinyl moieties and their quaternized derivatives have been synthesized and evaluated for their antifungal photodynamic activities toward Candida albicans. The α-substituted, quaternized, and mono-substituted ZnPcs are found to have higher antifungal photoactivity than β-substituted, neutral, and tetra-substituted counterparts. The cationic α-mono-substituted ZnPc (6a) exhibits the highest photocytotoxicity. Moreover, it is more potent than axially di-substituted analogue. The different photocytotoxicities of these compounds have also been rationalized by investigating their spectroscopic and photochemical properties, aggregation trend, partition coefficients, and cellular uptake. The IC90 value of 6a against C. albicans cells is as low as 3.3 μM with a light dose of 27 J cm(-2), meaning that 6a is a promising candidate as the antifungal photosensitizer for future investigations. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Comparison microbial killing efficacy between sonodynamic therapy and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Drantantiyas, Nike Dwi Grevika; Astuti, Suryani Dyah; Nasution, Aulia M. T.

    2016-11-01

    Biofilm is a way used by bacteria to survive from their environmental conditions by forming colony of bacteria. Specific characteristic in biofilm formation is the availability of matrix layer, known as extracellular polymer substance. Treatment using antibiotics may lead bacteria to be to resistant. Other treatments to reduce microbial, like biofilm, can be performed by using photodynamic therapy. Successful of this kind of therapy is induced by penetration of light and photosensitizer into target cells. The sonodynamic therapy offers greater penetrating capability into tissues. This research aimed to use sonodynamic therapy in reducing biofilm. Moreover, it compares also the killing efficacy of photodynamic therapy, sonodynamic therapy, and the combination of both therapeutic schemes (known as sono-photodynamic) to achieve higher microbial killing efficacy. Samples used are Staphylococcus aureus biofilm. Treatments were divided into 4 groups, i.e. group under ultrasound treatment with variation of 5 power levels, group of light treatment with exposure of 75s, group of combined ultrasound-light with variation of ultrasound power levels, and group of combined lightultrasound with variation of ultrasound power levels. Results obtained for each treatment, expressed in % efficacy of log CFU/mL, showed that the treatment of photo-sonodynamic provides greater killing efficacy in comparison to either sonodynamic and sono-photodynamic. The photo-sonodynamic shows also greater efficacy to photodynamic. So combination of light-ultrasound (photo-sonodynamic) can effectively kill microbial biofilm. The combined therapy will provide even better efficacy using exogenous photosensitizer.

  4. Photodynamic effect of radiation with the wavelength 405 nm on the cells of microorganisms sensitised by metalloporphyrin compounds

    NASA Astrophysics Data System (ADS)

    Korchenova, M. V.; Tuchina, E. S.; Shvayko, V. Y.; Gulkhandanyan, A. G.; Zakoyan, A. A.; Kazaryan, R. K.; Gulkhandanyan, G. V.; Dzhagarov, B. M.; Tuchin, V. V.

    2016-06-01

    We have studied the photodynamic activity of photosensitisers based on metalloporphyrins. New metalloporphyrin compounds are synthesised and characterised, the quantum yields of the singlet oxygen formation are analysed. It is shown that when the photodynamic effect is implemented using the metalloporphyrins with Zn ions and butyl radical in the 3rd and 4th positions of the pyridine ring, the number of opportunistic bacteria, such as Staphylococcus aureus (antibiotic-sensitives and antibiotic-resistant strains), Staphylococcus simulans and Escherichia coli is efficiently reduced by 90% - 99%.

  5. Reduction of thermal damage in photodynamic therapy by laser irradiation techniques.

    PubMed

    Lim, Hyun Soo

    2012-12-01

    General application of continuous-wave (CW) laser irradiation modes in photodynamic therapy can cause thermal damage to normal tissues in addition to tumors. A new photodynamic laser therapy system using a pulse irradiation mode was optimized to reduce nonspecific thermal damage. In in vitro tissue specimens, tissue energy deposition rates were measured in three irradiation modes, CW, pulse, and burst-pulse. In addition, methods were tested for reducing variations in laser output and specific wavelength shifts using a thermoelectric cooler and thermistor. The average temperature elevation per 10 J/cm2 was 0.27°C, 0.09°C, and 0.08°C using the three methods, respectively, in pig muscle tissue. Variations in laser output were controlled within ± 0.2%, and specific wavelength shift was limited to ± 3 nm. Thus, optimization of a photodynamic laser system was achieved using a new pulse irradiation mode and controlled laser output to reduce potential thermal damage during conventional CW-based photodynamic therapy.

  6. Photodynamic Therapy in Treatment of Oral Lichen Planus

    PubMed Central

    Mostafa, Diana; Tarakji, Bassel

    2015-01-01

    Oral lichen planus (OLP) is a relatively common chronic immunologic mucocutaneous disorder. Although there are many presenting treatments, some of them proved its failure. Recently, the use of photodynamic therapy (PDT) has been expanding due to its numerous advantages, as it is safe, convenient, and non-invasive and has toxic effect towards selective tissues. This article provides comprehensive review on OLP, its etiology, clinical features and recent non-pharmacological treatments. We also describe the topical PDT and its mechanisms. Our purpose was to evaluate the efficacy of PDT in treatment of OLP through collecting the data of the related clinical studies. We searched in PubMed website for the clinical studies that were reported from 2000 to 2014 using specific keywords: “photodynamic therapy” and “treatment of oral lichen planus”. Inclusion criteria were English publications only were concerned. In the selected studies of photodynamic treatment, adult patients (more than 20 years) were conducted and the OLP lesions were clinically and histologically confirmed. Exclusion criteria were classical and pharmacological treatments of OLP were excluded and also the using of PDT on skin lesions of lichen planus. We established five clinical studies in this review where all of them reported improvement and effectiveness of PDT in treatment of OLP lesions. The main outcome of comparing the related clinical studies is that the photodynamic is considered as a safe, effective and promising treatment modality for OLP. PMID:25883701

  7. Daylighting and shuttering: RIB system mechanical design and preliminary performance data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, L.; Reynolds, D.

    1983-12-01

    The Reflective, Insulating Blind (RIB) system is a flexible, user-controlled daylighting device which also has direct thermal advantages: it can reject a considerable portion of summer sun while still retaining an adequate daylighting function; and it functions as moveable insulation to significantly decrease thermal losses through fenestration during evening hours. The conceptual design of the RIB system was accomplished by Barnes and Shapira at the Oak Ridge National Laboratory (ORNL). Mechanical design and prototype fabrication was accomplished by the authors and 29 systems were installed immediately inside existing south-facing windows of an energy-efficient office and dormitory at ORNL. The buildingmore » is a heavily-instrumented, passively-solar-heated structure for which reliable performance data was gathered and analyzed before the addition of RIB systems, thus facilitating the interpretation of ''after RIB'' performance data.« less

  8. Nontumor photodynamic therapy

    NASA Astrophysics Data System (ADS)

    van den Bergh, Hubert

    1997-12-01

    Photodynamic therapy (PDT) has become an approved treatment for different types of cancer in many countries over the last few years. As an example one might mention PDT of the early stages of bronchial or esophageal cancer which have been treated with only about 20% recurrence being observed over several years of follow-up. The low degree of invasion of PDT, as compared to most alternative treatments as well as minimal sided effects, and good repeatability, all speak for this treatment modality. Improved and cheap screening procedures, that are now being developed for the early stage disease, will lead to a more frequent application of PDT for these indications. Detailed studies of PDT showed that certain dyes, after systematic or topical application, could be taken up more in neoplastic tissue as compared to the surrounding normal tissue in the clinical context, thus leading to 'selective' or at least partially selective destruction of the tumor following light application. This selectivity of uptake of certain compounds in hyperproliferative tissue, as well as the observation that PDT can lead to blood vessel stasis, suggested that photodynamic therapy might be worth trying in non-tumor disease. Some of the diseases associated with hyperproliferation and/or neovascularization which are being considered for PDT are listed in table I.

  9. Photodynamic inactivation of antigenic determinants of single-stranded DNA bacteriophage phiX174

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, N.C.; Poddar, R.K.

    1974-05-01

    Bacteriophage phi X174 when photodynamically inactivated (i.e., when rendered unable to produce plaques as a result of exposure to visible light in air in the presence of proflavine) progressively lost their capacity to bind efficiently with homologous antiserum. Such loss of serum-blocking power was evident with heat-inactivated but not with uv-irradiated phage. The ability of the phages to adsorb to host cells, however, remained practically unaltered even after photodynamic inactivation. It thus appears that photodynamic damages in the so-called ''jacket'' component of the phi X174 coat proteins are partly responsible for the loss of plaque-forming ability, whereas the ''spikes'' aremore » either poor antigens or insensitive to photodynamic treatment. (auth)« less

  10. Photodynamic effects of pyropheophorbide-a methyl ester in nasopharyngeal carcinoma cells.

    PubMed

    Xu, Chuan Shan; Leung, Albert Wing Nang

    2006-08-01

    Nasopharyngeal carcinoma (NPC) is one of the most common cancers, and exploring novel therapeutic modalities will improve the clinical outcomes. It has been confirmed that photodynamic therapy can efficiently deactivate malignant cells. The aim of the present study was to explore the photodynamic effects of pyropheophorbide-a methyl ester (MPPa) in CNE2 nasopharyngeal carcinoma cells. CNE2 cells were subjected to photodynamic therapy with MPPa, in which the drug concentration was 0.25 to 4 microM and light energy 1 to 8 J/cm(2). Photodynamic toxicity was investigated 24 h after treatment. Apoptosis was determined using flow cytometry with annexin V-FITC and propidum iodine staining and with nuclear staining with Hoechst 33258. The mitochondrial membrane potential (DeltaPsim) was evaluated by Rhodamine 123 assay. There was no dark cytotoxicity of MPPa in the CNE2 cells at doses of 0.25-4 microM, and MPPa resulted in dose- and light-dependent phototoxicity. The apoptotic rate 8 h after PDT with MPPa (2 microM) increased to 16.43% under a light energy of 2 J/cm(2). Mitochondrial membrane potential (DeltaPsim) collapsed when the CNE2 cells were exposed to 2 microM MPPa for 20 h and then 2 J/cm(2) irradiation. Photodynamic therapy with MPPa significantly enhanced apoptosis and the collapse of DeltaPsim. This can be developed for treating nasopharyngeal carcinoma.

  11. Anti-tumor effects on the combination of photodynamic therapy with arsenic compound in TC-1 cells implanted C57BL/6 mice

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Wan; Wen, Lan Ying; Bae, Su Mi; Park, Choong Hak; Jeon, Woo Kyu; Lee, Doo Yun; Ahn, Woong Shick

    2009-06-01

    The effects of As4O6 were studied as adjuvant on photodynamic therapy. As4O6 is considered to have anticancer activity via several biological actions such as free radical producing and inhibition of VEGF expression. In vitro experiments, cell proliferation and morphology were determined by MTT assay. Also, quantitative PCR array was performed to study the synergetic mechanism. Additionally, this study was supported by the finding that combination of photodynamic therapy and As4O6 shows an inhibition effect of tumor growth in C57BL/6 mice with TC-1 cells xenographs in vivo. Radachlorin and As4O6 significantly inhibited TC-1 cell proliferation in a dose-dependent manner (P < 0.05). Antiproliferative effect of combination treatment was significantly higher than those of TC-1 cells treated with either photodynamic therapy or As4O6 (62.4 and 52.5% decrease, respectively, compared to photodynamic therapy or As4O6 alone, P < 0.05). In addition, cell proliferation in combination of photodynamic therapy and As4O6 treatment significantly decreased by 77.4% compared to vehicle-only treated TC-1 cells (P < 0.05). Cell survival pathway (Naip1, Tert and Aip1) and p53-dependent pathway (Bax, p21Cip1, Fas, Gadd45, IGFBP-3 and Mdm-2) were markedly increased by combination treatment of photodynamic therapy and As4O6. Besides, the immunology response NEAT pathway (Ly- 12, CD178 and IL-2) also modulated after combination treatment of photodynamic therapy and As4O6. This combination effect apparently shows a same pattern in vivo model. These findings suggest the benefit of the combination treatment of photodynamic therapy and As4O6 for the inhibition of cervical cancer growth.

  12. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications

    PubMed Central

    Si, Yang; Zhang, Zheng; Wu, Wanrong; Fu, Qiuxia; Huang, Kang; Nitin, Nitin; Ding, Bin; Sun, Gang

    2018-01-01

    Emerging infectious diseases (EIDs) are a significant burden on global economies and public health. Most present personal protective equipment used to prevent EID transmission and infections is typically devoid of antimicrobial activity. We report on green bioprotective nanofibrous membranes (RNMs) with rechargeable antibacterial and antiviral activities that can effectively produce biocidal reactive oxygen species (ROS) solely driven by the daylight. The premise of the design is that the photoactive RNMs can store the biocidal activity under light irradiation and readily release ROS under dim light or dark conditions, making the biocidal function “always online.” The resulting RNMs exhibit integrated properties of fast ROS production, ease of activity storing, long-term durability, robust breathability, interception of fine particles (>99%), and high bactericidal (>99.9999%) and virucidal (>99.999%) efficacy, which enabled to serve as a scalable biocidal layer for protective equipment by providing contact killing against pathogens either in aerosol or in liquid forms. The successful synthesis of these fascinating materials may provide new insights into the development of protection materials in a sustainable, self-recharging, and structurally adaptive form. PMID:29556532

  13. Enhanced Plasmonic Resonance Energy Transfer in Mesoporous Silica-Encased Gold Nanorod for Two-Photon-Activated Photodynamic Therapy

    PubMed Central

    Chen, Nai-Tzu; Tang, Kuo-Chun; Chung, Ming-Fang; Cheng, Shih-Hsun; Huang, Ching-Mao; Chu, Chia-Hui; Chou, Pi-Tai; Souris, Jeffrey S.; Chen, Chin-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2014-01-01

    The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer. PMID:24955141

  14. ssDNA damage dependence from singlet oxygen concentration at photodynamic interaction

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Kaydanov, N. E.; Emelyanov, A. K.; Bogdanov, A. A.

    2017-11-01

    Single stranded DNA damage at photodynamic treatment with Radachlorin photosensitizer was investigated. Chemical trap method was used to evaluate generation of singlet oxygen in water solution. Interaction of singlet oxygen with ssDNA resulted into decrease of the replication activity of ssDNA. DNA stopped replicating during PCR at irradiation doses greater than 15 J/cm2 and concentration of photosensitizer [PS] = 3.8 μM. The dependence of replication activity of ssDNA on generated singlet oxygen concentration was identified.

  15. The Taranaki daylight fireball, 1999 July 7

    NASA Astrophysics Data System (ADS)

    McCormick, Jennie

    2006-10-01

    The New Zealand Taranaki Daylight Fireball was observed on 1999 July 7 from various areas across the North and South Islands of New Zealand and had an apparent magnitude brighter than -20. The event produced more than one hundred handwritten reports, drawings, and paintings from eyewitnesses; video and audio recordings, seismic trace data, and confirmation of detection by the United States Defense Department satellites. A detailed case study based on this data shows that observations by the public are invaluable when compiling a formal history of such events.

  16. Long-term luminescence of sensibilizers in tissues at the conditions of oxygen deficiency due to photodynamic effect

    NASA Astrophysics Data System (ADS)

    Ishemgulov, A. T.; Letuta, S. N.; Pashkevich, S. N.; Alidzhanov, E. K.; Lantukh, Yu. D.

    2017-11-01

    Long-term luminescence of organic dyes (xanthene dyes, halogen substituted fluoroscein) was used for an in vitro study of the photodynamic effect of exogenic probes in malignant tumors and healthy tissues of mice. It is shown that the photodynamic activity of oxygen and the dynamics of its concentration in tissues can be estimated from the delayed fluorescence of exogenic probes caused by singlet-triplet annihilation of singlet oxygen and excited triplet states of the molecules of photosensitizer dyes. It is found that quenching of long-term luminescence of photosensitizers significantly differs in tumors and normal tissues.

  17. Second generation photodynamic agents: a review.

    PubMed

    Sternberg, E D; Dolphin, D

    1993-10-01

    Over the last decade, laser treatment of neoplastic diseases has become routine. The ability of these light-induced therapies to effect positive results is increased with the utilization of photosensitizing dyes. The approval of Photofrin in Canada as a first generation photodynamic therapeutic agent for the treatment of some forms of bladder cancer is being followed by the development of other agents with improved properties. At this time a number of second generation photosensitizing dyes are under study in phase I/II clinical trials. A review of the status of these trials along with mechanistic aspects is reviewed in this article. In addition, a review of the status of lasers to be utilized for photodynamic therapy gives some indication of which instruments could be considered for this therapy in the future.

  18. Photodynamic therapy potentiates the paracrine endothelial stimulation by colorectal cancer

    NASA Astrophysics Data System (ADS)

    Lamberti, María Julia; Florencia Pansa, María; Emanuel Vera, Renzo; Belén Rumie Vittar, Natalia; Rivarola, Viviana Alicia

    2014-11-01

    Colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer death worldwide. Recurrence is a major problem and is often the ultimate cause of death. In this context, the tumor microenvironment influences tumor progression and is considered as a new essential feature that clearly impacts on treatment outcome, and must therefore be taken into consideration. Photodynamic therapy (PDT), oxygen, light and drug-dependent, is a novel treatment modality when CRC patients are inoperable. Tumor vasculature and parenchyma cells are both potential targets of PDT damage modulating tumor-stroma interactions. In biological activity assessment in photodynamic research, three-dimensional (3D) cultures are essential to integrate biomechanical, biochemical, and biophysical properties that better predict the outcome of oxygen- and drug-dependent medical therapies. Therefore, the objective of this study was to investigate the antitumor effect of methyl 5-aminolevulinic acid-PDT using a light emitting diode for the treatment of CRC cells in a scenario that mimics targeted tissue complexity, providing a potential bridge for the gap between 2D cultures and animal models. Since photodynamic intervention of the tumor microenvironment can effectively modulate the tumor-stroma interaction, it was proposed to characterize the endothelial response to CRC paracrine communication, if one of these two populations is photosensitized. In conclusion, we demonstrated that the dialogue between endothelial and tumor populations when subjected to lethal PDT conditions induces an increase in angiogenic phenotype, and we think that it should be carefully considered for the development of PDT therapeutic protocols.

  19. Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations.

    PubMed

    Pearce, Bradley; Crichton, Stuart; Mackiewicz, Michal; Finlayson, Graham D; Hurlbert, Anya

    2014-01-01

    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed.

  20. Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice.

    PubMed

    Fadel, Maha; Kassab, Kawser; Fadeel, Doa Abdel

    2010-03-01

    Nanoparticles formulated from the biodegradable copolymer poly(lactic-coglycolic acid) (PLGA) were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting of zinc(II) phthalocyanine (ZnPc) for photodynamic therapy. Three ZnPc nanoparticle formulations were prepared using a solvent emulsion evaporation method and the influence of sonication time on nanoparticle shape, encapsulation and size distribution, in vitro release, and in vivo photodynamic efficiency in tumor-bearing mice were studied. Sonication time did not affect the process yield or encapsulation efficiency, but did affect significantly the particle size. Sonication for 20 min reduced the mean particle size to 374.3 nm and the in vitro release studies demonstrated a controlled release profile of ZnPc. Tumor-bearing mice injected with ZnPc nanoparticles exhibited significantly smaller mean tumor volume, increased tumor growth delay and longer survival compared with the control group and the group injected with free ZnPc during the time course of the experiment. Histopathological examination of tumor from animals treated with PLGA ZnPc showed regression of tumor cells, in contrast to those obtained from animals treated with free ZnPc. The results indicate that ZnPc encapsulated in PLGA nanoparticles is a successful delivery system for improving photodynamic activity in the target tissue.

  1. Molecular imaging of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Chang, Sung K.; Errabelli, Divya; Rizvi, Imran; Solban, Nicolas; O'Riordan, Katherine; Hasan, Tayyaba

    2006-02-01

    Recent advances in light sources, detectors and other optical imaging technologies coupled with the development of novel optical contrast agents have enabled real-time, high resolution, in vivo monitoring of molecular targets. Noninvasive monitoring of molecular targets is particularly relevant to photodynamic therapy (PDT), including the delivery of photosensitizer in the treatment site and monitoring of molecular and physiological changes following treatment. Our lab has developed optical imaging technologies to investigate these various aspects of photodynamic therapy (PDT). We used a laser scanning confocal microscope to monitor the pharmacokinetics of various photosensitizers in in vitro as well as ex vivo samples, and developed an intravital fluorescence microscope to monitor photosensitizer delivery in vivo in small animals. A molecular specific contrast agent that targets the vascular endothelial growth factor (VEGF) was developed to monitor the changes in the protein expression following PDT. We were then able to study the physiological changes due to post-treatment VEGF upregulation by quantifying vascular permeability with in vivo imaging.

  2. Intracellular Targeting Specificity of Novel Phthalocyanines Assessed in a Host-Parasite Model for Developing Potential Photodynamic Medicine

    PubMed Central

    Dutta, Sujoy; Ongarora, Benson G.; Li, Hairong; Vicente, Maria da Graca H.; Kolli, Bala K.; Chang, Kwang Poo

    2011-01-01

    Photodynamic therapy, unlikely to elicit drug-resistance, deserves attention as a strategy to counter this outstanding problem common to the chemotherapy of all diseases. Previously, we have broadened the applicability of this modality to photodynamic vaccination by exploiting the unusual properties of the trypanosomatid protozoa, Leishmania, i.e., their innate ability of homing to the phagolysosomes of the antigen-presenting cells and their selective photolysis therein, using transgenic mutants endogenously inducible for porphyrin accumulation. Here, we extended the utility of this host-parasite model for in vitro photodynamic therapy and vaccination by exploring exogenously supplied photosensitizers. Seventeen novel phthalocyanines (Pcs) were screened in vitro for their photolytic activity against cultured Leishmania. Pcs rendered cationic and soluble (csPcs) for cellular uptake were phototoxic to both parasite and host cells, i.e., macrophages and dendritic cells. The csPcs that targeted to mitochondria were more photolytic than those restricted to the endocytic compartments. Treatment of infected cells with endocytic csPcs resulted in their accumulation in Leishmania-containing phagolysosomes, indicative of reaching their target for photodynamic therapy, although their parasite versus host specificity is limited to a narrow range of csPc concentrations. In contrast, Leishmania pre-loaded with csPc were selectively photolyzed intracellularly, leaving host cells viable. Pre-illumination of such csPc-loaded Leishmania did not hinder their infectivity, but ensured their intracellular lysis. Ovalbumin (OVA) so delivered by photo-inactivated OVA transfectants to mouse macrophages and dendritic cells were co-presented with MHC Class I molecules by these antigen presenting cells to activate OVA epitope-specific CD8+T cells. The in vitro evidence presented here demonstrates for the first time not only the potential of endocytic csPcs for effective photodynamic therapy

  3. Photodynamic therapy: a review of applications in neurooncology and neuropathology

    NASA Astrophysics Data System (ADS)

    Uzdensky, Anatoly B.; Berezhnaya, Elena; Kovaleva, Vera; Neginskaya, Marya; Rudkovskii, Mikhail; Sharifulina, Svetlana

    2015-06-01

    Photodynamic therapy (PDT) effect is a promising adjuvant modality for diagnosis and treatment of brain cancer. It is of importance that the bright fluorescence of most photosensitizers provides visualization of brain tumors. This is successfully used for fluorescence-guided tumor resection according to the principle "to see and to treat." Non-oncologic application of PDT effect for induction of photothrombotic infarct of the brain tissue is a well-controlled and reproducible stroke model, in which a local brain lesion is produced in the predetermined brain area. Since normal neurons and glial cells may also be damaged by PDT and this can lead to unwanted neurological consequences, PDT effects on normal neurons and glial cells should be comprehensively studied. We overviewed the current literature data on the PDT effect on a range of signaling and epigenetic proteins that control various cell functions, survival, necrosis, and apoptosis. We hypothesize that using cell-specific inhibitors or activators of some signaling proteins, one can selectively protect normal neurons and glia, and simultaneously exacerbate photodynamic damage of malignant gliomas.

  4. Methylene Blue-Loaded Dissolving Microneedles: Potential Use in Photodynamic Antimicrobial Chemotherapy of Infected Wounds

    PubMed Central

    Caffarel-Salvador, Ester; Kearney, Mary-Carmel; Mairs, Rachel; Gallo, Luigi; Stewart, Sarah A.; Brady, Aaron J.; Donnelly, Ryan F.

    2015-01-01

    Photodynamic therapy involves delivery of a photosensitising drug that is activated by light of a specific wavelength, resulting in generation of highly reactive radicals. This activated species can cause destruction of targeted cells. Application of this process for treatment of microbial infections has been termed “photodynamic antimicrobial chemotherapy” (PACT). In the treatment of chronic wounds, the delivery of photosensitising agents is often impeded by the presence of a thick hyperkeratotic/necrotic tissue layer, reducing their therapeutic efficacy. Microneedles (MNs) are an emerging drug delivery technology that have been demonstrated to successfully penetrate the outer layers of the skin, whilst minimising damage to skin barrier function. Delivering photosensitising drugs using this platform has been demonstrated to have several advantages over conventional photodynamic therapy, such as, painless application, reduced erythema, enhanced cosmetic results and improved intradermal delivery. The aim of this study was to physically characterise dissolving MNs loaded with the photosensitising agent, methylene blue and assess their photodynamic antimicrobial activity. Dissolving MNs were fabricated from aqueous blends of Gantrez® AN-139 co-polymer containing varying loadings of methylene blue. A height reduction of 29.8% was observed for MNs prepared from blends containing 0.5% w/w methylene blue following application of a total force of 70.56 N/array. A previously validated insertion test was used to assess the effect of drug loading on MN insertion into a wound model. Staphylococcus aureus, Escherichia coli and Candida albicans biofilms were incubated with various methylene blue concentrations within the range delivered by MNs in vitro (0.1–2.5 mg/mL) and either irradiated at 635 nm using a Paterson Lamp or subjected to a dark period. Microbial susceptibility to PACT was determined by assessing the total viable count. Kill rates of >96%, were achieved for

  5. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation.

    PubMed

    Dong, Shuai; Shi, Hongxi; Zhang, Xintong; Chen, Xi; Cao, Donghui; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2018-01-01

    Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA) is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA's phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway. A single-chain variable-fragment phage (JM) with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate a combined nanoscale material, which was called PPA-JM-phage. After photodynamic inactivation, the growth of C. albicans was inhibited by PPA-JM-phage and apoptosis was observed. Scanning electron microscopy analysis revealed shrinking and rupturing of C. albicans . We also found that depolarization of mitochondrial membrane potential was decreased and intracellular reactive oxygen species levels were elevated significantly in C. albicans inhibited by PPA-JM-phage. Additionally, PPA-JM-phage also lead to S-phase arrest, and metacaspase activation

  6. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation

    PubMed Central

    Dong, Shuai; Shi, Hongxi; Zhang, Xintong; Chen, Xi; Cao, Donghui; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2018-01-01

    Background Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA) is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA’s phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. Methods In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway. Results A single-chain variable-fragment phage (JM) with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate a combined nanoscale material, which was called PPA-JM-phage. After photodynamic inactivation, the growth of C. albicans was inhibited by PPA-JM-phage and apoptosis was observed. Scanning electron microscopy analysis revealed shrinking and rupturing of C. albicans. We also found that depolarization of mitochondrial membrane potential was decreased and intracellular reactive oxygen species levels were elevated significantly in C. albicans inhibited by PPA-JM-phage. Additionally, PPA-JM-phage also lead to S-phase arrest, and

  7. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae.

    PubMed

    Bornhütter, Tobias; Pohl, Judith; Fischer, Christian; Saltsman, Irena; Mahammed, Atif; Gross, Zeev; Röder, Beate

    2016-04-13

    Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  8. Smart Photosensitizer: Tumor-Triggered Oncotherapy by Self-Assembly Photodynamic Nanodots.

    PubMed

    Jia, Yuhua; Li, Jinyu; Chen, Jincan; Hu, Ping; Jiang, Longguang; Chen, Xueyuan; Huang, Mingdong; Chen, Zhuo; Xu, Peng

    2018-05-09

    Clinical photosensitizers suffer from the disadvantages of fast photobleaching and high systemic toxicities because of the off-target photodynamic effects. To address these problems, we report a self-assembled pentalysine-phthalocyanine assembly nanodots (PPAN) fabricated by an amphipathic photosensitizer-peptide conjugate. We triggered the photodynamic therapy effects of photosensitizers by precisely controlling the assembly and disintegration of the nanodots. In physiological aqueous conditions, PPAN exhibited a size-tunable spherical conformation with a highly positive shell of the polypeptides and a hydrophobic core of the π-stacking Pc moieties. The assembly conformation suppressed the fluorescence and the reactive oxygen species generation of the monomeric photosensitizer molecules (mono-Pc) and thus declined the photobleaching and off-target photodynamic effects. However, tumor cells disintegrated PPAN and released the mono-Pc molecules, which exhibited fluorescence for detection and the photodynamic effects for the elimination of the tumor tissues. The molecular dynamics simulations revealed the various assembly configurations of PPAN and illustrated the assembly mechanism. At the cellular level, PPAN exhibited a remarkable phototoxicity to breast cancer cells with the IC 50 values in a low nanomolar range. By using the subcutaneous and orthotopic breast cancer animal models, we also demonstrated the excellent antitumor efficacies of PPAN in vivo.

  9. Mitochondria-targeting for improved photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ngen, Ethel J.

    , other strategies to target mitochondria for improved photodynamic activity were investigated. In a continuing project, we evaluated the ability of delocalized lipophilic cationic dyes to deliver photosensitizers to mitochondria by exploiting the membrane potential difference between the cytoplasm and mitochondria. Two conjugates: a porphyrin--rhodamine B conjugate (TPP--Rh) and a porphyrin-acridine orange conjugate (TPP--AO), each possessing a single delocalized lipophilic cation, were designed and synthesized. The conjugates were synthesized by conjugating a monohydroxy porphyrin (TPP-OH) to rhodamine B (Rh B) and acridine orange base (AO), respectively, via saturated hydrocarbon linkers. To evaluate the efficiency of the conjugates as photosensitizers, their photophysical properties and in vitro photodynamic activities were studied in comparison to those of TPP-OH, the parent porphyrin photosensitizer. Although fluorescence energy transfer (FRET) was observed in the conjugates, they were capable of generating singlet oxygen at rates comparable to TPP-OH. In a final project, we evaluated the photophysical potential of TPP-Rh to act as a two-photon photosensitizer for PDT. Two-photon PDT is a rational approach used to improve light penetration through the skin. Rhodamine B is an effective two-photon chromophore and could significantly improve the two-photon absorption of the porphyrin photosensitizer in the TPP-Rh dyad system following energy transfer. Thus the porphyrin--rhodamine B dyad (TPP--Rh), previously demonstrated to preferentially accumulate in the mitochondria, was photophysically evaluated as a potential two-photon photosensitizer. To evaluate the efficiency of TPP-Rh as a two-photon photosensitizer, its two-photon photophysical properties were compared with those of its individual components (Rh B and TPP-OH). This included: the two-photon cross sections (sigma 2), RET kinetics and dynamics and rates of singlet oxygen generation. A FRET efficiency of ~99

  10. Improving daylight in mosques using domes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alturki, I.; Schiler, M.; Boyajian, Y.

    1996-10-01

    This paper studies the possibilities for improving daylight in mosques by measuring the illumination level under various domes in an old mosque ``Mosque of Guzelce Hasan Bey in Hayrabolu`` using an architectural physical model. The illumination level under the domes were tested under three different cases: a dome without openings (the original building), a dome with a central opening, and a dome with openings around the base. It was found that a dome with openings around the base brings an evenly distributed light all over the prayer hall during the critical hours of 12:00 p.m. and 3:00 p.m. In addition,more » it improves the quality and quantity of light.« less

  11. 75 FR 36089 - Payment System Risk Policy; Daylight Overdraft Posting Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... and includes only Accounts Receivable Entry (ARC), Back Office Conversion Entry (BOC), Point-of... account balance and daylight overdraft balance in Account Management Information (AMI), which is a service... under the authority delegated to the Board by the Office of Management and Budget. No collections of...

  12. The shift to and from daylight savings time and motor vehicle crashes.

    PubMed

    Lambe, M; Cummings, P

    2000-07-01

    The objective of the study was to examine whether the shifts to and from daylight savings time in Sweden have short-term effects on the incidence of traffic crashes. A database maintained by the Swedish National Road Administration was used to examine crashes from 1984 through 1995, that occurred on state roads the Monday preceding, the Monday immediately after (index Monday), and the Monday 1 week after the change to daylight savings time in the spring and for the corresponding three Mondays in the autumn. The Mondays 1 week before and after the time changes were taken as representing the expected incidence of crashes. Crash incidence was calculated per 1000 person-years using population estimates for each year of the study. The association between 1 h of possible sleep loss and crash incidence was estimated by the incidence rate ratio from negative binomial regression. The incidence rate ratio was 1.04 (95% CI, 0.92-1.16) for a Monday on which drivers were expected to have had 1 h less sleep, compared with other Mondays. In the spring, the incidence rate ratio for crashes was 1.11 (95% CI, 0.93-1.31) for Mondays after the time change compared to other spring Mondays. The corresponding rate ratio for the fall was 0.98 (95% CI, 0.84-1.15) It was concluded that the shift to and from daylight savings time did not have measurable important immediate effects on crash incidence in Sweden.

  13. Evaluation of Silicon Phthalocyanine 4 Photodynamic Therapy Against Human Cervical Cancer Cells In Vitro and in Mice

    PubMed Central

    Gadzinski, Jill A.; Guo, Jianxia; Philips, Brian J.; Basse, Per; Craig, Ethan K.; Bailey, Lisa; Comerci, John T.; Eiseman, Julie L.

    2017-01-01

    Background Cervical cancer is the second most common cancer in women worldwide [1]. Photodynamic therapy has been used for cervical intraepithelial neoplasia with good responses, but few studies have used newer phototherapeutics. We evaluated the effectiveness of photodynamic therapy using Pc 4 in vitro and in vivo against human cervical cancer cells. Methods CaSki and ME-180 cancer cells were grown as monolayers and spheroids. Cell growth and cytotoxicity were measured using a methylthiazol tetrazolium assay. Pc 4 cellular uptake and intracellular distrubtion were determined. For in vitro Pc 4 photodynamic therapy cells were irradiated at 667nm at a fluence of 2.5 J/cm2 at 48 h. SCID mice were implanted with CaSki and ME-180 cells both subcutaneously and intracervically. Forty-eight h after Pc 4 photodynamic therapy was administered at 75 and 150 J/cm2. Results The IC50s for Pc 4 and Pc 4 photodynamic therapy for CaSki and ME-180 cells as monolayers were, 7.6μM and 0.016μM and >10μM and 0.026μM; as spheroids, IC50s of Pc 4 photodynamic therapy were, 0.26μM and 0.01μM. Pc 4 was taken up within cells and widely distributed in tumors and tissues. Intracervical photodynamic therapy resulted in tumor death, however mice died due to gastrointestinal toxicity. Photodynamic therapy resulted in subcutaneous tumor death and growth delay. Conclusions Pc 4 photodynamic therapy caused death within cervical cancer cells and xenografts, supporting development of Pc 4 photodynamic therapy for treatment of cervical cancer. Support: P30-CA47904, CTSI BaCCoR Pilot Program. PMID:28890844

  14. Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Wangda; McNeil, Andrew; Wetter, Michael

    2013-05-23

    Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can take hours or even days using a personal computer. This paper describes how to accelerate the matrix multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was implemented in parallel using OpenCL. The speed of new approach wasmore » evaluated using various daylighting simulation cases on a multicore central processing unit and a graphics processing unit. Based on the measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be achieved by using fast I/O devices and storing the data in a binary format.« less

  15. Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Teng; Wang, Chao; Cui, Wei; Gong, Hua; Liang, Chao; Shi, Xiaoze; Li, Zhiwei; Sun, Baoquan; Liu, Zhuang

    2014-09-01

    Single- or few-layered transitional metal dichalcogenides, as a new genus of two-dimensional nanomaterials, have attracted tremendous attention in recent years, owing to their various intriguing properties. In this study, chemically exfoliated MoS2 nanosheets are modified with lipoic acid-terminated polyethylene glycol (LA-PEG), obtaining PEGylated MoS2 (MoS2-PEG) with high stability in physiological solutions and no obvious toxicity. Taking advantage of its ultra-high surface area, the obtained MoS2-PEG is able to load a photodynamic agent, chlorin e6 (Ce6), by physical adsorption. In vitro experiments reveal that Ce6 after being loaded on MoS2-PEG shows remarkably increased cellular uptake and thus significantly enhanced photodynamic therapeutic efficiency. Utilizing the strong, near-infrared (NIR) absorbance of the MoS2 nanosheets, we further demonstrate photothermally enhanced photodynamic therapy using Ce6-loaded MoS2-PEG for synergistic cancer killing, in both in vitro cellular and in vivo animal experiments. Our study presents a new type of multifunctional nanocarrier for the delivery of photodynamic therapy, which, if combined with photothermal therapy, appears to be an effective therapeutic approach for cancer treatment.Single- or few-layered transitional metal dichalcogenides, as a new genus of two-dimensional nanomaterials, have attracted tremendous attention in recent years, owing to their various intriguing properties. In this study, chemically exfoliated MoS2 nanosheets are modified with lipoic acid-terminated polyethylene glycol (LA-PEG), obtaining PEGylated MoS2 (MoS2-PEG) with high stability in physiological solutions and no obvious toxicity. Taking advantage of its ultra-high surface area, the obtained MoS2-PEG is able to load a photodynamic agent, chlorin e6 (Ce6), by physical adsorption. In vitro experiments reveal that Ce6 after being loaded on MoS2-PEG shows remarkably increased cellular uptake and thus significantly enhanced photodynamic

  16. Regulation of porphyrin synthesis and photodynamic therapy in heavy metal intoxication.

    PubMed

    Grinblat, Borislava; Pour, Nir; Malik, Zvi

    2006-01-01

    Protoporphyrin IX (PpIX) synthesis by malignant cells is successfully exploited for photodynamic therapy (PDT) following administration of 5-aminolevulinic acid (ALA) and light irradiation. The influence of two environmental heavy metal poisons, lead and gallium, on PpIX-synthesis and ALA-PDT was studied in two neu-ronal cell lines, SH-SY5Y neuroblastoma and PC12 pheochromocytoma. The heavy metal intoxication affected two of the heme-synthesis enzymes, ALA-dehydratase (ALAD) and porphobilinogen deaminase (PBGD). The present results show that lead poisoning significantly decreased the PBGD cellular level and inhibited its enzymatic activity, whereas the effects of gallium were less prominent. Although, the protein levels were reduced, the mRNA levels of PBGD remained unchanged during metal intoxication. These findings show additional inhibitory activity of lead on top of its classical effect on ALAD. Proteasome activity was enhanced during lead treatment, as measured by the AMC fluorigenic proteasome assay. The reduction in PBGD levels was not a consequence of PBGD mRNA reduced synthesis, which remained unchanged as shown by RT-PCR analysis. As a result of the lead poisoning, marked alterations in the cell cycle were observed, including a decreased G1 phase and an increased number of S phase cells. The efficacy of ALA-PDT was reduced in correlation with decreased activities of the enzymes during lead intoxication. We may conclude that lead poisoning adversely affects the outcome of ALA photodynamic therapy of cancer.

  17. Effectiveness of 5-aminolevulinic acid photodynamic therapy in the treatment of hidradenitis suppurativa: a report of 5 cases.

    PubMed

    Andino Navarrete, R; Hasson Nisis, A; Parra Cares, J

    2014-01-01

    Hidradenitis suppurativa has been described as a chronic, recurrent, and disabling inflammatory disease involving the entire hair follicle. Several treatments, including photodynamic therapy, have been used, but the results have been inconsistent and recurrence is high. In this prospective study, we evaluated disease severity, quality of life, and treatment tolerance in 5 patients with moderate to severe hidradenitis suppurativa treated with photodynamic therapy using 5-aminolevulinic acid and a 635-nm light source. Treatment effectiveness was evaluated using the Sartorius severity score, the Dermatology Life Quality Index, and a visual analog scale for pain and disease activity. Significant improvements were observed with all 3 instruments and the effects remained visible at 8 weeks. Our results suggest that photodynamic therapy with 5-aminolevulinic acid and a light wavelength of 635 nm could reduce disease severity and improve quality of life in patients with difficult-to-treat hidradenitis suppurativa. Copyright © 2013 Elsevier España, S.L. y AEDV. All rights reserved.

  18. Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

    PubMed Central

    Pearce, Bradley; Crichton, Stuart; Mackiewicz, Michal; Finlayson, Graham D.; Hurlbert, Anya

    2014-01-01

    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed. PMID:24586299

  19. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    PubMed

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis and characterization of PLGA nanoparticles containing mixture of curcuminoids for optimization of photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Suzuki, Isabella L.; Inada, Natália M.; Marangoni, Valéria S.; Corrêa, Thaila Q.; Zucolotto, Valtencir; Kurachi, Cristina; Bagnato, Vanderlei S.

    2016-03-01

    Because of excessive use of antibiotics there is a growth in the number of resistant strains. Due to this growth of multiresistant bacteria, the number of searches looking for alternatives antibacterial therapeutic has increased, and among them is the antimicrobial photodynamic therapy (aPDT) or photodynamic inactivation (PDI). The photodynamic inactivation involves the action of a photosensitizer (PS), activated by a specific wavelength, in the present of oxygen, resulting in cytotoxic effect. Natural curcumin, consists of a mixture of three curcuminoids: curcumin, demethoxycurcumin and bis-demethoxycurcumin. Curcumin has various pharmacological properties, however, has extremely low solubility in aqueous solutions, which difficult the use as therapeutic agent. The present study aims to develop polymeric PLGA nanoparticles containing curcuminoids to improve water solubility, increase bioavailability providing protection from degradation (chemistry and physics), and to verify the efficacy in photodynamic inactivation of microorganisms. The PLGA-CURC were synthesized by nanoprecipitation, resulting in two different systems, with an average size of 172 nm and 70% encapsulation efficiency for PLGA-CURC1, and 215 nm and 80% for PLGA-CURC2. Stability tests showed the polymer protected the curcuminoids against premature degradation. Microbiological tests in vitro with curcuminoids water solution and both suspension of PLGA-CURC were efficient in Gram-positive bacterium and fungus. However, the solution presented dark toxicity at high concentrations, unlike the nanoparticles. Thus, it was concluded that it was possible to let curcuminoids water soluble by encapsulation in PLGA nanoparticles, to ensure improved stability in aqueous medium (storage), and to inactivate bacteria and fungus.

  1. The Role of Photodynamic Therapy in the Treatment of Vulvar Intraepithelial Neoplasia

    PubMed Central

    Tosti, Giulio; Iacobone, Anna Daniela; Preti, Eleonora Petra; Vaccari, Sabina; Barisani, Alessia; Pennacchioli, Elisabetta

    2018-01-01

    Background: vulvar intraepithelial neoplasia is a non-invasive precursor lesion found in 50–70% of patients affected by vulvar squamous cell carcinoma. In the past, radical surgery was the standard treatment for vulvar intraepithelial neoplasia, however, considering the psychological and physical morbidities related to extensive surgery, several less aggressive treatment modalities have been proposed since the late 1970s. Photodynamic therapy is an effective and safe treatment for cutaneous non-melanoma skin cancer, with favorable cosmetic outcomes. Methods: in the present paper, the results of selected studies on photodynamic therapy in the treatment of vulvar intraepithelial neoplasia are reported and discussed. Results: Overall, complete histological response rates ranged between 20% and 67% and symptom response rates ranged between 52% and 89% according to different studies and case series. Conclusions: the real benefit of photodynamic therapy in the setting of vulvar intraepithelial neoplasia lies in its ability to treat multi-focal disease with minimal tissue destruction, preservation of vulvar anatomy and excellent cosmetic outcomes. These properties explain why photodynamic therapy is an attractive option for vulvar intraepithelial neoplasia treatment. PMID:29393881

  2. The Antimicrobial Photodynamic Therapy in the Treatment of Peri-Implantitis

    PubMed Central

    Libotte, Fabrizio; Sabatini, Silvia; Grassi, Felice Roberto

    2016-01-01

    Introduction. The aim of this study is to demonstrate the effectiveness of addition of the antimicrobial photodynamic therapy to the conventional approach in the treatment of peri-implantitis. Materials and Methods. Forty patients were randomly assigned to test or control groups. Patients were assessed at baseline and at six (T1), twelve (T2), and twenty-four (T3) weeks recording plaque index (PlI), probing pocket depth (PPD), and bleeding on probing (BOP); control group received conventional periodontal therapy, while test group received photodynamic therapy in addition to it. Result. Test group showed a 70% reduction in the plaque index values and a 60% reduction in PD values compared to the baseline. BOP and suppuration were not detectable. Control group showed a significative reduction in plaque index and PD. Discussion. Laser therapy has some advantages in comparison to traditional therapy, with faster and greater healing of the wound. Conclusion. Test group showed after 24 weeks a better value in terms of PPD, BOP, and PlI, with an average pocket depth value of 2 mm, if compared with control group (3 mm). Our results suggest that antimicrobial photodynamic therapy with diode laser and phenothiazine chloride represents a reliable adjunctive treatment to conventional therapy. Photodynamic therapy should, however, be considered a coadjuvant in the treatment of peri-implantitis associated with mechanical (scaling) and surgical (grafts) treatments. PMID:27429618

  3. Potentiation of the photodynamic action of hypericin.

    PubMed

    Saw, Constance Lay Lay; Heng, Paul Wan Sia; Olivo, Malini

    2008-01-01

    Hypericin (HY) is an interesting photosensitizer with dark activity and photodynamic therapy (PDT) effects via p53-independent pathway. In photodynamic diagnosis (PDD) of bladder cancer using HY, very high sensitivity and specificity were reported, in comparison with its counterpart, 5-aminolevulinic acid (5-ALA). HY was tested for the detection of human gastric cancer. It was also studied for treating some cancers and age-related macular degeneration and showed some promising findings. Several strategies to enhance the efficacy of HY-PDD and HY-PDT are reviewed. Using fractionated light dosing, fractionated drug dosing, hyperthermia, adjuvants such as oxygen carrier/antiangiogenesis, chemical modifications, and formulation approaches to enhance the PDT effects of HY are topics of this review. Despite cutting-edge technology approach such as preparing transferring-mediated targeting HY liposomes and nanoparticles of HY, such preparations did not always offer the desired enhanced treatment effects. It turns out that simple solutions of HY, especially those prepared without using plasma protein, were more successful in enhancing the delivery of HY for in vitro and in vivo systems. Thus, the HY-PDT with these formulations performed better. It is anticipated that HY-PDD and HY-PDT can be enhanced and optimized with the right combination of light dosimetry and drug dose in an effective formulation containing a suitable adjuvant. Hyperoxygenation and hyperthermia can also be used to further enhance the efficacy of HY-PDT.

  4. Photodynamic therapy for treatment subretinal neovascularization

    NASA Astrophysics Data System (ADS)

    Avetisov, Sergey E.; Budzinskaja, Maria V.; Kiseleva, Tatyana N.; Balatskaya, Natalia V.; Gurova, Irina V.; Loschenov, Viktor B.; Shevchik, Sergey A.; Kuzmin, Sergey G.; Vorozhtsov, Georgy N.

    2007-07-01

    This work are devoted our experience with photodynamic therapy (PDT) with <> for patients with choroidal neovascularization (CNV). 18 patients with subfoveal CNV in age-related macular degeneration (AMD), 24 patients with subfoveal CNV in pathological myopia (PM) and 4 patients with subfoveal CNV associated with toxoplasmic retinochoroiditis were observed. CNV was 100% classic in all study patients. Standardized protocol refraction, visual acuity testing, ophthalmologic examinations, biomicroscopy, fluorescein angiography, and ultrasonography were performed before treatment and 1 month, 3 months, 6 months, and 1 year after treatment; were used to evaluate the results of photodynamic therapy with <> (0.02% solution of mixture sulfonated aluminium phtalocyanine 0.05 mg/kg, intravenously). A diode laser (<>, Inc, Moscow) was used operating in the range of 675 nm. Need for retreatment was based on fluorescein angiographic evidence of leakage at 3-month follow-up intervals. At 3, 6, 9 month 26 (56.5%) patients had significant improvement in the mean visual acuity. At the end of the 12-month minimal fluorescein leakage from choroidal neovascularization was seen in 12 (26.1%) patients and the mean visual acuity was slightly worse than 0.2 which was not statistically significant as compared with the baseline visual acuity. Patients with fluorescein leakage from CNV underwent repeated PDT with <>. 3D-mode ultrasound shown the decreasing thickness of chorioretinal complex in CNV area. Photodynamic therapy with <> can safely reduce the risk of severe vision loss in patients with predominantly classic subfoveal choroidal neovascularization secondary to AMD, PM and toxoplasmic retinochoroiditis.

  5. Biological activities of phthalocyanines. XIV. Effect of hydrophobic phthalimidomethyl groups on the in vivo phototoxicity and mechanism of photodynamic action of sulphonated aluminium phthalocyanines.

    PubMed Central

    Boyle, R. W.; Paquette, B.; van Lier, J. E.

    1992-01-01

    Aluminium phthalocyanines substituted to different degrees with hydrophilic sulphonic acid and hydrophobic phthalimidomethyl groups were investigated in vivo as new agents for the photodynamic therapy of malignant tumours. Parameters studied included the photodynamic action on EMT-6 mammary tumours in BALB/c mice, the therapeutic window and the potential for direct cell killing, assayed via an in vivo/in vitro test. Although the efficiency of photoinactivation of the EMT-6 tumour increases by a factor of ten with reduction of the number of sulphonic acid groups from four to two, no further effect was seen with the addition of the hydrophobic phthalimidomethyl groups. Addition of the latter groups however increased the potential for direct cell killing by a factor of two and expanded the therapeutic window by a factor of four, thus improving the usefulness of the dye as a photosensitiser for the photodynamic therapy of cancer. PMID:1616852

  6. Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities.

    PubMed

    Hernández-Andrés, J; Lee, R L; Romero, J

    1999-09-20

    Natural outdoor illumination daily undergoes large changes in its correlated color temperature (CCT), yet existing equations for calculating CCT from chromaticity coordinates span only part of this range. To improve both the gamut and accuracy of these CCT calculations, we use chromaticities calculated from our measurements of nearly 7000 daylight and skylight spectra to test an equation that accurately maps CIE 1931 chromaticities x and y into CCT. We extend the work of McCamy [Color Res. Appl. 12, 285-287 (1992)] by using a chromaticity epicenter for CCT and the inverse slope of the line that connects it to x and y. With two epicenters for different CCT ranges, our simple equation is accurate across wide chromaticity and CCT ranges (3000-10(6) K) spanned by daylight and skylight.

  7. Tannic Acid/Fe3+/Ag Nanofilm Exhibiting Superior Photodynamic and Physical Antibacterial Activity.

    PubMed

    Xu, Ziqiang; Wang, Xiuhua; Liu, Xiangmei; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin Wai Kwok; Chung, Jonathan Chiyuen; Chu, Paul K; Wu, Shuilin

    2017-11-15

    Silver nanoparticles (AgNPs) enwrapped in the biologically safe tannic acid (TA)/Fe 3+ nanofilm are synthesized by an ultrafast, green, simple, and universal method. The physical antibacterial activity and photodynamic antibacterial therapy (PAT) efficacy of the TA/Fe 3+ /AgNPs nanofilm were investigated for the first time, which exhibited a strong physical antibacterial activity as well as great biocompatibility, through in vitro and in vivo studies. The results disclosed that this hybrid coating could possess high PAT capabilities upon irradiation under a visible light of 660 nm, which is longer than those of previously reported green and blue sensitization light, thus allowing deeper light penetration into biological tissues. Electron spin resonance (ESR) spectra proved that the PAT efficacy of the TA/Fe 3+ /AgNPs nanofilm was associated with the yields of singlet oxygen ( 1 O 2 ) under the irradiation of visible light (660 nm). A higher PAT efficiency of 100 and 94% against Escherichia coli and Staphylococcus aureus could be achieved within 20 min of illumination under 660 nm visible light, whereas the innate physical antibacterial activity of AgNPs could endow the implants with long-term prevention of bacterial infection. The mechanism of PAT may be associated with the formation of oxidative stress and oxidative damage to key biomolecules (proteins and lipids) in bacteria. Our results reveal that the synergistic action of both PAT and physical action of AgNPs in this hybrid nanofilm is an effective way to inactivate bacteria, with minimal side effects.

  8. Near-infrared light-activated red-emitting upconverting nanoplatform for T1-weighted magnetic resonance imaging and photodynamic therapy.

    PubMed

    Tang, Xiang-Long; Wu, Jun; Lin, Ben-Lan; Cui, Sheng; Liu, Hong-Mei; Yu, Ru-Tong; Shen, Xiao-Dong; Wang, Ting-Wei; Xia, Wei

    2018-05-12

    Photodynamic therapy (PDT) has increasingly become an efficient and attractive cancer treatment modality based on reactive oxygen species (ROS) that can induce tumor death after irradiation with ultraviolet or visible light. Herein, to overcome the limited tissue penetration in traditional PDT, a novel near-infrared (NIR) light-activated NaScF 4 : 40% Yb, 2% Er@CaF 2 upconversion nanoparticle (rUCNP) is successfully designed and synthesized. Chlorin e6, a photosensitizer and a chelating agent for Mn 2+ , is loaded into human serum albumin (HSA) that further conjugates onto rUCNPs. To increase the ability to target glioma tumor, an acyclic Arg-Gly-Asp peptide (cRGDyK) is linked to rUCNPs@HSA(Ce6-Mn). This nanoplatform enables efficient adsorption and conversion of NIR light (980 nm) into bright red emission (660 nm), which can trigger the photosensitizer Ce6-Mn complex for PDT and T 1 -weighted magnetic resonance imaging (T 1 -weighted MRI) for glioma diagnosis. Our in vitro and in vivo experiments demonstrate that NIR light-activated and glioma tumor-targeted PDT can generate large amounts of intracellular ROS that induce U87 cell apoptosis and suppress glioma tumor growth owing to the deep tissue penetration of irradiated light and excellent tumor-targeting ability. Thus, this nanoplatform holds potential for applications in T 1 -weighted MRI diagnosis and PDT of glioma for antitumor therapy. A near-infrared (NIR) light-activated nanoplatform for photodynamic therapy (PDT) was designed and synthesized. The Red-to-Green (R/G) ratio of NaScF 4 : 40% Yb, 2% Er almost reached 9, a value that was much higher than that of a traditional Yb/Er-codoped upconversion nanoparticle (rUCNP). By depositing a CaF 2 shell, the red-emission intensities of the rUCNPs were seven times strong as that of NaScF 4 : 40% Yb, 2% Er. The enhanced red-emitting rUCNPs could be applied in many fields such as bioimaging, controlled release, and real-time diagnosis. The nanoplatform had a

  9. Antitumor effects evaluation of a novel porphyrin derivative in photodynamic therapy.

    PubMed

    Li, Jian-Wei; Wu, Zhong-Ming; Magetic, Davor; Zhang, Li-Jun; Chen, Zhi-Long

    2015-12-01

    In this paper, the antitumor activity of a novel porphyrin-based photosensitizer 5,10,15,20-tetrakis[(5-diethylamino)pentyl] porphyrin (TDPP) was reported in vitro and in vivo. The photophysical and cellular properties of TDPP were investigated. The singlet oxygen generation quantum yield of TDPP was detected; it showed a high singlet oxygen quantum yield of 0.52. The intracellular distribution of photosensitizer was detected with laser scanning confocal microscopy. The efficiency of TDPP-photodynamic therapy (PDT) in vitro was analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and in situ trypan blue exclusion test. Treated with a 630-nm laser, TDPP can kill cultured human esophageal cancer cell line (Eca-109) cells and reduce the growth of Eca-109 xenograft tumors significantly in BABL/c nude mice. And histopathological study was also used to confirm the antitumor effect. It has the perspective to be developed as a new antitumor drug in photodynamic therapy and deserves further investigation.

  10. Nitric oxide-mediated activity in anti-cancer photodynamic therapy.

    PubMed

    Rapozzi, Valentina; Della Pietra, Emilia; Zorzet, Sonia; Zacchigna, Marina; Bonavida, Benjamin; Xodo, Luigi Emilio

    2013-04-01

    Cell recurrence in cancer photodynamic therapy (PDT) is an important issue that is poorly understood. It is becoming clear that nitric oxide (NO) is a modulator of PDT. By acting on the NF-κB/Snail/RKIP survival/anti-apoptotic loop, NO can either stimulate or inhibit apoptosis. We found that pheophorbide a/PDT (Pba/PDT) induces the release of NO in B78-H1 murine amelanotic melanoma cells in a concentration-dependent manner. Low-dose PDT induces low NO levels by stimulating the anti-apoptotic nature of the above loop, whereas high-dose PDT stimulates high NO levels inhibiting the loop and activating apoptosis. When B78-H1 cells are treated with low-dose Pba/PDT and DETA/NO, an NO-donor, intracellular NO increases and cell growth is inhibited according to scratch-wound and clonogenic assays. Western blot analyses showed that the combined treatment reduces the expression of the anti-apoptotic NF-κB and Snail gene products and increases the expression of the pro-apoptotic RKIP gene product. The combined effect of Pba and DETA/NO was also tested in C57BL/6 mice bearing a syngeneic B78-H1 melanoma. We used pegylated Pba (mPEG-Pba) due to its better pharmacokinetics compared to free Pba. mPEG-Pba (30 mg/Kg) and DETA/NO (0.4 mg/Kg) were i.p. injected either as a single molecule or in combination. After photoactivation at 660 nM (fluence of 193 J/cm(2)), the combined treatment delays tumor growth more efficiently than each individual treatment (p<0.05). Taken together, our results showed that the efficacy of PDT is strengthened when the photosensitizer is used in combination with an NO donor. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Somatostatin Analogues for Receptor Targeted Photodynamic Therapy

    PubMed Central

    Kaščáková, Slávka; Hofland, Leo J.; De Bruijn, Henriette S.; Ye, Yunpeng; Achilefu, Samuel; van der Wansem, Katy; van der Ploeg-van den Heuvel, Angelique; van Koetsveld, Peter M.; Brugts, Michael P.; van der Lelij, Aart-Jan; Sterenborg, Henricus J. C. M.; ten Hagen, Timo L. M.; Robinson, Dominic J.; van Hagen, Martin P.

    2014-01-01

    Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2 + AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate. PMID:25111655

  12. A spatially augmented reality sketching interface for architectural daylighting design.

    PubMed

    Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara

    2011-01-01

    We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society

  13. Photodynamic evaluation of tetracarboxy-phthalocyanines in model systems.

    PubMed

    Alonso, Lais; Sampaio, Renato N; Souza, Thalita F M; Silva, Rodrigo C; Neto, Newton M Barbosa; Ribeiro, Anderson O; Alonso, Antonio; Gonçalves, Pablo J

    2016-08-01

    The present work reports the synthesis, photophysical and photochemical characterization and photodynamic evaluation of zinc, aluminum and metal free-base tetracarboxy-phthalocyanines (ZnPc, AlPc and FbPc, respectively). To evaluate the possible application of phthalocyanines as a potential photosensitizer the photophysical and photochemical characterization were performed using aqueous (phosphate-buffered solution, PBS) and organic (dimethyl sulfoxide, DMSO) solvents. The relative lipophilicity of the compounds was estimated by the octanol-water partition coefficient and the photodynamic activity evaluated through the photooxidation of a protein and photohemolysis. The photooxidation rate constants (k) were obtained and the hemolytic potential was evaluated by the maximum percentage of hemolysis achieved (Hmax) and the time (t50) to reach 50% of the Hmax. Although these phthalocyanines are all hydrophilic and possess very low affinity for membranes (log PO/W=-2.0), they led to significant photooxidation of bovine serum albumin (BSA) and photohemolysis. Our results show that ZnPc was the most efficient photosensitizer, followed by AlPc and FbPc; this order is the same as the order of the triplet and singlet oxygen quantum yields (ZnPc>AlPc>FbPc). Furthermore, together, the triplet, fluorescence and singlet oxygen quantum yields of zinc tetracarboxy-phthalocyanines suggest their potential for use in theranostic applications, which simultaneously combines photodiagnosis and phototherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effects of skylight parameters on daylighting energy savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arasteh, D.; Johnson, R.; Selkowitz, S.

    1985-05-01

    Skylight parameters that affect lighting, cooling, heating, fan, and total energy use in office buildings are examined using the state-of-the-art building energy analysis computer code, DOE-2.1B. The lighting effects of skylight spatial distribution, skylight area, skylight visible transmission, well factor, illumination setpoint, interior partitions, ceiling height, and glazing characteristics are discussed. This study serves as the foundation for the creation of a DOE-2.1B data base and design tools for estimating daylighting energy savings from skylights. 13 refs., 9 figs., 1 tab.

  15. Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro

    NASA Astrophysics Data System (ADS)

    Barras, Alexandre; Boussekey, Luc; Courtade, Emmanuel; Boukherroub, Rabah

    2013-10-01

    Hypericin (Hy), a naturally occurring photosensitizer (PS), is extracted from Hypericum perforatum plants, commonly known as St. John's wort. The discovery of the in vitro and in vivo photodynamic activities of hypericin as a photosensitizer generated great interest, mainly to induce a very potent antitumoral effect. However, this compound belongs to the family of naphthodianthrones which are known to be poorly soluble in physiological solutions and produce non-fluorescent aggregates (A. Wirz et al., Pharmazie, 2002, 57, 543; A. Kubin et al., Pharmazie, 2008, 63, 263). These phenomena can reduce its efficiency as a photosensitizer for the clinical application. In the present contribution, we have prepared, characterized, and studied the photochemical properties of Hy-loaded lipid nanocapsule (LNC) formulations. The amount of singlet oxygen (1O2) generated was measured by the use of p-nitroso-dimethylaniline (RNO) as a selective scavenger under visible light irradiation. Our results showed that Hy-loaded LNCs suppressed aggregation of Hy in aqueous media, increased its apparent solubility, and enhanced the production of singlet oxygen in comparison with free drug. Indeed, encapsulation of Hy in LNCs led to an increase of 1O2 quantum yield to 0.29-0.44, as compared to 0.02 reported for free Hy in water. Additionally, we studied the photodynamic activity of Hy-loaded LNCs on human cervical carcinoma (HeLa) and Human Embryonic Kidney (HEK) cells. The cell viability decreased radically to 10-20% at 1 μM, reflecting Hy-loaded LNC25 phototoxicity.Hypericin (Hy), a naturally occurring photosensitizer (PS), is extracted from Hypericum perforatum plants, commonly known as St. John's wort. The discovery of the in vitro and in vivo photodynamic activities of hypericin as a photosensitizer generated great interest, mainly to induce a very potent antitumoral effect. However, this compound belongs to the family of naphthodianthrones which are known to be poorly soluble in

  16. Photodynamic therapy as a new approach to Trichomonas vaginalis inactivation.

    PubMed

    Silva Fonseca, Thaisa Helena; Alacoque, Marina; Silva Oliveira, Fabrício Marcus; Soares, Betânia Maria; Leite, Henrique Vitor; Caliari, Marcelo Vidigal; Gomes, Maria Aparecida; Busatti, Haendel

    2018-06-01

    The emergence of nitroimidazole resistant isolates has been an aggravating factor in the treatment of trichomoniasis, the most common non-viral sexually transmitted disease in the world. This highlights the importance of new technologies that are safe, effective, and have minor side effects or resistance. Hence, we evaluated the effectiveness of photodynamic therapy on the inactivation of Trichomonas vaginalis in vitro. We used methylene blue as a photosensitizing substance, and a light-emitting diode (LED) for irradiation of metronidazole sensitive and resistant strains. Our results showed that only the presence of light did not interfere with parasite growth; however, methylene blue isolated or associated with light inhibited 31.78% ± 7.18 and 80.21% ± 7.11 of the sensitive strain, respectively, and 31.17% ± 4.23 and 91.13% ± 2.31 of the resistant strain, respectively. The high trichomonicidal activity of the photodynamic therapy, associated with low cost and ease of application, signalize its great therapeutic potential not only when conventional treatment fails, but also routinely in women with trichomoniasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Photodynamic therapy (PDT) utilizing PhotofrinR for treatment of early esophageal cancer

    NASA Astrophysics Data System (ADS)

    Overholt, Bergein F.; Panjehpour, Masoud; Teffeteller, Elmeria; Rose, S. Mark

    1993-06-01

    Four lesions of early carcinoma of the esophagus found during endoscopic biopsies in three patients were treated with photodynamic therapy. Follow-up biopsies over 9 - 24 months remain negative for carcinoma. Endoscopic ultrasonography is essential for proper staging and treatment planning for these patients. Photodynamic therapy may provide an alternative to surgical resection for early esophageal carcinoma or severe dysplasia in Barrett's esophagus.

  18. Photodynamic therapy for actinic cheilitis: a systematic review.

    PubMed

    Yazdani Abyaneh, Mohammad-Ali; Falto-Aizpurua, Leyre; Griffith, Robert D; Nouri, Keyvan

    2015-02-01

    Actinic cheilitis (AC) is a premalignant lesion of the lips that can progress to squamous cell carcinoma and metastasize. Actinic cheilitis is difficult to treat because surgical treatments have significant adverse effects whereas less invasive procedures have uncertain efficacy. Photodynamic therapy (PDT) may offer a noninvasive yet effective treatment option for AC. To systematically review the safety and efficacy of PDT for AC. The terms "photodynamic," "actinic," "solar," "cheilitis," and "cheilosis" were used in combinations to search the PubMed database. Studies were considered for inclusion based on eligibility criteria, and specific data were extracted from all studies. The authors identified 15 eligible case series encompassing a total of 242 treated subjects. Among studies that evaluated subjects for complete clinical response, 139 of 223 subjects (62%) showed complete response at final follow-ups ranging from 3 to 30 months. Among studies that evaluated subjects for histological outcome, 57 of 121 subjects (47%) demonstrated histological cure at final follow-ups ranging from 1.5 to 18 months. Cosmetic outcomes were good to excellent in the majority of subjects, and adverse events were well tolerated. Photodynamic therapy is safe and has the potential to clinically and histologically treat AC, with a need for future randomized controlled trials.

  19. Current Concepts in Gastrointestinal Photodynamic Therapy

    PubMed Central

    Webber, John; Herman, Mark; Kessel, David; Fromm, David

    1999-01-01

    Objective To review current concepts of photodynamic therapy (PDT) applied to the treatment of tumors of the gastrointestinal tract. Summary Background Data PDT initially involves the uptake or production of a photosensitive compound by tumor cells. Subsequent activation of the photoreactive compound by a specific wavelength of light results in cell death, either directly or as a result of vascular compromise and/or apoptosis. Methods The authors selectively review current concepts relating to photosensitization, photoactivation, time of PDT application, tissue selectivity, sites of photodynamic action, PDT effects on normal tissue, limitations of PDT, toxicity of photosensitizers, application of principles of PDT to tumor detection, and current applications of PDT to tumors of the gastrointestinal tract. Results PDT is clearly effective for small cancers, but it is not yet clear in which cases such treatment is more effective than other currently acceptable approaches. The major side effect of PDT is cutaneous photosensitization. The major limitation of PDT is depth of tumor kill. As data from current and future clinical trials become available, a clearer perspective of where PDT fits in the treatment of cancers will be gained. Many issues regarding pharmacokinetic data of photosensitizers, newer technology involved in light sources, optimal treatment regimens that take advantage of the pharmacophysiology of photoablation, and light dosimetry still require solution. One can foresee application of differing sensitizers and light sources depending on the specific clinical situation. As technologic advances occur, interstitial PDT may have significant application. Conclusions PDT has a potentially important role either as a primary or adjuvant mode of treatment of tumors of the gastrointestinal tract. PMID:10400031

  20. Synthesis, supramolecular behavior, and in vitro photodynamic activities of novel zinc(II) phthalocyanines "side-strapped" with crown ether bridges.

    PubMed

    Chen, Xing-Wei; Ke, Mei-Rong; Li, Xing-Shu; Lan, Wen-Liang; Zhang, Miao-Fen; Huang, Jian-Dong

    2013-12-01

    Two new tetra- or di-α-substituted zinc(II) phthalocyanines 5 and 6 have been prepared through a "side-strapped" method. In the molecules, the adjacent benzene rings of the phthalocyanine core are linked at α-position through a triethylene glycol bridge to form a hybrid aza-/oxa-crown ether. The tetra-α-substituted phthalocyanine 5 shows an eclipsed self-assembly property in CH2Cl2 and the effect on the di-α-substituted analogue 6 is significantly weakened. Furthermore, the crown ethers of these compounds can selectively complex with Fe(3+) or Cu(2+) ion in DMF, leading to formation of J-aggregated nano-assemblies, which can be disaggregated in the presence of some organic or inorganic ligands, such as triethylamine, tetramethylethylenediamine, CH3COO(-), or OH(-). In addition, both compounds are efficient singlet oxygen generators with the singlet oxygen quantum yields (Φ(Δ)) of 0.54-0.74 in DMF relative to unsubstituted zinc(II) phthalocyanine (Φ(Δ)=0.56). They exhibit photodynamic activities toward HepG2 human hepatocarcinoma cells, but the compound 6, which has more than 40-fold lower IC50 value (0.08 μM) compared to the analogue 5 (IC50=3.31 μM), shows remarkablely higher in vitro photocytotoxicity due to its significantly higher cellular uptake and singlet oxygen generation efficiency. The results suggest that these compounds can serve as promising multifunctional materials both in (opto)electronic field and photodynamic therapy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Scope of photodynamic therapy in periodontics.

    PubMed

    Kumar, Vivek; Sinha, Jolly; Verma, Neelu; Nayan, Kamal; Saimbi, C S; Tripathi, Amitandra K

    2015-01-01

    Periodontal disease results from inflammation of the supporting structure of the teeth and in response to chronic infection caused by various periodontopathic bacteria. The mechanical removal of this biofilm and adjunctive use of antibacterial disinfectants and antibiotics have been the conventional methods of periodontal therapy. However, the removal of plaque and the reduction in the number of infectious organisms can be impaired in sites with difficult access. Photodynamic therapy (PDT) is a powerful laser-initiated photochemical reaction, involving the use of a photoactive dye (photosensitizer) activated by light of a specific wavelength in the presence of oxygen. Application of PDT in periodontics such as pocket debridement, gingivitis, and aggressive periodontitis continue to evolve into a mature clinical treatment modality and is considered as a promising novel approach for eradicating pathogenic bacteria in periodontitis.

  2. Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

    PubMed

    Wang, Sheng; Zhang, Lei; Dong, Chunhong; Su, Lin; Wang, Hanjie; Chang, Jin

    2015-01-01

    A smart pH-responsive photodynamic therapy system based on upconversion nanoparticle loaded PEG coated polymeric lipid vesicles (RB-UPPLVs) was designed and prepared. These RB-UPPLVs which are promising agents for deep cancer photodynamic therapy applications can achieve enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

  3. HORIZONTAL HYBRID SOLAR LIGHT PIPE: AN INTEGRATED SYSTEM OF DAYLIGHT AND ELECTRIC LIGHT

    EPA Science Inventory

    This project will test the feasibility of an advanced energy efficient perimeter lighting system that integrates daylighting, electric lighting, and lighting controls to reduce electricity consumption. The system is designed to provide adequate illuminance levels in deep-floor...

  4. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    PubMed Central

    Mfouo-Tynga, Ivan; Abrahamse, Heidi

    2015-01-01

    The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. PMID:25955645

  5. Silicon Phthalocyanines Axially Disubstituted with Erlotinib toward Small-Molecular-Target-Based Photodynamic Therapy.

    PubMed

    Chen, Juan-Juan; Huang, Yi-Zhen; Song, Mei-Ru; Zhang, Zhi-Hong; Xue, Jin-Ping

    2017-09-21

    Small-molecular-target-based photodynamic therapy-a promising targeted anticancer strategy-was developed by conjugating zinc(II) phthalocyanine with a small-molecular-target-based anticancer drug. To prevent self-aggregation and avoid problems of phthalocyanine isomerization, two silicon phthalocyanines di-substituted axially with erlotinib have been synthesized and fully characterized. These conjugates are present in monomeric form in various solvents as well as culture media. Cell-based experiments showed that these conjugates localize in lysosomes and mitochondria, while maintaining high photodynamic activities (IC 50 values as low as 8 nm under a light dose of 1.5 J cm -2 ). With erlotinib as the targeting moiety, two conjugates were found to exhibit high specificity for EGFR-overexpressing cancer cells. Various poly(ethylene glycol) (PEG) linker lengths were shown to have an effect on the photophysical/photochemical properties and on in vitro phototoxicity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Protoporphyrin IX fluorescence for enhanced photodynamic diagnosis and photodynamic therapy in murine models of skin and breast cancer

    NASA Astrophysics Data System (ADS)

    Rollakanti, Kishore Reddy

    Protoporphyrin IX (PpIX) is a photosensitizing agent derived from aminolevulinic acid. PpIX accumulates specifically within target cancer cells, where it fluoresces and produces cytotoxic reactive oxygen species. Our aims were to employ PpIX fluorescence to detect squamous cell carcinoma (SCC) of the skin (Photodynamic diagnosis, PDD), and to improve treatment efficacy (Photodynamic therapy, PDT) for basal cell carcinoma (BCC) and cutaneous breast cancer. Hyperspectral imaging and a spectrometer based dosimeter system were used to detect very early SCC in UVB-irradiated murine skin, using PpIX fluorescence. Regarding PDT, we showed that low non-toxic doses of vitamin D, given before ALA application, increase tumor specific PpIX accumulation and sensitize BCC and breast cancer cells to ALA-PDT. These optical imaging methods and the combination therapy regimen (vitamin D and ALA-PDT) are promising tools for effective management of skin and breast cancer.

  7. Biomedical applications of nano-titania in theranostics and photodynamic therapy.

    PubMed

    Rehman, F U; Zhao, C; Jiang, H; Wang, X

    2016-01-01

    Titanium dioxide (TiO2) is one of the most abundantly used nanomaterials for human life. It is used in sunscreen, photovoltaic devices, biomedical applications and as a food additive and environmental scavenger. Nano-TiO2 in biomedical applications is well documented. It is used in endoprosthetic implants and early theranostics of neoplastic and non-neoplastic maladies as a photodynamic therapeutic agent and as vehicles in nano-drug delivery systems. Herein, we focus on the recent advancements and applications of nano-TiO2 in bio-nanotechnology, nanomedicine and photodynamic therapy (PDT).

  8. A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy.

    PubMed

    Zhuang, Xiaoxi; Ma, Xiaowei; Xue, Xiangdong; Jiang, Qiao; Song, Linlin; Dai, Luru; Zhang, Chunqiu; Jin, Shubin; Yang, Keni; Ding, Baoquan; Wang, Paul C; Liang, Xing-Jie

    2016-03-22

    Photodynamic therapy (PDT) offers an alternative for cancer treatment by using ultraviolet or visible light in the presence of a photosensitizer and molecular oxygen, which can produce highly reactive oxygen species that ultimately leading to the ablation of tumor cells by multifactorial mechanisms. However, this technique is limited by the penetration depth of incident light, the hypoxic environment of solid tumors, and the vulnerability of photobleaching reduces the efficiency of many imaging agents. In this work, we reported a cellular level dual-functional imaging and PDT nanosystem BMEPC-loaded DNA origami for photodynamic therapy with high efficiency and stable photoreactive property. The carbazole derivative BMEPC is a one- and two-photon imaging agent and photosensitizer with large two-photon absorption cross section, which can be fully excited by near-infrared light, and is also capable of destroying targets under anaerobic condition by generating reactive intermediates of Type I photodynamic reactions. However, the application of BMEPC was restricted by its poor solubility in aqueous environment and its aggregation caused quenching. We observed BMEPC-loaded DNA origami effectively reduced the photobleaching of BMEPC within cells. Upon binding to DNA origami, the intramolecular rotation of BMEPC became proper restricted, which intensify fluorescence emission and radicals production when being excited. After the BMEPC-loaded DNA origami are taken up by tumor cells, upon irradiation, BMEPC could generate free radicals and be released due to DNA photocleavage as well as the following partially degradation. Apoptosis was then induced by the generation of free radicals. This functional nanosystem provides an insight into the design of photosensitizer-loaded DNA origami for effective intracellular imaging and photodynamic therapy.

  9. Block copolymer nanoassemblies for photodynamic therapy and diagnosis.

    PubMed

    Dickerson, Matthew; Bae, Younsoo

    2013-11-01

    Light can be a powerful therapeutic and diagnostic tool. Light-sensitive molecules can be used to develop locally targeted cancer therapeutics. This approach is known as photodynamic therapy (PDT). Similarly, it is possible to diagnose diseases and track the course of treatment in vivo using ligh-sensitive molecules. This methodology is referred to as photodynamic diagnosis (PDD). Despite the potential, many PDT and PDD agents have imperfect physiochemical properties for their successful clinical application. Nanotechnology may solve these issues by improving the viability of PDT and PDD. This review summarizes the current state of PDT and PDD development, the integration of nanotechnology in the field, and the prospective future applications, demonstrating the potential of PDT and PDD for improved cancer treatment and diagnosis.

  10. Essence of Daylight in the Cistercian Monastic Church of S. Bento de Cástris, Évora, Portugal

    NASA Astrophysics Data System (ADS)

    Martins, Ana M. T.; Carlos, Jorge S.

    2017-10-01

    Natural light in the Cistercian churches is closely linked not only with the liturgical requirements at the “officium” but also with the canonical hours based on the "ora et labora" dictated by the Rule of St. Benedict. The Cistercian architecture, in its beginnings (12th century forward) is characterized by austerity, simplicity and the play of light and shadow that gives value to the monastic architectural space itself, making it perfect for a contemplative experience. In the Cistercian Monastery the church is the central piece of the monastic building. Nave, transept and apse are the main architectural components to which is added the choir. This paper contextualizes the importance and close connections of natural light, within the Cistercian Monasteries architecture. Thus the essence of daylight is analysed within the Church of the Monastery of S. Bento de Cástris, in Évora, Portugal. This former Monastery (13th - 19th centuries) includes the church, at the south-eastern corner which has not only a high choir, but also a low lateral choir (within the presbytery). Its unchanged exterior walls are made of solid masonry. Although the function of the walls is primarily structural, the windows allow the daylight to penetrate the space of the church. The church has two external façades facing northeast and southeast. The combined orientation effect of the church’s main axis and the sun trajectory determines how the sunlight reaches the interior of this architectural structure. This study presents the qualitative and quantitative analysis of the luminous environment in the church of S. Bento de Cástris, being the first based on the authors’ perception of the effect of the daylight within the different areas of the enclosed space. The appreciation of the spatial experiences was supported by quantitative daylight simulations that were conducted in selected areas within the space. With this paper is intended to contribute to the debate about the specificity

  11. Attempted photodynamic therapy against patagial squamous cell carcinoma in an African rose-ringed parakeet (Psittacula krameri).

    PubMed

    Suedmeyer, Wm Kirk; Henry, Carolyn; McCaw, Dudley; Boucher, Magalie

    2007-12-01

    A 5-yr-old female African rose-ringed parakeet (Psittacula krameri) presented with an ulcerated mass in the medial postpatagial area of the right wing. Biopsy specimens of the mass demonstrated a well-differentiated squamous cell carcinoma. Photodynamic therapy resulted in tumor cell necrosis and initial reduction in tumor burden, but complete remission was not achieved. Based on this and other avian cases, it appears that photodynamic therapy designed to eradicate squamous cell carcinoma in avian species using protocols modeled after canine, feline, and human photodynamic therapy protocols may not be useful. It is hypothesized that differences in light penetration, photosensitizing agent pharmacokinetics, and wound healing properties in avian species necessitate alteration of photodynamic therapy protocols if this treatment modality is to be effective in avian oncology.

  12. Selective accumulation of PpIX and photodynamic effect after aminolevulinic acid treatment of human adenomyosis xenografts in nude mice.

    PubMed

    Suzuki-Kakisaka, Haruka; Murakami, Takashi; Hirano, Toru; Terada, Yukihiro; Yaegashi, Nobuo; Okamura, Kunihiro

    2008-10-01

    To evaluate the effect of photodynamic therapy with aminolevulinic acid (ALA) on human adenomyosis xenografts in a mouse model. Human adenomyosis tissues were implanted SC into nude mice. We measured 5-aminolevulinic acid pharmacokinetics in these mice by analyzing tissue sections 1 to 6 hours after intraperitoneal administration. Twenty-four hours after photodynamic therapy, we evaluated tissue morphologic features. Department of obstetrics and gynecology at a university hospital in Japan. Immunodeficient mice. Tissue grafts were taken from women with adenomyosis attending a university hospital. Photodynamic treatment. Peak fluorescence after intraperitoneal ALA administration and tissue histological changes 24 hours after photodynamic therapy. Peak fluorescence was observed 3 hours after intraperitoneal administration. Histological studies revealed decreased numbers of epithelial and stromal cells in adenomyosis models after therapy. Photodynamic therapy with ALA caused extensive cell death in human adenomyosis tissues implanted into nude mice. Photodynamic treatment using ALA is a potential treatment for patients with adenomyosis uteri.

  13. Photodynamic efficiency of a chlorophyll-a derivative in vitro and in vivo.

    PubMed

    Zhang, Xiang-Hua; Zhang, Li-Jun; Sun, Jing-Jian; Yan, Yi-Jia; Zhang, Li-Xin; Chen, Na; Chen, Zhi-Long

    2016-07-01

    This paper reports the antitumor activity of a chlorophyll-a derivative, 2-[1-hydroxyethyl]-2-devinylpyropheophorbide-a (HEPa). Photophysical characteristics of HEPa were measured. And its cytotoxicity, intracellular localization, biodistribution, efficiency of photodynamic therapy (PDT), histological analysis were investigated using human bile duct carcinoma cells (QBC-939) and QBC-939 tumor bearing BABL/c nude mice as animal model. The results showed that HEPa was localized mainly within the cytoplasmic region and partially in lysosome. Biodistribution of HEPa in QBC-939 tumor bearing BABL/c nude mice showed its fast rate of clearance and high tumor selectivity. In vitro, HEPa had low dark toxicity and high photoxicity against QBC-939 cells. The inhibition rate of QBC-939 tumor could increase up to 92.3%, and H&E staining confirmed that HEPa could cause serious damage to the tumor with light dose of 100J/cm(2), implying that HEPa has potential to be a new antitumor candidate for photodynamic therapy (PDT). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.

    PubMed

    Calixto, Giovana Maria Fioramonti; Bernegossi, Jéssica; de Freitas, Laura Marise; Fontana, Carla Raquel; Chorilli, Marlus

    2016-03-11

    Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), gold nanoparticles (AuNPs), hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  15. Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants

    NASA Astrophysics Data System (ADS)

    Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo

    2017-10-01

    Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.

  16. Photodynamic inactivation of foodborne bacteria by eosin Y.

    PubMed

    Bonin, E; Dos Santos, A R; Fiori da Silva, A; Ribeiro, L H; Favero, M E; Campanerut-Sá, P A Z; de Freitas, C F; Caetano, W; Hioka, N; Mikcha, J M G

    2018-06-01

    The aim of this study was evaluate the effect of photodynamic inactivation mediated by eosin Y in Salmonella enterica serotype Typhimurium ATCC 14028, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Bacillus cereus ATCC 11778. Bacteria (10 7 CFU per ml) were incubated with eosin Y at concentrations ranging from 0·1 to 10 μmol l -1 , irradiated by green LED (λ max 490-570 nm) for 5, 10 and 15 min and the cellular viability was determined. Pseudomonas aeruginosa was completely inactivated when treated with 10 μmol l -1 eosin Y for 10 min. Treatments reduced B. cereus and Salm. Typhimurium counts to 2·7 log CFU per ml and 1·7 log CFU per ml, respectively. Escherichia coli counts were slightly reduced. Staphylococcus aureus presented the highest sensitivity, being completely inactivated by eosin Y at 5 μmol l -1 and 5 min of illumination. The reduction of cellular viability of photoinactivated Staph. aureus was also demonstrated by flow cytometry and morphological changes were observed by scanning electron microscopy. Eosin Y in combination with LED produced bacterial inactivation, being a potential candidate for photodynamic inactivation. This study evidenced the efficacy of photodynamic inactivation as a novel and promising alternative to bacterial control. © 2018 The Society for Applied Microbiology.

  17. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redoxmore » state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.« less

  18. Photodynamic treatment of herpes simplex virus during its replicative cycle.

    PubMed Central

    Khan, N C; Melnick, J L; Biswal, N

    1977-01-01

    Photodynamic treatment of herpes simplex virus type 1-infected hamster embryo fibroblasts (LSH strain) with a low concentration of proflavine (0.08 mug/10(5) cells per ml), a 3-9-diamine acridine dye, inhibited production not only of infectious progeny but also of virion particles. However, there was no appreciable inhibition of viral or cellular DNA synthesis, even when the infected cells were repeatedly exposed to this low concentration of dye and light during the replication cycle of the virus. It thus appears that photodynamic treatment of infected cells interferes with the processes involved in virus maturation. PMID:189063

  19. Drug Carrier for Photodynamic Cancer Therapy

    PubMed Central

    Debele, Tilahun Ayane; Peng, Sydney; Tsai, Hsieh-Chih

    2015-01-01

    Photodynamic therapy (PDT) is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS), and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0) to an excited singlet state (S1–Sn), followed by intersystem crossing to an excited triplet state (T1). The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*), which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer. PMID:26389879

  20. Development of Smart Phthalocyanine-based Photosensitizers for Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Chow, Yun Sang

    Phthalocyanines are versatile functional dyes that have shown great potential in cancer theranostics, especially in photodynamic therapy (PDT). This research work aims to develop "smart" phthalocyanine-based photosensitizers for targeted PDT. This thesis describes the synthesis, spectroscopic characterization, photophysical properties, and in vitro photodynamic activities of several series of carefully designed phthalocyanine-based photosensitizers. Chapter 1 presents an overview of PDT, including its historical development, photophysical mechanisms, and biological mechanisms. Various classes of photosensitizers are introduced with emphasis putting on phthalocyanines, which exhibit ideal characteristics of photosensitizers for PDT. In recent years, several approaches have been used to develop photosensitizers with higher tumor selectivity and minimal skin photosensitivity after PDT. Activatable photosensitizers can provide a "turn on" mechanism to offer an additional control of the specificity of treatment. Photosensitizers can also work cooperatively with the tumor-targeting groups or anticancer drugs so as to achieve targeted or dual therapy, which can enhance the efficacy of PDT. The novel approaches mentioned above have been widely used and combined to form multi-functional photosensitizing agents. These novel concepts and development of PDT are discussed and illustrated with relevant examples at the end of this chapter. To minimize the prolonged skin photosensitivity, photosensitizers that can only be activated by tumor-associated stimuli have been developed. Due to the abnormal metabolism in tumor tissues, their surface usually exhibits a lower pH compared to that of the normal tissues. Also, the pH difference between the intracellular and the physiological environment provides a pH-activation mechanism. Chapter 2 presents the synthesis and spectroscopic characterization of a pH-responsive zinc(II) phthalocyanine tetramer, in which the phthalocyanine units

  1. Near-infrared photodynamic inactivation of S. pneumoniae and its interaction with RAW 264.7 macrophages.

    PubMed

    Leite, Ilaiáli S; Geralde, Mariana C; Salina, Ana C G; Medeiros, Alexandra I; Dovigo, Lívia N; Bagnato, Vanderlei S; Inada, Natalia M

    2018-01-01

    Pneumonia is the main cause of children mortality worldwide, and its major treatment obstacle stems from the microorganisms increasing development of resistance to several antibiotics. Photodynamic therapy has been presenting, for the last decades, promising results for some subtypes of cancer and infections. In this work we aimed to develop a safe and efficient in vitro protocol for photodynamic inactivation of Streptococcus pneumoniae, one of the most commonly found bacteria in pneumonia cases, using two near-infrared light sources and indocyanine green, a FDA approved dye. Photodynamic inactivation experiments with bacteria alone allowed to determine the best parameters for microbial inactivation. Cytotoxicity assays with RAW 264.7 macrophages evaluated the safety of the PDI. To determine if the photodynamic inactivation had a positive or negative effect on the natural killing action of macrophages, we selected and tested fewer indocyanine green concentrations and 10 J/cm 2 on macrophage-S. pneumoniae co-cultures. We concluded that ICG has potential as a photosensitizer for near-infrared photodynamic inactivation of S. pneumoniae, producing minimum negative impact on RAW 264.7 macrophages and having a positive interaction with the immune cell's microbicidal action. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of the threshold dose distribution in photodynamic action from in vitro experiments.

    PubMed

    de Faria, Clara Maria Gonçalves; Inada, Natalia Mayumi; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2016-09-01

    The concept of threshold in photodynamic action on cells or microorganisms is well observed in experiments but not fully explored on in vitro experiments. The intercomparison between light and used photosensitizer among many experiments is also poorly evaluated. In this report, we present an analytical model that allows extracting from the survival rate experiments the data of the threshold dose distribution, ie, the distribution of energies and photosensitizer concentration necessary to produce death of cells. Then, we use this model to investigate photodynamic therapy (PDT) data previously published in literature. The concept of threshold dose distribution instead of "single value of threshold" is a rich concept for the comparison of photodynamic action in different situations, allowing analyses of its efficiency as well as determination of optimized conditions for PDT. We observed that, in general, as it becomes more difficult to kill a population, the distribution tends to broaden, which means it presents a large spectrum of threshold values within the same cell type population. From the distribution parameters (center peak and full width), we also observed a clear distinction among cell types regarding their response to PDT that can be quantified. Comparing data obtained from the same cell line and used photosensitizer (PS), where the only distinct condition was the light source's wavelength, we found that the differences on the distribution parameters were comparable to the differences on the PS absorption. At last, we observed evidence that the threshold dose distribution matches the curve of apoptotic activity for some PSs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Device for fluorescent control and photodynamic therapy of age-related macula degeneration

    NASA Astrophysics Data System (ADS)

    Loschenov, Victor B.; Meerovich, Gennadii A.; Budzinskaya, M. V.; Ermakova, N. A.; Shevchik, S. A.; Kharnas, Sergey S.

    2004-07-01

    Age-related macula degeneration (AMD) is a wide spread disease the appearance of which leads to poor eyesight and blindness. A method of treatment is not determined until today. Traditional methods, such as laser coagulation and surgical operations are rather traumatic for eye and often bring to complications. That's why recently a photodynamic method of AMD treatment is studied. Based on photodynamic occlusion of choroidal neovascularization (CNV) with minimal injury to overlying neurosensory retina what increases the efficiency.

  4. Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani.

    PubMed

    de Menezes, Henrique Dantas; Tonani, Ludmilla; Bachmann, Luciano; Wainwright, Mark; Braga, Gilberto Úbida Leite; von Zeska Kress, Marcia Regina

    2016-11-01

    The search for alternatives to control microorganisms is necessary both in clinical and agricultural areas. Antimicrobial photodynamic treatment (APDT) is a promising light-based approach that can be used to control both human and plant pathogenic fungi. In the present study, we evaluated the effects of photodynamic treatment with red light and four phenothiazinium photosensitizers (PS): methylene blue (MB), toluidine blue O (TBO), new methylene blue N (NMBN) and the phenothiazinium derivative S137 on ungerminated and germinated microconidia of Fusarium oxysporum, F. moniliforme, and F. solani. APDT with each PS killed efficiently both the quiescent ungerminated microconidia and metabolically active germinated microconidia of the three Fusarium species. Washing away the unbound PS from the microconidia (both ungerminated and germinated) before red light exposure reduced but did not prevent the effect of APDT. Subcelullar localization of PS in ungerminated and germinated microconidia and the effects of photodynamic treatment on cell membranes were also evaluated in the three Fusarium species. APDT with MB, TBO, NMBN or S137 increased the membrane permeability in microconidia and APDT with NMBN or S137 increased the lipids peroxidation in microconidia of the three Fusarium species. These findings expand the understanding of photodynamic inactivation of filamentous fungi with phenothiazinium PS. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The application of antimicrobial photodynamic therapy (aPDT) in dentistry: a critical review

    PubMed Central

    Carrera, E T; Dias, H B; Corbi, S C T; Marcantonio, R A C; Bernardi, A C A; Bagnato, V S; Hamblin, M R; Rastelli, A N S

    2017-01-01

    In recent years there have been an increasing number of in vitro and in vivo studies that show positive results regarding antimicrobial photodynamic therapy (aPDT) used in dentistry. These include applications in periodontics, endodontics, and mucosal infections caused by bacteria present as biofilms. Antimicrobial photodynamic therapy is a therapy based on the combination of a non-toxic photosensitizer (PS) and appropriate wavelength visible light, which in the presence of oxygen is activated to produce reactive oxygen species (ROS). ROS induce a series of photochemical and biological events that cause irreversible damage leading to the death of microorganisms. Many light-absorbing dyes have been mentioned as potential PS for aPDT and different wavelengths have been tested. However, there is no consensus on a standard protocol yet. Thus, the goal of this review was to summarize the results of research on aPDT in dentistry using the PubMed database focusing on recent studies of the effectiveness aPDT in decreasing microorganisms and microbial biofilms, and also to describe aPDT effects, mechanisms of action and applications. PMID:29151775

  6. The application of antimicrobial photodynamic therapy (aPDT) in dentistry: a critical review

    NASA Astrophysics Data System (ADS)

    Carrera, E. T.; Dias, H. B.; Corbi, S. C. T.; Marcantonio, R. A. C.; Bernardi, A. C. A.; Bagnato, V. S.; Hamblin, M. R.; Rastelli, A. N. S.

    2016-12-01

    In recent years there have been an increasing number of in vitro and in vivo studies that show positive results regarding antimicrobial photodynamic therapy (aPDT) used in dentistry. These include applications in periodontics, endodontics, and mucosal infections caused by bacteria present as biofilms. Antimicrobial photodynamic therapy is a therapy based on the combination of a non-toxic photosensitizer (PS) and appropriate wavelength visible light, which in the presence of oxygen is activated to produce reactive oxygen species (ROS). ROS induce a series of photochemical and biological events that cause irreversible damage leading to the death of microorganisms. Many light-absorbing dyes have been mentioned as potential PS for aPDT and different wavelengths have been tested. However, there is no consensus on a standard protocol yet. Thus, the goal of this review was to summarize the results of research on aPDT in dentistry using the PubMed database focusing on recent studies of the effectiveness aPDT in decreasing microorganisms and microbial biofilms, and also to describe aPDT effects, mechanisms of action and applications.

  7. Enzyme-activatable imaging probe reveals enhanced neutrophil elastase activity in tumors following photodynamic therapy

    PubMed Central

    Modi, Kshitij D.; Foster, Thomas H.

    2013-01-01

    Abstract. We demonstrate the use of an enzyme-activatable fluorogenic probe, Neutrophil Elastase 680 FAST (NE680), for in vivo imaging of neutrophil elastase (NE) activity in tumors subjected to photodynamic therapy (PDT). NE protease activity was assayed in SCC VII and EMT6 tumors established in C3H and BALB/c mice, respectively. Four nanomoles of NE680 was injected intravenously immediately following PDT irradiation. 5 h following administration of NE680, whole-mouse fluorescence imaging was performed. At this time point, levels of NE680 fluorescence were at least threefold greater in irradiated versus unirradiated SCC VII and EMT6 tumors sensitized with Photofrin. To compare possible photosensitizer-specific differences in therapy-induced elastase activity, EMT6 tumors were also subjected to 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-PDT. NE levels measured in HPPH-PDT-treated tumors were twofold higher than in unirradiated controls. Ex vivo labeling of host cells using fluorophore-conjugated antibodies and confocal imaging were used to visualize Gr1+ cells in Photofrin-PDT-treated EMT6 tumors. These data were compared with recently reported analysis of Gr1+ cell accumulation in EMT6 tumors subjected to HPPH-PDT. The population density of infiltrating Gr1+ cells in treated versus unirradiated drug-only control tumors suggests that the differential in NE680 fold enhancement observed in Photofrin versus HPPH treatment may be attributed to the significantly increased inflammatory response induced by Photofrin-PDT. The in vivo imaging of NE680, which is a fluorescent reporter of NE extracellular release caused by neutrophil activation, demonstrates that PDT results in increased NE levels in treated tumors, and the accumulation of the cleaved probe tracks qualitatively with the intratumor Gr1+ cell population. PMID:23897439

  8. Improved Photodynamic Efficacy of Zn(II) Phthalocyanines via Glycerol Substitution

    PubMed Central

    Chin, Yunni; Lim, Siang Hui; Zorlu, Yunus; Ahsen, Vefa; Kiew, Lik Voon; Chung, Lip Yong; Dumoulin, Fabienne; Lee, Hong Boon

    2014-01-01

    Phthalocyanines are excellent photosensitizers for photodynamic therapy as they have strong absorbance in the near infra-red region which is most relevant for in vivo activation in deeper tissular regions. However, most phthalocyanines present two major challenges, ie, a strong tendency to aggregate and low water-solubility, limiting their effective usage clinically. In the present study, we evaluated the potential enhancement capability of glycerol substitution on the photodynamic properties of zinc (II) phthalocyanines (ZnPc). Three glycerol substituted ZnPc, 1–3, (tetra peripherally, tetra non-peripherally and mono iodinated tri non-peripherally respectively) were evaluated in terms of their spectroscopic properties, rate of singlet oxygen generation, partition coefficient (log P), intracellular uptake, photo-induced cytotoxicity and vascular occlusion efficiency. Tetrasulfonated ZnPc (ZnPcS4) was included as a reference compound. Here, we showed that 1–3 exhibited 10–100 nm red-shifted absorption peaks with higher molar absorptivity, and at least two-fold greater singlet oxygen generation rates compared to ZnPcS4. Meanwhile, phthalocyanines 1 and 2 showed more hydrophilic log P values than 3 consistent with the number of glycerol attachments but 3 was most readily taken up by cells compared to the rest. Both phthalocyanines 2 and 3 exhibited potent phototoxicity against MCF-7, HCT-116 and HSC-2 cancer cell-lines with IC50 ranging 2.8–3.2 µM and 0.04–0.06 µM respectively, while 1 and ZnPcS4 (up to 100 µM) failed to yield determinable IC50 values. In terms of vascular occlusion efficiency, phthalocyanine 3 showed better effects than 2 by causing total occlusion of vessels with diameter <70 µm of the chorioallantoic membrane. Meanwhile, no detectable vascular occlusion was observed for ZnPcS4 with treatment under similar experimental conditions. These findings provide evidence that glycerol substitution, in particular in structures 2 and 3, is able

  9. Improved photodynamic efficacy of Zn(II) phthalocyanines via glycerol substitution.

    PubMed

    Chin, Yunni; Lim, Siang Hui; Zorlu, Yunus; Ahsen, Vefa; Kiew, Lik Voon; Chung, Lip Yong; Dumoulin, Fabienne; Lee, Hong Boon

    2014-01-01

    Phthalocyanines are excellent photosensitizers for photodynamic therapy as they have strong absorbance in the near infra-red region which is most relevant for in vivo activation in deeper tissular regions. However, most phthalocyanines present two major challenges, ie, a strong tendency to aggregate and low water-solubility, limiting their effective usage clinically. In the present study, we evaluated the potential enhancement capability of glycerol substitution on the photodynamic properties of zinc (II) phthalocyanines (ZnPc). Three glycerol substituted ZnPc, 1-3, (tetra peripherally, tetra non-peripherally and mono iodinated tri non-peripherally respectively) were evaluated in terms of their spectroscopic properties, rate of singlet oxygen generation, partition coefficient (log P), intracellular uptake, photo-induced cytotoxicity and vascular occlusion efficiency. Tetrasulfonated ZnPc (ZnPcS4) was included as a reference compound. Here, we showed that 1-3 exhibited 10-100 nm red-shifted absorption peaks with higher molar absorptivity, and at least two-fold greater singlet oxygen generation rates compared to ZnPcS4. Meanwhile, phthalocyanines 1 and 2 showed more hydrophilic log P values than 3 consistent with the number of glycerol attachments but 3 was most readily taken up by cells compared to the rest. Both phthalocyanines 2 and 3 exhibited potent phototoxicity against MCF-7, HCT-116 and HSC-2 cancer cell-lines with IC50 ranging 2.8-3.2 µM and 0.04-0.06 µM respectively, while 1 and ZnPcS4 (up to 100 µM) failed to yield determinable IC50 values. In terms of vascular occlusion efficiency, phthalocyanine 3 showed better effects than 2 by causing total occlusion of vessels with diameter <70 µm of the chorioallantoic membrane. Meanwhile, no detectable vascular occlusion was observed for ZnPcS4 with treatment under similar experimental conditions. These findings provide evidence that glycerol substitution, in particular in structures 2 and 3, is able to improve

  10. Apoptosis triggered by pyropheophorbide-α methyl ester-mediated photodynamic therapy in a giant cell tumor in bone

    NASA Astrophysics Data System (ADS)

    Li, K.-T.; Zhang, J.; Duan, Q.-Q.; Bi, Y.; Bai, D.-Q.; Ou, Y.-S.

    2014-06-01

    A giant cell tumor in bone is the common primary bone tumor with aggressive features, occurring mainly in young adults. Photodynamic therapy is a new therapeutic technique for tumors. In this study, we investigated the effects of Pyropheophorbide-α methyl ester (MPPa)-mediated photodynamic therapy on the proliferation of giant cell tumor cells and its mechanism of action. Cell proliferation was evaluated using an MTT assay. Cellular apoptosis was detected by Hoechst nuclear staining, and flow cytometric assay. Mitochondrial membrane potential changes and cytochrome c, caspase-9, caspase-3, and Bcl-2 expression was assessed. Finally, we found that MPPa-mediated photodynamic therapy could effectively suppress the proliferation of human giant cell tumor cells and induce apoptosis. The mitochondrial pathway was involved in the MPPa-photodynamic therapy-induced apoptosis.

  11. Intraparticle FRET for Enhanced Efficiency of Two-Photon Activated Photodynamic Therapy.

    PubMed

    Cao, Hongqian; Yang, Yang; Qi, Yanfei; Li, Yue; Sun, Bingbing; Li, Ying; Cui, Wei; Li, Juan; Li, Junbai

    2018-06-01

    Photodynamic therapy (PDT) still faces two main problems on cancer therapy. One is how to improve PDT efficiency against hypoxic environment of tumors. The other one is how to overcome the limit of short wavelength light to increase PDT treatment depth. In this work, an intraparticle fluorescence resonance energy transfer (FRET) platform is designed to address these problems together. The nanoparticles are doped with multicomponents, such as catalase, two-photon dyes, and traditional photosensitizers, with a simple "one-pot" and green method. On the one hand, catalase can catalyze intracellular H 2 O 2 into O 2 and promote PDT efficiency. One the other hand, photosensitizers can be excited indirectly by two-photon lasers through an intraparticle FRET mechanism, which results in deeper tissue penetration for PDT. These properties are verified through the material induced cytotoxicity in light or in dark and in vivo blocking blood-vessel experiment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Correlation Time of Ocean Ambient Noise Intensity in San Diego Bay and Target Recognition in Acoustic Daylight Images

    NASA Astrophysics Data System (ADS)

    Wadsworth, Adam J.

    A method for passively detecting and imaging underwater targets using ambient noise as the sole source of illumination (named acoustic daylight) was successfully implemented in the form of the Acoustic Daylight Ocean Noise Imaging System (ADONIS). In a series of imaging experiments conducted in San Diego Bay, where the dominant source of high-frequency ambient noise is snapping shrimp, a large quantity of ambient noise intensity data was collected with the ADONIS (Epifanio, 1997). In a subset of the experimental data sets, fluctuations of time-averaged ambient noise intensity exhibited a diurnal pattern consistent with the increase in frequency of shrimp snapping near dawn and dusk. The same subset of experimental data is revisited here and the correlation time is estimated and analysed for sequences of ambient noise data several minutes in length, with the aim of detecting possible periodicities or other trends in the fluctuation of the shrimp-dominated ambient noise field. Using videos formed from sequences of acoustic daylight images along with other experimental information, candidate segments of static-configuration ADONIS raw ambient noise data were isolated. For each segment, the normalized intensity auto-correlation closely resembled the delta function, the auto-correlation of white noise. No intensity fluctuation patterns at timescales smaller than a few minutes were discernible, suggesting that the shrimp do not communicate, synchronise, or exhibit any periodicities in their snapping. Also presented here is a ADONIS-specific target recognition algorithm based on principal component analysis, along with basic experimental results using a database of acoustic daylight images.

  13. Change in the Classroom Deportment of Children Following Change From Daylight Saving Time.

    ERIC Educational Resources Information Center

    Hicks, Robert A.; And Others

    1980-01-01

    The deportment of each student in a third-grade classroom was rated by the teacher before and after the fall change from daylight savings time, to see if this disruption in circadian rhythms alters behavior. The deportment of boys improved significantly while the deportment of girls was significantly disrupted. (Author/SJL)

  14. Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions.

    PubMed

    Sobotta, Lukasz; Wierzchowski, Marcin; Mierzwicki, Michal; Gdaniec, Zofia; Mielcarek, Jadwiga; Persoons, Leentje; Goslinski, Tomasz; Balzarini, Jan

    2016-02-01

    Manganese(III), cobalt(II), copper(II), magnesium(II), zinc(II) and metal-free phthalocyanines, possessing 1,4,7-trioxanonyl substituents, at their non-peripheral positions, were subjected to photochemical, photodynamic and biological activity studies. Demetallated phthalocyanine and its metallated d-block analogues, with copper(II), cobalt(II), manganese(III) chloride, were found to be less efficient singlet oxygen generators in comparison to the zinc(II) analogue and zinc(II) phthalocyanine reference. Irradiation of several phthalocyanines for short time periods resulted in a substantially increased cytostatic activity against both suspension (leukemic/lymphoma at 85nM) and solid (cervix carcinoma at 72nM and melanoma at 81nM) tumour cell lines (up to 200-fold). Noteworthy is that enveloped viruses, such as for herpesvirus and influenza A virus, but not, non-enveloped virus strains, such as Coxsackie B4 virus and reovirus-1, exposed to irradiation in the presence of the phthalocyanines, markedly lost their infectivity potential. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The sensitivity of normal brain and intracranially implanted VX2 tumour to interstitial photodynamic therapy.

    PubMed Central

    Lilge, L.; Olivo, M. C.; Schatz, S. W.; MaGuire, J. A.; Patterson, M. S.; Wilson, B. C.

    1996-01-01

    The applicability and limitations of a photodynamic threshold model, used to describe quantitatively the in vivo response of tissues to photodynamic therapy, are currently being investigated in a variety of normal and malignant tumour tissues. The model states that tissue necrosis occurs when the number of photons absorbed by the photosensitiser per unit tissue volume exceeds a threshold. New Zealand White rabbits were sensitised with porphyrin-based photosensitisers. Normal brain or intracranially implanted VX2 tumours were illuminated via an optical fibre placed into the tissue at craniotomy. The light fluence distribution in the tissue was measured by multiple interstitial optical fibre detectors. The tissue concentration of the photosensitiser was determined post mortem by absorption spectroscopy. The derived photodynamic threshold values for normal brain are significantly lower than for VX2 tumour for all photosensitisers examined. Neuronal damage is evident beyond the zone of frank necrosis. For Photofrin the threshold decreases with time delay between photosensitiser administration and light treatment. No significant difference in threshold is found between Photofrin and haematoporphyrin derivative. The threshold in normal brain (grey matter) is lowest for sensitisation by 5 delta-aminolaevulinic acid. The results confirm the very high sensitivity of normal brain to porphyrin photodynamic therapy and show the importance of in situ light fluence monitoring during photodynamic irradiation. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8562339

  16. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles.

    PubMed

    Zhao, Na; Wu, Baoyan; Hu, Xianglong; Xing, Da

    2017-10-01

    Stimuli-responsive nanoparticles with multiple therapeutic/diagnostic functions are highly desirable for effective tumor treatment. Herein novel caspase-3 responsive functionalized upconversion nanoparticles (CFUNs) were fabricated with three-in-one functional integration: near-infrared (NIR) triggered photodynamic damage along with caspase-3 activation, subsequent caspase-3 responsive drug release, and cascade chemotherapeutic activation. CFUNs were formulated from the self-assembly of caspase-3 responsive doxorubicin (DOX) prodrug tethered with DEVD peptide (DEVD-DOX), upconversion nanoparticles (UCNP), a photosensitizer (pyropheophorbide-a methyl ester, MPPa), and tumor-targeting cRGD-PEG-DSPE to afford multifunctional CFUNs, MPPa/UCNP-DEVD-DOX/cRGD. Upon cellular uptake and NIR irradiation, the visible light emission of UCNP could excite MPPa to produce reactive oxygen species for photodynamic therapy (PDT) along with the activation of caspase-3, which further cleaved DEVD peptide to release DOX within tumor cells, thus accomplishing NIR-triggered PDT and cascade chemotherapy. CFUNs presented silent therapeutic potency and negligible cytotoxicity in the dark, whereas in vitro and in vivo experiments demonstrated the NIR-triggered cascade therapeutic activation and tumor inhibition due to consecutive PDT and chemotherapy. Current NIR-activated cascade tumor therapy with two distinct mechanisms is significantly favorable to overcome multidrug resistance and tumor heterogeneity for persistent tumor treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Treatment of complicated gangrene using infrared photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Szabo, Robert

    2018-04-01

    Antimicrobial photodynamic therapy (aPDT) is one of the treatment options of local infections. Conventional aPDT systems have physical limitations such as low light penetration and the need for long irradiation time to achieve the necessary light dose. With new forming specific complex of methylene blue dye molecules it is possible to reach efficient excitation processes at 810nm. At 810nm, there is increased light penetration depth in comparison to 670nm. This means that we are now able to excite the sensitizer in deeper areas and activate it transgingivally. Purpose Preserving teeth with complicated gangrene is a great challenge if root canal is obstructed. Lacking the possibility to perform the conventional mechanical cleaning of root canals. we have used infrared photodynamic therapy for elimination radicular bacterial infiltration Materials and methods We investigated 14 cases with complicated gangrene and totally or partially obstructed root canal. We deposited the sensitizer - Photolase Photolase GMBH Germany - in the pulp chamber and closed it for a week. This procedure was repeated three times. After the sensitizer penetrated we applied the light. We used G-Box 810 nm laser - Gigaa Laser China - at 0,8W/cm2 , 40s buccal and 40s oral side. Results 6 month later we performed follow-up CBCT. Out of 14 cases significant healing was detected in 10. In 4 cases no change was observable. Discussion and conclusion Infrared aPDT seems effective in eliminating bacterial infiltrations in deeper areas. It can be a minimal invasive method in the case of obstructed root canals.

  18. DNA Duplex-Based Photodynamic Molecular Beacon for Targeted Killing of Retinoblastoma Cell.

    PubMed

    Wei, Yanchun; Lu, Cuixia; Chen, Qun; Xing, Da

    2016-11-01

    Retinoblastoma (RB) is the most common primary intraocular malignancy of infancy. An alternative RB treatment protocol is proposed and tested. It is based on a photodynamic therapy (PDT) with a designed molecular beacon that specifically targets the murine double minute x (MDMX) high-expressed RB cells. A MDMX mRNA triggered photodynamic molecular beacon is designed by binding a photosensitizer molecule (pyropheophorbide-a, or PPa) and a black hole quencher-3 (BHQ3) through a complementary oligonucleotide sequence. Cells with and without MDMX high-expression are incubated with the beacon and then irradiated with a laser. The fluorescence and reactive oxygen species are detected in solution to verify the specific activation of PPa by the perfectly matched DNA targets. The cell viabilities are evaluated with CCK-8 and flow cytometry assay. The fluorescence and photo-cytoxicity of PPa is recovered and significantly higher in the MDMX high-expressed Y79 and WERI-Rb1 cells, compared to that with the MDMX low-expressed cells. The synthesized beacon exhibits high PDT efficiency toward MDMX high-expressed RB cells. The data suggest that the designed beacon may provide a potential alternative for RB therapy and secures the ground for future investigation.

  19. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen.

    PubMed

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Zinc phthalocyanines attached to gold nanorods for simultaneous hyperthermic and photodynamic therapies against melanoma in vitro.

    PubMed

    Freitas, L F; Hamblin, M R; Anzengruber, F; Perussi, J R; Ribeiro, A O; Martins, V C A; Plepis, A M G

    2017-08-01

    Studies indicate that hyperthermic therapy using gold nanorods and photodynamic activity with many photosensitizers can present a synergistic effect, and offer a great therapeutic potential, although more investigation needs to be performed before such approach could be implemented. We proposed to investigate the effect of the attachment of phthalocyanines on the surface of gold nanorods (well-characterized devices for hyperthermia generation) for the elimination of melanoma, one of the most important skin cancers due to its high lethality. Following the synthesis of nanorods through a seed-mediated method, the efficacy of photodynamic therapy (PDT) and hyperthermia was assessed separately. We chose to coat the nanorods with two tetracarboxylated zinc phthalocyanines - with or without methyl-glucamine groups. After the coating process, the phthalocyanines formed ionic complexes with the cetyltrimethylammonium bromide (CTAB) that was previously covering the nanoparticles. The nanorod-phthalocyanines complexes were analyzed by transmission electron microscopy (TEM), and their singlet oxygen and hydroxyl radical generation yields were assessed. Furthermore, they were tested in vitro with melanotic B16F10 and amelanotic B16G4F melanoma cells. The cells with nanoparticles were irradiated with laser (at 635nm), and the cell viability was assessed. The results indicate that the photodynamic properties of the phthalocyanines tested are enhanced when they are attached on the nanorods surface, and the combination of PDT and hyperthermia was able to eliminate over 90% of melanoma cells. This is a novel study because two tetracarboxylated phthalocyanines were used and because the same wavelength was irradiated to activate both the nanorods and the photosensitizers. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Photodynamic therapy with pyropheophorbide-a methyl ester in human lung carcinoma cancer cell: efficacy, localization and apoptosis.

    PubMed

    Sun, X; Leung, W N

    2002-06-01

    Pyropheophorbide-a methyl ester (MPPa) is a semisynthetic photosensitizer derived from chlorophyll a. The absorption peak of MPPa in organic solvent and in cells was at 667 and 674 nm, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay showed that MPPa had no dark cytotoxicity. In vitro photodynamic activity was extensively evaluated using a human lung carcinoma cancer cell line (NCI-h446). MPPa exhibited no genotoxicity, as assayed by single-cell gel electrophoresis. Using confocal laser scanning microscopy and organelle-specific fluorescent probes, MPPa was found to localize in the intracellular membrane system, namely the endoplasmic reticulum, Golgi apparatus, lysosomes and mitochondria, in the NCI-h446 cells. Furthermore, nuclear staining and DNA gel electrophoresis revealed that DNA condensation and fragmentation occurred post-photodynamic therapy, indicating the cell death was in the apoptotic mode.

  2. Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy.

    PubMed

    Wang, Yazhe; Wang, Cheng; Ding, Yang; Li, Jing; Li, Min; Liang, Xiao; Zhou, Jianping; Wang, Wei

    2016-12-01

    Photodynamic therapy has emerged as a promising strategy for cancer treatment. To ensure the efficient delivery of a photosensitizer to tumor for anticancer effect, a safe and tumor-specific delivery system is highly desirable. Herein, we introduce a novel biomimetic nanoparticle named rHDL/ICG (rHDL/I), by loading amphiphilic near-infrared (NIR) fluorescent dye indocyanine green (ICG) into reconstituted high density lipoproteins (rHDL). In this system, rHDL can mediate photoprotection effect and receptor-guided tumor-targeting transportation of cargos into cells. Upon NIR irradiation, ICG can generate fluorescent imaging signals for diagnosis and monitoring therapeutic activity, and produce singlet oxygen to trigger photodynamic therapy (PDT). Our studies demonstrated that rHDL/I exhibited excellent size and fluorescence stability, light-triggered controlled release feature, and neglectable hemolytic activity. It also showed equivalent NIR response compared to free ICG under laser irradiation. Importantly, the fluorescent signal of ICG loaded in rHDL/I could be visualized subcellularly in vitro and exhibited metabolic distribution in vivo, presenting superior tumor targeting and internalization. This NIR-triggered image-guided nanoparticle produced outstanding therapeutic outcomes against cancer cells, demonstrating great potential of biomimetic delivery vehicles in future clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Optoelectronic aid for patients with severely restricted visual fields in daylight conditions

    NASA Astrophysics Data System (ADS)

    Peláez-Coca, María Dolores; Sobrado-Calvo, Paloma; Vargas-Martín, Fernando

    2011-11-01

    In this study we evaluated the immediate effectiveness of an optoelectronic visual field expander in a sample of subjects with retinitis pigmentosa suffering from a severe peripheral visual field restriction. The aid uses the augmented view concept and provides subjects with visual information from outside their visual field. The tests were carried out in daylight conditions. The optoelectronic aid comprises a FPGA (real-time video processor), a wide-angle mini camera and a transparent see-through head-mounted display. This optoelectronic aid is called SERBA (Sistema Electro-óptico Reconfigurable de Ayuda para Baja Visión). We previously showed that, without compromising residual vision, the SERBA system provides information about objects within an area about three times greater on average than the remaining visual field of the subjects [1]. In this paper we address the effects of the device on mobility under daylight conditions with and without SERBA. The participants were six subjects with retinitis pigmentosa. In this mobility test, better results were obtained when subjects were wearing the SERBA system; specifically, both the number of contacts with low-level obstacles and mobility errors decreased significantly. A longer training period with the device might improve its usefulness.

  4. Light-scattering properties of a Venetian blind slat used for daylighting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Annica M.; Jonsson, Jacob C.

    2010-12-15

    The low cost, simplicity, and aesthetic appearance of external and internal shading devices, make them commonly used for daylighting and glare-control applications. Shading devices, such as Venetian blinds, screens, and roller shades, generally exhibit light scattering and/or light redirecting properties. This requires the bi-directional scattering distribution function (BSDF) of the material to be known in order to accurately predict the daylight distribution and energy flow through the fenestration system. Acquiring the complete BSDF is not a straightforward task, and to complete the process it is often required that a model is used to complement the measured data. In this project,more » a Venetian blind slat with a white top surface and a brushed aluminum bottom surface was optically characterized. A goniophotometer and an integrating sphere spectrophotometer were used to determine the angle resolved and hemispherical reflectance of the sample, respectively. The acquired data were fitted to a scattering model providing one Lambertian and one angle dependent description of the surface properties. These were used in combination with raytracing to obtain the complete BSDFs of the Venetian blind system. (author)« less

  5. Photodynamic therapy versus ultrasonic irrigation: interaction with endodontic microbial biofilm, an ex vivo study.

    PubMed

    Muhammad, Omid H; Chevalier, Marlene; Rocca, Jean-Paul; Brulat-Bouchard, Nathalie; Medioni, Etienne

    2014-06-01

    Photodynamic therapy was introduced as an adjuvant to conventional chemo-mechanical debridement during endodontic treatment to overcome the persistence of biofilms. The aim of this study was to evaluate the ability of photodynamic therapy (PDT) to disrupt an experimental microbial biofilm inside the root canal in a clinically applicable working time. Thirty extracted teeth were prepared and then divided in three groups. All samples were infected with an artificially formed biofilm made of Enterococcus faecalis, Streptococcus salivarius, Porphyromonas gingivalis and Prevotella intermedia bacteria. First group was treated with Aseptim Plus® photo-activated (LED) disinfection system, second group by a 650 nm Diode Laser and Toluidine blue as photosensitizer, and the third group, as control group, by ultrasonic irrigation (PUI) using EDTA 17% and NaOCl 2.6% solutions. The working time for all three groups was fixed at 3 min. Presence or absence of biofilm was assessed by aerobic and anaerobic cultures. There was no statistically significant difference between results obtained from groups treated by Aseptim Plus® and Diode Laser (P<0.6267). In cultures of both groups there was a maximal bacterial growth. The group that was treated by ultrasonic irrigation and NaOCl and EDTA solutions had the best results (P<0.0001): there was a statistically significant reduction of bacterial load and destruction of microbial biofilm. Under the condition of this study, Photodynamic therapy could not disrupt endodontic artificial microbial biofilm and could not inhibit bacterial growth in a clinically favorable working time. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Preclinical studies of photodynamic therapy of intracranial tissues

    NASA Astrophysics Data System (ADS)

    Lilge, Lothar D.; Sepers, Marja; Park, Jane; O'Carroll, Cindy; Pournazari, Poupak; Prosper, Joe; Wilson, Brian C.

    1997-05-01

    The applicability and limitations of the photodynamic threshold model were investigated for an intracranial tumor (VX2) and normal brain tissues in a rabbit model. Photodynamic threshold values for four different photosensitizers, i.e., Photofrin, 5(delta) -aminolaevulinic acid (5(delta) -ALA) induced Protoporphyrin IX (PPIX), Tin Ethyl Etiopurpurin (SnET2), and chloroaluminum phthalocyanine (AlClPc), were determined based on measured light fluence distributions, macroscopic photosensitizer concentration in various brain structures, and histologically determined extent of tissue necrosis following PDT. For Photofrin, AlClPc, and SnET2, normal brain displayed a significantly lower threshold value than VX2 tumor. For 5(delta) -ALA induced PPIX and SnET2 no or very little white matter damage, equalling to very high or infinite threshold values, was observed. Additionally, the latter two photosensitizers showed significantly lower uptake in white matter compared to other brain structures and VX2 tumor. Normal brain structures lacking a blood- brain-barrier, such as the choroid plexus and the meninges, showed high photosensitizer uptake for all photosensitizers, and, hence, are at risk when exposed to light. Results to date suggest that the photodynamic threshold values iares valid for white matter, cortex and VX2 tumor. For clinical PDT of intracranial neoplasms 5(delta) -ALA induced PPIX and SnET2 appear to be the most promising for selective tumor necrosis.However, the photosensitizer concentration in each normal brain structure and the fluence distribution throughout the treatment volume and adjacent tissues at risk must be monitored to maximize the selectivity of PDT for intracranial tumors.

  7. Evaluation of antitumor efficiency of experimental interstitial photodynamic therapy on the model of M1 sarcoma.

    PubMed

    Skugareva, O A; Kaplan, M A; Malygina, A I; Mikhailovskaya, A A

    2009-11-01

    Antitumor efficiency of interstitial photodynamic therapy was evaluated in experiments on outbred albino rats with implanted M-1 sarcoma. Interstitial photodynamic therapy was carried out using one diffusor at different output power and duration of exposure. The percentage of complete regression of the tumors increased with increasing exposure parameters.

  8. Treatment of canine hemangiopericytomas with photodynamic therapy.

    PubMed

    McCaw, D L; Payne, J T; Pope, E R; West, M K; Tompson, R V; Tate, D

    2001-01-01

    Canine hemangiopericytomas are a commonly occurring neoplasm with a clinical course of recurrence after surgical removal. This study sought to evaluate Photochlor (HPPH) photodynamic therapy (HPPH-PDT) as an adjuvant therapy to prevent recurrence of tumor after surgical removal. Sixteen dogs with naturally occurring hemangiopericytomas were treated with surgical removal of the tumor followed by PDT using Photochlor as the photosensitizer. Photochlor was injected intravenously at a dose of 0.3 mg/kg. Forty-eight hours later the treatment consisted of surgical removal of the tumor followed by HPPH-PDT. Nine dogs (56%) had recurrence of tumor from 2 to 29 (median 9) months after treatment. These results are comparable or not as good as other forms of therapy. Photochlor photodynamic therapy applied after surgery appears to have no advantage over other forms of therapy in regards to preventing recurrence. Delayed wound healing and infections are problematic and make HPPH-PDT an undesirable addition to surgery for the treatment of this tumor type. Copyright 2001 Wiley-Liss, Inc.

  9. Successful treatment of recalcitrant folliculitis barbae and pseudofolliculitis barbae with photodynamic therapy.

    PubMed

    Diernaes, Jon Erik Fraes; Bygum, Anette

    2013-12-01

    Folliculitis and pseudofolliculitis barbae typically affects men with curly hair who shave too close. Treatment modalities vary in effectiveness and include improved hair removal methods, topical corticosteroids, topical and oral antibiotics, and retinoids as well as laser surgery. We report a novel treatment of recalcitrant pseudofolliculitis barbae and confirm effectiveness in recalcitrant folliculitis in a 58-year old man who responded completely following photodynamic therapy with methyl aminolevulinate. Photodynamic therapy should be considered in recalcitrant folliculitis and pseudofolliculitis barbae. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Conventional and tubular skylights: An evaluation of the daylighting systems at two ACT{sup 2} commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, T.

    1997-12-31

    As part of the ACT{sup 2} project, sponsored by a major northern California utility, two occupied single-story commercial buildings were equipped with similar yet different daylighting systems in an effort to reduce electric lighting loads and provide a better workspace. The daylighting system, at the newly constructed 15,000 sq.ft. California State Automobile Association (CSAA) office building in Antioch, California, incorporates skylights with louvers, perforated blinds on the windows, and dimming ballasts which control T8 fluorescent fixtures. At the 7,500 sq.ft. retrofitted Verifone office building in Auburn, California, the building required a different kind of skylight to provide daylighting. Die tomore » the 10 foot attic space on the single-story building, a tubular-type of skylight was installed. The tubular skylight incorporates a long cylinder with a reflective internal surface to direct available sunlight into the workspace through a white diffuser. In addition, T8 fluorescent fixtures were controlled by dimming ballasts and light level controls. Annual lighting energy consumption at the CSAA building was reduced by 32% with a favorable reaction from the occupants. While the occupant response to the lighting at Verifone was generally good, thee were some problems in calibrating the lighting controls, thereby reducing energy savings.« less

  11. Spectral Analysis of the Effects of Daylight Saving Time on Motor Vehicle Fatal Traffic Accidents

    DOT National Transportation Integrated Search

    1977-04-01

    This report shows that Daylight Saving Time (DST) reduces the number of persons killed in motor vehicle fatal traffic accidents by about one percent. This estimate is based on a spectral (Fourier) analysis of these fatalities which utilizes a filteri...

  12. PHOTODYNAMIC THERAPY OF CANCER: AN UPDATE

    PubMed Central

    Agostinis, Patrizia; Berg, Kristian; Cengel, Keith A.; Foster, Thomas H.; Girotti, Albert W.; Gollnick, Sandra O.; Hahn, Stephen M.; Hamblin, Michael R.; Juzeniene, Asta; Kessel, David; Korbelik, Mladen; Moan, Johan; Mroz, Pawel; Nowis, Dominika; Piette, Jacques; Wilson, Brian C.; Golab, Jakub

    2011-01-01

    Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative particularly in early-stage tumors. It can prolong survival in inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment. PMID:21617154

  13. Evaluation of the efficacy of photodynamic therapy for the treatment of actinic cheilitis.

    PubMed

    Chaves, Yuri N; Torezan, Luis Antonio; Lourenço, Silvia Vanessa; Neto, Cyro Festa

    2017-01-01

    Actinic cheilitis (AC) is a lip intraepithelial neoplasia, whose cells present alterations similar to those presented by invasive squamous cell carcinomas (SCCs). To conduct clinical and laboratory evaluation by histopathology and immunohistochemistry of the efficacy of actinic cheilitis treatment using photodynamic therapy (PDT) with methyl aminolevulinate (MAL) and noncoherent red light. Patients with actinic cheilitis detected by histopathological examination were submitted to two sessions of photodynamic therapy with a two-week interval between them. They were examined immediately after the sessions, four, six, and twelve weeks after beginning treatment when a new biopsy was carried out. Clinical histopathological and immunohistochemical parameters were evaluated before and after treatment. Of the 23 patients who underwent biopsy, 16 completed two photodynamic therapy sessions and the material of one patient was insufficient for immunohistochemistry. Complete clinical response was achieved in 62.5% (10 of 16 patients) and 37.5% still remained with clinical evidence of AC. In spite of this, no case of cure by histopathological analysis was found. There was no significant statistical change among the values of Ki-67, survivin, and p53 observed before and after treatment. Photodynamic therapy, as carried out in this trial, was not an efficacious therapeutic option for treating patients with actinic cheilitis included in this sample. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Photodynamic therapy and the treatment of neoplastic diseases of the larynx

    NASA Astrophysics Data System (ADS)

    Biel, Merrill A.

    1995-05-01

    Photodynamic therapy (PDT) is an innovative treatment involving the use of light-sensitive drugs to selectively identify and destroy diseased cells. Therefore, photodynamic therapy has the potential to treat and cure precancerous and early cancerous lesions (carcinoma in situ (CIS), T1 and T2) of the larynx while preserving normal tissue. Twenty-four patients with recurrent leukoplakia and carcinomas of the larynx were treated with PDT with follow-up to 60 months. Fourteen patients with T1 squamous cell carcinomas of the vocal cord, 2 patients with a T2 squamous cell carcinoma of the vocal cord failing radiotherapy, and 6 patients with CIS and sever atypia were treated with PDT and obtained a complete response and are disease free. One patient with a T3 carcinoma of the larynx was treated with PDT but died 5 weeks post-treatment of unrelated causes and could not be assessed. Photodynamic therapy is a promising therapy for treatment of precancerous and cancerous lesions of the larynx. This therapy may be particularly beneficial for the treatment of recurrent carcinomas of the larynx that have failed conventional radiotherapy, thereby preserving voice and eliminating the need for destructive laryngeal surgery.

  15. Inactivation of Vibrio parahaemolyticus by antimicrobial photodynamic technology using methylene blue.

    PubMed

    Deng, Xi; Tang, Shuze; Wu, Qian; Tian, Juan; Riley, William W; Chen, Zhenqiang

    2016-03-30

    Vibrio parahaemolyticus is the leading causative pathogen of gastroenteritis often related to contaminated seafood. Photodynamic inactivation has been recently proposed as a strategy for killing cells and viruses. The objective of this study was to verify the bactericidal effects caused by photodynamic inactivation using methylene blue (MB) over V. parahaemolyticus via flow cytometry, agarose gel electrophoresis and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Vibrio parahaemolyticus counts were determined using the most probable number method. A scanning electron microscope and a transmission electron microscope were employed to intuitively analyze internal and external cell structure. Combination of MB and laser treatment significantly inhibited the growth of V. parahaemolyticus. The inactivation rate of V. parahaemolyticus was >99.99% and its counts were reduced by 5 log10 in the presence of 0.05 mg mL(-1) MB when illuminated with visible light (power density 200 mW cm(-2)) for 25 min. All inactivated cells showed morphological changes, leakage of cytoplasm and degradation of protein and DNA. Results from this study indicated that photodynamic technology using MB produced significant inactivation of V. parahaemolyticus mainly brought about by the degradation of protein and DNA. © 2015 Society of Chemical Industry.

  16. Multifunctional Surface-Enhanced Raman Spectroscopy-Detectable Silver Nanoparticles Combined Photodynamic Therapy and pH-Triggered Chemotherapy.

    PubMed

    Srinivasan, Supriya; Bhardwaj, Vinay; Nagasetti, Abhignyan; Fernandez-Fernandez, Alicia; McGoron, Anthony J

    2016-12-01

    This research paper reports the development of a multifunctional anti-cancer prodrug system based on silver nanoparticles. This prodrug system is composed of 70-nm sized nanoparticles and features photodynamic therapeutic properties and active, pH-triggered drug release. The silver nanoparticles are decorated with a folic acid (FA) targeting ligand via an amide bond, and also conjugated to the chemotherapeutic drug doxorubicin (DOX) via an acid-cleavable hydrazone bond. Both FA and DOX are attached to the silver nanoparticles through a polyethylene glycol (PEG) spacer. This prodrug system can preferentially enter cells that over-express folic acid receptors, with subsequent intracellular drug release triggered by reduced intracellular pH. Moreover, the silver nanoparticle carrier system exhibits photodynamic therapeutic (PDT) activity, so that the cell viability of cancer cells that overexpress folate receptors can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of this system. The multifunctional nanoparticles can be probed intracellularly through Surface-Enhanced Raman Spectroscopy (SERS) and fluorescence spectroscopy. The current report explores the applicability of this multifunctional silver nanoparticle-based system for cancer theranostics.

  17. Photodynamic treatment of endodontic polymicrobial infection in vitro

    PubMed Central

    Fimple, Jacob Lee; Fontana, Carla Raquel; Foschi, Federico; Ruggiero, Karriann; Song, Xiaoqing; Pagonis, Tom C.; Tanner, Anne C. R.; Kent, Ralph; Doukas, Apostolos G.; Stashenko, Philip P.; Soukos, Nikolaos S.

    2008-01-01

    We investigated the photodynamic effects of methylene blue (MB) on multi-species root canal biofilms comprising Actinomyces israelii, Fusobacterium nucleatum subspecies nucleatum, Porphyromonas gingivalis and Prevotella intermedia in experimentally infected root canals of extracted human teeth in vitro. The four test microorganisms were detected in root canals using DNA probes. Scanning electron microscopy (SEM) showed the presence of biofilms in root canals prior to therapy. Root canal systems were incubated with MB (25 µg/ml) for 10 minutes followed by exposure to red light at 665 nm with an energy fluence of 30 J/cm2. Light was delivered from a diode laser via a 250 µm diameter polymethyl methacrylate optical fiber that uniformly distributed light at 360°. Photodynamic therapy (PDT) achieved up to 80% reduction of colony-forming unit counts. We conclude that PDT can be an effective adjunct to standard endodontic antimicrobial treatment when the PDT parameters are optimized. PMID:18498901

  18. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma.

    PubMed

    Li, Hui; Wang, Ping; Deng, Yunxiang; Zeng, Meiying; Tang, Yan; Zhu, Wei-Hong; Cheng, Yingsheng

    2017-09-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating malignancies in patients, and there is an urgent need for an effective treatment method. Herein, we report a novel gold nanocluster-based platform for confocal laser endomicroscopy-guided photothermal therapy (PTT)/photodynamic therapy (PDT) for PDAC, which consists of four components: the PTT-carrier gold nanocluster, an active targeting ligand U11 peptide, a Cathepsin E (CTSE)-sensitive PDT therapy prodrug, and a CTSE-sensitive imaging agent (cyanine dye Cy5.5). Due to the strong coupling among cross-linked gold nanoparticles (AuNPs), the surface plasmon resonance peak of nanoclusters shifts to the near-infrared (NIR) region, thus making the nanoclusters useful in the effective PTT therapy. In the system, the labeling of nanoclusters with U11 peptide can distinctly increase their affinity and accelerate their uptake by pancreatic cancer cells. Cell apoptosis staining demonstrates that, upon incorporation of the uPAR-targeted unit, the antitumor efficacy of CTSE-sensitive nanocluster AuS-U11 is significantly enhanced with respect to that of the non-targeted nanocluster AuS-PEG and the insensitive nanocluster AuC-PEG. In vivo and ex vivo optical imaging confirms the high accumulation of AuS-U11 in the in situ pancreatic tumor model. Therapeutic studies further show that the combination of active targeting for tumor tissue, enzyme-triggered drug release of 5-ALA and fluorescent dye Cy5.5 in nanoclusters AuS-U11 could achieve optimal therapeutic efficacy with endomicroscopy-guided photothermal/photodynamic therapy with minimal side effects. As a consequence, the delicate gold nanocluster concept provides a promising strategy to enhance the therapy efficiency in the most challenging PDAC treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Modified optical fiber daylighting system with sunlight transportation in free space.

    PubMed

    Vu, Ngoc-Hai; Pham, Thanh-Tuan; Shin, Seoyong

    2016-12-26

    We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

  20. Measured daylighting potential of a static optical louver system under real sun and sky conditions

    DOE PAGES

    Konis, Kyle; Lee, Eleanor S.

    2015-05-04

    Side-by-side comparisons were made over solstice-to-solstice changes in sun and sky conditions between an optical louver system (OLS) and a conventional Venetian blind set at a horizontal slat angle and located inboard of a south-facing, small-area, clerestory window in a full-scale office testbed. Daylight autonomy (DA), window luminance, and ceiling luminance uniformity were used to assess performance. The performance of both systems was found to have significant seasonal variation, where performance under clear sky conditions improved as maximum solar altitude angles transitioned from solstice to equinox. Although the OLS produced fewer hours per day of DA on average than themore » Venetian blind, the OLS never exceeded the designated 2000 cd/m2 threshold for window glare. In contrast, the Venetian blind was found to exceed the visual discomfort threshold over a large fraction of the day during equinox conditions. Notably, these peak periods of visual discomfort occurred during the best periods of daylighting performance. Luminance uniformity was analyzed using calibrated high dynamic range luminance images. Under clear sky conditions, the OLS was found to increase the luminance of the ceiling as well as produce a more uniform distribution. Furthermore, compared to conventional venetian blinds, the static optical sunlight redirecting system studied has the potential to significantly reduce the annual electrical lighting energy demand of a daylit space and improve the quality from the perspective of building occupants by consistently transmitting useful daylight while eliminating window glare.« less

  1. Mechanistics and photo-energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research.

    PubMed

    Horne, Tamarisk K; Cronjé, Marianne J

    2017-02-01

    Research within the field of photodynamic therapy has escalated over the past 20 years. The required conjunctional use of photosensitizers, particularly of the macrocycle structure, has lead to a vast repertoire of derivatives that branch classes and subclasses thereof. Each exhibits a differential range of physiochemical properties that influence their potential applications within the larger phototherapy field for use in either diagnostics, photodynamic therapy, both or none. Herein, we provide an overview of these properties as they relate to photodynamic therapy and to a lesser extent diagnostics. By summarizing the mechanistics of photodynamic therapy coupled to the photo-energetics displayed by macrocycle photosensitizers, we aimed to highlight the critical aspects any researcher should be aware of and consider when selecting and performing research for therapeutic application purposes. These include photosensitizer, photophysical and structural properties, synthesis design and subsequent attributes, main applications within research, common shortcomings exhibited and the current methods practiced to overcome them. © 2017 John Wiley & Sons A/S.

  2. Comparative study of trichloroacetic acid vs. photodynamic therapy with topical 5-aminolevulinic acid for actinic keratosis of the scalp.

    PubMed

    Di Nuzzo, Sergio; Cortelazzi, Chiara; Boccaletti, Valeria; Zucchi, Alfredo; Conti, Maria Luisa; Montanari, Paola; Feliciani, Claudio; Fabrizi, Giuseppe; Pagliarello, Calogero

    2015-09-01

    Photodynamic therapy with 5-methyl-aminolevulinate and photodynamic therapy with trichloroacetic acid 50% are the two techniques utilized in the management of actinic keratosis. This study was planned to compare the efficacy, adverse effects, recurrence and cosmetic outcome of these option therapies in patients with multiple actinic keratosis of the scalp. Thirteen patients with multiple actinic keratosis were treated with one of the two treatments on half of the scalp at baseline, while the other treatment was performed on the other half 15 days apart, randomly. Efficacy, adverse effects, cosmetic outcome and recurrence were recorded at follow-up visit at 1, 3, 6 and 12 months. Photodynamic therapy with 5 methyl-aminolevulinate was more effective than trichloroacetic acid although less tolerated by patients as it was more painful. Early adverse effects were almost the same even if trichloroacetic acid leads also to crust formation and to a worse cosmetic outcome characterized by hypopigmentation. Recurrence was lower in the area treated with photodynamic therapy. Trichloroacetic acid 50% is less effective than photodynamic therapy with 5 methyl-aminolevulinate in the treatment of multiple actinic keratosis of the scalp although better tolerated by patients. As this technique is less painful and less expensive than photodynamic therapy, we hypothesize and suggest that more sequential treatments could lead to better results. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives.

    PubMed

    MacDonald, I J; Morgan, J; Bellnier, D A; Paszkiewicz, G M; Whitaker, J E; Litchfield, D J; Dougherty, T J

    1999-11-01

    To determine if subcellular localization is important to photodynamic therapy (PDT) efficacy, an in vitro fluorescence microscopy study was conducted with a congeneric series of pyropheophorbide-a derivatives in human pharyngeal squamous cell carcinoma (FaDu) cells and murine radiation-induced fibrosarcoma (RIF) mutant cells. In the FaDu cells the octyl, decyl and dodecyl ether derivatives localized to the lysosomes at extracellular concentrations less than needed to produce a 50% cell kill (LD50). At extracellular concentrations equal or greater than the LD50 the compounds localized mainly to mitochondria. The propyl, pentyl, hexyl and heptyl ether derivatives localized mainly to the mitochondria at all concentrations studied. This suggested that mitochondria are a sensitive PDT target for these derivatives. Similar experiments were performed with two Photofrin-PDT resistant RIF cell lines, one of which was found to be resistant to hexyl ether derivative (C6) mediated-PDT and the other sensitive to C6-PDT relative to the parent line. At extracellular concentrations of C6 below the LD50 of each cell line, the mutants exhibited lysosomal localization. At concentrations above these values the patterns shifted to a mainly mitochondrial pattern. In these cell lines mitochondrial localization also correlated with PDT sensitivity. Localization to mitochondria or lysosomes appeared to be affected by the aggregation state of the congeners, all of which are highly aggregated in aqueous medium. Monomers apparently were the active fraction of these compounds because equalizing the extracellular monomer concentrations produced equivalent intracellular concentrations, photoxicity and localization patterns. Compounds that were mainly aggregates localized to the lysosomes where they were rendered less active. Mitochondria appear to be a sensitive target for pyropheophorbide-a-mediated photodamage, and the degree of aggregation seems to be a determinant of the localization site.

  4. Photodynamic inactivation of pathogenic species Pseudomonas aeruginosa and Candida albicans with lutetium (III) acetate phthalocyanines and specific light irradiation.

    PubMed

    Mantareva, Vanya; Kussovski, Vesselin; Durmuş, Mahmut; Borisova, Ekaterina; Angelov, Ivan

    2016-11-01

    Photodynamic inactivation (PDI) is a light-associated therapeutic approach suitable for treatment of local acute infections. The method is based on specific light-activated compound which by specific irradiation and in the presence of molecular oxygen produced molecular singlet oxygen and other reactive oxygen species, all toxic for pathogenic microbial cells. The study presents photodynamic impact of two recently synthesized water-soluble cationic lutetium (III) acetate phthalocyanines (LuPc-5 and LuPc-6) towards two pathogenic strains, namely, the Gram-negative bacterium Pseudomonas aeruginosa and a fungus Candida albicans. The photodynamic effect was evaluated for the cells in suspensions and organized in 48-h developed biofilms. The relatively high levels of uptakes of LuPc-5 and LuPc-6 were determined for fungal cells compared to bacterial cells. The penetration depths and distribution of both LuPcs into microbial biofilms were investigated by means of confocal fluorescence microscopy. The photoinactivation efficiency was studied for a wide concentration range (0.85-30 μM) of LuPc-5 and LuPc-6 at a light dose of 50 J cm -2 from red light-emitting diode (LED; 665 nm). The PDI study on microbial biofilms showed incomplete photoinactivation (<3 logs) for the used gentle drug-light protocol.

  5. Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength.

    PubMed

    Schastak, Stanislaw; Ziganshyna, Svitlana; Gitter, Burkhard; Wiedemann, Peter; Claudepierre, Thomas

    2010-07-20

    The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100microM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100microM THPTS followed by illumination, yielded a 6lg (> or =99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections.

  6. Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Cunha, A.; Couceiro, J.; Bonifácio, D.; Martins, C.; Almeida, A.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Saraiva, J. A.

    2017-09-01

    Traditional food processing methods frequently depend on the application of high temperature. However, heat may cause undesirable changes in food properties and often has a negative impact on nutritional value and organoleptic characteristics. Therefore, reducing the microbial load without compromising the desirable properties of food products is still a technological challenge. High-pressure processing (HPP) can be classified as a cold pasteurization technique, since it is a non-thermal food preservation method that uses hydrostatic pressure to inactivate spoilage microorganisms. At the same time, it increases shelf life and retains the original features of food. Photodynamic inactivation (PDI) is also regarded as promising approach for the decontamination of food matrices. In this case, the inactivation of bacterial cells is achieved by the cytotoxic effects of reactive oxygens species (ROS) produced from the combined interaction of a photosensitizer molecule, light and oxygen. This short review examines some recent developments on the application of HPP and PDI with food-grade photosensitizers for the inactivation of listeriae, taken as a food pathogen model. The results of a proof-of-concept trial of the use of high-pressure as a coadjutant to increase the efficiency of photodynamic inactivation of bacterial endospores is also addressed.

  7. Lutetium(III) acetate phthalocyanines for photodynamic therapy applications: Synthesis and photophysicochemical properties.

    PubMed

    Mantareva, Vanya; Durmuş, Mahmut; Aliosman, Meliha; Stoineva, Ivanka; Angelov, Ivan

    2016-06-01

    The development of new water-soluble photosensitizers for photodynamic therapy (PDT) applications is a very active research topic. Efforts have been made to obtain the far-red absorbing phthalocyanine complexes with molecular design that facilitates the uptake and selectivity for a high PDT efficiency. The monomolecular lutetium(III) acetate phthalocyanines (LuPcs) substituted with methylpyridyloxy groups at non-peripheral (5) and peripheral (6) positions were synthesized by following the modification of the well-known synthetical routes. The photo-physicochemical properties of the both quaternized LuPcs were evaluated by the steady-state and time-resolved spectroscopy. The photochemical technique was applied to study the generation of the singlet oxygen. Two water-soluble and cationic LuPcs were synthesized and chemically characterized. The photo-physicochemical properties of absorption (675 and 685nm) and the red shifted fluorescence (704 and 721nm) as well as the fluorescence lifetimes (2.24 and 3.27ns) were studied. The promising values of singlet oxygen quantum yields (0.32 for 5 and 0.35 for 6) were determined. Lutetium(III) acetate phthalocyanine complexes were synthesized and evaluated with physicochemical properties suitable for future photodynamic therapy applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparative survival study of glial cells and cells composing walls of blood vessels in crustacean ventral nerve cord after photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Shubina, Elena

    2015-03-01

    Photodynamic therapy is a prospective treatment modality of brain cancers. It is of importance to have information about relative survival rate of different cell types in nerve tissue during photodynamic treatment. Particularly, for development of sparing strategy of the photodynamic therapy of brain tumors, which pursuits both total elimination of malignant cells, which are usually of glial origin, and, at the same time, preservation of normal blood circulation as well as normal glial cells in the brain. The aim of this work was to carry out comparative survival study of glial cells and cells composing walls of blood vessels after photodynamic treatment, using simple model object - ventral nerve cord of crustacean.

  9. High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine.

    PubMed

    Bajgar, Robert; Kolarova, Hana; Bolek, Lukas; Binder, Svatopluk; Pizova, Klara; Hanakova, Adela

    2014-08-01

    Photodynamic therapy (PDT) is linked with oxidative damage of biomolecules causing significant impairment of essential cellular functions that lead to cell death. It is the reason why photodynamic therapy has found application in treatment of different oncological, cardiovascular, skin and eye diseases. Efficacy of PDT depends on combined action of three components; sensitizer, light and oxygen. In the present study, we examined whether higher partial pressure of oxygen increases lethality in HeLa cell lines exposed to light in the presence of chloraluminium phthalocyanine disulfonate (ClAlPcS2). ClAlPcS2- sensitized HeLa cells incubated under different oxygen conditions were exposed to PDT. Production of singlet oxygen ((1)O2) and other forms of reactive oxygen species (ROS) as well as changes in mitochondrial membrane potential were determined by appropriately sensitive fluorescence probes. The effect of PDT on HeLa cell viability under different oxygen conditions was quantified using the standard methylthiazol tetrazolium (MTT) test. At the highest oxygen concentration of 28 ± 2 mg/l HeLa cells were significantly more sensitive to light-activated ClAlPcS2 (EC50=0.29 ± 0.05 μM) in comparison to cells incubated at lower oxygen concentrations of 8 ± 0.5 and 0.5 ± 0.1 mg/l, where the half maximal effective concentration was 0.42 ± 0.06 μM and 0.94 ± 0.14 μM, respectively. Moreover, we found that the higher presence of oxygen is accompanied with higher production of singlet oxygen, a higher rate of type II photodynamic reactions, and a significant drop in the mitochondrial membrane potential. These results demonstrate that the photodynamic effect in cervical cancer cells utilizing ClAlPcS2 significantly depends on oxygen level. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Photodynamic action of curcumin derived polymer modified ZnO nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, R.; Senthilkumar, S.; Suganthi, A., E-mail: suganthiphd09@gmail.com

    2012-11-15

    Highlights: ► ZnO/PVA nano sensitized with curcumin and its metal complex were synthesized by vacuum evaporation method. ► M/cur sensitized on ZnO/PVA nanocomposites were characterized. ► Generation of {sup 1}O{sub 2} and ROS were detected by optical and EPR-spin trapping method. ► It was found that photoinduced cleavage of DNA using Zn/cur–ZnO/PVA was superior. ► Photodegradation of MB in water catalyzed by ZnO/PVA–Zn/cur was also superior under visible light. -- Abstract: The photodynamic action of ZnO nano can be improved by modifying the surface by PVA and encapsulating the natural product, curcumin. The synthesized ZnO/PVA nanocomposites have been characterized usingmore » XRD, SEM, TEM, FTIR, TG–DTA, etc. Here we are reporting the photodynamic effect of ZnO nanocomposites on pUC18 DNA. Based on optical and EPR measurements, singlet oxygen and other ROS were responsible for photocleavage of DNA. Most importantly, derived curcumin modified ZnO/PVA nanocomposites were comparatively more effective than derived curcumin complex against HeLa cell lines under in vitro condition. In addition, photodegradation of methylene blue (MB) in water catalyzed by nano ZnO/PVA–curcumin derivative was investigated at room temperature. Under visible irradiation photocatalytic activity of ZnO nanomaterial sensitized curcumin was higher than those of curcumin and nano ZnO.« less

  11. Antitumor activity of photodynamic therapy performed with nanospheres containing zinc-phthalocyanine

    PubMed Central

    2013-01-01

    Background The increasing incidence of cancer and the search for more effective therapies with minimal collateral effects have prompted studies to find alternative new treatments. Among these, photodynamic therapy (PDT) has been proposed as a very promising new modality in cancer treatment with the lowest rates of side effects, revealing itself to be particularly successful when the photosensitizer is associated with nanoscaled carriers. This study aimed to design and develop a new formulation based on albumin nanospheres containing zinc-phthalocyanine tetrasulfonate (ZnPcS4-AN) for use in the PDT protocol and to investigate its antitumor activity in Swiss albino mice using the Ehrlich solid tumor as an experimental model for breast cancer. Methods Ehrlich tumor’s volume, histopathology and morphometry were used to assess the efficacy of intratumoral injection of ZnPcS4-AN in containing tumor aggressiveness and promoting its regression, while the toxicity of possible treatments was assessed by animal weight, morphological analysis of the liver and kidneys, hemogram, and serum levels of total bilirubin, direct bilirubin, indirect bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transferase (GGT), alkaline phosphatase, creatinine and urea. In order to evaluate the efficacy of PDT, groups of animals treated with intratumoral injection of doxorubicin (Dox) were also investigated. Results Intratumoral injection of ZnPcS4-AN was found to be efficient in mediating PDT to refrain tumor aggressiveness and to induce its regression. Although tumor volume reduction was not significant, PDT induced a remarkable increase in the necrosis area seen in the tumor’s central region, as in other experimental groups, including tumor and Dox treated groups, but also in the tumor’s peripheral region. Further, PDT showed minimal adverse effects. Indeed, the use of ZnPcS4-AN in mediating PDT revealed anti-neoplastic activity similar to that

  12. Photodynamic dye adsorption and release performance of natural zeolite

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen

    2017-03-01

    Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment.

  13. Photodynamic dye adsorption and release performance of natural zeolite.

    PubMed

    Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen

    2017-03-31

    Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment.

  14. Current evidence and applications of photodynamic therapy in dermatology

    PubMed Central

    Wan, Marilyn T; Lin, Jennifer Y

    2014-01-01

    In photodynamic therapy (PDT) a photosensitizer – a molecule that is activated by light – is administered and exposed to a light source. This leads both to destruction of cells targeted by the particular type of photosensitizer, and immunomodulation. Given the ease with which photosensitizers and light can be delivered to the skin, it should come as no surprise that PDT is an increasingly utilized therapeutic in dermatology. PDT is used commonly to treat precancerous cells, sun-damaged skin, and acne. It has reportedly also been used to treat other conditions including inflammatory disorders and cutaneous infections. This review discusses the principles behind how PDT is used in dermatology, as well as evidence for current applications of PDT. PMID:24899818

  15. Aluminum–phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy

    PubMed Central

    Muehlmann, Luis Alexandre; Ma, Beatriz Chiyin; Longo, João Paulo Figueiró; Almeida Santos, Maria de Fátima Menezes; Azevedo, Ricardo Bentes

    2014-01-01

    Photodynamic therapy is generally considered to be safer than conventional anticancer therapies, and it is effective against different kinds of cancer. However, its clinical application has been significantly limited by the hydrophobicity of photosensitizers. In this work, a system composed of the hydrophobic photosensitizer aluminum–phthalocyanine chloride (AlPc) associated with water dispersible poly(methyl vinyl ether-co-maleic anhydride) nanoparticles is described. AlPc was associated with nanoparticles produced by a method of solvent displacement. This system was analyzed for its physicochemical characteristics, and for its photodynamic activity in vitro in cancerous (murine mammary carcinoma cell lineage 4T1, and human mammary adenocarcinoma cells MCF-7) and noncancerous (murine fibroblast cell lineage NIH/3T3, and human mammary epithelial cell lineage MCF-10A) cell lines. Cell viability and the elicited mechanisms of cell death were evaluated after the application of photodynamic therapy. This system showed improved photophysical and photochemical properties in aqueous media in comparison to the free photosensitizer, and it was effective against cancerous cells in vitro. PMID:24634582

  16. Subcellular localization and photodynamic activity of Photodithazine (glucosamine salt of chlorin e6) in murine melanoma B16-F10: an in vitro and in vivo study

    NASA Astrophysics Data System (ADS)

    Ono, Bruno Andrade; Pires, Layla; Nogueira, Marcelo Saito; Kurachi, Cristina; Pratavieira, Sebastião.

    2018-02-01

    Photodynamic therapy (PDT) is already a good option for the clinical treatment of several lesions, including mainly nonmelanoma skin cancers. However, cutaneous melanoma treatment remains a challenge when using PDT. One of the reasons for its reduced efficacy is the high pigmentation of melanoma cells. The object of our study is to evaluate the feasibility of the Photodithazine as a photosensitizer for melanoma. Photodithazine is already used in some malignant tumors with satisfactory results and has significant absorption band around 660 nm where the absorption of melanin is low. In this study, we measured the subcellular localization and photodynamic activity of Photodithazine (PDZ) in murine melanoma B16-F10 cell culture. Additionally, a PDT procedure was applied in an animal melanoma model. This first result demonstrates that Photodithazine is more localized at mitochondria in B16F10 cell culture and the cell viability is reduced to less than 90% using 1 µg/mL (PDZ) and 2 J/cm2. We also noticed a rapid PDZ (less than one hour) accumulation in a murine melanoma model. The treatment of melanoma resulted in 20 % more animal survival after one session of PDT compared with the control group. More studies are required to evaluate the cytotoxic effects of Photodithazine at human melanoma.

  17. In silico modelling of apoptosis induced by photodynamic therapy.

    PubMed

    López-Marín, N; Mulet, R

    2018-01-07

    Photodynamic therapy (PDT) is an emergent technique used for the treatment of several diseases. After PDT, cells die by necrosis, apoptosis or autophagy. Necrosis is produced immediately during photodynamic therapy by high concentration of reactive oxygen species, apoptosis and autophagy are triggered by mild or low doses of light and photosensitizer. In this work we model the cell response to low doses of PDT assuming a bi-dimensional matrix of interacting cells. For each cell of the matrix we simulate in detail, with the help of the Gillespie's algorithm, the two main chemical pathways leading to apoptosis. We unveil the role of both pathways in the cell death rate of the tumor, as well as the relevance of several molecules in the process. Our model suggests values of concentrations for several species of molecules to enhance the effectiveness of PDT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparison of cryotherapy and photodynamic therapy in treatment of oral leukoplakia.

    PubMed

    Kawczyk-Krupka, Aleksandra; Waśkowska, Jadwiga; Raczkowska-Siostrzonek, Agnieszka; Kościarz-Grzesiok, Anna; Kwiatek, Sebastian; Straszak, Dariusz; Latos, Wojciech; Koszowski, Rafał; Sieroń, Aleksander

    2012-06-01

    Oral leukoplakia is a pre-malignant lesion of the oral mucosa. The aim of this study is to compare the curative effects of photodynamic therapy and cryotherapy in the treatment of oral leukoplakia. The first group, treated by photodynamic therapy (δ-aminolevulinic acid (ALA), 630-635 nm wavelength), consisted of 48 patients suffering from leukoplakia. The second group consisted of 37 patients treated using cryotherapy. Analyses and comparisons of the complete responses, recurrences, numbers of procedures and adverse effects after both PDT and cryotherapy were obtained. In the first group, a complete response was obtained in 35 patients (72.9%), with thirteen recurrences observed (27.1%) over a six-month period. In the second group, a complete response was obtained in 33 patients (89.2%), and recurrence was observed in nine patients (24.3%). Photodynamic therapy and cryotherapy appear to be comparative methods of treatment that may both serve as alternatives for the traditional surgical treatment of oral leukoplakia. The advantages of PDT are connected with minimally invasive and localized character of the treatment and with not damage of collagenous tissue structures, therefore normal cells will repopulate these arrangements. PDT is more convenient for patients, less painful, and more esthetic. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Multifunctional nanoplatform for enhanced photodynamic cancer therapy and magnetic resonance imaging.

    PubMed

    Hao, Yongwei; Zhang, Bingxiang; Zheng, Cuixia; Niu, Mengya; Guo, Haochen; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Wang, Lei; Zhang, Yun

    2017-03-01

    Co-delivery of photosensitizers and synergistic agents by one single nanoplatform is interesting for enhancing photodynamic therapy (PDT) of cancer. Here, a multifunctional nanoplatform for enhanced photodynamic therapy and magnetic resonance imaging of cancer was constructed. The poly (lactide-co-glycolide) (PLGA) nanoparticles (NPs) loaded with hematoporphyrin monomethyl ether (HMME) were coated with multifunctional manganese dioxide (MnO 2 ) shells, which were designed as PLGA/HMME@MnO 2 NPs. Once the NPs were effectively taken up by tumor cells, the intracellular H 2 O 2 was catalysed by the MnO 2 shells to generate O 2 . Meanwhile, the higher glutathione (GSH) promoted the degradation of MnO 2 into Mn 2+ ions with the ability of magnetic resonance (MR) imaging. After the degradation of outer layer, the release of photosensitizer was promoted. Under irradiation, the released HMME produced cytotoxic reactive oxygen species (ROS) to damage the tumor cells when the O 2 was generated in the hypoxic tumor site. Furthermore, the decreased GSH level further inhibited the consumption of the produced ROS, which greatly enhanced the PDT efficacy. Therefore, this study suggested that this multifunctional system has the potential for enhanced photodynamic therapy and magnetic resonance imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Technology Assessments of High Performance Envelope with Optimized Lighting, Solar Control, and Daylighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor S.; Thanachareonkit, Anothai; Touzani, Samir

    The objective of this monitored field study was to identify near-term innovative façade technologies for solar control and daylighting with a goal of 20-40% energy use savings below Title 24 2013 in the 30-ft deep perimeter zone near vertical windows within cost and comfort constraints. The targeted market was new or existing commercial office buildings or buildings with similar patterns of use.

  1. Systemic estimation of the effect of photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Kogan, Eugenia A.; Meerovich, Gennadii A.; Torshina, Nadezgda L.; Loschenov, Victor B.; Volkova, Anna I.; Posypanova, Anna M.

    1997-12-01

    The effects of photodynamic therapy (PDT) of cancer needs objective estimation and its unification in experimental as well as in clinical studies. They must include not only macroscopical changes but also the complex of following morphological criteria: (1) the level of direct tumor damage (direct necrosis and apoptosis); (2) the level of indirect tumor damage (ischemic necrosis); (3) the signs of vascular alterations; (4) the local and systemic antiblastome resistance; (5) the proliferative activity and malignant potential of survival tumor tissue. We have performed different regimes PDT using phthalocyanine derivatives. The complex of morphological methods (Ki-67, p53, c-myc, bcl-2) was used. Obtained results showed the connection of the tilted morphological criteria with tumor regression.

  2. Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy.

    PubMed

    Huang, Ling; Li, Zhanjun; Zhao, Yang; Zhang, Yuanwei; Wu, Shuang; Zhao, Jianzhang; Han, Gang

    2016-11-09

    Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging-guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NIR absorption band (600-800 nm) with a remarkably high singlet oxygen quantum yield (Φ Δ = 67%). After being encapsulated with biodegradable PLA-PEG-FA polymers, Car-BDP can form uniform and small organic nanoparticles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm -2 ). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.

  3. [The randomized study of efficiency of preoperative photodynamic].

    PubMed

    Akopov, A L; Rusanov, A A; Molodtsova, V P; Gerasin, A V; Kazakov, N V; Urtenova, M A; Chistiakov, I V

    2013-01-01

    The authors made a prospective randomized comparison of results of preoperative photodynamic therapy (PhT) with chemotherapy, preoperative chemotherapy in initial unresectable central non-small cell lung cancer in stage III. The efficiency and safety of preoperative therapy were estimated as well as the possibility of subsequent surgical treatment. The research included patients in stage IIIA and IIIB of central non-small cell lung cancer with lesions of primary bronchi and lower section of the trachea, which initially were unresectable, but potentially the patients could be operated on after preoperative treatment. The photodynamic therapy was performed using chlorine E6 and the light of wave length 662 nm. Since January 2008 till December 2011,42 patients were included in the research, 21 patients were randomized in the group for photodynamic therapy and 21--in group without PhT. These groups were compared according to their sex, age, stage of the disease and histological findings. After nonadjuvant treatment the remissions were reached in 19 (90%) patients of the group with PhT and in 16 (76%) patients without PhT and all the patients were operated on. The explorative operations were made on 3 patients out of 16 operated on in the group without PhT (19%). In the group PhT 14 pneumonectomies and 5 lobectomies were perfomed opposite 10 pneumonectomies and 3 lobectomies in group without PhT. The degree of radicalism of resection appears to be reliably higher in the group PhT (RO-89%, R1-11% as against RO-54%, R1-46% in group without PhT), p = 0.038. The preoperative endobronchial PhT conducted with chemotherapy was characterized by efficiency and safety, allowed the surgical treatment and elevated the degree of radicalism of this treatment in selected patients, initially assessed as unresectable.

  4. On the role of adenylate cyclase, tyrosine kinase, and tyrosine phosphatase in the response of nerve and glial cells to photodynamic impact

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Bragin, D. E.; Dergacheva, Olga Y.; Vanzha, O.; Oparina, L.; Uzdensky, Anatoly B.

    2004-08-01

    The role of different intercellular signaling pathways involving adenylate cyclase (AC), receptor tyrosine kinase (RTK), tyrosine and serine/threonine protein phosphatases (PTP or PP, respectively) in the response of crayfish mechanoreceptor neuron (MRN) and surrounding glial cells to photodynamic effect of aluminum phthalocyanine Photosens have been studied. AC inhibition by MDL-12330A decreased neuron lifetime, whereas AC activation by forskolin increase it. Thus, increase in cAMP produced by activated AC protects SRN against photodynamic inactivation. Similarly, RTK inhibition by genistein decreased neuron lifetime, while inhibition of PTP or PP that remove phosphate groups from proteins, prolonged neuronal activity. AC inhibition reduced photoinduced damage of the plasma membrane, and, therefore, necrosis in neuronal and glial cells. RTK inhibition protected only neurons against PDT-induced membrane permeabilization while glial cells became lesser permeable under ortovanadate-mediated PTP inhibition. AC activation also prevented PDT-induced apoptosis in glial cells. PP inhibition enhanced apoptotic processes in photosensitized glial cells. Therefore, both intercellular signaling pathways involving AC and TRK are involved in the maintenance of neuronal activity, integrity of the neuronal and glial plasma membranes and in apoptotic processes in glia under photosensitization.

  5. Effectiveness of repeated photodynamic therapy in the elimination of intracanal Enterococcus faecalis biofilm: an in vitro study.

    PubMed

    Prażmo, Ewa Joanna; Godlewska, Renata Alicja; Mielczarek, Agnieszka Beata

    2017-04-01

    The study aimed to investigate the effectiveness of photodynamic therapy in the elimination of intracanal Enterococcus faecalis biofilm and to analyse how a repeated light irradiation, replenishment of oxygen and photosensitiser affect the results of the photodynamic disinfecting protocol. After chemomechanical preparation, 46 single-rooted human teeth were infected with a clinical strain of E. faecalis and incubated for a week in microaerobic conditions. The experimental procedures included groups of single application of photodynamic therapy, two cycles of PDT, irrigation with 5.25% NaOCl solution and negative and positive control. The number of residing bacterial colonies in the root canals was determined based on the CFU/ml method. In the group of preparations irrigated with NaOCl, bacterial colonies were not observed. A single PDT eliminated 45% of the initial CFU/ml. Repeated PDT eradicated 95% of the intracanal bacterial biofilm. Photodynamic therapy has a high potential for the elimination of E. faecalis biofilm. There is a safe therapeutic window where photoinduced disinfection can be used as an adjuvant to conventional endodontic treatment, which remains the most effective.

  6. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    NASA Astrophysics Data System (ADS)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  7. Photodynamic therapy--mechanism and employment.

    PubMed

    Szpringer, Ewa; Lutnicki, Krzysztof; Marciniak, Andrzej

    2004-01-01

    Photodynamic terapy (PDT) is a new treatment for a wide variety of malignancies and premalignant dysplasias, as well as some non-cancer indications. Therapeutic response to PTD is achieved through the activation of non-toxic photosensitiser located within neoplastic tissue, using visible light tuned to the appropriate absorption band of the photosensitiser molecule. This produces cytotoxic free radical such as singlet oxigen, which result in local photo-oxidation, cell damage and destruction of the tumour cells. Systemic administration of photosensitisers has been used with endoscopic light exposure to treat a variety of internal malignances. A topical drug delivery is used in the skin deseases treatment. The selective distribution of photosensitiser in the target tissue is the fundamental to the process of PDT. This tissue specific photosensitation and normal tissue sparing results in good healing and often very good cosmetic results. Peterson PTD can be used for the treatment of cutaneous lesions (e.g., SCC, BCC, Bowen's disease, mycosis fungoides, erythroplasia of Queyrat, Gorlin's Syndrome, actinic keratoses), lower genital tract neoplasia (VIN and CIN), gastrointestinal tumours, etc., as well as nononcological indications (e.g., acne, condyloma acuminatum, lichen planus, psoriasis, vitiligo, vulval lichen sclerosus, warts and verrucae).

  8. Photodynamic Action on Native and Denatured Transforming Deoxyribonucleic Acid from Haemophilus influenzae

    PubMed Central

    León, Manuel Ponce-De; Cabrera-Juárez, Emiliano

    1970-01-01

    The photodynamic inactivation of native or denatured transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae is described. The inactivation at the same pH was higher for denatured than native DNA. At acidic pH, the inactivation both for native and denatured DNA was faster than at alkaline pH. The guanine content of photoinactivated native DNA at neutral pH was less than untreated DNA. The inactivation of biological activity was more extensive than the alteration of guanine. The absorption spectrum of photoinactivated native or denatured DNA was only slightly different than the control DNA at the different experimental conditions. PMID:5309576

  9. Photodynamic tissue adhesion with chlorin(e6) protein conjugates.

    PubMed

    Khadem, J; Veloso, A A; Tolentino, F; Hasan, T; Hamblin, M R

    1999-12-01

    To test the hypothesis that a photodynamic laser-activated tissue solder would perform better in sealing scleral incisions when the photosensitizer was covalently linked to the protein than when it was noncovalently mixed. Conjugates and mixtures were prepared between the photosensitizer chlorin(e6) and various proteins (albumin, fibrinogen, and gelatin) in different ratios and used to weld penetrating scleral incisions made in human cadaveric eyes. A blue-green (488-514 nm) argon laser activated the adhesive, and the strength of the closure was measured by increasing the intraocular pressure until the wound showed leakage. Both covalent conjugates and noncovalent mixtures showed a light dose-dependent increase in leaking pressure. A preparation of albumin chlorin(e6) conjugate with additional albumin added (2.5 protein to chlorin(e6) molar ratio) showed significantly higher weld strength than other protein conjugates and mixtures. This is the first report of dye-protein conjugates as tissue solders. These conjugates may have applications in ophthalmology.

  10. Photodynamic-induced inactivation of Propionibacterium acnes

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Teschke, M.; Eick, Stephen G.; Pfister, W.; Meyer, Herbert; Halbhuber, Karl-Juergen

    1998-05-01

    We report on photodynamically induced inactivation of the skin bacterium Propionibacterium acnes (P. acnes) using endogenous as well as exogenous photosensitizers and red light sources. P. acnes is involved in the pathogenesis of the skin disease acne vulgaris. The skin bacterium is able to synthesize the metal-free fluorescent porphyrins protoporphyrin IX (PP) and coproporphyrin (CP) as shown by in situ spectrally-resolved detection of natural autofluorescence of human skin and bacteria colonies. These naturally occurring intracellular porphyrins act as efficient endogenous photosensitizers. Inactivation of P. acnes suspensions was achieved by irradiation with He-Ne laser light in the red spectral region (632.8 nm). We monitored the photodynamically-induced death of single bacteria using a fluorescent viability kit in combination with confocal laser scanning microscopy. In addition, the photo-induced inactivation was calculated by CFU (colony forming units) determination. We found 633 nm-induced inactivation (60 mW, 0.12 cm2 exposure area, 1 hour irradiation) of 72% in the case of non-incubated bacteria based on the destructive effect of singlet oxygen produced by red light excited endogenous porphyrins and subsequent energy transfer to molecular oxygen. In order to achieve a nearly complete inactivation within one exposure procedure, the exogenous photosensitizer Methylene Blue (Mb) was added. Far red exposure of Mb-labeled bacteria using a krypton ion laser at 647 nm and 676 nm resulted in 99% inactivation.

  11. Electric Lighting and Daylighting in Schools. IssueTrak: A CEFPI Brief on Educational Facility Issues.

    ERIC Educational Resources Information Center

    Grocoff, Paul N.

    This report examines both electric lighting and daylighting, listing criteria to determine the correct equipment for a school renovation or building project. Specific topics examine use of prismatic lenses; parabolic louvers; and indirect lighting, including the cost savings of using indirect lighting. The report indicates there is no clear answer…

  12. Molecular photosensitisers for two-photon photodynamic therapy.

    PubMed

    Bolze, F; Jenni, S; Sour, A; Heitz, V

    2017-11-30

    Two-photon excitation has attracted the attention of biologists, especially after the development of two-photon excited microscopy in the nineties. Since then, new applications have rapidly emerged such as the release of biologically active molecules and photodynamic therapy (PDT) using two-photon excitation. PDT, which requires a light-activated drug (photosensitiser), is a clinically approved and minimally invasive treatment for cancer and for non-malignant diseases. This feature article focuses on the engineering of molecular two-photon photosensitisers for PDT, which should bring important benefits to the treatment, increase the treatment penetration depth with near-infrared light excitation, improve the spatial selectivity and reduce the photodamage to healthy tissues. After an overview of the two-photon absorption phenomenon and the methods to evaluate two-photon induced phototoxicity on cell cultures, the different classes of photosensitisers described in the literature are discussed. The two-photon PDT performed with historical one-photon sensitisers are briefly presented, followed by specifically engineered cyclic tetrapyrrole photosensitisers, purely organic photosensitisers and transition metal complexes. Finally, targeted two-photon photosensitisers and theranostic agents that should enhance the selectivity and efficiency of the treatment are discussed.

  13. Nanophotosensitizers toward advanced photodynamic therapy of Cancer.

    PubMed

    Lim, Chang-Keun; Heo, Jeongyun; Shin, Seunghoon; Jeong, Keunsoo; Seo, Young Hun; Jang, Woo-Dong; Park, Chong Rae; Park, Soo Young; Kim, Sehoon; Kwon, Ick Chan

    2013-07-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for selective destruction of cancer and other diseases and involves the colocalization of light, oxygen, and a photosensitizer (PS) to achieve photocytotoxicity. Although this therapeutic method has considerably improved the quality of life and life expectancy of cancer patients, further advances in selectivity and therapeutic efficacy are required to overcome numerous side effects related to classical PDT. The application of nanoscale photosensitizers (NPSs) comprising molecular PSs and nanocarriers with or without other biological/photophysical functions is a promising approach for improving PDT. In this review, we focus on four nanomedical approaches for advanced PDT: (1) nanocarriers for targeted delivery of PS, (2) introduction of active targeting moieties for disease-specific PDT, (3) stimulus-responsive NPSs for selective PDT, and (4) photophysical improvements in NPS for enhanced PDT efficacy. ► Conservation of normal tissues demands non-invasive therapeutic methods. ► PDT is a light-activated, non-invasive modality for selective destruction of cancers.► Success of PDT requires further advances to overcome the limitations of classical PDT. ►Nanophotosensitizers help improve target selectivity and therapeutic efficacy of PDT. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. The photosensitizer talaporfinum caused microvascular embolization for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Liming; Aizawa, Katsuo

    2005-07-01

    Photodynamic therapy (PDT) has been evolving rapidly in the recent years. A second-generation Photosensitizer mono-1-aspartyl chlorine 6 (Talaporfin / Npe6 / ME2906, Japan Meiji Seika, Ltd.) has been sanctified for the lung cancer clinical PDT by the Japan Ministry of Health, Labor and Welfare. In this paper, Talaporfin was injected to the implant cancer of a mouse a Talaporfin dose of 5mg/kg through intravenous. After 6 hours, the fluorescence images of the mouse were observed with a microscope and a 664 nm diode laser. Effects of therapy were clarified using the different irradiation energies of the laser (50, 100, 200 J/cm2). Both in plasma and in cancer, the concentrations of Talaporfin were analyzed using High Performance Liquid Chromatography (HPLC). Authors find that the higher concentrations of Talaporfin in plasma, the better PDD effect. It is experimentally verified that local microvascular embolisms in the cancer are formed for photodynamic therapy after the Talaporfin injection and the laser irradiation.

  15. Systemic photodynamic therapy in folliculitis decalvans.

    PubMed

    Collier, N J; Allan, D; Diaz Pesantes, F; Sheridan, L; Allan, E

    2018-01-01

    Folliculitis decalvans (FD) is classified as a primary neutrophilic cicatricial alopecia, and is estimated to account for approximately 10% of all cases of primary cicatricial alopecia. The role of dysfunctional immune activity and the presence of bacteria, particularly Staphylococcus aureus, appear pivotal. We describe a 26-year-old man with a 4-year history of FD that was recalcitrant to numerous systemic and topical therapies, whose disease was virtually cleared during a follow-up of 25 months following a course of treatment with systemic photodynamic therapy (PDT) using ultraviolet light (100-140 J/cm 2 ) with porfimer sodium 1 mg/kg as monotherapy. This is the first report of the use of systemic PDT as a treatment for FD. Systemic PDT has potent antibacterial effects with little or no resistance. In addition, systemic PDT provides local immunomodulation and improved scar healing. Significant adverse effects following systemic PDT with appropriate aftercare are rare. This case demonstrates that systemic PDT is a useful therapy option in the treatment of recalcitrant FD. © 2017 British Association of Dermatologists.

  16. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell.

    PubMed

    Hosseinzadeh, Reza; Khorsandi, Khatereh

    2017-06-01

    The aim of current study was to use methylene blue-curcumin ion pair nanoparticles and single dyes as photosensitizer for comparison of photodynamic therapy (PDT) efficacy on MDA-MB-231 cancer cells, also various light sources effect on activation of photosensitizer (PS) was considered. Ion pair nanoparticles were synthesized using opposite charge ions precipitation and lyophilized. The PDT experiments were designed and the effect of PSs and light sources (Red LED (630nm; power density: 30mWcm -2 ) and blue LED (465nm; power density: 34mWcm -2 )) on the human breast cancer cell line were examined. The effect of PS concentration (0-75μg.mL -1 ), incubation time, irradiation time and light sources, and priority in irradiation of blue or red lights were determined. The results show that the ion pairing of methylene blue and curcumin enhance the photodynamic activity of both dyes and the cytotoxicity of ion pair nanoparticles on the MDA-231 breast cancer cell line. Blue and red LED light sources were used for photo activation of photosensitizers. The results demonstrated that both dyes can activate using red light LED better than blue light LED for singlet oxygen producing. Nano scale ion pair precipitating of methylene blue-curcumin enhanced the cell penetrating and subsequently cytotoxicity of both dyes together. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Using fluorescence to augment the efficacy of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Dickey, Dwayne J.; Liu, Weiyang; Naicker, Selvaraj; Woo, Thomas; Moore, Ronald B.; Tulip, John

    2006-09-01

    Photodynamic Therapy (PDT) is a relatively novel oncological treatment modality, in which a patient is administered a photosensitive drug, called a photosensitizer. After allowing sufficient time for biodistribution, the cancerous area is irradiated with light of the appropriate wavelength, activating the photosensitizer to produce highly reactive singlet oxygen, which produces a highly localized cell kill. The efficacy of PDT is determined by a) the intensity of the light b) the local concentration of the photosensitizer, and c) the availability of oxygen. However, with the clinical application of PDT, the patient is simply administered a body mass dependent quantity of photosensitizer, and then the target area is administered a prescribed amount of radiant energy (joules per cubic centimetre). For treatment of superficial malignancies, PDT has many successes; however, interstitial PDT (PDT of solid, internal malignancies) has inconsistent outcomes mostly due to the inability to predict, calculate or measure the variables that affect PDT: the radiation dose, oxygen concentration, and the photosensitizer concentration. We have developed sophisticated methods to determine the behaviour of light in homogeneous biological tissues. Tissue oxygen levels can be replenished by fractionating the light dose - allowing areas of your target tissue to go through a "dark" cycle during PDT. However, to date, there has not been an accurate method of determining tissue photosensitizer concentrations in-vivo. We are researching the efficacy of a novel hypocrellin derivative, SL-052. Like other photosensitizers available, SL-052 shows strong therapeutic photodynamic activity when irradiated by 635 nm light. Like most photosensitizers, SL-052 exhibits fluorescent activity, but SL-052 also shows strong fluorescent emission at 725nm when excited by 635 nm. The intensity of the fluorescent emission can been correlated with the local concentration of the photosenstizer. However, many

  18. Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen-pyropheophorbide conjugate.

    PubMed

    Fernandez Gacio, Ana; Fernandez-Marcos, Carlos; Swamy, Narasimha; Dunn, Darra; Ray, Rahul

    2006-10-15

    We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens. 2006 Wiley-Liss, Inc.

  19. Photodynamic therapy for occluded biliary metal stents

    NASA Astrophysics Data System (ADS)

    Roche, Joseph V. E.; Krasner, Neville; Sturgess, R.

    1999-02-01

    In this abstract we describe the use of photodynamic therapy (PDT) to recanalize occluded biliary metal stents. In patients with jaundice secondary to obstructed metal stents PDT was carried out 72 hours after the administration of m THPC. Red laser light at 652 nm was delivered endoscopically at an energy intensity of 50 J/cm. A week later endoscopic retrograde cholangiogram showed complete recanalization of the metal stent.

  20. Photodynamic inactivation using curcuminoids and Photogem on caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Albuquerque, Yulli R.; Pratavieira, Sebastião.; Bagnato, Vanderlei S.; Inada, Natalia M.; Souza, Larissa M.; Afonso, Ana; de Souza, Clovis W. O.; Oliveira, Kleber T.; Anibal, Fernanda F.

    2018-02-01

    Resistance to various anthelmintic drugs is reported in many animals and can become a severe problem for human and animal health. In this study, Photogem® and three curcuminoids compounds (curcumin, demethoxycurcumin, bisdemethoxycurcumin) were used as photosensitizers in the photodynamic inactivation (PDI) in the helminth model Caenorhabditis elegans to investigate the ability of this procedure to worm life cycle. Initially, the presence and location of the photosensitizers in the worm's body were verified by fluorescence confocal microscopy. Curcumin was deposited in the digestive tract and Photogem® along the body of the animal in the incubation time of 12 hours with the photosensitizer. Subsequently, a PDI procedure using a LED device was performed to illuminate the worms treated with the photosensitizers. The worms were observed by optical microscopy until 48 hours after the PDI to verify the changes in motility, the presence of eggs and larvae and the number of live worms. Curcuminoids tested separately and in combination and two light doses of 30 J/m2 no changes were observed in the life cycle of the worm at concentrations of 2 mM and 1 mM. However, in treatment with Photogem® and a light dose of 100 J/m2 a reduction in motility and reproduction of the worm with 0.2 mg/mL was observed after 6 hours of exposure, in addition to the death of most worms at concentrations of 6, 4, and 2 mg/mL. We suggest, therefore, that photodynamic inactivation with Photogem® may present an anthelmintic effect against C. elegans, but there is a need for studies on helminths with parasitic activity.

  1. A statistical analysis of the energy policy act of 2005, its changes to the daylight saving program, and impact on residential energy consumption

    NASA Astrophysics Data System (ADS)

    Murray, Patrick L.

    Government programs designed to decrease resource consumption, improve productivity and capitalize on extended daylight hours in the summer have been developed and implemented throughout the world for nearly three hundred years. In 2005, The United States government adopted an extended daylight savings program that increases the number of weeks where the country observes Daylight Saving Time (DST) from 31 to 35 weeks. The program took effect in March 2007. Arguments in support of DST programs highlight the portion of electricity consumption attributed to residential lighting in the evening hours. Adjusting clocks forward by one hour in summer months is believed to reduce electricity consumption due to lighting and therefore significantly reduce residential energy consumption during the period of DST. This paper evaluates the efficacy of the changes to DST resulting from the Energy Policy Act of 2005. The study focuses on changes to household electricity consumption during the extended four weeks of DST. Arizona, one of two states that continue to opt out of DST serves as the study's control for a comparison with neighboring states, Colorado, Nebraska, Nevada, New Mexico, Oklahoma, Texas and Utah. Results from the regression analysis of a Difference in Difference model indicate that contrary to evaluations by Congress and the Department of Energy, the four week period of Extended Daylight Saving Time does not produce a significant decrease in per capita electricity consumption in Southwestern states.

  2. Cholecystokinin 1 Receptor - A Unique G Protein-Coupled Receptor Activated by Singlet Oxygen (GPCR-ABSO).

    PubMed

    Jiang, Hong Ning; Li, Yuan; Jiang, Wen Yi; Cui, Zong Jie

    2018-01-01

    Plasma membrane-delimited generation of singlet oxygen by photodynamic action with photosensitizer sulfonated aluminum phthalocyanine (SALPC) activates cholecystokinin 1 receptor (CCK1R) in pancreatic acini. Whether CCK1R retains such photooxidative singlet oxygen activation properties in other environments is not known. Genetically encoded protein photosensitizers KillerRed or mini singlet oxygen generator (miniSOG) were expressed in pancreatic acinar tumor cell line AR4-2J, CCK1R, KillerRed or miniSOG were expressed in HEK293 or CHO-K1 cells. Cold light irradiation (87 mW⋅cm -2 ) was applied to photosensitizer-expressing cells to examine photodynamic activation of CCK1R by Fura-2 fluorescent calcium imaging. When CCK1R was transduced into HEK293 cells which lack endogenous CCK1R, photodynamic action with SALPC was found to activate CCK1R in CCK1R-HEK293 cells. When KillerRed or miniSOG were transduced into AR4-2J which expresses endogenous CCK1R, KillerRed or miniSOG photodynamic action at the plasma membrane also activated CCK1R. When fused KillerRed-CCK1R was transduced into CHO-K1 cells, light irradiation activated the fused CCK1R leading to calcium oscillations. Therefore KillerRed either expressed independently, or fused with CCK1R can both activate CCK1R photodynamically. It is concluded that photodynamic singlet oxygen activation is an intrinsic property of CCK1R, independent of photosensitizer used, or CCK1R-expressing cell types. Photodynamic singlet oxygen CCK1R activation after transduction of genetically encoded photosensitizer in situ may provide a convenient way to verify intrinsic physiological functions of CCK1R in multiple CCK1R-expressing cells and tissues, or to actuate CCK1R function in CCK1R-expressing and non-expressing cell types after transduction with fused KillerRed-CCK1R.

  3. Photodynamic dye adsorption and release performance of natural zeolite

    PubMed Central

    Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen

    2017-01-01

    Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment. PMID:28361968

  4. Tetraphenylporphyrin derivatives possessing piperidine group as potential agents for photodynamic therapy.

    PubMed

    Liao, Ping-Yong; Gao, Ying-Hua; Wang, Xin-Rong; Bao, Lei-Lei; Bian, Jun; Hu, Tai-Shan; Zheng, Mei-Zhen; Yan, Yi-Jia; Chen, Zhi-Long

    2016-12-01

    Photodynamic therapy (PDT) is a noninvasive therapeutic and promising procedure in cancer treatment and has attracted considerable attention in recent years. In the present paper, 2-piperidinetetraphenylporphyrin derivatives (P1-P3) conjugated with different substituents (Cl, Me, MeO group) at phenyl position were synthesized via nucleophilic substitution of 2-nitroporphyrin copper derivatives with piperidine by refluxing under a nitrogen atmosphere and then demetalization. The combination of 1 H NMR, 13 C NMR and HR-MS was used to elucidate the identities of them. Their photophysical and photochemical properties, intracellular localization, cytotoxicity in vitro and in vivo against QBC-939 cells were investigated. They have absorption at wavelength about 650nm. All synthesized photosensitizers showed low dark cytotoxicity and comparable with that of hematoporphyrin monomethyl ether (HMME). And they were more phototoxic than HMME to QBC-939 cells in vitro. In bearing QBC-939 tumor BALB/c nude mice, when it treated with 5mg/kg dose of PS and laser light (650nm, 100J/cm 2 , 180mW/cm 2 ), the growth of tumor was inhibited compared to the control group. Among them, P3 exhibited better photodynamic antitumor efficacy on BALB/c nude mice at lower concentration. These results indicate that P3 is a new potential antitumor photosensitizer in photodynamic therapy and deserves further investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Acridine Orange as a Novel Photosensitizer for Photodynamic Therapy in Glioblastoma.

    PubMed

    Osman, Hany; Elsahy, Deena; Saadatzadeh, M Reza; Pollok, Karen E; Yocom, Steven; Hattab, Eyas M; Georges, Joseph; Cohen-Gadol, Aaron A

    2018-06-01

    Photodynamic therapy combines the effects of a chemical agent with the physical energy from light or radiation to result in lysis of cells. Acridine orange (AO) is a molecule with fluorescence properties that has been demonstrated to possess photosensitizing properties. The objective of this study was to investigate the photodynamic effect of AO on glioblastoma cell viability and growth. Glioblastoma cells (N = 8000 cells/well at 0 hours) were exposed to AO followed by white unfiltered light-emitting diode light. Cultures were exposed to either 10 or 30 minutes of light. The cell number per well was determined at 0, 24, 48, and 72 hours after exposure. A dramatic cytocidal effect of AO after exposure to 10 minutes of white light was observed. There was almost complete eradication of glioblastoma cells over a 72-hour period. Although AO or light alone exhibited some effect on cell growth, it was not as pronounced as the combination of AO and light. This is the first study to our knowledge to demonstrate the photodynamic effect of AO in glioblastoma cells. These data support the need for further studies to characterize and evaluate whether this striking cytotoxic effect can be achieved in vivo. The combination of AO and exposure to white unfiltered light-emitting diode light may have potential future applications in management of glioblastoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Synthesis by combustion in solution of Zn2TiO4+Ag for photocatalytic and photodynamic applications in the visible

    NASA Astrophysics Data System (ADS)

    Lopera, A. A.; Velásquez, A. M.; Chavarriaga, E. A.; Ocampo, S.; Zaghete, M. A.; Graminha, M. A.; Garcia, C. P.

    2017-12-01

    Zn2TiO4 + Ag compounds were synthesized by the solution combustion path seeking to enhance their photocatalytic and photodynamic response in the visible. X-ray diffraction tests confirmed the formation of the phase and the presence of metallic silver. Field emission electron microscopy evidenced the formation of aggregates formed by grains lower than 100nm. The diffuse reflectance tests allowed to detect compound absorption in the visible region and activation energy of 2.8eV. The evaluation of the photocatalytic properties was performed by the degradation of methylene blue while the photodynamic response in biological systems was performed by the antilesihmanicidal response of the compounds in promastigotes of Leishmania amazonensis. Indirect measurement of ROS species confirmed the formation of oxygen singlets and OH radicals of the compounds when subjected to the action of visible light.

  7. Photosensitizer nanocarriers modeling for photodynamic therapy applied to dermatological diseases

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; López-Escobar, M.; Arce-Diego, J. L.

    2011-02-01

    Photodynamic Therapy involves the therapeutic use of photosensitizers in combination with visible light. The subsequent photochemical reactions generate reactive oxygen species which are considered the principal cytotoxic agents to induce cell death. This technique has become widely used in medicine to treat tumors and other nonmalignant diseases. However, there are several factors related to illumination or the photosensitizer that limit an optimal treatment outcome. The use of nanoparticles (NP) for PDT has been proposed as a solution to current shortcomings. In this way, there are NPs that act as carriers for photosensitizers, NPs that absorb the light and transfer the energy to the photosensitizer and NPs that are themselves photodynamically active. In dermatology, the use of topical photosensitizers produces a time dependent inhomogeneous distribution within the tumor, where the stratum corneum is the main barrier to the diffusion of the photosensitizer to the deeper layers of skin. This produces an insufficient photosensitizer accumulation in tumor tissues and therefore, a low therapeutic efficiency in the case of deep lesions. This work focuses in the use of NPs as photosensitizer carriers to improve the actual topical drug distribution in malignant skin tissues. We present a mathematical model of PS distribution in tumor tissue using NPs that takes into account parameters related to nanoparticles binding. Once the concentration profile of NPs into tissue is obtained, we use a photochemical model which allows us to calculate the temporal evolution of reactive oxygen species according to PS distribution calculated previously from NPs profile.

  8. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy.

    PubMed

    Narsireddy, Amreddy; Vijayashree, Kurra; Adimoolam, Mahesh G; Manorama, Sunkara V; Rao, Nalam M

    2015-01-01

    Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS.

  9. Bovine serum albumin nanoparticles loaded with Photosens photosensitizer for effective photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Khanadeev, Vitaly; Khlebtsov, Boris; Packirisamy, Gopinath; Khlebtsov, Nikolai

    2017-03-01

    Polymeric nanoparticles (NPs) are widely used for drug delivery applications due to high biodegradability, low toxicity and high loading capacity. The focus of this study is the development of photosensitizer Photosens (PS) loaded albumin NPs for efficient photodynamic therapy (PDT). To fabricate PS-loaded bovine serum albumin nanoparticles (BSA-PS NPs), we used a coacervation method with glutaraldehyde followed by passive loading of PS. Successful loading of PS was confirmed by appearance of characteristic peak in absorption spectrum which allows to determine the PS loading in BSA NPs. The synthesized BSA-PS NPs demonstrated low toxicity to HeLa cells at therapeutic concentrations of loaded PS. Compared to free PS solution, the synthesized BSA-PS NPs generated the singlet oxygen more effectively under laser irradiation at 660 nm. In addition, due to presence of various chemical groups on the surface of BSA-PS NPs, they are capable to adsorb on cell surface and accumulate in cells due to cellular uptake mechanisms. Owing to combination of PD and cell uptake advantages, BSA-PS NPs demonstrated higher efficacy of photodynamic damage to cancer cells as compared to free PS at equivalent concentrations. These results suggest that non-targeted BSA-PS NPs with high PD activity and low-fabrication costs of are promising candidates for transfer to PD clinic treatments.

  10. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy

    PubMed Central

    Narsireddy, Amreddy; Vijayashree, Kurra; Adimoolam, Mahesh G; Manorama, Sunkara V; Rao, Nalam M

    2015-01-01

    Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS. PMID:26604753

  11. LeRoy Doggett and Daylight Saving Time: A Reminiscence

    NASA Astrophysics Data System (ADS)

    Bartky, I. R.

    1997-12-01

    Daylight Saving Time (DST) has been a concern of Congress ever since its adoption in 1918. Yet, not until 1976 did Members of Congress have astronomical, geographic and demographic information in terms of the country's Standard Time zones. This information and various impact analyses were developed by the National Bureau of Standards (NBS) at the request of the House of Representatives, which was reviewing the effects of a two-year, DST experiment on the American public. The displays in the study gave legislators a way to consider alternate observance periods in a systematic manner. The leader of the DST study team will detail LeRoy Doggett's involvement during the hectic, three-month analysis period that culminated with NBS officials testifying before Congress.

  12. Photodynamic therapy in dentistry: a literature review.

    PubMed

    Gursoy, Hare; Ozcakir-Tomruk, Ceyda; Tanalp, Jale; Yilmaz, Selçuk

    2013-05-01

    The purpose of this review was to summarize recent developments regarding photodynamic therapy (PDT) in the field of dentistry. A review of pertinent literature was carried out in PubMED to determine the current position of PDT applications in dentistry. One hundred thirteen relevant articles were retrieved from PubMED by inserting the keywords "photodynamic therapy", "dentistry", "periodontology", "oral surgery", and "endodontics". It is anticipated that this overview will create a specific picture in the practitioner's mind regarding the current status and use of PDT. In spite of different results and suggestions brought about by different researchers, PDT can be considered as a promising and less invasive technique in dentistry. PDT seems to be an effective tool in the treatment of localized and superficial infections. Within the limitations of the present review, it can be concluded that although PDT cannot replace antimicrobial therapy at its current stage, it may be used as an adjunctive tool for facilitating the treatment of oral infections. Oral infections (such as mucosal and endodontic infections, periodontal diseases, caries, and peri-implantitis) are among the specific targets where PDT can be applied. Further long-term clinical studies are necessary in establishing a more specific place of the technique in the field of dentistry.

  13. FREE-SPACE QUANTUM CRYPTOGRAPHY IN DAYLIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Buttler, W.T.

    2000-01-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics and information-theoretically secure post-processing methods. An adversary can neither successfully tap the quantum transmissions, nor evade detection, owing to Heisenberg's uncertainty principle. In this paper we describe the theory of quantum cryptography, and the most recent results from our experimental free-space system with which we have demonstrated for the first time the feasibility of quantum key generation overmore » a point-to-point outdoor atmospheric path in daylight. We achieved a transmission distance of 0.5 km, which was limited only by the length of the test range. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on orbit. We present a feasibility analysis of surface-to-satellite quantum key generation.« less

  14. Homogeneous Photodynamical Analysis of Kepler's Multiply-Transiting Systems

    NASA Astrophysics Data System (ADS)

    Ragozzine, Darin

    To search for planets more like our own, NASA s Kepler Space Telescope ( Kepler ) discovered thousands of exoplanet candidates that cross in front of ( transit ) their parent stars (e.g., Twicken et al. 2016). The Kepler exoplanet data represent an incredible observational leap forward as evidenced by hundreds of papers with thousands of citations. In particular, systems with multiple transiting planets combine the determination of physical properties of exoplanets (e.g., radii), the context provided by the system architecture, and insights from orbital dynamics. Such systems are the most information-rich exoplanetary systems (Ragozzine & Holman 2010). Thanks to Kepler s revolutionary dataset, understanding these Multi-Transiting Systems (MTSs) enables a wide variety of major science questions. In conclusion, existing analyses of MTSs are incomplete and suboptimal and our efficient and timely proposal will provide significant scientific gains ( 100 new mass measurements and 100 updated mass measurements). Furthermore, our homogeneous analysis enables future statistical analyses, including those necessary to characterize the small planet mass-radius relation with implications for understanding the formation, evolution, and habitability of planets. The overarching goal of this proposal is a complete homogeneous investigation of Kepler MTSs to provide detailed measurements (or constraints) on exoplanetary physical and orbital properties. Current investigations do not exploit the full power of the Kepler data; here we propose to use better data (Short Cadence observations), better methods (photodynamical modeling), and a better statistical method (Bayesian Differential Evolution Markov Chain Monte Carlo) in a homogenous analysis of all 700 Kepler MTSs. These techniques are particularly valuable for understanding small terrestrial planets. We propose to extract the near-maximum amount of information from these systems through a series of three research objectives

  15. Barrett's esophagus: photodynamic therapy for ablation of dysplasia, reduction of specialized mucosa and treatment of superficial esophageal cancer

    NASA Astrophysics Data System (ADS)

    Overholt, Bergein F.; Panjehpour, Masoud

    1995-03-01

    Fifteen patients with Barrett's esophagus and dysplasia were treated with photodynamic therapy. Four patients also had early, superficial esophageal cancers and 5 had esophageal polyps. Light was delivered via a standard diffuser or a centering esophageal balloon. Eight patients maintained on omeprazole and followed for 6 - 54 months are the subject of this report. Photodynamic therapy ablated dysplastic or malignant mucosa in patients with superficial cancer. Healing and partial replacement of Barrett's mucosa with normal squamous epithelium occurred in all patients and complete replacement with squamous epithelium was found in two. Side effects included photosensitivity and mild-moderate chest pain and dysphagia for 5 - 7 days. In three patients with extensive circumferential mucosal ablation in the proximal esophagus, healing was associated with esophageal strictures which were treated successfully by esophageal dilation. Strictures were not found in the distal esophagus. Photodynamic therapy combined with long-term acid inhibition provides effective endoscopic therapy of Barrett's mucosal dysplasia and superficial (Tis-T1) esophageal cancer. The windowed centering balloon improves delivery of photodynamic therapy to diffusely abnormal esophageal mucosa.

  16. Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy.

    PubMed

    Zhou, Aiguo; Wei, Yanchun; Wu, Baoyan; Chen, Qun; Xing, Da

    2012-06-04

    Near-infrared (NIR)-to-visible upconversion nanoparticle (UCNP) has shown promising prospects in photodynamic therapy (PDT) as a drug carrier or energy donor. In this work, a photosensitizer pyropheophorbide a (Ppa) and RGD peptide c(RGDyK) comodified chitosan-wrapped NaYF(4):Yb/Er upconversion nanoparticle UCNP-Ppa-RGD was developed for targeted near-infrared photodynamic therapy. The properties of UCNP-Ppa-RGD, such as morphology, stability, optical spectroscopy and singlet oxygen generation efficiency, were investigated. The results show that covalently linked pyropheophorbide a molecule not only is stable but also retains its spectroscopic and functional properties. In vitro studies confirm a stronger targeting specificity of UCNP-Ppa-RGD to integrin α(v)β(3)-positive U87-MG cells compared with that in the corresponding negative group. The photosensitizer-attached nanostructure exhibited low dark toxicity and high phototoxicity against cancer cells upon 980 nm laser irradiation at an appropriate dosage. These results represent the first demonstration of a highly stable and efficient photosensitizer modified upconversion nanostructure for targeted near-infrared photodynamic therapy of cancer cells. The novel UCNP-Ppa-RGD nanoparticle may provide a powerful alternative for near-infrared photodynamic therapy with an improved tumor targeting specificity.

  17. Photodynamic Effect of some Phthalocyanines on Enveloped and Naked Viruses.

    PubMed

    Nikolaeva-Glomb, L; Mukova, L; Nikolova, N; Kussovski, V; Doumanova, L; Mantareva, V; Angelov, I; Wöhrle, D; Galabov, A S

    Activity of three photosensitizing phthalocyanine derivatives was tested for photodynamic inactivation towards two coated and two non-enveloped viruses - bovine viral diarrhea virus (BVDV), influenza virus A(H3N2), poliovirus type 1 (PV-1) and human adenovirus type 5 (HAdV5). In the case of coated viruses, a combination of virucidal and irradiation effects was registered by octa-methylpyridyloxy-substituted Ga phthalocyanine (Ga8) toward BVDV, whereas tetra-methylpyridyloxy-substituted Ga phthalocyanine (Ga4) revealed a marked photoinactivation only. No such effect was observed towards influenza A virus. In contrast, the photoinactivating potential of Ga4 and Ga8 marked very high values on naked viruses, especially on HAdV5, at which both the virucidal as well as the irradiation effects became combined.

  18. Re-Analysis Report: Daylighting in Schools, Additional Analysis. Tasks 2.2.1 through 2.2.5.

    ERIC Educational Resources Information Center

    Heschong, Lisa; Elzeyadi, Ihab; Knecht, Carey

    This study expands and validates previous research that found a statistical correlation between the amount of daylight in elementary school classrooms and the performance of students on standardized math and reading tests. The researchers reanalyzed the 19971998 school year student performance data from the Capistrano Unified School District…

  19. Novel Methods to Incorporate Photosensitizers Into Nanocarriers for Cancer Treatment by Photodynamic Therapy

    PubMed Central

    Wang, Shouyan; Fan, Wenzhe; Kim, Gwangseong; Hah, Hoe Jin; Lee, Yong-Eun Koo; Kopelman, Raoul; Ethirajan, Manivannan; Gupta, Anurag; Goswami, Lalit N.; Pera, Paula; Morgan, Janet; Pandey, Ravindra K.

    2013-01-01

    Objective A hydrophobic photosensitizer, 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), was loaded into nontoxic biodegradable amine functionalized polyacrylamide (AFPAA) nanoparticles using three different methods (encapsulation, conjugation, and post-loading), forming a stable aqueous dispersion. Each formulation was characterized for physicochemical properties as well as for photodynamic performance so as to determine the most effective nanocarrier formulation containing HPPH for photodynamic therapy (PDT). Materials and Methods HPPH or HPPH-linked acrylamide was added into monomer mixture and polymerized in a microemulsion for encapsulation and conjugation, respectively. For post-loading, HPPH was added to an aqueous suspension of pre-formed nanoparticles. Those nanoparticles were tested for optical characteristics, dye loading, dye leaching, particle size, singlet oxygen production, dark toxicity, in vitro photodynamic cell killing, whole body fluorescence imaging and in vivo PDT. Results HPPH was successfully encapsulated, conjugated or post-loaded into the AFPAA nanoparticles. The resultant nanoparticles were spherical with a mean diameter of 29 ± 3 nm. The HPPH remained intact after entrapment and the HPPH leaching out of nanoparticles was negligible for all three formulations. The highest singlet oxygen production was achieved by the post-loaded formulation, which caused the highest phototoxicity in in vitro assays. No dark toxicity was observed. Post-loaded HPPH AFPAA nanoparticles were localized to tumors in a mouse colon carcinoma model, enabling fluorescence imaging, and producing a similar photodynamic tumor response to that of free HPPH in equivalent dose. Conclusions Post-loading is the promising method for loading nanoparticles with hydrophobic photosensitizers to achieve effective in vitro and in vivo PDT. Lasers Surg. Med. 43:686–695, 2011. PMID:22057496

  20. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    PubMed

    Hatamleh, Muhanad M; Watts, David C

    2010-07-01

    The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p < 0.05). Mean (SD) values of maximum pull-out forces (in N) for groups 1 to 4 were: 13.63 (7.45), 19.67 (1.37), 13.58 (2.61), and 10.37 (2.52). Group 2 exhibited the highest pull-out force that was statistically significant when compared to the other groups. Maximum bending strengths of fiber bundles were in the range of 917.72 MPa to 1124.06 MPa. Bending strength significantly increased after 200 and 400 hours of aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.

  1. [Cost-effectiveness of photodynamic therapy in age-related macular degeneration].

    PubMed

    Muslera, E; Natal, C

    2006-04-01

    The aim of this study was to estimate the public health service cost of visual acuity improvement or maintenance with photodynamic therapy in patients with age-related macular degeneration (ARMD). This illness is the most frequent cause of blindness in elderly patients in western countries. A cost-effectiveness analysis was carried out to compare photodynamic therapy versus no treatment. The analysis point of view was that of the health service. The improvement or maintenance of visual acuity and contrast sensitivity were considered efficacy results. Direct costs were estimated by means of cost accountancy. Quality adjusted costs per visual acuity life year gained (QACVAG) were calculated through utility values from other studies. The cost per year of maintenance of visual acuity in a two-year period was 36,530 euro for women and 34,804 euro for men. If this cost was estimated for life expectancy in Asturias, it would be reduced to 4,298 euro for women and 5,354 euro for men. If costs of the QACVAG, in a two-year period, were considered, photodynamic therapy would cost 66,931 euro for women and 70,249 euro for men. This cost-effectiveness analysis allows decisions to be made about public financing. Some research in our country suggests that public health financing should be provided for interventions whose cost-effectiveness is less than 30,000 euro of CVAQA. The treatment evaluated here far exceeds this value. It is recommended that the use of more restrictive patient selection, incorporating diagnostic criteria and patient autonomy indicators, could improve the results of this intervention.

  2. Photodynamic therapy for inactivating endodontic bacterial biofilms and effect of tissue inhibitors on antibacterial efficacy

    NASA Astrophysics Data System (ADS)

    Shrestha, Annie; Kishen, Anil

    Complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy (APDT) to achieve effective disinfection of infected root canals. In addition, tissue-inhibitors present inside the root canals are known to affect APDT activity. This study was aimed to assess the effect of APDT on bacterial biofilms and evaluate the effect of tissue-inhibitors on the APDT. Rose-bengal (RB) and methylene-blue (MB) were tested on Enterococcus faecalis (gram-positive) and Pseudomonas aeruginosa (gram-negative) biofilms. In vitro 7- day old biofilms were sensitized with RB and MB, and photodynamically activated with 20-60 J/cm2. Photosensitizers were pre-treated with different tissue-inhibitors (dentin, dentin-matrix, pulp tissue, bacterial lipopolysaccharides (LPS), and bovine serum albumin (BSA)) and tested for antibacterial effect of APDT. Microbiological culture based analysis was used to analyze the cell viability, while Laser Scanning Confocal Microscopy (LSCM) was used to examine the structure of biofilm. Photoactivation resulted in significant reduction of bacterial biofilms with RB and MB. The structure of biofilm under LSCM was found to be disrupted with reduced biofilm thickness. Complete biofilm elimination could not be achieved with both tested photosensitizers. APDT effect using MB and RB was inhibited in a decreasing order by dentin-matrix, BSA, pulp, dentin and LPS (P< 0.05). Both strains of bacterial biofilms resisted complete elimination after APDT and the tissue inhibitors existing within the root canal reduced the antibacterial activity at varying degrees. Further research is required to enhance the antibacterial efficacy of APDT in an endodontic environment.

  3. The time of sunrise and the number of hours with daylight may influence the diurnal rhythm of acute heart attack mortality.

    PubMed

    Kriszbacher, Ildikó; Bódis, József; Boncz, Imre; Koppan, Agnes; Koppan, Miklós

    2010-04-01

    We investigated whether the time of sunrise and the number of daylight hours have an effect on the seasonality, or the daily rhythm of heart attack mortality. We analyzed retrospectively data of patients admitted to hospitals with the diagnosis of heart attack (n=32,329) and patients who deceased of a heart attack (n=5142) between January 1, 2004 and December 31, 2005 in Hungary. Heart attack mortality was highest during winter, while lowest number of events was recorded during summer . The daily peak of diurnality was between 6:00 am and 12:00 pm (33.77%). A positive correlation was found between the time of sunrise, time of sunset and the mortality caused by myocardial infarction (p<0,01). In the analysis of the number of daylight hours and the heart attack mortality we found a negative correlation (r=-0.105, p<0.05). No significant difference was found between sexes and different age-groups in heart attack mortality. Our data suggest, that the occurrence and the mortality of heart attack may be related to the time of sunrise and the number of daylight hours. Copyright 2008 Elsevier Ireland Ltd. All rights reserved.

  4. Cancer cell death processes in combining photothermal and photodynamic effects through surface plasmon resonance of gold nanoring (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    He, Yulu; Yu, Jian-He; Hsiao, Jen-Hung; Tu, Yi-Chou; Low, Meng Chun; Hua, Wei-Hsiang; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung; Zhang, Zhenxi

    2017-02-01

    In combining the photothermal and photodynamic effects for killing cancer cells through the localized surface plasmon resonance (LSP) of photosensitizer-linked Au nanorings (NRIs), which are up-taken by the cells, the cells can be killed via different processes, including necrosis and apoptosis. In particular, the dominating effect, either photothermal or photodynamic effect, for cancer cell killing leading to either necrosis or apoptosis process is an important issue to be understood for improving the therapy efficiency. In this paper, we demonstrate the study results in differentiating the necrosis and apoptosis processes of cell death under different laser illumination conditions. With the LSP resonance wavelength of the Au NRIs around 1064 nm, the illumination of a 1064-nm cw laser can mainly produce the photothermal effect. The illumination of a 1064-nm fs laser can lead to LSP resonance-assisted two-photon absorption of the photosensitizer (AlPcS) for generating singlet oxygen and hence the photodynamic effect, besides the photothermal effect. Also, the illumination of a 660-nm cw laser can result in single-photon absorption of the photosensitizer for generating singlet oxygen and the photodynamic effect. By comparing the necrosis and apoptosis distributions in dead cells between the cases of different laser illumination conditions, we can differentiate the cancer cell killing processes between the photothermal effect, photodynamic effect, and the mixed effect.

  5. Photodynamic therapy of Curcuma longa extract stimulated with blue light against Aggregatibacter actinomycetemcomitans.

    PubMed

    Saitawee, Darika; Teerakapong, Aroon; Morales, Noppawan Phumala; Jitprasertwong, Paiboon; Hormdee, Doosadee

    2018-06-01

    Curcumin, one of an established curcuminoid substances extracted from Curcuma longa, has been used as a photosensitizer (PS) in photodynamic therapy (PDT). Curcuminoid substances has been reported to have benefits in treating dental chronic infection and inflammation diseases, such as chronic periodontitis. The purpose of this study was to find the optimum concentration of Curcuma longa (CL) extract, containing all curcuminoid substances, and the power density of blue light (BL) in photodynamic therapy against periodontally pathogenic bacteria, A. actinomycetemcomitans. Antibacterial activity of various concentrations of CL extract against A. actinomycetemcomitans was determined. Exponentially growing bacteria were combined with 2-fold dilution of CL extract solution ranging from 25 to 0.098 μg/ml. Co-culture bacteria treated with 0.12% chlorhexidine (CHX) served as the positive control. The effect of photostimulation with light emitting diode (LED) 420-480 nm at 16.8 J/cm 2 for 1 min on the selected concentration of CL extract was examined. Bacteria viability was determined by plate counting technique. In addition, production of free radicals was tested by electron spin resonance spectroscope (ESR) with 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The antibacterial activity of CL extract was dose dependent. Without BL, 25 μg/ml CL extract showed 6.03 ± 0.39 log 10 A. actinomycetemcomitans. Interestingly, the combination of BL and 0.78 μg/ml CL extract solution showed complete absence of A. actinomycetemcomitans. Peak signal intensity of hydroxyl radical production was also detected with the combination of BL and CL. CL extract not only had antimicrobial activity but also could be used as an effective PS when stimulated with BL in PDT. The optimal antibacterial effect of CL extract with BL was equal to the standard oral disinfectant, 0.12% CHX. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. More Adventures in Photodynamic Therapy.

    PubMed

    Kessel, David

    2015-07-03

    Photodynamic therapy is a procedure that can provide a selective eradication of neoplastic disease if sufficient drug, light, and oxygen are available. As this description suggests, it involves the photosensitization of malignant tissues to irradiation with photons in the visible range. While not suitable for tumors at unknown loci, it can be of use for eradication of cancer at surgical margins and therapy at sites where substantial surgery might otherwise be involved. Drug development has been delayed by several factors including the reluctance of major pharmaceutical firms in the United States to invest in this technology along with some unwise approaches in the past.

  7. Reflectance and fluorescence spectroscopies in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Finlay, Jarod C.

    In vivo fluorescence spectroscopy during photodynamic therapy (PDT) has the potential to provide information on the distribution and degradation of sensitizers, the formation of fluorescent photoproducts and changes in tissue autofluorescence induced by photodynamic treatment. Reflectance spectroscopy allows quantification of light absorption and scattering in tissue. We present the results of several related studies of fluorescence and reflectance spectroscopy and their applications to photodynamic dosimetry. First, we develop and test an empirical method for the correction of the distortions imposed on fluorescence spectra by absorption and scattering in turbid media. We characterize the irradiance dependence of the in vivo photobleaching of three sensitizers, protoporphyrin IX (PpIX), Photofrin and mTHPC, in a rat skin model. The photobleaching and photoproduct formation of PpIX exhibit irradiance dependence consistent with singlet oxygen (1O2)-mediated bleaching. The bleaching of mTHPC occurs in two phases, only one of which is consistent with a 1O 2-mediated mechanism. Photofrin's bleaching is independent of irradiance, although its photoproduct formation is not. This can be explained by a mixed-mechanism bleaching model. Second, we develop an algorithm for the determination of tissue optical properties using diffuse reflectance spectra measured at a single source-detector separation and demonstrate the recovery of the hemoglobin oxygen dissociation curve from tissue-simulating phantoms containing human erythrocytes. This method is then used to investigate the heterogeneity of oxygenation response in murine tumors induced by carbogen inhalation. We find that while the response varies among animals and within each tumor, the majority of tumors exhibit an increase in blood oxygenation during carbogen breathing. We present a forward-adjoint model of fluorescence propagation that uses the optical property information acquired from reflectance spectroscopy to

  8. Photodynamic Therapy With Methylene Blue for Skin Ulcers Infected With Pseudomonas aeruginosa and Fusarium spp.

    PubMed

    Aspiroz, C; Sevil, M; Toyas, C; Gilaberte, Y

    Photodynamic therapy (PDT) is a therapeutic modality with significant antimicrobial activity. We present 2 cases of chronic lower limb ulcers in which fungal and bacterial superinfection complicated management. PDT with methylene blue as the photosensitizer led to clinical and microbiological cure with no significant adverse effects. PDT with methylene blue is a valid option for the management of superinfected chronic ulcers, reducing the use of antibiotics and the induction of resistance. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Preparation and characterization of injectable Mitoxantrone poly (lactic acid)/fullerene implants for in vivo chemo-photodynamic therapy.

    PubMed

    Li, Zhi; Zhang, Fei-long; Pan, Li-li; Zhu, Xia-li; Zhang, Zhen-zhong

    2015-08-01

    Fullerene (C60) L-phenylalanine derivative attached with poly (lactic acid) (C60-phe-PLA) was developed to prepare injectable Mitoxantrone (MTX) multifunctional implants. C60-phe-PLA was self-assembled to form microspheres consisting of a hydrophilic antitumor drug (MTX) and a hydrophobic block (C60) by dispersion-solvent diffusion method. The self-assembled microspheres showed sustained release pattern almost 15days in vitro release experiments. According to the tissue distribution of C57BL mice after intratumoral administration of the microspheres, the MTX mainly distributed in tumors, and rarely in heart, liver, spleen, lung, and kidney. Photodynamic antitumor efficacy of blank microsphere was realized. Microspheres afforded high antitumor efficacy without obvious toxic effects to normal organs, owing to its significantly increased MTX tumor retention time, low MTX levels in normal organs and strong photodynamic activity of PLA-phe-C60. These C60-phe-PLA microspheres may be promising for the efficacy with minimal side effects in future treatment of solid tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles

    PubMed Central

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery

    2016-01-01

    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells. PMID:27517913

  11. Structural evolution of the methane cation in subfemtosecond photodynamics

    NASA Astrophysics Data System (ADS)

    Mondal, T.; Varandas, A. J. C.

    2015-07-01

    An ab initio quantum dynamics study has been performed to explore the structural rearrangement of ground state CH 4+ in subfemtosecond resolved photodynamics. The method utilizes time-dependent wave-packet propagation on the X ˜ 2 T 2 electronic manifold of the title cation in full dimensionality, including nonadiabatic coupling of the three electronic sheets. Good agreement is obtained with recent experiments [Baker et al., Science 312, 424 (2006)] which use high-order harmonic generation to probe the attosecond proton dynamics. The novel results provide direct theoretical support of the observations while unravelling the underlying details. With the geometrical changes obtained by calculating the expectation values of the nuclear coordinates as a function of time, the structural evolution is predicted to begin through activation of the totally symmetric a1 and doubly degenerate e modes. While the former retains the original Td symmetry of the cation, the Jahn-Teller active e mode conducts it to a D2d structure. At ˜1.85 fs, the intermediate D2d structure is further predicted to rearrange to local C2v minimum geometry via Jahn-Teller active bending vibrations of t2 symmetry.

  12. Building integrated semi-transparent photovoltaics: energy and daylighting performance

    NASA Astrophysics Data System (ADS)

    Kapsis, Konstantinos; Athienitis, Andreas K.

    2011-08-01

    This paper focuses on modeling and evaluation of semi-transparent photovoltaic technologies integrated into a coolingdominated office building façade by employing the concept of three-section façade. An energy simulation model is developed, using building simulation software, to investigate the effect of semi-transparent photovoltaic transmittance on the energy performance of an office in a typical office building in Montreal. The analysis is performed for five major façade orientations and two façade configurations. Using semi-transparent photovoltaic integrated into the office façade, electricity savings of up to 53.1% can be achieved compared to a typical office equipped with double glazing with Argon filling and a low emissivity coating, and lighting controlled based on occupancy and daylight levels.e.c

  13. Discrepancy between photodynamic injuries and pheophorbide A accumulation in digestive tissues

    NASA Astrophysics Data System (ADS)

    Evrard, S.; Koenig, M.; Damge, C.; Marescaux, Jacques; Aprahamian, M.

    1995-01-01

    This report describes the discrepancy between pheophorbide A (PH-A) localization and photodynamically induced necrosis for the digestive tract. After an IV 9 mg/Kg-1 sensitization, the dye was caught by the whole digestive tract and its inherent vessels, as shown by fluorescence microscopy. The dye fluorescence disappeared within 24 h from the stomach and the jejunum. It remained high in the pancreas, the portal vein, the bile duct, the arteries and the duodenal mucosae. A light dose, 660 nm, 100 J/cm-2, 24 h after Ph-A sensitization, induced a necrosis of the duodenal mucosae. The pancreas and the hepatic pedicle were relatively unaffected by photodynamic therapy (PDT). The duodenal response to PDT results logically from its selective PH-A retention. But hepatic pedicule and pancreas immunities for PDT involve either protecting singlet oxygen scavengers or photosensitizer quenchers.

  14. A compact free space quantum key distribution system capable of daylight operation

    NASA Astrophysics Data System (ADS)

    Benton, David M.; Gorman, Phillip M.; Tapster, Paul R.; Taylor, David M.

    2010-06-01

    A free space quantum key distribution system has been demonstrated. Consideration has been given to factors such as field of view and spectral width, to cut down the deleterious effect from background light levels. Suitable optical sources such as lasers and RCLEDs have been investigated as well as optimal wavelength choices, always with a view to building a compact and robust system. The implementation of background reduction measures resulted in a system capable of operating in daylight conditions. An autonomous system was left running and generating shared key material continuously for over 7 days.

  15. A laser-spectroscopy complex for fluorescent diagnostics and photodynamic therapy of age-related macula degeneration

    NASA Astrophysics Data System (ADS)

    Shevchik, S. A.; Meerovich, Gennadii A.; Budzinskaya, M. V.; Ermakova, N. A.; Kharnas, Sergey S.; Loschenov, Victor B.

    2004-06-01

    A laser-spectroscopy complex was developed for fluorescent diagnostics and photodynamic therapy of age related macula degeneration using the Russian photosensitizer Photosense. The complex is based on slit lamp which was additionally equipped with an optical adapter, and the video adapter allows to combine the procedure of photodynamic therapy and the control of its carrying in the frame work of one procedure. The sensitivity and spatial resolution of the complex were investigated using a special test object. The availability of the developed complex and Photosense itself was examined on experimental animals.

  16. In vitro study for photodynamic therapy using Fotolon in glioma treatment

    NASA Astrophysics Data System (ADS)

    Abdel Hamid, Sara; Zimmermann, Wolfgang; Huettenberger, Dirk; Wittig, Rainer; Abdel Kader, Mahmoud; Stepp, Herbert

    2015-07-01

    Several forms of Chlorin e6 and its derivatives are reported as efficient photosensitizers (PS) studied in Photodynamic Therapy (PDT) for oncologic applications. Fotolon® is a pure form of Chlorin e6 trisodium salt developed by Apocare Pharma.

  17. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy.

    PubMed

    Yamaguchi, Shigeru; Kobayashi, Hiroyuki; Narita, Takuhito; Kanehira, Koki; Sonezaki, Shuji; Kudo, Nobuki; Kubota, Yoshinobu; Terasaka, Shunsuke; Houkin, Kiyohiro

    2011-09-01

    Sonodynamic therapy is expected to be a novel therapeutic strategy for malignant gliomas. The titanium dioxide (TiO(2)) nanoparticle, a photosensitizer, can be activated by ultrasound. In this study, by using water-dispersed TiO(2) nanoparticles, an in vitro comparison was made between the photodynamic and sonodynamic damages on U251 human glioblastoma cell lines. Water-dispersed TiO(2) nanoparticles were constructed by the adsorption of chemically modified polyethylene glycole (PEG) on the TiO(2) surface (TiO(2)/PEG). To evaluate cytotoxicity, U251 monolayer cells were incubated in culture medium including 100 μg/ml of TiO(2)/PEG for 3h and subsequently irradiated by ultraviolet light (5.0 mW/cm(2)) or 1.0MHz ultrasound (1.0 W/cm(2)). Cell survival was estimated by MTT assay 24h after irradiation. In the presence of TiO(2)/PEG, the photodynamic cytotoxic effect was not observed after 20 min of an ultraviolet light exposure, while the sonodynamic cytotoxicity effect was almost proportional to the time of sonication. In addition, photodynamic cytotoxicity of TiO(2)/PEG was almost completely inhibited by radical scavenger, while suppression of the sonodynamic cytotoxic effect was not significant. Results of various fluorescent stains showed that ultrasound-treated cells lost their viability immediately after irradiation, and cell membranes were especially damaged in comparison with ultraviolet-treated cells. These findings showed a potential application of TiO(2)/PEG to sonodynamic therapy as a new treatment of malignant gliomas and suggested that the mechanism of TiO(2)/PEG mediated sonodynamic cytotoxicity differs from that of photodynamic cytotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The effects on human sleep and circadian rhythms of 17 days of continuous bedrest in the absence of daylight

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Billy, B. D.; Kennedy, K. S.; Kupfer, D. J.

    1997-01-01

    As part of a larger bedrest study involving various life science experiments, a study was conducted on the effects of 17 days of continuous bedrest and elimination of daylight on circadian rectal temperature rhythms, mood, alertness, and sleep (objective and diary) in eight healthy middle-aged men. Sleep was timed from 2300 to 0700 hours throughout. Three 72-hour measurement blocks were compared: ambulatory prebedrest, early bedrest (days 5-7), and late bedrest (days 15-17). Temperature rhythms showed reduced amplitude and later phases resulting from the bedrest conditions. This was associated with longer nocturnal sleep onset latencies and poorer subjectively rated sleep but with no reliable changes in any of the other sleep parameters. Daily changes in posture and/or exposure to daylight appear to be important determinants of a properly entrained circadian system.

  19. Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand

    NASA Astrophysics Data System (ADS)

    Doherty, Rachel E.; Sazanovich, Igor V.; McKenzie, Luke K.; Stasheuski, Alexander S.; Coyle, Rachel; Baggaley, Elizabeth; Bottomley, Sarah; Weinstein, Julia A.; Bryant, Helen E.

    2016-03-01

    Photodynamic therapy that uses photosensitizers which only become toxic upon light-irradiation provides a strong alternative to conventional cancer treatment due to its ability to selectively target tumour material without affecting healthy tissue. Transition metal complexes are highly promising PDT agents due to intense visible light absorption, yet the majority are toxic even without light. This study introduces a small, photostable, charge-neutral platinum-based compound, Pt(II) 2,6-dipyrido-4-methyl-benzenechloride, complex 1, as a photosensitizer, which works under visible light. Activation of the new photosensitizer at low concentrations (0.1-1 μM) by comparatively low dose of 405 nm light (3.6 J cm-2) causes significant cell death of cervical, colorectal and bladder cancer cell lines, and, importantly, a cisplatin resistant cell line EJ-R. The photo-index of the complex is 8. We demonstrate that complex 1 induces irreversible DNA single strand breaks following irradiation, and that oxygen is essential for the photoinduced action. Neither light, nor compound alone led to cell death. The key advantages of the new drug include a remarkably fast accumulation time (diffusion-controlled, minutes), and photostability. This study demonstrates a highly promising new agent for photodynamic therapy, and attracts attention to photostable metal complexes as viable alternatives to conventional chemotherapeutics, such as cisplatin.

  20. Transferrin-Modified Nanoparticles for Photodynamic Therapy Enhance the Antitumor Efficacy of Hypocrellin A

    PubMed Central

    Lin, Xi; Yan, Shu-Zhen; Qi, Shan-Shan; Xu, Qiao; Han, Shuang-Shuang; Guo, Ling-Yuan; Zhao, Ning; Chen, Shuang-Lin; Yu, Shu-Qin

    2017-01-01

    Photodynamic therapy (PDT) has emerged as a potent novel therapeutic modality that induces cell death through light-induced activation of photosensitizer. But some photosensitizers have characteristics of poor water-solubility and non-specific tissue distribution. These characteristics become main obstacles of PDT. In this paper, we synthesized a targeting drug delivery system (TDDS) to improve the water-solubility of photosensitizer and enhance the ability of targeted TFR positive tumor cells. TDDS is a transferrin-modified Poly(D,L-Lactide-co-glycolide (PLGA) and carboxymethyl chitosan (CMC) nanoparticle loaded with a photosensitizer hypocrellin A (HA), named TF-HA-CMC-PLGA NPs. Morphology, size distribution, Fourier transform infrared (FT-IR) spectra, encapsulation efficiency, and loading capacity of TF-HA-CMC-PLGA NPs were characterized. In vitro TF-HA-CMC-PLGA NPs presented weak dark cytotoxicity and significant photo-cytotoxicity with strong reactive oxygen species (ROS) generation and apoptotic cancer cell death. In vivo photodynamic antitumor efficacy of TF-HA-CMC-PLGA NPs was investigated with an A549 (TFR positive) tumor-bearing model in male athymic nude mice. TF-HA-CMC-PLGA NPs caused tumor delay with a remarkable tumor inhibition rate of 63% for 15 days. Extensive cell apoptosis in tumor tissue and slight side effects in normal organs were observed. The results indicated that TDDS has great potential to enhance PDT therapeutic efficacy. PMID:29209206

  1. Real time laser speckle imaging monitoring vascular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Ruth; Vyacheslav, Kalchenko; Scherz, Avigdor

    2017-02-01

    Laser speckle imaging is a technique that has been developed to non-invasively monitor in vivo blood flow dynamics and vascular structure, at high spatial and temporal resolution. It can record the full-field spatio-temporal characteristics of microcirculation and has therefore, often been used to study the blood flow in tumors after photodynamic therapy (PDT). Yet, there is a paucity of reports on real-time laser speckle imaging (RTLSI) during PDT. Vascular-targeted photodynamic therapy (VTP) with WST11, a water-soluble bacteriochlorophyll derivative, achieves tumor ablation through rapid occlusion of the tumor vasculature followed by a cascade of events that actively kill the tumor cells. WST11-VTP has been already approved for treatment of early/intermediate prostate cancer at a certain drug dose, time and intensity of illumination. Application to other cancers may require different light dosage. However, incomplete vascular occlusion at lower light dose may result in cancer cell survival and tumor relapse while excessive light dose may lead to toxicity of nearby healthy tissues. Here we provide evidence for the feasibility of concomitant RTLSI of the blood flow dynamics in the tumor and surrounding normal tissues during and after WST11-VTP. Fast decrease in the blood flow is followed by partial mild reperfusion and a complete flow arrest within the tumor by the end of illumination. While the primary occlusion of the tumor feeding arteries and draining veins agrees with previous data published by our group, the late effects underscore the significance of light dose control to minimize normal tissue impairment. In conclusion- RTSLI application should allow to optimize VTP efficacy vs toxicity in both the preclinical and clinical arenas.

  2. In vitro photodynamic activity of lipid vesicles with zinc phthalocyanine derivative against Enterococcus faecalis.

    PubMed

    Sobotta, Lukasz; Dlugaszewska, Jolanta; Kasprzycki, Piotr; Lijewski, Sebastian; Teubert, Anna; Mielcarek, Jadwiga; Gdaniec, Maria; Goslinski, Tomasz; Fita, Piotr; Tykarska, Ewa

    2018-06-01

    Zinc(II) phthalocyanine bearing eight non-peripheral 2-propoxy substituents was subjected to physicochemical study and, after incorporation in lipid vesicles, assessed as a potential photosensitizer for antibacterial photodynamic therapy. The phthalocyanine derivative obtained in the macrocyclization reaction was characterized by MS and NMR techniques. Moreover, its chemical purity was confirmed by HPLC analysis. X-ray structural analysis revealed that overcrowding of the phthalocyanine derivative leads to a strong out-of-plane distortion of the π-system of the macrocycle core. In the UV-Vis absorption spectra of zinc(II) phthalocyanine two characteristic bands were found: the Soret (300-450 nm) and the Q band (600-800 nm). Photophysical properties of mono- and diprotonated forms of phthalocyanine derivative were studied with time-resolved fluorescence spectroscopy. Its tri- and tetraprotonated forms could not be obtained, because compound decomposes in higher acid concentrations. The presented zinc(II) phthalocyanine showed values of singlet oxygen generation Φ Δ  = 0.18 and 0.16, the quantum yield of the photodecomposition Φ P  = 3.06∙10 -4 and 1.23∙10 -5 and the quantum yield of fluorescence Φ FL  = 0.005 and 0.004, designated in DMF and DMSO, respectively. For biological studies, phthalocyanine has been incorporated into modified liposome vesicles containing ethanol. In vitro bacteria photoinactivation study revealed no activity against Escherichia coli and 5.7 log reduction of the Enterococcus faecalis growth. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Skin photosensitivity as a model in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Richter, Anna M.; Jain, Ashok K.; Canaan, Alice J.; Meadows, Howard; Levy, Julia G.

    1996-01-01

    Skin photosensitivity is the most common side effect of photodynamic therapy (PDT) and in clinical situations needs to be avoided or at least minimized. However, because of the accessibility of skin tissue, skin photosensitivity represents a useful test system in vivo for evaluation of the pharmacokinetics of photosensitizers and light sources. Pig skin resembles in many aspects human skin and, therefore, is most suitable for these tests. Using pig skin photosensitivity as an end point, we evaluate the effect of cell loading with a photosensitizer, benzoporphyrin derivative (BPD verteporfin) following its intravenous administration either as a rapid bolus or slow infusion. Skin response to light activation indicated a very similar cell content of BPD. These results were in agrement with those obtained in an in vitro model. In addition, in the same pig skin photosensitivity model we compared the efficiency of activation of BPD with either laser (690 plus or minus 3 nm) or light-emitting diode (LED; 690 plus or minus 12 nm) light. Results indicated the equivalency of the two light sources in this test system, with LED light being slightly more efficient, due possibly to a fluence rate lower than laser light.

  4. Seasonal Variation in Bright Daylight Exposure, Mood and Behavior among a Group of Office Workers in Sweden

    PubMed Central

    Laike, Thorbjörn; Morita, Takeshi

    2018-01-01

    The purpose of the study was to investigate seasonal variation in mood and behavior among a group of office workers in Sweden (56°N). Thirty subjects participated in this longitudinal study. The subjects kept a weekly log that included questionnaires for ratings of psychological wellbeing and daily sleep-activity diaries where they also noted time spent outdoors. The lighting conditions in the offices were subjectively evaluated during one day, five times over the year. There was a seasonal variation in positive affect and in sleep-activity behavior. Across the year, there was a large variation in the total time spent outdoors in daylight. The subjects reported seasonal variation concerning the pleasantness, variation and strength of the light in the offices and regarding the visibility in the rooms. Finally, the subjects spent most of their time indoors, relying on artificial lighting, which demonstrates the importance of the lighting quality in indoor environments.

  5. Susceptibility of Enterococcus faecalis and Propionibacterium acnes to antimicrobial photodynamic therapy.

    PubMed

    de Annunzio, Sarah Raquel; de Freitas, Laura Marise; Blanco, Ana Lígia; da Costa, Mardoqueu Martins; Carmona-Vargas, Christian C; de Oliveira, Kleber Thiago; Fontana, Carla Raquel

    2018-01-01

    Bacterial resistance to available antibiotics nowadays is a global threat leading researchers around the world to study new treatment modalities for infections. Antimicrobial photodynamic therapy (aPDT) has been considered an effective and promising therapeutic alternative in this scenario. Briefly, this therapy is based on the activation of a non-toxic photosensitizing agent, known as photosensitizer (PS), by light at a specific wavelength generating cytotoxic singlet oxygen and free radicals. Virtually all studies related to aPDT involve a huge screening to identify ideal PS concentration and light dose combinations, a laborious and time-consuming process that is hardly disclosed in the literature. Herein, we describe an antimicrobial Photodynamic Therapy (aPDT) study against Enterococcus faecalis and Propionibacterium acnes employing methylene blue, chlorin-e6 or curcumin as PS. Similarities and discrepancies between the two bacterial species were pointed out in an attempt to speed up and facilitate futures studies against those clinical relevant strains. Susceptibility tests were performed by the broth microdilution method. Our results demonstrate that aPDT mediated by the three above-mentioned PS was effective in eliminating both gram-positive bacteria, although P. acnes showed remarkably higher susceptibility to aPDT when compared to E. faecalis. PS uptake assays revealed that P. acnes is 80 times more efficient than E. faecalis in internalizing all three PS molecules. Our results evidence that the cell wall structure is not a limiting feature when predicting bacterial susceptibility to aPDT treatment. Copyright © 2017. Published by Elsevier B.V.

  6. Possibility for a full optical determination of photodynamic therapy outcome

    NASA Astrophysics Data System (ADS)

    Vollet-Filho, J. D.; Menezes, P. F. C.; Moriyama, L. T.; Grecco, C.; Sibata, C.; Allison, R. R.; Castro e Silva, O.; Bagnato, V. S.

    2009-05-01

    The efficacy of photodynamic therapy (PDT) depends on a variety of parameters: concentration of the photosensitizer at the time of treatment, light wavelength, fluence, fluence rate, availability of oxygen within the illuminated volume, and light distribution in the tissue. Dosimetry in PDT requires the congregation of adequate amounts of light, drug, and tissue oxygen. The adequate dosimetry should be able to predict the extension of the tissue damage. Photosensitizer photobleaching rate depends on the availability of molecular oxygen in the tissue. Based on photosensitizers photobleaching models, high photobleaching has to be associated with high production of singlet oxygen and therefore with higher photodynamic action, resulting in a greater depth of necrosis. The purpose of this work is to show a possible correlation between depth of necrosis and the in vivo photosensitizer (in this case, Photogem®) photodegradation during PDT. Such correlation allows possibilities for the development of a real time evaluation of the photodynamic action during PDT application. Experiments were performed in a range of fluence (0-450 J/cm2) at a constant fluence rate of 250 mW/cm2 and applying different illumination times (0-1800 s) to achieve the desired fluence. A quantity was defined (ψ) as the product of fluorescence ratio (related to the photosensitizer degradation at the surface) and the observed depth of necrosis. The correlation between depth of necrosis and surface fluorescence signal is expressed in ψ and could allow, in principle, a noninvasive monitoring of PDT effects during treatment. High degree of correlation is observed and a simple mathematical model to justify the results is presented.

  7. Experimental model of transthoracic, vascular-targeted, photodynamically induced myocardial infarction.

    PubMed

    Chrastina, Adrian; Pokreisz, Peter; Schnitzer, Jan E

    2014-01-15

    We describe a novel model of myocardial infarction (MI) in rats induced by percutaneous transthoracic low-energy laser-targeted photodynamic irradiation. The procedure does not require thoracotomy and represents a minimally invasive alternative to existing surgical models. Target cardiac area to be photodynamically irradiated was triangulated from the thoracic X-ray scans. The acute phase of MI was histopathologically characterized by the presence of extensive vascular occlusion, hemorrhage, loss of transversal striations, neutrophilic infiltration, and necrotic changes of cardiomyocytes. Consequently, damaged myocardium was replaced with fibrovascular and granulation tissue. The fibrotic scar in the infarcted area was detected by computer tomography imaging. Cardiac troponin I (cTnI), a specific marker of myocardial injury, was significantly elevated at 6 h (41 ± 6 ng/ml, n = 4, P < 0.05 vs. baseline) and returned to baseline after 72 h. Triphenyltetrazolium chloride staining revealed transmural anterolateral infarcts targeting 25 ± 3% of the left ventricle at day 1 with a decrease to 20 ± 3% at day 40 (n = 6 for each group, P < 0.01 vs. day 1). Electrocardiography (ECG) showed significant ST-segment elevation in the acute phase with subsequent development of a pathological Q wave and premature ventricular contractions in the chronic phase of MI. Vectorcardiogram analysis of spatiotemporal electrical signal transduction revealed changes in inscription direction, QRS loop morphology, and redistribution in quadrant areas. The photodynamically induced MI in n = 51 rats was associated with 12% total mortality. Histological findings, ECG abnormalities, and elevated cTnI levels confirmed the photosensitizer-dependent induction of MI after laser irradiation. This novel rodent model of MI might provide a platform to evaluate new diagnostic or therapeutic interventions.

  8. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    PubMed

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  9. Photodynamic therapy of acne vulgaris.

    NASA Astrophysics Data System (ADS)

    Ershova, Ekaterina Y.; Karimova, Lubov N.; Kharnas, Sergey S.; Kuzmin, Sergey G.; Loschenov, Victor B.

    2003-06-01

    Photodynamic therapy (PDT) with topical 5-aminolevulinic acid (ALA) was tested for the treatment of acne vulgaris. Patients with acne were treated with ALA plus red light. Ten percent water solution of ALA was applied with 1,5-2 h occlusion and then 18-45 J/cm2 630 nm light was given. Bacterial endogenous porphyrins fluorescence also was used for acne therapy. Treatment control and diagnostics was realized by fluorescence spectra and fluorescence image. Light sources and diagnostic systems were used: semiconductor laser (λ=630 nm, Pmax=1W), (LPhT-630-01-BIOSPEC); LED system for PDT and diagnostics with fluorescent imager (λ=635 nm, P=2W, p=50 mW/cm2), (UFPh-630-01-BIOSPEC); high sensitivity CCD video camera with narrow-band wavelength filter (central wavelength 630 nm); laser electronic spectrum analyzer for fluorescent diagnostics and photodynamic therapy monitoring (LESA-01-BIOSPEC). Protoporphyrin IX (PP IX) and endogenous porphyrins concentrations were measured by fluorescence at wavelength, correspondingly, 700 nm and 650 nm. It was shown that topical ALA is converted into PP IX in hair follicles, sebaceous glands and acne scars. The amount of resulting PP IX is sufficient for effective PDT. There was good clinical response and considerable clearance of acne lesion. ALA-PDT also had good cosmetic effect in treatment acne scars. PDT with ALA and red light assist in opening corked pores, destroying Propionibacterium acnes and decreasing sebum secretion. PDT treatment associated with several adverse effects: oedema and/or erytema for 3-5 days after PDT, epidermal exfoliation from 5th to 10th day and slight pigmentation during 1 month after PDT. ALA-PDT is effective for acne and can be used despite several side effects.

  10. Generation of daylight reference years for two European cities with different climate: Athens, Greece and Bratislava, Slovakia

    NASA Astrophysics Data System (ADS)

    Markou, M. T.; Kambezidis, H. D.; Bartzokas, A.; Darula, S.; Kittler, R.

    2007-12-01

    In this work, daylight reference years (DRYs), based on daylight and solar radiation measurements, are designed for two European cities, Athens, Greece and Bratislava, Slovakia, by using the Danish method, the Festa-Ratto technique and the Modified Sandia National Laboratories methodology. The data basis consists of 5-minute values of global and diffuse horizontal illuminance, global and diffuse horizontal irradiance, zenith luminance and solar altitude as well as of daily values of sunshine duration for 5 years for Athens and 8 years for Bratislava. Moreover, Linke's turbidity factor, luminous turbidity factor and relative sunshine duration are calculated and utilized. Then, for each DRY, the predominant sky-luminance distributions over Athens and Bratislava are identified, by using the methodology of Kittler et al., who corresponded the main sky conditions to 15 theoretical sky standards in diagrams of the ratio of zenith luminance to diffuse horizontal illuminance against solar altitude. For both cities the three aforementioned methods do not create identical DRYs. Despite the differences, the sky types defined for each of the two places seem not to depend on the choice of DRY. The predominant sky standard, for all of them, is a cloudless, polluted sky with a broad solar corona for Athens and an overcast sky with slight brightening towards the sun as well as very clear sky with low atmospheric turbidity for Bratislava. However, the selection of the DRY, which represents best the daylight conditions, is necessary for studies in saving energy in buildings. The DRY, which is created by the Modified Sandia National Laboratories method, is chosen for most cases, while the one created by the Danish method is also useful on certain occasions.

  11. Daylight saving time can decrease the frequency of wildlife–vehicle collisions

    PubMed Central

    Ellis, William A.; FitzGibbon, Sean I.; Barth, Benjamin J.; Niehaus, Amanda C.; David, Gwendolyn K.; Taylor, Brendan D.; Matsushige, Helena; Melzer, Alistair; Bercovitch, Fred B.; Carrick, Frank; Jones, Darryl N.; Dexter, Cathryn; Gillett, Amber; Predavec, Martin; Lunney, Dan

    2016-01-01

    Daylight saving time (DST) could reduce collisions with wildlife by changing the timing of commuter traffic relative to the behaviour of nocturnal animals. To test this idea, we tracked wild koalas (Phascolarctos cinereus) in southeast Queensland, where koalas have declined by 80% in the last 20 years, and compared their movements with traffic patterns along roads where they are often killed. Using a simple model, we found that DST could decrease collisions with koalas by 8% on weekdays and 11% at weekends, simply by shifting the timing of traffic relative to darkness. Wildlife conservation and road safety should become part of the debate on DST. PMID:27881767

  12. Daylight saving time can decrease the frequency of wildlife-vehicle collisions.

    PubMed

    Ellis, William A; FitzGibbon, Sean I; Barth, Benjamin J; Niehaus, Amanda C; David, Gwendolyn K; Taylor, Brendan D; Matsushige, Helena; Melzer, Alistair; Bercovitch, Fred B; Carrick, Frank; Jones, Darryl N; Dexter, Cathryn; Gillett, Amber; Predavec, Martin; Lunney, Dan; Wilson, Robbie S

    2016-11-01

    Daylight saving time (DST) could reduce collisions with wildlife by changing the timing of commuter traffic relative to the behaviour of nocturnal animals. To test this idea, we tracked wild koalas (Phascolarctos cinereus) in southeast Queensland, where koalas have declined by 80% in the last 20 years, and compared their movements with traffic patterns along roads where they are often killed. Using a simple model, we found that DST could decrease collisions with koalas by 8% on weekdays and 11% at weekends, simply by shifting the timing of traffic relative to darkness. Wildlife conservation and road safety should become part of the debate on DST. © 2016 The Author(s).

  13. Ultrasonic activation and chemical modification of photosensitizers enhances the effects of photodynamic therapy against Enterococcus faecalis root-canal isolates.

    PubMed

    Tennert, C; Drews, A M; Walther, V; Altenburger, M J; Karygianni, L; Wrbas, K T; Hellwig, E; Al-Ahmad, A

    2015-06-01

    The aim of this study was to evaluate the effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilms in artificially infected root canals using modified photosensitizers and passive ultrasonic activation. Two hundred and seventy extracted human teeth with one root canal were instrumented utilizing ProTaper files, autoclaved, infected with E. faecalis T9 for 72 h and divided into different groups: irrigation with 3% sodium hypochlorite (NaOCl), 20% ethylenediaminetetraacetic acid (EDTA), or 20% citric acid, PDT without irrigation, PDT accompanied by irrigation with NaOCl, EDTA, or citric acid, PDT using an EDTA-based photosensitizer or a citric-acid-based photosensitizer and PDT with ultrasonic activation of the photosensitizer. A 15 mg/ml toluidine blue served as the photosensitizer, activated by a 100 mW LED light source. Sterile paper points were used for sampling the root canals and dentin chips were collected to assess the remaining contamination after treatment. Samples were cultured on blood agar plates and colony forming units were quantified. PDT alone achieved a reduction in E. faecalis counts by 92.7%, NaOCl irrigation alone and combined with PDT by 99.9%. The antibacterial effects increased by the combination of irrigation using EDTA or citric acid and PDT compared to irrigation alone. More than 99% of E. faecalis were killed using PDT with the modified photosensitizers and ultrasonic activation. NaOCl based disinfection achieved the highest antimicrobial effect. Using PDT with an EDTA-based or citric-acid-based phozosensitizer or activating the photosensitizer with ultrasound resulted in a significantly higher reduction in E. faecalis counts compared to conventional PDT. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Potentiation of antimicrobial photodynamic inactivation by inorganic salts.

    PubMed

    Hamblin, Michael R

    2017-11-01

    Antimicrobial photodynamic inactivation (aPDI) involves the use of non-toxic dyes excited with visible light to produce reactive oxygen species (ROS) that can destroy all classes of microorganisms including bacteria, fungi, parasites, and viruses. Selectivity of killing microbes over host mammalian cells allows this approach (antimicrobial photodynamic therapy, aPDT) to be used in vivo as an alternative therapeutic approach for localized infections especially those that are drug-resistant. Areas covered: We have discovered that aPDI can be potentiated (up to 6 logs of extra killing) by the addition of simple inorganic salts. The most powerful and versatile salt is potassium iodide, but potassium bromide, sodium thiocyanate, sodium azide and sodium nitrite also show potentiation. The mechanism of potentiation with iodide is likely to be singlet oxygen addition to iodide to form iodine radicals, hydrogen peroxide and molecular iodine. Another mechanism involves two-electron oxidation of iodide/bromide to form hypohalites. A third mechanism involves a one-electron oxidation of azide anion to form azide radical. Expert commentary: The addition of iodide has been shown to improve the performance of aPDT in several animal models of localized infection. KI is non-toxic and is an approved drug for antifungal therapy, so its transition to clinical use in aPDT should be straightforward.

  15. Enhanced photodynamic activity of hypericin by penetration enhancer N-methyl pyrrolidone formulations in the chick chorioallantoic membrane model.

    PubMed

    Saw, Constance Lay Lay; Heng, Paul Wan Sia; Chin, William Wei Lim; Soo, Khee Chee; Olivo, Malini

    2006-07-08

    Hypericin (HY) was examined for photodynamic therapy (PDT)-induced vascular damage using the chick chorioallantoic membrane (CAM) model. Clinically, plasma protein was used to solubilize HY. Upon binding to albumin, free HY available to be transported through the membrane may be limited. Hence, formulations containing a biocompatible solvent, N-Methyl pyrrolidone (NMP), have the potential to enhance HY delivery into solid tumors. At suitable concentrations, NMP and/or light irradiation did not produce antivascular damage. Hypericin-PDT effects showed to be HY and NMP concentrations-dependent. These findings indicate that NMP is a promising solvent and penetration enhancer for HY-PDT clinical applications.

  16. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2016-01-01

    Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.

  17. Suppression of cucurbit scab on cucumber leaves by photodynamic dyes

    USDA-ARS?s Scientific Manuscript database

    The goal of this study was to test the ability of the photodynamic dyes bengal rose, toluidine blue, and methylene blue, to protect systemically cucumber plants from cucurbit scab. At the stage of one true leaf, water or aqueous solutions of the dyes were applied to the leaf as droplets. When the se...

  18. Acceleration Of Wound Healing Ny Photodynamic Therapy

    DOEpatents

    Hasan, Tayyaba; Hamblin, Michael R.; Trauner, Kenneth

    2000-08-22

    Disclosed is a method for accelerating wound healing in a mammal. The method includes identifying an unhealed wound site or partially-healed wound site in a mammal; administering a photosensitizer to the mammal; waiting for a time period wherein the photosensitizer reaches an effective tissue concentration at the wound site; and photoactivating the photosensitizer at the wound site. The dose of photodynamic therapy is selected to stimulate the production of one or more growth factor by cells at the wound site, without causing tissue destruction.

  19. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy.

    PubMed

    Bhana, Saheel; Lin, Gan; Wang, Lijia; Starring, Hunter; Mishra, Sanjay R; Liu, Gang; Huang, Xiaohua

    2015-06-03

    We present the synthesis and application of a new type of dual magnetic and plasmonic nanostructures for magnetic-field-guided drug delivery and combined photothermal and photodynamic cancer therapy. Near-infrared-absorbing gold nanopopcorns containing a self-assembled iron oxide cluster core were prepared via a seed-mediated growth method. The hybrid nanostructures are superparamagnetic and show great photothermal conversion efficiency (η=61%) under near-infrared irradiation. Compact and stable nanocomplexes for photothermal-photodynamic therapy were formed by coating the nanoparticles with near-infrared-absorbing photosensitizer silicon 2,3-naphthalocyannie dihydroxide and stabilization with poly(ethylene glycol) linked with 11-mercaptoundecanoic acid. The nanocomplex showed enhanced release and cellular uptake of the photosensitizer with the use of a gradient magnetic field. In vitro studies using two different cell lines showed that the dual mode photothermal and photodynamic therapy with the assistance of magnetic-field-guided drug delivery dramatically improved the therapeutic efficacy of cancer cells as compared to the combination treatment without using a magnetic field and the two treatments alone. The "three-in-one" nanocomplex has the potential to carry therapeutic agents deep into a tumor through magnetic manipulation and to completely eradicate tumors by subsequent photothermal and photodynamic therapies without systemic toxicity.

  20. An in vivo photodynamic therapy with diode laser to cell activation of kidney dysfunction

    NASA Astrophysics Data System (ADS)

    Dyah Astuti, Suryani; Indra Prasaja, Brahma; Anggono Prijo, Tri

    2017-05-01

    This study aims to analyze the effect of photodynamic therapy (PDT) low level laser therapy (LLLT) 650 nm in the experimental animals mice (Musmuculus) suffering from kidney organ damage in mice (Musmuculus) in vivo. Exposure laser acupuncture was performed on the kidney BL-23. The conditioning of kidney damage in mice used carbofuraan 35 at a dose of 0.041697 mg/mice. LLLT 650 nm exposure was done on a wide variety of energy (0.5; 1.0; 1.5; 2.0; 4.0; 5.0; 6.0; 7.0) J. The histopathological kidney cells in mice renal impairment showed that exposure to 650 nm laser energy 1 Joule resulted in the reduction of damaged cells (necrosis) and normal cells were increased with the improvement of renal tubular cells (64.14 ± 8:02)%. Therefore, exposure to 650 nm LLLT on acupuncture points Shenshu (BL-23) has the ability to proliferation of renal tubular cells of mice.

  1. Photodynamic antimicrobial chemotherapy on Streptococcus mutans using curcumin and toluidine blue activated by a novel LED device.

    PubMed

    Paschoal, Marco Aurelio; Lin, Meng; Santos-Pinto, Lourdes; Duarte, Simone

    2015-02-01

    Photodynamic antimicrobial chemotherapy (PACT) is an antimicrobial approach that uses photosensitizers (PS) in combination with light sources at specific wavelengths aiming the production of reactive oxygen species. The long illumination time necessary to active PS is a challenge in PACT. Thus, this study investigated the antimicrobial effect of a novel single source of light-emitting diode (LED) light that covers the entire spectrum of visible light beyond interchangeable probes at high power intensity. Blue and red LED probes were used into different exposure times to active different concentrations of curcumin (C) and toluidine blue (T) on planktonic suspensions of Streptococcus mutans UA 159 (S. mutans). S. mutans were standardized and submitted to (1) PACT treatment at three concentrations of C and T exposure at three radiant exposures of a blue LED (BL) (C+BL+) and a red LED (RL) (T+RL+), (2) C (C+BL-) or T alone (T+RL-), (3) both LED lights (C-BL+ and T-RL+), and (4) neither PS nor LED illumination (control group: C-BL- and T-RL-). Aliquots of the suspensions were diluted and cultured on blood agar plates. The number of colony-forming units was calculated after 48 h. The groups submitted to PACT presented a lethal photokilling rate to all PS concentrations at tested dosimetries. The comparison to control group when PS and LED lights used alone demonstrated no decrease in the number of viable bacterial counts. The novel LED device in combination with curcumin and toluidine blue promoted an effective photoinactivation of S. mutans suspensions at ultrashort light illumination times.

  2. Intraperitoneal photodynamic therapy of the rat CC531 adenocarcinoma.

    PubMed Central

    Veenhuizen, R. B.; Marijnissen, J. P.; Kenemans, P.; Ruevekamp-Helmers, M. C.; 't Mannetje, L. W.; Helmerhorst, T. J.; Stewart, F. A.

    1996-01-01

    The goal of this study was to investigate the efficacy of photodynamic therapy (PDT) of a single tumour growing intraperitoneally. For this purpose the CC531 colon carcinoma, implanted in an intraperitoneal fat pad of Wag/RijA rats, was treated with intraperitoneal photodynamic therapy (IPPDT) using Photofrin as the photosensitiser. Two illumination techniques have been compared. An invasive illumination technique using Perspex blocks to illuminate 30 cm2 of the lower abdomen gave a significant delay in tumour growth with 25 J cm-2 applied 1 day after Photofrin. A minimally invasive illumination technique using a balloon catheter to illuminate 14 cm2 resulted in an equivalent growth delay with 75 J cm-2. The route of administration of the photosensitiser did not influence regrowth times of the tumour. Mitomycin C (MMC), a bioreductive agent, was used to exploit the known PDT-induced hypoxia. The combination of IPPDT with MMC resulted in an increased tumoricidal effect. In conclusion, IPPDT led to a significant growth delay for a single tumour implanted intraperitoneally and repetition of the PDT treatment was possible using a minimally invasive illumination technique. Repeated treatments resulted in increased tumour response. PMID:8645584

  3. Concepts and Principles of Photodynamic Therapy as an Alternative Antifungal Discovery Platform

    PubMed Central

    Dai, Tianhong; Fuchs, Beth B.; Coleman, Jeffrey J.; Prates, Renato A.; Astrakas, Christos; St. Denis, Tyler G.; Ribeiro, Martha S.; Mylonakis, Eleftherios; Hamblin, Michael R.; Tegos, George P.

    2012-01-01

    Opportunistic fungal pathogens may cause superficial or serious invasive infections, especially in immunocompromised and debilitated patients. Invasive mycoses represent an exponentially growing threat for human health due to a combination of slow diagnosis and the existence of relatively few classes of available and effective antifungal drugs. Therefore systemic fungal infections result in high attributable mortality. There is an urgent need to pursue and deploy novel and effective alternative antifungal countermeasures. Photodynamic therapy (PDT) was established as a successful modality for malignancies and age-related macular degeneration but photodynamic inactivation has only recently been intensively investigated as an alternative antimicrobial discovery and development platform. The concept of photodynamic inactivation requires microbial exposure to either exogenous or endogenous photosensitizer molecules, followed by visible light energy, typically wavelengths in the red/near infrared region that cause the excitation of the photosensitizers resulting in the production of singlet oxygen and other reactive oxygen species that react with intracellular components, and consequently produce cell inactivation and death. Antifungal PDT is an area of increasing interest, as research is advancing (i) to identify the photochemical and photophysical mechanisms involved in photoinactivation; (ii) to develop potent and clinically compatible photosensitizers; (iii) to understand how photoinactivation is affected by key microbial phenotypic elements multidrug resistance and efflux, virulence and pathogenesis determinants, and formation of biofilms; (iv) to explore novel photosensitizer delivery platforms; and (v) to identify photoinactivation applications beyond the clinical setting such as environmental disinfectants. PMID:22514547

  4. Influence of protoporphyrin IX loaded phloroglucinol succinic acid dendrimer in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Kumar, M. Suresh; Aruna, P.; Ganesan, S.

    2018-03-01

    One of the major problems reported clinically for photosensitizers (PS) in Photodynamic therapy (PDT) is, the cause of side-effects to normal tissue due to dark toxicity. The usefulness of photosensitizers can be made possible by reducing its dark toxicity nature. In such scenario, biocompatible carriers can be used as a drug delivery system to evade the problems that arises while using free (dark toxic) drugs. So in this study, we have developed a nano drug delivery system called Phloroglucinol Succinic acid (PGSA) dendrimer, entrapped a photosensitizer, protoporphyrin IX (PpIX) inside the system and investigated whether the photodynamic efficacy of the anionic surface charged dendrimer-PpIX nano formulation is enhanced than achieved by the free PpIX in HeLa cancer cell lines. Moreover, the Reactive oxygen species (ROS) production was monitored using 2‧,7‧-dichlorodihydrofluorescein diacetate (H2DCF-DA)- ROS Marker with phase contrast microscopy for the IC50 values of free and dendrimer-PpIX nano formulation. Similarly, the mode of cell death has been confirmed by cell cycle analysis for the same. For the in vitro PDT application, we have used a simple light source (Light Emitting Diode) with a power of 30-50 mW for 20 min irradiation. Hence, in this study we have taken steps to report this anionic drug delivery system is good to consider for the photodynamic therapy applications with the photosensitizer, PpIX which satisfied the prime requirement of PDT.

  5. Photodynamic therapy: Theoretical and experimental approaches to dosimetry

    NASA Astrophysics Data System (ADS)

    Wang, Ken Kang-Hsin

    Singlet oxygen (1O2) is the major cytotoxic species generated during photodynamic therapy (PDT), and 1O 2 reactions with biological targets define the photodynamic dose at the most fundamental level. We have developed a theoretical model for rigorously describing the spatial and temporal dynamics of oxygen (3O 2) consumption and transport and microscopic 1O 2 dose deposition during PDT in vivo. Using experimentally established physiological and photophysical parameters, the mathematical model allows computation of the dynamic variation of hemoglobin-3O 2 saturation within vessels, irreversible photosensitizer degradation due to photobleaching, therapy-induced blood flow decrease and the microscopic distributions of 3O2 and 1O 2 dose deposition under various irradiation conditions. mTHPC, a promising photosensitizer for PDT, is approved in Europe for the palliative treatment of head and neck cancer. Using the theoretical model and informed by intratumor sensitizer concentrations and distributions, we calculated photodynamic dose depositions for mTHPC-PDT. Our results demonstrate that the 1O 2 dose to the tumor volume does not track even qualitatively with long-term tumor responses. Thus, in this evaluation of mTHPC-PDT, any PDT dose metric that is proportional to singlet oxygen creation and/or deposition would fail to predict the tumor response. In situations like this one, other reporters of biological response to therapy would be necessary. In addition to the case study of mTHPC-PDT, we also use the mathematical model to simulate clinical photobleaching data, informed by a possible blood flow reduction during treatment. In a recently completed clinical trial at Roswell Park Cancer Institute, patients with superficial basal cell carcinoma received topical application of 5-aminolevulinic acid (ALA) and were irradiated with 633 nm light at 10-150 mW cm-2 . Protoporphyrin IX (PpIX) photobleaching in the lesion and the adjacent perilesion normal margin was monitored by

  6. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy

    PubMed Central

    Trigo Gutierrez, Jeffersson Krishan; Zanatta, Gabriela Cristina; Ortega, Ana Laura Mira; Balastegui, Maria Isabella Cuba; Sanitá, Paula Volpato; Pavarina, Ana Cláudia; Barbugli, Paula Aboud

    2017-01-01

    Curcumin (CUR) has been used as photosensitizer in antimicrobial Photodynamic Therapy (aPDT). However its poor water solubility, instability, and scarce bioavalibility hinder its in vivo application. The aim of this study was to synthesize curcumin in polymeric nanoparticles (NP) and to evaluate their antimicrobial photodynamic effect and cytoxicity. CUR in anionic and cationic NP was synthesized using polylactic acid and dextran sulfate by the nanoprecipitation method. For cationic NP, cetyltrimethylammonium bromide was added. CUR-NP were characterized by physicochemical properties, photodegradation, encapsulation efficiency and release of curcumin from nanoparticles. CUR-NP was compared with free CUR in 10% dimethyl sulfoxide (DMSO) as a photosensitizer for aPDT against planktonic and biofilms (mono-, dual- and triple-species) cultures of Streptococcus mutans, Candida albicans and Methicillin-Resistant Staphylococcus aureus. The cytotoxicity effect of formulations was evaluated on keratinocytes. Data were analysed by parametric (ANOVA) and non-parametric (Kruskal-Wallis) tests (α = 0.05). CUR-NP showed alteration in the physicochemical properties along time, photodegradation similar to free curcumin, encapsulation efficiency up to 67%, and 96% of release after 48h. After aPDT planktonic cultures showed reductions from 0.78 log10 to complete eradication, while biofilms showed no antimicrobial effect or reductions up to 4.44 log10. Anionic CUR-NP showed reduced photoinactivation of biofilms. Cationic CUR-NP showed microbicidal effect even in absence of light. Anionic formulations showed no cytotoxic effect compared with free CUR and cationic CUR-NP and NP. The synthesized formulations improved the water solubility of CUR, showed higher antimicrobial photodynamic effect for planktonic cultures than for biofilms, and the encapsulation of CUR in anionic NP reduced the cytotoxicity of 10% DMSO used for free CUR. PMID:29107978

  7. In vivo photodynamic inactivation of Psuedomonas aeruginosa in burned skin in rats

    NASA Astrophysics Data System (ADS)

    Hirao, Akihiro; Sato, Shunichi; Terakawa, Mitsuhiro; Saitoh, Daizoh; Shinomiya, Nariyoshi; Ashida, Hiroshi; Obara, Minoru

    2010-02-01

    Control of infection in wounds is critically important to avoid transition to sepsis; however, recent rise of drug-resistant bacteria makes it difficult. Thus, antimicrobial photodynamic therapy (APDT) has recently received considerable attention. In this study, we examined methylene blue (MB)-mediated photodynamic inactivation of Psuedomonas aeruginosa in rat burned skin. Two days after infection, the wound surface was contacted with a MB solution at different concentrations, and thereafter the wound was irradiated with cw 665-nm light at a constant power density of 250 mW/cm2 for different time durations. We obtained a two orders of magnitude decrease in the number of bacteria by PDT with a 2-h contact of 0.5-mM MB solution and a illumination of 480 J/cm2, demonstrating the efficacy of PDT against infection with Ps. aeruginosa in burns.

  8. TOPICAL REVIEW: The physics, biophysics and technology of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wilson, Brian C.; Patterson, Michael S.

    2008-05-01

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components—light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT.

  9. Adverse Effects of Daylight Saving Time on Adolescents' Sleep and Vigilance

    PubMed Central

    Medina, Diana; Ebben, Matthew; Milrad, Sara; Atkinson, Brianna; Krieger, Ana C.

    2015-01-01

    Study Objectives: Daylight saving time (DST) has been established with the intent to reduce energy expenditure, however unintentional effects on sleep and vigilance have not been consistently measured. The objective of this study was to test the hypothesis that DST adversely affects high school students' sleep and vigilance on the school days following its implementation. Methods: A natural experiment design was used to assess baseline and post-DST differences in objective and subjective measures of sleep and vigilance by actigraphy, sleep diary, sleepiness scale, and psychomotor vigilance testing (PVT). Students were tested during school days immediately preceding and following DST. Results: A total of 40 high school students were enrolled in this study; 35 completed the protocol. Sleep duration declined by an average of 32 minutes on the weeknights post-DST, reflecting a cumulative sleep loss of 2 h 42 min as compared to the baseline week (p = 0.001). This finding was confirmed by sleep diary analyses, reflecting an average sleep loss of 27 min/night (p = 0.004) post-DST. Vigilance significantly deteriorated, with a decline in PVT performance post-DST, resulting in longer reaction times (p < 0.001) and increased lapses (p < 0.001). Increased daytime sleepiness was also demonstrated (p < 0.001). Conclusions: The early March DST onset adversely affected sleep and vigilance in high school students resulting in increased daytime sleepiness. Larger scale evaluations of sleep impairments related to DST are needed to further quantify this problem in the population. If confirmed, measures to attenuate sleep loss post-DST should be implemented. Citation: Medina D, Ebben M, Milrad S, Atkinson B, Krieger AC. Adverse effects of daylight saving time on adolescents' sleep and vigilance. J Clin Sleep Med 2015;11(8):879–884. PMID:25979095

  10. Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer.

    PubMed

    Korbelik, M; Naraparaju, V R; Yamamoto, N

    1997-01-01

    The effect of Photofrin-based photodynamic therapy (PDT) and adjuvant treatment with serum vitamin D3-binding protein-derived macrophage-activating factor (DBPMAF) was examined using a mouse SCCVII tumour model (squamous cell carcinoma). The results show that DBPMAF can markedly enhance the curative effect of PDT. The most effective DBPMAF therapy consisted of a combination of intraperitoneal and peritumoral injections (50 and 0.5 ng kg-1 respectively) administered on days 0, 4, 8 and 12 after PDT. Used with a PDT treatment curative to 25% of the treated tumours, this DBPMAF regimen boosted the cures to 100%. The DBPMAF therapy alone showed no notable effect on the growth of SCCVII tumour. The PDT-induced immunosuppression, assessed by the evaluation of delayed-type contact hypersensitivity response in treated mice, was greatly reduced with the combined DBPMAF treatment. These observations suggest that the activation of macrophages in PDT-treated mice by adjuvant immunotherapy has a synergistic effect on tumour cures. As PDT not only reduces tumour burden but also induces inflammation, it is proposed that recruitment of the activated macrophages to the inflamed tumour lesions is the major factor for the complete eradication of tumours.

  11. Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer.

    PubMed Central

    Korbelik, M.; Naraparaju, V. R.; Yamamoto, N.

    1997-01-01

    The effect of Photofrin-based photodynamic therapy (PDT) and adjuvant treatment with serum vitamin D3-binding protein-derived macrophage-activating factor (DBPMAF) was examined using a mouse SCCVII tumour model (squamous cell carcinoma). The results show that DBPMAF can markedly enhance the curative effect of PDT. The most effective DBPMAF therapy consisted of a combination of intraperitoneal and peritumoral injections (50 and 0.5 ng kg-1 respectively) administered on days 0, 4, 8 and 12 after PDT. Used with a PDT treatment curative to 25% of the treated tumours, this DBPMAF regimen boosted the cures to 100%. The DBPMAF therapy alone showed no notable effect on the growth of SCCVII tumour. The PDT-induced immunosuppression, assessed by the evaluation of delayed-type contact hypersensitivity response in treated mice, was greatly reduced with the combined DBPMAF treatment. These observations suggest that the activation of macrophages in PDT-treated mice by adjuvant immunotherapy has a synergistic effect on tumour cures. As PDT not only reduces tumour burden but also induces inflammation, it is proposed that recruitment of the activated macrophages to the inflamed tumour lesions is the major factor for the complete eradication of tumours. PMID:9010027

  12. Vaginal Speculum For Photodynamic Therapy And Method Of Using The Same

    DOEpatents

    Tadir, Yona; Berns, Michael W.; Monk, Brad J.; Profeta, Glen; Tromberg, Bruce J.

    1995-10-17

    An improved vaginal speculum for photodynamic therapy of intraepithelial tissue and in particular vaginal, cervical and vulvar neoplasia utilizes a precisely and accurately positionable optic fiber through which a predetermined dose of light in the range of 620 to 700 nanometers is delivered over a controlled area which has been previously treated with photodynamic therapeutic substances. In particular, the neoplastic area has been treated with hematoporphyrin derivatives and other photosensitizers which are selectively taken into the cancerous tissue. Exposure to the appropriate wavelength laser light photoactivates the absorbed hematoporphyrins causing the release of singlet oxygen which internally oxidizes and ultimately causes cell death. The fiber optic tip from which the laser light is transmitted is precisely positioned within the body cavity at a predetermined distance from the intraepithelial neoplasia in order to obtain the appropriate spot size and location to minimize damage to healthy tissue and maximize damage to the selectively impregnated cancerous tissue.

  13. Ecological photodynamic therapy: new trend to disrupt the intricate networks within tumor ecosystem.

    PubMed

    Rumie Vittar, N Belén; Lamberti, María Julia; Pansa, María Florencia; Vera, Renzo E; Rodriguez, M Exequiel; Cogno, I Sol; Milla Sanabria, Laura N; Rivarola, Viviana A

    2013-01-01

    As with natural ecosystems, species within the tumor microenvironment are connected by pairwise interactions (e.g. mutualism, predation) leading to a strong interdependence of different populations on each other. In this review we have identified the ecological roles played by each non-neoplastic population (macrophages, endothelial cells, fibroblasts) and other abiotic components (oxygen, extracellular matrix) directly involved with neoplastic development. A way to alter an ecosystem is to affect other species within the environment that are supporting the growth and survival of the species of interest, here the tumor cells; thus, some features of ecological systems could be exploited for cancer therapy. We propose a well-known antitumor therapy called photodynamic therapy (PDT) as a novel modulator of ecological interactions. We refer to this as "ecological photodynamic therapy." The main goal of this new strategy is the improvement of therapeutic efficiency through the disruption of ecological networks with the aim of destroying the tumor ecosystem. It is therefore necessary to identify those interactions from which tumor cells get benefit and those by which it is impaired, and then design multitargeted combined photodynamic regimes in order to orchestrate non-neoplastic populations against their neoplastic counterpart. Thus, conceiving the tumor as an ecological system opens avenues for novel approaches on treatment strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Current status of photodynamic therapy for human cancer

    NASA Astrophysics Data System (ADS)

    Marcus, Stuart L.

    1991-06-01

    Although clinical trials in photodynamic therapy (PDT) have been ongoing for over a decade, attempts to apply for approval of the therapy from boards of health for general use began only in 1989. The steps which are being taken to approve PDT for the treatment of endobronchial lung cancer, superficial bladder cancer and esophageal cancer are described. Technological innovations which have been suggested as increasing the ease of use of PDT as a therapeutic modality are briefly discussed.

  15. Overcoming photodynamic resistance and tumor targeting dual-therapy mediated by indocyanine green conjugated gold nanospheres.

    PubMed

    Li, Wei; Guo, Xiaomeng; Kong, Fenfen; Zhang, Hanbo; Luo, Lihua; Li, Qingpo; Zhu, Chunqi; Yang, Jie; Du, Yongzhong; You, Jian

    2017-07-28

    Photodynamic therapy (PDT) and photothermal therapy (PTT) have captured much attention due to the great potential to cure malignant tumor. Nevertheless, photodynamic resistance of cancer cells has limited the further efficacy of PDT. Unfortunately, the resistance mechanism and efforts to overcome the resistance still have been rarely reported so far. Here, we report a nanosystem with specific tumor targeting for combined PDT and PTT mediated by near-infrared (NIR) light, which was established by covalently conjugating indocyanine green (ICG) and TNYL peptide onto the surface of hollow gold nanospheres (HAuNS). Our nanosystem (TNYL-ICG-HAuNS) was proved to possess significantly increased light stability, reactive oxygen species (ROS) production and photothermal effect under NIR light irradiation, thus presenting a remarkably enhanced antitumor efficacy. The up-regulation of nuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) in cancer cells during PDT induced a significant increase of ABCG2, NQO-1 and HIF-1α expression, causing PDT resistance of the cells. Interestingly, ABCG2 expression could almost keep a normal level in the whole PDT process mediated by TNYL-ICG-HAuNS. After repeated irradiations, TNYL-ICG-HAuNS could still produce almost constant ROS in cells while the Nrf2 expression reduced significantly. Furthermore, PDT resistance induced an obvious decrease of the internalization of free ICG, but didn't influence the cell uptake of TNYL-ICG-HAuNS. Our data explained that TNYL-ICG-HAuNS could overcome the photodynamic resistance of cancer cells, acting as a promising modality for simultaneous photothermal and photodynamic cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Daylight savings time and myocardial infarction

    PubMed Central

    Sandhu, Amneet; Seth, Milan; Gurm, Hitinder S

    2014-01-01

    Background Prior research has shown a transient increase in the incidence of acute myocardial infarction (AMI) after daylight savings time (DST) in the spring as well as a decrease in AMI after returning to standard time in the fall. These findings have not been verified in a broader population and if extant, may have significant public health and policy implications. Methods We assessed changes in admissions for AMI undergoing percutaneous coronary intervention (PCI) in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) database for the weeks following the four spring and three fall DST changes between March 2010 and September 2013. A negative binomial regression model was used to adjust for trend and seasonal variation. Results There was no difference in the total weekly number of PCIs performed for AMI for either the fall or spring time changes in the time period analysed. After adjustment for trend and seasonal effects, the Monday following spring time changes was associated with a 24% increase in daily AMI counts (p=0.011), and the Tuesday following fall changes was conversely associated with a 21% reduction (p=0.044). No other weekdays in the weeks following DST changes demonstrated significant associations. Conclusions In the week following the seasonal time change, DST impacts the timing of presentations for AMI but does not influence the overall incidence of this disease. PMID:25332784

  17. Daylight savings time and myocardial infarction.

    PubMed

    Sandhu, Amneet; Seth, Milan; Gurm, Hitinder S

    2014-01-01

    Prior research has shown a transient increase in the incidence of acute myocardial infarction (AMI) after daylight savings time (DST) in the spring as well as a decrease in AMI after returning to standard time in the fall. These findings have not been verified in a broader population and if extant, may have significant public health and policy implications. We assessed changes in admissions for AMI undergoing percutaneous coronary intervention (PCI) in the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) database for the weeks following the four spring and three fall DST changes between March 2010 and September 2013. A negative binomial regression model was used to adjust for trend and seasonal variation. There was no difference in the total weekly number of PCIs performed for AMI for either the fall or spring time changes in the time period analysed. After adjustment for trend and seasonal effects, the Monday following spring time changes was associated with a 24% increase in daily AMI counts (p=0.011), and the Tuesday following fall changes was conversely associated with a 21% reduction (p=0.044). No other weekdays in the weeks following DST changes demonstrated significant associations. In the week following the seasonal time change, DST impacts the timing of presentations for AMI but does not influence the overall incidence of this disease.

  18. Image registration for daylight adaptive optics.

    PubMed

    Hart, Michael

    2018-03-15

    Daytime use of adaptive optics (AO) at large telescopes is hampered by shot noise from the bright sky background. Wave-front sensing may use a sodium laser guide star observed through a magneto-optical filter to suppress the background, but the laser beacon is not sensitive to overall image motion. To estimate that, laser-guided AO systems generally rely on light from the object itself, collected through the full aperture of the telescope. Daylight sets a lower limit to the brightness of an object that may be tracked at rates sufficient to overcome the image jitter. Below that limit, wave-front correction on the basis of the laser alone will yield an image that is approximately diffraction limited but that moves randomly. I describe an iterative registration algorithm that recovers high-resolution long-exposure images in this regime from a rapid series of short exposures with very low signal-to-noise ratio. The technique takes advantage of the fact that in the photon noise limit there is negligible penalty in taking short exposures, and also that once the images are recorded, it is not necessary, as in the case of an AO tracker loop, to estimate the image motion correctly and quickly on every cycle. The algorithm is likely to find application in space situational awareness, where high-resolution daytime imaging of artificial satellites is important.

  19. Topical delivery of a preformed photosensitizer for photodynamic therapy of cutaneous lesions

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Kenney, Malcolm E.; Lam, Minh; McCormick, Thomas; Cooper, Kevin D.; Baron, Elma D.

    2012-02-01

    Photosensitizers for photodynamic therapy (PDT) are most commonly delivered to patients or experimental animals via intravenous injection. After initial distribution throughout the body, there can be some preferential accumulation within tumors or other abnormal tissue in comparison to the surrounding normal tissue. In contrast, the photosensitizer precursor, 5-aminolevulinic acid (ALA) or one of its esters, is routinely administered topically, and more specifically, to target skin lesions. Following metabolic conversion to protoporphyrin IX, the target area is photoilluminated, limiting peripheral damage and targeting the effective agent to the desired region. However, not all skin lesions are responsive to ALA-PDT. Topical administration of fully formed photosensitizers is less common but is receiving increased attention, and some notable advances with selected approved and experimental photosensitizers have been published. Our team has examined topical administration of the phthalocyanine photosensitizer Pc 4 to mammalian (human, mouse, pig) skin. Pc 4 in a desired formulation and concentration was applied to the skin surface at a rate of 5-10 μL/cm2 and kept under occlusion. After various times, skin biopsies were examined by confocal microscopy, and fluorescence within regions of interest was quantified. Early after application, images show the majority of the Pc 4 fluorescence within the stratum corneum and upper epidermis. As a function of time and concentration, penetration of Pc 4 across the stratum corneum and into the epidermis and dermis was observed. The data indicate that Pc 4 can be delivered to skin for photodynamic activation and treatment of skin pathologies.

  20. Necrosis and apoptosis pathways of cell death at photodynamic treatment in vitro as revealed by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Semenova, I. V.; Belashov, A. V.; Belyaeva, T. N.; Kornilova, E. S.; Salova, A. V.; Zhikhoreva, A. A.; Vasyutinskii, O. S.

    2018-02-01

    Monitoring of variations in morphological characteristics of cultured HeLa cells after photodynamic treatment with Radachlorin photosensitizer is performed by means of digital holographic microscopy. The observed dose-dependent post-treatment variations of phase shift evidence threshold effect of photodynamic treatment and allow for distinguishing between necrotic or apoptotic pathways of cell death. Results obtained by holographic microscopy were confirmed by means of far-field optical microscopy and confocal fluorescence microscopy with commonly used test assays.

  1. Monitoring photodynamic therapy with photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Chapman, David W.; Moore, Ronald B.; Zemp, Roger J.

    2015-10-01

    We present our work on examining the feasibility of monitoring photodynamic therapy (PDT)-induced vasculature change with acoustic-resolution photoacoustic microscopy (PAM). Verteporfin, an FDA-approved photosensitizer for clinical PDT, was utilized. With a 60-μm-resolution PAM system, we demonstrated the capability of PAM to monitor PDT-induced vasculature variations in a chick chorioallantoic membrane model with topical application and in a rat ear with intravenous injection of the photosensitizer. We also showed oxygen saturation change in target blood vessels due to PDT. Success of the present approach may potentially lead to the application of PAM imaging in evaluating PDT efficacy, guiding treatment, and predicting responders from nonresponders.

  2. Comparative study of the bactericidal effects of indocyanine green- and methyl aminolevulinate-based photodynamic therapy on Propionibacterium acnes as a new treatment for acne.

    PubMed

    Choi, Seung-Hwan; Seo, Jeong-Wan; Kim, Ki-Ho

    2018-05-03

    Acne vulgaris is one of the most common dermatological problems, and its therapeutic options include topical and systemic retinoids and antibiotics. However, increase in problems associated with acne treatment, such as side-effects from conventional agents and bacterial resistance to antibiotics, has led to greater use of photodynamic therapy. The purpose of this study was to compare the bactericidal effects of indocyanine green- and methyl aminolevulinate-based photodynamic therapy on Propionibacterium acnes. P. acnes were cultured under anaerobic conditions; then they were divided into three groups (control, treated with indocyanine green and treated with methyl aminolevulinate) and illuminated with different lights (630-nm light-emitting diode, 805-nm diode laser and 830-nm light-emitting diode). The bactericidal effects were evaluated by comparing each group's colony-forming units. The cultured P. acnes were killed with an 805-nm diode laser and 830-nm light-emitting diode in the indocyanine green group. No bactericidal effects of methyl aminolevulinate-based photodynamic therapy were identified. The clinical efficacy of indocyanine green-based photodynamic therapy in 21 patients was retrospectively analyzed. The Korean Acne Grading System was used to evaluate treatment efficacy, which was significantly decreased after treatment. The difference in the efficacy of the 805-nm diode laser and 830-nm light-emitting diode was not statistically significant. Although the methyl aminolevulinate-based photodynamic therapy showed no bactericidal effect, the indocyanine green-based photodynamic therapy has bactericidal effect and clinical efficacy. © 2018 Japanese Dermatological Association.

  3. Use of photodynamic therapy in the treatment of bovine subclinical mastitis.

    PubMed

    Moreira, Lívia Helena; de Souza, José Carlos Pereira; de Lima, Carlos José; Salgado, Miguel Angel Castillo; Fernandes, Adriana Barrinha; Andreani, Dora Inés Kozusny; Villaverde, Antonio Balbin; Zângaro, Renato Amaro

    2018-03-01

    Bovine mastitis is a disease that causes a severe drawback in dairy production. Conventional treatments with antibiotic could leave antibiotic residues in the milk. The aim of this study was to evaluate the effect of photodynamic therapy in the treatment of bovine subclinical mastitis to develop an in vivo therapeutic protocol that could be used in routine farm practice, favoring the early return to production. Forty cows with subclinical mastitis (n = 40) were divided into 4 groups (control, photodynamic therapy - PDT, light irradiation - LED, and photosensitizer - PS). Control group received no treatment, PDT group received application of 1.0 mL of 2.5% toluidine blue photosensitizer followed by LED irradiation at λ = 635 nm, the LED group was treated with LED irradiation alone, and the PS group received only 2.5% toluidine blue dye. LED irradiation was applied to the mammary gland by means of an acrylic light guide coupled to the LED equipment. The PDT and LED groups were irradiated with 200 J/cm 2 at three different positions inside the mammary gland. Milk samples were collected at 0 h, 12 h, 24 h after treatment for microbial identification and total bacterial count. The treatment of the PDT group showed significant difference p < 0.05, characterizing the efficiency of this technique with the reduction of the microorganisms Streptococcus dysgalactiae and coagulase-negative Staphylococcus. Photodynamic therapy was effective when applied in vivo for subclinical bovine mastitis. There was no need to separate the animal from production. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of one- and two-photon activated photodynamic therapy with pyropheophorbide-a methyl ester in human cervical, lung and ovarian cancer cells.

    PubMed

    Luo, Ting; Wilson, Brian C; Lu, Qing-Bin

    2014-03-05

    Two-photon activated photodynamic therapy (2-γ PDT) has the potential of treating deeper tumors and/or improving tumor targeting. Here, we evaluated the one- and two-photon activated PDT efficacy of pyropheophorbide-a methyl ester (MPPa), a second-generation photosensitizer derived from chlorophyll a. We show that MPPa, when activated by femtosecond (fs) laser pulses at 674 nm, has high one-photon (1-γ) PDT efficacy against cisplatin-sensitive human cervical (HeLa) and cisplatin-resistant human lung (A549) and ovarian (NIH:OVCAR-3) cancer cells. At a low light dose of 0.06 J cm(-2), the IC50 (the MPPa concentration required to kill 50% of the cells) was determined to be 5.3 ± 0.3, 3.4 ± 0.3 and 3.6 ± 0.4 μM for HeLa, A549 and NIH:OVCAR-3 cells, respectively. More significantly, we also show that MPPa can be effectively activated by an 800 nm, 120 fs laser through 2-γ excitation; at a light dose causing no measurable photocytotoxicity in the absence of photosensitizer, the corresponding IC50 values were measured to be 4.1 ± 0.3, 9.6 ± 1.0 and 1.6 ± 0.3 μM, respectively. These results indicate that MPPa is a potent photosensitizer for both 1- and 2-γ activated PDT with potential applications for difficult-to-treat tumors by conventional therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Carbon-1 versus Carbon-3 Linkage of d-Galactose to Porphyrins: Synthesis, Uptake, and Photodynamic Efficiency.

    PubMed

    Pereira, Patrícia M R; Rizvi, Waqar; Bhupathiraju, N V S Dinesh K; Berisha, Naxhije; Fernandes, Rosa; Tomé, João P C; Drain, Charles Michael

    2018-02-21

    The use of glycosylated compounds is actively pursued as a therapeutic strategy for cancer due to the overexpression of various types of sugar receptors and transporters on most cancer cells. Conjugation of saccharides to photosensitizers such as porphyrins provides a promising strategy to improve the selectivity and cell uptake of the photosensitizers, enhancing the overall photosensitizing efficacy. Most porphyrin-carbohydrate conjugates are linked via the carbon-1 position of the carbohydrate because this is the most synthetically accessible approach. Previous studies suggest that carbon-1 galactose derivatives show diminished binding since the hydroxyl group in the carbon-1 position of the sugar is a hydrogen bond acceptor in the galectin-1 sugar binding site. We therefore synthesized two isomeric porphyrin-galactose conjugates using click chemistry: one linked via the carbon-1 of the galactose and one linked via carbon-3. Free base and zinc analogs of both conjugates were synthesized. We assessed the uptake and photodynamic therapeutic (PDT) activity of the two conjugates in both monolayer and spheroidal cell cultures of four different cell lines. For both the monolayer and spheroid models, we observe that the uptake of both conjugates is proportional to the protein levels of galectin-1 and the uptake is suppressed after preincubation with an excess of thiogalactose, as measured by fluorescence spectroscopy. Compared to that of the carbon-1 conjugate, the uptake of the carbon-3 conjugate was greater in cell lines containing high expression levels of galectin-1. After photodynamic activation, MTT and lactate dehydrogenase assays demonstrated that the conjugates induce phototoxicity in both monolayers and spheroids of cancer cells.

  6. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies.

    PubMed

    Alves, Cátia G; Lima-Sousa, Rita; de Melo-Diogo, Duarte; Louro, Ricardo O; Correia, Ilídio J

    2018-05-05

    IR780, a molecule with a strong optical absorption and emission in the near infrared (NIR) region, is receiving an increasing attention from researchers working in the area of cancer treatment and imaging. Upon irradiation with NIR light, IR780 can produce reactive oxygen species as well as increase the body temperature, thus being a promising agent for application in cancer photodynamic and photothermal therapy. However, IR780's poor water solubility, fast clearance, acute toxicity and low tumor uptake may limit its use. To overcome such issues, several types of nanomaterials have been used to encapsulate and deliver IR780 to tumor cells. This mini-review is focused on the application of IR780 based nanostructures for cancer imaging, and photothermal, photodynamic and combinatorial therapies. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Advance in Photosensitizers and Light Delivery for Photodynamic Therapy

    PubMed Central

    Yoon, Il; Li, Jia Zhu

    2013-01-01

    The brief history of photodynamic therapy (PDT) research has been focused on photosensitizers (PSs) and light delivery was introduced recently. The appropriate PSs were developed from the first generation PS Photofrin (QLT) to the second (chlorins or bacteriochlorins derivatives) and third (conjugated PSs on carrier) generations PSs to overcome undesired disadvantages, and to increase selective tumor accumulation and excellent targeting. For the synthesis of new chlorin PSs chlorophyll a is isolated from natural plants or algae, and converted to methyl pheophorbide a (MPa) as an important starting material for further synthesis. MPa has various active functional groups easily modified for the preparation of different kinds of PSs, such as methyl pyropheophorbide a, purpurin-18, purpurinimide, and chlorin e6 derivatives. Combination therapy, such as chemotherapy and photothermal therapy with PDT, is shortly described here. Advanced light delivery system is shown to establish successful clinical applications of PDT. Phtodynamic efficiency of the PSs with light delivery was investigated in vitro and/or in vivo. PMID:23423543

  8. Effects of verteporfin-mediated photodynamic therapy on endothelial cells

    NASA Astrophysics Data System (ADS)

    Kraus, Daniel; Chen, Bin

    2015-03-01

    Photodynamic therapy (PDT) is a treatment modality in which cytotoxic reactive oxygen species are generated from oxygen and other biological molecules when a photosensitizer is activated by light. PDT has been approved for the treatment of cancers and age-related macular degeneration (AMD) due to its effectiveness in cell killing and manageable normal tissue complications. In this study, we characterized the effects of verteporfin-PDT on SVEC mouse endothelial cells and determined its underlying cell death mechanisms. We found that verteporfin was primarily localized in mitochondria and endoplasmic reticulum (ER) in SVEC cells. Light treatment of photosensitized SVEC cells induced a rapid onset of cell apoptosis. In addition to significant structural damages to mitochondria and ER, verteporfin-PDT caused substantial degradation of ER signaling molecules, suggesting ER stress. These results demonstrate that verteporfin-PDT triggered SVEC cell apoptosis by both mitochondrial and ER stress pathways. Results from this study may lead to novel therapeutic approaches to enhance PDT outcome.

  9. Targeted photodynamic therapy for infected wounds in mice

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; O'Donnell, David A.; Zahra, Touqir; Contag, Christopher H.; McManus, Albert T.; Hasan, Tayyaba

    2002-06-01

    Although many workers have used photodynamic therapy to kill bacteria in vitro, the use of this approach has seldom been reported in vivo in animal models of infection. We report on the use of a targeted polycationic photosensitizer conjugate between poly-L-lysine and chlorin(e6) that can penetrate the Gram (-) outer membrane together with red laser light to kill Escherichia coli and Pseudomonas aeruginosa infecting excisional wounds in mice. We used genetically engineered luminescent bacteria that allowed the infection to be imaged in mouse wounds using a sensitive CCD camera. Wounds were infected with 5x106 bacteria, followed by application of the conjugate in solution and illumination. There was a light-dose dependent loss of luminescence as measured by image analysis in the wound treated with conjugate and light, not seen in control wounds. This strain of E coli is non-invasive and the infection in untreated wounds spontaneously resolved in a few days and all wounds healed equally well showing the photodynamic treatment did not damage the host tissue. P aeruginosa is highly invasive and mice with untreated or control wounds all died while 90% of PDT treated mice survived. PDT may have a role to play in the rapid treatment of infected wounds in view of the worldwide rise in antibiotic resistance.

  10. Methyl - aminolevulinic acid photodynamic therapy and topical tretinoin in a patient with vulvar extramammary Paget's disease.

    PubMed

    Magnano, Michela; Loi, Camilla; Bardazzi, Federico; Burtica, Elena Cleopatra; Patrizi, Annalisa

    2013-01-01

    Extramammary Paget's disease is a rare neoplasm of apocrine gland-bearing areas of the skin. The most common site of presentation is the vulva. Surgery is the most frequently reported therapy so far; however, it is invasive and it is complicated by a high rate of recurrence. For this reason, several less-invasive treatments have been recently proposed, including photodynamic therapy. We describe in this article the case of an 84-year-old patient with a noninvasive vulvar extramammary Paget's disease successfully treated with methyl-aminolevulinic acid photodynamic therapy associated with topical tretinoin. © 2013 Wiley Periodicals, Inc.

  11. Synthesis and biological evaluation of 173-dicarboxylethyl-pyropheophorbide-a amide derivatives for photodynamic therapy.

    PubMed

    Zhu, Wei; Wang, Lai-Xing; Chen, Dan-Ye; Gao, Ying-Hua; Yan, Yi-Jia; Wu, Xiao-Feng; Wang, Mi; Han, Yi-Ping; Chen, Zhi-Long

    2017-12-19

    Three novel 17 3 -dicarboxylethyl-pyropheophorbide-a amide derivatives as photosensitizers for photodynamic therapy (PDT) were synthesized from pyropheophorbide-a (Ppa). Their photophysical and photochemical properties, intracellular localization, photocytotoxicity in vitro and in vivo were investigated. All target compounds exhibited low cytotoxicity in the dark and remarkable photocytotoxicity against human esophageal cancer cells. Among them, 1a showed highest singlet oxygen quantum yield. Upon light activation, 1a exhibited significant photocytotoxicity. After PDT treatment, the growth of Eca-109 tumor in nude mice was significantly inhibited. Therefore, 1a is a powerful and promising antitumor photosensitizer for PDT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy.

    PubMed

    Zhang, Xin; Yan, Qi; Mulatihan, Di Naer; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-06-22

    The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.

  13. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Yan, Qi; Naer Mulatihan, Di; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-06-01

    The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.

  14. Photodynamic treatment of a secondary vasoproliferative tumour associated with sector retinitis pigmentosa and Usher syndrome type I.

    PubMed

    Osman, Saatci A; Aylin, Yaman; Arikan, Gul; Celikel, Harika

    2007-03-01

    Vasoproliferative tumours may be primary or secondary and present with severe exudation leading to marked visual loss. We describe a 47-year-old man with unilateral secondary vasoproliferative tumour associated with sector retinitis pigmentosa and Usher I syndrome who was successfully treated with a single session of photodynamic treatment. Standard treatment protocol was used except that the treatment duration was doubled. A year after the treatment, the angioma-like tumour vanished and exudation was dramatically reduced. Photodynamic therapy seems to be a minimally invasive and safe technique in eyes with secondary vasoproliferative tumours.

  15. Novel Photodynamics in Phytochrome & Cyanobacteriochrome Photosensory Proteins

    NASA Astrophysics Data System (ADS)

    Larsen, Delmar

    2015-03-01

    The photodynamics of recently characterized phytochrome and cyanobacteriochrome photoreceptors are discussed. Phytochromes are red/far-red photosensory proteins that utilize the photoisomerization of a linear tetrapyrrole (bilin) chromophore to detect the red to far-red light ratio. Cyanobacteriochromes (CBCRs) are distantly related cyanobacterial photosensors with homologous bilin-binding GAF domains, but exhibit greater spectral diversity. The excited-state mechanisms underlying the initial photoisomerization in the forward reactions of the cyanobacterial photoreceptor Cph1 from Synechocystis, the RcaE CBCR from Fremyella diplosiphon, and Npr6012g4 CBCR from Nostoc punctiforme were contrasted via multipulse pump-dump-probe transient spectroscopy. A rich excited-state dynamics are resolved involving a complex interplay of excited-state proton transfer, photoisomerization, multilayered inhomogeneity, and reactive intermediates, and Le Chatelier redistribution. NpR6012g4 exhibits a high quantum yield for its forward photoreaction (40%) that was ascribed to the activity of hidden, productive ground-state intermediates via a ``second chance initiation dynamics'' (SCID) mechanism. This work was supported by a grant from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, United States Department of Energy (DOE DE-FG02-09ER16117).

  16. Non-monotonic changes in clonogenic cell survival induced by disulphonated aluminum phthalocyanine photodynamic treatment in a human glioma cell line

    PubMed Central

    2010-01-01

    Background Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes. The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1) showed that disulphonated aluminum phthalocyanine (AlPcS2) photodynamically induced loss of cell survival in a concentration dependent manner up to 1 μM, further increases in AlPcS2concentration (>1 μM) were, however, observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic dose-response (survival) relationships have been reported, this result was unexpected. The present studies were, therefore, undertaken to further investigate the concentration dependent photodynamic effects of AlPcS2. Methods Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects of AlPcS2 were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell counting and colony forming assays, flow cytometry and micronuclei formation respectively. Results The cellular uptake as a function of extra-cellular AlPcS2 concentrations was observed to be biphasic. AlPcS2 was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1 μM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in cell proliferation with accumulation of cells in G2+M phase was observed after PDT. The response of clonogenic survival after AlPcS2-PDT was non-monotonic with respect to AlPcS2 concentration. Conclusions Based on the results we conclude that concentration-dependent changes in physico-chemical properties of sensitizer

  17. Porphyrin-laser photodynamic induction of focal brain necrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroop, W.G.; Battles, E.J.; Townsend, J.J.

    A noninvasive photodynamic method has been developed to produce focal brain necrosis using porphyrin activated in vivo with laser light. After peripheral injection of the photosensitive porphyrin derivative, Photofrin I, mice were irradiated on the posterior lateral aspect of the head through the intact depilated scalp with 632 nm argon-dye laser light. Animals were studied at one, two and seven days after irradiation. Blood-brain barrier damage was detected by the intravenous injection of Evans blue, horseradish peroxidase and heterologous immunoglobulins. At one and two days after irradiation, the lesions were characterized by extravasation of immunoglobulin and Evans blue, and bymore » edema, ischemia and infiltration by monocytes. On the seventh day after irradiation, the lesion was smaller than it had been two days after irradiation, and had reactive changes at its edges and coagulative necrosis at its center. Extravasation of Evans blue and immunoglobulin was markedly reduced by the seventh day after irradiation, but uptake of horseradish peroxidase by macrophages located at the periphery of the lesion was evident.« less

  18. Perturbed porphyrin biosynthesis contributes to differential herbicidal symptoms in photodynamically stressed rice (Oryza sativa) treated with 5-aminolevulinic acid and oxyfluorfen.

    PubMed

    Phung, Thu-Ha; Jung, Sunyo

    2014-11-01

    This paper focuses on the molecular mechanism of deregulated porphyrin biosynthesis in rice plants under photodynamic stress imposed by an exogenous supply of 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). Plants treated with 5 mM ALA or 50 µM OF exhibited differential herbicidal symptoms as characterized by white and brown necrosis, respectively, with substantial increases in cellular leakage and malondialdehyde production. Protoporphyrin IX accumulated to higher levels after 1 day of ALA and OF treatment, whereas it decreased to the control level after 2 days of ALA treatment. Plants responded to OF by greatly decreasing the levels of Mg-protoporphyrin IX (MgProto IX), MgProto IX methyl ester, and protochlorophyllide to levels lower than control, whereas their levels drastically increased 1 day after ALA treatment and then disappeared 2 days after the treatment. Enzyme activity and transcript levels of HEMA1, GSA and ALAD for ALA synthesis greatly decreased in ALA- and OF-treated plants. Transcript levels of PPO1, CHLH, CHLI, and PORB genes involving Mg-porphyrin synthesis continuously decreased in ALA- and OF-treated plants, with greater decreases in ALA-treated plants. By contrast, up-regulation of FC2 and HO2 genes in Fe-porphyrin branch was noticeable in ALA and OF-treated plants 1 day and 2 days after the treatments, respectively. Decreased transcript levels of nuclear-encoded genes Lhcb1, Lhcb6, and RbcS were accompanied by disappearance of MgProto IX in ALA- and OF-treated plants after 2 days of the treatments. Under photodynamic stress imposed by ALA and OF, tight control of porphyrin biosynthesis prevents accumulation of toxic metabolic intermediates not only by down-regulation of their biosynthesis but also by photodynamic degradation. The up-regulation of FC2 and HO2 also appears to compensate for the photodynamic stress-induced damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Phthalocyanine-sulfonamide conjugates: Synthesis and photodynamic inactivation of Gram-negative and Gram-positive bacteria.

    PubMed

    da Silva, Raquel Nunes; Cunha, Ângela; Tomé, Augusto C

    2018-06-25

    Phthalocyanines bearing four or eight sulfonamide units were synthesized and their efficiency in the photodynamic inactivation of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria was evaluated. Conjugates with simpler sulfonamide units (N,N-diethylbenzenesulfonamide, N-isopropylbenzenesulfonamide and N-(4-methoxyphenyl)benzenesulfonamide) caused stronger inactivation than those with heterocyclic groups (N-(thiazol-2-yl)benzenesulfonamide) or long alkyl chains (N-dodecylbenzenesulfonamide) in both bacteria. Furthermore, the encapsulation of the phthalocyanine-sulfonamide conjugates within polyvinylpyrrolidone micelles, used as drug delivery vehicles, in general showed to enhance the inactivation efficiency. The results show that encapsulated phthalocyanine-sulfonamide conjugates are a promising class of photosensitizers to be used in photodynamic antimicrobial therapy. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Antimicrobial photodynamic therapy in chronic osteomyelitis induced by Staphylococcus aureus: An in vitro and in vivo study

    NASA Astrophysics Data System (ADS)

    dos Reis Júnior, João Alves; de Assis, Patrícia Nascimento; Paraguassú, Gardênia Matos; de Vieira de Castro, Isabele Cardoso; Trindade, Renan Ferreira; Marques, Aparecida Maria Cordeiro; Almeida, Paulo Fernando; Pinheiro, Antônio Luiz Barbosa

    2012-09-01

    Osteomyelitis it is an acute or chronic inflammation in the marrow spaces in the superficial or cortical bone, and associated to bacterial infection. Chronic osteomyelitis represents a major health problem due to its difficult treatment and increased morbidity. Antimicrobial photodynamic therapy (APT) by laser is a treatment based on a cytotoxic photochemical reaction in which, a bright light produced by a laser system and an active photosensitizer absorbed by cells leads an activation that induces a series of metabolic reactions that culminates a bacterial killing. The aim of this study was to assess, both in vitro and in vivo, the effect of lethal laser photosensitization on osteomyelitis. On the in vitro study a diode laser (λ660nm; 40mW; o/ = 0.4 cm2; 5 or 10 J/cm2) and 5, 10 and 15μg/mL toluidine blue (TB) were tested and the best parameter chosen for the in vivo study. The concentration of 5μg/mL was selected to perform the decontamination of infected by Staphylococcus aureus tibial bone defects in rats. The results were performed by ANOVA test. On the in vitro studies all PDTs groups in the different concentrations reduced significantly (p<0,001) the amount of bacteria. On the in vivo study PDT group presented a bacterial reduction of 97,4% (P<0,001). The photodynamic therapy using toluidine blue was effective in reducing the staphiloccocus aureus in both in vitro and in vivo studies.

  1. The in vitro photodynamic effect of laser activated gallium, indium and iron phthalocyanine chlorides on human lung adenocarcinoma cells.

    PubMed

    Maduray, K; Odhav, B

    2013-11-05

    Metal-based phthalocyanines currently are utilized as a colorant for industrial applications but their unique properties also make them prospective photosensitizers. Photosensitizers are non-toxic drugs, which are commonly used in photodynamic therapy (PDT), for the treatment of various cancers. PDT is based on the principle that, exposure to light shortly after photosensitizer administration predominately leads to the production of reactive oxygen species for the eradication of cancerous cells and tissue. This in vitro study investigated the photodynamic effect of gallium (GaPcCl), indium (InPcCl) and iron (FePcCl) phthalocyanine chlorides on human lung adenocarcinoma cells (A549). Experimentally, 2 × 10(4)cells/ml were seeded in 24-well tissue culture plates and allowed to attach overnight, after which cells were treated with different concentrations of GaPcCl, InPcCl and FePcCl ranging from 2 μg/ml to 100 μg/ml. After 2h, cells were irradiated with constant light doses of 2.5 J/cm(2), 4.5 J/cm(2) and 8.5 J/cm(2) delivered from a diode laser (λ = 661 nm). Post-irradiated cells were incubated for 24h before cell viability was measured using the MTT Assay. At 24h after PDT, irradiation with a light dose of 2.5 J/cm(2) for each photosensitizing concentration of GaPcCl, InPcCl and FePcCl produced a significant decrease in cell viability, but when the treatment light dose was further increased to 4.5 J/cm(2) and 8.5 J/cm(2) the cell survival was less than 40%. Results also showed that photoactivated FePcCl decreased cell survival of A549 cells to 0% with photosensitizing concentrations of 40 μg/ml and treatment light dose of 2.5 J/cm(2). A 20 μg/ml photosensitizing concentration of FePcCl in combination with an increased treatment light dose of either 4.5 J/cm(2) or 8.5 J/cm(2) also resulted in 0% cell survival. This PDT study concludes that low concentrations on GaPcCl, InPcCl and FePcCl activated with low level light doses can be used for the effective in

  2. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging.

    PubMed

    Kuo, Wen-Shuo; Chen, Hua-Han; Chen, Shih-Yao; Chang, Chia-Yuan; Chen, Pei-Chi; Hou, Yung-I; Shao, Yu-Ting; Kao, Hui-Fang; Lilian Hsu, Chih-Li; Chen, Yi-Chun; Chen, Shean-Jen; Wu, Shang-Rung; Wang, Jiu-Yao

    2017-03-01

    Reactive oxygen species is the main contributor to photodynamic therapy. The results of this study show that a nitrogen-doped graphene quantum dot, serving as a photosensitizer, was capable of generating a higher amount of reactive oxygen species than a nitrogen-free graphene quantum dot in photodynamic therapy when photoexcited for only 3 min of 670 nm laser exposure (0.1 W cm -2 ), indicating highly improved antimicrobial effects. In addition, we found that higher nitrogen-bonding compositions of graphene quantum dots more efficiently performed photodynamic therapy actions than did the lower compositions that underwent identical treatments. Furthermore, the intrinsically emitted luminescence from nitrogen-doped graphene quantum dots and high photostability simultaneously enabled it to act as a promising contrast probe for tracking and localizing bacteria in biomedical imaging. Thus, the dual modality of nitrogen-doped graphene quantum dots presents possibilities for future clinical applications, and in particular multidrug resistant bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Photodynamic research at Baylor University Medical Center Dallas, Texas

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.; Matthews, James Lester; Sogandares-Bernal, Franklin M.; Aronoff, Billie L.; Judy, Millard M.

    1993-03-01

    We received our first CO2 laser at Baylor University Medical Center in December 1974, following a trip to Israel in January of that year. Discussion with the customs office of the propriety of charging an 18% import tax lasted for nine months. We lost that argument. Baylor has been using lasers of many types for many procedures since that time. About ten years ago, through the kindness of Tom Dougherty and Roswell Park, we started working with photodynamic therapy, first with hematoporphyrin I and later with dihematoporphyrin ether (II). In February 1984, we were invited to a conference at Los Alamos, New Mexico, U.S.A. on medical applications of the free electron laser as part of the Star Wars Program. A grant application from Baylor was approved that November, but funding did not start for many months. This funding contributed to the development of a new research center as part of Baylor Research Institute. Many of the projects investigated at Baylor dealt with applications of the free electron laser (FEL), after it became available. A staff was assembled and many projects are still ongoing. I would like to outline those which are in some way related to photodynamic therapy.

  4. A Simple Experiment to Show Photodynamic Inactivation of Bacteria on Surfaces

    ERIC Educational Resources Information Center

    Caminos, Daniel A.; Durantini, Edgardo N.

    2007-01-01

    New suitable approaches were investigated to visualize the photodynamic inactivation (PDI) of bacteria immobilized on agar surfaces. The PDI capacities of a cationic photosensitizer (5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl)porphyrin) and an anionic photosensitizer (5,10,15,20-tetra(4-sulfonatophenyl)porphyrin) were analyzed on a typical…

  5. Impact of daylight saving time on road traffic collision risk: a systematic review

    PubMed Central

    Carey, Rachel N; Sarma, Kiran M

    2017-01-01

    Background Bills have been put forward in the UK and Republic of Ireland proposing a move to Central European Time (CET). Proponents argue that such a change will have benefits for road safety, with daylight being shifted from the morning, when collision risk is lower, to the evening, when risk is higher. Studies examining the impact of daylight saving time (DST) on road traffic collision risk can help inform the debate on the potential road safety benefits of a move to CET. The objective of this systematic review was to examine the impact of DST on collision risk. Methods Major electronic databases were searched, with no restrictions as to date of publication (the last search was performed in January 2017). Access to unpublished reports was requested through an international expert group. Studies that provided a quantitative analysis of the effect of DST on road safety-related outcomes were included. The primary outcomes of interest were road traffic collisions, injuries and fatalities. Findings Twenty-four studies met the inclusion criteria. Seventeen examined the short-term impact of transitions around DST and 12 examined long-term effects. Findings from the short-term studies were inconsistent. The long-term findings suggested a positive effect of DST. However, this cannot be attributed solely to DST, as a range of road collision risk factors vary over time. Interpretation The evidence from this review cannot support or refute the assertion that a permanent shift in light from morning to evening will have a road safety benefit. PMID:28674131

  6. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity

    PubMed Central

    Grossman, Craig E.; Carter, Shirron L.; Czupryna, Julie; Wang, Le; Putt, Mary E.; Busch, Theresa M.

    2016-01-01

    Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor®)-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm. PMID:26784170

  7. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity.

    PubMed

    Grossman, Craig E; Carter, Shirron L; Czupryna, Julie; Wang, Le; Putt, Mary E; Busch, Theresa M

    2016-01-14

    Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor(®))-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm.

  8. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy

    PubMed Central

    Zhao, Yiqiao; Yu, Hua; Zhou, Haiyu; Chen, Meiwan

    2017-01-01

    Mitoxantrone (MIT) is an anticancer agent with photosensitive properties that is commonly used in various cancers. Multidrug resistance (MDR) effect has been an obstacle to using MIT for cancer therapy. Photochemical internalization, on account of photodynamic therapy, has been applied to improve the therapeutic effect of cancers with MDR effect. In this study, an MIT-poly(ε-caprolactone)-pluronic F68-poly(ε-caprolactone)/poly(d,l-lactide-co-glycolide)–poly(ethylene glycol)–poly(d,l-lactide-co-glycolide) (MIT-PFP/PPP) mixed micelles system was applied to reverse the effect of MDR in MCF-7/ADR cells via photochemical reaction when exposed to near-infrared light. MIT-PFP/PPP mixed micelles showed effective interaction with near-infrared light at the wavelength of 660 nm and exerted great cytotoxicity in MCF-7/ADR cells with irradiation. Furthermore, MIT-PFP/PPP mixed micelles could improve reactive oxygen species (ROS) levels, decrease P-glycoprotein activity, and increase the cellular uptake of drugs with improved intracellular drug concentrations, which induced cell apoptosis in MCF-7/ADR cells under irradiation, despite MDR effect, as indicated by the increased level of cleaved poly ADP-ribose polymerase. These findings suggested that MIT-PFP/PPP mixed micelles may become a promising strategy to effectively reverse the MDR effect via photodynamic therapy in breast cancer. PMID:28919756

  9. Molecular beacon-based photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Stefflova, Klara; Kim, Soungkyoo; Li, Hui; Marotta, Diane; Chance, Britton; Glickson, Jerry D.; Zheng, Gang

    2005-01-01

    A new concept for photodynamic therapy (PDT) has been developed based on incorporating a photosensitizer (PS) and a singlet oxygen (1O2) quenching/scavenging molecule (Q) onto a disease-targeting carrier, such that the PS becomes activatable by light only when targeting has occurred. This has the potential to give very high disease specificity in PDT treatment. The first model compound designed using this concept was synthesized containing a pyropheophorbide as the PS and a carotenoid as the 1O2 quencher. These were kept in close proximity by the self-folding of a caspase-3 specific peptide sequence. Upon caspase-3-induced cleavage, the 1O2 production increase has been validated by direct 1O2 luminescence and lifetime measurements, providing proof-of-concept of this 'PDT beacon.'

  10. Novel applications of diagnostic X-rays in activating a clinical photodynamic drug: Photofrin II through X-ray induced visible luminescence from "rare-earth" formulated particles.

    PubMed

    Abliz, Erkinay; Collins, Joshua E; Bell, Howard; Tata, Darrell B

    2011-01-01

    In this communication we report on a novel non-invasive methodology in utilizing "soft" energy diagnostic X-rays to indirectly activate a photo-agent utilized in photodynamic therapy (PDT): Photofrin II (Photo II) through X-ray induced luminescence from Gadolinium Oxysulfide (20 micron dimension) particles doped with Terbium: Gd_{2}O_{2}S:Tb. Photodynamic agents such as Photo II utilized in PDT possess a remarkable property to become preferentially retained within the tumor's micro-environment. Upon the photo-agent's activation through (visible light) photon absorption, the agents exert their cellular cytotoxicity through type I and type II pathways through extensive generation of reactive oxygen species (ROS); namely, singlet oxygen ^{1}O_{2}, superoxide anion O_{2}^{-}, and hydrogen peroxide H_{2}O_{2}, within the intra-tumoral environment. Unfortunately, due to shallow visible light penetration depth (∼ 2 mm to 5 mm) in tissues, the current PDT strategy has largely been restricted to the treatment of surface tumors, such as the melanomas. Additional invasive strategies through optical fibers are currently utilized in getting the visible light into the intended deep seated targets within the body for PDT. X-ray induced visible luminescence from Gd_{2}O_{2}S:Tb particles were spectroscopically characterized, and the potential in-vitro cellular cytotoxicity of Gd_{2}O_{2}S:Tb particles on human glioblastoma cells (due to 48 Hrs Gd_{2}O_{2}S:Tb particle exposure) was screened through the MTS cellular metabolic assay. In-vitro human glioblastoma cellular exposures in presence of Photo II with Gd_{2}O_{2}S:Tb particles were performed in the dark in sterile 96 well tissue culture plates

  11. Flight directions of passerine migrants in daylight and darkness: A radar and direct visual study

    NASA Technical Reports Server (NTRS)

    Gauthreaux, S. A., Jr.

    1972-01-01

    The application of radar and visual techniques to determine the migratory habits of passerine birds during daylight and darkness is discussed. The effects of wind on the direction of migration are examined. Scatter diagrams of daytime and nocturnal migration track directions correlated with wind direction are presented. It is concluded that migratory birds will fly at altitudes where wind direction and migratory direction are nearly the same. The effects of cloud cover and solar obscuration are considered negligible.

  12. Lethality In Mice Following Localized Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Ferrario, Angela; Gomer, Charles J.; Murphree, A. L.

    1989-06-01

    Porphyrin photodynamic therapy directed specifically to the hind leg of various strains of mice was found to induce a high percentage of lethality at dosages which would be required to achieve cures in tumor bearing mice. Toxicity was observed in both pigmented and albino mouse strains. An inverse relationship between light dose rate and lethality was documented. Anti-coagulant drugs and anti-inflammatory agents which inhibit cyclo-oxygenase had protective effects. The response induced by localized PDT appears to mimic that of a classical traumatic shock syndrome and may be limited to PDT in small animals such as mice.

  13. Oncologic photodynamic diagnosis and therapy: confocal Raman/fluorescence imaging of metal phthalocyanines in human breast cancer tissue in vitro.

    PubMed

    Abramczyk, Halina; Brozek-Pluska, Beata; Surmacki, Jakub; Musial, Jacek; Kordek, Radzislaw

    2014-11-07

    Raman microspectroscopy and confocal Raman imaging combined with confocal fluorescence were used to study the distribution and aggregation of aluminum tetrasulfonated phthalocyanine (AlPcS4) in noncancerous and cancerous breast tissues. The results demonstrate the ability of Raman spectroscopy to distinguish between noncancerous and cancerous human breast tissue and to identify differences in the distribution and aggregation of aluminum phthalocyanine, which is a potential photosensitizer in photodynamic therapy (PDT), photodynamic diagnosis (PDD) and photoimmunotherapy (PIT) of cancer. We have observed that the distribution of aluminum tetrasulfonated phthalocyanine confined in cancerous tissue is markedly different from that in noncancerous tissue. We have concluded that Raman imaging can be treated as a new and powerful technique useful in cancer photodynamic therapy, increasing our understanding of the mechanisms and efficiency of photosensitizers by better monitoring localization in cancer cells as well as the clinical assessment of the therapeutic effects of PDT and PIT.

  14. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    NASA Astrophysics Data System (ADS)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  15. New photosensitizers for photodynamic therapy

    PubMed Central

    Abrahamse, Heidi; Hamblin, Michael R.

    2016-01-01

    Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound. PMID:26862179

  16. New photosensitizers for photodynamic therapy.

    PubMed

    Abrahamse, Heidi; Hamblin, Michael R

    2016-02-15

    Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound. © 2016 Authors; published by Portland Press Limited.

  17. Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device

    NASA Astrophysics Data System (ADS)

    Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben

    2015-02-01

    The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.

  18. Dual-Responsive Molecular Probe for Tumor Targeted Imaging and Photodynamic Therapy

    PubMed Central

    Meng, Xiaoqing; Yang, Yueting; Zhou, Lihua; Zhang, li; Lv, Yalin; Li, Sanpeng; Wu, Yayun; Zheng, Mingbin; Li, Wenjun; Gao, Guanhui; Deng, Guanjun; Jiang, Tao; Ni, Dapeng; Gong, Ping; Cai, Lintao

    2017-01-01

    The precision oncology significantly relies on the development of multifunctional agents to integrate tumor targeting, imaging and therapeutics. In this study, a first small-molecule theranostic probe, RhoSSCy is constructed by conjugating 5′-carboxyrhodamines (Rho) and heptamethine cyanine IR765 (Cy) using a reducible disulfide linker and pH tunable amino-group to realize thiols/pH dual sensing. In vitro experiments verify that RhoSSCy is highly sensitive for quantitative analysis and imaging intracellular pH gradient and biothiols. Furthermore, RhoSSCy shows superb tumor targeted dual-modal imaging via near-infrared fluorescence (NIRF) and photoacoustic (PA). Importantly, RhoSSCy also induces strongly reactive oxygen species for tumor photodynamic therapy (PDT) with robust antitumor activity both in vitro and in vivo. Such versatile small-molecule theranostic probe may be promising for tumor targeted imaging and precision therapy. PMID:28638467

  19. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

    PubMed

    Khdair, Ayman; Chen, Di; Patil, Yogesh; Ma, Linan; Dou, Q Ping; Shekhar, Malathy P V; Panyam, Jayanth

    2010-01-25

    Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Mechanism of photodynamic inactivation of hepatocarcinoma cells with sulfonated aluminum phthalocyanine

    NASA Astrophysics Data System (ADS)

    Yu, Hong-Yu; Dong, Rong-Chun; Chen, Ji-Yao; Cai, Huai-Xin

    1993-03-01

    The mechanism of photodynamic therapy (PDT) with sulfonated aluminum phthalocyanine (AlSPC) studied with the human hepatocellular carcinoma cell line in culture is reported herein. Photofrin II (PII) was chosen as the control photosensitizer of AlSPC. Deuterium oxide (D2O), an enhancer of singlet oxygen (1O2); 1,3-diphenylisobenzofuran (DPBF), a quencher of 1O2: glycerol, a quencher of OH radical (OH(DOT)); superoxide dismutase (SOD), a quencher of O2- radical (O2-(DOT)); diethyldithiocarbamate (DDC), an inhibitor of SOD and glutathione peroxidase; were introduced into both the processes of photodynamic inactivation of human liver cancer cells in culture with AlSPC (AlSPC-PDT) and with PII (PII-PDT). The results suggest that: 1O2 is dominantly involved in both PII-PDT and AlSPC-PDT; O2-(DOT) is involved in AlSPC-PDT in a lower degree than 1O2, while almost not involved in PII-PDT; OH(DOT) is involved in PII-PDT in a lower degree than 1O2, while almost not involved in AlSPC-PDT.

  1. [Effect of M007 mediated photodynamic therapy on proliferation of human osteosarcoma MG63 cells in vitro].

    PubMed

    Zhou, Yu-Kai; Wu, Wen-Zhi; Zhang, Lan; Yang, Chun-Hui; Wang, Yan-Ping

    2012-01-01

    To investigate the effect of a new photosensitizer, M007 mediated photodynamic therapy on proliferation of human osteosarcoma MG63 cells in vitro. Human osteosarcoma MG63 cells were prepared as 1 x 10(6) /mL single-cell suspension, and 1 mL cells were transferred into 60 mL culture dish, then treated with 5 different gradient dosages (0, 2, 4, 8, 16 micromol/L) of M007 followed by photodynamic therapy or dark reaction for 10 min. The survival rate of the cells and the mode of cell death were detected by flow cytometry with the stain of Annexin V-FITC/PI. The effect on proliferation of survival cells was observed by MTT assay and colony-forming assay. M007 mediated photodynamic therapy induced the inactivation of MG63 human osteosarcoma cells in the way of late apoptosis/necrosis or becoming naked nucleus predominately. More than 90% MG63 cells in M007-PDT group were dead under the treatment of 2-16 micromol/L M007. The survival rates of 4-16 micromol/L M007-PDT group were steadily less than 1%. The optical densities did not increase with extension of culture time in 2-8 micromol/L M007-PDT group (P > 0.05). There were 16 survival alive cells found occasionally in 2 micromol/L M007-PDT group, but no colonies found in other groups. M007 mediated photodynamic therapy totally inactivated human osteosarcoma MG63 cells in vitro with the dosage more than 4 micromol/L.

  2. Sinoporphyrin sodium triggered sono-photodynamic effects on breast cancer both in vitro and in vivo.

    PubMed

    Liu, Yichen; Wang, Pan; Liu, Quanhong; Wang, Xiaobing

    2016-07-01

    Sono-photodynamic therapy (SPDT) is a promising anti-cancer strategy. Briefly, SPDT combines ultrasound and light to activate sensitizers that produce mechanical, sonochemical and photochemical activities. Sinoporphyrin sodium (DVDMS) is a newly identified sensitizer that shows great potential in both sonodynamic therapy (SDT) and photodynamic therapy (PDT). In this study, we primarily evaluated the combined effects of SDT and PDT by using DVDMS on breast cancer both in vitro and in vivo. In vitro, DVDMS-SPDT elicits much serious cytotoxicity compared with either SDT or PDT alone by MTT and colony formation assays. 2',7'-Dichlorodihydrofluo-rescein-diacetate (DCFH-DA) and dihydroethidium (DHE) staining revealed that intracellular reactive oxygen species (ROS) were significantly increased in groups given combined therapy. Terephthalic acid (TA) method and FD500-uptake assay reflected that cavitational effects and cell membrane permeability changes after ultrasound irradiation were also involved in the enhancement of combination therapy. In vivo, DVDMS-SPDT markedly inhibits the tumor volume and tumor weight growth. Hematoxylin-eosin staining and immunohistochemistry analysis show DVDMS-SPDT greatly suppressed tumor proliferation. Further, DVDMS-SPDT significantly inhibits tumor lung metastasis in the highly metastatic 4T1 mouse xenograft model, which is consistent well with the in vitro findings evaluated by transwell assay. Moreover, DVDMS-SPDT did not produces obvious effect on body weight and major organs in 4T1 xenograft model. The results suggest that by combination SDT and PDT, the sensitizer DVDMS would produce much better therapeutic effects, and DVDMS-SPDT may be a potential strategy against highly metastatic breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-06-01

    Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser irradiation. The AHP@MNPs can target tumors via CD44 receptor-mediated endocytosis, which have enhanced tumor therapeutic effects through photodynamic/hyperthermia-combined treatment without any drugs. We successfully detected tumors implanted in mice via magnetic resonance imaging and optical imaging. Furthermore, we demonstrated the photodynamic/hyperthermia-combined therapeutic efficacy of AHP@MNPs with synergistically enhanced efficacy against cancer.Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser

  4. Smart activatable and traceable dual-prodrug for image-guided combination photodynamic and chemo-therapy.

    PubMed

    Hu, Fang; Yuan, Youyong; Mao, Duo; Wu, Wenbo; Liu, Bin

    2017-11-01

    Activatable photosensitizers (PSs) and chemo-prodrugs are highly desirable for anti-cancer therapy to reduce systemic toxicity. However, it is difficult to integrate both together into a molecular probe for combination therapy due to the complexity of introducing PS, singlet oxygen quencher, chemo-drug, chemo-drug inhibitor and active linker at the same time. To realize activatable PS and chemo-prodrug combination therapy, we develop a smart therapeutic platform in which the chemo-prodrug serves as the singlet oxygen quencher for the PS. Specifically, the photosensitizing activity and fluorescence of the PS (TPEPY-SH) are blocked by the chemo-prodrug (Mitomycin C, MMC) in the probe. Meanwhile, the cytotoxicity of MMC is also inhibited by the electron-withdrawing acyl at the nitrogen position next to the linker. Upon glutathione activation, TPEPY-S-MMC can simultaneously release active PS and MMC for combination therapy. The restored fluorescence of TPEPY-SH is also used to report the activation for both PS and MMC as well as to guide the photodynamic therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Photodynamic inactivation of contaminated blood with Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Corrêa, Thaila Q.; Inada, Natalia M.; Pratavieira, Sebastião.; Blanco, Kate C.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2016-03-01

    The presence of bacteria in the bloodstream can trigger a serious systemic inflammation and lead to sepsis that cause septic shock and death. Studies have shown an increase in the incidence of sepsis over the years and it is mainly due to the increased resistance of microorganisms to antibiotics, since these drugs are still sold and used improperly. The bacterial contamination of blood is also a risk to blood transfusions. Thus, bacteria inactivation in blood is being studied in order to increase the security of the blood supply. The purpose of this study was to decontaminate the blood using the photodynamic inactivation (PDI). Human blood samples in the presence of Photogem® were illuminated at an intensity of 30 mW/cm2, and light doses of 10 and 15 J/cm2. Blood counts were carried out for the quantitative evaluation and blood smears were prepared for qualitative and morphological evaluation by microscopy. The results showed normal viability values for the blood cells analyzed. The light doses showed minimal morphological changes in the membrane of red blood cells, but the irradiation in the presence of the photosensitizer caused hemolysis in red blood cells at the higher concentrations of the photosensitizer. Experiments with Staphylococcus aureus, one of the responsible of sepsis, showed 7 logs10 of photodynamic inactivation with 50 μg/mL and 15 J/cm2 and 1 log10 of this microorganism in a co-culture with blood.

  6. Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor

    2011-01-21

    We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.

  7. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    NASA Astrophysics Data System (ADS)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  8. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections.

    PubMed

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-11

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml(-1), compared with the free Ce6 value of 29.85 μg ml(-1). Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  9. Impact of daylight saving time on road traffic collision risk: a systematic review.

    PubMed

    Carey, Rachel N; Sarma, Kiran M

    2017-07-02

    Bills have been put forward in the UK and Republic of Ireland proposing a move to Central European Time (CET). Proponents argue that such a change will have benefits for road safety, with daylight being shifted from the morning, when collision risk is lower, to the evening, when risk is higher. Studies examining the impact of daylight saving time (DST) on road traffic collision risk can help inform the debate on the potential road safety benefits of a move to CET. The objective of this systematic review was to examine the impact of DST on collision risk. Major electronic databases were searched, with no restrictions as to date of publication (the last search was performed in January 2017). Access to unpublished reports was requested through an international expert group. Studies that provided a quantitative analysis of the effect of DST on road safety-related outcomes were included. The primary outcomes of interest were road traffic collisions, injuries and fatalities. Twenty-four studies met the inclusion criteria. Seventeen examined the short-term impact of transitions around DST and 12 examined long-term effects. Findings from the short-term studies were inconsistent. The long-term findings suggested a positive effect of DST. However, this cannot be attributed solely to DST, as a range of road collision risk factors vary over time. The evidence from this review cannot support or refute the assertion that a permanent shift in light from morning to evening will have a road safety benefit. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Synthesis and in vitro photodynamic therapy of chlorin derivative 131-ortho-trifluoromethyl-phenylhydrazone modified pyropheophorbide-a.

    PubMed

    Cheng, Jianjun; Li, Wenting; Tan, Guanghui; Wang, Zhiqiang; Li, Shuying; Jin, Yingxue

    2017-03-01

    Photodynamic therapy (PDT) is entering the mainstream of the cancer treatments recently. Pyropheophorbide-a (Pa), as a degradation product of chlorophyll-a, has been shown to be a potent photosensitizer in photodynamic therapy. In this paper, we investigated the in vitro photodynamic therapy of 13 1 -ortho-trifluoromethyl-phenylhydrazone modified pyropheophorbide-a (PHPa) against human HeLa cervical cancer cell line, together with ultraviolet-visible spectra, fluorescence emission spectra, stability in various solvents, and single oxygen quantum yield. The results indicated that PHPa not only showed a greater molar extinction coefficient reached 4.55×10 4  Lmol -1 cm -1 , the long absorption wavelength (681nm) as we expected that makes it potential in deep tumor treatment, but also showed better stability in near neutral phosphate buffers (pH 7.4) and culture medium, as well as higher single oxygen quantum yield (Ф D =40.5%) in DMF solutions. Moreover, cell experiments suggested that PHPa could be uptaken by HeLa cells successfully, and has low dark toxicity without irradiation, but remarkable photo-cytotoxicity (IC 50 , 1.92±0.59μM) that the inhibition rate of HeLa cells could increase up 91.4% at 30μM of PHPa after irradiation. In addition, morphological changes of HeLa cells further demonstrated that PHPa can induce damage and apoptotic cell death. Furthermore, the mechanism of photochemical processes was investigated by using specific quenching agent sodium azide (SA) and D-mannitol (DM), respectively, which showed the formation of singlet oxygen (Type II reaction mechanism) may play a predominant role, Type I and Type II photodynamic reactions could occur simultaneously in this PHPa mediated PDT process. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Folate and Heptamethine Cyanine Modified Chitosan-Based Nanotheranostics for Tumor Targeted Near-Infrared Fluorescence Imaging and Photodynamic Therapy.

    PubMed

    Zhang, Yingying; Lv, Tingting; Zhang, Huijuan; Xie, Xiaodong; Li, Ziying; Chen, Haijun; Gao, Yu

    2017-07-10

    Folate (FA) and heptamethine cyanine (Cy7)-modified chitosan (CF7) was synthesized by click chemistry and its self-assembled nanoparticles (CF7Ns) were developed for tumor-specific imaging and photodynamic therapy. The characterization spectrum confirmed CF7 had a good FA and Cy7 conjugation efficacy. The diameter of CF7Ns measured by DLS was about 291.6 nm, and the morphology observed with AFM showed filamentous clusters of particles. The results of targeting ability of CF7Ns demonstrated enhanced targeting behaviors of CF7Ns compared with non-FA-modified nanoparticles C7Ns in FA receptor-positive HeLa cells. The cytotoxicity and cell apoptosis assay showed that CF7Ns under near-infrared light irradiation led to more apoptotic cell death in HeLa cells to improve the therapeutic efficacy. The mechanisms of the photodynamic effects of CF7Ns were demonstrated through measurement of intracellular reactive oxygen species and the apoptosis-related cytokines. These results suggested that CF7Ns are promising tumor targeting carriers for simultaneous fluorescence imaging and photodynamic therapy.

  12. Blue laser system for photo-dynamic therapy

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Carstocea, B.; Blanaru, C.; Pacala, O.; Stratan, A.; Ursu, D.; Stegaru, F.

    2007-03-01

    A blue laser system for eye diseases (age related macular degeneration, sub-retinal neo-vascularisation in myopia and presumed ocular histoplasmosis syndrome - POHS) photo-dynamic therapy, based on riboflavin as photosensitive substance, has been developed. A CW diode laser at 445 nm wavelength was coupled through an opto-mechanical system to the viewing path of a bio-microscope. The laser beam power in the irradiated area is adjustable between 1 mW and 40 mW, in a spot of 3-5 mm diameter. The irradiation time can be programmed in the range of 1-19 minutes. Currently, the laser system is under clinic tests.

  13. Photodynamic dosimetry in the treatment of periodontitis

    NASA Astrophysics Data System (ADS)

    Andersen, Roger C.; Loebel, Nicolas G.; Andersen, Dane M.

    2009-06-01

    Photodynamic therapy has been demonstrated to effectively kill human periopathogens in vitro. However, the translation of in vitro work to in vivo clinical efficacy has been difficult due to the number of variables present in any given patient. Parameters such as photosensitizer concentration, duration of light therapy and amount of light delivered to the target tissue all play a role in the dose response of PDT in vivo. In this 121 patient study we kept all parameters the same except for light dose which was delivered at either 150 mW or 220 mW. This clearly demonstrated the clinical benefits of a higher light dose in the treatment of periodontitis.

  14. Photodynamic therapy as a novel treatment for halitosis in adolescents: study protocol for a randomized controlled trial.

    PubMed

    Lopes, Rubia Garcia; de Godoy, Camila Haddad Leal; Deana, Alessandro Melo; de Santi, Maria Eugenia Simões Onofre; Prates, Renato Araujo; França, Cristiane Miranda; Fernandes, Kristianne Porta Santos; Mesquita-Ferrari, Raquel Agnelli; Bussadori, Sandra Kalil

    2014-11-14

    Halitosis is a common problem that affects a large portion of the population worldwide. The origin of this condition is oral in 90% and systemic in 10% of cases. The unpleasant odor is mainly the result of volatile sulfur compounds produced by Gram-negative bacteria. However, it has recently been found that anaerobic Gram-positive bacteria also produce hydrogen sulfide (H2S) in the presence of amino acids, such as cysteine. Light, both with and without the use of chemical agents, has been used to induce therapeutic and antimicrobial effects. In photodynamic therapy, the antimicrobial effect is confined to areas covered by photosensitizing dye. The aim of the present study is to evaluate the antimicrobial effect of photodynamic therapy on halitosis in adolescents through the analysis of volatile sulfur compounds measured using gas chromatography and microbiological analysis of coated tongue. A quantitative clinical trial will be carried out involving 60 adolescents randomly divided into the following groups: group 1 will receive treatment with a tongue scraper, group 2 will receive photodynamic therapy applied to the posterior two-thirds of the dorsum of the tongue, and group 3 will receive combined treatment (tongue scraper and photodynamic therapy). Gas chromatography (OralChromaTM) and microbiological analysis will be used for the diagnosis of halitosis at the beginning of the study. Post-treatment evaluations will be conducted at one hour and 24 hours after treatment. The statistical analysis will include the Shapiro-Wilk test for the determination of the distribution of the data. If normal distribution is demonstrated, analysis of variance followed by Tukey's test will be used to compare groups. The Kruskal-Wallis test followed by the Student-Newman-Keuls test will be used for data with non-normal distribution. Either the paired t-test or the Wilcoxon test will be used to compare data before and after treatment, depending on the distribution of the data. The

  15. Tetracarboxy-phthalocyanines: From excited state dynamics to photodynamic inactivation against Bovine herpesvirus type 1.

    PubMed

    Cocca, Leandro H Z; Oliveira, Taise M A; Gotardo, Fernando; Teles, Amanda V; Menegatti, Ricardo; Siqueira, Jonathas P; Mendonça, Cleber R; Bataus, Luiz A M; Ribeiro, Anderson O; Souza, Thalita F M; Souza, Guilherme R L; Gonçalves, Pablo J; De Boni, Leonardo

    2017-10-01

    Herein we present the excited state dynamic of zinc and aluminum tetracarboxy-phthalocyanines (ZnPc and AlPc) and its application in the photodynamic inactivation (PDI) of Bovine herpesvirus type 1 (BoHV-1) in vitro. The excited state dynamic provides valuable data to describe the excited state properties of potential optical limiters and/or photosensitizers (PSs), such as: the excited state cross-sections, fluorescence lifetime and triplet state quantum yield. The excited state characterization was performed using three different Z-scan techniques: Single Pulse, White Light Continuum and Pulse Train. Considering the photodynamic inactivation of BoHV-1, an initial viral suspension containing 10 5.75 TCID 50 /mL was incubated with the PSs for 1h at 37°C under agitation and protected from light. The samples were placed in microtiter plates and irradiated (180mW/cm 2 ). During irradiation, a sample was taken every 15min and the viability of the virus was evaluated. The results show that both phthalocyanines were efficient against viruses. However, a higher photodynamic efficiency was observed by ZnPc, which can be attributed to its higher triplet and singlet quantum yields. The results presented here are important for animal health (treatment of BoHV-1) and also open up a field of studies to use AlPc and ZnPc as potential agents against a wide range of microorganisms of veterinary interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Predictive model for photodynamic therapy with gold nanoparticles as vehicle for the photosensitizer delivery

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2013-06-01

    Photodynamic Therapy offers multiple advantages to treat nonmelanoma skin cancer compared to conventional treatment techniques such as surgery, radiotherapy or chemotherapy. Among these advantages are particularly relevant its noninvasive nature, the use of non ionizing radiation and its high selectivity. However the therapeutic efficiency of the current clinical protocol is not complete in all the patients and depends on the type of pathology. Emerging strategies to overcome its current shortcomings include the use of nanostructures that can act as carriers for conventional photosensitizers and improve the treatment selectivity and provide a controlled release of the photoactive agent. In this work, a model for photodynamic therapy combined with gold nanocarriers for a photosensitizer commonly used in dermatology is presented and applied to a basal cell carcinoma in order to predict the cytotoxic agent spatial and temporal evolution.

  17. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOEpatents

    Sanders, William J.; Snyder, Marvin K.; Harter, James W.

    1983-01-01

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  18. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong

    2015-07-01

    Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a

  19. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology

    NASA Astrophysics Data System (ADS)

    Obaid, Girgis; Broekgaarden, Mans; Bulin, Anne-Laure; Huang, Huang-Chiao; Kuriakose, Jerrin; Liu, Joyce; Hasan, Tayyaba

    2016-06-01

    As clinical nanomedicine has emerged over the past two decades, phototherapeutic advancements using nanotechnology have also evolved and impacted disease management. Because of unique features attributable to the light activation process of molecules, photonanomedicine (PNM) holds significant promise as a personalized, image-guided therapeutic approach for cancer and non-cancer pathologies. The convergence of advanced photochemical therapies such as photodynamic therapy (PDT) and imaging modalities with sophisticated nanotechnologies is enabling the ongoing evolution of fundamental PNM formulations, such as Visudyne®, into progressive forward-looking platforms that integrate theranostics (therapeutics and diagnostics), molecular selectivity, the spatiotemporally controlled release of synergistic therapeutics, along with regulated, sustained drug dosing. Considering that the envisioned goal of these integrated platforms is proving to be realistic, this review will discuss how PNM has evolved over the years as a preclinical and clinical amalgamation of nanotechnology with PDT. The encouraging investigations that emphasize the potent synergy between photochemistry and nanotherapeutics, in addition to the growing realization of the value of these multi-faceted theranostic nanoplatforms, will assist in driving PNM formulations into mainstream oncological clinical practice as a necessary tool in the medical armamentarium.

  20. Development of a red diode laser system for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Halkiotis, Konstantinos N.; Yova, Dido M.; Uzunoglou, Nikolaos K.; Papastergiou, Georgios; Matakias, Sotiris; Koukouvinos, Ilias

    1998-07-01

    The effectiveness of photodynamic treatment modality has been proven experimentally for a large variety of tumors, during the last years. This therapy utilizes the combined action of light and photosensitizing drug. Until now, a disadvantage of PDT has be the low tissue penetration of light, at the wavelengths of most commonly available lasers, for clinical studies. The red wavelength offers the advantage of increased penetration depth in tissue, in addition several new wavelength offers the advantage of increased penetration depth in tissue, in addition several new photosensitizers present absorption band at the region 630nm to 690nm. The development of high power red diode laser system for photodynamic therapy, has provided a cost effective alternative to existing lasers for use in PDT. This paper will describe the system design, development and performance of a diode laser system, connected with a fiber optic facility, to be used for PDT. The system was based on a high power semiconductor diode laser emitting at 655nm. The laser output power was approximately 60mW at the output of a 62.5/125/900 micron fiber optic probe. FUll technical details and optical performance characteristics of the system will be discussed in this paper.