Evaluation of an urban land surface scheme over a tropical suburban neighborhood
NASA Astrophysics Data System (ADS)
Harshan, Suraj; Roth, Matthias; Velasco, Erik; Demuzere, Matthias
2017-07-01
The present study evaluates the performance of the SURFEX (TEB/ISBA) urban land surface parametrization scheme in offline mode over a suburban area of Singapore. Model performance (diurnal and seasonal characteristics) is investigated using measurements of energy balance fluxes, surface temperatures of individual urban facets, and canyon air temperature collected during an 11-month period. Model performance is best for predicting net radiation and sensible heat fluxes (both are slightly overpredicted during daytime), but weaker for latent heat (underpredicted during daytime) and storage heat fluxes (significantly underpredicted daytime peaks and nighttime storage). Daytime surface temperatures are generally overpredicted, particularly those containing horizontal surfaces such as roofs and roads. This result, together with those for the storage heat flux, point to the need for a better characterization of the thermal and radiative characteristics of individual urban surface facets in the model. Significant variation exists in model behavior between dry and wet seasons, the latter generally being better predicted. The simple vegetation parametrization used is inadequate to represent seasonal moisture dynamics, sometimes producing unrealistically dry conditions.
NASA Technical Reports Server (NTRS)
Otterman, J.
1987-01-01
Under the arid conditions prevailing at the end of the dry season in the western Negev/northern Sinai region, vegetation causes a sharp increase relative to bare soil in the daytime sensible heat flux from the surface to the atmosphere. Two mechanisms are involved: the increase in the surface absorptivity and a decrease in the surface heat flux. By increasing the sensible heat flux to the atmosphere through the albedo and the soil heat flux reductions, the desert-fringe vegetation increases the daytime convection and the growth of the planetary boundary layer. Removal of vegetation by overgrazing, by reducing the sensible heat flux, tends to reduce daytime convective precipitation, producing higher probabilities of drought conditions. This assessment of overgrazing is based on observations in the Sinai/Negev, where the soil albedo is high and where overgrazing produces an essential bare soil. Even if the assessment for the Sinai/Negev does not quantitatively apply throughout Africa, the current practice in many African countries of maintaining a large population of grazing animals, can contribute through the mesoscale mechanisms described to reduce daytime convective precipitation, perpetuating higher probabilities of drought. Time-of-day analysis of precipitation in Africa appears worthwhile, to better assess the role of the surface conditions in contributing to drought.
NASA Astrophysics Data System (ADS)
Jiang, S.; Wang, K.; Wang, J.; Zhou, C.; Wang, X.; Lee, X.
2017-12-01
This study compared the diurnal and seasonal cycles of atmospheric and surface urban heat islands (UHIs) based on hourly air temperatures (Ta) collected at 65 out of 262 stations in Beijing and land surface temperature (Ts) derived from Moderate Resolution Imaging Spectroradiometer in the years 2013-2014. We found that the nighttime atmospheric and surface UHIs referenced to rural cropland stations exhibited significant seasonal cycles, with the highest in winter. However, the seasonal variations in the nighttime UHIs referenced to mountainous forest stations were negligible, because mountainous forests have a higher nighttime Ts in winter and a lower nighttime T a in summer than rural croplands. Daytime surface UHIs showed strong seasonal cycles, with the highest in summer. The daytime atmospheric UHIs exhibited a similar but less seasonal cycle under clear-sky conditions, which was not apparent under cloudy-sky conditions. Atmospheric UHIs in urban parks were higher in daytime. Nighttime atmospheric UHIs are influenced by energy stored in urban materials during daytime and released during nighttime. The stronger anthropogenic heat release in winter causes atmospheric UHIs to increase with time during winter nights, but decrease with time during summer nights. The percentage of impervious surfaces is responsible for 49%-54% of the nighttime atmospheric UHI variability and 31%-38% of the daytime surface UHI variability. However, the nighttime surface UHI was nearly uncorrelated with the percentage of impervious surfaces around the urban stations.
A global analysis of the urban heat island effect based on multisensor satellite data
NASA Astrophysics Data System (ADS)
Xiao, J.; Frolking, S. E.; Milliman, T. E.; Schneider, A.; Friedl, M. A.
2017-12-01
Human population is rapidly urbanizing. In much of the world, cities are prone to hotter weather than surrounding rural areas - so-called `urban heat islands' - and this effect can have mortal consequences during heat waves. During the daytime, when the surface energy balance is driven by incoming solar radiation, the magnitude of urban warming is strongly influenced by surface albedo and the capacity to evaporate water (i.e., there is a strong relationship between vegetated land fraction and the ratio of sensible to latent heat loss or Bowen ratio). At nighttime, urban cooling is often inhibited by the thermal inertia of the built environment and anthropogenic heat exhaust from building and transportation energy use. We evaluated a suite of global remote sensing data sets representing a range of urban characteristics against MODIS-derived land-surface temperature differences between urban and surrounding rural areas. We included two new urban datasets in this analysis - MODIS-derived change in global urban extent and global urban microwave backscatter - along with several MODIS standard products and DMSP/OLS nighttime lights time series data. The global analysis spanned a range of urban characteristics that likely influence the magnitude of daytime and/or nighttime urban heat islands - urban size, population density, building density, state of development, impervious fraction, eco-climatic setting. Specifically, we developed new satellite datasets and synthesizing these with existing satellite data into a global database of urban land surface parameters, used two MODIS land surface temperature products to generate time series of daytime and nighttime urban heat island effects for 30 large cities across the globe, and empirically analyzed these data to determine specifically which remote sensing-based characterizations of global urban areas have explanatory power with regard to both daytime and nighttime urban heat islands.
Mitigating the surface urban heat island: Mechanism study and sensitivity analysis
NASA Astrophysics Data System (ADS)
Meng, Chunlei
2017-08-01
In a surface urban heat island (SUHI), the urban land surface temperature (LST) is usually higher than the temperature of the surrounding rural areas due to human activities and surface characteristics. Because a SUHI has many adverse impacts on urban environment and human health, SUHI mitigation strategies are very important. This paper investigates the mechanism of a SUHI based on the basic physical laws that control the formation of a SUHI; five mitigation strategies are proposed, namely: sprinkling and watering; paving a pervious surface; reducing the anthropogenic heat (AH) release; using a "white roof"; increasing the fractional vegetation cover or leaf area index (LAI). To quantify the effect of these mitigation strategies, 26 sets of experiments are designed and implemented by running the integrated urban land model (IUM). The results of the sensitivity analysis indicate that sprinkling and watering is an effective measure for mitigating a SUHI for an entire day. Decreasing the AH release is also useful for both night- and daytime SUHI mitigation; however, the cooling extent is proportional to the diurnal cycle of AH. Increasing the albedo can reduce the LST in the daytime, especially when the solar radiation is significant; the cooling extent is approximately proportional to the diurnal cycle of the net radiation. Increasing the pervious surface percentage can mitigate the SUHI especially in the daytime. Increasing the fractional vegetation cover can mitigate the SUHI in the daytime but may aggravate the SUHI at night.
Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.
2015-01-01
This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.
Multi-Satellite Estimates of Land-Surface Properties for Determination of Energy and Water Budgets
NASA Technical Reports Server (NTRS)
Menzel, W. Paul; Rabin, Robert M.; Neale, Christopher M. U.; Gallo, Kevin; Diak, George R.
1998-01-01
Using the WETNET database, existing methods for the estimation of surface wetness from SSM/I data have been assessed and further developed. A physical-statistical method for optimal estimation of daily surface heat flux and Bowen ratio on the mesoscale has been developed and tested. This method is based on observations of daytime planetary boundary layer (PBL) growth from operational ravansonde and daytime land-surface temperature amplitude from Geostationary Operational Environmental (GOES) satellites. The mesoscale patterns of these heat fluxes have been compared with an AVHRR-based vegetation index and surface wetness (separately estimated from SSM/I and in situ observations). Cases of the 1988 Midwest drought and a surface/atmosphere moisture gradient (dry-line) in the southern Plains were studied. The analyses revealed significant variations in sensible heat flux (S(sub 0), and Bowen ratio, B(sub 0)) associated with vegetation cover and antecedent precipitation. Relationships for surface heat flux (and Bowen ratio) from antecedent precipitation and vegetation index have been developed and compared to other findings. Results from this project are reported in the following reviewed literature.
Xu, Shenlai
2009-04-01
A landscape index LI is proposed to evaluate the intensity of the daytime surface urban heat island (SUHI) effect at a local scale. Three aspects of this landscape index are crucial: the source landscape, the sink landscape, and the contribution of source and sink landscapes to the intensity of the SUHI. Source and sink landscape types are identified using the thermo-band of Landsat 7 with a spatial resolution of 60 m, along with appropriate threshold values for the Normalized Difference Vegetation Index, Modified Normalized Difference Water Index, and Normalized Difference Built-up Index. The landscape index was defined as the ratio of the contributions of the source and sink landscapes to the intensity of the SUHI. The intensity of the daytime SUHI is assessed with the help of the landscape index. Our analysis indicates the landscape index can be used to evaluate and compare the intensity of the daytime SUHI for different areas.
The great 2006 heat wave over California and Nevada: Signal of an increasing trend
Gershunov, A.; Cayan, D.R.; Iacobellis, S.F.
2009-01-01
Most of the great California-Nevada heat waves can be classified into primarily daytime or nighttime events depending on whether atmospheric conditions are dry or humid. A rash of nighttime-accentuated events in the last decade was punctuated by an unusually intense case in July 2006, which was the largest heat wave on record (1948-2006). Generally, there is a positive trend in heat wave activity over the entire region that is expressed most strongly and clearly in nighttime rather than daytime temperature extremes. This trend in nighttime heat wave activity has intensified markedly since the 1980s and especially since 2000. The two most recent nighttime heat waves were also strongly expressed in extreme daytime temperatures. Circulations associated with great regional heat waves advect hot air into the region. This air can be dry or moist, depending on whether a moisture source is available, causing heat waves to be expressed preferentially during day or night. A remote moisture source centered within a marine region west of Baja California has been increasing in prominence because of gradual sea surface warming and a related increase in atmospheric humidity. Adding to the very strong synoptic dynamics during the 2006 heat wave were a prolonged stream of moisture from this southwestern source and, despite the heightened humidity, an environment in which afternoon convection was suppressed, keeping cloudiness low and daytime temperatures high. The relative contributions of these factors and possible relations to global warming are discussed. ?? 2009 American Meteorological Society.
NASA Astrophysics Data System (ADS)
Vahmani, P.; Ban-Weiss, G.
2016-08-01
During 2012-2014, drought in California resulted in policies to reduce water consumption. One measure pursued was replacing lawns with landscapes that minimize water consumption, such as drought-tolerant vegetation. If implemented at broad scale, this strategy would result in reductions in irrigation and changes in land surface characteristics. In this study, we employ a modified regional climate model to assess the climatic consequences of adopting drought-tolerant vegetation over the Los Angeles metropolitan area. Transforming lawns to drought-tolerant vegetation resulted in daytime warming of up to 1.9°C, largely due to decreases in irrigation that shifted surface energy partitioning toward higher sensible and lower latent heat flux. During nighttime, however, adopting drought-tolerant vegetation caused mean cooling of 3.2°C, due to changes in soil thermodynamic properties and heat exchange dynamics between the surface and subsurface. Our results show that nocturnal cooling effects, which are larger in magnitude and of great importance for public health during heat events, could counterbalance the daytime warming attributed to the studied water conservation strategy. A more aggressive implementation, assuming all urban vegetation was replaced with drought-tolerant vegetation, resulted in an average daytime cooling of 0.2°C, largely due to strengthened sea breeze patterns, highlighting the important role of land surface roughness in this coastal megacity.
NASA Astrophysics Data System (ADS)
Ban-Weiss, G. A.; Vahmani, P.
2016-12-01
During 2012-2014, drought in California resulted in policies to reduce water consumption. One measure pursued was replacing lawns with landscapes that minimize water consumption, such as drought tolerant vegetation. If implemented at broad scale, this strategy would result in reductions in irrigation, and changes in land surface characteristics. In this study, we employ a modified regional climate model to assess the climatic consequences of adopting drought tolerant vegetation over the Los Angeles metropolitan area. Transforming lawns to drought tolerant vegetation resulted in daytime warming of up to 1.9°C, largely due to decreases in irrigation that shifted surface energy partitioning toward higher sensible and lower latent heat flux. During nighttime, however, adopting drought tolerant vegetation caused mean cooling of about 3°C, due to changes in soil thermodynamic properties and heat exchange dynamics between the surface and ground. Our results show that nocturnal cooling effects, which are larger in magnitude and of great importance for public health during heat events, could counterbalance the daytime warming attributed to the studied water conservation strategy. A more aggressive implementation, assuming all urban vegetation was replaced with drought tolerant vegetation, resulted in an average daytime cooling of 0.2°C, largely due to weakened sea-breeze patterns, highlighting the important role of land surface roughness in this coastal megacity.
An increase of early rains in southern Israel following land-use change?
NASA Technical Reports Server (NTRS)
Otterman, J.; Starr, D. O'C.; Manes, A.; Rubin, S.; Alpert, P.
1990-01-01
Rains at the onset of the October-April rainy season in southern Israel have steeply increased in the last 25 years relative to the previous 20 years, and are accompanied by an appreciable general increase of rainy-season rainfall. This increase in precipitation is specifically attributable to an intensification of the convection and advection processes due to afforestation and increased cultivation-induced enhancement of the daytime sensible heat flux from the generally dry surface; the enhancement proceeds from both the reduced surface albedo and the reduced soil heat flux in October, when insolation is strong. Greater daytime convection can lead to penetration of inversions capping the planetary boundary layer, while strengthened advection can furnish moist air from the Mediterranean.
ALMA Thermal Observations of a Proposed Plume Source Region on Europa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trumbo, Samantha K.; Brown, Michael E.; Butler, Bryan J.
We present a daytime thermal image of Europa taken with the Atacama Large Millimeter Array. The imaged region includes the area northwest of Pwyll Crater, which is associated with a nighttime thermal excess seen by the Galileo Photopolarimeter Radiometer and with two potential plume detections. We develop a global thermal model of Europa and simulate both the daytime and nighttime thermal emission to determine if the nighttime thermal anomaly is caused by excess endogenic heat flow, as might be expected from a plume source region. We find that the nighttime and daytime brightness temperatures near Pwyll Crater cannot be matchedmore » by including excess heat flow at that location. Rather, we can successfully model both measurements by increasing the local thermal inertia of the surface.« less
Xian, George; Crane, Mike
2006-01-01
Remote sensing data from both Landsat 5 and Landsat 7 systems were utilized to assess urban area thermal characteristics in Tampa Bay watershed of west-central Florida, and the Las Vegas valley of southern Nevada. To quantitatively determine urban land use extents and development densities, sub-pixel impervious surface areas were mapped for both areas. The urban–rural boundaries and urban development densities were defined by selecting certain imperviousness threshold values and Landsat thermal bands were used to investigate urban surface thermal patterns. Analysis results suggest that urban surface thermal characteristics and patterns can be identified through qualitatively based urban land use and development density data. Results show the urban area of the Tampa Bay watershed has a daytime heating effect (heat-source), whereas the urban surface in Las Vegas has a daytime cooling effect (heat-sink). These thermal effects strongly correlated with urban development densities where higher percent imperviousness is usually associated with higher surface temperature. Using vegetation canopy coverage information, the spatial and temporal distributions of urban impervious surface and associated thermal characteristics are demonstrated to be very useful sources in quantifying urban land use, development intensity, and urban thermal patterns.
On the impact of snow cover on daytime pollution dispersion
NASA Astrophysics Data System (ADS)
Segal, M.; Garratt, J. R.; Pielke, R. A.; Hildebrand, P.; Rogers, F. A.; Cramer, J.; Schanot, A.
A preliminary evaluation of the impact of snow cover on daytime pollutant dispersion conditions is made by using conceptual, scaling, and observational analyses. For uniform snow cover and synoptically unperturbed sunny conditions, observations indicate a considerate suppression of the surface sensible heat flux, the turbulence, and the development of the daytime atmospheric boundary layer (ABL) when compared to snow-free conditions. However, under conditions of non-uniform snow cover, as in urban areas, or associated with vegetated areas or bare ground patches, a milder effect on pollutant dispersion conditions would be expected. Observed concentrations of atmospheric particles within the ABL, and surface pollutant concentrations in urban areas, reflect the impact of snow cover on the modification of ABL characteristics.
NASA Astrophysics Data System (ADS)
Jayaraman, Balaji; Brasseur, James; Haupt, Sue; Lee, Jared
2016-11-01
LES of the "canonical" daytime atmospheric boundary layer (ABL) over flat topography is developed as an equilibrium ABL with steady surface heat flux, Q0 and steady unidirectional "geostrophic" wind vector Vg above a capping inversion. A strong inversion layer in daytime ABL acts as a "lid" that sharply separates 3D "microscale" ABL turbulence at the O(10) m scale from the quasi-2D "mesoscale" turbulent weather eddies (O(100) km scale). While "canonical" ABL is equilibrium, quasi-stationary and characterized statistically by the ratio of boundary layer depth (zi) to Obukhov length scale (- L) , the real mesoscale influences (Ug and Q0) that force a true daytime ABL are nonstationary at both diurnal and sub-diurnal time scales. We study the consequences of this non-stationarity on ABL dynamics by forcing ABL LES with realistic WRF simulations over flat Kansas terrain. Considering horizontal homogeneity, we relate the mesoscale and geostrophic winds, Ug and Vg, and systematically study the ABL turbulence response to non-steady variations in Q0 and Ug. We observe significant deviations from equilibrium, that manifest in many ways, such as the formation of "roll" eddies purely from changes in mesoscale wind direction that are normally associated with increased surface heat flux. Support from DOE. Compute resources from Penn State ICS.
Urban Heat Islands in China Enhanced by Haze Pollution
NASA Astrophysics Data System (ADS)
Cao, C.; Lee, X.; Liu, S.; Oleson, K. W.; Schultz, N. M.; Xiao, W.; Zhang, M.; Zhao, L.
2015-12-01
Land conversion from natural surfaces to artificial urban structures has led to the phenomenon of urban heat island (UHI). The intensity of UHI is thought to be controlled primarily by biophysical factors such as changes in albedo, aerodynamic resistance and evapotranspiration, while influences of biogeochemical factors such as aerosol pollution have long been ignored. We hypothesize that increased downward longwave radiation associated with anthropogenic aerosols in urban air will exacerbate nighttime UHI intensity. Here we tested this hypothesis by using the MODIS satellite land surface temperature product and the Community Land Model (CLM) for 39 cities in China. Our results showed that in contrast to observations in North America and elsewhere, nighttime surface UHI of these Chinese cities (3.34 K) was greater than daytime UHI (2.06 K). Variations in the nighttime UHI among the cities were positively correlated with difference in the aerosol optical depth between urban and the adjacent rural area (confidence level p < 0.01). The CLM was able to reproduce the MODIS UHI intensity in the daytime but underestimated the observed UHI intensity at night. The model performance was improved by including an aerosol-enhanced downward longwave radiation in urban land and a more realistic anthropogenic heat flux. Our study illustrates that although climate background largely determine spatial differences in the daytime UHI, in countries like China with serious air quality problems, aerosol-induced pollution plays an important role in the night-time UHI formation. Mitigation of particulate pollution therefore has the added co-benefit by reducing UHI-related heat stress on urban residents.
The Influence of a Sandy Substrate, Seagrass, or Highly Turbid Water on Albedo and Surface Heat Flux
NASA Astrophysics Data System (ADS)
Fogarty, M. C.; Fewings, M. R.; Paget, A. C.; Dierssen, H. M.
2018-01-01
Sea-surface albedo is a combination of surface-reflected and water-leaving irradiance, but water-leaving irradiance typically contributes less than 15% of the total albedo in open-ocean conditions. In coastal systems, however, the bottom substrate or suspended particulate matter can increase the amount of backscattered light, thereby increasing albedo and decreasing net shortwave surface heat flux. Here a sensitivity analysis using observations and models predicts the effect of light scattering on albedo and the net shortwave heat flux for three test cases: a bright sand bottom, a seagrass canopy, and turbid water. After scaling to the full solar shortwave spectrum, daytime average albedo for the test cases is up to 0.20 and exceeds the value of 0.05 predicted using a commonly applied parameterization. Daytime net shortwave heat flux into the water is significantly reduced, particularly for waters with bright sediments, dense horizontal seagrass canopies < 0.25 m from the sea surface, or highly turbid waters with suspended particulate matter concentration ≥ 50 g m-3. Observations of a more vertical seagrass canopy within 0.2 and 1 m of the surface indicate the increase in albedo compared to the common parameterization is negligible. Therefore, we suggest that the commonly applied albedo lookup table can be used in coastal heat flux estimates in water as shallow as 1 m unless the bottom substrate is highly reflective or the water is highly turbid. Our model results provide guidance to researchers who need to determine albedo in highly reflective or highly turbid conditions but have no direct observations.
NASA Astrophysics Data System (ADS)
Schultz, Natalie M.; Lawrence, Peter J.; Lee, Xuhui
2017-04-01
Uncertainties remain about the spatial pattern and magnitude of the biophysical effects of deforestation. In particular, a diurnal asymmetry in the magnitude and sign of the surface temperature response to deforestation (ΔTS) has been observed, but the biophysical processes that contribute to day and nighttime ΔTS are not fully understood. In this study, we use a space-for-time approach with satellite and reanalysis data to investigate the biophysical processes that control the day and nighttime ΔTS. Additionally, we incorporate flux-tower data to examine two hypotheses for nighttime forest warming relative to open lands: (1) that forests generate turbulence in the stable nocturnal boundary layer, which brings heat aloft down to the surface, and (2) that forests store more heat during the day and release it at night. Our results confirm a diurnal asymmetry in ΔTS. Over most regions of the world, deforestation results in daytime warming and nighttime cooling. The strongest daytime warming is in the tropics, where the average ΔTS is 4.4 ± 0.07 K. The strongest nighttime cooling is observed in the boreal zone, where open lands are cooler than forests by an average of 1.4 ± 0.04 K. Daytime patterns of ΔTS are explained by differences in the latent heat flux (ΔLE) and absorbed solar radiation (ΔKa). We find that nighttime ΔTS is related to the strength of the nocturnal temperature inversion, with stronger temperature inversions at high latitudes and weak inversions in the tropics. Forest turbulence at night combined with stored heat release drives nighttime ΔTS patterns.
NASA Astrophysics Data System (ADS)
Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.
1991-04-01
Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.
NASA Astrophysics Data System (ADS)
Branch, O.; Warrach-Sagi, K.; Wulfmeyer, V.; Cohen, S.
2014-05-01
A 10 × 10 km irrigated biomass plantation was simulated in an arid region of Israel to simulate diurnal energy balances during the summer of 2012 (JJA). The goal is to examine daytime horizontal flux gradients between plantation and desert. Simulations were carried out within the coupled WRF-NOAH atmosphere/land surface model. MODIS land surface data was adjusted by prescribing tailored land surface and soil/plant parameters, and by adding a controllable sub-surface irrigation scheme to NOAH. Two model cases studies were compared - Impact and Control. Impact simulates the irrigated plantation. Control simulates the existing land surface, where the predominant land surface is bare desert soil. Central to the study is parameter validation against land surface observations from a desert site and from a 400 ha Simmondsia chinensis (jojoba) plantation. Control was validated with desert observations, and Impact with Jojoba observations. Model evapotranspiration was validated with two Penman-Monteith estimates based on the observations. Control simulates daytime desert conditions with a maximum deviation for surface 2 m air temperatures (T2) of 0.2 °C, vapour pressure deficit (VPD) of 0.25 hPa, wind speed (U) of 0.5 m s-1, surface radiation (Rn) of 25 W m-2, soil heat flux (G) of 30 W m-2 and 5 cm soil temperatures (ST5) of 1.5 °C. Impact simulates irrigated vegetation conditions with a maximum deviation for T2 of 1-1.5 °C, VPD of 0.5 hPa, U of 0.5 m s-1, Rn of 50 W m-5, G of 40 W m-2 and ST5 of 2 °C. Latent heat curves in Impact correspond closely with Penman-Monteith estimates, and magnitudes of 160 W m-2 over the plantation are usual. Sensible heat fluxes, are around 450 W m-2 and are at least 100-110 W m-2 higher than the surrounding desert. This surplus is driven by reduced albedo and high surface resistance, and demonstrates that high evaporation rates may not occur over Jojoba if irrigation is optimized. Furthermore, increased daytime T2 over plantations highlight the need for hourly as well as daily mean statistics. Daily mean statistics alone may imply an overall cooling effect due to surplus nocturnal cooling, when in fact a daytime warming effect is observed.
NASA Astrophysics Data System (ADS)
Ge, C.; Wang, J.; Reid, J. S.
2013-12-01
The online-coupled Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to simulate the direct and semi-direct radiative impacts of smoke particles over the southeast Asian Marine Continents (MC, 10°S - 10°N, 90°E-150°E) during October 2006 when a significant El Nino event caused the highest biomass burning activity since 1997. With the use of OC (Organic Carbon) /BC (Black Carbon) ratio of 10 in the smoke emission inventory, the baseline simulation shows that the low-level clouds amplifying effect on smoke absorption led to a warming effect at the top-of-atmosphere (TOA) with a domain/monthly average forcing value of ~20 Wm-2 over the islands of Borneo and Sumatra. The smoke-induced monthly average daytime heating (0.3K) that is largely confined above the low-level clouds results in the local convergence over the smoke source region. This heating-induced convergence coupled with daytime planetary boundary layer turbulent mixing, transports more smoke particles above the planetary boundary layer height (PBLH), hence rendering a positive feedback. This positive feedback contrasts with the decrease of cloud fraction resulted from the combined effects of smoke heating within the cloud layer and the more stability in the boundary layer; the latter can be considered as a negative feedback in which decrease of cloud fraction weakens the heating by smoke particles above the clouds. During nighttime, the elevated smoke layer (above clouds in daytime) is decoupled from boundary layer, and the reduction of PBLH due to the residual surface cooling from the daytime lead to the accumulation of smoke particles near the surface. Because of smoke radiative extinction, on monthly basis, the amount of the solar input at the surface is reduced as large as 60 Wm-2, which lead to the decrease of sensible heat, latent heat, 2-m air temperature, and PBLH by a maximum of 20 Wm-2, 20 Wm-2, 1K, 120 m, respectively. The cloud changes over continents are mostly occurred over the islands of Sumatra and Borneo during the daytime, where the low-level cloud fraction decreases more than 10%. However, the change of local wind (include sea breeze) induced by the smoke radiative feedback leads to more convergence over Karimata Strait and south coastal area of Kalimantan during both daytime and night time; consequently, cloud fraction is increased there up to 20%. The sensitivities with different OC/BC ratio show the importance of the smoke single scattering albedo for the smoke semi-direct effects. A case study on 31 October 2006 further demonstrated a much larger (more than twice of the monthly average) feedback induced by smoke aerosols. The decreased sea breeze during big events can lead to prominent increase (40%) of low-level cloud over coastal water. Lastly, the direct and semi-direct radiative impact of smoke particles over the Southeast Asian Marine Continents is summarized as a conceptual model.
Parameterization of sparse vegetation in thermal images of natural ground landscapes
NASA Astrophysics Data System (ADS)
Agassi, Eyal; Ben-Yosef, Nissim
1997-10-01
The radiant statistics of thermal images of desert terrain scenes and their temporal behavior have been fully understood and well modeled. Unlike desert scenes, most natural terrestrial landscapes contain vegetative objects. A plant is a living object that regulates its temperature through evapotranspiration of leaf stomata, and plant interaction with the outside world is influenced by its physiological processes. Therefore, the heat balance equation for a vegetative object differs from that for an inorganic surface element. Despite this difficulty, plants can be incorporated into the desert surface model when an effective heat conduction parameter is associated with vegetation. Due to evapotranspiration, the effective heat conduction of plants during daytime is much higher than at night. As a result, plants (mainly trees and bushes) are usually the coldest objects in the scene in the daytime while they are not necessarily the warmest objects at night. The parameterization of vegetative objects in terms of effective heat conduction enables the extension of the desert terrain model for scenes with sparse vegetation and the estimation of their radiant statistics and their diurnal behavior. The effective heat conduction image can serve as a tool for vegetation type classification and assessment of the dominant physical process that determinate thermal image properties.
Interactions between urban heat islands and heat waves
NASA Astrophysics Data System (ADS)
Zhao, Lei; Oppenheimer, Michael; Zhu, Qing; Baldwin, Jane W.; Ebi, Kristie L.; Bou-Zeid, Elie; Guan, Kaiyu; Liu, Xu
2018-03-01
Heat waves (HWs) are among the most damaging climate extremes to human society. Climate models consistently project that HW frequency, severity, and duration will increase markedly over this century. For urban residents, the urban heat island (UHI) effect further exacerbates the heat stress resulting from HWs. Here we use a climate model to investigate the interactions between the UHI and HWs in 50 cities in the United States under current climate and future warming scenarios. We examine UHI2m (defined as urban-rural difference in 2m-height air temperature) and UHIs (defined as urban-rural difference in radiative surface temperature). Our results show significant sensitivity of the interaction between UHI and HWs to local background climate and warming scenarios. Sensitivity also differs between daytime and nighttime. During daytime, cities in the temperate climate region show significant synergistic effects between UHI and HWs in current climate, with an average of 0.4 K higher UHI2m or 2.8 K higher UHIs during HWs than during normal days. These synergistic effects, however, diminish in future warmer climates. In contrast, the daytime synergistic effects for cities in dry regions are insignificant in the current climate, but emerge in future climates. At night, the synergistic effects are similar across climate regions in the current climate, and are stronger in future climate scenarios. We use a biophysical factorization method to disentangle the mechanisms behind the interactions between UHI and HWs that explain the spatial-temporal patterns of the interactions. Results show that the difference in the increase of urban versus rural evaporation and enhanced anthropogenic heat emissions (air conditioning energy use) during HWs are key contributors to the synergistic effects during daytime. The contrast in water availability between urban and rural land plays an important role in determining the contribution of evaporation. At night, the enhanced release of stored and anthropogenic heat during HWs are the primary contributors to the synergistic effects.
Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes1
Lewis, Donald A.; Nobel, Park S.
1977-01-01
The influences of various diurnal stomatal opening patterns, spines, and ribs on the stem surface temperature and water economy of a CAM succulent, the barrel cactus Ferocactus acanthodes, were examined using an energy budget model. To incorporate energy exchanges by shortwave and longwave irradiation, latent heat, conduction, and convection as well as the heat storage in the massive stem, the plant was subdivided into over 100 internal and external regions in the model. This enabled the average surface temperature to be predicted within 1 C of the measured temperature for both winter and summer days. Reducing the stem water vapor conductance from the values observed in the field to zero caused the average daily stem surface temperature to increase only 0.7 C for a winter day and 0.3 C for a summer day. Thus, latent heat loss does not substantially reduce stem temperature. Although the surface temperatures averaged 18 C warmer for the summer day than for the winter day for a plant 41 cm tall, the temperature dependence of stomatal opening caused the simulated nighttime water loss rates to be about the same for the 2 days. Spines moderated the amplitude of the diurnal temperature changes of the stem surface, since the daily variation was 17 C for the winter day and 25 C for the summer day with spines compared with 23 C and 41 C, respectively, in their simulated absence. Ribs reduced the daytime temperature rise by providing 54% more area for convective heat loss than for a smooth circumscribing surface. In a simulation where both spines and ribs were eliminated, the daytime average surface temperature rose by 5 C. PMID:16660148
Effect of synthetic surfaces and vegetation in urban areas on human energy balance and comfort
Thomas F. Stark; David R. Miller
1977-01-01
The thermal balance of a standard man was quantified for a variety of urban and rural summer daytime microclimates. The resulting net heat-load data were correlated with the relative amounts of vegetation and synthetic materials at each site. By extrapolating these results, it is possible to estimate the expected heat load of a proposed development before it is built...
Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.
Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone
2016-01-01
The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban renovation on microclimate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
A new method for estimating the turbulent heat flux at the bottom of the daily mixed layer
NASA Technical Reports Server (NTRS)
Imawaki, Shiro; Niiler, Pearn P.; Gautier, Catherine H.; Knox, Robert A.; Halpern, David
1988-01-01
Temperature data in the mixed layer and net solar irradiance data at the sea surface are used to estimate the vertical turbulent heat flux at the bottom of the daily mixed layer. The method is applied to data obtained in the eastern tropical Pacific, where the daily cycle in the temperature field is confined to the upper 10-25 m. Equatorial turbulence measurements indicate that the turbulent heat flux is much greater during nighttime than daytime.
Urban-hazard risk analysis: mapping of heat-related risks in the elderly in major Italian cities.
Morabito, Marco; Crisci, Alfonso; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Di Stefano, Valentina; Orlandini, Simone; Gensini, Gian Franco
2015-01-01
Short-term impacts of high temperatures on the elderly are well known. Even though Italy has the highest proportion of elderly citizens in Europe, there is a lack of information on spatial heat-related elderly risks. Development of high-resolution, heat-related urban risk maps regarding the elderly population (≥ 65). A long time-series (2001-2013) of remote sensing MODIS data, averaged over the summer period for eleven major Italian cities, were downscaled to obtain high spatial resolution (100 m) daytime and night-time land surface temperatures (LST). LST was estimated pixel-wise by applying two statistical model approaches: 1) the Linear Regression Model (LRM); 2) the Generalized Additive Model (GAM). Total and elderly population density data were extracted from the Joint Research Centre population grid (100 m) from the 2001 census (Eurostat source), and processed together using "Crichton's Risk Triangle" hazard-risk methodology for obtaining a Heat-related Elderly Risk Index (HERI). The GAM procedure allowed for improved daytime and night-time LST estimations compared to the LRM approach. High-resolution maps of daytime and night-time HERI levels were developed for inland and coastal cities. Urban areas with the hazardous HERI level (very high risk) were not necessarily characterized by the highest temperatures. The hazardous HERI level was generally localized to encompass the city-centre in inland cities and the inner area in coastal cities. The two most dangerous HERI levels were greater in the coastal rather than inland cities. This study shows the great potential of combining geospatial technologies and spatial demographic characteristics within a simple and flexible framework in order to provide high-resolution urban mapping of daytime and night-time HERI. In this way, potential areas for intervention are immediately identified with up-to-street level details. This information could support public health operators and facilitate coordination for heat-related emergencies.
Urban-Hazard Risk Analysis: Mapping of Heat-Related Risks in the Elderly in Major Italian Cities
Morabito, Marco; Crisci, Alfonso; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Di Stefano, Valentina; Orlandini, Simone; Gensini, Gian Franco
2015-01-01
Background Short-term impacts of high temperatures on the elderly are well known. Even though Italy has the highest proportion of elderly citizens in Europe, there is a lack of information on spatial heat-related elderly risks. Objectives Development of high-resolution, heat-related urban risk maps regarding the elderly population (≥65). Methods A long time-series (2001–2013) of remote sensing MODIS data, averaged over the summer period for eleven major Italian cities, were downscaled to obtain high spatial resolution (100 m) daytime and night-time land surface temperatures (LST). LST was estimated pixel-wise by applying two statistical model approaches: 1) the Linear Regression Model (LRM); 2) the Generalized Additive Model (GAM). Total and elderly population density data were extracted from the Joint Research Centre population grid (100 m) from the 2001 census (Eurostat source), and processed together using “Crichton’s Risk Triangle” hazard-risk methodology for obtaining a Heat-related Elderly Risk Index (HERI). Results The GAM procedure allowed for improved daytime and night-time LST estimations compared to the LRM approach. High-resolution maps of daytime and night-time HERI levels were developed for inland and coastal cities. Urban areas with the hazardous HERI level (very high risk) were not necessarily characterized by the highest temperatures. The hazardous HERI level was generally localized to encompass the city-centre in inland cities and the inner area in coastal cities. The two most dangerous HERI levels were greater in the coastal rather than inland cities. Conclusions This study shows the great potential of combining geospatial technologies and spatial demographic characteristics within a simple and flexible framework in order to provide high-resolution urban mapping of daytime and night-time HERI. In this way, potential areas for intervention are immediately identified with up-to-street level details. This information could support public health operators and facilitate coordination for heat-related emergencies. PMID:25985204
Greiner, Leonard
1980-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.
A method for obtaining distributed surface flux measurements in complex terrain
NASA Astrophysics Data System (ADS)
Daniels, M. H.; Pardyjak, E.; Nadeau, D. F.; Barrenetxea, G.; Brutsaert, W. H.; Parlange, M. B.
2011-12-01
Sonic anemometers and gas analyzers can be used to measure fluxes of momentum, heat, and moisture over flat terrain, and with the proper corrections, over sloping terrain as well. While this method of obtaining fluxes is currently the most accurate available, the instruments themselves are costly, making installation of many stations impossible for most campaign budgets. Small, commercial automatic weather stations (Sensorscope) are available at a fraction of the cost of sonic anemometers or gas analyzers. Sensorscope stations use slow-response instruments to measure standard meteorological variables, including wind speed and direction, air temperature, humidity, surface skin temperature, and incoming solar radiation. The method presented here makes use of one sonic anemometer and one gas analyzer along with a dozen Sensorscope stations installed throughout the Val Ferret catchment in southern Switzerland in the summers of 2009, 2010 and 2011. Daytime fluxes are calculated using Monin-Obukhov similarity theory in conjunction with the surface energy balance at each Sensorscope station as well as at the location of the sonic anemometer and gas analyzer, where a suite of additional slow-response instruments were co-located. Corrections related to slope angle were made for wind speeds and incoming shortwave radiation measured by the horizontally-mounted cup anemometers and incoming solar radiation sensors respectively. A temperature correction was also applied to account for daytime heating inside the radiation shield on the slow-response temperature/humidity sensors. With these corrections, we find a correlation coefficient of 0.77 between u* derived using Monin-Obukhov similarity theory and that of the sonic anemometer. Calculated versus measured heat fluxes also compare well and local patterns of latent heat flux and measured surface soil moisture are correlated.
NASA Astrophysics Data System (ADS)
Burba, G. G.; Anderson, D. J.; Xu, L.; McDermitt, D. K.
2006-12-01
One laboratory and two field experiments were conducted between September 2005 and September 2006 to investigate the impact of an added heat flux in the sample path of the LI-7500 CO2/H2O gas analyzer caused by the difference in temperatures between the ambient air and the surface of the instrument. Contribution of heat dissipated from the internal instrument electronics toward the instrument surface was substantial, especially in cold conditions. In the environmental chamber, surface heating ranged from about 0 °C above ambient, at air temperatures above +40 °C, to about 7 °C, at an air temperature of -25 °C. In the field, daytime temperature differences were overall smaller than in the chamber due to convective cooling by the wind and some long-wave cooling, despite the added sunlight contribution. However, considerable temperature gradients (up to 2 °C per 1mm) were still observed over the lower window of the LI-7500, suggesting strong sensible heat fluxes above the instrument surface. The nighttime situation was different due to strong long-wave cooling of some parts of the instrument, partially (and sometimes, fully) offsetting effects of the electronics heating in the other parts. The concept of an added heat flux term in the Web-Pearman-Leuning correction is revisited, and effect of the instrument surface heating on the CO2 flux measurements is examined. The proposed concept is presented in detail, along with resulted corrections to the originally computed flux. Field data are examined separately for daytime and nighttime cases, and on hourly and seasonal time scales. Significant reduction in the apparent CO2 uptake during off-season periods was observed as a result of applying correction due to the added heat, while fluxes during the growing season have not been noticeably affected. The correction also resulted in the elimination of most of the wrong signs from the off-season open- path CO2 fluxes, in considerable reduction in variability of the data, elimination of the difference between measurements made with the LI-6262 and the LI-7500, and in a significant improvement in off-season integrations of CO2 exchange. A framework was created to develop a site-specific practical correction due to instrument surface heating. The concept may provide a basis for further research in the area of instrument temperature affecting the measurement of the open-path fluxes. Proposed correction may be useful for future CO2 flux research, and it can also be applied to pre-existing data today.
The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary-Layer Growth.
NASA Astrophysics Data System (ADS)
Segal, M.; Garratt, J. R.; Kallos, G.; Pielke, R. A.
1989-12-01
The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil surface temperature: (1) due to weather perturbations at a given location, and (2) due to the climatological north-south temperature gradient. Analyses and scaling of the various boundary-layer properties, and soil surface fluxes affecting the sensible beat flux, have been made; related evaluations show that changes in the sensible heat flux at a given location by a factor of 2 to 3 due to temperature changes related to weather perturbations is not uncommon. These changes result in significant alterations in the boundary-layer depth; in the atmospheric boundary-layer warming; and in the break-up time of the nocturnal surface temperature inversion. Investigation of the impact of the winter latitudinal temperature gradient on the above characteristics indicated that the relative increase in very wet soil sensible heat flux, due to the climatological reduction in the surface temperature in northern latitudes, moderates to some extent its reduction due to the corresponding decrease in solar radiation. Numerical model simulations confirmed these analytical evaluations.In addition, the impact of synoptic temperature perturbations during the transition seasons (fall and spring) on canopy sensible heal fluxes, and the related boundary-layer characteristics mentioned above, was evaluated. Analogous features to those found for very wet soil surfaces occurred also for the canopy situations. Likewise, evaluations were also carried out to explore the impact of high midlatitude foreste areas on the boundary-layer characteristics during the winter as compared to those during the summer. Similar impacts were found in both seasons, regardless of the substantial difference in the daily total solar radiation.
NASA Astrophysics Data System (ADS)
Wang, Mingna
2015-04-01
The UHI effect can aggravate summertime heat waves and strongly influence human comfort and health, leading to greater mortality in metropolitan areas. Many geo-engineering technological strategies have been proposed to mitigate climate warming, and for the UHI, increasing the albedo of artificial urban surfaces (rooftops or pavements) has been considered a lucrative and effective way to cool cities. The objective of this work is to quantify the contribution of urbanization to recent extreme heat events of the early 21st century in the Beijing-Tianjin-Hebei metropolitan area, using the mesoscale WRF model coupled with a single urban canopy model and actual urban land cover datasets. This work also investigates a simulation of the regional effects of white roof technology by increasing the albedo of urban areas in the urban canopy model to mitigate the urban heat island, especially in extreme heat waves. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60°C. This change is most obvious at night with an increase up to 0.95°C, for which the total contribution of anthropogenic heat is 34%. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs. White roofs reflect a large fraction of incoming sunlight in the daytime, which reduced the net radiation so that the roof surface keep at a lower temperature than regular solar-absorptive roofs. Urban net radiation decreases by approximately 200 W m-2 at local noon because of high solar reflectance of white roofs, which cools the daytime urban temperature afer sunrise, with the largest decrease of almost -0.80°C at local noon. Moreover, the nighttime temperature also shows slightly cooler, approximately 0.2°C, because there is still considerable heat which is stored in the daytime released from urban surfaces at night. The results also suggest that increasing the albedo of urban roofs can reduce the urban mean temperature by approximately 0.51°C during summer extreme heat events. In urban areas, white roofs can counter 80% of the heat wave results from urban sprawl during the last 20 years. These results suggest that increasing the albedo of roofs in the Beijing-Tianjin-Hebei metropolitan area is an effective way of countering some hazards of heat waves. Using a regional climate model, we proposed that white roofs may be an effective strategy to complement urban heat wave mitigation efforts as a way of further slowing the rate of global temperature increase in response to continued greenhouse gas emissions.
Transpiration of urban trees and its cooling effect in a high latitude city.
Konarska, Janina; Uddling, Johan; Holmer, Björn; Lutz, Martina; Lindberg, Fredrik; Pleijel, Håkan; Thorsson, Sofia
2016-01-01
An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m(-2) s(-1) (B. pendula) to over 3 mmol m(-2) s(-1) (Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68% of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20% of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m(-2), tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m(-2), a cooling effect of tree transpiration was not observed during the day.
Transpiration of urban trees and its cooling effect in a high latitude city
NASA Astrophysics Data System (ADS)
Konarska, Janina; Uddling, Johan; Holmer, Björn; Lutz, Martina; Lindberg, Fredrik; Pleijel, Håkan; Thorsson, Sofia
2016-01-01
An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m-2 s-1 ( B. pendula) to over 3 mmol m-2 s-1 ( Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68 % of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20 % of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m-2, tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m-2, a cooling effect of tree transpiration was not observed during the day.
Modeling The Urban Impact On Semiarid Surface Climate: A Case Study In Marrakesh, Morocco
NASA Technical Reports Server (NTRS)
Lachir, Asia; Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis; Messouli, Mohamed
2016-01-01
We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.
Modeling the Urban Impact on Semiarid Surface Climate: A Case Study in Marrakech, Morocco
NASA Technical Reports Server (NTRS)
Lachir, Asia; Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis; Moussouli, Mohamed
2016-01-01
We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.
Casso-Torralba, P.; de Arellano, J. V. -G.; Bosveld, F.; Soler, M.R.; Vermeulen, A.; Werner, C.; Moors, E.
2008-01-01
The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 in tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation ftom linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with, traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE). Copyright 2008 by the American Geophysical Union.
Evaluation of Precipitation Simulated by Seven SCMs against the ARM Observations at the SGP Site
NASA Technical Reports Server (NTRS)
Song, Hua; Lin, Wuyin; Lin, Yanluan; Wolf, Audrey B.; Neggers, Roel; Donner, Leo J.; Del Genio, Anthony D.; Liu, Yangang
2013-01-01
This study evaluates the performances of seven single-column models (SCMs) by comparing simulated surface precipitation with observations at the Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site from January 1999 to December 2001. Results show that although most SCMs can reproduce the observed precipitation reasonably well, there are significant and interesting differences in their details. In the cold season, the model-observation differences in the frequency and mean intensity of rain events tend to compensate each other for most SCMs. In the warm season, most SCMs produce more rain events in daytime than in nighttime, whereas the observations have more rain events in nighttime. The mean intensities of rain events in these SCMs are much stronger in daytime, but weaker in nighttime, than the observations. The higher frequency of rain events during warm-season daytime in most SCMs is related to the fact that most SCMs produce a spurious precipitation peak around the regime of weak vertical motions but rich in moisture content. The models also show distinct biases between nighttime and daytime in simulating significant rain events. In nighttime, all the SCMs have a lower frequency of moderate-to-strong rain events than the observations for both seasons. In daytime, most SCMs have a higher frequency of moderate-to-strong rain events than the observations, especially in the warm season. Further analysis reveals distinct meteorological backgrounds for large underestimation and overestimation events. The former occur in the strong ascending regimes with negative low-level horizontal heat and moisture advection, whereas the latter occur in the weak or moderate ascending regimes with positive low-level horizontal heat and moisture advection.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Reiter, Elmar R.
1986-01-01
A research program has been started in which operationally available weather satellites radiance data are used to reconstruct various properties of the diurnal surface energy budget over sites for which detailed estimates of the complete radiation, heat, and moisture exchange process are available. In this paper, preliminary analysis of the 1985 Gobi Desert summer period results is presented. The findings demonstrate various important relationships concerning the feasibility of retrieving the amplitudes of the diurnal surface energy budget processes for daytime and nighttime conditions.
Do convection-permitting models improve the representation of the impact of LUC?
NASA Astrophysics Data System (ADS)
Vanden Broucke, Sam; Van Lipzig, Nicole
2017-10-01
In this study we assess the added value of convection permitting scale (CPS) simulations in studies using regional climate models to quantify the bio-geophysical climate impact of land-use change (LUC). To accomplish this, a comprehensive model evaluation methodology is applied to both non-CPS and CPS simulations. The main characteristics of the evaluation methodology are (1) the use of paired eddy-covariance site observations (forest vs open land) and (2) a simultaneous evaluation of all surface energy budget components. Results show that although generally satisfactory, non-CPS simulations fall short of completely reproducing the observed LUC signal because of three key biases. CPS scale simulations succeed at significantly reducing two of these biases, namely, those in daytime shortwave radiation and daytime sensible heat flux. Also, CPS slightly reduces a third bias in nighttime incoming longwave radiation. The daytime improvements can be attributed partially to the switch from parameterized to explicit convection, the associated improvement in the simulation of afternoon convective clouds, and resulting surface energy budget and atmospheric feedbacks. Also responsible for the improvements during daytime is a better representation of surface heterogeneity and thus, surface roughness. Meanwhile, the modest nighttime longwave improvement can be attributed to increased vertical atmospheric resolution. However, the model still fails at reproducing the magnitude of the observed nighttime longwave difference. One possible explanation for this persistent bias is the nighttime radiative effect of biogenic volatile organic compound emissions over the forest site. A correlation between estimated emission rates and the observed nighttime longwave difference, as well as the persistence of the longwave bias provide support for this hypothesis. However, more research is needed to conclusively determine if the effect indeed exists.
Energy balance comparison of sorghum and sunflower
NASA Astrophysics Data System (ADS)
Rachidi, F.; Kirkham, M. B.; Kanemasu, E. T.; Stone, L. R.
1993-03-01
An understanding of the energy exchange processes at the surface of the earth is necessary for studies of global climate change. If the climate becomes drier, as is predicted for northern mid-latitudes, it is important to know how major agricultural crops will play a role in the budget of heat and moisture. Thus, the energy balance components of sorghum [ Sorghum bicolor (L.) Moench.] and sunflower ( Helianthus annuus L.), two drought-resistant crops grown in the areas where summertime drying is forecasted, were compared. Soil water content and evapotranspiration ( ET) rates also were determined. Net radiation was measured with net radiometers. Soil heat flux was analyzed with heat flux plates and thermocouples. The Bowen ratio method was used to determine sensible and latent heat fluxes. Sunflower had a higher evapotranspiration rate and depleted more water from the soil than sorghum. Soil heat flux into the soil during the daytime was greater for sorghum than sunflower, which was probably the result of the more erect leaves of sorghum. Nocturnal net radiation loss from the sorghum crop was greater than that from the sunflower crop, perhaps because more heat was stored in the soil under the sorghum crop. But daytime net radiation values were similar for the two crops. The data indicated that models of climate change must differentiate nighttime net radiation of agricultural crops. Sensible heat flux was not always less (or greater) for sorghum compared to sunflower. Sunflower had greater daytime values for latent heat flux, reflecting its greater depletion of water from the soil. Evapotranspiration rates determined by the energy balance method agreed relatively well with those found by the water balance method. For example, on 8 July (43 days after planting), the ET rates found by the energy-balance and water-balance methods were 4.6 vs. 5.5 mm/day for sunflower, respectively; for sorghum, these values were 4.0 vs. 3.5 mm/day, respectively. If the climate does become drier, the lower soil water use and lower latent heat flux of sorghum compared to sunflower suggest that sorghum will be better adapted to the climate change.
Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective
NASA Astrophysics Data System (ADS)
Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik
2010-02-01
The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.
NASA Technical Reports Server (NTRS)
Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.
2010-01-01
The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.
A wedge strategy for mitigation of urban warming in future climate scenarios
NASA Astrophysics Data System (ADS)
Zhao, L.
2016-12-01
Heat stress is one of the most severe climate threats to the human society in a future warmer world. The situation is further compounded in urban areas by the urban heat island (UHI). Because the majority of the world's population is projected to live in cities, there is a pressing need to find effective solutions for the high temperature problem. It is now recognized that in addition to the traditional emphasis on preparedness to cope with heat stress, these solutions should include active modifications of urban land form to reduce urban temperatures. Here we use an urban climate model to investigate the effectiveness of these active methods in mitigating the urban heat, both individually and collectively. By adopting highly reflective roofs citywide, almost all the cities in the USA and in southern Canada are transformed into cold islands or "white oases" where the daytime surface temperatures are lower than those in the surrounding rural land. The average oasis effect is -3.4 ± 0.3 K (mean ± 1 standard error) for the period 2071-2100 under the RCP4.5 scenario. A UHI mitigation wedge strategy consisting of cool roof, street vegetation and reflective pavement has the potential to eliminate the daytime UHI plus the greenhouse gas induced warming.
NASA Astrophysics Data System (ADS)
Prabhakar, Gouri; Parworth, Caroline L.; Zhang, Xiaolu; Kim, Hwajin; Young, Dominique E.; Beyersdorf, Andreas J.; Ziemba, Luke D.; Nowak, John B.; Bertram, Timothy H.; Faloona, Ian C.; Zhang, Qi; Cappa, Christopher D.
2017-12-01
This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3-(p)) concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality) study at one of the most polluted cities in the United States - Fresno, CA - in the San Joaquin Valley (SJV) and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3-(p) concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3-(p) aloft in the residual layer (RL) can play in determining daytime surface-level NO3-(p) concentrations. Further, they indicate that nocturnal production of NO3-(p) in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL) heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3-(p), despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3-(p) concentrations. Entrainment of clean free-tropospheric (FT) air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3-(p) and limits buildup during pollution episodes. The influence of dry deposition of HNO3 gas to the surface on daytime particulate nitrate concentrations is important but limited by an excess of ammonia in the region, which leads to only a small fraction of nitrate existing in the gas phase even during the warmer daytime. However, in the late afternoon, when diminishing solar heating leads to a rapid fall in the mixed boundary layer height (BLH), the impact of surface deposition is temporarily enhanced and can lead to a substantial decline in surface-level particulate nitrate concentrations; this enhanced deposition is quickly arrested by a decrease in surface temperature, which drops the gas-phase fraction to near zero. The overall importance of enhanced late-afternoon gas-phase loss to the multiday buildup of pollution events is limited by the very shallow nocturnal boundary layer. The case study here demonstrates that mixing down of NO3-(p) from the RL can contribute a majority of the surface-level NO3-(p) in the morning (here, ˜ 80 %), and a strong influence can persist into the afternoon even when photochemical production is maximum. The particular day-to-day contribution of aloft nocturnal NO3-(p) production to surface concentrations will depend on prevailing chemical and meteorological conditions. Although specific to the SJV, the observations and conceptual framework further developed here provide general insights into the evolution of pollution episodes in wintertime environments.
Heat balance and thermal management of the TMT Observatory
NASA Astrophysics Data System (ADS)
Thompson, Hugh; Vogiatzis, Konstantinos
2014-08-01
An extensive campaign of aero-thermal modeling of the Thirty Meter Telescope (TMT) has been carried out and presented in other papers. This paper presents a summary view of overall heat balance of the TMT observatory. A key component of this heat balance that can be managed is the internal sources of heat dissipation to the ambient air inside the enclosure. An engineering budget for both daytime and nighttime sources is presented. This budget is used to ensure that the overall effects on daytime cooling and nighttime seeing are tracked and fall within the modeled results that demonstrate that the observatory meets its performance requirements. In the daytime heat fluxes from air-conditioning, solar loading, infiltration, and deliberate venting through the enclosure top vent are included along with equipment heat sources. In the nighttime convective heat fluxes through the open aperture and vent doors, as well as radiation to the sky are tracked along with the nighttime residual heat dissipations after cooling from equipment in the observatory. The diurnal variation of thermal inertia of large masses, such as the telescope structure, is also included. Model results as well as the overall heat balance and thermal management strategy of the observatory are presented.
2004-06-22
Released 22 June 2004 This pair of images shows part of Arsia Mons. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -19.6, Longitude 241.9 East (118.1 West). 100 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA06399
Crater Ejecta by Day and Night
2004-06-24
Released 24 June 2004 This pair of images shows a crater and its ejecta. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA06445
NASA Technical Reports Server (NTRS)
Deardorff, J. W.; Ueyoshi, K.; Han, Y.-J.
1984-01-01
Han et al. (1982) have found in a previous numerical study of terrain-induced mesoscale motions that the orography caused a steady-state flow pattern to occur. The study was concerned with a simplified case in which no surface heating occurred. The present investigation considers an extension of this study to the more realistic case of a heated, growing daytime mixed layer containing horizontal variations of potential temperature as well as velocity. The model is also extended to include three layers above the mixed layer. It is found for a heated, growing mixed layer, that the mesoscale form drag is a thermal-anomaly or buoyancy effect associated with horizontal variations of potential temperature within the layer.
Biophysical control of leaf temperature
NASA Astrophysics Data System (ADS)
Dong, N.; Prentice, I. C.; Wright, I. J.
2014-12-01
In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf and air temperature is generally neglected in terrestrial ecosystem and carbon cycle models. This is a significant omission that could lead to an over-estimation of the heat-stress vulnerability of carbon uptake in the wet tropics. Leaf energy balance theory is well established, and should be included in the next generation of models.
NASA Astrophysics Data System (ADS)
Yuan, Guanghui; Zhang, Lei; Liang, Jiening; Cao, Xianjie; Guo, Qi; Yang, Zhaohong
2017-11-01
To assess the impacts of initial soil moisture (SMOIS) and the vegetation fraction (Fg) on the diurnal temperature range (DTR) in arid and semiarid regions in China, three simulations using the weather research and forecasting (WRF) model are conducted by modifying the SMOIS, surface emissivity and Fg. SMOIS affects the daily maximum temperature (Tmax) and daily minimum temperature (Tmin) by altering the distribution of available energy between sensible and latent heat fluxes during the day and by altering the surface emissivity at night. Reduced soil wetness can increase both the Tmax and Tmin, but the effect on the DTR is determined by the relative strength of the effects on Tmax and Tmin. Observational data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) and the Shapotou Desert Research and Experimental Station (SPD) suggest that the magnitude of the SMOIS effect on the distribution of available energy during the day is larger than that on surface emissivity at night. In other words, SMOIS has a negative effect on the DTR. Changes in Fg modify the surface radiation and the energy budget. Due to the depth of the daytime convective boundary layer, the temperature in daytime is affected less than in nighttime by the radiation and energy budget. Increases in surface emissivity and decreases in soil heating resulting from increased Fg mainly decrease Tmin, thereby increasing the DTR. The effects of SMOIS and Fg on both Tmax and Tmin are the same, but the effects on DTR are the opposite.
Numerical simulation of thermally induced near-surface flows over Martian terrain
NASA Technical Reports Server (NTRS)
Parish, T. R.; Howard, A. D.
1993-01-01
Numerical simulations of the Martian near-surface wind regime using a mesoscale atmospheric model have shown that the thermally induced near-surface winds are analogous to terrestrial circulations. In particular, katabatic wind displays a striking similarity to flow observed over Antarctica. Introduction of solar radiation strongly perturbs the slope flows; anabatic conditions develop in middle to high latitudes during the daytime hours due to the solar heating of the sloping terrain. There appears to be a rapid transition from the katabatic to the anabatic flow regimes, emphasizing the primary importance of radiative exchanges at the surface in specifying the horizontal pressure gradient force.
Assessment of urban heat Island for Craiova from satellite-based LST
NASA Astrophysics Data System (ADS)
Udristioiu, Mihaela Tinca; Velea, Liliana; Bojariu, Roxana; Sararu, Silviu Constantin
2017-12-01
The urban heat island is defined as an excess of heating in urban areas compared with surrounding rural zones which is illustrated by higher surface and air temperatures in the inner part of the cities. The aim of this study is to identify the UHI effect for Craiova - the largest city in the South-Western part of Romania - and to assess its intensity during summer. To this end, MODIS Land surface temperature (LST) for day and night for summer months (June, July, August), in the interval 2002-2017, as well as yearly Land Cover Type (LCT) data also from MODIS were employed. Furthermore, measurements of air and soil temperature from meteorological station Craiova, available from the National Meteorological Administration database, were used to investigate their relation with LST. The analysis shows that in the urban area of Craiova the long-term summer mean LST is about 4 °C (2 °C), higher than in the rural area during daytime (nighttime). During high temperatures episodes, the mean daytime LST reaches 45-47 °C in the city, while the difference from the rural surrounding area is of 2-3 °C. A high correlation (0.77-0.83) is found between LST and air temperature for all land-use types in the area considered. Both LST and 2m-air temperature time-series manifest an increasing linear tendency over the period considered, being more pronounced during the day.
Increasing heat waves and warm spells in India, observed from a multiaspect framework
NASA Astrophysics Data System (ADS)
Panda, Dileep Kumar; AghaKouchak, Amir; Ambast, Sunil Kumar
2017-04-01
Recent heat waves have been a matter of serious concern for India because of potential impacts on agriculture, food security, and socioeconomic progress. This study examines the trends and variability in frequency, duration, and intensity of hot episodes during three time periods (1951-2013, 1981-2013 and 1998-2013) by defining heat waves based on the percentile of maximum, minimum, and mean temperatures. The study also explores heat waves and their relationships with hydroclimatic variables, such as rainfall, terrestrial water storage, Palmer drought severity index, and sea surface temperature. Results reveal that the number, frequency, and duration of daytime heat waves increased considerably during the post-1980 dry and hot phase over a large area. The densely populated and agriculturally dominated northern half of India stands out as a key region where the nighttime heat wave metrics reflected the most pronounced amplifications. Despite the recent warming hiatus in India and other parts of the world, we find that both daytime and nighttime extreme measures have undergone substantial changes during or in the year following a dry year since 2002, with the probability distribution functions manifesting a hotter-than-normal climate during 1998-2013. This study shows that a few months preceding the 2010 record-breaking heat wave in Russia, India experienced the largest hot episode in the country's history. Interestingly, both these mega events are comparable in terms of their evolution and amplification. These findings emphasize the importance of planning for strategies in the context of the rising cooccurrence of dry and hot events.
NASA Astrophysics Data System (ADS)
Song, Yi; Ma, Mingguo; Li, Xin; Wang, Xufeng
2011-11-01
This research dealt with a daytime integration method with the help of Simple Biosphere Model, Version 2 (SiB2). The field observations employed in this study were obtained at the Yingke (YK) oasis super-station, which includes an Automatic Meteorological Station (AMS), an eddy covariance (EC) system and a Soil Moisture and Temperature Measuring System (SMTMS). This station is located in the Heihe River Basin, the second largest inland river basin in China. The remotely sensed data and field observations employed in this study were derived from Watershed Allied Telemetry Experimental Research (WATER). Daily variations of EF in temporal and spatial scale would be detected by using SiB2. An instantaneous midday EF was calculated based on a remote-sensing-based estimation of surface energy budget. The invariance of daytime EF was examined using the instantaneous midday EF calculated from a remote-sensing-based estimation. The integration was carried out using the constant EF method in the intervals with a steady EF. Intervals with an inconsistent EF were picked up and ET in these intervals was integrated separately. The truth validation of land Surface ET at satellite pixel scale was carried out using the measurement of eddy covariance (EC) system.
Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas
NASA Technical Reports Server (NTRS)
Galofaro, J.; Vayner, B.; Ferguson, D.
2003-01-01
The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.
NASA Astrophysics Data System (ADS)
Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.
2017-12-01
The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.
NASA Technical Reports Server (NTRS)
Dicristofaro, D. C. (Principal Investigator)
1980-01-01
A one dimensional boundary layer model was used in conjunction with satellite derived infrared surface temperatures to deduce values of moisture availability, thermal inertia, heat and evaporative fluxes. The Penn State satellite image display system, a sophisticated image display facility, was used to remotely sense these various parameters for three cases: St. Louis, Missouri; the Land Between the Lakes, Kentucky; and Clarksville, Tennessee. The urban centers displayed the maximum daytime surface temperatures which correspond to the minimum values of moisture availability. The urban center of St. Louis and the bodies of water displayed the maximum nighttime surface temperatures which correspond to the maximum thermal inertia values. It is shown that moisture availability and thermal inertia are very much responsible for the formation of important temperature variations over the urban rural complex.
Mapping surface heat fluxes by assimilating GOES land surface temperature and SMAP products
NASA Astrophysics Data System (ADS)
Lu, Y.; Steele-Dunne, S. C.; Van De Giesen, N.
2017-12-01
Surface heat fluxes significantly affect the land-atmosphere interaction, but their modelling is often hindered by the lack of in-situ measurements and the high spatial heterogeneity. Here, we propose a hybrid particle assimilation strategy to estimate surface heat fluxes by assimilating GOES land surface temperature (LST) data and SMAP products into a simple dual-source surface energy balance model, in which the requirement for in-situ data is minimized. The study aims to estimate two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). CHN scales the sum of surface energy fluxes, and EF represents the partitioning between flux components. To bridge the huge resolution gap between GOES and SMAP data, SMAP data are assimilated using a particle filter to update soil moisture which constrains EF, and GOES data are assimilated with an adaptive particle batch smoother to update CHN. The methodology is applied to an area in the US Southern Great Plains with forcing data from NLDAS-2 and the GPM mission. Assessment against in-situ observations suggests that the sensible and latent heat flux estimates are greatly improved at both daytime and 30-min scale after assimilation, particularly for latent heat fluxes. Comparison against an LST-only assimilation case demonstrates that despite the coarse resolution, assimilating SMAP data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the modelling uncertainties are large. Since the methodology is independent on in-situ data, it can be easily applied to other areas.
Climate change and heat waves in Paris and London metropolitan areas
NASA Astrophysics Data System (ADS)
Dousset, B.
2010-12-01
Summer warming trends in Western and Central Europe and in Mediterranean regions are increasing the incidence, intensity, and duration of heat waves. Those extreme events are especially deadly in large cities, owing to high population densities, surface characteristics, heat island effects, anthropogenic heat and pollutants. In August 2003, a persistent anticyclone over Western Europe generated a heat wave of exceptional strength and duration with an estimated death toll of 70,000, including 4678 in the Paris region. A series of NOAA-AVHRR satellite thermal images over the Paris and London metropolitan areas, were used to analyze Land Surface Temperature (LST) and its related mortality. In the Paris region, LSTs were merged with land use and cover data to identify risk areas, and thermal indicators were produced at the addresses of ~ 500 elderly people to assess diurnal heat exposure. Results indicate: (i) contrasting night time and daytime heat island patterns related to land use and surface characteristics; (ii) the relation between night-time heat islands and heat waves intensity; (iii) the impact of elevated minimal temperatures on excess mortality, with a 0.5 °C increase doubling the risk of death, (in the temperature range of the heatwave); iv) the correlation between the spatial distribution of highest night-time LSTs and that of highest mortality ratios; and v) the significant impact of urban parks in the partitioning between latent and sensible surface heat fluxes, despite a prior warm and dry spring. Near-real time satellite monitoring of heat waves in urban areas improve our understanding of the LST processes and spatial variability, and of the related heat stress and mortality. These observations provide criteria for warning systems, contingency policies and planning, and climate adaptation and mitigation strategies.
NASA Astrophysics Data System (ADS)
Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick
2017-12-01
Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.
Heusinger, Jannik; Weber, Stephan
2017-01-15
Green roofs are discussed as a promising type of green infrastructure to lower heat stress in cities. In order to enhance evaporative cooling, green roofs should ideally have similar Bowen ratio (β=sensible heat flux/latent heat flux) characteristics such as rural sites, especially during summer periods with high air temperatures. We use the eddy-covariance (EC) method to quantify the energy balance of an 8600m 2 extensive, non-irrigated green roof at the Berlin Brandenburg Airport, Germany over a full annual cycle. To understand the influence of water availability on green roof-atmosphere energy exchange, we studied dry and wet periods and looked into functional relationships between leaf area, volumetric water content (VWC) of the substrate, shortwave radiation and β. The surface energy balance was dominated by turbulent heat fluxes in comparison to conductive substrate heat fluxes. The Bowen ratio was slightly below unity on average but highly variable due to ambient meteorology and substrate water availability, i.e. β increased to 2 in the summer season. During dry periods mean daytime β was 3, which is comparable to typical values of urban instead of rural sites. In contrast, mean daytime β was 0.3 during wet periods. Following a summer wet period the green roof maximum daily evapotranspiration (ET) was 3.3mm, which is a threefold increase with respect to the mean summer ET. A multiple regression model indicated that the substrate VWC at the present site has to be >0.11m 3 m -3 during summer high insolation periods (>500Wm -2 ) in order to maintain favourable green roof energy partitioning, i.e. mid-day β<1. The microclimate benefit of urban green roofs can be significantly optimised by using sustainable irrigation approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterizing Urban Heat Islands of Global Settlements Using MODIS and Nighttime Lights Products
NASA Technical Reports Server (NTRS)
Zhang, Ping; Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari
2010-01-01
Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship with development intensity, size, and ecological setting for more than 3000 urban settlements globally. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby nonurban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to ensure objective intercomparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass shrubs biomes; and only a weak UHI or sometimes an urban heat sink (UHS) in cities in arid and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) with the difference in vegetation density between urban and rural zones represented by the MODIS normalized difference vegetation index (NDVI). Globally averaged, the daytime UHI amplitude for all settlements is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers compared with 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude, with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variance is explained by ISA for urban settlements within forests at mid to high latitudes. This percentage will increase to more than 80% when only settlements in the US are examined.
Characterizing Urban Heat Islands of Global Settlements Using MODIS and Nighttime Lights Products
NASA Technical Reports Server (NTRS)
Zhang, Ping; Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari
2010-01-01
Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship to development intensity, size, and ecological setting for more than 3000 urban settlements over the globe. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby non-urban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to insure objective inter-comparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass/shrub biomes, and only a weak UHI or sometimes an Urban Heat Sink (UHS) in cities in and and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) to the difference in vegetation density between urban and rural zones represented by MODIS Normalized Difference Vegetation Index (NDVI). Globally averaged, the daytime UHI amplitude for all settlement is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers, compared to 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variances is explained by ISA for urban settlements within forests at mid-to-high latitudes. This percentage will increase to more than 80% when only USA settlements are examined.
NASA Astrophysics Data System (ADS)
Liu, Ruiting; Han, Zhiwei; Wu, Jian; Hu, Yonghong; Li, Jiawei
2017-11-01
In this study, some key geometric and thermal parameters derived from recent field and satellite observations in Beijing were collected and incorporated into WRF-UCM (Weather Research and Forecasting) model instead of previous default ones. A series of sensitivity model simulations were conducted to investigate the influences of these parameters on radiation balance, meteorological variables, turbulence kinetic energy (TKE), as well as planetary boundary layer height (PBLH) in regions around Beijing in summer 2014. Model validation demonstrated that the updated parameters represented urban surface characteristics more realistically and the simulations of meteorological variables were evidently improved to be closer to observations than the default parameters. The increase in building height tended to increase and slightly decrease surface air temperature at 2 m (T2) at night and around noon, respectively, and to reduce wind speed at 10 m (WS10) through a day. The increase in road width led to significant decreases in T2 and WS10 through the whole day, with the maximum changes in early morning and in evening, respectively. Both lower surface albedo and inclusion of anthropogenic heat (AH) resulted in increases in T2 and WS10 over the day, with stronger influence from AH. The vertical extension of the impact of urban surface parameters was mainly confined within 300 m at night and reached as high as 1600 m during daytime. The increase in building height tended to increase TKE and PBLH and the TKE increase was larger at night than during daytime due to enhancements of both mechanical and buoyant productions. The increase in road width generally reduced TKE and PBLH except for a few hours in the afternoon. The lower surface albedo and the presence of AH consistently resulted in increases of TKE and PBLH through both day and night. The increase in building height induced a slight divergence by day and a notable convergence at night, whereas the increase in road width led to a remarkable divergence through the entire day. Both AH and lower surface albedo induced a wind convergence over the day, which tended to strengthen nighttime mountain downslope wind and daytime southerly wind to the south of Beijing, but to weaken daytime upslope wind in mountain areas.
A Global Characterization of Urban Heat Islands
NASA Astrophysics Data System (ADS)
Chakraborty, T.; Lee, X.
2017-12-01
The urban heat island (UHI) effect refers to the higher temperatures in urban areas, and it is one of the most well-known consequences of urbanization on local climate. In the present study, we define a new simplified urban-boundary (SUB) algorithm to quantify the daytime and nighttime surface UHIs on a global scale based on 16 years of MODIS Land Surface Temperature (LST) data. The results from the algorithm are validated against previous studies and used to determine the diurnal, monthly, and long-term variation in the surface UHI for over 9000 urban clusters situated in the different Koppen-Geiger climate zones,namely equatorial, arid, warm temperate, snow, and polar. Thus, the variability of the surface UHI for each climate class is determined using a consistent methodology for the first time. The 16-year mean global daytime surface UHI is 0.71 ± 0.93 °C at 1030 LT and 1.00 ± 1.17 °C at 1330 LT, while the nighttime surface UHI is 0.51 ± 0.50 °C at 2230 LT and 0.42 ± 0.52 °C at 0130 LT. This is in good agreement with the results from previous studies, which have looked at the UHI for multiple cities. Summer surface UHI is larger than winter surface UHI across all climate zones. The annual daytime surface UHI is highest in the polar urban clusters (1.77 ± 1.61 °C), followed by snow (1.39 ± 1.17 °C), equatorial (1.21 ± 1.32 °C), warm temperate (1.02 ± 0.98 °C), and arid (0.18 ± 1.27 °C). Urban clusters in the arid climate are found to show different diurnal and seasonal patterns, with higher nighttime surface UHI (0.65 ± 0.58 °C) and two seasonal peaks during the year. The diurnal variation in surface UHI is highest in the polar zone (1.16 °C) and lowest in the arid zone (0.57 °C). The inter-seasonality is also highest in the polar Zone (2.20 °C) and lowest in the arid zone (0.80 °C). Finally, we investigate the change in the surface UHI in more than a decade (2001 to 2013 for MODIS TERRA and 2003 to 2013 for MODIS AQUA) and find a gradual increase in the UHI magnitude in the equatorial (0.05 °C/decade) and snow (0.12 °C/decade) climate zones. Our results imply that city planners and policy makers should take the background climate zone of a city into account when trying to mitigate the impact of thermal stress in urban areas.
The Impacts of Miyun Reservoirs on Local Climate: A Modeling Study Using WRF-Lake Model
NASA Astrophysics Data System (ADS)
Wang, F.; Xing, Y.; Sun, T.; Ni, G.
2016-12-01
Large reservoirs, where a great volume of water is stored for various purposes (e.g. hydropower generation, irrigation, transportation, recreation, etc.), play a key role in regional hydrological cycles as well as in modulating the local climate. In particular, to understand the impacts of reservoirs on local climate, numeric simulations are widely conducted using different weather prediction (NWP) models. However, some of these NWP models treat reservoirs as water surfaces with prescribed surface temperatures and thus the hydrothermal dynamics within water bodies are missing. In this study, we use the Weather Research Forecasting (WRF) model coupled with a lake module, which is equipped with the ability to simulate full thermal dynamics of water, to examine the impacts of Miyun Reservoir, the largest reservoir in Beijing, on the local climate. Simulations are conducted from July 1 to August 1, 2010 in a one-way nesting mode of three spatial resolutions (i.e., 9 km, 3 km and 1 km). Comparison between the simulation results and observations shows a general agreement and demonstrates the ability of WRF-Lake in simulating the summertime climate in the study area. The simulation results indicate the Miyun Reservoir significantly reduces daytime air temperature at 2 m above the water surface and its surroundings by a maximum of 4 K as compared with the case without a reservoir, and such impacts diminish at a distance of 90 km from the reservoir center (a decrease of 0.2 K). At night, a maximum increase of 1.4 K is simulated for the air temperature above the reservoir, but the influencing area is very limited. The reservoir also increases the local air specific humidity by 0.0025 kg kg-1. In addition to near surface meteorology, surface energy balance is remarkably changed as compared to the case without a reservoir: a daytime decrease of 100 W m-2 and a nighttime increase of 15 W m-2are simulated for the sensible heat flux. It is noteworthy that the latent heat flux decreases in the daytime and slightly increases at night. It should also be noted that the influencing area is strongly dependent on the wind direction. This study provides a better understanding of the water-atmosphere interactions by reservoirs and their impacts on local climate.
NASA Astrophysics Data System (ADS)
Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang
2018-06-01
The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.
NASA Astrophysics Data System (ADS)
Song, Jingjing; Xia, Xiangao; Che, Huizheng; Wang, Jun; Zhang, Xiaoling; Li, Xiaojing
2018-06-01
Daytime cycles of aerosol optical depth (AOD) and Angstrom exponent (AE) climatology were analyzed based on long-term (5-15 years) measurements at 18 stations of the China Aerosol Remote Sensing Network (CARSNET) in North China. AOD in Northwest China (NWC) exhibits a daytime trend with negative departures in the early morning and later afternoon while positive departures at midday. Daytime AOD relative departure in different sites and seasons varies from -30.26% to 30.28%. AE in NWC shows an opposite pattern to daytime variation of AOD. Daytime variation of AE is negligible in North China Plain (NCP), AOD increases steadily throughout the day. This trend is consistent and repeatable in four seasons. Such pronounced variability in AOD and AE should be taken accounted for in the estimation of diurnal aerosol direct radiative effects (ADRE), as suggested by the radiative transfer model simulations. The replacement of the observed daytime variation of AOD and AE by daytime mean values in NWC results in ADRE differences of 0.31 Wm-2 at the surface and 0.05 Wm-2 at the top of the atmosphere (TOA). ADRE in NWC will be underestimated by -0.47 Wm-2 and -0.25 Wm-2 at the surface and TOA, respectively, if instantaneous AOD and AE during the overpass time of Terra and Aqua are taken as the daytime mean values. The annual mean ADRE at the surface and TOA will be underestimated by -0.17 Wm-2 and -0.03 Wm-2 if daytime variations of AOD and AE are replaced by daytime mean values in NCP. ADRE will be underestimated by -0.07 Wm-2 at the surface and -0.06 Wm-2 at the TOA if instantaneous AOD and AE during the overpass time of Terra and Aqua other than daytime variation of AOD and AE are used in the calculations.
Do we understand the temperature profile of air-water interface?
NASA Astrophysics Data System (ADS)
Solcerova, A.; van Emmerik, T. H. M.; Uittenbogaard, R.; van de Ven, F. H. M.; Van De Giesen, N.
2017-12-01
Lakes and reservoirs exchange energy with the atmosphere through long-wave radiation and turbulent heat fluxes. Calculation of those fluxes often depend on the surface temperature. Several recent studies used high resolution Distributed Temperature Sensing (DTS) to measure the temperature of air-water interface. We present results of three of such studies conducted on three different locations with three different climates (Ghana, Israel, The Netherland). Measurements from all presented studies show a distinct temperature drop close to the water surface during daytime. We provide several possible explanations for existence of such deviation of temperature, and discuss the plausibility of each. Explaining the measured temperature drop is crucial for a better understanding of the energy balance of lake surface, and estimation of the surface energy balance.
Quality and sensitivity of high-resolution numerical simulation of urban heat islands
NASA Astrophysics Data System (ADS)
Li, Dan; Bou-Zeid, Elie
2014-05-01
High-resolution numerical simulations of the urban heat island (UHI) effect with the widely-used Weather Research and Forecasting (WRF) model are assessed. Both the sensitivity of the results to the simulation setup, and the quality of the simulated fields as representations of the real world, are investigated. Results indicate that the WRF-simulated surface temperatures are more sensitive to the planetary boundary layer (PBL) scheme choice during nighttime, and more sensitive to the surface thermal roughness length parameterization during daytime. The urban surface temperatures simulated by WRF are also highly sensitive to the urban canopy model (UCM) used. The implementation in this study of an improved UCM (the Princeton UCM or PUCM) that allows the simulation of heterogeneous urban facets and of key hydrological processes, together with the so-called CZ09 parameterization for the thermal roughness length, significantly reduce the bias (<1.5 °C) in the surface temperature fields as compared to satellite observations during daytime. The boundary layer potential temperature profiles are captured by WRF reasonable well at both urban and rural sites; the biases in these profiles relative to aircraft-mounted senor measurements are on the order of 1.5 °C. Changing UCMs and PBL schemes does not alter the performance of WRF in reproducing bulk boundary layer temperature profiles significantly. The results illustrate the wide range of urban environmental conditions that various configurations of WRF can produce, and the significant biases that should be assessed before inferences are made based on WRF outputs. The optimal set-up of WRF-PUCM developed in this paper also paves the way for a confident exploration of the city-scale impacts of UHI mitigation strategies in the companion paper (Li et al 2014).
Conceptual design of a lunar base thermal control system
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Debarro, Marc J.; Farmer, Jeffery T.
1992-01-01
Space station and alternate thermal control technologies were evaluated for lunar base applications. The space station technologies consisted of single-phase, pumped water loops for sensible and latent heat removal from the cabin internal environment and two-phase ammonia loops for the transportation and rejection of these heat loads to the external environment. Alternate technologies were identified for those areas where space station technologies proved to be incompatible with the lunar environment. Areas were also identified where lunar resources could enhance the thermal control system. The internal acquisition subsystem essentially remained the same, while modifications were needed for the transport and rejection subsystems because of the extreme temperature variations on the lunar surface. The alternate technologies examined to accommodate the high daytime temperatures incorporated lunar surface insulating blankets, heat pump system, shading, and lunar soil. Other heat management techniques, such as louvers, were examined to prevent the radiators from freezing. The impact of the geographic location of the lunar base and the orientation of the radiators was also examined. A baseline design was generated that included weight, power, and volume estimates.
Effects of City Expansion on Heat Stress under Climate Change Conditions
Argüeso, Daniel; Evans, Jason P.; Pitman, Andrew J.; Di Luca, Alejandro
2015-01-01
We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. PMID:25668390
Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains
NASA Astrophysics Data System (ADS)
Williams, I. N.; Lu, Y.; Kueppers, L. M.; Riley, W. J.; Biraud, S.; Bagley, J. E.; Torn, M. S.
2016-12-01
Biases in land-atmosphere coupling in climate models can contribute to climate prediction biases, but land models are rarely evaluated in the context of this coupling. We tested land-atmosphere coupling and explored effects of land surface parameterizations on climate prediction in a single-column version of the NCAR Community Earth System Model (CESM1.2.2) and an offline Community Land Model (CLM4.5). The correlation between leaf area index (LAI) and surface evaporative fraction (ratio of latent to total turbulent heat flux) was substantially underpredicted compared to observations in the U.S. Southern Great Plains, while the correlation between soil moisture and evaporative fraction was overpredicted by CLM4.5. These correlations were improved by prescribing observed LAI, increasing soil resistance to evaporation, increasing minimum stomatal conductance, and increasing leaf reflectance. The modifications reduced the root mean squared error (RMSE) in daytime 2 m air temperature from 3.6 C to 2 C in summer (JJA), and reduced RMSE in total JJA precipitation from 133 to 84 mm. The modifications had the largest effect on prediction of summer drought in 2006, when a warm bias in daytime 2 m air temperature was reduced from +6 C to a smaller cold bias of -1.3 C, and a corresponding dry bias in total JJA precipitation was reduced from -111 mm to -23 mm. Thus, the role of vegetation in droughts and heat waves is likely underpredicted in CESM1.2.2, and improvements in land surface models can improve prediction of climate extremes.
NASA Astrophysics Data System (ADS)
Burakowski, E. A.; Tawfik, A. B.; Ouimette, A.; Lepine, L. C.; Ollinger, S. V.; Bonan, G. B.; Zarzycki, C. M.; Novick, K. A.
2016-12-01
Changes in land use, land cover, or both promote changes in surface temperature that can amplify or dampen long-term trends driven by natural and anthropogenic climate change by modifying the surface energy budget, primarily through differences in albedo, evapotranspiration, and aerodynamic roughness. Recent advances in variable resolution global models provide the tools necessary to investigate local and global impacts of land use and land cover change by embedding a high-resolution grid over areas of interest in a seamless and computationally efficient manner. Here, we used two eddy covariance tower clusters in the Eastern US (University of New Hampshire UNH and Duke Forest) to validate simulation of surface energy fluxes and properties by the uncoupled Community Land Model (PTCLM4.5) and coupled land-atmosphere Variable-Resolution Community Earth System Model (VR-CESM1.3). Surface energy fluxes and properties are generally well captured by the models for grassland sites, however forested sites tend to underestimate latent heat and overestimate sensible heat flux. Surface roughness emerged as the dominant biophysical forcing factor affecting surface temperature in the eastern United States, generally leading to warmer nighttime temperatures and cooler daytime temperatures. However, the sign and magnitude of the roughness effect on surface temperature was highly sensitive to the calculation of aerodynamic resistance to heat transfer.
Effects of Solar Photovoltaic Panels on Roof Heat Transfer
NASA Technical Reports Server (NTRS)
Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.
2010-01-01
Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.
NASA Astrophysics Data System (ADS)
Harshan, Suraj
The main objective of the present thesis is the improvement of the TEB/ISBA (SURFEX) urban land surface model (ULSM) through comprehensive evaluation, sensitivity analysis, and optimization experiments using energy balance and radiative and air temperature data observed during 11 months at a tropical sub-urban site in Singapore. Overall the performance of the model is satisfactory, with a small underestimation of net radiation and an overestimation of sensible heat flux. Weaknesses in predicting the latent heat flux are apparent with smaller model values during daytime and the model also significantly underpredicts both the daytime peak and nighttime storage heat. Surface temperatures of all facets are generally overpredicted. Significant variation exists in the model behaviour between dry and wet seasons. The vegetation parametrization used in the model is inadequate to represent the moisture dynamics, producing unrealistically low latent heat fluxes during a particularly dry period. The comprehensive evaluation of the USLM shows the need for accurate estimation of input parameter values for present site. Since obtaining many of these parameters through empirical methods is not feasible, the present study employed a two step approach aimed at providing information about the most sensitive parameters and an optimized parameter set from model calibration. Two well established sensitivity analysis methods (global: Sobol and local: Morris) and a state-of-the-art multiobjective evolutionary algorithm (Borg) were employed for sensitivity analysis and parameter estimation. Experiments were carried out for three different weather periods. The analysis indicates that roof related parameters are the most important ones in controlling the behaviour of the sensible heat flux and net radiation flux, with roof and road albedo as the most influential parameters. Soil moisture initialization parameters are important in controlling the latent heat flux. The built (town) fraction has a significant influence on all fluxes considered. Comparison between the Sobol and Morris methods shows similar sensitivities, indicating the robustness of the present analysis and that the Morris method can be employed as a computationally cheaper alternative of Sobol's method. Optimization as well as the sensitivity experiments for the three periods (dry, wet and mixed), show a noticeable difference in parameter sensitivity and parameter convergence, indicating inadequacies in model formulation. Existence of a significant proportion of less sensitive parameters might be indicating an over-parametrized model. Borg MOEA showed great promise in optimizing the input parameters set. The optimized model modified using the site specific values for thermal roughness length parametrization shows an improvement in the performances of outgoing longwave radiation flux, overall surface temperature, heat storage flux and sensible heat flux.
Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,
2016-01-01
The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.
The Impact of Temporal Aggregation of Land Surface Temperature Data for Urban Heat Island Monitoring
NASA Astrophysics Data System (ADS)
Hu, L.; Brunsell, N. A.
2012-12-01
Temporally composited remote sensing products are widely used in monitoring the urban heat island (UHI). In order to quantify the impact of temporal aggregation for assessing the UHI, we examined MODIS land surface temperature (LST) products for 11 years focusing on Houston, Texas and its surroundings. By using the daily LST from 2000 to 2010, the urban and rural daily LST were presented for the 8-day period and annual comparisons for both day and night. Statistics based on the rural-urban LST differences show that the 8-day composite mean UHI effects are generally more intensive than that calculated by daily UHI images. Moreover, the seasonal pattern shows that the summer daytime UHI has the largest magnitude and variation while nighttime UHI magnitudes are much smaller and less variable. Regression analyses enhance the results showing an apparently higher UHI derived from 8-day composite dataset. The summer mean UHI maps were compared, indicating a land cover related pattern. We introduced yearly MODIS land cover type product to explore the spatial differences caused by temporal aggression of LST product. The mean bias caused by land cover types are calculated about 0.5 ~ 0.7K during the daytime, and less than 0.1K at night. The potential causes of the higher UHI are discussed. The analysis shows that the land-atmosphere interactions, which result in the regional cloud formation, are the primary reason.
NASA Astrophysics Data System (ADS)
Myint, S. W.; Zheng, B.; Fan, C.; Kaplan, S.; Brazel, A.; Middel, A.; Smith, M.
2014-12-01
While the relationship between fractional cover of anthropogenic and vegetation features and the urban heat island has been well studied, the effect of spatial arrangements (e.g., clustered, dispersed) of these features on urban warming or cooling are not well understood. The goal of this study is to examine if and how spatial configuration of land cover features influence land surface temperatures (LST) in urban areas. This study focuses on Phoenix, AZ and Las Vegas, NV that have undergone dramatic urban expansion. The data used to classify detailed urban land cover types include Geoeye-1 (Las Vegas) and QuickBird (Phoenix). The Geoeye-1 image (3 m resolution) was acquired on October 12, 2011 and the QuickBird image (2.4 m resolution) was taken on May 29, 2007. Classification was performed using object based image analysis (OBIA). We employed a spatial autocorrelation approach (i.e., Moran's I) that measures the spatial dependence of a point to its neighboring points and describes how clustered or dispersed points are arranged in space. We used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on June 10, 2011 and nighttime on October 17, 2011) and Las Vegas (daytime on July 6, 2005 and nighttime on August 27, 2005) to examine daytime and nighttime LST with regards to the spatial arrangement of anthropogenic and vegetation features. We spatially correlate Moran's I values of each land cover per surface temperature, and develop regression models. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, a clustered spatial arrangement of anthropogenic land-cover features, especially impervious surfaces, significantly elevates surface temperatures. Results from this study suggest that the spatial configuration of anthropogenic and vegetation features influence urban warming and cooling.
NASA Technical Reports Server (NTRS)
Day, R. L.; Petersen, G. W.
1983-01-01
Thermal-infrared data from the Heat Capacity Mapping Mission satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures (MAST) and annual surface temperature amplitudes (AMP) in semi-arid east central Utah. Diurnal data with minimal snow and cloud cover were selected for five dates throughout a yearly period and geometrically co-registered. Rubber-sheet stretching was aided by the WARP program which allowed preview of image transformations. Daytime maximum and nighttime minimum temperatures were averaged to generation average daily temperature (ADT) data set for each of the five dates. Five ADT values for each pixel were used to fit a sine curve describing the theoretical annual surface temperature response as defined by a solution of a one-dimensinal heat flow equation. Linearization of the equation produced estimates of MAST and AMP plus associated confidence statistics. MAST values were grouped into classes and displayed on a color video screen. Diurnal surface temperatures and MAST were primarily correlated with elevation.
Guimarães, Guilherme V; Cruz, Lais G B; Tavares, Aline C; Dorea, Egidio L; Fernandes-Silva, Miguel M; Bocchi, Edimar A
2013-12-01
High blood pressure (BP) increases the risk of cardiovascular diseases, and its control is a clinical challenge. Regular exercise lowers BP in patients with mild-to-moderate hypertension. No data are available on the effects of heated water-based exercise in hypertensive patients. Our objective was to evaluate the effects of heated water-based exercise on BP in patients with resistant hypertension. We tested the effects of 60-min heated water-based exercise training three times per week in 16 patients with resistant hypertension (age 55±6 years). The protocol included walking and callisthenic exercises. All patients underwent 24-h ambulatory blood pressure monitoring (ABPM) before and after a 2-week exercise program in a heated pool. Systolic office BP was reduced from 162 to 144 mmHg (P<0.004) after heated-water training. After the heated-water exercise training during 24-h ABPM, systolic BP decreased from 135 to 123 mmHg (P=0.02), diastolic BP decreased from 83 to 74 mmHg (P=0.001), daytime systolic BP decreased from 141 to 125 mmHg (P=0.02), diastolic BP decreased from 87 to 77 mmHg (P=0.009), night-time systolic BP decreased from 128 to 118 mmHg (P=0.06), and diastolic BP decreased from 77 to 69 mmHg (P=0.01). In addition, BP cardiovascular load was reduced significantly during the 24-h daytime and night-time period after the heated water-based exercise. Heated water-based exercise reduced office BP and 24-h daytime and night-time ABPM levels. These effects suggest that heated water-based exercise may have a potential as a new therapeutic approach to resistant hypertensive patients.
NASA Astrophysics Data System (ADS)
Steeneveld, G. J.; Tolk, L. F.; Moene, A. F.; Hartogensis, O. K.; Peters, W.; Holtslag, A. A. M.
2011-12-01
The Weather Research and Forecasting Model (WRF) and the Regional Atmospheric Mesoscale Model System (RAMS) are frequently used for (regional) weather, climate and air quality studies. This paper covers an evaluation of these models for a windy and calm episode against Cabauw tower observations (Netherlands), with a special focus on the representation of the physical processes in the atmospheric boundary layer (ABL). In addition, area averaged sensible heat flux observations by scintillometry are utilized which enables evaluation of grid scale model fluxes and flux observations at the same horizontal scale. Also, novel ABL height observations by ceilometry and of the near surface longwave radiation divergence are utilized. It appears that WRF in its basic set-up shows satisfactory model results for nearly all atmospheric near surface variables compared to field observations, while RAMS needed refining of its ABL scheme. An important inconsistency was found regarding the ABL daytime heat budget: Both model versions are only able to correctly forecast the ABL thermodynamic structure when the modeled surface sensible heat flux is much larger than both the eddy-covariance and scintillometer observations indicate. In order to clarify this discrepancy, model results for each term of the heat budget equation is evaluated against field observations. Sensitivity studies and evaluation of radiative tendencies and entrainment reveal that possible errors in these variables cannot explain the overestimation of the sensible heat flux within the current model infrastructure.
NASA Astrophysics Data System (ADS)
Xi, T. Y.; Ding, J. H.; Lv, X. W.; Lei, Y. S.
2018-06-01
In order to create a comfortable building thermal environment, it is important to study the outdoor ground materials performance. In this article, we carried out a constant field experiment in Guangzhou, China, studying on the variations of the surface temperature of three common outdoor building materials: concrete, pavement and grass. We put the equipment on six experiment points respectively to measure the ground surface temperature constantly. The result shows that because of the specific heat capacity, both concrete and pavement have an obvious time delay during their temperature decrease when the grass ground has almost no time delay. And when in the same conditions (exposed to sunlight all day), the material with a low specific heat capacity has a more sensitive variation in temperature. The lower the specific capacity is, the steeper the variation trend of the surface temperature will be. So compared with concrete, the pavement brick ground with a low specific heat capacity has a higher surface temperature in daytime and a lower temperature in the late night time. When in different conditions (different time exposed to sunlight), the temperature value is proportional to the time exposed to the sunlight between the same materials. The concrete exposed to sunlight all day has the highest temperature when the shaded one has the lowest. This experiment reveals that both specific heat capacity and the exposed time to sunlight has a strong influence on the surface temperature of outdoor materials. In subtropical region, the materials with a higher specific heat capacity and a less time exposed to sunlight may be more beneficial to the building thermal environment.
NASA Astrophysics Data System (ADS)
Betts, Alan K.; Viterbo, Pedro; Beljaars, Anton; Pan, Hua-Lu; Hong, Song-You; Goulden, Mike; Wofsy, Steve
1998-09-01
The National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis models are compared with First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) grassland data from Kansas in 1987 and Boreal Ecosystem-Atmosphere Study (BOREAS) data from an old black spruce site in 1996 near Thompson, Manitoba. Some aspects of the comparison are similar for the two ecosystems. Over grassland and after snowmelt in the boreal forest, both models represent the seasonal cycle of near-surface temperature well. The two models have quite different soil hydrology components. The ECMWF model includes soil water nudging based on low level humidity errors. While this works quite well for the FIFE grassland, it appears to give too high evaporation over the boreal forest. The NCEP/NCAR model constrains long-term drifts by nudging deep soil water toward climatology. Over the FIFE site, this seems to give too low evaporation in midsummer, while at the BOREAS site, evaporation in this model is high. Both models have some difficulty representing the surface diurnal cycle of humidity. In the NCEP/NCAR reanalysis this leads to errors primarily in June, when the surface boundary layer stays saturated and too much precipitation occurs. In the ECMWF reanalysis there is a morning peak of mixing ratio, which an earlier work showed resulted from too shallow a boundary layer in the morning. Over the northern boreal forest there are important physical processes, which are not represented in either reanalysis model. In particular very high model albedos in spring, when there is snow under the forest canopy, lead to a very low daytime net radiation. This in turn leads to a large underestimate of the daytime surface fluxes, particularly the sensible heat flux, and to daytime model surface temperatures that are as much as 15 K low. In addition, the models do not account for the reduction in evaporation associated with frozen soil, and they generally have too large evapotranspiration in June and July, probably because they do not model the tight stomatal control of the coniferous forest.
Constituent Ion Temperatures Measured in the Topside Ionosphere
NASA Astrophysics Data System (ADS)
Hsu, C. T.; Heelis, R. A.
2017-12-01
Plasma temperatures in the ionosphere are associated with both the dynamics and structure of the neutral and charge particles. The temperatures are determined by solar energy inputs and energy exchange between charged particles and neutrals. Previous observations show that during daytime the O+ temperature is generally higher when the fractional contribution of H+ to the plasma is high. Further simulations confirm that the daytime heat balance between the H+ and O+ always keeps the H+ at a temperature higher than the O+. In addition the plasma transport parallel and perpendicular to the magnetic field influences the plasma temperature through adiabatic heating and cooling effects. These processes are also important during the nighttime, when the source of photoionization is absent. In this work we examine a more sophisticated analysis procedure to extract individual mass dependent ion temperature and apply it on the DMSP F15 RPA measurements. The result shows that the daytime TH+ is a few hundred degrees higher than the TO+ and the nighttime temperature difference between TH+ and TO+ is indicative of mass dependent adiabatic heating and cooling processes across the equatorial region.
NASA Astrophysics Data System (ADS)
Song, Yutian; Wang, Xueqiang; Bi, Shengshan; Wu, Jiangtao; Huang, Shaopeng
2017-09-01
Surface temperature at the nearside of the Moon (Ts,n) embraces an abundance of valuable information to be explored, and its measurement contributes to studying Earth's energy budget. On a basis of a one-dimensional unsteady heat-transfer model, this paper ran a quantitative calculation that how much the Ts,n varies with the changes of different heat sources, including solar radiation, terrestrial radiation, and lunar interior heat flow. The results reveal that solar radiation always has the most important influence on Ts,n not only during lunar daytime (by means of radiation balance) but also during lunar nighttime (by means of lunar regolith heat conduction). Besides, the effect of terrestrial radiation is also unavoidable, and measuring the variation of lunar nighttime low temperature is exactly helpful in observing Earth outgoing radiation. Accordingly, it is practical to establish a Moon-base observatory on the Moon. For verification, the Apollo 15 mission temperature data was used and analyzed as well. Moreover, other 9 typical lunar areas were selected and the simulation was run one after another in these areas after proper model amendation. It is shown that the polar regions on the Moon are the best areas for establishing Moon-base observatory.
Meteorological surface conditions at Kohnen Station, Antarctica
NASA Astrophysics Data System (ADS)
van As, D.; van den Broeke, M. R.
2003-04-01
Only a few detailed meteorological experiments have been performed in the higher regions of the Antarctic ice sheet. This contribution will describe part of such an experiment and its outcome, performed at Kohnen Station (75.00 S, 0.07 E, 2892 m asl.) in the Antarctic summer of 2001-'02. Results from this experiment are to benefit the interpretation of the ice core presently being drilled at this location. Surface conditions in the 40 day period of measurements varied from typically stable to extraordinarily warm and windy. First we focus on the surface energy balance during this summer period. A model with only a few input parameters is used to combine measured net radiation with calculated heat fluxes to iteratively search for a surface temperature for which all components balance out. Calculated components are compared with measurements. In time this model will be functional for weather stations at different locations. Despite the high albedo (0.82 - 0.92) the net shortwave radiation is the largest component at the surface, contributing a maximum of 100 W/m2. Surprisingly small is the latent heat flux, in fair weather no more than a few W/m2. In general the calculations agree well with the measurements. A shallow convective layer developed in the daytime by the sensible heat flux is confirmed by balloon measurements. Linking the surface conditions to measurements outside of the surface layer we find little correlation, as to be expected.
Dynamics of Cross-Shore Thermal Exchange Over Nonuniform Bathymetry
NASA Astrophysics Data System (ADS)
Safaie, A.; Davis, K. A.; Pawlak, G. R.
2016-02-01
The hydrodynamics of cross-shelf circulation on the inner shelf influence coastal ecosystems through the transport of heat, salt, nutrients, and planktonic organisms. While cross-shelf exchange on wide continental shelves has received a fair amount of attention in literature, the mechanisms for cross-shelf exchange on narrow shelves with steep, rough, and highly irregular bathymetry, characteristic of coral reef shorelines, is not well understood. Previous observational studies from reefs at Eilat, Israel and Oahu, Hawaii, have demonstrated the importance of surface heat flux in driving cross-shore transport. While both sites experienced offshore surface flow during daytime warming periods and offshore flow near the bed during nighttime cooling, the phase differences between the surface heat fluxes and thermal responses at the two sites indicate different dynamic flow regimes based on momentum and thermal balances. This study examines the dynamical structure of thermally driven flows using numerical modeling to investigate the hypothesis that thermally driven baroclinic exchange is important to cross-shore circulation for tropical coastlines. We use the open-source Regional Ocean Modeling System (ROMS), a free-surface, three-dimensional circulation model, considering a simple wedge case with uniform bathymetry in the alongshore direction, and heat flux applied uniformly to the surface. We examine different flow regimes using scaling of the momentum and thermal balance equations. We also explore the parameter space for the momentum balance describing cross-shore thermal exchange, and thoroughly characterize the exchange structure by investigating the dominant forcing regimes, the mechanisms responsible for modulating thermal circulation, and the effects of temporal variations in vertical mixing and heating/cooling buoyancy flux. Results are compared against existing data sets to evaluate the ability of the model to represent these flows.
Atmospheric Structure and Diurnal Variations at Low Altitudes in the Martian Tropics
NASA Astrophysics Data System (ADS)
Hinson, David P.; Spiga, A.; Lewis, S.; Tellmann, S.; Pätzold, M.; Asmar, S.; Häusler, B.
2013-10-01
We are using radio occultation measurements from Mars Express, Mars Reconnaissance Orbiter, and Mars Global Surveyor to characterize the diurnal cycle in the lowest scale height above the surface. We focus on northern spring and summer, using observations from 4 Martian years at local times of 4-5 and 15-17 h. We supplement the observations with results obtained from large-eddy simulations and through data assimilation by the UK spectral version of the LMD Mars Global Circulation Model. We previously investigated the depth of the daytime convective boundary layer (CBL) and its variations with surface elevation and surface properties. We are now examining unusual aspects of the temperature structure observed at night. Most important, predawn profiles in the Tharsis region contain an unexpected layer of neutral static stability at pressures of 200-300 Pa with a depth of 4-5 km. The mixed layer is bounded above by a midlevel temperature inversion and below by another strong inversion adjacent to the surface. The narrow temperature minimum at the base of the midlevel inversion suggests the presence of a water ice cloud layer, with the further implication that radiative cooling at cloud level can induce convective activity at lower altitudes. Conversely, nighttime profiles in Amazonis show no sign of a midlevel inversion or a detached mixed layer. These regional variations in the nighttime temperature structure appear to arise in part from large-scale variations in topography, which have several notable effects. First, the CBL is much deeper in the Tharsis region than in Amazonis, owing to a roughly 6-km difference in surface elevation. Second, large-eddy simulations show that daytime convection is not only deeper above Tharsis but also considerably more intense than it is in Amazonis. Finally, the daytime surface temperatures are comparable in the two regions, so that Tharsis acts as an elevated heat source throughout the CBL. These topographic effects are expected to enhance the vertical mixing of water vapor above elevated terrain, which might lead to the formation and regional confinement of nighttime clouds.
Temperature Inversions and Nighttime Convection in the Martian Tropics
NASA Astrophysics Data System (ADS)
Hinson, D. P.; Spiga, A.; Lewis, S.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Häusler, B.
2013-12-01
We are using radio occultation measurements from Mars Express, Mars Reconnaissance Orbiter, and Mars Global Surveyor to characterize the diurnal cycle in the lowest scale height above the surface. We focus on northern spring and summer, using observations from 4 Martian years at local times of 4-5 and 15-17 h. We supplement the observations with results obtained from large-eddy simulations and through data assimilation by the UK spectral version of the LMD Mars Global Circulation Model. We previously investigated the depth of the daytime convective boundary layer (CBL) and its variations with surface elevation and surface properties. We are now examining unusual aspects of the temperature structure observed at night. Most important, predawn profiles in the Tharsis region contain an unexpected layer of neutral static stability at pressures of 200-300 Pa with a depth of 4-5 km. The mixed layer is bounded above by a midlevel temperature inversion and below by another strong inversion adjacent to the surface. The sharp temperature minimum at the base of the midlevel inversion suggests the presence of a thin water ice cloud layer, with the further implication that radiative cooling at cloud level can induce convective activity at lower altitudes. Conversely, nighttime profiles in Amazonis show no sign of a midlevel inversion or a detached mixed layer. These regional variations in the nighttime temperature structure appear to arise in part from large-scale variations in topography, which have several notable effects. First, the CBL is much deeper in the Tharsis region than in Amazonis, owing to a roughly 6-km difference in surface elevation. Second, large-eddy simulations show that daytime convection is not only deeper above Tharsis but also considerably more intense than it is in Amazonis. Finally, the daytime surface temperatures are comparable in the two regions, so that Tharsis acts as an elevated heat source throughout the CBL. These topographic effects are expected to enhance the vertical mixing of water vapor above elevated terrain, which might lead to the formation and regional confinement of nighttime clouds.
2002-12-13
This portion of NASA Mars Odyssey image covers NASA Viking 2 landing site shown with the X. The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography. http://photojournal.jpl.nasa.gov/catalog/PIA04023
NASA Technical Reports Server (NTRS)
Loughner, Christopher P.; Allen, Dale J.; Zhang, Da-Lin; Pickering, Kenneth E.; Dickerson, Russell R.; Landry, Laura
2012-01-01
Urban heat island (UHI) effects can strengthen heat waves and air pollution episodes. In this study, the dampening impact of urban trees on the UHI during an extreme heat wave in the Washington, D.C., and Baltimore, Maryland, metropolitan area is examined by incorporating trees, soil, and grass into the coupled Weather Research and Forecasting model and an urban canopy model (WRF-UCM). By parameterizing the effects of these natural surfaces alongside roadways and buildings, the modified WRF-UCM is used to investigate how urban trees, soil, and grass dampen the UHI. The modified model was run with 50% tree cover over urban roads and a 10% decrease in the width of urban streets to make space for soil and grass alongside the roads and buildings. Results show that, averaged over all urban areas, the added vegetation decreases surface air temperature in urban street canyons by 4.1 K and road-surface and building-wall temperatures by 15.4 and 8.9 K, respectively, as a result of tree shading and evapotranspiration. These temperature changes propagate downwind and alter the temperature gradient associated with the Chesapeake Bay breeze and, therefore, alter the strength of the bay breeze. The impact of building height on the UHI shows that decreasing commercial building heights by 8 m and residential building heights by 2.5 m results in up to 0.4-K higher daytime surface and near-surface air temperatures because of less building shading and up to 1.2-K lower nighttime temperatures because of less longwave radiative trapping in urban street canyons.
Evaporation enhancement in soils: a critical review
NASA Astrophysics Data System (ADS)
Rutten, Martine; van de Giesen, Nick
2015-04-01
Temperature gradients in the top layer of the soil are, especially during the daytime, steeper than would be expected if thermal conduction was the primary heat transfer mechanism. Evaporation seems to have significant influence on the soil heat budget. Only part of the surface soil heat flux is conducted downwards, increasing the soil temperatures, and part is used for evaporation, acting as a sink to the soil heat budget. For moist soils, the evaporation is limited by the transport of water molecules to the surface. The classical view is that water vapor is transported from the evaporation front to the surface by diffusion. Diffusion is mixing due to the random movement of molecules resulting in flattening concentration gradients. In soil, the diffusive vapor flux and the resulting latent heat flux are generally small. We found that transport enhancement is necessary in order to sustain vapor fluxes that are large enough to sustain latent heat fluxes, as well as being large enough to explain the observed temperature gradients. Enhancement of vapor diffusion is a known phenomenon, subject to debate on the explanations of underlying mechanism. In an extensive literature review on vapor enhancement in soils, the plausibility of various mechanisms was assessed. We reviewed mechanisms based on (combinations of) diffusive, viscous, buoyant, capillary and external pressure forces including: thermodiffusion, dispersion, Stefan's flow, Knudsen diffusion, liquid island effect, hydraulic lift, free convection, double diffusive convection and forced convection. The analysis of the order of magnitude of the mechanisms based on first principles clearly distinguished between plausible and implausible mechanisms. Thermodiffusion, Stefan's flow, Knudsen effects, liquid islands do not significantly contribute to enhanced evaporation. Double diffusive convection seemed unlikely due to lack of experimental evidence, but could not be completely excluded from the list of potential mechanisms. Hydraulic lift, the mechanism that small capillaries lift liquid water to the surface where it evaporates, does significantly contribute to enhanced evaporation from soils, also from dryer soils. The experimental evidence for and the theoretical underpinnings of this mechanism are convincing. However, we sought mechanisms that both explain enhanced evaporation and steep temperature gradients in the soil during the daytime. These often observed gradients consist of a sharp decrease of temperature with a depth up to the depth of the evaporation front. Hydraulic lift cannot explain this because the evaporation front is located at the surface. One remaining mechanism is forced convection due to atmospheric pressure fluctuations, also referred to as wind pumping. Wind pumping causes displacement and flow velocities too small for significant convective and too small for significant dispersive transport, when steady state dispersion formulations are used. However, experiments do indicate significant dispersive transport that can be explained by dispersion under unsteady flow conditions. Forced convection due to pressure fluctuations seems to be the only mechanism that can explain both enhanced evaporation and the steep temperature gradients.
Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland
NASA Technical Reports Server (NTRS)
Fitzjarrald, David R.; Moore, Kathleen E.
1994-01-01
Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat balance. Diurnal and seasonal scale heat budget imbalances were found. We suggest that unmeasured surface heat storage may be responsible for some of the observed imbalance. The presence of the unexplained residual in this and other studies of energy balance over forests casts a note of caution on the interpretation of energy balance components obtained using heat residual methods.
Lau, Kevin Ka-Lun; Lindberg, Fredrik; Rayner, David; Thorsson, Sofia
2015-07-01
Future anthropogenic climate change is likely to increase the air temperature (T(a)) across Europe and increase the frequency, duration and magnitude of severe heat stress events. Heat stress events are generally associated with clear-sky conditions and high T(a), which give rise to high radiant heat load, i.e. mean radiant temperature (T(mrt)). In urban environments, T mrt is strongly influenced by urban geometry. The present study examines the effect of urban geometry on daytime heat stress in three European cities (Gothenburg in Sweden, Frankfurt in Germany and Porto in Portugal) under present and future climates, using T(mrt) as an indicator of heat stress. It is found that severe heat stress occurs in all three cities. Similar maximum daytime T(mrt) is found in open areas in all three cities despite of the latitudinal differences in average daytime T(mrt). In contrast, dense urban structures like narrow street canyons are able to mitigate heat stress in the summer, without causing substantial changes in T(mrt) in the winter. Although the T(mrt) averages are similar for the north-south and east-west street canyons in each city, the number of hours when T(mrt) exceeds the threshold values of 55.5 and 59.4 °C-used as indicators of moderate and severe heat stress-in the north-south canyons is much higher than that in the east-west canyons. Using statistically downscaled data from a regional climate model, it is found that the study sites were generally warmer in the future scenario, especially Porto, which would further exacerbate heat stress in urban areas. However, a decrease in solar radiation in Gothenburg and Frankfurt reduces T(mrt) in the spring, while the reduction in T(mrt) is somewhat offset by increasing T(a) in other seasons. It suggests that changes in the T(mrt) under the future scenario are dominated by variations in T(a). Nonetheless, the intra-urban differences remain relatively stable in the future. These findings suggest that dense urban structure can reduce daytime heat stress since it reduces the number of hours of high T(mrt) in the summer and does not cause substantial changes in average and minimum T(mrt) in the winter. In dense urban settings, a more diverse urban thermal environment is also preferred to compensate for reduced solar access in the winter. The extent to which the urban geometry can be optimized for the future climate is also influenced by local urban characteristics.
NASA Astrophysics Data System (ADS)
Grimmond, C. S. B.; Salmond, J. A.; Oke, T. R.; Offerle, B.; Lemonsu, A.
2004-12-01
Eddy covariance (EC) observations above the densely built-up center of Marseille during the Expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'émissions (ESCOMPTE) summertime measurement campaign extend current understanding of surface atmosphere exchanges in cities. The instrument array presented opportunities to address issues of the representativeness of local-scale fluxes in urban settings. Separate EC systems operated at two levels, and a telescoping tower allowed the pair to be exposed at two different sets of heights. The flux and turbulence observations taken at the four heights, stratified by wind conditions (mistral wind and sea breeze), are used to address the partitioning of the surface energy balance in an area with large roughness elements. The turbulent sensible heat flux dominates in the daytime, although the storage heat flux is a significant term that peaks before solar noon. The turbulent latent heat flux is small but not negligible. Carbon dioxide fluxes show that this central city district is almost always a source, but the vegetation reduces the magnitude of the fluxes in the afternoon. The atmosphere in such a heavily developed area is rarely stable. The turbulence characteristics support the empirical functions proposed by M. Roth.
Du, Hongyu; Wang, Duoduo; Wang, Yuanyuan; Zhao, Xiaolei; Qin, Fei; Jiang, Hong; Cai, Yongli
2016-11-15
Urban heat islands (UHIs) reflect the localized impact of human activities on thermal fields. In this study, we assessed the surface UHI and its relationship with types of land, meteorological conditions, anthropogenic heat sources and urban areas in the Yangtze River Delta Urban Agglomeration (YRDUA) with the aid of remote sensing data, statistical data and meteorological data. The results showed that the UHI intensity in YRDUA was the strongest (0.84°C) in summer, followed by 0.81°C in autumn, 0.78°C in spring and 0.53°C in winter. The daytime UHI intensity is 0.98°C, which is higher than the nighttime UHI intensity of 0.50°C. Then, the relationship between the UHI intensity and several factors such as meteorological conditions, anthropogenic heat sources and the urban area were analysed. The results indicated that there was an insignificant correlation between population density and the UHI intensity. Energy consumption, average temperature and urban area had a significant positive correlation with UHI intensity. However, the average wind speed and average precipitation were significantly negatively correlated with UHI intensity. This study provides insight into the regional climate characteristics and a scientific basis for city layout. Copyright © 2016 Elsevier B.V. All rights reserved.
Observation-based estimation of aerosol-induced reduction of planetary boundary layer height
NASA Astrophysics Data System (ADS)
Zou, Jun; Sun, Jianning; Ding, Aijun; Wang, Minghuai; Guo, Weidong; Fu, Congbin
2017-09-01
Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 Wm-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.
NASA Astrophysics Data System (ADS)
Hari Prasad, K. B. R. R.; Srinivas, C. V.; Rao, T. Narayana; Naidu, C. V.; Baskaran, R.
2017-03-01
In this study the evolution of the topographic flows and boundary layer features over a tropical hilly station Gadanki in southern India were simulated using Advanced Research WRF (ARW) mesoscale model for fair weather days during southwest monsoon (20-22 July 2011) and winter (18-20 Jan. 2011). Turbulence measurements from an Ultra High Frequency (UHF) Wind Profiler, Ultra Sonic Anemometer, GPS Sonde and meteorological tower were used for comparison. Simulations revealed development of small-scale slope winds in the lower boundary layer (below 800 m) at Gadanki which are more prevalent during nighttime. Stronger slope winds during winter and weaker flows in the monsoon season are simulated indicating the sensitivity of slope winds to the background synoptic flows and radiative heating/cooling. Higher upward surface fluxes (sensible, latent heat) and development of very deep convective boundary layer ( 2500 m) is simulated during summer monsoon relative to the winter season in good agreement with observations. Four PBL parameterizations (YSU, MYJ, MYNN and ACM) were evaluated to simulate the above characteristics. Large differences were noticed in the simulated boundary layer features using different PBL schemes in both the seasons. It is found that the TKE-closures (MYJ, MYNN) produced extremities in daytime PBL depth, surface fluxes, temperature, humidity and winds. The differences in the simulations are attributed to the eddy diffusivities, buoyancy and entrainment fluxes which were simulated differently in the respective schemes. The K-based YSU followed by MYNN best produced the slope winds as well as daytime boundary layer characteristics realistically in both the summer and winter synoptic conditions at Gadanki hilly site though with slight overestimation of nocturnal PBL height.
Production and uses of liquefied atmosphere (CO2) on Mars
NASA Technical Reports Server (NTRS)
Waldron, R. D.
1991-01-01
Carbon dioxide is universally accessible on Mars, and can be liquefied and separated from residual atmospheric gases by various compress-refrigeration cycles. Liquid CO2, stored under elevated pressures, can be used as a source of high pressure gas for nighttime power generation at a Martian base powered by solar energy during the daytime. Carbon dioxide can also be used for vehicular power. The extractable energy per unit mass of CO2 can exceed that of commercial lead-acid batteries for operating cycles without heat addition. Improved performance is possible using heat input from the ambient atmosphere or thermochemical agents. A unique vehicular application uses pressurized CO2 as a non-combustion low performance propellant for intermediate distance surface transportation. The thermodynamic properties of CO2 are presented with typical operating cycles for the application classes described above.
NASA Astrophysics Data System (ADS)
Branch, O.; Warrach-Sagi, K.; Wulfmeyer, V.; Cohen, S.
2013-11-01
A large irrigated biomass plantation was simulated in an arid region of Israel within the WRF-NOAH coupled atmospheric/land surface model in order to assess land surface atmosphere feedbacks. Simulations were carried out for the 2012 summer season (JJA). The irrigated plantations were simulated by prescribing tailored land surface and soil/plant parameters, and by implementing a newly devised, controllable sub-surface irrigation scheme within NOAH. Two model cases studies were considered and compared - Impact and Control. Impact simulates a hypothetical 10 km × 10 km irrigated plantation. Control represents a baseline and uses the existing land surface data, where the predominant land surface type in the area is bare desert soil. Central to the study is model validation against observations collected for the study over the same period. Surface meteorological and soil observations were made at a desert site and from a 400 ha Simmondsia chinensis (Jojoba) plantation. Control was validated with data from the desert, and Impact from the Jojoba. Finally, estimations were made of the energy balance, applying two Penman-Monteith based methods along with observed meteorological data. These estimations were compared with simulated energy fluxes. Control simulates the daytime desert surface 2 m air temperatures (T2) with less than 0.2 °C deviation and the vapour pressure deficit (VPD) to within 0.25 hPa. Desert wind speed (U) is simulated to within 0.5 m s-1 and the net surface radiation (Rn) to 25 W m-2. Soil heat flux (G) is not so accurately simulated by Control (up to 30 W m-2 deviation) and 5 cm soil temperatures (ST5) are simulated to within 1.5 °C. Impact simulates daytime T2 over irrigated vegetation to within 1-1.5 °C, the VPD to 0.5 hPa, Rn to 50 W m-2 and ST5 to within 2 °C. Simulated Impact G deviates up to 40 W m-2, highlighting a need for re-parameterisation or better soil classification, but the overall contribution to the energy balance is small (5-6%). During the night, significant T2 and ST5 cold biases of 2-4 °C are present. Diurnal latent heat values from WRF Impact correspond closely with Penman-Monteith estimation curves, and latent heat magnitudes of 160 W m-2 over the plantation are usual. Simulated plantation sensible heat fluxes are high (450 W m-2) - around 100-110 W m-2 higher than over the surrounding desert. The high relative HFX over the vegetation, driven by high Rn and high surface resistances, indicate that low Bowen ratios should not necessarily be assumed when irrigated plantations are implemented in, and optimized for arid regions. Furthermore, the high plantation T2 magnitudes highlight the importance of considering diurnal dynamics, which drive the evolution of boundary layers, rather than only on daily mean statistics which often indicate an irrigation cooling effect.
Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.
NASA Astrophysics Data System (ADS)
Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.
2000-12-01
The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air temperature.
NASA Astrophysics Data System (ADS)
Fegyveresi, John M.; Alley, Richard B.; Muto, Atsuhiro; Orsi, Anaïs J.; Spencer, Matthew K.
2018-01-01
Observations at the West Antarctic Ice Sheet (WAIS) Divide site show that near-surface snow is strongly altered by weather-related processes such as strong winds and temperature fluctuations, producing features that are recognizable in the deep ice core. Prominent glazed
surface crusts develop frequently at the site during summer seasons. Surface, snow pit, and ice core observations made in this study during summer field seasons from 2008-2009 to 2012-2013, supplemented by automated weather station (AWS) data with short- and longwave radiation sensors, revealed that such crusts formed during relatively low-wind, low-humidity, clear-sky periods with intense daytime sunshine. After formation, such glazed surfaces typically developed cracks in a polygonal pattern likely from thermal contraction at night. Cracking was commonest when several clear days occurred in succession and was generally followed by surface hoar growth; vapor escaping through the cracks during sunny days may have contributed to the high humidity that favored nighttime formation of surface hoar. Temperature and radiation observations show that daytime solar heating often warmed the near-surface snow above the air temperature, contributing to upward mass transfer, favoring crust formation from below, and then surface hoar formation. A simple surface energy calculation supports this observation. Subsequent examination of the WDC06A deep ice core revealed that crusts are preserved through the bubbly ice, and some occur in snow accumulated during winters, although not as commonly as in summertime deposits. Although no one has been on site to observe crust formation during winter, it may be favored by greater wintertime wind packing from stronger peak winds, high temperatures and steep temperature gradients from rapid midwinter warmings reaching as high as -15 °C, and perhaps longer intervals of surface stability. Time variations in crust occurrence in the core may provide paleoclimatic information, although additional studies are required. Discontinuity and cracking of crusts likely explain why crusts do not produce significant anomalies in other paleoclimatic records.
NASA Astrophysics Data System (ADS)
Zheng, Zuofang; Ren, Guoyu; Wang, Hong; Dou, Junxia; Gao, Zhiqiu; Duan, Chunfeng; Li, Yubin; Ngarukiyimana, Jean Paul; Zhao, Chun; Cao, Chang; Jiang, Mei; Yang, Yuanjian
2018-05-01
Urbanization has led to a significant urban heat island (UHI) effect in Beijing in recent years. At the same time, air pollution caused by a large number of fine particles significantly influences the atmospheric environment, urban climate, and human health. The distribution of fine particulate matter (PM 2.5 ) concentration and its relationship with the UHI effect in the Beijing area are analyzed based on station-observed hourly data from 2012 to 2016. We conclude that, (1) in the last five years, the surface concentrations of PM 2.5 averaged for urban and rural sites in and around Beijing are 63.2 and 40.7 µg m-3, respectively, with significant differences between urban and rural sites (ΔPM 2.5 ) at the seasonal, monthly and daily scales observed; (2) there is a large correlation between ΔPM 2.5 and the UHI intensity defined as the differences in the mean (ΔT ave ), minimum (ΔT min ), and maximum (ΔT max ) temperatures between urban and rural sites. The correlation between ΔPM 2.5 and ΔT min (ΔT max ) is the highest (lowest); (3) a Granger causality analysis further shows that ΔPM 2.5 and ΔT min are most correlated for a lag of 1-2 days, while the correlation between ΔPM 2.5 and ΔT ave is lower; there is no causal relationship between ΔPM 2.5 and ΔT max ; (4) a case analysis shows that downwards shortwave radiation at the surface decreases with an increase in PM 2.5 concentration, leading to a weaker UHI intensity during the daytime. During the night, the outgoing longwave radiation from the surface decreases due to the presence of daytime pollutants, the net effect of which is a slower cooling rate during the night in cities than in the suburbs, leading to a larger ΔT min .
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.; Ridd, M. K.
1993-01-01
This study employs data from the airborne Thermal Infrared Multispectral Scanner (TIMS) to measure thermal (i.e., longwave) energy responses, emitted or upwelling, from discrete surfaces that are typical of the city landscape within Salt Lake City, Utah, over a single diurnal time period (i.e., a single day, night-time sequence). These data are used to quantify the disposition of thermal energy for selected urban surfaces during the daytime and night-time, and the amount of change in thermal response or flux recorded between day and night. An analysis is presented on the thermal interrelationships observed for common urban materials for day, night, and flux, as identified from the TIMS data through the delineation of discrete surface type polygons. The results from the study illustrate that such factors as heat capacity, thermal conductivity, and the amount of soil moisture available have a profound impact on the magnitude of thermal energy emanating from a specific surface and on the dynamics of longwave energy response between day and night.
A multisensor evaluation of the asymmetric convective model, version 2, in southeast Texas.
Kolling, Jenna S; Pleim, Jonathan E; Jeffries, Harvey E; Vizuete, William
2013-01-01
There currently exist a number of planetary boundary layer (PBL) schemes that can represent the effects of turbulence in daytime convective conditions, although these schemes remain a large source of uncertainty in meteorology and air quality model simulations. This study evaluates a recently developed combined local and nonlocal closure PBL scheme, the Asymmetric Convective Model, version 2 (ACM2), against PBL observations taken from radar wind profilers, a ground-based lidar, and multiple daytime radiosonde balloon launches. These observations were compared against predictions of PBLs from the Weather Research and Forecasting (WRF) model version 3.1 with the ACM2 PBL scheme option, and the Fifth-Generation Meteorological Model (MM5) version 3.7.3 with the Eta PBL scheme option that is currently being used to develop ozone control strategies in southeast Texas. MM5 and WRF predictions during the regulatory modeling episode were evaluated on their ability to predict the rise and fall of the PBL during daytime convective conditions across southeastern Texas. The MM5 predicted PBLs consistently underpredicted observations, and were also less than the WRF PBL predictions. The analysis reveals that the MM5 predicted a slower rising and shallower PBL not representative of the daytime urban boundary layer. Alternatively, the WRF model predicted a more accurate PBL evolution improving the root mean square error (RMSE), both temporally and spatially. The WRF model also more accurately predicted vertical profiles of temperature and moisture in the lowest 3 km of the atmosphere. Inspection of median surface temperature and moisture time-series plots revealed higher predicted surface temperatures in WRF and more surface moisture in MM5. These could not be attributed to surface heat fluxes, and thus the differences in performance of the WRF and MM5 models are likely due to the PBL schemes. An accurate depiction of the diurnal evolution of the planetary boundary layer (PBL) is necessary for realistic air quality simulations, and for formulating effective policy. The meteorological model used to support the southeast Texas 03 attainment demonstration made predictions of the PBL that were consistently less than those found in observations. The use of the Asymmetric Convective Model, version 2 (ACM2), predicted taller PBL heights and improved model predictions. A lower predicted PBL height in an air quality model would increase precursor concentrations and change the chemical production of O3 and possibly the response to control strategies.
Miyazaki, Koyomi; Itoh, Nanako; Yamamoto, Saori; Higo-Yamamoto, Sayaka; Nakakita, Yasukazu; Kaneda, Hirotaka; Shigyo, Tatsuro; Oishi, Katsutaka
2014-08-28
We previously reported that heat-killed Lactobacillus brevis SBC8803 enhances appetite via changes in autonomic neurotransmission. Here we assessed whether a diet supplemented with heat-killed SBC8803 affects circadian locomotor rhythmicity and sleep architecture. Daily total activity gradually increased in mice over 4 weeks and supplementation with heat-killed SBC8803 significantly intensified the increase, which reached saturation at 25 days. Electroencephalography revealed that SBC8803 supplementation significantly reduced the total amount of time spent in non-rapid eye movement (NREM) sleep and increased the amount of time spent being awake during the latter half of the nighttime, but tended to increase the total amount of time spent in NREM sleep during the daytime. Dietary supplementation with SBC8803 can extend the duration of activity during the nighttime and of sleep during the daytime. Daily voluntary wheel-running and sleep rhythmicity become intensified when heat-killed SBC8803 is added to the diet. Dietary heat-killed SBC8803 can modulate circadian locomotion and sleep rhythms, which might benefit individuals with circadian rhythms that have been disrupted by stress or ageing. Copyright © 2014 Elsevier Inc. All rights reserved.
Heat Capacity Mapping Mission (HCMM): Interpretation of imagery over Canada
NASA Technical Reports Server (NTRS)
Cihlar, J. (Principal Investigator); Dixon, R. G.
1981-01-01
Visual analysis of HCMM images acquired over two sites in Canada and supporting aircraft and ground data obtained at a smaller subsite in Alberta show that nightime surface temperature distribution is primarily related to the near-surface air temperature; the effects of topography, wind, and land cover were low or indirect through air temperature. Surface cover and large altitudinal differences were important parameters influencing daytime apparent temperature values. A quantitative analysis of the relationship between the antecedent precipitation index and the satellite thermal IR measurements did not yield statistically significant correlation coefficients, but the correlations had a definite temporal trend which could be related to the increasing uniformity of vegetation cover. The large pixel size (resulting in a mixture of cover types and soil/canopy temperatures measured by the satellite) and high cloud cover frequency found in images covering both Canadian sites and northern U.S. were considered the main deficiencies of the thermal satellite data.
Evaluation of thermal data for geologic applications
NASA Technical Reports Server (NTRS)
Kahle, A. B.; Palluconi, F. D.; Levine, C. J.; Abrams, M. J.; Nash, D. B.; Alley, R. E.; Schieldge, J. P.
1982-01-01
Sensitivity studies using thermal models indicated sources of errors in the determination of thermal inertia from HCMM data. Apparent thermal inertia, with only simple atmospheric radiance corrections to the measured surface temperature, would be sufficient for most operational requirements for surface thermal inertia. Thermal data does have additional information about the nature of surface material that is not available in visible and near infrared reflectance data. Color composites of daytime temperature, nighttime temperature, and albedo were often more useful than thermal inertia images alone for discrimination of lithologic boundaries. A modeling study, using the annual heating cycle, indicated the feasibility of looking for geologic features buried under as much as a meter of alluvial material. The spatial resolution of HCMM data is a major limiting factor in the usefulness of the data for geologic applications. Future thermal infrared satellite sensors should provide spatial resolution comparable to that of the LANDSAT data.
The impact of an extreme case of irrigation on the southeastern United States climate
NASA Astrophysics Data System (ADS)
Selman, Christopher; Misra, Vasubandhu
2017-02-01
The impacts of irrigation on southeast United States diurnal climate are investigated using simulations from a regional climate model. An extreme case is assumed, wherein irrigation is set to 100 % of field capacity over the growing season of May through October. Irrigation is applied to the root zone layers of 10-40 and 40-100 cm soil layers only. It is found that in this regime there is a pronounced decrease in monthly averaged temperatures in irrigated regions across all months. In non-irrigated areas a slight warming is simulated. Diurnal maximum temperatures in irrigated areas warm, while diurnal minimum temperatures cool. The daytime warming is attributed to an increase in shortwave flux at the surface owing to diminished low cloud cover. Nighttime and daily mean cooling result as a consequence repartitioning of energy into latent heat flux over sensible heat flux, and of a higher net downward ground heat flux. Excess heat is transported into the deep soil layer, preventing a rapidly intensifying positive feedback loop. Both diurnal and monthly average precipitations are reduced over irrigated areas at a magnitude and spatial pattern similar to one another. Due to the excess moisture availability, evaporation is seen to increase, but this is nearly balanced by a corresponding reduction in sensible heat flux. Concomitant with additional moisture availability is an increase in both transient and stationary moisture flux convergences. However, despite the increase, there is a large-scale stabilization of the atmosphere stemming from a cooled surface.
NASA Astrophysics Data System (ADS)
Chaabane, Monia; Mhiri, Hatem; Bournot, Philippe
2013-01-01
The thermal behavior of an integrated collector storage solar water heater (ICSSWH) is numerically studied using the package Fluent 6.3. Based on the good agreement between the numerical results and the experimental data of Chaouachi and Gabsi (Renew Energy Revue 9(2):75-82, 2006), an attempt to improve this solar system operating was made by equipping the storage tank with radial fins of rectangular profile. A second 3D CFD model was developed and a series of numerical simulations were conducted for various SWH designs which differ in the depth of this extended surface for heat exchange. As the modified surface presents a higher characteristic length for convective heat transfer from the storage tank to the water, the fins equipped storage tank based SWH is determined to have a higher water temperature and a reduced thermal losses coefficient during the day-time period. Regarding the night operating of this water heater, the results suggest that the modified system presents higher thermal losses.
NASA Astrophysics Data System (ADS)
Li, X.
2017-12-01
Interactions between lakes and the atmosphere at high-altitudes are still poorly understood due to difficulty in accessibility of direct measurements. This is particularly true for the Qinghai-Tibet Plateau (QTP), where approximately 50% of the lakes in China are located. Continuous direct measurements of the water flux and surface energy budget were made over the largest high-altitude saline lake in China, Qinghai Lake on the northeastern QTP, using the eddy covariance (EC) method from 11 May, 2013 through 10 May, 2015. Results indicated that net radiation and heat storage showed consistent diurnal variation with positive values in the daytime and negative values at night, while latent and sensible heat flux showed little diurnal variation. Nocturnal λE and H contributed to 47.7% and 29.0% of the total heat loss, during the two- year study period. Annual evaporation of Qinghai Lake was 832.5 mm for 2013/2014 and 823.6 mm for 2014/2015, respectively. The surface energy budget and evaporation showed a strong seasonal pattern, with peaks in the latent and sensible heat flux observed in autumn and early winter. There was a 2-3 month delay between the maximum net radiation and maximum latent and sensible heat fluxes. Intraseasonal and seasonal variations in latent and sensible heat flux were strongly affected by different air masses. Westerly cold and dry air masses increased evaporation while southeast moist air mass suppressed evaporation, suggesting that the lakes might serve as an 'air-conditioner' to modify the temporal heat and water flux in QTP. Latent heat flux (λE) during the ice-covered period was less than that during the ice-free period, and lake ice sublimation is perhaps a main possible source for λE during the freeze-up period.
Langland, Kathleen M.; Wethington, Susan M.; Powers, Sean D.; Graham, Catherine H.
2017-01-01
At high temperature (greater than 40°C) endotherms experience reduced passive heat dissipation (radiation, conduction and convection) and increased reliance on evaporative heat loss. High temperatures challenge flying birds due to heat produced by wing muscles. Hummingbirds depend on flight for foraging, yet inhabit hot regions. We used infrared thermography to explore how lower passive heat dissipation during flight impacts body-heat management in broad-billed (Cynanthus latirostris, 3.0 g), black-chinned (Archilochus alexandri, 3.0 g), Rivoli's (Eugenes fulgens, 7.5 g) and blue-throated (Lampornis clemenciae, 8.0 g) hummingbirds in southeastern Arizona and calliope hummingbirds (Selasphorus calliope, 2.6 g) in Montana. Thermal gradients driving passive heat dissipation through eye, shoulder and feet dissipation areas are eliminated between 36 and 40°C. Thermal gradients persisted at higher temperatures in smaller species, possibly allowing them to inhabit warmer sites. All species experienced extended daytime periods lacking thermal gradients. Broad-billed hummingbirds lacking thermal gradients regulated the mean total-body surface temperature at approximately 38°C, suggesting behavioural thermoregulation. Blue-throated hummingbirds were inactive when lacking passive heat dissipation and hence might have the lowest temperature tolerance of the four species. Use of thermal refugia permitted hummingbirds to tolerate higher temperatures, but climate change could eliminate refugia, forcing distributional shifts in hummingbird populations. PMID:29308244
Fu, Yongshuo H; Liu, Yongjie; De Boeck, Hans J; Menzel, Annette; Nijs, Ivan; Peaucelle, Marc; Peñuelas, Josep; Piao, Shilong; Janssens, Ivan A
2016-11-01
The phenology of spring leaf unfolding plays a key role in the structure and functioning of ecosystems. The classical concept of heat requirement (growing degree days) for leaf unfolding was developed hundreds of years ago, but this model does not include the recently reported greater importance of daytime than night-time temperature. A manipulative experiment on daytime vs night-time warming with saplings of three species of temperate deciduous trees was conducted and a Bayesian method was applied to explore the different effects of daytime and night-time temperatures on spring phenology. We found that both daytime and night-time warming significantly advanced leaf unfolding, but the sensitivities to increased daytime and night-time temperatures differed significantly. Trees were most sensitive to daytime warming (7.4 ± 0.9, 4.8 ± 0.3 and 4.8 ± 0.2 d advancement per degree Celsius warming (d °C -1 ) for birch, oak and beech, respectively) and least sensitive to night-time warming (5.5 ± 0.9, 3.3 ± 0.3 and 2.1 ± 0.9 d °C -1 ). Interestingly, a Bayesian analysis found that the impact of daytime temperature on leaf unfolding was approximately three times higher than that of night-time temperatures. Night-time global temperature is increasing faster than daytime temperature, so model projections of future spring phenology should incorporate the effects of these different temperatures. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Euser, T.; Luxemburg, W. M. J.; Everson, C. S.; Mengistu, M. G.; Clulow, A. D.; Bastiaanssen, W. G. M.
2014-06-01
The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on vertical dry and wet bulb temperature profiles with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the vertical was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (R2 = 0.91), surface layer scintillometer (R2 = 0.81) and surface renewal (R2 = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Vandana, Vandana
2016-07-01
We are living in the age of the rapidly growing population and changing environmental conditions with advanced technical capacity. This has been resulting in widespread land cover change. Among several human-induced environmental and urban thermal problems are reported to be negatively affecting urban residents in many ways. Urban Heat Islands exist in many large cities especially metropolitan cities and can significantly affect the permafrost layer in mountain areas. The adverse effect of urban heat island has become the subject of numerous studies in recent decades and is reflected in many major mountain cities around the world. The built-up structures in urbanized areas considerably alter land cover thereby affecting thermal energy flow which leads to the development of elevated surface and air temperature. The phenomenon Urban Heat Island implies 'island' of high temperature in cities, surrounded by relatively lower temperature in rural areas. The Urban Heat Island for the temporal period is estimated using geospatial techniques which are then utilized for the impact assessment of the climate of the surrounding regions and how it reduce the sustainability of the natural resources like air, vegetation. The knowledge of surface temperature is important for the study of urban climate and human health. The rapid growth of industries in peri-urban areas results in excessive warming and variations in weather conditions. It leads to soil degradation in frozen areas due to high temperature which leads to melting of snow in mountain areas Remotely sensed data of thermal infrared band in the region of 10.4-12.5 µm of EMR spectrum, available from LANDSAT- ETM+ is proved to be very helpful to identify urban heat islands. Thermal infrared data acquired during the daytime and night time can be used to monitor the heat island associated with urban areas as well as atmospheric pollution. The present paper describes the methodology and resolution dynamic urban heat island change on climate and soil using geospatial approach for Haridwar district of Uttrakhand. NDVI were generated using daytime LANDSAT ETM+ image of November 1990, 2000 and 2015. The temperature of various land use and land cover categories was estimated. In Haridwar district, the temperature is inversely related and negatively correlated with NDVI value. The paper considers this dimension and calculated UHI at multiple scales through surface conditions such as vegetation. The major part of the field were conceded out in moderate summer conditions due to rainfall, yet the heat island intensities obtained in the study were comparable to those observed in earlier studies. Moreover, very high UHI was observed in the later phase of the experiments when usual summer conditions were restored. Also, the present study has showed that heat island effect need not be limited to a particular temperature epoch which signals towards the increasing dominance of anthropogenic heat emissions in rapidly developing cities such as Haridwar District in Uttrakhand, India. The use of the technological resources should be such that it does not affect the sustainability of natural resources. For compensation of the adverse effect of UHI, the urban built up cover should be reduced to an extent but in real, it is not possible due to the proclivity of the human towards urbanization. A thick subsurface layer of soil that remains below freezing point throughout the year, occurring chiefly in polar regions.
NASA Technical Reports Server (NTRS)
Sato, N.; Sellers, P. J.; Randall, D. A.; Schneider, E. K.; Shukla, J.; Kinter, J. L., III; Hou, Y.-T.; Albertazzi, E.
1989-01-01
The Simple Biosphere MOdel (SiB) of Sellers et al., (1986) was designed to simulate the interactions between the Earth's land surface and the atmosphere by treating the vegetation explicitly and relistically, thereby incorporating biophysical controls on the exchanges of radiation, momentum, sensible and latent heat between the two systems. The steps taken to implement SiB in a modified version of the National Meteorological Center's spectral GCM are described. The coupled model (SiB-GCM) was used with a conventional hydrological model (Ctl-GCM) to produce summer and winter simulations. The same GCM was used with a conventional hydrological model (Ctl-GCM) to produce comparable 'control' summer and winter variations. It was found that SiB-GCM produced a more realistic partitioning of energy at the land surface than Ctl-GCM. Generally, SiB-GCM produced more sensible heat flux and less latent heat flux over vegetated land than did Ctl-GCM and this resulted in the development of a much deeper daytime planetary boundary and reduced precipitation rates over the continents in SiB-GCM. In the summer simulation, the 200 mb jet stream and the wind speed at 850 mb were slightly weakened in the SiB-GCM relative to the Ctl-GCM results and equivalent analyses from observations.
Possible rainfall reduction through reduced surface temperatures due to overgrazing
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
Surface temperature reduction in terrain denuded of vegetation (as by overgrazing) is postulated to decrease air convection, reducing cloudiness and rainfall probability during weak meteorological disturbances. By reducing land-sea daytime temperature differences, the surface temperature reduction decreases daytime circulation of thermally driven local winds. The described desertification mechanism, even when limited to arid regions, high albedo soils, and weak meteorological disturbances, can be an effective rainfall reducing process in many areas including most of the Mediterranean lands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu
Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less
Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu
2016-05-12
Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less
Plasticity of thermoregulatory behavior in leopard geckos (Eublepharis macularius, Blyth 1954).
Craioveanu, Octavian; Craioveanu, Cristina; Mireşan, Vioara
2017-07-01
Studies on thermoregulation in nocturnal lizards have shown that their thermal regimes are similar to those of diurnal lizards, even though they hide during the daytime and are active mostly at night, when heat sources are very scarce. As a result, nocturnal lizards display an active thermoregulatory behavior consisting of seeking warm shelters to hide during the daytime, using accumulated heat for the nocturnal activity. Based on this information, we hypothesize that when leopard geckos (Eublepharis macularius, Blyth 1954) are presented with the choice of safety in cool shelters or vulnerability in heated open areas, suitable temperature will prevail in importance, i.e. they will trade the advantages provided by the shelter for an exposed, but physiologically necessary heat source. Data on the time juvenile E. macularius spent in shelters, and in open areas along a thermal gradient and under a 12/12 hr photoperiod, from eight individuals confirmed our hypothesis. We found that, not only did they select heat sources over shelters, but, along with the light/dark cycle, temperature may also represent a cue for activity. Additionally we found that substrate moisture plays an important role in shelter preference. © 2017 Wiley Periodicals, Inc.
Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling
NASA Astrophysics Data System (ADS)
Zhai, Yao; Ma, Yaoguang; David, Sabrina N.; Zhao, Dongliang; Lou, Runnan; Tan, Gang; Yang, Ronggui; Yin, Xiaobo
2017-03-01
Passive radiative cooling draws heat from surfaces and radiates it into space as infrared radiation to which the atmosphere is transparent. However, the energy density mismatch between solar irradiance and the low infrared radiation flux from a near-ambient-temperature surface requires materials that strongly emit thermal energy and barely absorb sunlight. We embedded resonant polar dielectric microspheres randomly in a polymeric matrix, resulting in a metamaterial that is fully transparent to the solar spectrum while having an infrared emissivity greater than 0.93 across the atmospheric window. When backed with a silver coating, the metamaterial shows a noontime radiative cooling power of 93 watts per square meter under direct sunshine. More critically, we demonstrated high-throughput, economical roll-to-roll manufacturing of the metamaterial, which is vital for promoting radiative cooling as a viable energy technology.
Atmospheric surface and boundary layers of the Amazon Basin
NASA Technical Reports Server (NTRS)
Garstang, Michael
1987-01-01
Three phases of work were performed: design of and preparation for the Amazon Boundary Layer Experiment (ABLE 2-A); execution of the ABLE 2-A field program; and analysis of the ABLE 2-A data. Three areas of experiment design were dealt with: surface based meteorological measurements; aircraft missions; and project meteorological support. The primary goal was to obtain a good description of the structure of the atmosphere immediately above the rain forest canopy (top of canopy to a few thousand meters), to describe this region during the growing daytime phase of the boundary layer; and to examine the nighttime stratified state. A secondary objective was to examine the role that deep convective storms play in the vertical transport of heat, water vapor, and other trace gases. While significant progress was made, much of the analysis remains to be done.
Evidence of Aerosols as a Media for Rapid Daytime HONO Production over China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhen; Wang, Yuhang; Costabile, Francesa
Current knowledge of daytime HONO sources remains incomplete. A large missing daytime HONO source has been found in many places around the world, including polluted regions in China. Conventional understanding and recent studies attributed this missing source mainly to ground surface processes or gas-phase chemistry, while assuming aerosols to be an insignificant media for HONO production. We analyze in situ observations of HONO and its precursors at an urban site in Beijing, China, and report an apparent dependence of the missing HONO source strength on aerosol surface area and solar ultraviolet radiation. Based on extensive correlation analysis and process-modeling, wemore » propose that the rapid daytime HONO production in Beijing can be explained by enhanced hydrolytic disproportionation of NO2 on aqueous aerosol surfaces due to catalysis by dicarboxylic acid anions. The combination of high abundance of NO2, aromatic hydrocarbons, and aerosols over broad regions in China likely leads to elevated HONO levels, rapid OH production, and enhanced oxidizing capacity on a regional basis. Our findings call for attention to aerosols as a media for daytime heterogeneous HONO production in polluted regions like Beijing. This study also highlights the complex and uncertain heterogeneous chemistry in China, which merits future efforts of reconciling regional modeling and laboratory experiments, in order to understand and mitigate the regional particulate and O3 pollutions over China.« less
Vickers, D.; Thomas, C.
2014-05-13
Observations of the scale-dependent turbulent fluxes and variances above, within and beneath a tall closed Douglas-Fir canopy in very weak winds are examined. The daytime subcanopy vertical velocity spectra exhibit a double-peak structure with peaks at time scales of 0.8 s and 51.2 s. A double-peak structure is also observed in the daytime subcanopy heat flux cospectra. The daytime momentum flux cospectra inside the canopy and in the subcanopy are characterized by a relatively large cross-wind component, likely due to the extremely light and variable winds, such that the definition of a mean wind direction, and subsequent partitioning of themore » momentum flux into along- and cross-wind components, has little physical meaning. Positive values of both momentum flux components in the subcanopy contribute to upward transfer of momentum, consistent with the observed mean wind speed profile. In the canopy at night at the smallest resolved scales, we find relatively large momentum fluxes (compared to at larger scales), and increasing vertical velocity variance with decreasing time scale, consistent with very small eddies likely generated by wake shedding from the canopy elements that transport momentum but not heat. We find unusually large values of the velocity aspect ratio within the canopy, consistent with enhanced suppression of the horizontal wind components compared to the vertical by the canopy. The flux-gradient approach for sensible heat flux is found to be valid for the subcanopy and above-canopy layers when considered separately; however, single source approaches that ignore the canopy fail because they make the heat flux appear to be counter-gradient when in fact it is aligned with the local temperature gradient in both the subcanopy and above-canopy layers. Modeled sensible heat fluxes above dark warm closed canopies are likely underestimated using typical values of the Stanton number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vickers, D.; Thomas, C.
Observations of the scale-dependent turbulent fluxes and variances above, within and beneath a tall closed Douglas-Fir canopy in very weak winds are examined. The daytime subcanopy vertical velocity spectra exhibit a double-peak structure with peaks at time scales of 0.8 s and 51.2 s. A double-peak structure is also observed in the daytime subcanopy heat flux cospectra. The daytime momentum flux cospectra inside the canopy and in the subcanopy are characterized by a relatively large cross-wind component, likely due to the extremely light and variable winds, such that the definition of a mean wind direction, and subsequent partitioning of themore » momentum flux into along- and cross-wind components, has little physical meaning. Positive values of both momentum flux components in the subcanopy contribute to upward transfer of momentum, consistent with the observed mean wind speed profile. In the canopy at night at the smallest resolved scales, we find relatively large momentum fluxes (compared to at larger scales), and increasing vertical velocity variance with decreasing time scale, consistent with very small eddies likely generated by wake shedding from the canopy elements that transport momentum but not heat. We find unusually large values of the velocity aspect ratio within the canopy, consistent with enhanced suppression of the horizontal wind components compared to the vertical by the canopy. The flux-gradient approach for sensible heat flux is found to be valid for the subcanopy and above-canopy layers when considered separately; however, single source approaches that ignore the canopy fail because they make the heat flux appear to be counter-gradient when in fact it is aligned with the local temperature gradient in both the subcanopy and above-canopy layers. Modeled sensible heat fluxes above dark warm closed canopies are likely underestimated using typical values of the Stanton number.« less
Pairing FLUXNET sites to validate model representations of land-use/land-cover change
NASA Astrophysics Data System (ADS)
Chen, Liang; Dirmeyer, Paul A.; Guo, Zhichang; Schultz, Natalie M.
2018-01-01
Land surface energy and water fluxes play an important role in land-atmosphere interactions, especially for the climatic feedback effects driven by land-use/land-cover change (LULCC). These have long been documented in model-based studies, but the performance of land surface models in representing LULCC-induced responses has not been investigated well. In this study, measurements from proximate paired (open versus forest) flux tower sites are used to represent observed deforestation-induced changes in surface fluxes, which are compared with simulations from the Community Land Model (CLM) and the Noah Multi-Parameterization (Noah-MP) land model. Point-scale simulations suggest the CLM can represent the observed diurnal and seasonal changes in net radiation (Rnet) and ground heat flux (G), but difficulties remain in the energy partitioning between latent (LE) and sensible (H) heat flux. The CLM does not capture the observed decreased daytime LE, and overestimates the increased H during summer. These deficiencies are mainly associated with models' greater biases over forest land-cover types and the parameterization of soil evaporation. Global gridded simulations with the CLM show uncertainties in the estimation of LE and H at the grid level for regional and global simulations. Noah-MP exhibits a similar ability to simulate the surface flux changes, but with larger biases in H, G, and Rnet change during late winter and early spring, which are related to a deficiency in estimating albedo. Differences in meteorological conditions between paired sites is not a factor in these results. Attention needs to be devoted to improving the representation of surface heat flux processes in land models to increase confidence in LULCC simulations.
USDA-ARS?s Scientific Manuscript database
The temperature optimum of photosynthesis coincides with the average daytime temperature in a species’ native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photos...
2015-09-01
materials of a PCM wall or ceiling panel. BioPCMat™ absorbs heat in the daytime and releases that heat during the night. The dimension of the typical...micrographs of Energain PCM samples showed evidence of melting and re- ERDC/CERL TR-15-23 32 crystallization ; however, there was no significant
NASA Astrophysics Data System (ADS)
Thompson, Elizabeth J.
Heating and rain freshening often stabilize the upper tropical ocean, bringing the ocean mixed layer depth to the sea surface. Thin mixed layer depths concentrate subsequent fluxes of heat, momentum, and freshwater in a thin layer. Rapid heating and cooling of the tropical sea surface is important for controlling or triggering atmospheric convection. Ocean mixed layer depth and SST variability due to rainfall events have not been as comprehensively explored as the ocean's response to heating or momentum fluxes, but are very important to understand in the tropical warm pool where precipitation exceeds evaporation and many climate phenomena such as ENSO and the MJO (Madden Julian Oscillation) originate. The first part of the dissertation investigates tropical, oceanic convective and stratiform rainfall variability and determines how to most accurately estimate rainfall accumulation with radar from each rain type. The second, main part of the dissertation uses central Indian Ocean salinity and temperature microstructure measurements and surrounding radar-derived rainfall maps throughout two DYNAMO MJO events to determine the impact of precipitating systems on upper-ocean mixed layer depth and resulting SST variability. The ocean mixed layer was as shallow as 0-5 m during 528/1071 observation hours throughout 2 MJOs (54% of the data record). Out of 43 observation days, thirty-eight near-surface mixed layer depth events were attributed to freshwater stabilization, called rain-formed mixed layers (RFLs). Thirty other mixed layer stratification events were classified as diurnal warm layers (DWLs) due to stable temperature stratification by daytime heating. RFLs and DWLs were observed to interact in two ways: 1) RFLs fill preexisting DWLs and add to total near-surface mixed layer stratification, which occurred ten times; 2) RFLs last long enough to heat, creating a new DWL on top of the RFL, which happened nine times. These combination stratification events were responsible for the highest SST warming rates and some of the highest SSTs leading up to the most active precipitation and wind stage of the each MJO. DWLs without RFL interaction helped produce the highest SSTs in suppressed MJO conditions. As storm intensity, frequency, duration, and the ability of storms to maintain stratiform rain areas increased, RFLS became more common in the disturbed and active MJO phases. Along with the barrier layer, DWL and RFL stratification events helped suppress wind-mixing, cooling, and mixed layer deepening throughout the MJO. We hypothesize that both salinity and temperature stratification events, and their interactions, are important for controlling SST variability and therefore MJO initiation in the Indian Ocean. Most RFLs were caused by submesoscale and mesoscale convective systems with stratiform rain components and local rain accumulations above 10 mm but with winds mostly below 8 m s-1. We hypothesize that the stratiform rain components of storms helped stratify the ocean by providing weak but widespread, steady, long-lived freshwater fluxes. Although generally limited to rain rates ≤ 10 mm hr-1, it is demonstrated that stratiform rain can exert a strong buoyancy flux into the ocean, i.e. as high as maximum daytime solar heating. Storm morphology and the preexisting vertical structure of ocean stability were critical in determining ocean mixed layer depth variability in the presence of rain. Therefore, we suggest that high spatial and temporal resolution coupled ocean-atmosphere models that can parameterize or resolve storm morphology as well as ocean mixed layer and barrier layer evolution are needed to reproduce the diurnal and intraseasonal SST variability documented throughout the MJO.
On the controls of daytime precipitation in the Amazonian dry season
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghate, Virendra P.; Kollias, Pavlos
The Amazon plays an important role in the global energy and hydrological budgets. The precipitation during the dry season (June–September) plays a critical role in maintaining the extent of the rain forest. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF-1) in the context of the Green Ocean Amazon (GOAmazon) field campaign at Manacapuru, Brazil, provided comprehensive measurements of surface, cloud, precipitation, radiation, and thermodynamic properties for two complete dry seasons (2014 and 2015). The precipitation events occurring during the nighttime were associated with propagating storm systems (nonlocal effects), while the daytime precipitation events were primarily amore » result of local land–atmosphere interactions. During the two dry seasons, precipitation was recorded at the surface on 106 days (43%) from 158 rain events with 82 daytime precipitation events occurring on 64 days (60.37%). Detailed comparisons between the diurnal cycles of surface and profile properties between days with and without daytime precipitation suggested the increased moisture at low and midlevels to be responsible for lowering the lifting condensation level, reducing convective inhibition and entrainment, and thus triggering the transition from shallow to deep convection. Although the monthly accumulated rainfall decreased during the progression of the dry season, the contribution of daytime precipitation to it increased, suggesting the decrease to be mainly due to reduction in propagating squall lines. Lastly, the control of daytime precipitation during the dry season on large-scale moisture advection above the boundary layer and the total rainfall on propagating squall lines suggests that coarse-resolution models should be able to accurately simulate the dry season precipitation over the Amazon basin.« less
On the controls of daytime precipitation in the Amazonian dry season
Ghate, Virendra P.; Kollias, Pavlos
2016-12-16
The Amazon plays an important role in the global energy and hydrological budgets. The precipitation during the dry season (June–September) plays a critical role in maintaining the extent of the rain forest. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF-1) in the context of the Green Ocean Amazon (GOAmazon) field campaign at Manacapuru, Brazil, provided comprehensive measurements of surface, cloud, precipitation, radiation, and thermodynamic properties for two complete dry seasons (2014 and 2015). The precipitation events occurring during the nighttime were associated with propagating storm systems (nonlocal effects), while the daytime precipitation events were primarily amore » result of local land–atmosphere interactions. During the two dry seasons, precipitation was recorded at the surface on 106 days (43%) from 158 rain events with 82 daytime precipitation events occurring on 64 days (60.37%). Detailed comparisons between the diurnal cycles of surface and profile properties between days with and without daytime precipitation suggested the increased moisture at low and midlevels to be responsible for lowering the lifting condensation level, reducing convective inhibition and entrainment, and thus triggering the transition from shallow to deep convection. Although the monthly accumulated rainfall decreased during the progression of the dry season, the contribution of daytime precipitation to it increased, suggesting the decrease to be mainly due to reduction in propagating squall lines. Lastly, the control of daytime precipitation during the dry season on large-scale moisture advection above the boundary layer and the total rainfall on propagating squall lines suggests that coarse-resolution models should be able to accurately simulate the dry season precipitation over the Amazon basin.« less
Validation of satellite-retrieved MBL cloud properties using DOE ARM AMF measurements at the Azores
NASA Astrophysics Data System (ADS)
Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S.
2013-05-01
Marine Boundary Layer (MBL) cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) AMF AZORES site from June 2009 through December 2010. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS Ed4 cloud properties were averaged within a 30-km x 30-km box centered on the ARM AZORES site. Two datasets were analyzed: all of the single-layered unbroken decks (SL) and those cases without temperature inversions. The CERES-MODIS cloud top/base heights were determined from cloud top/base temperature by using a lapse rate method normalized to the 24-h mean surface air temperature. The preliminary results show: for all SL MBL at daytime, they are, on average, 0.148 km (cloud top) and 0.087 km (cloud base) higher than the ARM radar-lidar observed cloud top and base, respectively. At nighttime, they are 0.446 km (cloud top) and 0.334 km (cloud base). For those cases without temperature inversions, the comparisons are close to their SL counterparts. For cloud temperatures, the MODIS-derived cloud-top and -base temperatures are 1.6 K lower and 0.4 K higher than the surface values with correlations of 0.92 during daytime. At nighttime, the differences are slightly larger and correlations are lower than daytime comparisons. Variations in the height difference are mainly caused by uncertainties in the surface air temperatures and lapse rates. Based on a total of 61 daytime and 87 nighttime samples (ALL SL cases), the temperature inversion layers occur about 72% during daytime and 83% during nighttime. The difference of surface-observed lapse rate and the satellite derived lapse rate can be 1.6 K/km for daytime and 3.3K/km for nighttime. From these lapse rates, we can further analyze the surface air temperature difference that used to calculate these lapse rate, which are ~3K difference between surface-observed and the satellite derived during the daytime and 5.1 K during nighttime. Further studies of the cause of the temperature inversions that may help the cloud heights retrievals by satellite. The preliminary comparisons in MBL microphysical properties have shown that the averaged CERES-MODIS derived MBL cloud-droplet effective radius is only 1.5 μm larger than ARM retrieval (13.2 μm), and LWP values are also very close to each other (112 vs. 124 gm-2) with a relative large difference in optical depth (10.6 vs. 14.4).
Daytime warming has stronger negative effects on soil nematodes than night-time warming.
Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui
2017-03-07
Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.
Daytime warming has stronger negative effects on soil nematodes than night-time warming.
Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui
2017-03-20
Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.
Daytime warming has stronger negative effects on soil nematodes than night-time warming
Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui
2017-01-01
Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914
Daytime warming has stronger negative effects on soil nematodes than night-time warming
NASA Astrophysics Data System (ADS)
Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui
2017-03-01
Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.
Impact of Thermal Inertia on Urban Climatology: A Case Study of Delhi
NASA Astrophysics Data System (ADS)
Berwal, S.; Kumar, D.; Singh, V. P.; Pandey, A. K.; Kumar, K.
2016-12-01
The ability with which a material can absorb, restore the heat and release it later during the nighttime is known as thermal inertia. In the context to urban areas, it measures the sub-surface's ability to store heat during the day and release it during the night. It prevents the overheating in summer and maintains heat during the winter thereby safeguarding the building comfort level. Due to huge population and urban sprawl this study can be very useful for Delhi and cities like it. The climatic modification in the context of urban areas due to human activities in relation to rural areas is termed as the urban heat island effect (UHI). The modelling for formation of urban UHI has been done using the geospatial technique. Apart from temperature, the amount of dust in the atmosphere is also a significant contributor in modifying the UHI formation. It is also an attempt to establish the role of land use and land cover patterns and respective thermal inertia affecting this phenomenon. The thermal inertia over Delhi-NCR was estimated using surface albedo and daytime-nighttime temperature differences from MODIS datasets. Higher thermal inertia were observed in urban areas than that of rural areas during the analysis of the thermal inertia maps. Furthermore, the study also reveals that the urban heat island intensity (UHI) and the thermal inertia has a relationship of strong inverse correlation. The results of this study will provide useful insights for urban planners and the local governments to devise appropriate strategies for making the urban climate favourable for the city residents.
NASA Technical Reports Server (NTRS)
Jacob, D. J.; Fan, S.-M.; Wofsy, S. C.; Spiro, P. A.; Bakwin, P. S.; Ritter, J. A.; Browell, E. V.; Gregory, G. L.; Fitzjarrald, D. R.; Moore, K. E.
1992-01-01
Eddy correlation measurements of O3 deposition fluxes to tundra during the Arctic Boundary Layer Expedition (ABLE 3A) are reported. The mean O3 deposition velocity was 0.24 cm/s in the daytime and 0.12 cm/s at night. The day-to-day difference in deposition velocity was driven by both atmospheric stability and surface reactivity. The mean surface resistance to O3 deposition was 2.6 s/cm in the daytime and 3.4 s/cm at night. The relatively low surface resistance at night is attributed to light-insensitive uptake of O3 at dry upland tundra surfaces. The small day-tonight difference in surface resistance is attributed to additional stomatal uptake by wet meadow tundra plants in the daytime. The mean O3 deposition flux to the world north of 60 deg N in July-August is estimated at 8.2 x 10 exp 10 molecules/sq cm/s. Suppression of photochemical loss by small anthropogenic inputs of nitrogen oxides could have a major effect on O3 concentrations in the summertime Arctic troposphere.
Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing
NASA Technical Reports Server (NTRS)
Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.
2007-01-01
The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and atmospheric heating.
Surface energy budget and turbulent fluxes at Arctic terrestrial sites
NASA Astrophysics Data System (ADS)
Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina
2017-04-01
Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the imbalance magnitude. All turbulent fluxes are highly correlated with net radiation because this balance between solar and longwave radiation is the principal energy source for daytime surface warming, evaporation, and photosynthesis. We find that turbulent fluxes of carbon dioxide and sensible heat are closely linked and, on average, change sign synchronously during the diurnal and annual cycles. The work is supported by the NOAA Climate Program Office, the U.S. National Science Foundation (NSF) with award ARC 11-07428, and by the U.S. Civilian Research & Development Foundation (CRDF) with award RUG1-2976-ST-10.
Residential Exposure to Nighttime Retained Heat in the El Paso, Texas, USA Desert Metroplex
NASA Astrophysics Data System (ADS)
Amaya, M. A.; Mohammed, M.; Pingitore, N. E.; Aldouri, R. K.; Benedict, B. A.
2013-12-01
The urban heat island is a well recognized and extensively studied phenomenon that has accelerating importance resulting from two trends associated with world-wide population growth: increasing urbanization and global warming. Urbanization, particularly when unplanned and haphazard, changes such thermal parameters as albedo, surface roughness, and heat capacities of surface materials. Rapid urbanization in the contiguous El Paso, Texas, USA - Ciudad Juarez, Chihuahua, Mexico bi-national metroplex has produced an urban heat island that is warmer than the surrounding Chihuahuan desert (temperature: 35-40 C summer; high elevation: 600-1675 m; rainfall: less than 250 mm annual). Despite the extensive literature on the urban heat island, little is known about urban nighttime land surface temperatures. We employed infrared satellite imaging to establish the variation of nighttime neighborhood surface temperatures across the city of El Paso, as well as all of El Paso County. The underlying purpose of our continuing investigation is to evaluate the geography of morbidity risk: are different neighborhoods at different risk of high nighttime temperatures. Those risks can include heat stress, and irritability and sleep deprivation, with possible resultant violence. Heat exposure at night is significant because residents are at home and 90% of El Pasoans do not have 'refrigerated' air conditioning, but instead have evaporative coolers, which are less expensive to own and operate, but are less effective since they raise the humidity of the partially cooled air. Our geographically weighted regression model showed that both day and nighttime land surface temperatures correlated with the normalized difference vegetation index, population density, and albedo. The association with the index and albedo was stronger during the daytime and with population density during the nighttime. Vegetation (negative) and population density (positive) were the dominant temperature drivers, with albedo and elevation as secondary drivers. Using archived satellite imagery we determined that over the last two decades there has been an increase in both day and nighttime temperatures. With no expected change in urban growth and global warming, local residents will be at increasing risk in the future, as will residents in other urban centers in the desert southwest of the US. We currently are evaluating exposure risk in different population sectors. Do the aged or the poor reside in higher risk neighborhoods? Are there simple measures that can be taken to ameliorate nighttime temperatures?
Griffiths, Stephen R; Rowland, Jessica A; Briscoe, Natalie J; Lentini, Pia E; Handasyde, Kathrine A; Lumsden, Linda F; Robert, Kylie A
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons.
Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife
Rowland, Jessica A.; Briscoe, Natalie J.; Lentini, Pia E.; Handasyde, Kathrine A.; Lumsden, Linda F.; Robert, Kylie A.
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons. PMID:28472147
An Atmospheric Constraint on the NO2 Dependence of Daytime Near-Surface Nitrous Acid (HONO).
Pusede, Sally E; VandenBoer, Trevor C; Murphy, Jennifer G; Markovic, Milos Z; Young, Cora J; Veres, Patrick R; Roberts, James M; Washenfelder, Rebecca A; Brown, Steven S; Ren, Xinrong; Tsai, Catalina; Stutz, Jochen; Brune, William H; Browne, Eleanor C; Wooldridge, Paul J; Graham, Ashley R; Weber, Robin; Goldstein, Allen H; Dusanter, Sebastien; Griffith, Stephen M; Stevens, Philip S; Lefer, Barry L; Cohen, Ronald C
2015-11-03
Recent observations suggest a large and unknown daytime source of nitrous acid (HONO) to the atmosphere. Multiple mechanisms have been proposed, many of which involve chemistry that reduces nitrogen dioxide (NO2) on some time scale. To examine the NO2 dependence of the daytime HONO source, we compare weekday and weekend measurements of NO2 and HONO in two U.S. cities. We find that daytime HONO does not increase proportionally to increases in same-day NO2, i.e., the local NO2 concentration at that time and several hours earlier. We discuss various published HONO formation pathways in the context of this constraint.
NASA Astrophysics Data System (ADS)
Titova, E. E.; Demekhov, A. G.; Mochalov, A. A.; Gvozdevsky, B. B.; Mogilevsky, M. M.; Parrot, M.
2015-08-01
In the studies of the data received from DEMETER (orbit altitude above the Earth is about 700 km), we detected for the first time electromagnetic perturbations, which are due to the ionospheric modification by HAARP, a high-power high-frequency transmitter, simultaneously in the extremely low-frequency (ELF, below 1200 Hz) and very low-frequency (VLF, below 20 kHz) ranges. Of the thirteen analyzed flybys of the satellite above the heated area, the ELF/VLF signals were detected in three cases in the daytime (LT = 11-12 h), when the minimum distance between the geomagnetic projections of the satellite and the heated area center on the Earth's surface did not exceed 31 km. During the nighttime flybys, the ELF/VLF perturbations were not detected. The size of the perturbed region was about 100 km. The amplitude, spectrum, and polarization of the ELF perturbations were analyzed, and their comparison with the characteristics of natural ELF noise above the HAARP transmitter was performed. In particular, it was shown that in the daytime the ELF perturbation amplitude above the heated area can exceed by a factor of 3 to 8 the amplitude of natural ELF noise. The absence of the nighttime records of artificial ELF/VLF perturbations above the heated area can be due to both the lower frequency of the heating signal, at which the heating occurs in the lower ionosphere, and the higher level of natural noise. The spectrum of the VLF signals related to the HAARP transmitter operation had two peaks at frequencies of 8 to 10 kHz and 15 to 18 kHz, which are close to the first and second harmonics of the lower-hybrid resonance in the heated area. The effect of the whistler wave propagation near the lower-hybrid resonance region on the perturbation spectrum recorded in the upper ionosphere for these signals has been demonstrated. In particular, some of the spectrum features can be explained by assuming that the VLF signals propagate in quasiresonance, rather than quasilongitudinal, regime. It is noted that the profile and dynamics of the ELF perturbation frequency spectrum conform to the assumption of their connection with quasistatic small-scale electron-density inhomogeneities occurring in the heated region and having lifetimes of a few seconds or more. The possible mechanisms of the ELF/VLF perturbation formation in the ionospheric plasma above the high-latitude HAARP facility at the DEMETER flyby altitudes are discussed.
NASA Astrophysics Data System (ADS)
Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald
2017-05-01
West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.
NASA Astrophysics Data System (ADS)
Fegyveresi, J. M.; Alley, R. B.; Muto, A.; Spencer, M. K.; Orsi, A. J.
2014-12-01
Observations at the WAIS Divide site show that near-surface snow is strongly altered by weather-related processes, producing features that are recognizable in the ice core. Prominent reflective "glazed" surface crusts develop frequently during the summer. Observations during austral summers 2008-09 through 2012-13, supplemented by Automated Weather Station data with insolation sensors, documented formation of such crusts during relatively low-wind, low-humidity, clear-sky periods with intense daytime sunshine. After formation, such glazed surfaces typically developed cracks in a polygonal pattern with few-meter spacing, likely from thermal contraction at night. Cracking was commonest when several clear days occurred in succession, and was generally followed by surface hoar growth. Temperature and radiation observations showed that solar heating often warmed the near-surface snow above the air temperature, contributing to mass transfer favoring crust formation. Subsequent investigation of the WDC06A deep ice core revealed that preserved surface crusts were seen in the core at an average rate of ~4.3 ± 2 yr-1 over the past 5500 years. They are about 40% more common in layers deposited during summers than during winters. The total summertime crust frequency also covaried with site temperature, with more present during warmer periods. We hypothesize that the mechanism for glaze formation producing single-grain-thick very-low-porosity thin crusts (i.e. "glazes") involves additional in-filling of open pores. The thermal conductivity of ice greatly exceeds that of air, so heat transport in firn is primarily conductive. Because heat flow is primarily through the grain structure, for a temperature inversion (colder upper surface) beneath a growing thin crust at the upper surface, pores will be colder than interconnected grains, favoring mass transport into those pores. Transport may occur by vapor, surface, or volume diffusion, although vapor diffusion and surface transport in pre-melted films are likely to dominate. On-site wintertime observations have not been made, but crust formation during winter may be favored by greater wind-packing, large meteorologically-forced temperature changes reaching as high as -15oC in midwinter, and perhaps longer intervals of surface stability.
Wang, Yuanyuan; Du, Hongyu; Xu, Yanqing; Lu, Debin; Wang, Xiyuan; Guo, Zhongyang
2018-08-01
Urbanization has led to an obvious urban heat island (UHI) effect in the Yangtze River Delta (YRD), China. The ozone (O 3 ) pollution in the YRD is getting worse. The UHI effect is a key factor that affects the O 3 level. Understanding the influences of the UHI effect on O 3 concentrations is necessary for improving air quality. In this study, the temporal and spatial relationship between UHI and O 3 in the YRD during 2015 was investigated. The influence factors of UHI effect and O 3 are both natural and artificial. Multi-source remote sensing data, which include land cover, land surface temperature (LST), Normalization Difference Vegetation Index (NDVI), and digital elevation model (DEM) data, were used to extract surface landscape elements. The results showed that: (1) the average hourly O 3 concentration was 61.83 μg/m 3 (30.92 ppb), the highest value was 105.32 μg/m 3 (52.66 ppb) at 15:00 and the O 3 peak was 82.50 μg/m 3 (41.25 ppb) in September. The O 3 concentrations and temperature have a similar variation trend both in diurnal and monthly. The O 3 concentrations in coastal stations are higher than those inland. (2) The average daytime UHI intensity was 1.24 °C, and the daytime O 3 concentration was 80.66 μg/m 3 (40.33 ppb). There is a positive relationship between UHI and O 3 in the YRD. The relationship in the central developed cities is higher than that in the northern and southern cities. (3) The related factors influencing UHI and O 3 include surface landscape, topography and population. The LST and NDVI are most important among these factors. (4) Due to various geographical backgrounds, the UHI intensities and O 3 concentrations show obvious spatial differences. This study provides a reference with which to better understand the relationship among UHI, O 3 and related factors. Furthermore, the issues of atmospheric and energy transmission in this region deserve further study. Copyright © 2018 Elsevier B.V. All rights reserved.
A Laboratory Study of Slope Flows Dynamics
NASA Astrophysics Data System (ADS)
Capriati, Andrea; Cenedese, Antonio; Monti, Paolo
2003-11-01
Slope flows currents can contribute significantly in the diurnal circulation and air quality of complex terrain regions (mountains, valleys, etc.). During the daytime, solar heating warms the valley sides, causing up-slope (or anabatic) winds. In contrast, radiative cooling of the valley sides results in cold down-slope (drainage or katabatic) flows, characterized by small vertical extensions (usually 10-200 m) and with the typical features of dense gravity currents. In this paper, some preliminary results on slope flows obtained by means of a series of experiments conducted in the laboratory using a temperature controlled water tank are shown. Rakes of thermocouples are used to determine the temperature structure and particle tracking velocimetry is used for the velocity measurements. A simple slope consisting of a plate in which the temperature is forced via a set of Peltier Cells is used. The analysis is performed considering different slope angles, background thermal stratifications and surface heat fluxes as well. Comparisons with theoretical and empirical laws found in literature are reported.
A Unified Theory for the Great Plains Nocturnal Low-Level Jet
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fedorovich, E.; Rahimi, S.
2014-12-01
The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide, typically in regions east of mountain ranges. Low-level jets develop around sunset in fair weather conditions conducive to strong radiational cooling, reach peak intensity in the pre-dawn hours, and then dissipate with the onset of daytime convective mixing. In this study we consider the LLJ as a diurnal oscillation of a stably stratified atmosphere overlying a planar slope on the rotating Earth. The oscillations arise from diurnal cycles in both the heating of the slope (mechanism proposed by Holton in 1967) and the turbulent mixing (mechanism proposed by Blackadar in 1957). The governing equations are the equations of motion, incompressibility condition, and thermal energy in the Boussinesq approximation, with turbulent heat and momentum exchange parameterized through spatially constant but diurnally varying turbulent diffusion coefficients (diffusivities). Analytical solutions are obtained for diffusivities with piecewise constant waveforms (step-changes at sunrise and sunset) and slope temperatures/buoyancies with piecewise linear waveforms (saw-tooth function with minimum at sunrise and maximum before sunset). The jet characteristics are governed by eleven parameters: slope angle, Coriolis parameter, environmental buoyancy frequency, geostrophic wind strength, daytime and nighttime diffusivities, maximum (daytime) and minimum (nighttime) slope buoyancies, duration of daylight, lag time between peak slope buoyancy and sunset, and a Newtonian cooling time scale. An exploration of the parameter space yields results that are broadly consistent with findings particular to the Holton and Blackadar theories, and agree with climatological observations, for example, that stronger jets tend to occur over slopes of 0.15-0.25 degrees characteristic of the Great Plains. The solutions also yield intriguing predictions that peak jet strength increases with attenuation of the minimum surface buoyancy, and that the single most important parameter determining jet height is the nighttime diffusivity, with weaker nightime diffusion associated with smaller jet heights. These and other highlights will be discussed in the presentation.
NASA Technical Reports Server (NTRS)
2002-01-01
[figure removed for brevity, see original site] This portion of a daytime IR image covers the Viking 2 landing site (shown with the X). The second landing on Mars took place September 3, 1976 in Utopia Planitia. The exact location of Lander 2 is not as well established as Lander 1 because there were no clearly identifiable features in the lander images as there were for the site of Lander 1. The Utopia landing site region contains pedestal craters, shallow swales and gentle ridges. The crater Goldstone was named in honor of the Tracking Station in the desert of California. The two Viking Landers operated for over 6 years (nearly four martian years) after landing. This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials, fine sand and dust are warmer (bright). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce. Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Li, H.; Harvey, J. T.; Holland, T. J.; Kayhanian, M.
2013-03-01
To help address the built environmental issues of both heat island and stormwater runoff, strategies that make pavements cooler and permeable have been investigated through measurements and modeling of a set of pavement test sections. The investigation included the hydraulic and thermal performance of the pavements. The permeability results showed that permeable interlocking concrete pavers have the highest permeability (or infiltration rate, ˜0.5 cm s-1). The two permeable asphalt pavements showed the lowest permeability, but still had an infiltration rate of ˜0.1 cm s-1, which is adequate to drain rainwater without generating surface runoff during most typical rain events in central California. An increase in albedo can significantly reduce the daytime high surface temperature in summer. Permeable pavements under wet conditions could give lower surface temperatures than impermeable pavements. The cooling effect highly depends on the availability of moisture near the surface layer and the evaporation rate. The peak cooling effect of watering for the test sections was approximately 15-35 °C on the pavement surface temperature in the early afternoon during summer in central California. The evaporative cooling effect on the pavement surface temperature at 4:00 pm on the third day (25 h after watering) was still 2-7 °C lower compared to that on the second day, without considering the higher air temperature on the third day. A separate and related simulation study performed by UCPRC showed that full depth permeable pavements, if designed properly, can carry both light-duty traffic and certain heavy-duty vehicles while retaining the runoff volume captured from an average California storm event. These preliminarily results indicated the technical feasibility of combined reflective and permeable pavements for addressing the built environment issues related to both heat island mitigation and stormwater runoff management.
NASA Astrophysics Data System (ADS)
Irani Rahaghi, Abolfazl; Lemmin, Ulrich; Bouffard, Damien; Riffler, Michael; Wunderle, Stefan; Barry, Andrew
2017-04-01
Lake surface water temperature (LSWT), which varies spatially and temporarily, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Depending on cloud cover, satellite data can depict large-scale thermal patterns, but not the meso- or small-scale processes. Meso-scale thermography allows complementing (and hence ground-truth) satellite imagery at the sub-pixel scale. A Balloon Launched Imaging and Monitoring Platform (BLIMP) was used to measure the LSWT at the meso-scale. The BLIMP consists of a small balloon tethered to a boat and is equipped with thermal and RGB cameras, as well as other instrumentation for geo-location and communication. A feature matching-based algorithm was implemented to create composite thermal images. Simultaneous ground-truthing of the BLIMP data were achieved using an autonomous craft measuring among other in situ surface/near surface temperatures, radiation and meteorological data. Latent and sensible surface heat fluxes were calculated using the bulk parameterization algorithm based on similarity theory. Results are presented for the day-time stratified low wind speed (up to 3 ms-1) conditions over Lake Geneva for two field campaigns, each of 6 h on 18 March and 19 July 2016. The meso-scale temperature field ( 1-m pixel resolution) had a range and standard deviation of 2.4°C and 0.3°C, respectively, over a 1-km2 area (typical satellite pixel size). Interestingly, at the sub-pixel scale, various temporal and spatial thermal structures are evident - an obvious example being streaks in the along-wind direction during March, which we hypothesize are caused by the steady 3 h wind condition. The results also show that the spatial variability of the estimated total heat flux is due to the corresponding variability of the longwave cooling from the water surface and the latent heat flux.
Assessing the Urban Heat Island Effect Across Biomes in the Continental USA Using Landsat and MODIS
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Bounoua, L.; Zhang, Ping; Wolfe, Robert
2011-01-01
Impervious surface area (ISA) from the Landsat TM and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined across urban gradients and used to stratify sampling of LST and NDVI. We find that ecological context significantly influences the amplitude of summer daytime UHI (urban - rural temperature difference) with the largest 8 C (average) for cities built in mixed forest biomes. For all cities ISA is the primary driver for increase in temperature explaining 70% of the total variance. Annually, urban areas are warmer than the non-urban fringe by 2.9 C, except in biomes with arid and semiarid climates. The average amplitude of the UHI is asymmetric with a 4.3 C difference in summer and 1.3 C in winter. In desert environments, UHI's point to a possible heat sink effect. Results show that the urban heat island amplitude increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The implications are that for urban areas developed within forested ecosystems the summertime UHI can be quite high relative to the wintertime UHI suggesting that the residential energy consumption required for summer cooling is likely to increase with urban growth within those biomes.
NASA Astrophysics Data System (ADS)
Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo
2012-11-01
In this paper, the Weather Research and Forecasting Model, coupled to the Urban Canopy Model, is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high-resolution land use and land cover data, two scenarios are designed to represent the nonurban and current urban land use distributions. By comparing the results of two nested, high-resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget, and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1°C, and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened, and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban areas, mainly in summer, and change the regional precipitation pattern to a certain extent.
NASA Astrophysics Data System (ADS)
Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo
2013-04-01
In this paper, the Weather Research and Forecasting (WRF) model coupled to the Urban Canopy Model (UCM) is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high resolution land use and land cover data, two scenarios are designed to represent the non-urban and current urban land use distributions. By comparing the results of two nested, high resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1? and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban area mainly in summer and change the regional precipitation pattern to a certain extent.
Internal evaporation and condensation characteristics in the shallow soil layer of an oasis
NASA Astrophysics Data System (ADS)
Ao, Yinhuan; Han, Bo; Lu, Shihua; Li, Zhaoguo
2016-07-01
The surface energy balance was analyzed using observations from the Jinta oasis experiment in the summer of 2005. A negative imbalance energy flux was found during daytime that could not be attributed to the soil heat storage process. Rather, the imbalance was related to the evaporation within the soil. The soil heat storage rate and the soil moisture variability always showed similar variations at a depth of 0.05 m between 0800 and 1000 (local standard time), while the observed imbalanced energy flux was very small, which implied that water vapor condensation occurred within the soil. Therefore, the distillation in shallow soil can be derived using reliable surface energy flux observations. In order to show that the importance of internal evaporation and condensation in the shallow soil layer, the soil temperatures at the depths of 0.05, 0.10, and 0.20 m were reproduced using a one-dimensional thermal diffusion equation, with the observed soil temperature at the surface and at 0.40 m as the boundary conditions. It was found that the simulated soil temperature improves substantially in the shallow layer when the water distillation is added as a sink/source term, even after the soil effective thermal conductivity has been optimized. This result demonstrates that the process of water distillation may be a dominant cause of both the temperature and moisture variability in the shallow soil layer.
NASA Astrophysics Data System (ADS)
Xu, Xiang; Zhou, Chen; Shi, Run; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong
2016-09-01
Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W), Wuhan (30.52° N, 114.32° E) and Jicamarca (11.95° S, 76.87° W) at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with latitude in the daytime ionosphere, while it increases with latitude in the nighttime ionosphere; both the electron temperature oscillation amplitude and the ground ULF wave magnitude decreases as the modulation frequency increases; when the electron temperature oscillation is fixed as input, the radiation efficiency of the ring current source is higher in the nighttime ionosphere than in the daytime ionosphere.
Application of water flowing PVC pipe and EPS foam bead as insulation for wall panel
NASA Astrophysics Data System (ADS)
Ali, Umi Nadiah; Nor, Norazman Mohamad; Yusuf, Mohammed Alias; Othman, Maidiana; Yahya, Muhamad Azani
2018-02-01
Malaysia located in tropical climate which have a typical temperature range between 21 °C to 36 °C. Due to this, air-conditioning system for buildings become a necessity to provide comfort to occupants. In order to reduce the energy consumption of the air-conditioning system, the transmission of heat from outdoor to indoor space should be kept as minimum as possible. This article discuss about a technology to resist heat transfer through concrete wall panel using a hybrid method. In this research, PVC pipe was embedded at the center of concrete wall panel while the EPS foam beads were added about 1% of the cement content in the concrete mix forming the outer layer of the wall panel. Water is regulated in the PVC pipe from the rainwater harvesting system. The aim of this study is to minimize heat transfer from the external environment into the building. Internal building temperature which indicated in BS EN ISO 7730 or ASHRAE Standard 55 where the comfort indoor thermal is below 25°C during the daytime. Study observed that the internal surface temperature of heat resistance wall panel is up to 3°C lower than control wall panel. Therefore, we can conclude that application of heat resistance wall panel can lead to lower interior building temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, K. K.; Phanikumar, D. V.; Kumar, K. Niranjan
2015-10-01
In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis ofmore » vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.« less
Physical Properties of the MER and Beagle II Landing Sites on Mars
NASA Astrophysics Data System (ADS)
Jakosky, B. M.; Pelkey, S. M.; Mellon, M. T.; Putzig, N.; Martinez-Alonso, S.; Murphy, N.; Hynek, B.
2003-12-01
The ESA Beagle II and the NASA Mars Exploration Rover spacecraft are scheduled to land on the martian surface in December 2003 and January 2004, respectively. Mission operations and success depends on the physical properties of the surfaces on which they land. Surface structural characteristics such as the abundances of loose, unconsolidated fine material, of fine material that has been cemented into a duricrust, and of rocks affect the ability to safely land and to successfully sample and traverse the surface. Also, physical properties affect surface and atmospheric temperatures, which affect lander and rover functionality. We are in the process of analyzing surface temperature information for these sites, derived from MGS TES and Odyssey THEMIS daytime and nighttime measurements. Our approach is to: (i) remap thermal inertia using TES data at ~3-km resolution, to obtain the most complete coverage possible; (ii) interpret physical properties from TES coverage in conjunction with other remote-sensing data sets; (iii) map infrared brightness using daytime and nighttime THEMIS data at 100-m resolution, and do qualitative analysis of physical properties and processes; and (iv) derive thermal inertia from THEMIS nighttime data in conjunction with daytime albedo measurements derived from TES, THEMIS, and MOC observations. In addition, we will use measured temperatures and derived thermal inertia to predict surface temperatures for the periods of the missions.
Studying the Afternoon Transition of the Planetary Boundary Layer
NASA Astrophysics Data System (ADS)
Lothon, Marie; Lenschow, Donald H.
2010-07-01
The planetary boundary layer is the part of the atmosphere that interacts directly with the Earth's surface on a time scale of a few hours or less. In daytime, solar heating of the surface can generate buoyant turbulent eddies that efficiently mix the air through a depth of more than a kilometer. This convective boundary layer (CBL) is a conduit for trace gases such as water vapor and carbon dioxide that are emitted or absorbed by the surface (and surface vegetation) to be transported into or out of the layer nearest the surface. The CBL has been extensively observed and relatively successfully modeled. But the early morning transition—when the CBL emerges from the nocturnal boundary layer—and the late afternoon transition—when the CBL decays to an intermittently turbulent “residual layer” overlying a shallower, stably stratified boundary layer—are difficult to observe and model due to turbulence intermittency and anisotropy, horizontal heterogeneity, and rapid time changes. Even the definition of the boundary layer during these transitional periods is fuzzy; there is no consensus on what criteria to use and no simple scaling laws, as there are for the CBL, that apply during these transitions.
Tong, Nelson Y O; Leung, Dennis Y C
2012-01-01
A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.
Shi, Wanju; Li, Xiang; Schmidt, Ralf C; Struik, Paul C; Yin, Xinyou; Jagadish, S V Krishna
2018-01-15
High-temperature during flowering in rice causes spikelet sterility and is a major threat to rice productivity in tropical and subtropical regions, where hybrid rice development is increasingly contributing to sustain food security. However, the sensitivity of hybrids to increasing temperature and physiological responses in terms of dynamic fertilization processes is unknown. To address these questions, several promising hybrids and inbreds were exposed to control temperature and high day-time temperature (HDT) in Experiment 1, and hybrids having contrasting heat tolerance were selected for Experiment 2 for further physiological investigation under HDT and high-night-time-temperature treatments. The day-time temperature played a dominant role in determining spikelet fertility compared with the night-time temperature. HDT significantly induced spikelet sterility in tested hybrids, and hybrids had higher heat susceptibility than the high-yielding inbred varieties. Poor pollen germination was strongly associated with sterility under high-temperature. Our novel observations capturing the series of dynamic fertilization processes demonstrated that pollen tubes not reaching the viable embryo sac was the major cause for spikelet sterility under heat exposure. Our findings highlight the urgent need to improve heat tolerance in hybrids and incorporating early-morning flowering as a promising trait for mitigating HDT stress impact at flowering. © 2018 John Wiley & Sons Ltd.
Vickers, D.; Thomas, C. K.
2014-09-16
Observations of the scale-dependent turbulent fluxes, variances, and the bulk transfer parameterization for sensible heat above, within, and beneath a tall closed Douglas-fir canopy in very weak winds are examined. The daytime sub-canopy vertical velocity spectra exhibit a double-peak structure with peaks at timescales of 0.8 s and 51.2 s. A double-peak structure is also observed in the daytime sub-canopy heat flux co-spectra. The daytime momentum flux co-spectra in the upper bole space and in the sub-canopy are characterized by a relatively large cross-wind component, likely due to the extremely light and variable winds, such that the definition of amore » mean wind direction, and subsequent partitioning of the momentum flux into along- and cross-wind components, has little physical meaning. Positive values of both momentum flux components in the sub-canopy contribute to upward transfer of momentum, consistent with the observed sub-canopy secondary wind speed maximum. For the smallest resolved scales in the canopy at nighttime, we find increasing vertical velocity variance with decreasing timescale, consistent with very small eddies possibly generated by wake shedding from the canopy elements that transport momentum, but not heat. Unusually large values of the velocity aspect ratio within the canopy were observed, consistent with enhanced suppression of the horizontal wind components compared to the vertical by the very dense canopy. The flux–gradient approach for sensible heat flux is found to be valid for the sub-canopy and above-canopy layers when considered separately in spite of the very small fluxes on the order of a few W m −2 in the sub-canopy. However, single-source approaches that ignore the canopy fail because they make the heat flux appear to be counter-gradient when in fact it is aligned with the local temperature gradient in both the sub-canopy and above-canopy layers. While sub-canopy Stanton numbers agreed well with values typically reported in the literature, our estimates for the above-canopy Stanton number were much larger, which likely leads to underestimated modeled sensible heat fluxes above dark warm closed canopies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vickers, D.; Thomas, C. K.
Observations of the scale-dependent turbulent fluxes, variances, and the bulk transfer parameterization for sensible heat above, within, and beneath a tall closed Douglas-fir canopy in very weak winds are examined. The daytime sub-canopy vertical velocity spectra exhibit a double-peak structure with peaks at timescales of 0.8 s and 51.2 s. A double-peak structure is also observed in the daytime sub-canopy heat flux co-spectra. The daytime momentum flux co-spectra in the upper bole space and in the sub-canopy are characterized by a relatively large cross-wind component, likely due to the extremely light and variable winds, such that the definition of amore » mean wind direction, and subsequent partitioning of the momentum flux into along- and cross-wind components, has little physical meaning. Positive values of both momentum flux components in the sub-canopy contribute to upward transfer of momentum, consistent with the observed sub-canopy secondary wind speed maximum. For the smallest resolved scales in the canopy at nighttime, we find increasing vertical velocity variance with decreasing timescale, consistent with very small eddies possibly generated by wake shedding from the canopy elements that transport momentum, but not heat. Unusually large values of the velocity aspect ratio within the canopy were observed, consistent with enhanced suppression of the horizontal wind components compared to the vertical by the very dense canopy. The flux–gradient approach for sensible heat flux is found to be valid for the sub-canopy and above-canopy layers when considered separately in spite of the very small fluxes on the order of a few W m −2 in the sub-canopy. However, single-source approaches that ignore the canopy fail because they make the heat flux appear to be counter-gradient when in fact it is aligned with the local temperature gradient in both the sub-canopy and above-canopy layers. While sub-canopy Stanton numbers agreed well with values typically reported in the literature, our estimates for the above-canopy Stanton number were much larger, which likely leads to underestimated modeled sensible heat fluxes above dark warm closed canopies.« less
Daytime Utilization of a University Observatory for Laboratory Instruction
NASA Astrophysics Data System (ADS)
Mattox, J. R.
2006-08-01
Scheduling convenience provides a strong incentive to fully explore effective utilization of educational observatories during daylight hours. I present two compelling daytime student activities that I developed at the Observatory at Fayetteville State University. My Introductory Astronomy Laboratory classes pursue these as separate investigations. My Physical Science classes complete both in a single lab period of 110 minutes duration. Both of these activities are also appropriate for High School student investigators, and could be used as demonstrations for younger students. Daylight Observation of Venus. With a clear sky, and when its elongation exceeds ~20˚, Venus is readily apparent in the daytime sky once a telescope is pointed at it. This is accomplished either with a digital pointing system, or with setting circles on a polar-aligned mount using the Sun to initialize the RA circle. Using the telescope pointing as a reference, it is also possible under optimal circumstances for students to see Venus in the daytime sky with naked eyes. Students are asked to write about the circumstances that made it possible to see Venus. Educational utilization of daytime observations of the Moon, Jupiter, Saturn, and the brightest stars are also discussed. Using a CCD Camera to Determine the Temperature of a Sunspot. After my students view the Sun with Eclipse Glasses and in projection using a 3-inch refractor, they analyze a CCD image of a sunspot (which they obtain if possible) to determine the ratio of its surface intensity relative to the normal solar surface. They then use the Stefan-Boltzmann law (usually with some coaching) to determine the sunspot temperature given the nominal surface temperature of the Sun. Appropriate safety precautions are presented given the hazards of magnified sunlight. Mitigation of dome seeing during daylight hours is discussed.
Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)
NASA Technical Reports Server (NTRS)
Chao, Winston C.
2012-01-01
Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.
Utility of High Temporal Resolution Observations for Heat Health Event Characterization
NASA Astrophysics Data System (ADS)
Palecki, M. A.
2017-12-01
Many heat health watch systems produce a binary on/off warning when conditions are predicted to exceed a given threshold during a day. Days with warnings and their mortality/morbidity statistics are analyzed relative to days not warned to determine the impacts of the event on human health, the effectiveness of warnings, and other statistics. The climate analyses of the heat waves or extreme temperature events are often performed with hourly or daily observations of air temperature, humidity, and other measured or derived variables, especially the maxima and minima of these data. However, since the beginning of the century, 5-minute observations are readily available for many weather and climate stations in the United States. NOAA National Centers for Environmental Information (NCEI) has been collecting 5-minute observations from the NOAA Automated Surface Observing System (ASOS) stations since 2000, and from the U.S. Climate Reference Network (USCRN) stations since 2005. This presentation will demonstrate the efficacy of utilizing 5-minute environmental observations to characterize heat waves by counting the length of time conditions exceed extreme thresholds based on individual and multiple variables and on derived variables such as the heat index. The length and depth of recovery periods between daytime heating periods will also be examined. The length of time under extreme conditions will influence health outcomes for those directly exposed. Longer periods of dangerous conditions also could increase the chances for poor health outcomes for those only exposed intermittently through cumulative impacts.
Evidence for behavioural thermoregulation by the world's largest fish
Thums, Michele; Meekan, Mark; Stevens, John; Wilson, Steven; Polovina, Jeff
2013-01-01
Many fishes make frequent ascents to surface waters and often show prolonged surface swimming following descents to deep water. This affinity for the surface is thought to be related to the recovery of body heat lost at depth. We tested this hypothesis using data from time–depth recorders deployed on four whale sharks (Rhincodon typus). We summarized vertical movements into bouts of dives and classified these into three main types, using cluster analysis. In addition to day and night ‘bounce’ dives where sharks rapidly descended and ascended, we found a third type: single deep (mean: 340 m), long (mean: 169 min) dives, occurring in daytime with extremely long post-dive surface durations (mean: 146 min). Only sharks that were not constrained by shallow bathymetry performed these dives. We found a negative relationship between the mean surface duration of dives in the bout and the mean minimum temperature of dives in the bout that is consistent with the hypothesis that thermoregulation was a major factor driving use of the surface. The relationship broke down when sharks were diving in mean minimum temperatures around 25°C, suggesting that warmer waters did not incur a large metabolic cost for diving and that other factors may also influence surface use. PMID:23075547
Numerical Study of the Effect of Urbanization on the Climate of Desert Cities
NASA Astrophysics Data System (ADS)
Kamal, Samy
This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For each city, the land-use maps of 1985 and 2010 from Landsat satellite observation, and a projected land-use map for 2030, are used to represent the past, present, and future. An additional set of simulations for Las Vegas, the largest of the five cities, uses the NLCD 1992 and 2006 land-use maps and an idealized historical land-use map with no urban coverage for 1900. The study finds that urbanization in Las Vegas produces a classic urban heat island (UHI) at night but a minor cooling during the day. A further analysis of the surface energy balance shows that the decrease in surface Albedo and increase effective emissivity play an important role in shaping the local climate change over urban areas. The emerging urban structures slow down the diurnal wind circulation over the city due to an increased effective surface roughness. This leads to a secondary modification of temperature due to the interaction between the mechanical and thermodynamic effects of urbanization. The simulations for the five desert cities for 1985 and 2010 further confirm a common pattern of the climatic effect of urbanization with significant nighttime warming and moderate daytime cooling. This effect is confined to the urban area and is not sensitive to the size of the city or the detail of land cover in the surrounding areas. The pattern of nighttime warming and daytime cooling remains robust in the simulations for the future climate of the five cities using the projected 2030 land-use maps. Inter-city differences among the five urban areas are discussed.
NASA Astrophysics Data System (ADS)
Lopes, Ana Rita; Trübenbach, Katja; Teixeira, Tatiana; Lopes, Vanessa M.; Pires, Vanessa; Baptista, Miguel; Repolho, Tiago; Calado, Ricardo; Diniz, Mário; Rosa, Rui
2013-12-01
Diel vertical migrators, such as myctophid fishes, are known to encounter oxygen minimum zones (OMZ) during daytime in the Eastern Pacific Ocean and, therefore, have to cope with temperature and oxidative stress that arise while ascending to warmer, normoxic surface waters at night-time. The aim of this study was to investigate the antioxidant defense strategies and heat shock response (HSR) in two myctophid species, namely Triphoturus mexicanus and Benthosema panamense, at shallow and warm surface waters (21 kPa, 20-25 °C) and at hypoxic, cold (≤1 kPa, 10 °C) mesopelagic depths. More specifically, we quantified (i) heat shock protein concentrations (HSP70/HSC70) (ii) antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], and (iii) lipid peroxidation [malondialdehyde (MDA) levels]. HSP70/HSC70 levels increased in both myctophid species at warmer, well-oxygenated surface waters probably to prevent cellular damage (oxidative stress) due to increased oxygen demand under elevated temperatures and reactive oxygen species (ROS) formation. On the other hand, CAT and GST activities were augmented under hypoxic conditions, probably as preparatory response to a burst of oxyradicals during the reoxygenation phase (while ascending). SOD activity decreased under hypoxia in B. panamense, but was kept unchanged in T. mexicanus. MDA levels in B. panamense did not change between the surface and deep-sea conditions, whereas T. mexicanus showed elevated MDA and HSP70/HSC70 concentrations at warmer surface waters. This indicated that T. mexicanus seems to be not so well tuned to temperature and oxidative stress associated to diel vertical migrations. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how different species might respond to the impacts of environmental stressors (e.g. expanding mesopelagic hypoxia) coupled with global climate change.
Observed impacts of wind farms on land surface temperature in Inner Mongolia
NASA Astrophysics Data System (ADS)
Tang, B.; Zhao, X.; Wu, D.; Zhao, W.; Wei, H.
2015-12-01
Abstract: The wind turbine industry in china has experienced a dramatic increase in recent years and wind farms (WFs) have an impact on the underlying surface conditions of climate system. This paper assesses the impacts of wind farms by analyzing the variations of the land surface temperature (LST) data for the period of 2003-2014 over a region consisted of 1097 turbines in the Huitengxile Wind Farm, the largest wind farm in Asia. We first compare the spatial coupling between the geographic layouts of the WFs and the spatial patterns of LST changes of two periods (post- versus pre- wind turbines construction) and then employ the difference of LST between WF pixels and surrounding non-WF pixels to quantify the effects of WFs. The results reveal that the LST at daytime increases by 0.52-0.86°C in winter, spring and autumn and decreases by about 0.56°C in summer over the WFs on average, with the spatial pattern of this warming or cooling generally coupled with the geographic distribution of the wind turbines, while the changes in LST at nighttime are much noisier. The daytime LST warming or cooling effects vary with seasons, and the strongest warming and tightest spatial coupling are in autumn months of September-November. The seasonal variations in albedo due to the construction of wind turbines are primarily responsible for the daytime LST changes. Areal mean decreases in winter, spring and autumn and increase in summer in albedo are observed over the WFs and the spatial pattern and magnitude of the changes in albedo couple very well with the layouts of the wind turbines. The increase (decrease) in albedo over the WFs indicates that WFs across the Huitengxile grassland absorb less (more) incoming radiation, thus resulting in a decrease (increase) in LST at daytime. The inter-annual variations in areal mean LST differences at daytime are highly correlated with those in areal mean albedo differences for all four seasons (R2=0.48~0.67). Our findings are in contrast with those studies, which show a warming effect at nighttime and no apparent effect on LST at daytime over the WFs in the United States. Keywords: Wind farm impacts; land surface temperature; albedo; warming and cooling
A Baroclinic Nocturnal Low-Level Jet over the Great Plains
NASA Astrophysics Data System (ADS)
Shapiro, A.; Gebauer, J.; Fedorovich, E.
2016-12-01
The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide. Low-level jets develop around sunset in fair weather conditions conducive to strong radiative cooling and reach peak intensity in the pre-dawn hours. Key precursors to their formation are the establishment of a strongly turbulent dry convective boundary layer during the afternoon and a rapid cessation of the turbulence during the early evening transition. The two main physical mechanisms underpinning the generation of nocturnal low-level jets over the Great Plains are associated with diurnal variations in turbulent mixing (Blackadar mechanism) and in heating/cooling of the gently sloping terrain (Holton mechanism). These two mechanisms were recently combined within a single unified theory (Shapiro et al. 2016) in which analytical solutions of the Boussinesq equations of motion and thermal energy were obtained. In the present study we apply the unified theory to the case where the free-atmosphere geostrophic wind is zero, and there is strong daytime heating of the slope. When appropriately tuned, the analytical model predicts the low elevation (jet nose within 250 m of the ground) and strong wind maximum (> 15 m/s) characteristic of the strongly baroclinic jet observed over northern Kansas on 10 June 2015 during Intensive Observing Period 7 of the Plains Elevated Convection at Night (PECAN) field experiment. Although there is generally good agreement between the tuned model and observations (including soundings and aircraft data), our main interest is in investigating the profound roles of the free-atmosphere stratification, daytime heating, and daytime/nighttime mixing on jet strength and structure.
Lomonosov Crater, Day and Night
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 16 June 2004 This pair of images shows part of Lomonosov Crater. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude 64.9, Longitude 350.7 East (9.3 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 22 June 2004 This pair of images shows part of Arsia Mons. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -19.6, Longitude 241.9 East (118.1 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 21 June 2004 This pair of images shows part of Albor Tholus. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude 17.6, Longitude 150.3 East (209.7 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 15 June 2004 This pair of images shows part of the Ares Valles region. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude 3.6, Longitude 339.9 East (20.1 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 17 June 2004 This pair of images shows part of a small channel. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude 19.8, Longitude 141.5 East (218.5 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Noctus Labyrinthus by Day and Night
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 25 June 2004 This pair of images shows part of Noctus Labyrinthus. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -9.6, Longitude 264.5 East (95.5 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 18 June 2004 This pair of images shows part of Ius Chasma. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -1, Longitude 276 East (84 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Crater Ejecta by Day and Night
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 24 June 2004 This pair of images shows a crater and its ejecta. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 23 June 2004 This pair of images shows part of Gusev Crater. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -14.5, Longitude 175.5 East (184.5 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Meridiani Crater in Day and Night
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 14 June 2004 This pair of images shows crater ejecta in the Terra Meridiani region. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -1.6, Longitude 4.1 East (355.9 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Day And Night In Terra Meridiani
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 11 June 2004 This pair of images shows part of the Terra Meridiani region. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude 1.3, Longitude 0.5 East (359.5 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Kattel, Dambaru Ballab; Yao, Tandong; Panday, Prajjwal Kumar
2018-05-01
Based on climatic data from 18 stations on the southern slopes of the eastern Himalayas in Bhutan for the period from 1996 to 2009, this paper investigates monthly characteristics of the near-surface air temperature lapse rate (TLR). The station elevations used in this study range from 300 to 2760 m a. s. l. TLRs were evaluated using a linear regression model. The monthly values of maximum TLRs were always smaller than those of the minimum TLRs, which is in contrast to results from the surrounding mountainous regions. In this study, annual patterns of TLRs were somewhat consistent, particularly in the summer; during the other seasons, patterns contrasted to results from the southeastern Tibetan Plateau (China) and were almost comparable to results from Nepal. The shallowest observed values for TLRs in summer are due to intense latent heating at the higher elevation, associated with water vapor condensation from moist convection and evapotranspiration, and decreasing sensible heating at lower elevation, due to heavier rainfall, cloud, and forest cover. When compared to summer, the steeper TLRs in the non-monsoon season are due to sensible heating at the lower elevations, corresponding to dry and clear weather seasons, as well as increasing cooling at higher elevations, particularly in winter due to snow and cloud cover. Owing to lower albedo and higher aerodynamic roughness of forested areas, the TLRs were considerably reduced in daytime because of the dissipation of sensible heat to the atmospheric boundary layer. The distinct variation in diurnal TLR range is due to the diurnal variation in net radiation associated with reduced turbulent heating in the day and increased turbulent heating in the night, in addition to the effect of moisture and cloud cover. The shallower values of TLRs in this study when compared with the surrounding mountainous regions are due to high humidity, as well as the differing elevations and local climates.
NASA Astrophysics Data System (ADS)
Shiflett, S. A.; Anderson, R. G.; Jenerette, D.
2014-12-01
Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.
Diurnal variation of atmospheric water vapor at Gale crater: Analysis from ground-based measurements
NASA Astrophysics Data System (ADS)
Martinez, German; McConnochie, Timothy; Renno, Nilton; Meslin, Pierre-Yves; Fischer, Erik; Vicente-Retortillo, Alvaro; Borlina, Caue; Kemppinen, Osku; Genzer, Maria; Harri, Ari-Matti; de la Torre-Juárez, Manuel; Zorzano, Mari-Paz; Martin-Torres, Javier; Bridges, Nathan; Maurice, Sylvestre; Gasnault, Olivier; Gomez-Elvira, Javier; Wiens, Roger
2016-04-01
We analyze measurements obtained by Curiosity's Rover Environmental Monitoring Station (REMS) and ChemCam (CCAM) instruments to shed light on the hydrological cycle at Gale crater. In particular, we use nighttime REMS measurements taken when the atmospheric volume mixing ratio (VMR) and its uncertainty are the lowest (between 05:00 and 06:00 LTST) [1], and daytime CCAM passive sky measurements taken when the VMR is expected to be the highest (between 10:00 and 14:00 LTST) [2]. VMR is calculated from simultaneous REMS measurements of pressure (P), temperature (T) and relative humidity (RH) at 1.6 m (VMR is defined as RH×es(T)/P , where es is the saturation water vapor pressure over ice). The REMS relative humidity sensor has recently been recalibrated (June 2015), providing RH values slightly lower than those in the previous calibration (Dec 2014). The full diurnal cycle of VMR cannot be analyzed using only REMS data because the uncertainty in daytime VMR derived from REMS measurements is extremely high. Daytime VMR is inferred by fitting the output of a multiple-scattering discrete-ordinates radiative transfer model to CCAM passive sky observations [3]. CCAM makes these observations predominately in the vicinity of 11:00 - 12:00 LTST, but occasionally in the early morning near 08:00 LTST. We find that throughout the Martian year, the daytime VMR is higher than at night, with a maximum day-to-night ratio of about 6 during winter. Various processes might explain the differences between nighttime REMS and daytime CCAM VMR values. Potential explanations include: (i) surface nighttime frost formation followed by daytime sublimation [1], (ii) surface nighttime adsorption of water vapor by the regolith followed by daytime desorption and (iii) large scale circulations changing vertical H2O profiles at different times of the year. Potential formation of surface frost can only occur in late fall and winter [1], coinciding with the time when the diurnal amplitude of the near-surface VMR at Gale is maximum, while adsorption/desorption by the regolith can occur throughout the year [2]. Adsorption by the regolith is expected to be more efficient at lower temperatures (i.e. winter), although it remains unclear whether kinetics would allow for the exchange of adsorbed water on hourly time scales necessary to track insolation [4-5]. Local surface-atmosphere interactions, either via frost formation and/or exchange of adsorbed water with the atmosphere, might play a significant role in the diurnal hydrological cycle at Gale. REFERENCES: [1] Martínez G. M. et al. (2016) Icarus, doi: http://dx.doi.org/10.1016/j.icarus.2015.12.004 [2] Savijärvi H. (2016) Icarus, 265, 63-69. [3] McConnochie T. et al. (2015) AGU Fall Meeting. [4] Beck P. et al. (2010) JGR, 115, E10011. [5] Zent A. P. et al. (2001) JGR, 106, 14667-14674.
Impact of Urban Growth on Surface Climate: A Case Study in Oran, Algeria
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari; Safia, Abdelmounaine; Masek, Jeffrey; Peters-Lidars, Christaq; Imhoff, Marc L.
2008-01-01
We develop a land use map discriminating urban surfaces from other cover types over a semiarid region in North Africa and use it in a land surface model to assess the impact of urbanized land on surface energy, water and carbon balances. Unlike in temperate climates where urbanization creates a marked heat island effect, this effect is not strongly marked in semiarid regions. During summer, the urban class results in an additional warming of 1.45 C during daytime and 0.81 C at night compared to that simulated for needleleaf trees under similar climate conditions. Seasonal temperatures show urban areas warmer than their surrounding during summer and slightly cooler in winter. The hydrological cycle is practically "shut down" during summer and characterized by relatively large amount of runoff in winter. We estimate the annual amount of carbon uptake to 1.94 million metric tons with only 11.9% assimilated during the rainy season. However, if urbanization expands to reach 50% of the total area excluding forests, the annual total carbon uptake will decline by 35% and the July mean temperature would increase only 0.10 C, compared to current situation. In contrast, if urbanization expands to 50% of the total land excluding forests and croplands but all short vegetation is replaced by native broadleaf deciduous trees, the annual carbon uptake would increase 39% and the July mean temperature would decrease by 0.9 C, compared to current configuration. These results provide guidelines for urban planners and land use managers and indicate possibilities for mitigating the urban heat.
Dieterich, A; Fischbach, U; Ludwig, M; Di Lellis, M A; Troschinski, S; Gärtner, U; Triebskorn, R; Köhler, H-R
2013-07-01
The Mediterranean land snail Xeropicta derbentina forms huge populations in Southern France. In order to characterize heat exposure and the induction of the 70-kD heat shock protein (Hsp70) response system during the life cycle of this snail, a selected population from the Vaucluse area, Provence, was investigated encompassing the issues of morphological life cycle parameters (shell size and colouration), the daily courses of heat exposure at different heights above the ground, of shell temperature, and that of the individual Hsp70 levels. The study covered all four seasons of the year 2011. Snails were found to be annual, reaching their final size in August. The shell colouration pattern showed high variation in juveniles (spring) with a strong tendency towards becoming uniformly white at old age in autumn. In all seasons, ambient air temperature decreased with increasing distance from the ground surface during daytime while remaining constantly low in the night. Overall, the Hsp70 level of individuals followed the ambient temperature during diurnal and seasonal variations. Correlation analysis revealed a positive association of individual shell temperature and Hsp70 level for the most part of the life cycle of the snails until late summer, whereas a negative correlation was found for aged animals indicating senescence effects on the capacity of the stress response system.
Turbulence characteristics of velocity and scalars in an internal boundary-layer above a lake
NASA Astrophysics Data System (ADS)
Sahlee, E.; Rutgersson, A.; Podgrajsek, E.
2012-12-01
We analyze turbulence measurements, including methane, from a small island in a Swedish lake. The turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies displayed a daily variation, increasing in the morning and decreasing in the afternoon. We interpret this behavior as a sign of spectral lag, where the low frequency energy, large eddies, originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrates with new surface forcing. However, the larger eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variance of the horizontal velocity is increased by these large eddies however, momentum fluxes and scalar variances and fluxes appear unaffected. The drag coefficient, Stanton number and Dalton number used to parameterize the momentum flux, heat flux and latent heat flux respectively all compare very well with parameterizations developed for open ocean conditions.
Detailed budget analysis of HONO in central London reveals a missing daytime source
NASA Astrophysics Data System (ADS)
Lee, J. D.; Whalley, L. K.; Heard, D. E.; Stone, D.; Dunmore, R. E.; Hamilton, J. F.; Young, D. E.; Allan, J. D.; Laufs, S.; Kleffmann, J.
2016-03-01
Measurements of HONO were carried out at an urban background site near central London as part of the Clean air for London (ClearfLo) project in summer 2012. Data were collected from 22 July to 18 August 2014, with peak values of up to 1.8 ppbV at night and non-zero values of between 0.2 and 0.6 ppbV seen during the day. A wide range of other gas phase, aerosol, radiation, and meteorological measurements were made concurrently at the same site, allowing a detailed analysis of the chemistry to be carried out. The peak HONO/NOx ratio of 0.04 is seen at ˜ 02:00 UTC, with the presence of a second, daytime, peak in HONO/NOx of similar magnitude to the night-time peak, suggesting a significant secondary daytime HONO source. A photostationary state calculation of HONO involving formation from the reaction of OH and NO and loss from photolysis, reaction with OH, and dry deposition shows a significant underestimation during the day, with calculated values being close to 0, compared to the measurement average of 0.4 ppbV at midday. The addition of further HONO sources from the literature, including dark conversion of NO2 on surfaces, direct emission, photolysis of ortho-substituted nitrophenols, the postulated formation from the reaction of HO2 × H2O with NO2, photolysis of adsorbed HNO3 on ground and aerosols, and HONO produced by photosensitized conversion of NO2 on the surface increases the daytime modelled HONO to 0.1 ppbV, still leaving a significant missing daytime source. The missing HONO is plotted against a series of parameters including NO2 and OH reactivity (used as a proxy for organic material), with little correlation seen. Much better correlation is observed with the product of these species with j(NO2), in particular NO2 and the product of NO2 with OH reactivity. This suggests the missing HONO source is in some way related to NO2 and also requires sunlight. Increasing the photosensitized surface conversion rate of NO2 by a factor of 10 to a mean daytime first-order loss of ˜ 6 × 10-5 s-1 (but which varies as a function of j(NO2)) closes the daytime HONO budget at all times (apart from the late afternoon), suggesting that urban surfaces may enhance this photosensitized source. The effect of the missing HONO to OH radical production is also investigated and it is shown that the model needs to be constrained to measured HONO in order to accurately reproduce the OH radical measurements.
Van Nguyen, On; Kawamura, Kensuke; Trong, Dung Phan; Gong, Zhe; Suwandana, Endan
2015-07-01
Temporal changes in the land surface temperature (LST) in urbanization areas are important for studying an urban heat island (UHI) and regional climate change. This study examined the LST trends under different land use categories in the Red River Delta, Vietnam, using the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A2) and land cover type product (MCD12Q1) for 11 years (2002-2012). Smoothened time-series MODIS LST data were reconstructed by the Harmonic Analysis of Time Series (HANTS) algorithm. The reconstructed LST (maximum and minimum temperatures) was assessed using the hourly air temperature dataset in two land-based meteorological stations provided by the National Climatic Data Center (NCDC). Significant correlation was obtained between MODIS LST and the air temperature for the daytime (R (2) = 0.73, root mean square error [RMSE] = 1.66 °C) and night time (R (2) = 0.84, RMSE = 1.79 °C). Statistical analysis also showed that LST trends vary strongly depending on the land cover type. Forest, wetland, and cropland had a slight tendency to decline, whereas cropland and urban had sharper increases. In urbanized areas, these increasing trends are even more obvious. This is undeniable evidence of the negative impact of urbanization on a surface urban heat island (SUHI) and global warming.
The impact of changing the land surface scheme in ACCESS(v1.0/1.1) on the surface climatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalczyk, Eva A.; Stevens, Lauren E.; Law, Rachel M.
The Community Atmosphere Biosphere Land Exchange (CABLE) model has been coupled to the UK Met Office Unified Model (UM) within the existing framework of the Australian Community Climate and Earth System Simulator (ACCESS), replacing the Met Office Surface Exchange Scheme (MOSES). Here we investigate how features of the CABLE model impact on present-day surface climate using ACCESS atmosphere-only simulations. The main differences attributed to CABLE include a warmer winter and a cooler summer in the Northern Hemisphere (NH), earlier NH spring runoff from snowmelt, and smaller seasonal and diurnal temperature ranges. The cooler NH summer temperatures in canopy-covered regions aremore » more consistent with observations and are attributed to two factors. Firstly, CABLE accounts for aerodynamic and radiative interactions between the canopy and the ground below; this placement of the canopy above the ground eliminates the need for a separate bare ground tile in canopy-covered areas. Secondly, CABLE simulates larger evapotranspiration fluxes and a slightly larger daytime cloud cover fraction. Warmer NH winter temperatures result from the parameterization of cold climate processes in CABLE in snow-covered areas. In particular, prognostic snow density increases through the winter and lowers the diurnally resolved snow albedo; variable snow thermal conductivity prevents early winter heat loss but allows more heat to enter the ground as the snow season progresses; liquid precipitation freezing within the snowpack delays the building of the snowpack in autumn and accelerates snow melting in spring. Altogether we find that the ACCESS simulation of surface air temperature benefits from the specific representation of the turbulent transport within and just above the canopy in the roughness sublayer as well as the more complex snow scheme in CABLE relative to MOSES.« less
The impact of changing the land surface scheme in ACCESS(v1.0/1.1) on the surface climatology
Kowalczyk, Eva A.; Stevens, Lauren E.; Law, Rachel M.; ...
2016-08-23
The Community Atmosphere Biosphere Land Exchange (CABLE) model has been coupled to the UK Met Office Unified Model (UM) within the existing framework of the Australian Community Climate and Earth System Simulator (ACCESS), replacing the Met Office Surface Exchange Scheme (MOSES). Here we investigate how features of the CABLE model impact on present-day surface climate using ACCESS atmosphere-only simulations. The main differences attributed to CABLE include a warmer winter and a cooler summer in the Northern Hemisphere (NH), earlier NH spring runoff from snowmelt, and smaller seasonal and diurnal temperature ranges. The cooler NH summer temperatures in canopy-covered regions aremore » more consistent with observations and are attributed to two factors. Firstly, CABLE accounts for aerodynamic and radiative interactions between the canopy and the ground below; this placement of the canopy above the ground eliminates the need for a separate bare ground tile in canopy-covered areas. Secondly, CABLE simulates larger evapotranspiration fluxes and a slightly larger daytime cloud cover fraction. Warmer NH winter temperatures result from the parameterization of cold climate processes in CABLE in snow-covered areas. In particular, prognostic snow density increases through the winter and lowers the diurnally resolved snow albedo; variable snow thermal conductivity prevents early winter heat loss but allows more heat to enter the ground as the snow season progresses; liquid precipitation freezing within the snowpack delays the building of the snowpack in autumn and accelerates snow melting in spring. Altogether we find that the ACCESS simulation of surface air temperature benefits from the specific representation of the turbulent transport within and just above the canopy in the roughness sublayer as well as the more complex snow scheme in CABLE relative to MOSES.« less
NASA Technical Reports Server (NTRS)
Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood
2006-01-01
The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.
Dominant control of agriculture and irrigation on urban heat island in India.
Kumar, Rahul; Mishra, Vimal; Buzan, Jonathan; Kumar, Rohini; Shindell, Drew; Huber, Matthew
2017-10-25
As is true in many regions, India experiences surface Urban Heat Island (UHI) effect that is well understood, but the causes of the more recently discovered Urban Cool Island (UCI) effect remain poorly constrained. This raises questions about our fundamental understanding of the drivers of rural-urban environmental gradients and hinders development of effective strategies for mitigation and adaptation to projected heat stress increases in rapidly urbanizing India. Here we show that more than 60% of Indian urban areas are observed to experience a day-time UCI. We use satellite observations and the Community Land Model (CLM) to identify the impact of irrigation and prove for the first time that UCI is caused by lack of vegetation and moisture in non-urban areas relative to cities. In contrast, urban areas in extensively irrigated landscapes generally experience the expected positive UHI effect. At night, UHI warming intensifies, occurring across a majority (90%) of India's urban areas. The magnitude of rural-urban temperature contrasts is largely controlled by agriculture and moisture availability from irrigation, but further analysis of model results indicate an important role for atmospheric aerosols. Thus both land-use decisions and aerosols are important factors governing, modulating, and even reversing the expected urban-rural temperature gradients.
Pyranometer offsets triggered by ambient meteorology: insights from laboratory and field experiments
NASA Astrophysics Data System (ADS)
Oswald, Sandro M.; Pietsch, Helga; Baumgartner, Dietmar J.; Weihs, Philipp; Rieder, Harald E.
2017-03-01
This study investigates the effects of ambient meteorology on the accuracy of radiation (R) measurements performed with pyranometers contained in various heating and ventilation systems (HV-systems). It focuses particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation, a series of controlled laboratory experiments as well as two targeted field campaigns were performed in 2016. The results indicate that precipitation (as simulated by spray tests or observed under ambient conditions) significantly affects the thermal environment of the instruments and thus their stability. Statistical analyses of laboratory experiments showed that precipitation triggers zero offsets of -4 W m-2 or more, independent of the HV-system. Similar offsets were observed in field experiments under ambient environmental conditions, indicating a clear exceedance of BSRN (Baseline Surface Radiation Network) targets following precipitation events. All pyranometers required substantial time to return to their initial signal states after the simulated precipitation events. Therefore, for BSRN-class measurements, the recommendation would be to flag the radiation measurements during a natural precipitation event and 90 min after it in nighttime conditions. Further daytime experiments show pyranometer offsets of 50 W m-2 or more in comparison to the reference system. As they show a substantially faster recovery, the recommendation would be to flag the radiation measurements within a natural precipitation event and 10 min after it in daytime conditions.
Nitrous acid formation in a snow-free wintertime polluted rural area
NASA Astrophysics Data System (ADS)
Tsai, Catalina; Spolaor, Max; Fedele Colosimo, Santo; Pikelnaya, Olga; Cheung, Ross; Williams, Eric; Gilman, Jessica B.; Lerner, Brian M.; Zamora, Robert J.; Warneke, Carsten; Roberts, James M.; Ahmadov, Ravan; de Gouw, Joost; Bates, Timothy; Quinn, Patricia K.; Stutz, Jochen
2018-02-01
Nitrous acid (HONO) photolysis is an important source of hydroxyl radicals (OH) in the lower atmosphere, in particular in winter when other OH sources are less efficient. The nighttime formation of HONO and its photolysis in the early morning have long been recognized as an important contributor to the OH budget in polluted environments. Over the past few decades it has become clear that the formation of HONO during the day is an even larger contributor to the OH budget and additionally provides a pathway to recycle NOx. Despite the recognition of this unidentified HONO daytime source, the precise chemical mechanism remains elusive. A number of mechanisms have been proposed, including gas-phase, aerosol, and ground surface processes, to explain the elevated levels of daytime HONO. To identify the likely HONO formation mechanisms in a wintertime polluted rural environment we present LP-DOAS observations of HONO, NO2, and O3 on three absorption paths that cover altitude intervals from 2 to 31, 45, and 68 m above ground level (a.g.l.) during the UBWOS 2012 experiment in the Uintah Basin, Utah, USA. Daytime HONO mixing ratios in the 2-31 m height interval were, on average, 78 ppt, which is lower than HONO levels measured in most polluted urban environments with similar NO2 mixing ratios of 1-2 ppb. HONO surface fluxes at 19 m a.g.l., calculated using the HONO gradients from the LP-DOAS and measured eddy diffusivity coefficient, show clear upward fluxes. The hourly average vertical HONO flux during sunny days followed solar irradiance, with a maximum of (4.9 ± 0.2) × 1010 molec. cm-2 s-1 at noontime. A photostationary state analysis of the HONO budget shows that the surface flux closes the HONO budget, accounting for 63 ± 32 % of the unidentified HONO daytime source throughout the day and 90 ± 30 % near noontime. This is also supported by 1-D chemistry and transport model calculations that include the measured surface flux, thus clearly identifying chemistry at the ground as the missing daytime HONO source in this environment. Comparison between HONO surface flux, solar radiation, NO2 and HNO3 mixing ratios, and results from 1-D model runs suggest that, under high NOx conditions, HONO formation mechanisms related to solar radiation and NO2 mixing ratios, such as photo-enhanced conversion of NO2 on the ground, are most likely the source of daytime HONO. Under moderate to low NO2 conditions, photolysis of HNO3 on the ground seems to be the main source of HONO.
The summer urban heat island of Bucharest (Romania) as retrieved from satellite imagery
NASA Astrophysics Data System (ADS)
Cheval, Sorin; Dumitrescu, Alexandru
2014-05-01
The summer Urban Heat Island (UHI) of the city of Bucharest (Romania) has been investigated in terms of its shape, intensity, extension, and links to land cover. The study integrates land surface temperature (LST) data retrieved by the MODIS sensors aboard the Terra and Aqua NASA satellites, and SEVIRI sensors on board of the geostationary platform MSG, along 2000-2012. Based on the Rodionov Regime Shift Index, the significant changing points in the land surface temperature values along transverse profiles crossing the city's centre were considered as UHI's limits. The study shows that the intensity calculated as the difference between the LST within the UHI limits and several surrounding buffers is an objective and flexible tool for describing the average thermal state of the urban-rural transition. The method secures the weight of comparing the UHI's intensity of different urban areas. There are little variations from one month to another, but UHI's shapes and intensities under clear-sky conditions are very specific to nighttime (more regular and 2-3°C less in the 7-km width buffer), and daytime (more twisted and more steep temperature decrease). For both cases, strong relationships with the land cover can be assumed. The nighttime UHI's geometry is more regular, and the intensity lower than the day situation, while the land cover exerts a strong influence on the Bucharest LST. After all, the study promotes an objective manner to delimitate and quantify the UHI based on satellite imagery. The study was performed within the STAR project 92/2013 (Urban Heat Island Monitoring under Present and Future Climate - UCLIMESA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.
High spatiotemporal land surface temperature (LST) datasets are increasingly needed in a variety of fields such as ecology, hydrology, meteorology, epidemiology, and energy systems. Moderate Resolution Imaging Spectroradiometer (MODIS) LST is one of such high spatiotemporal datasets that are widely used. But, it has large amount of missing values primarily because of clouds. Gapfilling the missing values is an important approach to create high spatiotemporal LST datasets. However current gapfilling methods have limitations in terms of accuracy and time required to assemble the data over large areas (e.g., national and continental levels). In this study, we developed a 3-step hybridmore » method by integrating a combination of daily merging, spatiotemporal gapfilling, and temporal interpolation methods, to create a high spatiotemporal LST dataset using the four daily LST observations from the two MODIS instruments on Terra and Aqua satellites. We applied this method in urban and surrounding areas for the conterminous U.S. in 2010. The evaluation of the gapfilled LST product indicates that its root mean squared error (RMSE) to be 3.3K for mid-daytime (1:30 pm) and 2.7K for mid-13 nighttime (1:30 am) observations. The method can be easily extended to other years and regions and is also applicable to other satellite products. This seamless daily (mid-daytime and mid-nighttime) LST product with 1 km spatial resolution is of great value for studying effects of urbanization (e.g., urban heat island) and the related impacts on people, ecosystems, energy systems and other infrastructure for cities.« less
NASA Astrophysics Data System (ADS)
Osibanjo, Olabosipo O.
The objectives of this work are to calculate surface fluxes for rolling terrain using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon and to investigate the log law in the ABL. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10 m tower was placed in a small valley depression to isolate nighttime temperature inversions. This thesis presents observations of momentum, sensible heat, moisture, and CO2 fluxes from data collected at a sampling frequency of 10Hz at four heights. Results show a strong correlation between temperature inversions and CO 2 flux. The log layer could not be achieved as the value of the estimated von Karman constant (˜0.62) is not close to that of the accepted value of 0.41. The impact of the irrigated farmland near the measurement site was observed in the latent heat flux, where the advection of moisture was evident in the tower moisture gradient. A strong relationship was also observed between fluxes of sensible heat, latent heat, CO2, and atmospheric stability. The average nighttime CO2 concentration observed was ˜407 ppm, and daytime ˜388 ppm compared to the 2013 global average CO2 concentration of 395 ppm. The maximum CO2 concentration (˜485 ppm) was observed on the strongest temperature inversion night. There are few uncertainties in the measurements. The manufacturer for the eddy covariance instruments (EC 150) quotes uncertainty of +/- 0.1°C for temperature between -0°C-40°C. Error bars were generated on the estimated surface sensible heat flux using the standard deviation and mean values. Under the most stable atmospheric conditions, uncertainty (assumed to be the variability in the flux estimates) was close to the minimum (˜+/- 5 W m-2). (Abstract shortened by ProQuest.).
Daytime Detection of Space Objects
2005-03-01
photon flux is much larger than the signal flux and is the dominant noise source, we are operating in Background Limited Infrared Photodector (BLIP...electromagnetic radiation (visible, infrared , radar, etc.) strikes a material interface of a body, it can scatter off the top or first surface, as well as...nighttime, daytime and infrared flares respectively. The thermal emission of space objects at 353K, 900K and 1300K with 2 to 20 m2 emitting areas
NASA Technical Reports Server (NTRS)
Campbell, James R.; Lolli, Simone; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.
2016-01-01
One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.070.67 W m(exp -2) in sample-relative terms, which reduces to 0.030.27 W m(exp -2) in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud under sampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth of less than or equal to 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.
Year-round Application of Water Curtain for Environmental Control in Greenhouse
NASA Astrophysics Data System (ADS)
Ibuki, R.; Sugita, E.
2011-12-01
In large area of Japan needs forced environmental control to cultivate yields in hard temperature condition. Water Curtain is applied in Japan for night time air temperature control of small greenhouse, making strawberry and covered by plastic film. Water is splayed on extended plastic film, located above strawberry and below roof film. Underground water is utilized for cooling in summer, and warming in winter. Heat exchange between water and ground, and also water and air in the greenhouse is occurring in this system. Furthermore, heat transfer by radiation effect is also controlled by water membrane. In winter night, infrared radiation through plastic film is reduced by water membrane because of its high absorption coefficient on wave length of infrared. Besides water has a high transparency on wave length of visible light. These features are useful on the daytime radiation control of greenhouse to maintain visible light level for photosynthesis and to reduce excess infrared, damages yields in summer. Also in daytime of sunny day in winter season, temperature is too high to cultivate yields in closed greenhouse. Under this situation, water curtain is useful to storage from broad area in greenhouse excess heat from air in the circulation water. Warm water is useful to maintain temperature in greenhouse. On the contrary, in summer season, water can storage heat in daytime and release in night time. Water curtain system will contribute to be a sustainable and low energy consumption system to maintain comfortable environment for yields growth. For this reason we are considering to use water curtain in year-round. At the first step of the year-round application, day time use in summer is experimentally investigated. General water curtain splays water on plastic film extended on metal pipe. In this situation water is gathered at valley part of the film. Then water membrane is partially made and radiation control is not effective at large area. Therefore we applied new covering way to realize higher water covering ratio. With this way selective reduction effect of water curtain, which reduce infrared more than visible light is quantitatively measured. Also small greenhouse to growth plants under it is settled to measure thermal net, heat absorption, water and air temperature variation and yields growth. From measurements way of making water membrane influenced water temperature elevation.
Modelling study of sea breezes in a complex coastal environment
NASA Astrophysics Data System (ADS)
Cai, X.-M.; Steyn, D. G.
This study investigates a mesoscale modelling of sea breezes blowing from a narrow strait into the lower Fraser valley (LFV), British Columbia, Canada, during the period of 17-20 July, 1985. Without a nudging scheme in the inner grid, the CSU-RAMS model produces satisfactory wind and temperature fields during the daytime. In comparison with observation, the agreement indices for surface wind and temperature during daytime reach about 0.6 and 0.95, respectively, while the agreement indices drop to 0.4 at night. In the vertical, profiles of modelled wind and temperature generally agree with tethersonde data collected on 17 and 19 July. The study demonstrates that in late afternoon, the model does not capture the advection of an elevated warm layer which originated from land surfaces outside of the inner grid. Mixed layer depth (MLD) is calculated from model output of turbulent kinetic energy field. Comparison of MLD results with observation shows that the method generates a reliable MLD during the daytime, and that accurate estimates of MLD near the coast require the correct simulation of wind conditions over the sea. The study has shown that for a complex coast environment like the LFV, a reliable modelling study depends not only on local surface fluxes but also on elevated layers transported from remote land surfaces. This dependence is especially important when local forcings are weak, for example, during late afternoon and at night.
[Effects of atmospheric thermally stratified condition on sensible heat within forest canopy].
Diao, Yi-Wei; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Pei, Tie-Fan
2010-01-01
By using Eulerian second-order closure model, this paper studied the source-sink distribution and flux characteristics of sensible heat within forest canopy under atmospheric thermally stratified condition. In the daytime, a notable feature for the atmospheric stratification of forest canopy was the unstable stratification above the canopy and the stable stratification under the canopy. The changes of temperature profile indicated there was a 'hot spot' at about 2/3 of canopy height. The counter-gradient fluxes within the canopy were discovered by modeling the heat flux under weak stable atmospheric condition. Simulations of the diurnal variation of sensible heat flux were consistent with the measurements (R2 = 0.9035, P < 0.01). Adding buoyancy in the sensible heat balance equation could increase the simulation accuracy of inversion model, and improve the simulation capability for heat flux balance.
Radiative Forcing by Contrails
NASA Technical Reports Server (NTRS)
Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.
1999-01-01
A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.
BACTERIAL FLUX FROM CHAPARRAL INTO THE ATMOSPHERE IN MID-SUMMER AT A HIGH DESERT LOCATION
Estimates of the bacterial flux for a daylight cycle were observed at the Hanford Nuclear Reservation, Richland, WA, during June 1992, using a modified Bowen ratio method. he upward daytime bacterial flux was coupled with the solar radiation/sensible heat cycle, but commenced 2 h...
NASA Astrophysics Data System (ADS)
Spiga, A.; Forget, F.; Lewis, S. R.; Hinson, D. P.
2010-02-01
The structure of the Martian convective boundary layer (BL) is decribed by means of a novel approach involving both modelling and data analysis. Mars Express radio-occultation (RO) temperature profiles are compared to large-eddy simulations (LESs) performed with the Martian mesoscale model. The model combines the Martian radiative transfer, soil and surface layer schemes designed at Laboratoire de Météorologie Dynamique (LMD) with the most recent version of the Weather Research and Forecast (WRF) fully compressible non-hydrostatic dynamical core. The key roles of the vertical resolution and, to lesser extent, of the domain horizontal extent have been investigated to ensure the robustness of the LES results. The dramatic regional variations of the BL depth are quantitatively reproduced by the Martian LES. Intense BL dynamics are found to underlie the measured depths (up to 9 km): vertical speed up to 20 m s-1, heat flux up to 2.7 K m s-1 and turbulent kinetic energy up to 26 m2 s-2. Under specific conditions, both the model and the measurements show a distinctive positive correlation between surface topography and BL depth. Our interpretation is that, in the tenuous CO2 Martian near-surface environment, the daytime BL is to first order controlled by the infrared radiative heating, fairly independent of elevation, which implies a simple correlation between the BL potential temperature and the inverse pressure ("pressure effect"). No prominent "pressure effect" is in action on Earth where sensible heat flux dominates the BL energy budget. Both RO observations and numerical simulations confirm the terrain-following behaviour of near-surface temperature on Mars induced by the dominant radiative influence. The contribution of the Martian sensible heat flux is not negligible and results in a given isotherm in the BL being comparatively closer to the ground at higher surface elevation. The strong radiative control of the Martian convective BL implies a generalised formulation for the BL dimensionless quantities. Based on this formulation and the variety of simulated BL depths by the LES, new similarity relationships for the Martian convective BL in quasi-steady midday conditions are derived. Rigorous comparisons between the Martian and terrestrial BL and fast computations of the mean Martian BL turbulent statistics are now made possible by such similarity laws.
Daytime Solar Heating Controls Downy Mildew Peronospora belbahrii in Sweet Basil
Cohen, Yigal; Rubin, Avia E.
2015-01-01
The biotrophic oomycete Peronospora belbahrii causes a devastating downy mildew disease in sweet basil. Due to the lack of resistant cultivars current control measures rely heavily on fungicides. However, resistance to fungicides and strict regulation on their deployment greatly restrict their use. Here we report on a ‘green’ method to control this disease. Growth chamber studies showed that P. belbahrii could hardly withstand exposure to high temperatures; exposure of spores, infected leaves, or infected plants to 35-45°C for 6-9 hours suppressed its survival. Therefore, daytime solar heating was employed in the field to control the downy mildew disease it causes in basil. Covering growth houses of sweet basil already infected with downy mildew with transparent infra-red-impermeable, transparent polyethylene sheets raised the daily maximal temperature during sunny hours by 11-22°C reaching 40-58°C (greenhouse effect). Such coverage, applied for a few hours during 1-3 consecutive days, had a detrimental effect on the survival of P. belbahrii: killing the pathogen and/or suppressing disease progress while enhancing growth of the host basil plants. PMID:25992649
NASA Technical Reports Server (NTRS)
Zhang, Ping; Imhoff, Marc L.; Bounoua, Lahouri; Wolfe, Robert E.
2011-01-01
Impervious surface area (ISA) from the National Land Cover Database (NLCD) 2001 and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature and its relationship to settlement size and shape, development intensity distribution, and land cover composition for 42 urban settlements embedded in forest biomes in the Northeastern United States. Development intensity zones, based on percent ISA, are defined for each urban area emanating outward from the urban core to nearby rural areas and are used to stratify land surface temperature. The stratification is further constrained by biome type and elevation to insure objective intercomparisons between urban zones within an urban settlement and between settlements. Stratification based on ISA allows the definition of hierarchically ordered urban zones that are consistent across urban settlements and scales. In addition to the surrounding ecological context, we find that the settlement size and shape as well as the development intensity distribution significantly influence the amplitude of summer daytime UHI. Within the Northeastern US temperate broadleaf mixed forest, UHI magnitude is positively related to the logarithm of the urban area size. Our study indicates that for similar urban area sizes, the development intensity distribution is one of the major drivers of UHI. In addition to urban area size and development intensity distribution, this analysis shows that both the shape of the urban area and the land cover composition in the surrounding rural area play an important role in modulating the UHI magnitude in different urban settlements. Our results indicate that remotely sensed urban area size and shape as well as the development intensity distribution influence UHI amplitude across regional scales.
NASA Technical Reports Server (NTRS)
Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis
2014-01-01
The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.
Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Pittock, A. B.; Walsh, K.
1990-01-01
The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.
Correction of Excessive Precipitation Over Steep and High Mountains in a General Circulation Model
NASA Technical Reports Server (NTRS)
Chao, Winston C.
2012-01-01
Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and meso-scale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by the heated boundary layer on subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgridscale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvablescale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes of EPSM that we have investigated include 1) a poorly-designed horizontal moisture flux in the terrain-following coordinates, 2) the condition for cumulus convection being too easily satisfied at mountaintops, 3) the presence of conditional instability of the computational kind, and 4) the absence of blocked flow drag. These are all minor or inconsequential. We have parameterized the ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in layers higher up when the topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-S GCM have shown that this largely solved the EPSM problem.
NASA Technical Reports Server (NTRS)
Levy, Gad; Tiu, Felice S.
1990-01-01
Statistical tests are performed on the Seasat scatterometer observations to examine if and to what degree thermal advection and stratification effects manifest themselves in these remotely sensed measurements of mean wind and wind stress over the ocean. On the basis of a two layer baroclinic boundary layer model which is presented, it is shown that the thermal advection and stratification of the entire boundary layer as well as the geostrophic forcing influence the modeled near surface wind and wind stress profiles. Evidence of diurnal variation in the stratification under barotropic conditions is found in the data, with the daytime marine boundary layer being more convective than its nighttime counterpart. The temporal and spacial sampling pattern of the satellite makes it impossible to recover the full diurnal cycle, however. The observed effects of the thermal advection are shown to be statistically significant during the day (and presumed more convective) hours, causing a systematic increase in the poleward transport of mass and heat. The statistical results are in a qualitative agreement with the model simulations and cannot be reproduced in randomized control tests.
An investigation of relationships between meso- and synoptic-scale phenomena
NASA Technical Reports Server (NTRS)
Scoggins, J. R.; Wood, J. E.; Fuelberg, H. E.; Read, W. L.
1972-01-01
Methods based on the vorticity equation, the adiabatic method, the curvature of the vertical wind profile, and the structure of synoptic waves are used to determine areas of positive vertical motion in the mid-troposphere for a period in each season. Parameters indicative of low-level moisture and conditional instability are areas in which mesoscale systems may be present. The best association between mesoscale and synoptic-scale phenomena was found for a period during December when synoptic-scale systems were well developed. A good association between meso- and synoptic-scale events also was found for a period during March, while the poorest association was found for a June period. Daytime surface heating apparently is an important factor in the formation of mesoscale systems during the summer. It is concluded that the formation of mesoscale phenomena may be determined essentially from synoptic-scale conditions during winter, late fall, and early spring.
Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California
NASA Technical Reports Server (NTRS)
Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel
2015-01-01
Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.
Cycles in metabolism and heat loss
NASA Technical Reports Server (NTRS)
Annis, J. F.; Troutman, S. J.; Webb, P.
1974-01-01
Using calorimetric techniques, subjects' metabolism, thermoregulation, and body temperatures were monitored continuously for 24-hour days, using three types of experimental routines. A water cooling garment (WCG) was used for direct calorimetry, while partitional calorimetry was used to establish a non-suited comparison for one of the routines. In this replicated routine, called the quiet day, the subjects were sedentary throughout the daytime hours and slept normally at night. Results indicate that the WCG may act to reduce 24-hour total oxygen consumption (VO2) or heat production, possibly due to the lowered energy cost of thermoregulation.
NASA Technical Reports Server (NTRS)
Moroz, V. I.; Moshkin, B. Y.; Ekonomov, A. P.; Sanko, N. F.; Parfentev, N. A.; Golovin, Y. M.
1979-01-01
The spectra of the daytime sky of Venus were recorded on the Venera-11 and Venera-12 descent vehicles at various altitudes above the planet's surface, within the interval of 4500 to 12,000 Angstroms. The angular distribution of the brightness of the scattered radiation was recorded and the ratio of water and carbon dioxide were studied, with respect to the cloud cover boundaries.
NASA Astrophysics Data System (ADS)
Wang, L.; Lin, G.; Feng, D.; Chen, S.; Schultz, N. M.; Fu, C.; Wei, Z.; Yin, C.; Wang, W.; Lee, X.
2017-12-01
To better design climate mitigation strategies, it is important to understand the response of regional climatic indicators and related biophysical forcings to large scale afforestation projects. The response of surface temperature (Ts) caused by afforestation activities in the Kubuqi Desert, Inner Mongolia, China is simulated by the weather research and forecasting (WRF) model and the temperature changes (ΔTs) are decomposed into contributions from changes in surface albedo, surface roughness, Bowen ratio and ground heat flux using the intrinsic biophysical mechanism (IBPM). The 30-m resolution land cover maps of the Kubuqi Desert corresponding to 2000 and 2010 conditions are analyzed and the major land use changes are found to be an increase in the area of grassland (6%) and shrubland (15%), but a decrease in the area of bare land (21%) owed to the aerial seeding afforestation activities organized by Elion Resources Group, Co. and local government agencies. Our WRF simulations show that during winter, the increased cover of vegetation mainly has a warming effect (0.38 K) in the daytime due to the changes in albedo (0.24 K) and Bowen ratio (0.15 K). In the nighttime, the vegetation has a slight warming effect (0.2 K) mainly caused by energy redistribution associated with roughness change (0.2 K) as a result of vegetation turbulence, which brought heat from aloft to the surface. Although both roughness change (-0.35 K) and Bowen ratio change (-0.35 K) have cooling effects during summer days, the warming effect caused by radiative forcing (0.93 K) dominates the ΔTs. During summer nights, the change in surface temperature is not significant. Our findings demonstrate that the large-scale afforestation project in the Kubuqi Desert during a decade alters the regional surface temperature and the analysis of biophysical forcings changes using WRF simulation provides useful information for developing climate change mitigation strategies in semi-arid and arid regions.
NASA Astrophysics Data System (ADS)
Safargaleev, V. V.; Safargaleeva, N. N.
2018-03-01
The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 R E from the Earth's surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.
Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery
NASA Astrophysics Data System (ADS)
Weng, Qihao; Fu, Peng
2014-11-01
Land surface temperature is a key parameter for monitoring urban heat islands, assessing heat related risks, and estimating building energy consumption. These environmental issues are characterized by high temporal variability. A possible solution from the remote sensing perspective is to utilize geostationary satellites images, for instance, images from Geostationary Operational Environmental System (GOES) and Meteosat Second Generation (MSG). These satellite systems, however, with coarse spatial but high temporal resolution (sub-hourly imagery at 3-10 km resolution), often limit their usage to meteorological forecasting and global climate modeling. Therefore, how to develop efficient and effective methods to disaggregate these coarse resolution images to a proper scale suitable for regional and local studies need be explored. In this study, we propose a least square support vector machine (LSSVM) method to achieve the goal of downscaling of GOES image data to half-hourly 1-km LSTs by fusing it with MODIS data products and Shuttle Radar Topography Mission (SRTM) digital elevation data. The result of downscaling suggests that the proposed method successfully disaggregated GOES images to half-hourly 1-km LSTs with accuracy of approximately 2.5 K when validated against with MODIS LSTs at the same over-passing time. The synthetic LST datasets were further explored for monitoring of surface urban heat island (UHI) in the Los Angeles region by extracting key diurnal temperature cycle (DTC) parameters. It is found that the datasets and DTC derived parameters were more suitable for monitoring of daytime- other than nighttime-UHI. With the downscaled GOES 1-km LSTs, the diurnal temperature variations can well be characterized. An accuracy of about 2.5 K was achieved in terms of the fitted results at both 1 km and 5 km resolutions.
NASA Astrophysics Data System (ADS)
Targino, Admir Créso; Coraiola, Guilherme Conor; Krecl, Patricia
2018-06-01
We measured air temperature at 14 sites with different land cover composition within the urban canopy layer of a mid-sized Brazilian city. The intensity (ΔT) of the urban heat island (UHI) was calculated using data collected above a lake and at an urban park as references. We investigated the spatio-temporal variability of ΔT during four contiguous days with varying weather. The first day was overcast and rainy, giving rise to a moderate UHI. The second day was sunny, which caused the diurnal ΔT fields to become heterogeneous, due to larger heating rates at sites with more man-made surfaces compared to natural surfaces. A high-pressure system observed on the last days brought cloudless skies, causing smaller ΔT during the day and greater at night. We hypothesise that the effect was due to the reduction of cooling via evapotranspiration caused by closing of the stomata as the soil dried out, which reduced the daytime temperature differences among the sites. The night-time effect was caused by stronger radiative cooling due to clear skies. The temperature within the park was always lower than over the lake, confirming that urban forestry is a more effective mechanism to combat the UHI. Introducing a park would be about sevenfold cheaper than building a city pond. Hence, green spaces are not only more efficient to combat the UHI but it is also a cheaper strategy compared to blue spaces. Moreover, vegetation delivers other benefits, such as removal of air pollutants, attenuation of urban noise, improvement of city aesthetic and their use as recreational spaces.
NASA Astrophysics Data System (ADS)
Bonan, Gordon B.; Patton, Edward G.; Harman, Ian N.; Oleson, Keith W.; Finnigan, John J.; Lu, Yaqiong; Burakowski, Elizabeth A.
2018-04-01
Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin-Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.
A Self-consistent Thermal Emission Model for Io
NASA Astrophysics Data System (ADS)
Veeder, G. J.; Matson, D. L.; Johnson, T. V.; Davies, A. G.; Blaney, D. L.
2002-05-01
Io's unusual infrared properties first became evident in the 1960's when eclipse measurements and infrared radiometry yielded results that could not be easily explained by lunar-like models. When Voyager observations in 1979 discovered active volcanism and a geologically youthful surface some of the reasons for this bizarre behavior became evident. The first determination of Io's heat flow resulted from examining the signature of volcanic heat in telescopic observations (Matson et al., JGR, 86, 1664, 1981). Since then, numerous telescopic observations and Galileo observations have greatly expanded our understanding of Io's volcanism. However, significant problems remain. Any successful model must reconcile the various observations and constraints on Io's thermal output: 1. small volcanic hot spots; 2. multi-wavelength radiometry at all longitude; 3. multi-wavelength eclipse observations; and 4. temperature distributions observed by NIMS and PPR on Galileo. Two particularly difficult observational constraints have proved to be the daytime long-wavelength flux (20 microns) from Io, which is actually lower than expected for most passive models despite the obvious presence of volcanic contributions (Veeder et al., JGR, 99, 17095, 1994), and the surprising observation of ubiquitous warm regions at high latitudes in both the day and night (Spencer et al., Sci., 288, 1198, 2000; Rathbun et al., LPSC XXXIII, abs 1371, 2002). This paper presents preliminary results of a self-consistent thermal model that involves small volcanic hot spots, both high and low thermal inertia components on Io's surface, and significant thermal output from cooling lava flows preferentially at high latitudes. The resulting heat flow is ~ 3 W/m2, somewhat higher than previous estimates and well below the upper limit of 13.5 W/m2 derived earlier (Matson et al., JGR, 106, 33021, 2001).
Barr, Jordan G.; Engel, Vic; Smith, Thomas J.; Fuentes, Jose D.
2012-01-01
Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004–2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007–2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest–atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.
Casey, James P; James, Michael C; Williard, Amanda S
2014-07-01
Leatherback turtles in the Northwest Atlantic Ocean have a broad geographic range that extends from nesting beaches near the equator to seasonal foraging grounds as far north as Canada. The ability of leatherbacks to maintain core body temperature (Tb) higher than that of the surrounding water is thought to be a key element of their biology that permits them to exploit productive waters at high latitudes. We provide the first recordings of Tb from freely swimming leatherbacks at a northern foraging ground, and use these data to assess the importance of behavioral adjustments and metabolic sources of heat for maintenance of the thermal gradient (Tg). The mean Tb for individual leatherbacks ranged from 25.4 ± 1.7 to 27.3 ± 0.3 °C, and Tg ranged from 10.7 ± 2.4 to 12.1 ± 1.7 °C. Variation in mean Tb was best explained by the amount of time that turtles spent in the relatively warm surface waters. A diel trend in Tb was apparent, with daytime cooling suggestive of prey ingestion and night-time warming attributable to endogenous heat production. We estimate that metabolic rates necessary to support the observed Tg are ~3 times higher than resting metabolic rate, and that specific dynamic action is an important source of heat for foraging leatherbacks. © 2014. Published by The Company of Biologists Ltd.
Observed and Simulated Urban Heat Island and Urban Cool Island in Las Vegas
NASA Astrophysics Data System (ADS)
Sauceda, Daniel O.
This research investigates the urban climate of Las Vegas and establishes long-term trends relative to the regional climate in an attempt to identify climate disturbances strictly related to urban growth. An experimental surface station network (DRI-UHI) of low-cost surface temperature (T2m) and relative humidity (RH) sensors were designed to cover under-sampled low-intensity residential urban areas, as well as complement the in-city and surrounding rural areas. In addition to the analysis of the surface station data, high-resolution gridded data products (GDPs) from Daymet (1km) and PRISM (800 m) and results from numerical simulations were used to further characterize the Las Vegas climate trends. The Weather Research and Forecasting (WRF) model was coupled with three different models: the Noah Land Surface Model (LSM) and a single- and multi-layer urban canopy model (UCM) to assess the urban related climate disturbances; as well as the model sensitivity and ability to characterize diurnal variability and rural/urban thermal contrasts. The simulations consisted of 1 km grid size for five, one month-long hindcast simulations during November of 2012: (i) using the Noah LSM without UCM treatment, (ii) same as (i) with a single-layer UCM (UCM1), (iii) same as (i) with a multi-layer UCM (UCM2), (iv) removing the City of Las Vegas (NC) and replacing it with predominant land cover (shrub), and (v) same as (ii) with increasing the albedo of rooftops from 0.20 to 0.65 as a potential adaptation scenario known as "white roofing". T2m long-term trends showed a regional warming of minimum temperatures (Tmin) and negligible trends in maximum temperatures (Tmax ). By isolating the regional temperature trends, an observed urban heat island (UHI) of ~1.63°C was identified as well as a daytime urban cool island (UCI) of ~0.15°C. GDPs agree with temperature trends but tend to underpredict UHI intensity by ~1.05°C. The WRF-UCM showed strong correlations with observed T2m (0.85 < rho < 0.95) and vapor pressure (ea ; 0.83 < rho < 0.88), and moderate-to-strong correlations for RH (0.64 < rho < 0.81) at the 95% confidence level. UCM1 shows the best skill and adequately simulates most of the UHI and UCI observed characteristics. Differences of LSM, UCM1, and UCM2 minus NC show simulated effects of warmer in-city Tmin for LSM and UCM2, and cooler in-city Tmax for UCM1 and UCM2. Finally, the white roofing scenario for Las Vegas was not found to significantly impact the UHI effect but has the potential to reduce daytime temperature by 1°-2°C.
Investigation of the daytime lunar atmosphere for lunar synthesis program
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1976-01-01
Synthesis studies of the daytime lunar atmoshere were directed toward improved understanding of fundamental lunar atmospheric dynamics and the relationship of the detectable atmosphere to physical processes of the lunar surface and interior. The primary source of data is the Apollo 17 lunar surface mass spectrometer. The Ar40 is radiogenic and its escape rate from the lunar atmosphere requires release of a significant fraction (about 8%) of the argon produced from the decay of K40 within the moon. Furthermore the process of argon release from the solid moon is time varying and related to seismic activity. Most of the helium on the moon is due to release of implanted solar wind alpha particles from the regolith.
Enhanced Soundings for Local Coupling Studies: 2015 ARM Climate Research Facility Field Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, CR; Santanello, JA; Gentine, P
2015-11-01
Matching observed diurnal cycles is a fundamental yet extremely complex test for models. High temporal resolution measurements of surface turbulent heat fluxes and boundary layer properties are required to evaluate the daytime evolution of the boundary layer and its sensitivity to land-atmosphere coupling. To address this need, (12) one-day intensive observing periods (IOP) with enhanced radiosonding will be carried out at the ARM Southern Great Plains (SGP) Central Facility (CF) during summer 2015. Each IOP will comprise a single launch to correspond with the nighttime overpass of the A-Train of satellites (~0830 UTC) and hourly launches during daytime beginning frommore » 1130 UTC and ending at 2130 UTC. At 3-hourly intervals (i.e., 1140 UTC, 1440 UTC, 1740 UTC, and 2040 UTC) a duplicate second radiosonde will be launched 10 minutes subsequent to launch of the on-hour radiosonde for the purpose of assessing horizontal atmospheric variability. In summary, each IOP will have a 14-sounding supplement to the 6-hourly operational sounding schedule at the ARM-SGP CF. The IOP days will be decided before sunset on the preceding day, according to the judgment of the PI’s and taking into consideration daily weather forecasts and the operability of complimentary ARM-SGP CF instrumentation. An overarching goal of the project is to address how ARM could better observe land-atmosphere coupling to support the evaluation and refinement of coupled weather and climate models.« less
Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature.
Arend, M; Brem, A; Kuster, T M; Günthardt-Goerg, M S
2013-01-01
Oaks are commonly considered as drought- and heat-tolerant trees that might benefit from a warmer and drier climate. Their tolerance to drought has been frequently studied in the past, whereas studies dealing with elevated temperature or its combination with drought are very limited in number. In this study we investigated seasonal photosynthetic patterns in three European oak species (Quercus robur, Q. petraea, Q. pubescens) exposed in lysimeter-based open-top chambers (OTC) to elevated daytime temperature, drought and their combination. Stomatal and non-stomatal traits of photosynthesis were followed over an entire growing season and related to changes in daytime temperature, soil moisture and pre-dawn leaf water potential (Ψ(PD) ). Elevated daytime temperature enhanced net photosynthesis (P(N) ) in a season-dependent manner, with higher mid-summer rates than in controls exposed to ambient temperature. Drought imposed in early and mid-summer reduced the soil moisture content and caused a gradual decline in Ψ(PD) , stomatal conductance (g(S) ) and P(N) . Drought effects on Ψ(PD) and P(N) were exacerbated when drought was combined with elevated daytime temperature. In general, P(N) tended to be more affected by low soil moisture content or low Ψ(PD) in Q. robur than in Q. petraea and Q. pubescens. Non-stomatal limitations may have contributed to the drought-induced decline of P(N) in Q. robur, as indicated by a down-regulation of PSII photochemistry (F(V) /F(M) ) and decreased chlorophyll content. Taken together, our findings show that European oaks may benefit from elevated temperature, but detrimental effects can be expected when elevated temperature occurs simultaneously with drought. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Taylor, C.; Birch, C.; Parker, D.; Guichard, F.; Nikulin, G.; Dixon, N.
2013-12-01
Land surface properties influence the life cycle of convective systems across West Africa via space-time variability in sensible and latent heat fluxes. Previous observational and modelling studies have shown that areas with strong mesoscale variability in vegetation cover or soil moisture induce coherent structures in the daytime planetary boundary layer. In particular, horizontal gradients in sensible heat flux can induce convergence zones which favour the initiation of deep convection. A recent study based on satellite data (Taylor et al. 2011), illustrated the climatological importance of soil moisture gradients in the initiation of long-lived Mesoscale Convective Systems (MCS) in the Sahel. Here we provide a unique assessment of how models of different spatial resolutions represent soil moisture - precipitation feedbacks in the region, and compare their behaviour to observations. Specifically we examine whether the inability of large-scale models to capture the observed preference for afternoon rain over drier soil in semi-arid regions [Taylor et al., 2012] is due to inadequate spatial resolution and/or systematic bias in convective parameterisations. Firstly, we use a convection-permitting simulation at 4km resolution to explore the underlying mechanisms responsible for soil moisture controls on daytime convective initiation in the Sahel. The model reproduces very similar spatial structure as the observations in terms of antecedent soil moisture in the vicinity of a large sample of convective initiations. We then examine how this same model, run at coarser resolution, simulates the feedback of soil moisture on daily rainfall. In particular we examine the impact of switching on the convective parameterisation on rainfall persistence, and compare the findings with 10 regional climate models (RCMs). Finally, we quantify the impact of the feedback on dry-spell return times using a simple statistical model. The results highlight important weaknesses in convective parameterisations which are likely to impact land surface sensitivity studies and hydroclimatic variability on certain time and space scales. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377
Flux agreement above a Scots pine plantation
NASA Astrophysics Data System (ADS)
Gay, L. W.; Vogt, R.; Bernhofer, Ch.; Blanford, J. H.
1996-03-01
The surface energy exchange of 12m high Scots pine plantation at Hartheim, Germany, was measured with a variety of methods during a 11-day period of fine weather in mid-May 1992. Net radiation and rate of thermal storage were measured with conventional net radiometers, soil heat flux discs and temperature-based storage models. The turbulent fluxes discussed in this report were obtained with an interchanging Bowen ratio energy budget system (BREB, at 14 m), two one-propeller eddy correlation systems (OPEC systems 1 and 2 at 17m), a 1-dimensional sonic eddy correlation system (SEC system 3) at 15 m, all on one “low” tower, and a 3-dimensional sonic eddy correlation system (SEC system 22) at 22 m on the “high” tower that was about 46 m distant. All systems measured sensible and latent heat (H and LE) directly, except for OPEC systems 1 and 2 which estimated LE as a residual term in the surface energy balance. Closure of turbulent fluxes from the two SEC systems was around 80% for daytime and 30% for night, with closure of 1-dimensional SEC system 3 exceeding that of 3-dimensional SEC system 22. The night measurements of turbulent fluxes contained considerable uncertainty, especially with the BREB system where measured gradients often yielded erroneous fluxes due to problems inherent in the method (i.e., computational instability as Bowen's ratio approaches -1). Also, both eddy correlation system designs (OPEC and SEC) appeared to underestimate |H| during stable conditions at night. In addition, both sonic systems (1- and 3-dimensional) underestimated |LE| during stable conditions. The underestimate of |H| at night generated residual estimates of OPEC LE containing a “phantom dew” error that erroneously decreased daily LE totals by about 10 percent. These special night problems are circumvented here by comparing results for daytime periods only, rather than for full days. To summarize, turbulent fluxes on the low tower from OPEC system 2 and the adjacent SEC system 3 were in reasonable agreement, while the BREB system appeared to overestimate H and underestimate LE; H and LE measured by SEC system 22 on the high tower were lower than from OPEC and SEC3 on the low tower. The turbulent flux measurements tended to converge, but the data exhibit unexplained differences between days, between systems, and between locations.
Li, Yu Ran; Wang, Xing Chang; Wang, Chuan Kuan; Liu, Fan; Zhang, Quan Zhi
2017-10-01
Plant temperature is an important parameter for estimating energy balance and vegetation respiration of forest ecosystem. To examine spatial variation in diurnal courses of stem temperatures (T s ) and its influencing factors, we measured the T s with copper constantan thermocouples at different depths, heights and azimuths within the stems of two broadleaved tree species with contrasting bark and wood properties, Betula platyphylla and Fraxinus mandshurica. The results showed that the monthly mean diurnal courses of the T s largely followed that of air temperature with a 'sinusoi dal' pattern, but the T s lagged behind the air temperature by 0 h at the stem surface to 4 h at 6 cm depth. The daily maximal values and ranges of the diurnal course of T s decreased gradually with increasing measuring depth across the stem and decreasing measuring height along the stem. The circumferential variation in T s was marginal, with slightly higher daily maximal values in the south and west directions during the daytime of the dormant season. Differences in thermal properties (i.e. , specific heat capacity and thermal conductivity) of both bark and wood tissue between the two species contributed to the inter specific variations in the radial variation in T s through influencing the heat exchange between the stem surface and ambient air as well as heat diffusion within the stem. The higher reflectance of the bark of B. platyphylla decreased the influence of solar radiation on T s . The stepwise regression showed that the diurnal courses of T s could be well predicted by the environmental factors (R 2 > 0.85) with an order of influence ranking as air temperature > water vapor pressure > net radiation > wind speed. It is necessary to take the radial, vertical and inter specific varia-tions in T s into account when estimating biomass heat storage and stem CO2 efflux.
NASA Technical Reports Server (NTRS)
Parinussa, Robert M.; de Jeu, Richard A. M.; van Der Schalie, Robin; Crow, Wade T.; Lei, Fangni; Holmes, Thomas R. H.
2016-01-01
Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth's surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1-2 GHz). Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm) observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am) equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM), and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm) and descending (01:30 am) paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for the radiative transfer was varied by imposing a bias on an existing regression. These scenarios were evaluated through the Rvalue technique, resulting in optimal bias values on top of this regression. In a next step, these optimal bias values were incorporated in order to re-calibrate the existing linear regression, resulting in a quasi-global uniform LST relation for day-time observations. In a final step, day-time soil moisture retrievals using the re-calibrated land surface temperature relation were again validated through the Rvalue technique. Results indicate an average increasing Rvalue of 16.5%, which indicates a better performance obtained through the re-calibration. This number was confirmed through an independent Triple Collocation verification over the same domain, demonstrating an average root mean square error reduction of 15.3%. Furthermore, a comparison against an extensive in situ database (679 stations) also indicates a generally higher quality for the re-calibrated dataset. Besides the improved day-time dataset, this study furthermore provides insights on the relative quality of soil moisture retrieved from AMSR-E's day- and night-time observations.
Contrasting effects of urbanization and agriculture on surface temperature in eastern China
Decheng Zhou; Dan Li; Ge Sun; Liangxia Zhang; Yongqiang Liu; Lu Hao
2016-01-01
The combined effect of urbanization and agriculture, two most pervasive land use activities, on the surface climate remains poorly understood. Using Moderate Resolution Imaging Spectroradiometer data over 2010â2015 and forests as reference, we showed that urbanization warmed the land surface temperature (LST), especially during the daytime and in growing seasons (...
USDA-ARS?s Scientific Manuscript database
Passive microwave observations from various space borne sensors have been linked to soil moisture of the Earth’s surface layer. The new generation passive microwave sensors are dedicated to retrieving this variable and make observations in the single, theoretically optimal L-band frequency (1-2 GHz)...
Applications of thermoelectric modules on heat flow detection.
Leephakpreeda, Thananchai
2012-03-01
This paper presents quantitative analysis and practical scenarios of implementation of the thermoelectric module for heat flow detection. Mathematical models of the thermoelectric effects are derived to describe the heat flow from/to the detected media. It is observed that the amount of the heat flow through the thermoelectric module proportionally induces the conduction heat owing to the temperature difference between the hot side and the cold side of the thermoelectric module. In turn, the Seebeck effect takes place in the thermoelectric module where the temperature difference is converted to the electric voltage. Hence, the heat flow from/to the detected media can be observed from both the amount and the polarity of the voltage across the thermoelectric module. Two experiments are demonstrated for viability of the proposed technique by the measurements of the heat flux through the building wall and thermal radiation from the outdoor environment during daytime. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, H.; Zhang, Y.; Williams, Q. L.; Jiang, H.; Sheng, L.
2008-12-01
Understanding seasonal and intraseasonal variations in evaporation over lake/reservoir is important for water resource management as well as predicting variations in hydrology as a result of climate change. Since August of 2007, we have conducted a long-term eddy covariance measurement of evaporation and the surface energy budget over Ross Barnett Reservoir (32o26'N, 90o02'W) in Mississippi, USA. The fetch for eddy covariance system exceeds 2 km in all directions and the water depth is about 4 m around the flux tower. The tower with its height of 4 m stands over a stationary wood platform with its size of 3 m × 3 m and height of about 1 m above the water surface. Along with sensible and latent heat fluxes, microclimate data are also measured, including wind speed, wind direction, relative humidity, solar radiation, net radiation, air temperature at four levels, water surface temperature, and water temperature at eight depths down to about 4 m. Mississippi is subject to frequent influences of different synoptic weather systems in a year around. Incursions of these different systems bring in air masses with different properties in temperature and moisture. Cold fronts, for example, carry them with cold and dry air from north while warm fronts with warm and moist air. Our results indicate that synoptic weather variations play an important role in controlling evaporations and the surface energy budget. For example, daily H and LE (i.e., evaporation) during the passages of cold fronts are around 2-4 times those of normal days and these cold front events lead to an increase in the seasonal H by approximately 420 and LE by 160%. However, the warm weather systems suppress largely the turbulent exchanges of sensible and latent heat, leading to very small evaporation and sensible heat fluxes (even negative). These results imply that future potential changes in cold front activities (intensity, frequency, and duration) as a result of climate change may lead to substantial shifts in regional energy budget and hydrological balance in the southern regions with an abundance of open water bodies (e.g., lakes, reservoirs, swamps etc). Using these datasets, the daytime and nighttime evaporation rates are also analyzed and nighttime evaporative water losses are substantial, contributing a significant portion to the total evaporative water loss.
Krause, G Heinrich; Cheesman, Alexander W; Winter, Klaus; Krause, Barbara; Virgo, Aurelio
2013-06-15
Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39°C), combined with either close to natural (22°C) or elevated (32°C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51°C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters. Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Lang, Moritz N.; Gohm, Alexander; Wagner, Johannes S.; Leukauf, Daniel; Posch, Christian
2014-05-01
Two dimensional idealised large-eddy-simulations are performed using the WRF model to investigate thermally driven flows during the daytime over complex terrain. Both the upslope flows and the temporal evolution of the boundary layer structure are studied with a constant surface heat flux forcing of 150 W m-2. In order to distinguish between different heating processes the flow is Reynold decomposed into its mean and turbulent part. The heating processes associated with the mean flow are a cooling through cold-air advection along the slopes and subsidence warming within the valleys. The turbulent component causes bottom-up heating near the ground leading to a convective boundary layer (CBL) inside the valleys. Overshooting potentially colder thermals cool the stably stratified valley atmosphere above the CBL. Compared to recent investigations (Schmidli 2013, J. Atmos. Sci., Vol. 70, No. 12: pp. 4041-4066; Wagner et al. 2014, manuscript submitted to Mon. Wea. Rev.), which used an idealised topography with two parallel mountain crests separated by a straight valley, this project focuses on multiple, periodic ridges and valleys within an isolated mountain range. The impact of different numbers of ridges on the flow structure is compared with the sinusoidal envelope-topography. The present simulations show an interaction between the smaller-scale upslope winds within the different valleys and the large-scale flow of the superimposed mountain-plain wind circulation. Despite a smaller boundary layer air volume in the envelope case compared to the multiple ridges case the volume averaged heating rates are comparable. The reason is a stronger advection-induced cooling along the slopes and a weaker warming through subsidence at the envelope-topography compared to the mountain range with multiple ridges.
NASA Astrophysics Data System (ADS)
Kattel, D. B.; Yao, T.; Ullah, K.; Islam, G. M. T.
2016-12-01
This study investigates the monthly characteristics of near-surface temperature lapse rates (TLRs) (i.e., governed by surface energy balance) based on the 176 stations 30-year (1980 to 2010) dataset covering a wide range of topography, climatic regime and relief (4801 m) in the HTP and its surroundings. Empirical analysis based on techniques in thermodynamics and hydrostatic system were used to obtain the results. Steepest TLRs in summer is due to strong dry convection and shallowest in winter is due to inversion effect is the general pattern of TLR that reported in previous studies in other mountainous region. Result of this study reports a contrast variation of TLRs from general patterns, and suggest distinct forcing mechanisms in an annual cycle. Shallower lapse rate occurs in summer throughout the regions is due to strong heat exchange process within the boundary layer, corresponding to the warm and moist atmospheric conditions. There is a systematic differences of TLRs in winter between the northern and southern slopes the Himalayas. Steeper TLRs in winter on the northern slopes is due to intense cooling at higher elevations, corresponding to the continental dry and cold air surges, and considerable snow-temperature feedback. The differences in elevation and topography, as well as the distinct variation of turbulent heating and cooling, explain the contrast TLRs (shallower) values in winter on the southern slopes. Distinct diurnal variations of TLRs and its magnitudes between alpine, dry, humid and coastal regions is due to the variations of adiabatic mixing during the daytime in the boundary layer i.e., associated with the variations in net radiations, elevation, surface roughness and sea surface temperature. The findings of this study is useful to determine the temperature range for accurately modelling in various field such as hydrology, glaciology, ecology, forestry, agriculture, as well as inevitable for climate downscaling in complex mountainous terrain.
Observational study of surface wind along a sloping surface over mountainous terrain during winter
NASA Astrophysics Data System (ADS)
Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk
2018-03-01
The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.
Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea.
Yuan, Yibo; Qiu, Zhongfeng; Sun, Deyong; Wang, Shengqiang; Yue, Xiaoyuan
2016-01-25
In this paper, a new daytime sea fog detection algorithm has been developed by using Geostationary Ocean Color Imager (GOCI) data. Based on spectral analysis, differences in spectral characteristics were found over different underlying surfaces, which include land, sea, middle/high level clouds, stratus clouds and sea fog. Statistical analysis showed that the Rrc (412 nm) (Rayleigh Corrected Reflectance) of sea fog pixels is approximately 0.1-0.6. Similarly, various band combinations could be used to separate different surfaces. Therefore, three indices (SLDI, MCDI and BSI) were set to discern land/sea, middle/high level clouds and fog/stratus clouds, respectively, from which it was generally easy to extract fog pixels. The remote sensing algorithm was verified using coastal sounding data, which demonstrated that the algorithm had the ability to detect sea fog. The algorithm was then used to monitor an 8-hour sea fog event and the results were consistent with observational data from buoys data deployed near the Sheyang coast (121°E, 34°N). The goal of this study was to establish a daytime sea fog detection algorithm based on GOCI data, which shows promise for detecting fog separately from stratus.
A thermal control system for long-term survival of scientific instruments on lunar surface.
Ogawa, K; Iijima, Y; Sakatani, N; Otake, H; Tanaka, S
2014-03-01
A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.
Regional Impacts of Urbanization in the United States
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari; Zhang, Ping; Nigro, Joseph; Lachir, Asia; Thome, Kurtis
2017-01-01
We simulate the impact of impervious surface areas (ISA) on the U.S. local and regional climate. At a local scale, we find the urban area warmer than the surrounding vegetation in most cities, except in arid climate cities where urban temperature is cooler for much of the daytime. For all 9 regions studied, simulated results show that the growing season maximum surface temperature difference between urban and the dominant vegetation occurs around mid-day and is strongest in the northern regions. Regional temperature differences of 3.0 C, 3.4 C, and 3.9 C were simulated in the Northeast, Midwest, and Northwest, respectively. In these regions evaporative cooling, during the growing season, creates a stronger urban heat island (UHI). The UHI is less pronounced during winter when vegetation is dormant. Our results suggest that the ISA temperature is set by building material's characteristics and its departure from that of the surrounding vegetation is essentially driven by evaporative cooling. Except when rainfall is small, the highest surface runoff to precipitation ratios are simulated in most cities, especially when precipitation events occur as heavy downpours. In terms of photosynthesis, we provide a detailed distribution of maximum production in the U.S., a needed product for policy and urban planners.
Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy
NASA Astrophysics Data System (ADS)
Inagaki, Atsushi; Castillo, Marieta Cristina L.; Yamashita, Yoshimi; Kanda, Manabu; Takimoto, Hiroshi
2012-02-01
Instantaneous flow structures "within" a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields "within" the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.
Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains
NASA Astrophysics Data System (ADS)
Williams, Ian N.; Lu, Yaqiong; Kueppers, Lara M.; Riley, William J.; Biraud, Sebastien C.; Bagley, Justin E.; Torn, Margaret S.
2016-10-01
Biases in land-atmosphere coupling in climate models can contribute to climate prediction biases, but land models are rarely evaluated in the context of this coupling. We tested land-atmosphere coupling and explored effects of land surface parameterizations on climate prediction in a single-column version of the National Center for Atmospheric Research Community Earth System Model (CESM1.2.2) and an off-line Community Land Model (CLM4.5). The correlation between leaf area index (LAI) and surface evaporative fraction (ratio of latent to total turbulent heat flux) was substantially underpredicted compared to observations in the U.S. Southern Great Plains, while the correlation between soil moisture and evaporative fraction was overpredicted by CLM4.5. To estimate the impacts of these errors on climate prediction, we modified CLM4.5 by prescribing observed LAI, increasing soil resistance to evaporation, increasing minimum stomatal conductance, and increasing leaf reflectance. The modifications improved the predicted soil moisture-evaporative fraction (EF) and LAI-EF correlations in off-line CLM4.5 and reduced the root-mean-square error in summer 2 m air temperature and precipitation in the coupled model. The modifications had the largest effect on prediction during a drought in summer 2006, when a warm bias in daytime 2 m air temperature was reduced from +6°C to a smaller cold bias of -1.3°C, and a corresponding dry bias in precipitation was reduced from -111 mm to -23 mm. The role of vegetation in droughts and heat waves is underpredicted in CESM1.2.2, and improvements in land surface models can improve prediction of climate extremes.
AATSR land surface temperature product algorithm verification over a WATERMED site
NASA Astrophysics Data System (ADS)
Noyes, E. J.; Sòria, G.; Sobrino, J. A.; Remedios, J. J.; Llewellyn-Jones, D. T.; Corlett, G. K.
A new operational Land Surface Temperature (LST) product generated from data acquired by the Advanced Along-Track Scanning Radiometer (AATSR) provides the opportunity to measure LST on a global scale with a spatial resolution of 1 km2. The target accuracy of the product, which utilises nadir data from the AATSR thermal channels at 11 and 12 μm, is 2.5 K for daytime retrievals and 1.0 K at night. We present the results of an experiment where the performance of the algorithm has been assessed for one daytime and one night time overpass occurring over the WATERMED field site near Marrakech, Morocco, on 05 March 2003. Top of atmosphere (TOA) brightness temperatures (BTs) are simulated for 12 pixels from each overpass using a radiative transfer model, with the LST product and independent emissivity values and atmospheric data as inputs. We have estimated the error in the LST product over this biome for this set of conditions by applying the operational AATSR LST retrieval algorithm to the modelled BTs and comparing the results with the original AATSR LSTs input into the model. An average bias of -1.00 K (standard deviation 0.07 K) for the daytime data, and -1.74 K (standard deviation 0.02 K) for the night time data is obtained, which indicates that the algorithm is yielding an LST that is too cold under these conditions. While these results are within specification for daytime retrievals, this suggests that the target accuracy of 1.0 K at night is not being met within this biome.
Spatial Variation In Growing Season Heat Sums Within Northern Hardwood Forest Canopy Gaps
Brian E. Potter; Paul J. Croft
2000-01-01
When a gap forms in a forest canopy, the first and most immediate effect on the exposed area is an increase in radiative exchange near the ground. More sunlight reaches the ground during the daytime, and at nighttime the ground is more exposed to longwave radiation influences from the sky. These changes in radiation lead directly to a different near-ground temperature...
NASA Astrophysics Data System (ADS)
Lesniak, Michael V.; Tregoning, Brett D.; Hitchens, Alexandra E.
2015-01-01
Our Sun outputs 3.85 x 1026 W of radiation, of which roughly 37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather.Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types.In this paper we compare the models' predictions to ground illuminance data from an observing run at the White Sands missile range (data was obtained from the United Kingdom's Meteorology Office). Continuous illuminance readings were recorded under various cloud conditions, during both daytime and nighttime hours. We find that under clear skies, the Shapiro model tends to better fit the observations during daytime hours with typical discrepancies under 10%. Under cloudy skies, both models tend to poorly predict ground illuminance. However, the Shapiro model, with typical average daytime discrepancies of 25% or less in many cases, performed somewhat better than the Brown model during daytime hours. During nighttime hours under cloudy skies, both models produced erratic results.
A chemical perspective of day and night tropical (10°N-15°N) mesospheric inversion layers
NASA Astrophysics Data System (ADS)
Ramesh, K.; Sridharan, S.; Raghunath, K.; Rao, S. Vijaya Bhaskara
2017-03-01
The various occurrence characteristics of day and night tropical (10°N-15°N, 60°E-90°E) mesospheric inversion layers (MILs) are studied by using TIMED Sounding of the Atmosphere using Broadband Emission Radiometry satellite data products of kinetic temperature; volume mixing ratios of O, H, and O3; volume emission rates of O2 (1Δ) and OH (1.6 µm channel), and chemical heating rates due to seven dominant exothermic reactions among H, O, O2, O3, OH, HO2, and CO2 cooling rates for the year 2011. Although both dynamics and chemistry play important roles, the present study mainly focuses on the chemical processes involved in the formation of day and night MILs. It is found that the upper level height of daytime (nighttime) MIL descends (ascends) from 88 km ( 80 km) in winter to 72 km ( 90 km) in summer. The day and night inversion amplitudes are correlated with total chemical heating rates and CO2 cooling rates, and they show semi annual variation with larger (smaller) values during equinoxes (solstices). The daytime (nighttime) inversion layers are predominantly due to the exothermic reaction, R5: O + O + M → O2 + M and R6: O + O2 + M → O3 + M (R3: H + O3 → OH + O2). In addition, the CO2 causes large cooling at the top and small heating at the bottom levels of both day and night MILs. In the absence of dynamical effects, the chemical heating and CO2 cooling jointly contribute for the occurrence of day and night MILs.
Preliminary Analysis of Chang'E-2 Microwave Brightness Temperature Maps of the Moon
NASA Astrophysics Data System (ADS)
Blewett, D. T.; Zheng, Y. C.; Chan, K. L.; Neish, C.; Tsang, K. T.; Zhu, Y. C.; Jozwiak, L.
2016-12-01
China's Chang'E-2 (CE-2) lunar orbiter carried a microwave radiometer (MRM) that conducted passive remote sensing of the Moon at 3, 7.8, 19.35 and 37 GHz during 2010-2011. Earlier, the Chang'E-1 MRM obtained lower spatial resolution microwave data from a 200-km orbit, higher than CE-2's 100-km orbit. The MRM datasets represent a unique set of measurements of a type that have not been conducted by any previous lunar missions. Thermal emission of the lunar surface was measured and calibrated to brightness temperature (TB). Spherical harmonics fits were then used to model the TB variation as functions of local time and latitude for each of the four channels. Using the spherical harmonics fits, the day- and nighttime TB maps measured at various local times were normalized to noon-time and midnight conditions. The resulting eight MRM TB maps provide key information on the surface and near-subsurface structure and thermophysical properties of the lunar regolith; this information is complementary to that derived from LRO Diviner observations in the infrared. We have observed many thermal anomalies on the Moon, i.e., hot regions in the daytime map and cold spots in the nighttime map. We find that the high-Ti maria are heated in the day and cool in the night much more quickly than the other maria, attributable to the greater abundance of ilmenite (which has higher dielectric loss tangent than silicate minerals) in the high-Ti basalts. We note interesting contrasts in thermal behavior among high-reflectance, rayed craters. For example, the high-reflectance rays of Tycho are cooler than the surroundings in the 3 GHz daytime and nighttime maps, while the prominent rays of some other craters like Giordano Bruno are not distinctive in the 3 GHz maps. These differences can be understood in terms of variations in composition, structure, and thermophysical properties of the ray materials.
Climate Impacts of Fire-Induced Land-Surface Changes
NASA Astrophysics Data System (ADS)
Liu, Y.; Hao, X.; Qu, J. J.
2017-12-01
One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.
NASA Astrophysics Data System (ADS)
He, Bin; Huang, Ling; Liu, Junjie; Wang, Haiyan; Lż, Aifeng; Jiang, Weiguo; Chen, Ziyue
2017-05-01
Desert greening through planting or irrigation is a potential approach to mitigate desertification and climate warming, but its influence on regional climate is unclear due to scarcity of observations. "Desert blooms," which are natural phenomena usually associated with the El Niño-Southern Oscillation, regularly occur in the world's driest desert, the Atacama Desert. This sudden conversion of land cover likely has a large impact on regional climate through alteration of local energy budgets and provides a unique opportunity to study the potential climatic and environmental consequences of desert greening. Here we evaluated the land surface effects of blooms in the Atacama Desert using vegetation and climate data acquired from remote sensing. The rapid vegetation growth during blooms led to an increase in evapotranspiration and a decrease in albedo. These two processes caused a 0.31°C ± 0.05°C decrease in daytime land surface temperature. During nighttime, we observed a 0.02°C ± 0.02°C increase in land surface temperature due to enhanced heat capacity associated with blooms. This asymmetric diurnal variation in land surface temperature produced a net decrease in daily land surface temperature of 0.29°C ± 0.07°C. Our observations demonstrate the potential benefits of desert blooms on local climate. Results from this study also provide new evidence for plausible climate consequences expected from local "desert greening" strategies.
NASA Technical Reports Server (NTRS)
Davis, P. A.; Penn, L. M. (Principal Investigator)
1981-01-01
A technique is developed for the estimation of total daily insolation on the basis of data derivable from operational polar-orbiting satellites. Although surface insolation and meteorological observations are used in the development, the algorithm is constrained in application by the infrequent daytime polar-orbiter coverage.
Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes.
Andersen, Mikkel R; Kragh, Theis; Sand-Jensen, Kaj
2017-09-13
A common perception in limnology is that shallow lakes are homogeneously mixed owing to their small water volume. However, this perception is largely gained by downscaling knowledge from large lakes to their smaller counterparts. Here we show that shallow vegetated lakes (less than 0.6 m), in fact, undergo recurring daytime stratification and nocturnal mixing accompanied by extreme chemical variations during summer. Dense submerged vegetation effectively attenuates light and turbulence generating separation between warm surface waters and much colder bottom waters. Photosynthesis in surface waters produces oxygen accumulation and CO 2 depletion, whereas respiration in dark bottom waters causes anoxia and CO 2 accumulation. High daytime pH in surface waters promotes precipitation of CaCO 3 which is re-dissolved in bottom waters. Nocturnal convective mixing re-introduces oxygen into bottom waters for aerobic respiration and regenerated inorganic carbon into surface waters, which supports intense photosynthesis. Our results reconfigure the basic understanding of local environmental gradients in shallow lakes, one of the most abundant freshwater habitats globally. © 2017 The Author(s).
Reconstructing spatial-temporal continuous MODIS land surface temperature using the DINEOF method
NASA Astrophysics Data System (ADS)
Zhou, Wang; Peng, Bin; Shi, Jiancheng
2017-10-01
Land surface temperature (LST) is one of the key states of the Earth surface system. Remote sensing has the capability to obtain high-frequency LST observations with global coverage. However, mainly due to cloud cover, there are always gaps in the remotely sensed LST product, which hampers the application of satellite-based LST in data-driven modeling of surface energy and water exchange processes. We explored the suitability of the data interpolating empirical orthogonal functions (DINEOF) method in moderate resolution imaging spectroradiometer LST reconstruction around Ali on the Tibetan Plateau. To validate the reconstruction accuracy, synthetic clouds during both daytime and nighttime are created. With DINEOF reconstruction, the root mean square error and bias under synthetic clouds in daytime are 4.57 and -0.0472 K, respectively, and during the nighttime are 2.30 and 0.0045 K, respectively. The DINEOF method can well recover the spatial pattern of LST. Time-series analysis of LST before and after DINEOF reconstruction from 2002 to 2016 shows that the annual and interannual variabilities of LST can be well reconstructed by the DINEOF method.
NASA Astrophysics Data System (ADS)
Trlica, A.; Hutyra, L.; Wang, J.; Schaaf, C.; Erb, A.
2016-12-01
The urban built environment creates key changes in the biophysical character of the landscape, including the creation of Urban Heat Islands (UHIs) with increased near-surface temperatures in and around cities. Alteration in surface albedo is believed to partially drive UHIs through greater absorption of solar energy, but few empirical studies have specifically quantified albedo across a heterogeneous urban landscape, or investigated linkages between albedo, the UHI, and other surface socio-biophysical characteristics at a high enough spatial resolution to discern urban-scale features. This study used data derived from observations by Landsat and other remote sensing platforms to measure albedo across a varied urban landscape centered on Boston, Massachusetts, and examined the relationship between albedo, several key indicators of urban surface character (canopy cover, impervious fraction, and population density) and land surface temperature at resolutions of both 30 and 500 m. Albedo tended to be lower in areas with highest urbanization intensity indicators compared to rural undeveloped areas, and areas with lower albedo tended also to have higher median daytime summer surface temperatures. A k-means classification utilizing all the data available for each pixel revealed several distinct patterns of urban land cover corresponding mainly to the density of population and constructed surfaces and their impact on tree canopy cover. Mean 30-m summer surface temperatures ranged from 40.0 °C (SD = 2.6) in urban core areas to 26.2 °C (SD = 1.1) in nearby forest, but we only observed correspondingly large albedo decreases in the highest density urban core, with mean albedo of 0.116 (SD = 0.015) compared with 0.155 (SD = 0.015) in forest. Observations show that lower albedo in the Boston metropolitan region may be an important component of the local UHI in the most densely built-up urban core regions, while the UHI temperature effect in less densely settled peripheral regions is more likely to be driven primarily by reduced evapotranspiration due to diminished tree canopy and greater impervious surface coverage. These results empirically characterize surface albedo across a suite of land cover categories and biophysical characteristics and reveal how albedo relates to surface temperatures in this urbanized region.
NASA Technical Reports Server (NTRS)
Ackerman, A. S.; Stevens, D. E.; Toon, O. B.; Coakley, J. A., Jr.; Gore, Warren J. (Technical Monitor)
2002-01-01
A number of observations and simulations have shown that increased droplet concentrations in ship tracks increase their total cross-sectional area, thereby enhancing cloud albedo and providing a negative (cooling) radiative forcing at the surface and the top of the atmosphere. In some cases cloud water has been found to be enhanced in ship tracks, which has been attributed to suppression of drizzle and implies an enhanced susceptibility of cloud albedo to droplet concentrations. However, observations from aircraft and satellite indicate that on average cloud water is instead reduced in daytime ship tracks. Such a reduction in liquid water may be attributable to cloud-burning caused by solar heating by soot within the ship exhaust, or by increased precipitation resulting from giant nuclei in the ship exhaust. We will summarize the observational evidence and present results from large-eddy simulations that evaluate these mechanisms. Along the way we will present our insights into the interpretation of satellite retrievals of cloud microphysical properties.
NASA Technical Reports Server (NTRS)
Wan, Zhengming
2002-01-01
The global land-surface temperature (LST) and normalized difference vegetation index (NDVI) products retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data in 2001 were used in this study. The yearly peak values of NDVI data at 5km grids were used to define six NDVI peak zones from -0.2 to 1 in steps of 0.2, and the monthly NDVI values at each grid were sorted in decreasing order, resulting in 12 layers of NDVI images for each of the NDVI peak zones. The mean and standard deviation of daytime LSTs and day-night LST differences at the grids corresponding to the first layer of NDVI images characterize the thermal status of terrestrial ecosystems in the NDVI peak zones. For the ecosystems in the 0.8-1 NDVI peak zone, daytime LSTs distribute from 0-35 C and day-night LST differences distribute from -2 to 22 C. The daytime LSTs and day-night LST differences corresponding to the remaining layers of NDVI images show that the growth of vegetation is limited at low and high LSTs. LSTs and NDVI may be used to monitor photosynthetic activity and drought, as shown in their applications to a flood-irrigated grassland in California and an unirrigated grassland in Nevada.
NASA Astrophysics Data System (ADS)
Oueslati, Boutheina; Camberlin, Pierre; Zoungrana, Joël; Roucou, Pascal; Diallo, Saliou
2018-02-01
The relationships between precipitation and temperature in the central Sudano-Sahelian belt are investigated by analyzing 50 years (1959-2008) of observed temperature (Tx and Tn) and rainfall variations. At daily time-scale, both Tx and Tn show a marked decrease as a response to rainfall occurrence, with a strongest departure from normal 1 day after the rainfall event (-0.5 to -2.5 °C depending on the month). The cooling is slightly larger when heavy rainfall events (>5 mm) are considered. The temperature anomalies weaken after the rainfall event, but are still significant several days later. The physical mechanisms accounting for the temperature response to precipitation are analysed. The Tx drop is accounted for by reduced incoming solar radiation associated with increased cloud cover and increased surface evaporation following surface moistening. The effect of evaporation becomes dominant a few days after the rainfall event. The reduced daytime heat storage and the subsequent sensible heat flux result in a later negative Tn anomaly. The effect of rainfall variations on temperature is significant for long-term warming trends. The rainfall decrease experienced between 1959 and 2008 accounts for a rainy season Tx increase of 0.15 to 0.3 °C, out of a total Tx increase of 1.3 to 1.5 °C. These results have strong implications on the assessment of future temperature changes. The dampening or amplifying effects of precipitation are determined by the sign of future precipitation trends. Confidence on temperature changes under global warming partly depend on the robustness of precipitation projections.
Trade cumulus clouds embedded in a deep regional haze: Results from Indian Ocean CARDEX experiment
NASA Astrophysics Data System (ADS)
Wilcox, E. M.; Thomas, R. M.; Praveen, P. S.; Pistone, K.; Bender, F.; Feng, Y.; Ramanathan, V.
2013-12-01
During the winter monsoon, trade cumulus clouds over the North Indian Ocean are embedded within a deep regional haze described as an atmospheric brown cloud. While the trade-cu clouds are largely confined to the marine boundary layer, the sooty brown cloud extends from the boundary layer to as high as 3 km; well above the tops of the cumulus. The boundary layer pollution is persistent and limits drizzle in the cumulus over a period of greater than a month at the Maldives Climate Observatory located at Hanimaadhoo Island. The elevated haze from 1 to 3 km altitude is episodic and strongly modulated by synoptic variability in the 700 hPa flow. The elevated plume enhances heating above the marine boundary layer through daytime absorption of sunlight by the haze particles. The interplay between the microphysical modification of clouds by boundary layer pollution and the episodic elevated heating by the atmospheric brown cloud are explored in in-situ observations from UAVs and surface remote sensing during the CARDEX field campaign of winter 2012 and supported by multi-year analysis of satellite remote sensing observations. These observations document the variability in pollution at the surface and above the marine boundary layer and the effects of pollution on the microphysics of the trade-cu clouds, the depth of the marine boundary layer, the liquid water path of trade-cu clouds, and the profile of turbulent moisture flux through the boundary layer. The consequences of these effects for the radiative forcing of regional climate will be discussed.
Rocket measurements of electron temperature in the E region
NASA Technical Reports Server (NTRS)
Zimmerman, R. K., Jr.; Smith, L. G.
1980-01-01
The rocket borne equipment, experimental method, and data reduction techniques used in the measurement of electron temperature in the E region are fully described. Electron temperature profiles from one daytime equatorial flight and two nighttime midlatitude flights are discussed. The last of these three flights, Nike Apache 14.533, showed elevated E region temperatures which are interpreted as the heating effect of a stable auroral red arc.
Sahelian springtime heat waves and their evolution over the past 60 years
NASA Astrophysics Data System (ADS)
Barbier, Jessica; Guichard, Françoise; Bouniol, Dominique; Couvreux, Fleur; Roehrig, Romain
2017-04-01
The Sahel is a semi-arid region which experiences very high temperature both during day- and night-times: monthly-mean temperatures in Spring typically oscillate between 30 and 40°C. At the same time a strong climatic warming has been observed over the past 60 years in this region: it reaches +1,5°C over April-May. Thus heat waves in this region have severe impacts on health, ecosystem, agriculture and more broadly economical activities, which will probably worsen in the context of climate change. However, heat waves in the Sahel remain poorly studied. The present work documents Sahelian heat waves and assesses their evolution across the last 60 years. Properties of heat waves are sensitive to the way they are detected. Here, we use a methodology based on anomalies that allows to filter the seasonal, inter-annual and climatic evolutions, using a percentile-type threshold. It is applied separately to daily maximum and minimum temperatures and leads to two types of heat waves: day- and night-time ones. This separation matters because physical processes linked to minimum and maximum temperatures can be quite distinct. The changes in both types of heat wave were studied over the period 1950-2012 using the Berkeley Earth Surface Temperature gridded product: several heat wave characteristics were investigated, including morphological ones such as the length and the spatial extent of the event, the heat wave intensity and the associated warming trends. We found no significant trends in the frequency, duration and spatial extent of both types of heat waves, while on the other hand their maximum and minimum temperatures displayed significant positive trends. They were mainly explained by the regional warming. By contrast, with a standard climatic heat index using percentile-threshold on raw temperatures, both day- and night-time heat wave frequencies were increasing, and while the day-time heat waves were getting longer and larger, the night-time heat waves were getting hotter. The explanations for the differences between the heat indexes will be discussed. The ability of the three reanalyses ERA-Interim, NCEP2 and MERRA to reproduce Sahelian heat wave properties and their associated trends was further assessed on the period 1979-2010. At this shorter scale, we did not find any significant heat wave trend. Furthermore, reanalyses strongly differed in the representation of the heat wave inter-annual variability. These results raise concern about the utilization of meteorological reanalyses for the study of heat wave trends in West Africa.
Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link
NASA Technical Reports Server (NTRS)
Hartenstine, John; Anderson, William G.; Walker, Kara; Dussinger, Pete
2012-01-01
Future lunar landers and rovers will require variable thermal links that allow for heat rejection during the lunar daytime and passively prevent heat rejection during the lunar night. During the lunar day, the thermal management system must reject the waste heat from the electronics and batteries to maintain them below the maximum acceptable temperature. During the lunar night, the heat rejection system must either be shut down or significant amounts of guard heat must be added to keep the electronics and batteries above the minimum acceptable temperature. Since guard heater power is unfavorable because it adds to system size and complexity, a variable thermal link is preferred to limit heat removal from the electronics and batteries during the long lunar night. Conventional loop heat pipes (LHPs) can provide the required variable thermal conductance, but they still consume electrical power to shut down the heat transfer. This innovation adds a thermal control valve (TCV) and a bypass line to a conventional LHP that proportionally allows vapor to flow back into the compensation chamber of the LHP. The addition of this valve can achieve completely passive thermal control of the LHP, eliminating the need for guard heaters and complex controls.
Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Zhang, Ping; Wolfe, Robert E.; Bounoua, Lahouari
2010-01-01
Impervious surface area (ISA) from the Landsat TM-based NLCD 2001 dataset and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined for each urban area emanating outward from the urban core to the nonurban rural areas nearby and used to stratify sampling for land surface temperatures and NDVI. Sampling is further constrained by biome and elevation to insure objective intercomparisons between zones and between cities in different biomes permitting the definition of hierarchically ordered zones that are consistent across urban areas in different ecological setting and across scales. We find that ecological context significantly influences the amplitude of summer daytime UHI (urban-rural temperature difference) the largest (8 C average) observed for cities built in biomes dominated by temperate broadleaf and mixed forest. For all cities combined, ISA is the primary driver for increase in temperature explaining 70% of the total variance in LST. On a yearly average, urban areas are substantially warmer than the non-urban fringe by 2.9 C, except for urban areas in biomes with arid and semiarid climates. The average amplitude of the UHI is remarkably asymmetric with a 4.3 C temperature difference in summer and only 1.3 C in winter. In desert environments, the LST's response to ISA presents an uncharacteristic "U-shaped" horizontal gradient decreasing from the urban core to the outskirts of the city and then increasing again in the suburban to the rural zones. UHI's calculated for these cities point to a possible heat sink effect. These observational results show that the urban heat island amplitude both increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The implications are that for urban areas developed within forested ecosystems the summertime UHI can be quite high relative to the wintertime UHI suggesting that the residential energy consumption required for summer cooling is likely to increase with urban growth within those biomes.
University of South Florida- Phase Change Materials (PCM)
Goswami, Yogi; Stefanakos, Lee
2018-05-30
USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night--when the sun is not out--to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF's PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.
NASA Astrophysics Data System (ADS)
Yin, Baoquan
2018-02-01
A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.
NASA Astrophysics Data System (ADS)
Hayamanesh, Shahnoosh; Keitel, Claudia; Ahmad, Nabil; Trethowan, Richard
2016-04-01
High temperature has been shown to lower the growth and yield of Okra, an important summer vegetable crop grown in Asia, Africa, the Middle East and Australia. We aimed to characterise the physiological and biochemical response of Okra to heat stress. 150 genotypes from Pakistan and the AVRDC (The World Vegetable Centre) were screened for their physiological response (fluorescence, electrolyte leakage and yield) to heat in a greenhouse. Four genotypes (including heat tolerant and sensitive) were selected and subsequently grown in control and hot greenhouses. Daytime temperatures were on average 10°C warmer in the hot greenhouse, whereas nighttime temperatures were similar between the two temperature treatments. During a 12 week period, the physiological (assimilation rate, transpiration rate, stomatal conductance, fluorescence, electrolyte leakage, water potential) and biochemical (carbohydrates, sugar alcohols, C content) response of the four genotypes to heat stress was assessed. The effect of heat stress on the C allocation patterns and yield in Okra will be discussed.
NASA Astrophysics Data System (ADS)
Xu, Xiaoyu; Chen, Fei; Shen, Shuanghe; Miao, Shiguang; Barlage, Michael; Guo, Wenli; Mahalov, Alex
2018-03-01
The air conditioning (AC) electric loads and their impacts on local weather over Beijing during a 5 day heat wave event in 2010 are investigated by using the Weather Research and Forecasting (WRF) model, in which the Noah land surface model with multiparameterization options (Noah-MP) is coupled to the multilayer Building Effect Parameterization and Building Energy Model (BEP+BEM). Compared to the legacy Noah scheme coupled to BEP+BEM, this modeling system shows a better performance, decreasing the root-mean-square error of 2 m air temperature to 1.9°C for urban stations. The simulated AC electric loads in suburban and rural districts are significantly improved by introducing the urban class-dependent building cooled fraction. Analysis reveals that the observed AC electric loads in each district are characterized by a common double peak at 3 p.m. and at 9 p.m. local standard time, and the incorporation of more realistic AC working schedules helps reproduce the evening peak. Waste heat from AC systems has a smaller effect ( 1°C) on the afternoon 2 m air temperature than the evening one (1.5 2.4°C) if AC systems work for 24 h and vent sensible waste heat into air. Influences of AC systems can only reach up to 400 m above the ground for the evening air temperature and humidity due to a shallower urban boundary layer than daytime. Spatially varying maps of AC working schedules and the ratio of sensible to latent waste heat release are critical for correctly simulating the cooling electric loads and capturing the thermal stratification of urban boundary layer.
Remote sensing of forest dynamics and land use in Amazonia
NASA Astrophysics Data System (ADS)
Toomey, Michael Paul
The rich, vast Amazonian ecosystem is directly and indirectly threatened by human activities; remote sensing serves as an essential tool for monitoring, understanding and mitigating these threats. A multi-faceted body of work is described here, addressing three major issues that employ and advance remote sensing techniques for the study of Amazonia and other tropical rainforest regions. In Chapter 2, canopy reflectance modeling and satellite observations were used to quantify the effect of epiphylls on remote sensing of humid forests. Modeling simulations demonstrated sensitivity of canopy-level near infrared and green reflectance to epiphylls on leaves. Time series of Moderate Resolution Imaging Spectrometer (MODIS) data corroborated the modeling results, suggesting a degree of coupling between epiphyll cover and vegetation indices which must be accounted for when using optical remote sensing in humid forests. In Chapter 4, 11 years (2000--2010) of MODIS land surface temperature (LST) data covering the entire Amazon basin were used to ascertain the role of heat stress during droughts in 2005 and 2010. Preliminary accuracy assessments showed that LST data provided reasonably accurate estimates of daytime air temperatures (RMSE = 1.45°C; Chapter 3). There were moderate to strong correlations between LST-based air temperature estimates and tower measurements (mean r = 0.64), illustrating a sensitivity to temporal variability. During both droughts, MODIS LST data detected anomalously high daytime and nighttime canopy temperatures throughout drought-affected regions. Multivariate linear models of LST and precipitation anomalies explained 65.1% of the variability in forest biomass losses, as determined from a wide network of forest inventory plots. These results suggest that models should incorporate both heat and moisture to predict drought effects on tropical forests. In Chapter 5, I performed high spatial and temporal resolution modeling of carbon stocks and fluxes in the state of Rondonia, Brazil for the period 1985--2009. Based on this analysis, Rondonia contributed ˜4% of pan-tropical humid forest deforestation emissions while carbon uptake by secondary forest was negligible due to limited spatial extent and high turnover rates. Spatial analysis of land cover change demonstrated the necessity for fine resolution carbon monitoring in tropical regions dominated by non-mechanized, smallholder land uses.
NASA Astrophysics Data System (ADS)
Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing
2017-04-01
A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM) ''hot spots'', it is generally admitted that the variability of the surface temperature is explained by the soil moisture trough its control on the evaporation. This work suggests that the impact of the soil moisture on the temperature through its impact on the thermal inertia can be as important as its direct impact on the evaporation. Contrarily to the evaporation related soil-moisture temperature negative feedback, the thermal inertia soil-moisture related feedback newly identified by this work is a positive feedback which limits the cooling when the soil moisture increases. These results suggest that uncertainties in the representation of the soil and snow thermal properties can be responsible of significant biases in numerical simulations and emphasize the need to carefully document and evaluate these quantities in the Land Surface Modules implemented in the climate models.
California heat waves: their spatial evolution, variation, and coastal modulation by low clouds
NASA Astrophysics Data System (ADS)
Clemesha, Rachel E. S.; Guirguis, Kristen; Gershunov, Alexander; Small, Ivory J.; Tardy, Alexander
2018-06-01
We examine the spatial and temporal evolution of heat waves through California and consider one of the key modulating factors of summertime coastal climate—coastal low cloudiness (CLC). Heat waves are defined relative to daytime maximum temperature (Tmax) anomalies after removing local seasonality and capture unseasonably warm events during May—September. California is home to several diverse climate regions and characteristics of extreme heat events are also variable throughout these regions. Heat wave events tend to be shorter, but more anomalously intense along the coast. Heat waves typically impact both coastal and inland regions, although there is more propensity towards coastally trapped events. Most heat waves with a strong impact across regions start at the coast, proceed inland, and weaken at the coast before letting up inland. Typically, the beginning of coastal heat waves are associated with a loss of CLC, followed by a strong rebound of CLC starting close to the peak in heat wave intensity. The degree to which an inland heat wave is expressed at the coast is associated with the presence of these low clouds. Inland heat waves that have very little expression at the coast tend to have CLC present and an elevated inversion base height compared with other heat waves.
Thermal surface characteristics of coal fires 1 results of in-situ measurements
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Kuenzer, Claudia
2007-12-01
Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime. Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling. In a second paper named "Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires" [ Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.
Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes
NASA Astrophysics Data System (ADS)
Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.
2017-12-01
Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme conditions had a dramatic effect on forest carbon and energy exchanges: the canopy switched from daytime net carbon uptake prior to the heatwave to net carbon release during and immediately after the heat wave. The latent heat flux from evapotranspiration increased during the heat wave, while sensible heat fluxes were lower.
Diurnal and nocturnal skin temperature regulation in chronic complex regional pain syndrome.
Schilder, Johanna C M; Niehof, Sjoerd P; Marinus, Johan; van Hilten, Jacobus J
2015-03-01
Skin temperature changes due to vasomotor disturbances are important features of complex regional pain syndrome (CRPS). Because this phenomenon has only been studied under controlled conditions, information on daily circadian variability is lacking. Also, studies in chronic CRPS patients with abnormal posturing, in which coldness of the affected extremity is more common, do not exist. We examined the response to external heating as well as circadian temperature changes over several days in the affected legs of 14 chronic CRPS patients with abnormal posturing and 17 controls. Skin temperatures were recorded hourly for 14 days using wireless sensors. Although the patients' affected extremities were significantly colder before external heating, the vasodilatory response was similar in the 2 groups. Additionally, median skin temperature differences between both legs and their variability was larger in patients than in controls during the day, but not during the night. These findings indicate that the mechanisms underlying impaired skin circulation in CRPS during daytime are reversible under certain circumstances. The large variation in skin temperature differences during the day questions the validity of using a single measurement in the diagnosis of CRPS, and our results indicate that only temperature differences >1.0 °C should be considered to reflect vasomotor disturbances. This article shows that chronic CRPS patients have a normal vasodilatory response to external heating and that skin temperature differences between the affected and unaffected lower limbs, which were highly variable during daytime, disappeared during sleep. This indicates that part of the vasomotor regulation in these patients is still functional. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Aoki, Ken; Stephens, Dan P; Zhao, Kun; Kosiba, Wojciech A; Johnson, John M
2006-09-01
In humans, the nocturnal fall in internal temperature is associated with increased endogenous melatonin and with a shift in the thermoregulatory control of skin blood flow (SkBF), suggesting a role for melatonin in the control of SkBF. The purpose of this study was to test whether daytime exogenous melatonin would shift control of SkBF to lower internal temperatures during heat stress, as is seen at night. Healthy male subjects (n = 8) underwent body heating with melatonin administration (Mel) or without (control), in random order at least 1 wk apart. SkBF was monitored at sites pretreated with bretylium to block vasoconstrictor nerve function and at untreated sites. Cutaneous vascular conductance, calculated from SkBF and arterial pressure, sweating rate (SR), and heart rate (HR) were monitored. Skin temperature was elevated to 38 degrees C for 35-50 min. Baseline esophageal temperature (Tes) was lower in Mel than in control (P < 0.01). The Tes threshold for cutaneous vasodilation and the slope of cutaneous vascular conductance with respect to Tes were also lower in Mel at both untreated and bretylium-treated sites (P < 0.05). The Tes threshold for the onset of sweating and the Tes for a standard HR were reduced in Mel. The slope of the relationship of HR, but not SR, to Tes was lower in Mel (P < 0.05). These findings suggest that melatonin affects the thermoregulatory control of SkBF during hyperthermia via the cutaneous active vasodilator system. Because control of SR and HR are also modified, a central action of melatonin is suggested.
Io's Heat Flow: A Model Including "Warm" Polar Regions
NASA Astrophysics Data System (ADS)
Veeder, G. J.; Matson, D. L.; Johnson, T. V.; Davies, A. G.; Blaney, D. L.
2002-12-01
Some 90 percent of Io's surface is thermally "passive" material. It is separate from the sites of active volcanic eruptions. Though "passive", its thermal behavior continues to be a challenge for modelers. The usual approach is to take albedo, average daytime temperature, temperature as a function of time of day, etc., and attempt to match these constraints with a uniform surface with a single value of thermal inertia. Io is a case where even globally averaged observations are inconsistent with a single-thermal-inertia model approach. The Veeder et al. (1994) model for "passive" thermal emission addressed seven constraints derived from a decade of ground-based, global observations - average albedo plus infrared fluxes at three separate wavelengths (4.8, 8.7, and 20 microns) for both daytime and eclipsed conditions. This model has only two components - a unit of infinite thermal inertia and a unit of zero thermal inertia. The free parameters are the areal coverage ratio of the two units and their relative albedos (constrained to match the known average albedo). This two-parameter model agreed with the global radiometric data and also predicted significantly higher non-volcanic nighttime temperatures than traditional ("lunar-like") single thermal inertia models. Recent observations from the Galileo infrared radiometer show relatively uniform minimum-night-time temperatures. In particular, they show little variation with either latitude or time of night (Spencer et al., 2000; Rathbun et al., 2002). Additionally, detailed analyses of Io's scattering properties and reflectance variations have led to the interesting conclusion that Io's albedo at regional scales varies little with latitude (Simonelli, et al., 2001). This effectively adds four new observational constraints - lack of albedo variation with latitude, average minimum nighttime temperature and lack of variation of temperature with either latitude or longitude. We have made the fewest modifications necessary for the Veeder et al. model to match these new constrains - we added two model parameters to characterize the volcanically heated high-latitude units. These are the latitude above which the unit exists and its nighttime temperature. The resulting four-parameter model is the first that encompasses all of the available observations of Io's thermal emission and that quantitatively satisfies all eleven observational constraints. While no model is unique, this model is significant because it is the first to accommodate widespread polar regions that are relatively "warm". This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.
Interaction between aerosol and the planetary boundary layer depth at sites in the US and China
NASA Astrophysics Data System (ADS)
Sawyer, V. R.
2015-12-01
The depth of the planetary boundary layer (PBL) defines a changing volume into which pollutants from the surface can disperse, which affects weather, surface air quality and radiative forcing in the lower troposphere. Model simulations have also shown that aerosol within the PBL heats the layer at the expense of the surface, changing the stability profile and therefore also the development of the PBL itself: aerosol radiative forcing within the PBL suppresses surface convection and causes shallower PBLs. However, the effect has been difficult to detect in observations. The most intensive radiosonde measurements have a temporal resolution too coarse to detect the full diurnal variability of the PBL, but remote sensing such as lidar can fill in the gaps. Using a method that combines two common PBL detection algorithms (wavelet covariance and iterative curve-fitting) PBL depth retrievals from micropulse lidar (MPL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared to MPL-derived PBL depths from a multiyear lidar deployment at the Hefei Radiation Observatory (HeRO). With aerosol optical depth (AOD) measurements from both sites, it can be shown that a weak inverse relationship exists between AOD and daytime PBL depth. This relationship is stronger at the more polluted HeRO site than at SGP. Figure: Mean daily AOD vs. mean daily PBL depth, with the Nadaraya-Watson estimator overlaid on the kernel density estimate. Left, SGP; right, HeRO.
A thermal control system for long-term survival of scientific instruments on lunar surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, K., E-mail: ogawa@astrobio.k.u-tokyo.ac.jp; Iijima, Y.; Tanaka, S.
2014-03-15
A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is lessmore » variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.« less
Comparison of Land Skin Temperature from a Land Model, Remote Sensing, and In-situ Measurement
NASA Technical Reports Server (NTRS)
Wang, Aihui; Barlage, Michael; Zeng, Xubin; Draper, Clara Sophie
2014-01-01
Land skin temperature (Ts) is an important parameter in the energy exchange between the land surface and atmosphere. Here hourly Ts from the Community Land Model Version 4.0, MODIS satellite observations, and in-situ observations in 2003 were compared. Compared with the in-situ observations over four semi-arid stations, both MODIS and modeled Ts show negative biases, but MODIS shows an overall better performance. Global distribution of differences between MODIS and modeled Ts shows diurnal, seasonal, and spatial variations. Over sparsely vegetated areas, the model Ts is generally lower than the MODIS observed Ts during the daytime, while the situation is opposite at nighttime. The revision of roughness length for heat and the constraint of minimum friction velocity from Zeng et al. [2012] bring the modeled Ts closer to MODIS during the day, and have little effect on Ts at night. Five factors contributing to the Ts differences between the model and MODIS are identified, including the difficulty in properly accounting for cloud cover information at the appropriate temporal and spatial resolutions, and uncertainties in surface energy balance computation, atmospheric forcing data, surface emissivity, and MODIS Ts data. These findings have implications for the cross-evaluation of modeled and remotely sensed Ts, as well as the data assimilation of Ts observations into Earth system models.
Rainfall as a trigger for stratification and winter phytoplankton growth in temperate shelf seas
NASA Astrophysics Data System (ADS)
Jardine, Jenny; Palmer, Matthew; Mahaffey, Claire; Holt, Jason; Mellor, Adam; Wakelin, Sarah
2017-04-01
We present new data from ocean gliders to investigate physical controls on stratification and phytoplankton dynamics, collected in the Celtic Sea between November 2014 and August 2015 as part of the UK Shelf Sea Biogeochemistry programme. This presentation focuses on the winter period (Jan-March) when the diurnal heating cycle results in regular but weak near surface stratification followed by night-time convection. Despite low light conditions, this daily cycle often promotes a daytime increase in observed chlorophyll fluorescence, indicative of phytoplankton growth. This daily cycle is occasionally interrupted when buoyancy inputs are sufficient to outcompete night-time convection and result in short-term periods of sustained winter stratification, typically lasting 2-3 days. Sustained stratification often coincides with periods of heavy rainfall, suggesting freshwater input from precipitation may play a role on these events by producing a subtle yet significant freshening of the surface layer of the order of 0.005 PSU. Comparing rainfall estimates with observed salinity changes confirms rainfall to often be the initiator of these winter stratification periods. As winter winds subside and solar heating increases towards spring, the water column becomes more susceptible to periods of halo-stratification, such that heavy rainfall during the winter-spring transition is likely to promote sustained stratification. The timing and extent of a heavy rainfall event in March 2015 does suggest it may be the critical trigger for shelf-wide stratification that eventually instigates the spring bloom. We propose that the timing of these downpours relative to the daily heating cycle can be a triggering mechanism for both short term and seasonal stratification in shelf seas, and so play a critical role in winter and early spring phytoplankton growth and the shelf sea carbon cycle. We further test the importance of this process using historical data, and results from the NEMO-AMM7 model to test how rainfall events have affected previous winter and spring conditions.
NASA Astrophysics Data System (ADS)
Du, Q.; Liu, H.; Liu, Y.; Wang, L.; Xu, L.
2017-12-01
Erhai lake is located in the southeastern margin of Tibetan Plateau. Based on the 4 years measurement over Erhai lake with eddy covariance technique (EC) from 2012 to 2015, the diurnal and seasonal variations of latent and sensible heat and CO2 fluxes, and their controlling factors over different time scales were analyzed. The diurnal average LE ranged from 31 to 171 Wm-2, while Hs ranged from -31 to 21 Wm-2. Bowen ratio was larger during January and May and smaller during June and October. The lake continued storing heat during January and June, and releasing heat since July. The diurnal average CO2 fluxes during nighttime were higher than the daytime, and carbon uptake was almost observed during the midday time of the day for the whole study period. The annual carbon budget fluctuated from 117.5 to 161.7 g C m-2 a-1, while annual total evaporation (ET) from 1120.8 to 1228.5 mm for the four-years period. The Erhai Lake behaved as a net carbon source over the whole period but carbon uptake was observed during the middle time of each year. The difference between water surface and air temperature (DeltaT) and the product of DeltaT and wind speed were the main controlling factors for Hs from halfhourly to monthly scale. There was significant relationship between wind speed, the product of wind speed and vapor pressure deficit (VPD) and LE on halfhourly and daily scales. The total cloud amount and net radiation (Rn) had a large effect on monthly variation of LE. Photosynthetic active radiation (PAR) and wind speed was mainly responsible for the variation of halfhourly and daily CO2 fluxes, respectively. The total cloud amount was the most important factors controlling for annual total ET. The annual rainfall, water surface temperature was observed to be negatively related with annual CO2 fluxes.
NASA Astrophysics Data System (ADS)
Ordonez-Etxeberria, Iñaki; Hueso, Ricardo; Sánchez-Lavega, Agustín
2018-01-01
The Mars Science Laboratory (MSL) rover carries a suite of meteorological detectors that constitute the Rover Environmental Monitoring Station (REMS) instrument. REMS investigates the meteorological conditions at Gale crater by obtaining high-frequency data of pressure, air and ground temperature, relative humidity, UV flux at the surface and wind intensity and direction with some limitations in the wind data. We have run a search of atmospheric pressure drops of short duration (< 25 s) and we present a statistical study of the frequency of these events in the REMS pressure data during its first 1417 sols (more than two Martian years). The identified daytime pressure drops could be caused by the close passages of warm vortices and dust devils. Previous systematic searches of warm vortices from REMS pressure data (Kahanpää et al., 2016; Steakley and Murphy, 2016) cover about one Martian year. We show that sudden pressure drops are twice more abundant in the second Martian year [sols 671-1339] than in the first one analyzed in previous works. The higher number of detections could be linked to a combination of different topography, higher altitudes (120 m above the landing site) and true inter-annual meteorological variability. We found 1129 events with a pressure drop larger than 0.5 Pa. Of these, 635 occurred during the local daytime (∼56%) and 494 were nocturnal. The most intense pressure drop (4.2 Pa) occurred at daytime on sol 1417 (areocentric solar longitude Ls = 195°) and was accompanied by a simultaneous decrease in the UV signal of 7.1%, pointing to a true dust devil. We also discuss similar but less intense simultaneous pressure and UV radiation drops that constitute 0.7% of all daytime events. Most of the intense daytime pressure drops with variations larger than 1.0 Pa occur when the difference between air and ground temperature is larger than 15 K. Statistically, the frequency of daytime pressure drops peaks close to noon (12:00-13:00 Local True Solar Time or LTST) with more events in spring and summer (Ls from 180° to 360°). The nocturnal sudden pressure drops concentrate in the 20:00-23:00 LTST time interval and they only occur in spring and summer. We interpret these nocturnal events as a consequence of local mechanically forced turbulence. This interpretation is consistent with published results from simulations with the MRAMS model (Rafkin et al., 2016) that predict a competition between local orographic circulation and global Hadley cell circulation at Gale crater at summer night-time that can enhance forced turbulence at the surface. Bursts of pressure drops appear on particular sols, especially at night-time. Most of the vortex bursts occurred when MSL was in the region called Pahrump Hills characterized by a complex terrain. A comparison of the daytime pressure drops from REMS data with published results from the Pathfinder and Phoenix missions shows that the frequency of daytime events at Gale crater in spring and summer is similar to the one previously found at other locations. Finally, we present possible correlations between MSL activity and some daytime pressure drops. If such an instrumental effect is present in the REMS data its impact in this analysis is small and would only affect about 7% of our detections.
A post-new horizons global climate model of Pluto including the N2, CH4 and CO cycles
NASA Astrophysics Data System (ADS)
Forget, F.; Bertrand, T.; Vangvichith, M.; Leconte, J.; Millour, E.; Lellouch, E.
2017-05-01
We have built a new 3D Global Climate Model (GCM) to simulate Pluto as observed by New Horizons in 2015. All key processes are parametrized on the basis of theoretical equations, including atmospheric dynamics and transport, turbulence, radiative transfer, molecular conduction, as well as phases changes for N2, CH2 and CO. Pluto's climate and ice cycles are found to be very sensitive to model parameters and initial states. Nevertheless, a reference simulation is designed by running a fast, reduced version of the GCM with simplified atmospheric transport for 40,000 Earth years to initialize the surface ice distribution and sub-surface temperatures, from which a 28-Earth-year full GCM simulation is performed. Assuming a topographic depression in a Sputnik-planum (SP)-like crater on the anti-Charon hemisphere, a realistic Pluto is obtained, with most N2 and CO ices accumulated in the crater, methane frost covering both hemispheres except for the equatorial regions, and a surface pressure near 1.1 Pa in 2015 with an increase between 1988 and 2015, as reported from stellar occultations. Temperature profiles are in qualitative agreement with the observations. In particular, a cold atmospheric layer is obtained in the lowest kilometers above Sputnik Planum, as observed by New Horizons's REX experiment. It is shown to result from the combined effect of the topographic depression and N2 daytime sublimation. In the reference simulation with surface N2 ice exclusively present in Sputnik Planum, the global circulation is only forced by radiative heating gradients and remains relatively weak. Surface winds are locally induced by topography slopes and by N2 condensation and sublimation around Sputnik Planum. However, the circulation can be more intense depending on the exact distribution of surface N2 frost. This is illustrated in an alternative simulation with N2 condensing in the South Polar regions and N2 frost covering latitudes between 35°N and 48°N. A global condensation flow is then created, inducing strong surface winds everywhere, a prograde jet in the southern high latitudes, and an equatorial superrotation likely forced by barotropic instabilities in the southern jet. Using realistic parameters, the GCM predict atmospheric concentrations of CO and CH4 in good agreement with the observations. N2 and CO do not condense in the atmosphere, but CH4 ice clouds can form during daytime at low altitude near the regions covered by N2 ice (assuming that nucleation is efficient enough). This global climate model can be used to study many aspects of the Pluto environment. For instance, organic hazes are included in the GCM and analysed in a companion paper (Bertrand and Forget, Icarus, this issue).
NASA Astrophysics Data System (ADS)
Chen, Xing; Jeong, Su-Jong
2018-02-01
To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.
The variability of California summertime marine stratus: impacts on surface air temperatures
Iacobellis, Sam F.; Cayan, Daniel R.
2013-01-01
This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.
NASA Astrophysics Data System (ADS)
Warner, Thomas T.; Sheu, Rong-Shyang
2000-05-01
Four 6-day simulations of the atmospheric conditions over the Arabian Desert during the time of the 1991 detonation and release of toxic material at the Khamisiyah, Iraq, weapons depot were performed using a mesoscale model run in a data-assimilation mode. These atmospheric simulations are being employed in a forensic analysis of the potential contribution of the toxic material to so-called Gulf War illness. The transport and concentration of such surface-released contaminants are related strongly to the planetary boundary layer (PBL) depth and the horizontal wind speed in the PBL. The product of the PBL depth and the mean wind speed within it is referred to as the ventilation and is used as a metric of the horizontal transport within the PBL. Thus, a corollary study to the larger forensic analysis involves employing the model solutions and available data in an analysis of the multiscale spatial variability of the daytime desert PBL depth and ventilation as they are affected by surface forcing from terrain elevation variations, coastal circulations, and contrasts in surface physical properties.The coarsest computational grid spanned the entire northern Arabian Desert and surrounding areas of the Middle East, and represented the large-scale PBL modulation by the orography. The PBL depths were greatest over the high elevations of the western Arabian Peninsula and over the Zagros Mountains in western Iran and were shallowest over water bodies and the lower elevations in the Tigris-Euphrates Valley. Higher-resolution grids in the nest (the smallest grid increment was 3.3 km) showed that the PBL depth minimum in the Tigris-Euphrates Valley was likely a consequence of compensating subsidence associated with the thermally forced daytime upward motion over the Zagros Mountains to the east in Iran, with possible contributions from an elevated mixed layer. Further local modulation of the daytime desert PBL occurred as a result of the inland penetration of the coastal sea-breeze circulation on the west side of the Persian Gulf, where PBL depths were suppressed as far as 100 km inland. On the finest scales, significant PBL-depth variability resulted from surface thermal differences associated with contrasts between barren desert and partially vegetated desert.The average 1500 LT ventilation over the Arabian Desert for the 6-day period varied spatially from less than 4000 m2 s1 to over 24000 m2 s1. This range represents over a factor-of-6 variation in the ability of the atmosphere to transport contaminants away from a source region.
Does the climate warming hiatus exist over the Tibetan Plateau?
Duan, Anmin; Xiao, Zhixiang
2015-09-02
The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau.
Tokizawa, Ken; Yoda, Tamae; Uchida, Yuki; Kanosue, Kazuyuki; Nagashima, Kei
2015-07-01
It has been speculated that the control of core temperature is modulated by physiological demands. We could not prove the modulation because we did not have a good method to evaluate the control. In the present study, the control of core temperature in mice was assessed by exposing them to various ambient temperatures (Ta), and the influence of circadian rhythm and feeding condition was evaluated. Male ICR mice (n=20) were placed in a box where Ta was increased or decreased from 27°C to 40°C or to -4°C (0.15°C/min) at 0800 and 2000 (daytime and nighttime, respectively). Intra-abdominal temperature (Tcore) was monitored by telemetry. The relationship between Tcore and Ta was assessed. The range of Ta where Tcore was relatively stable (range of normothermia, RNT) and Tcore corresponding to the RNT median (regulated Tcore) were estimated by model analysis. In fed mice, the regression slope within the RNT was smaller in the nighttime than in the daytime (0.02 and 0.06, respectively), and the regulated Tcore was higher in the nighttime than in the daytime (37.5°C and 36.0°C, respectively). In the fasted mice, the slope remained unchanged, and the regulated Tcore decreased in the nighttime (0.05 and 35.9°C, respectively), while the slopes in the daytime became greater (0.13). Without the estimating individual thermoregulatory response such as metabolic heat production and skin vasodilation, the analysis of the Ta-Tcore relationship could describe the character of the core temperature control. The present results show that the character of the system changes depending on time of day and feeding conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Exploring the relation between spatial configuration of buildings and remotely sensed temperatures
NASA Astrophysics Data System (ADS)
Myint, S. W.; Zheng, B.; Kaplan, S.; Huang, H.
2013-12-01
While the relationship between fractional cover of buildings and the UHI has been well studied, relationships of how spatial arrangements (e.g., clustered, dispersed) of buildings influence urban warming are not well understood. Since a diversity of spatial patterns can be observed under the same percentage of buildings cover, it is of great interest and importance to investigate the amount of variation in certain urban thermal feature such as surface temperature that is accounted for by the inclusion of spatial arrangement component. The various spatial arrangements of buildings cover can give rise to different urban thermal behaviors that may not be uncovered with the information of buildings fraction only, but can be captured to some extent using spatial analysis. The goal of this study is to examine how spatial arrangements of buildings influence and shape surface temperature in different urban settings. The study area selected is the Las-Vegas metropolitan area in Nevada, located in the Mojave Desert. An object-oriented approach was used to identify buildings using a Geoeye-1 image acquired on October 12, 2011. A spatial autocorrelation technique (i.e., Moran's I) that can measure spatial pattern (clustered, dispersed) was used to determine spatial configuration of buildings. A daytime temperature layer in degree Celsius, generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image, was integrated with Moran's I values of building cover and building fractions to achieve the goals set in the study. To avoid uncertainty and properly evaluate if spatial pattern of buildings has an impact on urban warming, the relation between Moran's I values and surface temperatures was observed at different levels according to their fractions (e.g., 0-0.1, 0.5-0.6, 0.9-1). There is a negative correlation exists between spatial pattern of buildings and surface temperatures implying that dispersed building arrangements elevate surface temperatures more severely than clustered buildings. This suggests that more clustered buildings have less impact on the urban heat island (UHI) effect. We conclude that having buildings as clustered as possible can be expected to protect the settlements from increased heat island effects, reduce pollution, and preserve the hydrological systems.
Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia
NASA Astrophysics Data System (ADS)
Ou Yang, Chang-Feng; Lin, Neng-Huei; Sheu, Guey-Rong; Lee, Chung-Te; Wang, Jia-Lin
2012-01-01
Continuous measurements of tropospheric ozone were conducted at the Lulin Atmospheric Background Station (LABS) at an altitude of 2862 m from April 2006 to the end of 2009. Distinct seasonal variations in the ozone concentration were observed at the LABS, with a springtime maximum and a summertime minimum. Based on a backward trajectory analysis, CO data, and ozonesondes, the springtime maximum was most likely caused by the long-range transport of air masses from Southeast Asia, where biomass burning was intense in spring. In contrast, a greater Pacific influence contributed to the summertime minimum. In addition to seasonal variations, a distinct diurnal pattern was also observed at the LABS, with a daytime minimum and a nighttime maximum. The daytime ozone minimum was presumably caused by sinks of dry deposition and NO titration during the up-slope transport of surface air. The higher nighttime values, however, could be the result of air subsidence at night bringing ozone aloft to the LABS. After filtering out the daytime data to remove possible local surface contributions, the average background ozone value for the period of 2006-2009 was approximately 36.6 ppb, increased from 32.3 ppb prior to data filtering, without any changes in the seasonal pattern. By applying HYSPLIT4 model analysis, the origins of the air masses contributing to the background ozone observed at the LABS were investigated.
NASA Astrophysics Data System (ADS)
Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.
2018-03-01
Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to other megacities to enable them to be more resilient to UHI effects.
A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST
NASA Astrophysics Data System (ADS)
Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei
2017-05-01
Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.
Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves
NASA Astrophysics Data System (ADS)
Ghebreegziabher, Amanuel T.
Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.
NASA Technical Reports Server (NTRS)
2008-01-01
Relatively warmer daytime temperatures on Mars have allowed the biobarrier -- a shiny, protective film -- to peel away a little more from the robotic arm of NASA's Phoenix Mars Lander. This image shows the spacecraft's robotic arm in its stowed configuration, with the biobarrier unpeeled on landing day, or Sol (Martian day) 0, and the lander's first full day on Mars, Sol 1. The 'elbow' of the arm can be seen at the top center of the picture, and the biobarrier is the shiny film seen to the left of the arm. The biobarrier is an extra precaution to protect Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars. Before the arm was heated, it was sealed in the biobarrier, which is made of a trademarked film called Tedlar that holds up to baking like a turkey-basting bag. This ensures that any new bacterial spores that might have appeared during the final steps before launch and during the journey to Mars will not contact the robotic arm. After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy. These images were taken on May 25, 2008 and May 26, 2008 by the spacecraft's Surface Stereo Imager. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Influence from Surrounding Land on the Turbulence Measurements Above a Lake
NASA Astrophysics Data System (ADS)
Sahlée, Erik; Rutgersson, Anna; Podgrajsek, Eva; Bergström, Hans
2014-02-01
Turbulence measurements taken at a Swedish lake are analyzed. Although the measurements took place over a relatively large lake with several km of undisturbed fetch, the turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies showed a daily variation, increasing in the morning and decreasing in the afternoon. This behaviour is explained by spectral lag, where the low frequency energy due to large eddies that originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrate with the new surface forcing. However, the large eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variances of the horizontal velocity and scalars are increased by these large eddies, while the turbulent fluxes are mainly unaffected. The drag coefficient, Stanton number and Dalton number used to parametrize the momentum flux, heat flux and latent heat flux respectively all compare well with current parametrizations developed for open sea conditions. The diurnal cycle of the partial pressure of methane, pCH4, observed at this site is closely related to the diurnal cycle of the lake-air methane flux. An idealized two-dimensional model simulation of the boundary layer at a lake site indicates that the strong response of pCH4 to the surface methane flux is due to the shallow internal boundary layer that develops above the lake, allowing methane to accumulate in a relatively small volume.
Saturn's icy satellites investigated by Cassini-VIMS. IV. Daytime temperature maps
NASA Astrophysics Data System (ADS)
Filacchione, Gianrico; D'Aversa, Emiliano; Capaccioni, Fabrizio; Clark, Roger N.; Cruikshank, Dale P.; Ciarniello, Mauro; Cerroni, Priscilla; Bellucci, Giancarlo; Brown, Robert H.; Buratti, Bonnie J.; Nicholson, Phillip D.; Jaumann, Ralf; McCord, Thomas B.; Sotin, Christophe; Stephan, Katrin; Dalle Ore, Cristina M.
2016-06-01
The spectral position of the 3.6 μm continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturn's icy satellites. This feature is characterizing the crystalline water ice spectrum which is the dominant compositional endmember of the satellites' surfaces. Laboratory measurements indicate that the position of the 3.6 μm peak of pure water ice is temperature-dependent, shifting towards shorter wavelengths when the sample is cooled, from about 3.65 μm at T=123 K to about 3.55 μm at T=88 K. A similar method was already applied to VIMS Saturn's rings mosaics to retrieve ring particles temperature (Filacchione, G., Ciarniello, M., Capaccioni, F., et al., 2014. Icarus, 241, 45-65). We report here about the daytime temperature variations observed on the icy satellites as derived from three different VIMS observation types: (a) a sample of 240 disk-integrated I/F observations of Saturn's regular satellites collected by VIMS during years 2004-2011 with solar phase in the 20°-40° range, corresponding to late morning-early afternoon local times. This dataset is suitable to exploit the temperature variations at hemispherical scale, resulting in average temperature T <88 K for Mimas, T ≪88 K for Enceladus, T <88 K for Tethys, T=98-118 K for Dione, T=108-128 K for Rhea, T=118-128 K for Hyperion, T=128-148 and T > 168 K for Iapetus' trailing and leading hemispheres, respectively. A typical ±5 K uncertainty is associated to the temperature retrieval. On Tethys and Dione, for which observations on both leading and trailing hemispheres are available, in average daytime temperatures higher of about 10 K on the trailing than on the leading hemisphere are inferred. (b) Satellites disk-resolved observations taken at 20-40 km pixel-1 resolution are suitable to map daytime temperature variations across surfaces' features, such as Enceladus' tiger stripes and Tethys' equatorial dark lens. These datasets allow to disentangle solar illumination conditions from temperature distribution when observing surface's features with strong thermal contrast. (c) Daytime average maps covering large regions of the surfaces are used to compare the inferred temperature with geomorphological features (impact craters, chasmatae, equatorial radiation lenses and active areas) and albedo variations. Temperature maps are built by mining the complete VIMS dataset collected in years 2004-2009 (pre-equinox) and in 2009-2012 (post equinox) by selecting pixels with max 150 km pixel-1 resolution. VIMS-derived temperature maps allow to identify thermal anomalies across the equatorial lens of Mimas and Tethys. A temperature T > 115K is measured above Enceladus' Damascus and Alexandria sulci in the south pole region. VIMS has the sensitivity to follow seasonal temperature changes: on Tethys, Dione and Rhea higher temperature are measured above the south hemisphere during pre-equinox and above the north hemisphere during post-equinox epochs. The measured temperature distribution appears correlated with surface albedo features: in fact temperature increases on low albedo units located on Tethys, Dione and Rhea trailing hemispheres. The thermal anomaly region on Rhea's Inktomi crater detected by CIRS (Howett, C. J. A., Spencer, J. R., Hurford, T., et al., 2014. Icarus, 241, 239-247) is confirmed by VIMS: this area appears colder with respect to surrounding terrains when observed at the same local solar time.
Influence of System Operation Method on CO2 Emissions of PV/Solar Heat/Cogeneration System
NASA Astrophysics Data System (ADS)
Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki
A PV/solar heat/cogeneration system is assumed to be installed in a hotel. The system is operated with various operation methods: CO2 minimum operation, fees minimum operation, seasonal operation, daytime operation and heat demand following operation. Of these five operations, the former two are virtual operations that are operated with the dynamic programming method, and the latter three are actual operations. Computer simulation is implemented using hourly data of solar radiation intensity, atmospheric temperature, electric, cooling, heating and hot water supply demands for one year, and the life-cycle CO2 emission and the total cost are calculated for every operations. The calculation results show that the virtual two and the actual three operations reduce the life-cycle CO2 emission by 21% and 13% compared with the conventional system, respectively. In regard to both the CO2 emission and the cost, there is no significant difference between the virtual two operation methods or among actual three operation methods.
Determinants of daytime sleepiness in first-year nursing students: a questionnaire survey.
Huang, Ching-Feng; Yang, Li-Yu; Wu, Li-Min; Liu, Yi; Chen, Hsing-Mei
2014-06-01
Daytime sleepiness may affect student learning achievement. Research studies have found that daytime sleepiness is common in university students; however, information regarding the determinants of daytime sleepiness in this population is still lacking. The purpose of this study was to investigate the determinants of daytime sleepiness in first-year nursing students. In particular, we looked for the relationship between perceived symptoms, nocturnal sleep quality, and daytime sleepiness. A cross-sectional and correlational design was employed. Participants were recruited from two nursing programs at an institute of technology located in southern Taiwan. Ninety-three nursing students completed the questionnaires one month after enrollment into their program. Approximately 35% of the participants experienced excessive daytime sleepiness at the beginning of the semester. Six variables (joining a student club, perceived symptoms, daytime dysfunction, sleep disturbances, sleep latency, and subjective sleep quality) were significantly correlated with daytime sleepiness. Among them, daytime dysfunction and perceived symptoms were two major determinants of daytime sleepiness, both accounting for 37.2% of the variance. Daytime sleepiness in students should not be ignored. It is necessary to help first-year students identify and mitigate physical and psychological symptoms early on, as well as improve daytime functioning, to maintain their daytime performance and promote learning achievement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Impact of Rice Paddy Areas Decrease on Local Climate over Taiwan
NASA Astrophysics Data System (ADS)
Lo, M. H.; Wen, W. H.; Chen, C. C.
2014-12-01
Agricultural irrigation practice is one of the important anthropogenic processes in the land surface modeling. Irrigation can decrease local surface temperature with alternating surface energy partitioning. Rice paddy is the major food crop in Asian monsoon region and rice is grown under flooded conditions during the growing season; hence, the rice paddy can be considered as an open water body, which has more impacts on the surface energy budget than other cropland does. In this study, we explore how the rice paddy area changes affect Taiwan's regional climate from both observational data and numerical modeling exercise. The Weather Research and Forecasting (WRF) model is utilized to explore impacts of rice paddy area changes on the regional climate, and energy and water budget changes. In addition, temperature datasets from six automatic weather stations in the northern Taiwan and two stations in the southern Taiwan are analyzed in this study to explore how the Daily Temperature Range (DTR) changes with the decreased rice paddy areas. Previous studies show that due to the urban heat island effect, aerosol direct and indirect effects, and global warming, the DTR has decreased in the past 4 decades observed from most of the weather stations around Taiwan. However, the declined rice paddy area may increase the DTR with higher Bowen ratio during the daytime. Preliminary results show that DTR is decreased in weather stations near the urban area, but increased in weather stations near fallow areas in the past 20 years. It shows that different land use changes may have opposite impacts on local and regional climate.
Multiple Instruments Used for Mars Carbon Estimate
2015-09-02
Researchers estimating the amount of carbon held in the ground at the largest known carbonate-containing deposit on Mars utilized data from three different NASA Mars orbiters. Each image in this pair covers the same area about 36 miles (58 kilometers) wide in the Nili Fossae plains region of Mars' northern hemisphere. The tally of carbon content in the rocks of this region is a key piece in solving a puzzle of how the Martian atmosphere has changed over time. Carbon dioxide from the atmosphere on early Mars reacted with surface rocks to form carbonate, thinning the atmosphere. The image on the left presents data from the Thermal Emission Imaging System (THEMIS) instrument on NASA's Mars Odyssey orbiter. The color coding indicates thermal inertia -- the property of how quickly a surface material heats up or cools off. Sand, for example (blue hues), cools off quicker after sundown than bedrock (red hues) does. The color coding in the image on the right presents data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on NASA's Mars Reconnaissance Orbiter. From the brightness at many different wavelengths, CRISM data can indicate what minerals are present on the surface. In the color coding used here, green hues are consistent with carbonate-bearing materials, while brown or yellow hues are olivine-bearing sands and locations with purple hues are basaltic in composition. The gray scale base map is a mosaic of daytime THEMIS infrared images. Annotations point to areas with different surface compositions. The scale bar indicates 20 kilometers (12.4 miles). http://photojournal.jpl.nasa.gov/catalog/PIA19816
Does the climate warming hiatus exist over the Tibetan Plateau?
Duan, Anmin; Xiao, Zhixiang
2015-01-01
The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud–radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678
NASA Astrophysics Data System (ADS)
Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.
2018-04-01
Machine learning approach to spectral unmixing of emissivity spectra of Mercury is carried out using endmember spectral library measured at simulated daytime surface conditions of Mercury. Study supports MERTIS payload onboard ESA/JAXA BepiColombo.
Quinn, T P; Kendall, N W; Rich, H B; Chasco, B E
2012-01-01
We conducted a field study in Iliamna Lake, Alaska, to test the hypothesis that proximity of three-spined sticklebacks Gasterosteus aculeatus to the lake's surface during the daytime varies with macroparasitic cestode parasite Schistocephalus solidus infection in a manner consistent with enhanced vulnerability to avian predators. Extensive sampling in the lake and likelihood-based modeling revealed that sticklebacks displayed a diel vertical migration, being closer to the surface at night than during the evening and early morning. Additional sampling, also coupled with a likelihood-based modeling approach, showed that fish caught at the surface of the lake during the day were more often parasitized (76 vs. 65%), more heavily parasitized (26.8 vs. 22.7% of their body mass), and had larger individual parasites (0.24 vs. 0.20 g) than those caught at night. Parasite infection was related, non-linearly, to fish size, which also differed between day and night sampling at the surface. We performed statistical competitions among nested hierarchies of models that accounted for this effect of length. The most likely models indicated that fish captured during the day had greater parasite prevalence, higher parasite burdens, and larger parasites than did fish captured at night. Proximity to the surface during the day in this very clear lake would likely increase the vulnerability of sticklebacks to predation from birds, enabling completion of the parasite's lifecycle.
NASA Astrophysics Data System (ADS)
Lian, X.
2016-12-01
There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature ( ). Using satellite observations and in-situ station-based datasets, we conducted a global-scale assessment of the spatial, seasonal, and interannual variations in the difference between daytime maximum LST and daytime maximum ( , LST - ) during 2003-2014. Spatially, LST is generally higher than over arid and sparsely vegetated regions in the mid-low latitudes, but LST is lower than in the tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the mid-latitudes and boreal regions. The seasonality in the mid-latitudes is a result of the asynchronous responses of LST and to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. At an interannual scale, only a small proportion of the land surface displays a statistically significant trend (P <0.05) due to the short time span of current measurements. Our study identified substantial spatial heterogeneity and seasonality in , as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface temperature changes using remote sensing, particularly in remote regions.
Rhea and Dione: Variations in Surface Thermal Properties
NASA Astrophysics Data System (ADS)
Howett, Carly; Spencer, J.; Anne, V.
2013-10-01
Thermal inertia variations have been observed on icy satellite surfaces throughout the Saturnian system, resulting in night and daytime temperature variations across the satellites. The most notable are the two ‘Pac-Man’ anomalies on Mimas and Tethys (Howett et al., 2011, 2012): distinct regions of high thermal inertia at low latitudes on the leading hemisphere of both satellites, resulting in warmer nighttime and cooler daytime temperatures (by ~15 K) than their surroundings. High-energy electrons are the likely cause of this surface alteration, which preferentially bombard low latitudes of the leading hemisphere of Mimas and Tethys, effectively gluing the grains together and thus increasing their thermal inertia. Cassini’s CIRS (Composite Infrared Spectrometer) has returned a plethora of night- and day-time data for both Dione and Rhea. Using these data, with the same analysis techniques that discovered the ‘Pac-Men’, the spatial variations in thermophysical properties across Rhea and Dione have been mapped. The results are intriguing: for the first time we see a decrease in the thermal inertia across Rhea’s Inktomi crater ejecta blanket and hints at a high thermal inertia region at low latitudes on Dione’s leading hemisphere. If Dione’s high thermal inertia region is formed by the same mechanism as the ‘Pac-Men’ on Mimas and Tethys (and nothing similar is observed on Rhea), then this sets an important bound in the electron energy able to produce this type of surface alteration. Rhea’s Inktomi crater (14 S/112 W, diameter 48 km) is a bright young ray crater. A similar crater (i.e. young, morphologically fresh) exists on Dione: Creusa (49 N/76 W, diameter 40 km). Preliminary results show that no significant change in the thermal inertia is observed over Creusa. Why should thermal inertia vary over Inktomi, but not Creusa? Rhea and Dione’s subsurface may be different enough to explain this inconsistency (Schenk et al., 2011), or maybe the older Creusa ejecta are more modified, or Creusa’s smaller ejecta blanket is just more difficult to separate accurately from the background surface values. This work is supported by the Cassini Data Analysis Program.
Modeling the feedback between aerosol and boundary layer processes: a case study in Beijing, China.
Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu
2016-02-01
Rapid development has led to frequent haze in Beijing. With mountains and sea surrounding Beijing, the pollution is found to be influenced by the mountain-plain breeze and sea-land breeze in complex ways. Meanwhile, the presence of aerosols may affect the surface energy balance and impact these boundary layer (BL) processes. The effects of BL processes on aerosol pollution and the feedback between aerosol and BL processes are not yet clearly understood. Thus, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to investigate the possible effects and feedbacks during a haze episode on 23 September 2011. Influenced by the onshore prevailing wind, sea-breeze, and upslope breeze, about 45% of surface particulate matter (PM)2.5 in Beijing are found to be contributed by its neighbor cities through regional transport. In the afternoon, the development of upslope breeze suppresses the growth of BL in Beijing by imposing a relatively low thermal stable layer above the BL, which exacerbates the pollution. Two kinds of feedback during the daytime are revealed as follows: (1) as the aerosols absorb and scatter the solar radiation, the surface net radiation and sensible heat flux are decreased, while BL temperature is increased, resulting in a more stable and shallower BL, which leads to a higher surface PM2.5 concentration in the morning and (2) in the afternoon, as the presence of aerosols increases the BL temperature over plains, the upslope breeze is weakened, and the boundary layer height (BLH) over Beijing is heightened, resulting in the decrease of the surface PM2.5 concentration there.
Albedo, Land Cover, and Daytime Surface Temperature Variation Across an Urbanized Landscape
NASA Astrophysics Data System (ADS)
Trlica, A.; Hutyra, L. R.; Schaaf, C. L.; Erb, A.; Wang, J. A.
2017-11-01
Land surface albedo is a key parameter controlling the local energy budget, and altering the albedo of built surfaces has been proposed as a tool to mitigate high near-surface temperatures in the urban heat island. However, most research on albedo in urban landscapes has used coarse-resolution data, and few studies have attempted to relate albedo to other urban land cover characteristics. This study provides an empirical description of urban summertime albedo using 30 m remote sensing measurements in the metropolitan area around Boston, Massachusetts, relating albedo to metrics of impervious cover fraction, tree canopy coverage, population density, and land surface temperature (LST). At 30 m spatial resolution, median albedo over the study area (excluding open water) was 0.152 (0.112-0.187). Trends of lower albedo with increasing urbanization metrics and temperature emerged only after aggregating data to 500 m or the boundaries of individual towns, at which scale a -0.01 change in albedo was associated with a 29 (25-35)% decrease in canopy cover, a 27 (24-30)% increase in impervious cover, and an increase in population from 11 to 386 km-2. The most intensively urbanized towns in the region showed albedo up to 0.035 lower than the least urbanized towns, and mean mid-morning LST 12.6°C higher. Trends in albedo derived from 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) measurements were comparable, but indicated a strong contribution of open water at this coarser resolution. These results reveal linkages between albedo and urban land cover character, and offer empirical context for climate resilient planning and future landscape functional changes with urbanization.
NASA Astrophysics Data System (ADS)
Drewry, D.; Kumar, P.; Sivapalan, M.; Long, S.; Liang, X.
2009-05-01
Recent local-scale observational studies have demonstrated significant modifications to the partitioning of incident energy by two key mid-west agricultural species, soy and corn, as ambient atmospheric CO2 concentrations are experimentally augmented to projected future levels. The uptake of CO2 by soy, which utilizes the C3 photosynthetic pathway, has likewise been observed to significantly increase under elevated growth CO2 concentrations. Changes to the sensible and latent heat exchanges between the land surface and the atmospheric boundary layer (ABL) across large portions of the mid-western US has the potential to affect ABL growth and composition, and consequently feed-back to the near-surface environment (air temperature and vapor content) experienced by the vegetation. Here we present a simulation analysis that examines the changes in land-atmosphere feedbacks associated with projected increases in ambient CO2 concentrations over extended soy/corn agricultural areas characteristic of the US mid-west. The model canopies are partitioned into several layers, allowing for resolution of the shortwave and longwave radiation regimes that drive photosynthesis, stomatal conductance and leaf energy balance in each layer, along with the canopy microclimate. The canopy component of the model is coupled to a multi-layer soil-root model that computes soil moisture and heat transport and root water uptake. Model skill in capturing the sub-diurnal variability in canopy-atmosphere exchange is evaluated through multi-year records of canopy-top eddy covariance CO2, water vapor and heat fluxes collected at the Bondville (Illinois) FluxNet site. An evaluation of the ability of the model to simulate observed changes in energy balance components (canopy temperature, net radiation and soil heat flux) under elevated CO2 concentrations projected for 2050 (550 ppm) is made using observations collected at the SoyFACE Free Air Carbon Enrichment (FACE) experimental facilities located in central Illinois, by incorporating observed acclimations in leaf biochemsitry and canopy structure. The simulation control volume is then extended by coupling the canopy models to a simple model of daytime mixed-layer (ML) growth and composition, ie. air temperature and vapor content. Through this coupled canopy-ABL model we quantify the impact of elevated CO2 and vegetation acclimation on ML growth, temperature and vapor content and the consequent feedbacks to the land surface by way of the near-surface environment experienced by the vegetation. Particular focus is placed on the role of short-term drought, and possible changes in land cover composition between soy, a C3 crop, and corn, a more water-use efficient C4 crop, on modulating the strength of these CO2-induced feedbacks.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)
2000-01-01
We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used by government officials, urban planners, and other decision-makers, to make more informed decisions on how to mitigate the UHI and its subsequent impacts.
NASA Astrophysics Data System (ADS)
Renchon, A.; Pendall, E.
2017-12-01
Land-surface exchanges of CO2 play a key role in ameliorating or exacerbating climate change. The eddy-covariance method allows direct measurement of net ecosystem-atmosphere exchange of CO2 (NEE), but partitioning daytime NEE into its components - gross primary productivity (GPP) and ecosystem respiration (RE) - remains challenging. Continuous measurements of soil respiration (RS), along with flux towers, have the potential to better constrain data and models of RE and GPP. We use simultaneous half-hourly NEE and RS data to: (1) compare the short-term (fortnightly) apparent temperature sensitivity (Q10) of nighttime RS and RE; (2) assess whether daytime RS can be estimated using nighttime response functions; and (3) compare the long-term (annual) responses of nighttime RS and nighttime RE to interacting soil moisture and soil temperature. We found that nighttime RS has a lower short-term Q10 than nighttime RE. This suggests that the Q10 of nighttime RE is strongly influenced by the Q10 of nighttime above-ground respiration, or possibly by a bias in RE measurements. The short-term Q10 of RS and RE decreased with increasing temperature. In general, daytime RS could be estimated using nighttime RS temperature and soil moisture (r2 = 0.9). However, this results from little to no diurnal variation in RS, and estimating daytime RS as the average of nighttime RS gave similar results (r2 = 0.9). Furthermore, we observed a day-night hysteresis of RS response to temperature, especially when using air temperature and sometimes when using soil temperature at 5cm depth. In fact, during some months, soil respiration observations were lower during daytime compared to nighttime, despite higher temperature in daytime. Therefore, daytime RS modelled from nighttime RS temperature response was overestimated during these periods. RS and RE responses to the combination of soil moisture and soil temperature were similar, and consistent with the DAMM model of soil-C decomposition. These findings underscore the value of continuous measurements of RS in flux tower footprints. Findings are also relevant to recent research on light inhibition of leaf respiration and contribute to improved understanding of ecosystem carbon cycle - climate feedback processes.
Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, J.; Kreutzer, C.; Jeffers, M.
Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loadsmore » during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.« less
Flux measurements of energy and trace gases in urban Houston, Texas
NASA Astrophysics Data System (ADS)
Boedeker, I.; Schade, G. W.; Adams, S.; Park, C.
2008-12-01
We describe the setup and some first year results of a new flux measurements tower in an urban area. An existing radio communications tower 4 km north of downtown Houston was equipped with micrometeorological instrumentation and trace gas sampling lines in spring 2007. Wind speed, temperature and relative humidity are recorded at five levels between 12 and 60 m above ground; 3-D wind speed measurements, solar and net radiances, and trace gas sampling are established from the 60 m level. A closed path IRGA is used for CO2 and water vapor fluxes, and independent instrumentation for criteria pollutant and VOC fluxes. Two CSI data loggers and software control the measurements, and EdiRe software is used to analyze turbulence data and compute fluxes. A project description is provided at http://atmo.tamu.edu/yellowcabtower. Surface properties as calculated from the gradient measurements show the site to be surprisingly uniform, with displacement heights between 5 and 9 m and roughness lengths between 0.4 and 0.7 m, despite urban heterogeneity. The latter is investigated through visible/near IR orthoimagery and LIDAR data, which are incorporated into a local GIS. Net radiation was also only marginally affected by surface heterogeneity. At this urban location it is balanced by roughly equal amounts of sensible heat, latent heat, and storage fluxes. Latent heat flux, however, is smaller outside the growing season, with an equivalent increase in winter storage fluxes, as expected. Significant differences are also observed with direction during summer, showing decreased Bowen ratios and lower CO2 emissions from sectors with a larger urban tree canopy cover in the footprint. The largely mature, dominantly oak urban canopy cover alleviates approximately 100 W m- 2 during typical summer days. On the other hand, anthropogenic CO2 emissions dominate over photosynthetic uptake all year round. Measured carbon fluxes peak during morning rush-hour traffic, especially when increasing stretches of the main commuter road fall into the footprint. Outside the rush hour, daytime carbon fluxes typically ranged from 0.4 to 1.6 g C m-2 h-1. A seasonal comparison shows that up to 75% of midday anthropogenic carbon flux is removed via photosynthesis in the dominant wind sector, S, which bears typical tree canopy covers of 25-50% on pervious surfaces.
Geomagnetic Storm Effects in the Low- to Middle-Latitude Upper Thermosphere
NASA Technical Reports Server (NTRS)
Burns, A. G.; Killeen, T. L.; Deng, W.; Carignan, G. R.; Roble, R. G.
1995-01-01
In this paper, we use data from the Dynamics Explorer 2 (DE 2) satellite and a theoretical simulation made by using the National Center for Atmospheric Research thermosphere/ionosphere general circulation model (NCAR-TIGCM) to study storm-induced changes in the structure of the upper thermosphere in the low- to middle-latitude (20 deg-40 deg N) region of the winter hemisphere. Our principal results are as follows: (1) The winds associated with the diurnal tide weaken during geomagnetic storms, causing primarily zonally oriented changes in the evening sector, few changes in the middle of the afternoon, a combination of zonal and meridional changes in the late morning region, and mainly meridional changes early in the morning; (2) Decreases in the magnitudes of the horizontal winds associated with the diurnal tide lead to a net downward tendency in the vertical winds blowing through a constant pressure surface; (3) Because of these changes in the vertical wind, there is an increase in compressional heating (or a decrease in cooling through expansion), and thus temperatures in the low- to middle-latitudes of the winter hemisphere increase; (4) Densities of all neutral species increase on a constant height surface, but the pattern of changes in the O/N2 ratio is not well ordered on these surfaces; (5) The pattern of changes in the O/N2 ratio is better ordered on constant pressure surfaces. The increases in this ratio on constant pressure surfaces in the low- to middle-latitude, winter hemisphere are caused by a more downward tendency in the vertical winds that blow through the constant pressure surfaces. Nitrogen-poor air is then advected downward through the pressure surface, increasing the O/N2 ratio; (6) The daytime geographical distribution of the modeled increases in the O/N2 ratio on a constant pressure surface in the low- to middle-latitudes of the winter hemisphere correspond very closely with those of increases in the modeled electron densities at the F2 peak.
Effect of change in ambient temperature on core temperature during the daytime.
Kakitsuba, Naoshi; White, Matthew D
2014-07-01
In this study, the hypothesis is tested that continuous increases in ambient temperature (Ta) during daytime would give elevated core and skin temperatures, and consequently better thermal sensation and comfort. Rectal temperature (Tre), skin temperatures and regional dry heat losses at 7 sites were continuously measured for 10 Japanese male subjects in three thermal conditions: cond. 1, stepwise increases in Ta from 26 °C at 9 h00 to 30 °C at 18 h00; cond. 2, steady Ta at 28 °C from 9 h00 to 18 h00 and cond. 3, stepwise decreases in Ta from 30 °C at 9 h00 to 26 °C at 18 h00. Oxygen consumption was measured and thermal sensation and comfort votes were monitored at 15 min intervals. Body weight loss was measured at 1 h intervals. While Tre increased continuously in the morning period in any condition, it increased to a significantly greater (p<0.05) 36.9±0.3 °C at 18 h00 in cond. 1 relative to 36.7±0.28 °C in Cond. 2 and 36.5±0.37 °C in cond. 3. Better thermal comfort was observed in the afternoon and the evening in Cond.1 as compared with the other 2 conditions. Thus, a progressive and appropriate increase in Ta may induce optimal cycle in core temperature during daytime, particularly for a resting person.
Evaluation of nitrous acid sources and sinks in urban outflow
NASA Astrophysics Data System (ADS)
Gall, Elliott T.; Griffin, Robert J.; Steiner, Allison L.; Dibb, Jack; Scheuer, Eric; Gong, Longwen; Rutter, Andrew P.; Cevik, Basak K.; Kim, Saewung; Lefer, Barry; Flynn, James
2016-02-01
Intensive air quality measurements made from June 22-25, 2011 in the outflow of the Dallas-Fort Worth (DFW) metropolitan area are used to evaluate nitrous acid (HONO) sources and sinks. A two-layer box model was developed to assess the ability of established and recently identified HONO sources and sinks to reproduce observations of HONO mixing ratios. A baseline model scenario includes sources and sinks established in the literature and is compared to scenarios including three recently identified sources: volatile organic compound-mediated conversion of nitric acid to HONO (S1), biotic emission from the ground (S2), and re-emission from a surface nitrite reservoir (S3). For all mechanisms, ranges of parametric values span lower- and upper-limit values. Model outcomes for 'likely' estimates of sources and sinks generally show under-prediction of HONO observations, implying the need to evaluate additional sources and variability in estimates of parameterizations, particularly during daylight hours. Monte Carlo simulation is applied to model scenarios constructed with sources S1-S3 added independently and in combination, generally showing improved model outcomes. Adding sources S2 and S3 (scenario S2/S3) appears to best replicate observed HONO, as determined by the model coefficient of determination and residual sum of squared errors (r2 = 0.55 ± 0.03, SSE = 4.6 × 106 ± 7.6 × 105 ppt2). In scenario S2/S3, source S2 is shown to account for 25% and 6.7% of the nighttime and daytime budget, respectively, while source S3 accounts for 19% and 11% of the nighttime and daytime budget, respectively. However, despite improved model fit, there remains significant underestimation of daytime HONO; on average, a 0.15 ppt/s unknown daytime HONO source, or 67% of the total daytime source, is needed to bring scenario S2/S3 into agreement with observation. Estimates of 'best fit' parameterizations across lower to upper-limit values results in a moderate reduction of the unknown daytime source, from 0.15 to 0.10 ppt/s.
The Urban Heat Island Behavior of a Large Northern Latitude Metropolitan Area
NASA Astrophysics Data System (ADS)
Twine, T. E.; Snyder, P. K.; Hertel, W.; Mykleby, P.
2012-12-01
Urban heat islands (UHIs) occur when urban and suburban areas experience elevated temperatures relative to their rural surroundings because of differences in vegetation cover, buildings and other development, and infrastructure. Most cities in the United States are warming at twice the rate of the outlying rural areas and the planet as a whole. Temperatures in the urban center can be 2-5°C warmer during the daytime and as much as 10°C at night. Urban warming is responsible for excessive energy consumption, heat-related health effects, an increase in urban pollution, degradation of urban ecosystems, changes in the local meteorology, and an increase in thermal pollution into urban water bodies. One mitigation strategy involves manipulating the surface energy budget to either reduce the amount of solar radiation absorbed at the surface or offset absorbed energy through latent cooling. Options include using building materials with different properties of reflectivity and emissivity, increasing the reflectivity of parking lots, covering roofs with vegetation, and increasing the amount of vegetation overall through tree planting or increasing green space. The goal of the Islands in the Sun project is to understand the formation and behavior of urban heat islands and to mitigate their effects through sensible city engineering and design practices. As part of this project, we have been characterizing the UHI of the Twin Cities Metropolitan Area (TCMA), a 16,000 square kilometer urban and suburban region located in east central Minnesota that includes the two cities of Minneapolis and Saint Paul, and evaluating mitigation strategies for reducing urban warming. Annually, the TCMA has a modest 2-3°C UHI that is especially apparent in winter when the urban core can be up to 5-6°C warmer than the surrounding countryside. We present an analysis of regional temperature variations from a dense network of sensors located throughout the TCMA. We focus on the diurnal and seasonal behavior of the TCMA UHI with an emphasis on the contribution of different land use types on the UHI. We also present a comparison of thermal and radiative properties of two different roofing materials with data collected from the roof of the Science Museum of Minnesota in Saint Paul, MN. The impact of the TCMA UHI on thermal pollution into local water bodies is also investigated.
The Enigma of Io's Warm Polar Regions
NASA Astrophysics Data System (ADS)
Matson, D. L.; Veeder, G. J.; Davies, A. G.; Johnson, T. V.; Blaney, D. L.
Io's polar temperatures are higher than expected for any passive surface. Data from the Galileo Photopolarimeter (PPR) show that minimum nighttime temperatures are in the range of 90 -95 K virtually everywhere [1]. This is particularly striking at high latitudes, within the polar regions. Furthermore, the distribution of minimum night- time temperatures across the surface of Io (away from the sunset terminator) shows little variation with latitude and/or time of night [1,2,3,4]. We consider suggested mechanisms for this elevated-minimum-temperature effect: 1) Polar terrain is warmer than expected because it is rough, 2) Higher latitudes have lower albedos, 3) Thermal inertia increases with latitude, and 4) Cooling lava controls nighttime temperatures. We find that the passive mechanisms fail. This leads to the suggestion that most of Io is covered by cooling lavas. In this context, lava cools to the observed temperature range on time scales of ten to ten thousand years depending upon the nature of the eruption scenario(s). Separately, analysis of thermal anomalies reveals that the trend of the data (log-cumulative-surface-area versus log-temperature) extrapolated to the entire surface area of Io predicts large- scale, ambient, temperatures in the 90-95 K range. Recent Galileo observations showing a myriad of small volcanic hot spots [7] provide strong support for the paradigm of ubiquitous volcanic activity with global, cooling-lava fields on Io. While explaining the high nighttime polar temperatures, this model displaces the previous explaination for Io's anomalously low 20 micron daytime emission. Explaining this emission is an important focus for current work. Warm polar regions appear to require some heat flow through very large areas in addition to the small, hot anomalies already known. This has implications for raising Io's global heat flow. Presently, the heat flow is constrained between a lower bound of ~2.5 W m -2[5] and an upper bound of ~13 W m -2[3,4,6]. References: [1] Spencer J. R. et al. (2000) Science, 288, 1198-1201. [2] Rathbun J. A. et al. (2001) EOS Trans. AGU, 82, P11A-11. [3] Matson D. L. et al. (2001) LPSC XXXII, 1938. [4] Matson D. L. et al. (2001) JGR, in press [5] Veeder G. J. et al. (1994) JGR, 99, 17095- 17162. [6] Matson D. L. et al. (2000) EOS, 81, F788. [7] Lopes-Gautier R. et al. (2000) Science, 288, 1201-1204. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.
NASA Astrophysics Data System (ADS)
Bornstein, R. D.; Lebassi, B.; Gonzalez, J.
2010-12-01
The study evaluated long-term (1948-2005) air temperatures at over 300 urban and rural sites in California (CA) during summer (June-August, JJA). The aggregate CA results showed asymmetric warming, as daily min temperatures increased faster than daily max temperatures. The spatial distributions of daily max temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins, however, exhibited a complex pattern, with cooling at low-elevation (mainly urban) coastal-areas and warming at (mainly rural) inland areas. Previous studies have suggested that cooling summer max temperatures in CA were due to increased irrigation, coastal upwelling, or cloud cover. The current hypothesis, however, is that this temperature pattern arises from a “reverse-reaction” to greenhouse gas (GHG) induced global-warming. In this hypothesis, the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. That daytime summer coastal cooling was seen in coastal urban areas implies that urban heat island (UHI) warming was weaker than the reverse-reaction sea breeze cooling; if there was no UHI effect, then the cooling would have been even stronger. Analysis of daytime summer max temperatures at four adjacent pairs of urban and rural sites near the inland cooling-warming boundary, however, showed that the rural sites experienced cooling, while the urban sites showed warming due to UHI development. The rate of heat island growth was estimated as the sum of each urban warming rate and the absolute magnitude of the concurrent adjacent rural cooling rate. Values ranged from 0.12 to 0.55 K decade-1, and were proportional to changes in urban population and urban extent. As Sacramento, Modesto, Stockton, and San José have grown in aerial extent (21 to 59%) and population (40 to 118%), part of the observed increased JJA max values could be due to increased daytime UHI-intensity. Without UHI effects, the currently observed JJA SFBA coastal-cooling area might have expanded to include these sites, as the first three are adjacent to rural airport sites that showed cooling max-values due to increased marine influences. In addition, all urbanized sites with decreasing max-values would probably show even larger cooling rates if UHI effects could be removed. Significant societal impacts may result from this observed reverse-reaction to GHG-warming. Possible beneficial effects (especially during periods of UHI growth) include decreased maximum: O3 levels, per-capita energy requirements for cooling, and human thermal-stress levels.
A wedge strategy for mitigation of urban warming in future climate scenarios
NASA Astrophysics Data System (ADS)
Zhao, Lei; Lee, Xuhui; Schultz, Natalie M.
2017-07-01
Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs). Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases
- cold islands caused by cool roofs at midday, with an average oasis effect of -3.4 K in the summer for the period 2071-2100, which offsets approximately 80 % of the greenhouse gas (GHG) warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.
Roach, Franklin E.; Carroll, Benjamin; Aller, Lawrence H.; Smith, Leroi
1972-01-01
Diffuse celestial sources of relatively low surface brightness such as the Milky Way, zodiacal light, and gegenschein (or contre lumière) can be studied most reliably from above the earth's atmosphere with equipment flown in artificial satellites. We review the techniques used and some of the difficulties encountered in day-time observations from satellites by the use of a special photometer and polarimeter flown in the orbiting skylab observatory, OSO-6. PMID:16591970
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.
2011-01-01
Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.
Daytime symptoms of restless legs syndrome--clinical characteristics and rotigotine effectiveness.
Takahashi, Masayoshi; Ikeda, Junji; Tomida, Takayuki; Hirata, Koichi; Hattori, Nobutaka; Inoue, Yuichi
2015-07-01
To elucidate the prevalence and clinical characteristics of daytime restless legs syndrome (RLS) among patients with idiopathic RLS and investigate the effectiveness of rotigotine for daytime RLS. In 256 enrolled RLS patients, we investigated factors associated with the presence of RLS symptoms throughout the day. We also assessed the duration of daytime RLS symptoms at hourly intervals, time of initial symptom onset during the day, and associations between duration of daytime and nighttime RLS symptoms. In addition, we compared changes in duration and frequency of RLS symptoms during daytime and nighttime after randomly assigning patients to a 13-week treatment with rotigotine, a dopamine agonist patch with 24-hour action, or placebo. Eighty-one (31.6%) patients had daytime RLS symptoms. Only the International Restless Legs Syndrome Study Group rating scale total score was significantly associated with the presence of daytime RLS symptoms (p < 0.01) on multiple logistic regression analysis. Daytime RLS symptom onset was at 6 a.m. in 44.4% of patients; symptom duration increased significantly toward nighttime. There was a significant positive association between duration of daytime and nighttime RLS symptoms (p < 0.0001) and a greater statistically significant reduction of daytime RLS symptom duration with rotigotine treatment than with placebo (p = 0.03). Daytime symptoms are frequent in patients with RLS and may be associated with increased severity of the disorder and prolonged nighttime RLS symptoms. Rotigotine could become an important treatment choice for daytime symptoms. Copyright © 2015 Elsevier B.V. All rights reserved.
Accuracy Assessment and Correction of Vaisala RS92 Radiosonde Water Vapor Measurements
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Miloshevich, Larry M.; Vomel, Holger; Leblanc, Thierry
2008-01-01
Relative humidity (RH) measurements from Vaisala RS92 radiosondes are widely used in both research and operational applications, although the measurement accuracy is not well characterized as a function of its known dependences on height, RH, and time of day (or solar altitude angle). This study characterizes RS92 mean bias error as a function of its dependences by comparing simultaneous measurements from RS92 radiosondes and from three reference instruments of known accuracy. The cryogenic frostpoint hygrometer (CFH) gives the RS92 accuracy above the 700 mb level; the ARM microwave radiometer gives the RS92 accuracy in the lower troposphere; and the ARM SurTHref system gives the RS92 accuracy at the surface using 6 RH probes with NIST-traceable calibrations. These RS92 assessments are combined using the principle of Consensus Referencing to yield a detailed estimate of RS92 accuracy from the surface to the lowermost stratosphere. An empirical bias correction is derived to remove the mean bias error, yielding corrected RS92 measurements whose mean accuracy is estimated to be +/-3% of the measured RH value for nighttime soundings and +/-4% for daytime soundings, plus an RH offset uncertainty of +/-0.5%RH that is significant for dry conditions. The accuracy of individual RS92 soundings is further characterized by the 1-sigma "production variability," estimated to be +/-1.5% of the measured RH value. The daytime bias correction should not be applied to cloudy daytime soundings, because clouds affect the solar radiation error in a complicated and uncharacterized way.
NASA Astrophysics Data System (ADS)
Nalli, Nicholas R.; Stowe, Larry L.
2002-10-01
This research presents the first-phase derivation and implementation of daytime aerosol correction algorithms for remotely sensed sea surface temperature (SST) from the advanced very high resolution radiometer (AVHRR) instrument flown onboard NOAA polar orbiting satellites. To accomplish this, a long-term (1990-1998), global AVHRR-buoy match-up database was created by merging the NOAA/NASA Pathfinder Atmospheres and Pathfinder Oceans data sets. The merged data set is unique in that it includes daytime estimates of aerosol optical depth (AOD) derived from AVHRR channel 1 (0.63 μm) under global conditions of significant aerosol loading. Histograms of retrieved AOD reveal monomodal, lognormal distributions for both tropospheric and stratospheric aerosol modes. It is then shown empirically that the SST depression caused under each aerosol mode can be expressed as a linear function in two predictors, these being the slant path AOD retrieved from AVHRR channel 1 along with the ratio of channels 1 and 2 normalized reflectances. On the basis of these relationships, parametric equations are derived to provide an aerosol correction for retrievals from the daytime NOAA operational multichannel and nonlinear SST algorithms. Separate sets of coefficients are utilized for two aerosol modes: tropospheric (i.e., dust, smoke, haze) and stratospheric/tropospheric (i.e., following a major volcanic eruption). The equations are shown to significantly reduce retrieved SST bias using an independent set of match-ups. Eliminating aerosol-induced bias in both real-time and retrospective processing will enhance the utility of the AVHRR SST for the general user community and in climate research.
The correlation of VLF propagation variations with atmospheric planetary-scale waves
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Deland, R. J.; Potemra, T. A.; Gavin, R. F.
1973-01-01
Variations in the received daytime phase of long distance, cesium-controlled, VLF transmission were compared to the height variations of the 10-mb isobaric surface during the first three months of 1965 and 1969. The VLF phase values are also compared to height variations of constant electron densities in the E-region and to variations of f-min which have been shown to be well correlated with planetary-scale variations in the stratosphere by Deland and Cavalieri (1973). The VLF phase variations show good correlation with these previous ionospheric measurements and with the 10-mb surfaces. The planetary scale waves in the stratosphere are shown to be travelling on the average eastward in 1965 and westward in 1969. These correlations are interpreted as due to the propagation of travelling planetary scale waves with westward tilted wave fronts. Upward energy transport due to the vertical structure of those waves is also discussed. These correlations provide further evidence for the coupling between the lower ionosphere at about 70 km altitude (the daytime VLF reflection height and the stratosphere, and they demonstrate the importance of planetary wave phenomena to VLF propagation.
Fu, Yiqun; Xu, Huajun; Xia, Yunyan; Qian, Yingjun; Li, Xinyi; Zou, Jianyin; Wang, Yuyu; Meng, Lili; Tang, Xulan; Zhu, Huaming; Zhou, Huiqun; Su, Kaiming; Yu, Dongzhen; Yi, Hongliang; Guan, Jian; Yin, Shankai
2017-10-03
Excessive daytime sleepiness is a common symptom in obstructive sleep apnea (OSA). Previous studies have showed that excessive daytime sleepiness is associated with some individual components of metabolic syndrome. We performed a large cross-sectional study to explore the relationship between excessive daytime sleepiness and metabolic syndrome in male OSA patients. A total of 2241 suspected male OSA patients were consecutively recruited from 2007 to 2013. Subjective daytime sleepiness was assessed using the Epworth sleepiness scale. Anthropometric, metabolic, and polysomnographic parameters were measured. Metabolic score was used to evaluate the severity of metabolic syndrome. Among the male OSA patients, most metabolic parameters varied by excessive daytime sleepiness. In the severe group, male OSA patients with excessive daytime sleepiness were more obese, with higher blood pressure, more severe insulin resistance and dyslipidemia than non-sleepy patients. Patients with metabolic syndrome also had a higher prevalence of excessive daytime sleepiness and scored higher on the Epworth sleepiness scale. Excessive daytime sleepiness was independently associated with an increased risk of metabolic syndrome (odds ratio =1.242, 95% confidence interval: 1.019-1.512). No substantial interaction was observed between excessive daytime sleepiness and OSA/ obesity. Excessive daytime sleepiness was related to metabolic disorders and independently associated with an increased risk of metabolic syndrome in men with OSA. Excessive daytime sleepiness should be taken into consideration for OSA patients, as it may be a simple and useful clinical indicator for evaluating the risk of metabolic syndrome.
The impact of drought on ozone dry deposition over eastern Texas
NASA Astrophysics Data System (ADS)
Huang, Ling; McDonald-Buller, Elena C.; McGaughey, Gary; Kimura, Yosuke; Allen, David T.
2016-02-01
Dry deposition represents a critical pathway through which ground-level ozone is removed from the atmosphere. Understanding the effects of drought on ozone dry deposition is essential for air quality modeling and management in regions of the world with recurring droughts. This work applied the widely used Zhang dry deposition algorithm to examine seasonal and interannual changes in estimated ozone dry deposition velocities and component resistances/conductances over eastern Texas during years with drought (2006 and 2011) as well as a year with slightly cooler temperatures and above average rainfall (2007). Simulated area-averaged daytime ozone dry deposition velocities ranged between 0.26 and 0.47 cm/s. Seasonal patterns reflected the combined seasonal variations in non-stomatal and stomatal deposition pathways. Daytime ozone dry deposition velocities during the growing season were consistently larger during 2007 compared to 2006 and 2011. These differences were associated with differences in stomatal conductances and were most pronounced in forested areas. Reductions in stomatal conductances under drought conditions were highly sensitive to increases in vapor pressure deficit and warmer temperatures in Zhang's algorithm. Reductions in daytime ozone deposition velocities and deposition mass during drought years were associated with estimates of higher surface ozone concentrations.
Baker, Fiona C; Wolfson, Amy R; Lee, Kathryn A
2009-06-01
To investigate factors associated with poor sleep quality and daytime sleepiness in women living in the United States. Data are presented from the National Sleep Foundation's 2007 Sleep in America Poll that included 959 women (18-64 years of age) surveyed by telephone about their sleep quality, daytime sleepiness, and sociodemographic, health, and lifestyle factors. Poor sleep quality was reported by 27% and daytime sleepiness was reported by 21% of respondents. Logistic multivariate regression analyses revealed that poor sleep quality and daytime sleepiness were both independently associated with poor health, having a sleep disorder, and psychological distress. Also, multivariate analyses showed that women who consumed more caffeinated beverages and those who had more than one job were more likely to report poor sleep quality but not daytime sleepiness. Daytime sleepiness, on the other hand, was independently associated with being black/African American, younger, disabled, having less education, and daytime napping. Poor sleep quality and daytime sleepiness are common in American women and are associated with health-related, as well as sociodemographic, factors. Addressing sleep-related complaints in women is important to improve their daytime functioning and quality of life.
Ramakrishna, Wusirika; Deng, Zhiping; Ding, Chang-Kui; Handa, Avtar K.; Ozminkowski, Richard H.
2003-01-01
We have characterized a novel small heat shock protein gene, viscosity 1 (vis1) from tomato (Lycopersicon esculentum) and provide evidence that it plays a role in pectin depolymerization and juice viscosity in ripening fruits. Expression of vis1 is negatively associated with juice viscosity in diverse tomato genotypes. vis1 exhibits DNA polymorphism among tomato genotypes, and the alleles vis1-hta (high-transcript accumulator; accession no. AY128101) and vis1-lta (low transcript accumulator; accession no. AY128102) are associated with thinner and thicker juice, respectively. Segregation of tomato lines heterogeneous for vis1 alleles indicates that vis1 influences pectin depolymerization and juice viscosity in ripening fruits. vis1 is regulated by fruit ripening and high temperature and exhibits a typical heat shock protein chaperone function when expressed in bacterial cells. We propose that VIS1 contributes to physiochemical properties of juice, including pectin depolymerization, by reducing thermal denaturation of depolymerizing enzymes during daytime elevated temperatures. PMID:12586896
Planetary Boundary Layer Dynamics over Reno, Nevada in Summer
NASA Astrophysics Data System (ADS)
Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.
2014-12-01
Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.
NASA Astrophysics Data System (ADS)
Sati, Ankur Prabhat; Mohan, Manju
2017-10-01
An estimated 50% of the global population lives in the urban areas, and this percentage is projected to reach around 69% by the year 2050 (World Urbanization Prospects 2009). There is a considerable growth of urban and built-up area during the recent decades over National Capital Region (NCR) of India (17-fold increase in the urban extent). The proposed study estimates the land use land cover changes particularly changes to urban class from other land use types such as croplands, shrubland, open areas, and water bodies and quantify these changes for a span of about five decades. Further, the impact of these land use/land cover changes is examined on spatial and temporal variations of meteorological parameters using the Weather Research and Forecast (WRF) Model. The urbanized areas appear to be one of the regions with highest changes in the values of the fluxes and temperatures where during daytime, the surface sensible heat flux values show a noticeable increase of 60-70 W m-2 which commensurate with increase in urbanization. Similarly, the nighttime LST and T2m show an increase of 3-5 and 2-3 K, respectively. The diurnal temperature range (DTR) of LST and surface temperature also shows a decrease of about 5 and 2-3 K, respectively, with increasing urbanization. Significant decrease in the magnitude of surface winds and relative humidity is also observed over the areas converted to urban form over a period of half a century. The impacts shown here have serious implications on human health, energy consumption, ventilation, and atmospheric pollution.
NASA Astrophysics Data System (ADS)
Žabkar, Rahela; Koračin, Darko; Rakovec, Jože
2013-10-01
A high ozone (O3) concentrations episode during a heat wave event in the Northeastern Mediterranean was investigated using the WRF/Chem model. To understand the major model uncertainties and errors as well as the impacts of model inputs on the model accuracy, an ensemble modelling experiment was conducted. The 51-member ensemble was designed by varying model physics parameterization options (PBL schemes with different surface layer and land-surface modules, and radiation schemes); chemical initial and boundary conditions; anthropogenic and biogenic emission inputs; and model domain setup and resolution. The main impacts of the geographical and emission characteristics of three distinct regions (suburban Mediterranean, continental urban, and continental rural) on the model accuracy and O3 predictions were investigated. In spite of the large ensemble set size, the model generally failed to simulate the extremes; however, as expected from probabilistic forecasting the ensemble spread improved results with respect to extremes compared to the reference run. Noticeable model nighttime overestimations at the Mediterranean and some urban and rural sites can be explained by too strong simulated winds, which reduce the impact of dry deposition and O3 titration in the near surface layers during the nighttime. Another possible explanation could be inaccuracies in the chemical mechanisms, which are suggested also by model insensitivity to variations in the nitrogen oxides (NOx) and volatile organic compounds (VOC) emissions. Major impact factors for underestimations of the daytime O3 maxima at the Mediterranean and some rural sites include overestimation of the PBL depths, a lack of information on forest fires, too strong surface winds, and also possible inaccuracies in biogenic emissions. This numerical experiment with the ensemble runs also provided guidance on an optimum model setup and input data.
Changes in sleep and wake in response to different sleeping surfaces: a pilot study.
McCall, W Vaughn; Boggs, Niki; Letton, Alan
2012-03-01
Six married couples (12 adults, mean age 34.8 years) were randomized as couples in a cross-over design to sleep on a queen-size conventional mattress for 2 weeks and a specially-designed pressure-relief mattress for 2 weeks. The pressure-relief mattress was designed to reduce the number of contact points exceeding 30 mm Hg. Actigraphic measurements of sleep and self-reports of sleep and daytime symptoms were collected at baseline for 2 weeks on each couple's home mattress and box springs at home, followed by 2 weeks of data collection on each randomized mattress for a total of 6 weeks of data collection. Pressure maps were created for each participant on each sleeping surface. There were no significant differences between the randomized sleeping surfaces for any measure of actigraphic sleep or self-reported sleep and daytime symptoms. However, poor pressure relief performance of the home mattress was associated with better actigraphic sleep on the randomized pressure-relief mattress. We conclude that while pressure-relief mattresses may not be universally preferred, baseline characteristics of the sleeper and/or their mattress may explain performance and sleeper preferences on future mattress selection. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Rain events decrease boreal peatland net CO2 uptake through reduced light availability.
Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank
2015-06-01
Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely ignored. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, J.; Henderson, H.; Varshney, K.
2014-09-01
The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of themore » heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Situ, S.; Guenther, Alex B.; Wang, X. J.
In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions onmore » surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.« less
Land Surface Temperature Measurements from EOD MODIS Data
NASA Technical Reports Server (NTRS)
Wan, Zheng-Ming
1998-01-01
We made more tests of the version 2.0 daily Level 2 and Level 3 Land-Surface Temperature (LST) code (PGE 16) jointly with the MODIS Science Data Support Team (SDST). After making minor changes a few times, the PGE16 code has been successfully integrated and tested by MODIS SDST, and recently has passed the inspection at the Goddard Distributed Active Archive Center (DAAC). We conducted a field campaign in the area of Mono Lake, California on March 10, 1998, in order to validate the MODIS LST algorithm in cold and dry conditions. Two MODIS Airborne Simulator (MAS) flights were completed during the field campaign, one before noon, and another around 10 pm PST. The weather condition for the daytime flight was perfect: clear sky, the column water vapor measured by radiosonde around 0.3 cm, and wind speed less than a half meter per second. The quality of MAS data is good for both day and night flights. We analyzed the noise equivalent temperature difference (NE(delta)T) and the calibration accuracy of the seven MAS thermal infrared (TIR) bands, that are used in the MODIS day/night LST algorithm, with daytime MAS data over four flat homogeneous study areas: two on Grant Lake (covered with ice and snow, respectively), one on Mono Lake, and another on the snow field site where we made field measurements. NE(delta)T ranges from 0.2 to 0.6 k for bands 42, 45, 46, and 48. It ranges from 0.8 to 1.1 K for bands 30-32. The day and night MAS data have been used to retrieve surface temperature and emissivities in these bands. A simple method to correct the effect of night thin cirrus has been incorporated into the day/night LST algorithm in dry atmospheric conditions. We compared the retrieved surface temperatures with those measured with TIR spectrometer, radiometers and thermistors in the snow test site, and the retrieved emissivity images with topographic map. The daytime LST values match well within 1 K. The night LST retrieved from MAS data is 3.3 K colder than those from field measurements most likely because of the effect of haze at night. The good agreement among the regional averaged surface temperatures obtained from LST values retrieved at different resolutions increased our confidence in the MODIS day/night LST algorithm.
Daytime REM Sleep in Parkinson’s Disease
Bliwise, Donald L.; Trotti, Lynn Marie; Juncos, Jorge J.; Factor, Stewart A.; Freeman, Alan; Rye, David B.
2012-01-01
Background Previous studies have demonstrated both clinical and neurochemical similarities between Parkinson’s disease (PD) and narcolepsy. The intrusion of REM sleep into the daytime remains a cardinal feature of narcolepsy, but the importance of these intrusions in PD remains unclear. In this study we examined REM sleep during daytime Maintenance of Wakefulness Testing (MWT) in PD patients. Methods Patients spent 2 consecutive nights and days in the sleep laboratory. During the daytime, we employed a modified MWT procedure in which each daytime nap opportunity (4 per day) was extended to 40 minutes, regardless of whether the patient was able to sleep or how much the patient slept. We examined each nap opportunity for the presence of REM sleep and time to fall asleep. Results Eleven of 63 PD patients studied showed 2 or more REM episodes and 10 showed 1 REM episode on their daytime MWTs. Nocturnal sleep characteristics and sleep disorders were unrelated to the presence of daytime REM sleep, however, patients with daytime REM were significantly sleepier during the daytime than those patients without REM. Demographic and clinical variables, including Unified Parkinson’s Disease Rating Scale motor scores and levodopa dose equivalents, were unrelated to the presence of REM sleep. Conclusions A sizeable proportion of PD patients demonstrated REM sleep and daytime sleep tendency during daytime nap testing. These data confirm similarities in REM intrusions between narcolepsy and PD, perhaps suggesting parallel neurodegenerative conditions of hypocretin deficiency. PMID:22939103
NASA Astrophysics Data System (ADS)
Avolio, E.; Federico, S.; Miglietta, M. M.; Lo Feudo, T.; Calidonna, C. R.; Sempreviva, A. M.
2017-08-01
The sensitivity of boundary layer variables to five (two non-local and three local) planetary boundary-layer (PBL) parameterization schemes, available in the Weather Research and Forecasting (WRF) mesoscale meteorological model, is evaluated in an experimental site in Calabria region (southern Italy), in an area characterized by a complex orography near the sea. Results of 1 km × 1 km grid spacing simulations are compared with the data collected during a measurement campaign in summer 2009, considering hourly model outputs. Measurements from several instruments are taken into account for the performance evaluation: near surface variables (2 m temperature and relative humidity, downward shortwave radiation, 10 m wind speed and direction) from a surface station and a meteorological mast; vertical wind profiles from Lidar and Sodar; also, the aerosol backscattering from a ceilometer to estimate the PBL height. Results covering the whole measurement campaign show a cold and moist bias near the surface, mostly during daytime, for all schemes, as well as an overestimation of the downward shortwave radiation and wind speed. Wind speed and direction are also verified at vertical levels above the surface, where the model uncertainties are, usually, smaller than at the surface. A general anticlockwise rotation of the simulated flow with height is found at all levels. The mixing height is overestimated by all schemes and a possible role of the simulated sensible heat fluxes for this mismatching is investigated. On a single-case basis, significantly better results are obtained when the atmospheric conditions near the measurement site are dominated by synoptic forcing rather than by local circulations. From this study, it follows that the two first order non-local schemes, ACM2 and YSU, are the schemes with the best performance in representing parameters near the surface and in the boundary layer during the analyzed campaign.
NASA Astrophysics Data System (ADS)
Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.
2017-12-01
Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the orientation of dunes.
Dust emission and transport over Iraq associated with the summer Shamal winds
NASA Astrophysics Data System (ADS)
Bou Karam Francis, D.; Flamant, C.; Chaboureau, J.-P.; Banks, J.; Cuesta, J.; Brindley, H.; Oolman, L.
2017-02-01
In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source.
Dust emission and transport over Iraq associated with the summer Shamal winds
NASA Astrophysics Data System (ADS)
Karam Francis, Diana Bou; Flamant, Cyrille; Chaboureau, Jean-Pierre; Banks, Jamie
2016-04-01
In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model Meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a Meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source. Keywords: Dust, Low Level Jet, Shamal winds, Middle East, dust sources.
Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow
NASA Astrophysics Data System (ADS)
Abeni, Fabio; Galli, Andrea
2017-03-01
The aim of this study was to explore the use of cow activity and rumination time by precision livestock farming tools as early alert for heat stress (HS) detection. A total of 58 Italian Friesian cows were involved in this study during summer 2015. Based on the temperature humidity index (THI), two different conditions were compared on 16 primiparous and 11 multiparous, to be representative of three lactation phases: early (15-84 DIM), around peak (85-154 DIM), and plateau (155-224 DIM). A separate dataset for the assessment of the variance partition included all the cows in the herd from June 7 to July 16. The rumination time (RT2h, min/2 h) and activity index (AI2h, bouts/2 h) were summarized every 2-h interval. The raw data were used to calculate the following variables: total daily RT (RTt), daytime RT (RTd), nighttime RT (RTn), total daily AI (AIt), daytime AI (AId), and nighttime AI (AIn). Either AIt and AId increased, whereas RTt, RTd, and RTn decreased with higher THI in all the three phases. The highest decrease was recorded for RTd and ranged from 49 % (early) to 45 % (plateau). The contribution of the cow within lactation phase was above 60 % of the total variance for AI traits and a share from 33.9 % (for RTt) to 54.8 % (RTn) for RT traits. These observations must be extended to different feeding managements and different animal genetics to assess if different thresholds could be identified to set an early alert system for the farmer.
Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds
NASA Astrophysics Data System (ADS)
Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.
2017-12-01
Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP < 50 g m-2), cloud base updraft speeds and cloud top cooling are well-correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.
NASA Astrophysics Data System (ADS)
Morita, Shin-ichi; Hayamizu, Yasutaka; Horibe, Akihiko; Haruki, Naoto; Inaba, Hideo
2013-04-01
Recently, much attention has been paid to investigate the latent heat storage system. Using of ice heat storage system brings an equalization of electric power demand, because it will solved the electric -power-demand-concentration on day-time of summer by the air conditioning. The flowable latent heat storage material, Oil/Water type emulsion, microencapsulated latent heat material-water mixture or ice slurry, etc., is enable to transport the latent heat in a pipe. The flowable latent heat storage material can realize the pipe size reduction and system efficiency improvement. Supercooling phenomenon of the dispersed latent heat storage material in continuous phase brings the obstruction of latent heat storage. The latent heat storage rates of dispersed water drops in W/O (Water/Oil) emulsion are investigated experimentally in this study. The water drops in emulsion has the diameter within 3 ˜ 25μm, the averaged water drop diameter is 7.3μm and the standard deviation is 2.9μm. The direct contact heat exchange method is chosen as the phase change rate evaluation of water drops in W/O emulsion. The supercooled temperature and the cooling rate are set as parameters of this study. The evaluation is performed by comparison between the results of this study and the past research. The obtained experimental result is shown that the 35K or more degree from melting point brings 100% latent heat storage rate of W/O emulsion. It was clarified that the supercooling rate of dispersed water particles in emulsion shows the larger value than that of the bulk water.
Association between Daytime Napping and Chronic Diseases in China.
Zhou, Junmin; Kessler, Asia Sikora; Su, Dejun
2016-03-01
To explore the relationship between daytime napping and incidence of chronic diseases over the past 6 months among adults in China. Based on data collected from 13,469 respondents over age 40 in the Chinese Family Panel Studies in 2010, logistic regression models were estimated to examine the association between daytime napping and the incidence of any chronic diseases and 3 specific chronic diseases (hypertension, diabetes, and heart disease) after adjusting for confounders. Differences of risks by sex and age were also investigated. In the sample, 50.8% were women and 32.2% were over 60 years old. Adjusted estimates show respondents with daytime napping had elevated odds of developing any chronic diseases, hypertension, and diabetes compared to those who did not nap; having over 60 minutes of daytime napping had weaker association compared with shorter duration of daytime napping. The association between daytime napping and hypertension was found in women but not in men. Daytime napping appears to be associated with elevated risk of incidence of any chronic diseases, hypertension, and diabetes.
Regional climate model assessment of the urban land-surface forcing over central Europe
NASA Astrophysics Data System (ADS)
Huszar, P.; Halenka, T.; Belda, M.; Zak, M.; Sindelarova, K.; Miksovsky, J.
2014-07-01
For the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single Layer Urban Canopy Model (SLUCM). A set of experiments was performed over the period of 2005-2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer) as well as on the boundary layer height (increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0.6 m s-1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s-1). Urban surfaces significantly reduce evaporation and thus the humidity over the surface. This impacts the simulated summer precipitation rate, showing decrease over cities up to -2 mm day-1. Significant temperature increases are simulated over higher elevations as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity). Statistically significant impacts are modeled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant influence of the cities and the influence of the minor local urban surface coverage.
Regional climate model assessment of the urban land-surface forcing over central Europe
NASA Astrophysics Data System (ADS)
Huszar, P.; Halenka, T.; Belda, M.; Zak, M.; Sindelarova, K.; Miksovsky, J.
2014-11-01
For the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single-layer Urban Canopy Model (SLUCM). A set of experiments was performed over the period of 2005-2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer) as well as on the boundary layer height (increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0.6 m s-1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s-1). Urban surfaces significantly reduce the humidity over the surface. This impacts the simulated summer precipitation rate, showing a decrease over cities of up to -2 mm day-1. Significant temperature increases are simulated over higher altitudes as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment, such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity). Statistically significant impacts are modelled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant influence of the cities and the influence of the minor local urban surface coverage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-11-01
The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency, which faced several obstacles,more » including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68°F) than day (73° F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.« less
NASA Astrophysics Data System (ADS)
Hao, Zhenhua; Drake, V. Alistair; Sidhu, Leesa; Taylor, John R.
2017-12-01
Based on previous investigations, adult Australian plague locusts are believed to migrate on warm nights (with evening temperatures >25 °C), provided daytime flight is suppressed by surface winds greater than the locusts' flight speed, which has been shown to be 3.1 m s-1. Moreover, adult locusts are believed to undertake briefer `dispersal' flights on nights with evening temperature >20 °C. To reassess the utility of these conditions for forecasting locust flight, contingency tests were conducted comparing the nights selected on these bases (predicted nights) for the months of November, January, and March and the nights when locust migration were detected with an insect monitoring radar (actual nights) over a 7-year period. In addition, the wind direction distributions and mean wind directions on all predicted nights and actual nights were compared. Observations at around 395 m above ground level (AGL), the height at which radar observations have shown that the greatest number of locusts fly, were used to determine the actual nights. Tests and comparisons were also made for a second height, 990 m AGL, as this was used in the previous investigation. Our analysis shows that the proposed criteria are successful from predicting migratory flight only in March, when the surface temperature is effective as a predicting factor. Surface wind speed has no predicting power. It is suggested that a strong daytime surface wind speed requirement should not be considered and other meteorological variables need to be added to the requirement of a warm surface temperature around dusk for the predictions to have much utility.
Venus: ionosphere and atmosphere as measured by dual-frequency radio occultation of mariner v.
1967-12-29
Venus has daytime and nighttime ionospheres at the positions probed by radio occulation. The main layers are thin by terrestrial standards, with the nighttime peak concentration of electrons being about two orders of magnitude below that of the daytime peak. Above the nighttime peak were several scale-height regimes extending to a radius of at least 7500, and probably to 9700, kilometers from the center of Venus. Helium and hydrogen at plasma temperatures of 600 degrees to 1100 degrees K seem indicated in the regimes from 6300 to 7500 kilometers, with cooler molecular ions in lower regions. Above the daytime peak a sharp plasmapause was discovered, marking a sudden transition from appreciable ionization concentrations near Venus to the tenuous conditions of the solar wind. This may be indicative of a kind of interaction of the magnetized solar wind with a planetary body that differs from the two different kinds of interaction characterized by Earth and by Moon. For Venus and probably for Mars, the magnetic field of the solar wind may pile up in front of the conducting ionosphere, form an induced magnetosphere that ends at the plasmapause, above which any ionosphere that tends to form is swept away by the shocked solar wind that flows between the stand-off bow-shock and the magnetopause. The neutral atmosphere was also probed and a surface reflection may have been detected, but the data have not yet been studied in detail. Results are consistent with a super-refractive atmosphere, as expected from Soviet measurements near the surface. Thus, two unusual features of Venus can be described in terms of a light trap in the lower atmosphere, and a magnetic trap in the conducting ionosphere.
Skibitsky, Megan; Edelen, Maria Orlando; Martin, Jennifer L; Harker, Judith; Alessi, Cathy; Saliba, Debra
2012-02-01
Excessive daytime sleeping is associated with poorer functional outcomes in rehabilitation populations and may be improved with targeted interventions. The purpose of this study was to test simple methods of screening for excessive daytime sleeping among older adults admitted for postacute rehabilitation. Secondary analysis of data from 2 clinical samples. Two postacute rehabilitation (PAR) units in southern California. Two hundred twenty-six patients older than 65 years with Mini-Mental State Examination (MMSE) score higher than 11 undergoing rehabilitation. The primary outcome was excessive daytime sleeping, defined as greater than 15% (1.8 hours) of daytime hours (8 am to 8 pm) sleeping as measured by actigraphy. Participants spent, on average, 16.2% (SD 12.5%) of daytime hours sleeping as measured by actigraphy. Thirty-nine percent of participants had excessive daytime sleeping. The Pittsburgh Sleep Quality Index (PSQI) was significantly associated with actigraphically measured daytime sleeping (P = .0038), but the Epworth Sleepiness Scale (ESS) was not (P = .49). Neither the ESS nor the PSQI achieved sufficient sensitivity and specificity to be used as a screening tool for excessive daytime sleeping. Two additional models using items from these questionnaires were not significantly associated with the outcome. In an older PAR population, self-report items from existing sleep questionnaires do not identify excessive daytime sleeping. Therefore we recommend objective measures for the evaluation of excessive daytime sleeping as well as further research to identify new self-report items that may be more applicable in PAR populations. Copyright © 2012 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Phanikumar, Devulapalli V.; Basha, Ghouse; Ouarda, Taha B. M. J.
2015-04-01
In the view of recent economic, industrial, and rapid development, Abu Dhabi (24.4oN; 54.4oE; 27m msl) has become one of the most populated regions in the world despite of extreme heat, frequent dust storms, and with distinctive topography. The major sources of air pollution are from the dust and sand storms, greenhouse gas emissions, and to some extent from industrial pollution. In order to realize the accurate and comprehensive understanding of air quality and plausible sources over this region, we have made a detailed analysis of three years simultaneous measurements during 2011-13 of pollutants such as O3, SO2, NO2, CO, and PM10 concentrations. Diurnal variation of meteorological parameters such as temperature and wind speed/relative humidity clearly shows daytime maximum/minimum in summer followed by pre-monsoon, post-monsoon and winter. The prevailing winds over this region are mostly from northwesterly direction (Shamal wind). Diurnal wind pattern showed a clear contrast with the majority of the wind pattern during nighttime and early morning is from the westerly/northwesterly and daytime is from southwesterly/southeasterly directions. The diurnal pattern of O3 shows minimum during 08 LT and increases thereafter reaching maximum at 17 LT and decreases during nighttime. However, the diurnal pattern of SO2 and NO2 show a peak at ~ 08 LT and dip at ~ 14 LT during all the seasons with some variability in each season. On the other hand, the diurnal pattern of CO shows a peculiar picture of elevated levels during daytime peaking at ~ 10 LT (prominent in summer and post-monsoon) followed by a sharp decrease and minimum is ~14 LT. PM10 concentration has an early morning peak at ~ 02 LT and then decreases to a minimum value at ~11 LT and again increases in the afternoon hours (maximum at ~17 LT) depicting a forenoon-afternoon asymmetry. Monthly variation of PM10 shows maximum in pre-monsoon season and minimum in winter. Our observations show the diurnal pattern of pollutants are in contrast with the diurnal pattern of wind speed as evident from the previous observations. Wind rose diagram of pollutants reveal that the dominant source directions are scattered from northwesterly to southwesterly. Our results (2011-13) are compared with earlier observations from the same region (2007-08) and no alarming differences were observed in the pollutant levels. Our observations are discussed in the light of current understanding of pollutants sources over this region.
47 CFR 73.157 - Antenna testing during daytime.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna testing during daytime. 73.157 Section... BROADCAST SERVICES AM Broadcast Stations § 73.157 Antenna testing during daytime. (a) The licensee of a station using a directional antenna during daytime or nighttime hours may, without further authority...
47 CFR 73.157 - Antenna testing during daytime.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna testing during daytime. 73.157 Section... BROADCAST SERVICES AM Broadcast Stations § 73.157 Antenna testing during daytime. (a) The licensee of a station using a directional antenna during daytime or nighttime hours may, without further authority...
47 CFR 73.157 - Antenna testing during daytime.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna testing during daytime. 73.157 Section... BROADCAST SERVICES AM Broadcast Stations § 73.157 Antenna testing during daytime. (a) The licensee of a station using a directional antenna during daytime or nighttime hours may, without further authority...
47 CFR 73.157 - Antenna testing during daytime.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna testing during daytime. 73.157 Section... BROADCAST SERVICES AM Broadcast Stations § 73.157 Antenna testing during daytime. (a) The licensee of a station using a directional antenna during daytime or nighttime hours may, without further authority...
47 CFR 73.157 - Antenna testing during daytime.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna testing during daytime. 73.157 Section... BROADCAST SERVICES AM Broadcast Stations § 73.157 Antenna testing during daytime. (a) The licensee of a station using a directional antenna during daytime or nighttime hours may, without further authority...
Study of possible solar heating effects on thermosonde probes: Error analysis
NASA Astrophysics Data System (ADS)
Brown, James H.; Dewan, Edmond; Murphy, Edmund; Thomas, Peter
1989-07-01
Thermosonde data reveals a diurnal daytime shift in measured levels of C square (n) in the free atmosphere. The shift is manifested in two ways. First, an apparent offset in the smallest measured values of C square (n) exists. Secondly, the curve of the average profile shows an enhancement over nighttime profiles. Related optical and radar measurements have indicated that differences between day and night probably exist, but because of limited instrumental resolution and altitude capabilities those results are inconclusive. Several hypotheses were put forward concerning possible instrumental or solar based sources of data contamination. The possibility was examined that solar radiation causes probe heating with subsequent instrumental effects. Calculation, computer simulation, and direct measurements have shown that the sun heats the body of the probe sensor a couple of degrees above the ambient and that the level of heating depends upon the solar aspect angle and magnitude and direction of air flow over the probe. A small but insignificant ac type effect can result from improper probe geometry or probe mismatch together with a coupling of solar heating with velocity turbulence. Transient and dc type effects can occur, but measured, processed, and transmitted root mean square C square (n) information is not likely to contain instrumental contamination.
Tropospheric HONO Distribution and Chemistry in the Southeastern U.S.
NASA Astrophysics Data System (ADS)
Zhou, X.; Ye, C.; Pu, D.; Stutz, J.; Festa, J.; Spolaor, M.; Weinheimer, A. J.; Campos, T. L.; Haggerty, J. A.; Cantrell, C. A.; Mauldin, L.; Guenther, A. B.; Hornbrook, R. S.; Apel, E. C.; Jensen, J. B.
2014-12-01
During the NOMADSS field campaign, nitrous acid (HONO) and particulate nitrate (pNO3) was measured on NCAR C-130 research aircraft during five research flights over the Southeast U.S. Aerosol samples were also collected on Teflon filters for the determination of pNO3 photolysis rate constants in the laboratory. Daytime HONO concentrations range from low ppt in free troposphere to 10-20 ppt in the boundary layer in the background air masses, to up to 40 ppt in the industrial and urban plumes. While daytime HONO sink is well defined, dominated by its photolysis, daytime sources vary in different types of air masses: pNO3 photolysis appears to be the major HONO source in the background terrestrial air masses in both the boundary layer and the free troposphere. With an average pNO3 photolysis rate constant of (2.8±1.7)×10-4 s-1, p-NO3 photolysis becomes to be an effective pathway to recycle HNO3 to NOx in the troposphere, with HONO as a dominant intermediate product. Within the high-NOx industrial plumes encountered, HONO is predominantly produced by secondary formation processes involving NOx as the precursor. Away from ground surface, no significant nighttime HONO accumulation exists in the background terrestrial air mass.
NASA Astrophysics Data System (ADS)
van Stratum, Bart J. H.; Stevens, Bjorn
2015-06-01
The influence of poorly resolving mixing processes in the nocturnal boundary layer (NBL) on the development of the convective boundary layer the following day is studied using large-eddy simulation (LES). Guided by measurement data from meteorological sites in Cabauw (Netherlands) and Hamburg (Germany), the typical summertime NBL conditions for Western Europe are characterized, and used to design idealized (absence of moisture and large-scale forcings) numerical experiments of the diel cycle. Using the UCLA-LES code with a traditional Smagorinsky-Lilly subgrid model and a simplified land-surface scheme, a sensitivity study to grid spacing is performed. At horizontal grid spacings ranging from 3.125 m in which we are capable of resolving most turbulence in the cases of interest to grid a spacing of 100 m which is clearly insufficient to resolve the NBL, the ability of LES to represent the NBL and the influence of NBL biases on the subsequent daytime development of the convective boundary layer are examined. Although the low-resolution experiments produce substantial biases in the NBL, the influence on daytime convection is shown to be small, with biases in the afternoon boundary layer depth and temperature of approximately 100 m and 0.5 K, which partially cancel each other in terms of the mixed-layer top relative humidity.
Spectroscopy of sulfides in the simulated environment of Mercury and their detection from the orbit
NASA Astrophysics Data System (ADS)
Varatharajan, I.; Maturilli, A.; Helbert, J.; Hiesinger, H.
2017-09-01
In order to detect the mineral diversity on the planet's surface, it is essential to study the spectral variations along broad wavelength range in their respective simulated laboratory conditions. MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) mission to Mercury discovered that irrespective of its formation closest to the sun, Mercury in rich in volatiles than previously expected especially S (4 wt%). S in the Mercury interior can be brought to the surface through volcanic activity as slag deposits in Mercury hollows and pyroclasts. However, the complete spectral library of sulfide minerals in vacuum conditions at Mercury's daytime temperature in the wide spectral range (0.2-100 µm) is still missing. This affects our detectability and understanding of distribution, abundance, and type of sulfides on Mercury using spectral datasets in the past missions to Mercury. In the case of Mercury, the effect of thermal weathering in the spectral behavior of these sulfides must be studied carefully for their effective detection. In the study, we thermally processed the fresh synthetic sulfides by heating them slowly upto 500 ºC in vacuum and during the process, we measured the thermal radiance/emissivity of these sulfides in the thermal infrared spectral region (TIR: 7-14 µm) at the interval of every 100 ºC. After this, we collectively measured the spectral reflectance of fresh and heated synthetic sulfides at wide spectral range (0.2-100 µm) at four different phase angles, 26º, 40º, 60º, 80º. Therefore, this study facilitates the detection of sulfides by past and future missions to Mercury by any spectrometer of any spectral range. The synthetic sulfides used in the study includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Thus, the emissivity measurements in the study will support the The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA BepiColombo mission to Mercury which will study the surface mineralogy at wavelength range of 7-14 μm at spatial resolution of 500 m/pixel. The measured reflectance of these sulfides in 0.2-100 µm at various phase angles will support the measurements from past (MDIS, MASCS on MESSENGER) and future missions (SIMBIO-SYS/VIHI on BepiColombo) to Mercury.
NASA Astrophysics Data System (ADS)
Rajewski, D. A.; Takle, E. S.; Prueger, J. H.; Oncley, S.; Horst, T. W.; Pfeiffer, R.; Hatfield, J.; Spoth, K. K.; Doorenbos, R.
2012-12-01
The Crop Wind-energy EXperiment conducted in summer 2010 (very moist conditions) and summer 2011 (abnormally dry) included measurements of wind speed, temperature, relative humidity, turbulence kinetic energy, H2O, and CO2 at stations north and south of a line of turbines at the southwest edge of a large-scale 200-turbine wind farm (prevailing wind from the south). In contrast to previous studies that have reported turbine influences on surface wind speed and temperature, this report focuses on scalar fluxes of heat, H2O, and CO2. From previous measurements in agricultural fields we recognize the importance of non-turbine factors in analysis of the flux differences: variability of soil characteristics, moisture content, crop cultivar, management practices, planting dates, etc., which can create differences in what looks like a uniform field of maize (corn). We conceptualize the influences of turbines at canopy height at a given location in the field to arise from (1) wakes of reduced wind speed and turbulence conditions different from ambient that intersect the surface, (2) wakes that are passing overhead and interrupt the ambient turbulence that scales with height, or (3) changes in static pressure upwind and downwind of lines of turbines that create small-scale pressure gradients, localized flows, and changes to the vertical exchange of scalar variables. The turbine SCADA wind speed and wind direction provided by the wind farm operator facilitated our comparison of surface fluxes upwind and downwind as wakes moved laterally throughout the day and night. We report multiple levels of evidence that wind turbines increase vertical exchange of carbon dioxide and water vapor over the canopy. Latent heat and carbon fluxes are responsive to slight changes in the turbine wake position, and the flux differences are maximized when the periphery of the wake edge is above the station. The flux stations north of the turbine line report a larger net ecosystem exchange accumulation over both the 2010 and 2011 measurement periods than for the reference towers south of the turbine line. Future experiments however, must address if and to what extent this enhanced CO2 flux is assimilated to the crop and whether or not the bio-physiological response to this effect among many other turbine-related factors (e.g. higher nighttime temperature and higher daytime transpiration) modifies overall crop yield.
NASA Astrophysics Data System (ADS)
Ribeiro, F. N. D.; Soares, J.; Oliveira, A. P.; Miranda, R. M.; Chen, F.
2015-12-01
The gradual replacement of natural by built surfaces and the ongoing emission of particulate matter and other pollutants that happens in urban environments, besides degrading the environment, influence the local weather and climate patterns. Urban areas have different albedo, heat and hydraulic capacity and conductivity, roughness, emissivity, and transmissivity, when compared to naturally vegetated areas. This set of characteristics may change the surface energy budget, air temperature, humidity, atmospheric chemical composition, wind direction and velocity, and therefore the planetary boundary layer (PBL) development. The effects of urbanization on the PBL have been studied in many mid-latitude areas, however in the tropical or subtropical areas they are scarce. The MCITY Brazil project developed in 2 cities of Brazil, Sao Paulo (23°32' S) and Rio de Janeiro (latitude 22° 55' S), has provided the necessary data to properly investigate the effects of urbanization in these two cities. The project included a campaign of soundings launched every 3 hours for 10 consecutive days in August (Austral winter) from an airport at the north part of the city of Sao Paulo, that allowed the study of the PBL development, and also the measurements of the components of the energy budget equation by micrometeorological towers. Therefore, the goal of this work is to simulate the development of the PBL in the metropolitan area of Sao Paulo during winter, comparing its characteristics in urbanized and non urbanized sites, in order to assess the impact of urbanization on the development of the PBL in this area. The model used is the Weather Research and Forecast (WRF) with a single layer urban canopy parameterization (SLUCM) and realistic anthropogenic heat diurnal evolution. Preliminary results showed that the model is able to reproduce the PBL development during the campaign, including the passage of a cold-frontal system. The urban PBL reaches greater heights during the day than the PBL in non urban sites, suggesting that the urban sites generate more turbulence. Daytime urban PBL height reaches up to 2000 m and nighttime is usually less than 200 m. The surface turbulent fluxes and the energy budget near the surface will also be compared to observations and discussed.
Daytime napping associated with increased symptom severity in fibromyalgia syndrome.
Theadom, Alice; Cropley, Mark; Kantermann, Thomas
2015-02-07
Previous qualitative research has revealed that people with fibromyalgia use daytime napping as a coping strategy for managing symptoms against clinical advice. Yet there is no evidence to suggest whether daytime napping is beneficial or detrimental for people with fibromyalgia. The purpose of this study was to explore how people use daytime naps and to determine the links between daytime napping and symptom severity in fibromyalgia syndrome. A community based sample of 1044 adults who had been diagnosed with fibromyalgia syndrome by a clinician completed an online questionnaire. Associations between napping behavior, sleep quality and fibromyalgia symptoms were explored using Spearman correlations, with possible predictors of napping behaviour entered into a logistic regression model. Differences between participants who napped on a daily basis and those who napped less regularly, as well as nap duration were explored. Daytime napping was significantly associated with increased pain, depression, anxiety, fatigue, memory difficulties and sleep problems. Sleep problems and fatigue explained the greatest amount of variance in napping behaviour, p < 0.010. Those who engaged in daytime naps for >30 minutes had higher memory difficulties (t = -3.45) and levels of depression (t = -2.50) than those who napped for shorter periods (<30 mins) (p < 0.010). Frequent use and longer duration of daytime napping was linked with greater symptom severity in people with fibromyalgia. Given the common use of daytime napping in people with fibromyalgia evidence based guidelines on the use of daytime napping in people with chronic pain are urgently needed.
Using Ground Measurements to Examine the Surface Layer Parameterization Scheme in NCEP GFS
NASA Astrophysics Data System (ADS)
Zheng, W.; Ek, M. B.; Mitchell, K.
2017-12-01
Understanding the behavior and the limitation of the surface layer parameneterization scheme is important for parameterization of surface-atmosphere exchange processes in atmospheric models, accurate prediction of near-surface temperature and identifying the role of different physical processes in contributing to errors. In this study, we examine the surface layer paramerization scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) using the ground flux measurements including the FLUXNET data. The model simulated surface fluxes, surface temperature and vertical profiles of temperature and wind speed are compared against the observations. The limits of applicability of the Monin-Obukhov similarity theory (MOST), which describes the vertical behavior of nondimensionalized mean flow and turbulence properties within the surface layer, are quantified in daytime and nighttime using the data. Results from unstable regimes and stable regimes are discussed.
NASA Astrophysics Data System (ADS)
Kunitsyn, V.; Andreeva, E. S.; Padokhin, A. M.; Vorontsov, A.; Frolov, V. L.; Komrakov, G.; Bernhardt, P. A.; Siefring, C. L.
2014-12-01
We present the results of the radiotomographic imaging and GNSS remote sensing of the artificial ionospheric disturbances obtained in the recent experiments on the modification of the midlatitude ionosphere by powerful HF radiowaves carried out at the Sura heating facility. The experiments were conducted using both O- and X- mode radiowaves, in daytime and nighttime conditions with various schemes of the radiation of the heating wave. Radio transmissions from the low- (Parus, e-POP on CASSIOPE) and high-orbital (GPS/GLONASS) navigational satellites received at the mobile network of receiving sites were used for the remote sensing of the heated area of the ionosphere. We study the variations in TEC caused by HF heating showing that the GNSS TEC spectra often contain frequency components corresponding to the modulation periods of the ERP of the heating wave. The manifestations of the heating-induced variations in TEC are most prominent in the area of magnetic zenith of the pumping wave. In this work we also present the radiotomographic reconstructions (including first time e-POP-SURA reconstructions) of the spatial structure of the disturbed area of the ionosphere corresponding to the directivity pattern of the heater as well as the spatial structure of the wave- like disturbances, which are possibly heating-induced AGWs, diverging from the heated area of the ionosphere. The spatial period of observed disturbances is 200-250 km and they are easily traced up to a distance of 700-800 km from the heated region, which is in good agreement with the modeling results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-11-01
The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of themore » heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.« less
Daytime continuous polysomnography predicts MSLT results in hypersomnias of central origin.
Pizza, Fabio; Moghadam, Keivan K; Vandi, Stefano; Detto, Stefania; Poli, Francesca; Mignot, Emmanuel; Ferri, Raffaele; Plazzi, Giuseppe
2013-02-01
In the diagnostic work-up of hypersomnias of central origin, the complaint of excessive daytime sleepiness should be objectively confirmed by MSLT findings. Indeed, the features and diagnostic utility of spontaneous daytime sleep at 24 h continuous polysomnography (PSG) have never been investigated. We compared daytime PSG features to MSLT data in 98 consecutive patients presenting with excessive daytime sleepiness and with a final diagnosis of narcolepsy with cataplexy/hypocretin deficiency (n = 39), narcolepsy without cataplexy (n = 7), idiopathic hypersomnia without long sleep time (n = 19), and 'hypersomnia' with normal sleep latency at MSLT (n = 33). Daytime sleep time was significantly higher in narcolepsy-cataplexy but similar in the other groups. Receiver operating characteristics (ROC) curves showed that the number of naps during daytime PSG predicted a mean sleep latency ≤8 min at MSLT with an area under the curve of 0.67 ± 0.05 (P = 0.005). The number of daytime sleep-onset REM periods (SOREMPs) in spontaneous naps strikingly predicted the scheduled occurrence of two or more SOREMPs at MSLT, with an area under the ROC curve of 0.93 ± 0.03 (P < 10(-12) ). One spontaneous SOREMP during daytime had a sensitivity of 96% with specificity of 74%, whereas two SOREMPs had a sensitivity of 75%, with a specificity of 95% for a pathological REM sleep propensity at MSLT. The features of spontaneous daytime sleep well correlated with MSLT findings. Notably, the occurrence of multiple spontaneous SOREMPs during daytime clearly identified patients with narcolepsy, as well as during the MSLT. © 2012 European Sleep Research Society.
Sun, Kan; Li, Feng; Qi, Yiqin; Lin, Diaozhu; Ren, Meng; Xu, Mingtong; Li, Fangping; Li, Yan; Yan, Li
2016-05-01
Our objective was to evaluate the associations between habitual daytime napping and diabetes and whether it varies by sex, menopause, and sleep quality. We conducted a population-based cross-sectional study in 8621 eligible individuals aged 40 years or older. Information on daytime napping hours, night-time sleep duration, history of menstruation, and sleep quality was self-reported. Diabetes was diagnosed according to the 1999 World Health Organization diagnostic criteria. The prevalence of diabetes was 19.4 % in men and 15.6 % in women. Increased daytime napping hours were positively associated with parameters of glycometabolism in women, such as fasting plasma glucose, oral glucose tolerance test (OGTT) 2-h plasma glucose, and Hemoglobin A1c (HbA1c, all P for trend <0.05). In women, the prevalence of diabetes in no-habitual daytime napping group, 0-1-h daytime napping group, and more than 1-h daytime napping group were 14.5, 15.6, and 20.8 %, respectively (P for trend = 0.0004). A similar trend was detected in postmenopausal women (P for trend = 0.002). In multivariate logistic regression analysis, compared with no-habitual daytime napping postmenopausal women, those with daytime napping more than 1 h had higher prevalent diabetes (odds ratios 1.36, 95 % confidence interval, 1.04-1.77). In subgroup analysis of postmenopausal women, associations of daytime napping levels and prevalent diabetes were detected in older, overweight participants with good sleep quality who have not retired from work. In conclusion, our study suggests that habitual daytime napping is associated with prevalence of diabetes in postmenopausal women.
Thermoelectric Air/Soil Energy-Harvesting Device
NASA Technical Reports Server (NTRS)
Snyder, Jeffrey; Fleurial, Jean-Pierre; Lawrence, Eric
2005-01-01
A proposed thermoelectric device would exploit natural temperature differences between air and soil to harvest small amounts of electric energy. Because the air/soil temperature difference fluctuates between nighttime and daytime, it is almost never zero, and so there is almost always some energy available for harvesting. Unlike photovoltaic cells, the proposed device could operate in the absence of sunlight. Unlike a Stirling engine, which could be designed to extract energy from the air/soil temperature difference, the proposed device would contain no moving parts. The main attractive feature of the proposed device would be high reliability. In a typical application, this device would be used for low-power charging of a battery that would, in turn, supply high power at brief, infrequent intervals for operating an instrumentation package containing sensors and communication circuits. The device (see figure) would include a heat exchanger buried in soil and connected to a heat pipe extending up to a short distance above the ground surface. A thermoelectric microgenerator (TEMG) would be mounted on top of the heat pipe. The TEMG could be of an advanced type, now under development, that could maintain high (relative to prior thermoelectric generators) power densities at small temperature differentials. A heat exchanger exposed to the air would be mounted on top of the TEMG. It would not matter whether the air was warmer than the soil or the soil warmer than the air: as long as there was a nonzero temperature difference, heat would flow through the device and electricity would be generated. A study of factors that could affect the design and operation of the device has been performed. These factors include the thermal conductances of the soil, the components of the device, the contacts between the components of the device, and the interfaces between the heat exchangers and their environments. The study included experiments that were performed on a model of the device to demonstrate feasibility. Because a TEMG suitable for this device was not available, a brass dummy component having a known thermal conductance of 1.68 W/K was substituted for the TEMG in the models to enable measurement of heat flows. The model included a water-based heat pipe 30 in. (76.2 cm) long and 1 in. (2.54 cm) in diameter, wrapped with polyethylene insulation to reduce radial heat flow. Several different side heat exchangers were tested. On the basis of the measurements, it was predicted that if a prototype of the device were equipped with a TEMG, daily temperature fluctuations would cause its output power to fluctuate between 0 and about 0.1 mW, peaking to 0.35 mW during early afternoon.
Measurement of local high-level, transient surface heat flux
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1988-01-01
This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.
Camera characterization for all-sky polarization measurements during the 2017 solar eclipse
NASA Astrophysics Data System (ADS)
Hashimoto, Taiga; Dahl, Laura M.; Laurie, Seth A.; Shaw, Joseph A.
2017-08-01
A solar eclipse provides a rare opportunity to observe skylight polarization during conditions that are fundamentally different than what we see every day. On 21 August 2017 we will measure the skylight polarization during a total solar eclipse in Rexburg, Idaho, USA. Previous research has shown that during totality the sky polarization pattern is altered significantly to become nominally symmetric about the zenith. However, there are still questions remaining about the details of how surface reflectance near the eclipse observation site and optical properties of aerosols in the atmosphere influence the totality sky polarization pattern. We will study how skylight polarization in a solar eclipse changes through each phase and how surface and atmospheric features affect the measured polarization signatures. To accomplish this, fully characterizing the cameras and fisheye lenses is critical. This paper reports measurements that include finding the camera sensitivity and its relationship to the required short exposure times, measuring the camera's spectral response function, mapping the angles of each camera pixel with the fisheye lens, and taking test measurements during daytime and twilight conditions. The daytime polarimetric images were compared to images from an existing all-sky polarization imager and a polarimetric radiative transfer model.
GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation
Jiang, Bo; Liang, Shunlin; Ma, Han; ...
2016-03-09
Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less
GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Bo; Liang, Shunlin; Ma, Han
Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less
Tan, Zhengxi; Liu, Shu-Guang; Jenkerson, Calli B.; Oeding, Jennifer; Wylie, Bruce K.; Rover, Jennifer R.; Young, Claudia J.
2012-01-01
Pronounced climate warming and increased wildfire disturbances are known to modify forest composition and control the evolution of the boreal ecosystem over the Yukon River Basin (YRB) in interior Alaska. In this study, we evaluate the post-fire green-up rate using the normalized difference vegetation index (NDVI) derived from 250 m 7 day eMODIS (an alternative and application-ready type of Moderate Resolution Imaging Spectroradiometer (MODIS) data) acquired between 2000 and 2009. Our analyses indicate measureable effects on NDVI values from vegetation type, burn severity, post-fire time, and climatic variables. The NDVI observations from both fire scars and unburned areas across the Alaskan YRB showed a tendency of an earlier start to the growing season (GS); the annual variations in NDVI were significantly correlated to daytime land surface temperature (LST) fluctuations; and the rate of post-fire green-up depended mainly on burn severity and the time of post-fire succession. The higher average NDVI values for the study period in the fire scars than in the unburned areas between 1950 and 2000 suggest that wildfires enhance post-fire greenness due to an increase in post-fire evergreen and deciduous species components
NASA Astrophysics Data System (ADS)
Martinez, German; Renno, Nilton; Fischer, Erik; Borlina, Caue; Hallet, Bernard; De la Torre Juarez, Manuel; Vasavada, Aswhin; Gomez-Elvira, Javier
2014-05-01
The analysis of the Surface Energy Budget (SEB) yields insights into the local climate and the soil-atmosphere interactions, while the analysis of the thermal inertia of the shallow subsurface augments surface observations, providing information about the local geology. The Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System have measured near subsurface thermal inertia from orbit at scales of ~104 m2 to ~10 km2. Here we report analysis of the thermal inertia at a few locations at Gale Crater at scales of 100 m2. The thermal inertia is calculated by solving the heat conduction equation in the soil using hourly measurements by the Rover Environmental Station (REMS) ground temperature sensor as an upper boundary condition. Three Sols representative of different environmental conditions and soil properties, namely, Sol 82 at Rocknest (RCK), Sol 112 at Point Lake (PL) and Sol 139 at Yellowknife Bay (YKB) are analyzed in detail. The largest thermal inertia (I) value is found at YKB, I = 445 J m-2 K-1 s-1/2 or 445 tiu (thermal inertia unit), followed by PL with I= 300 tiu and RCK withI = 280 tiu [1]. These values are consistent with the type of terrain imaged by MastCam and with previous satellite estimates at Gale Crater [2,3]. The SEB is calculated by using all REMS data products as well as dust opacity values derived from MastCam measurements, whereas previously, the SEB has been calculated using numerical models only [4]. At each location and during the daytime, the SEB is dominated by the downwelling shortwave (SW) solar radiation (~450-500 W/m2) and the upwelling longwave (LW) radiation emitted by the surface (~300-400 W/m2). The sum of these two terms accounts for at least 70% of the net surface heating rate between 0900 and 1400 local solar time. At nighttime, the SEB is dominated by the upwelling LW radiation emitted by the surface (~50-100 W/m2) and the downwelling LW radiation from the atmosphere (~50 W/m2). When the wind speeds exceed 10 m/s at night, the turbulent heat flux can be as large as 25 W/m2, thus playing a secondary but significant role in the SEB. Finally, we estimate the amount of adsorbed water exchanged between the shallow subsurface and the atmosphere at diurnal time scales. We use subsurface temperature profiles, obtained by solving the heat conduction equation in the soil using the calculated value of I, and adsorption and desorption isotherms [5] to analyze critically the correlation between the soil wetness measured by the Dynamic Albedo of Neutrons instrument and the relative humidity measured by REMS. Acknowledgement: This research is supported by a grant from the Mars Science Laboratory and NASA Astrobiology Program Award #09-EXOB09-0050. References: [1] Martinez, G.M. et al. (2014), JGR (submitted). [2] Pelkey, S. M., and B. M. Jakosky (2002), doi:10.1006/icar.2002.6978. [3] Fergason, R., P. et al. (2012), doi:10.1007/s11214-012-9891-3. [4] Savijärvi, H., and A. Määttänen (2010), doi:10.1002/qj.650. [5] Pommerol, A. et al. (2009), doi:10.1016/j.icarus.2009.06.013.
Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry
NASA Astrophysics Data System (ADS)
Roland, M.; Serrano-Ortiz, P.; Kowalski, A. S.; Goddéris, Y.; Sánchez-Cañete, E. P.; Ciais, P.; Domingo, F.; Cuezva, S.; Sanchez-Moral, S.; Longdoz, B.; Yakir, D.; Van Grieken, R.; Schott, J.; Cardell, C.; Janssens, I. A.
2013-07-01
CO2 exchange between terrestrial ecosystems and the atmosphere is key to understanding the feedbacks between climate change and the land surface. In regions with carbonaceous parent material, CO2 exchange patterns occur that cannot be explained by biological processes, such as disproportionate outgassing during the daytime or nighttime CO2 uptake during periods when all vegetation is senescent. Neither of these phenomena can be attributed to carbonate weathering reactions, since their CO2 exchange rates are too small. Soil ventilation induced by high atmospheric turbulence is found to explain atypical CO2 exchange between carbonaceous systems and the atmosphere. However, by strongly altering subsurface CO2 concentrations, ventilation can be expected to influence carbonate weathering rates. By imposing ventilation-driven CO2 outgassing in a carbonate weathering model, we show here that carbonate geochemistry is accelerated and does play a surprisingly large role in the observed CO2 exchange pattern of a semi-arid ecosystem. We found that by rapidly depleting soil CO2 during the daytime, ventilation disturbs soil carbonate equilibria and therefore strongly magnifies daytime carbonate precipitation and associated CO2 production. At night, ventilation ceases and the depleted CO2 concentrations increase steadily. Dissolution of carbonate is now enhanced, which consumes CO2 and largely compensates for the enhanced daytime carbonate precipitation. This is why only a relatively small effect on global carbonate weathering rates is to be expected. On the short term, however, ventilation has a drastic effect on synoptic carbonate weathering rates, resulting in a pronounced diel pattern that exacerbates the non-biological behavior of soil-atmosphere CO2 exchanges in dry regions with carbonate soils.
Hirabayashi, Hideyuki; Sasaki, Kazuhiro; Kambe, Takashi; Gannaban, Ritchel B.; Miras, Monaliza A.; Mendioro, Merlyn S.; Simon, Eliza V.; Lumanglas, Patrick D.; Fujita, Daisuke; Takemoto-Kuno, Yoko; Takeuchi, Yoshinobu; Kaji, Ryota; Kondo, Motohiko; Kobayashi, Nobuya; Ogawa, Tsugufumi; Ando, Ikuo; Jagadish, Krishna S. V.; Ishimaru, Tsutomu
2015-01-01
A decline in rice (Oryza sativa L.) production caused by heat stress is one of the biggest concerns resulting from future climate change. Rice spikelets are most susceptible to heat stress at flowering. The early-morning flowering (EMF) trait mitigates heat-induced spikelet sterility at the flowering stage by escaping heat stress during the daytime. We attempted to develop near-isogenic lines (NILs) for EMF in the indica-type genetic background by exploiting the EMF locus from wild rice, O. officinalis (CC genome). A stable quantitative trait locus (QTL) for flower opening time (FOT) was detected on chromosome 3. A QTL was designated as qEMF3 and it shifted FOT by 1.5–2.0h earlier for cv. Nanjing 11 in temperate Japan and cv. IR64 in the Philippine tropics. NILs for EMF mitigated heat-induced spikelet sterility under elevated temperature conditions completing flower opening before reaching 35°C, a general threshold value leading to spikelet sterility. Quantification of FOT of cultivars popular in the tropics and subtropics did not reveal the EMF trait in any of the cultivars tested, suggesting that qEMF3 has the potential to advance FOT of currently popular cultivars to escape heat stress at flowering under future hotter climates. This is the first report to examine rice with the EMF trait through marker-assisted breeding using wild rice as a genetic resource. PMID:25534925
A note on the annual cycles of surface heat balance and temperature over a continent. [North America
NASA Technical Reports Server (NTRS)
Spar, J.; Crane, G.
1974-01-01
A surface heating function, defined as the ratio of the time derivative of the mean annual temperature curve to the surface heat balance, is computed from the annual temperature range and heat balance data for the North American continent. An annual cycle of the surface heat balance is then reconstructed from the surface heating function and the annual temperature curve, and an annual cycle of evaporative plus turbulent heat loss is recomputed from the annual cycles of radiation balance and surface heat balance for the continent. The implications of these results for long range weather forecasting are discussed.
Vahmani, P.; Sun, F.; Hall, A.; ...
2016-12-15
The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less
NASA Astrophysics Data System (ADS)
Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.
2016-12-01
The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using ‘cool photovoltaics’.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahmani, P.; Sun, F.; Hall, A.
The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less
Urban effects on convective precipitation in Mexico city
NASA Astrophysics Data System (ADS)
Jauregui, Ernesto; Romales, Ernesto
This paper reports on urban-related convective precipitation anomalies in a tropical city. Wet season (May-October) rainfall for an urban site (Tacubaya) shows a significant trend for the period 1941-1985 suggesting an urban effect that has been increasing as the city grew. On the other hand, rainfall at a suburban (upwind) station apparently unaffected by urbanization, has remained unchanged. Analysis of historical records of hourly precipitation for an urban station shows that the frequency of intense (> 20 mm h -1) rain showers has increased in recent decades. Using a network of automatic rainfall stations, areal distribution of 24 h isoyets show a series of maxima within the urban perimeter which may be associated to the heat island phenomenon. Isochrones of the beginning of rain are used to estimate direction and speed of movement of the rain cloud cells. The daytime heat island seems to be associated with the intensification of rain showers.
NASA Technical Reports Server (NTRS)
Mendillo, M.; He, X.-Q.; Rishbeth, H.
1992-01-01
The effects of thermospheric winds and electric fields on the ionospheric F2-layer are controlled by the geometry of the magnetic field, and so vary with latitude and longitude. A simple model of the daytime F2-layer is adopted and the effects at midlatitudes (25-65 deg geographic) of three processes that accompany geomagnetic storms: (1) thermospheric changes due to auroral heating; (2) equatorward winds that tend to cancel the quiet-day poleward winds; and (3) the penetration of magnetospheric electric fields are studied. At +/- 65 deg, the effects of heating and electric fields are strongest in the longitudes toward which the geomagnetic dipole is tilted, i.e., the North American and the South Indian Ocean sectors. Because of the proximity of the geomagnetic equator to the East Asian and South American sectors, the reverse is true at +/- 25 deg.
Factors influencing indoor PM2.5 concentration in rural houses of northern China
NASA Astrophysics Data System (ADS)
Zhang, Xueyan; Chen, Bin
2018-02-01
In traditional houses in rural areas of Northern China, most traditional heating systems, heated by mini-stove in the kitchen, usually take agricultural residues as fuels resources. Besides, burning cave under the ground-floor of a rural house is also widely used. The higher PM2.5 concentration is crisis for human health. In this study, PM2.5 concentration, temperature, relative humidity inside and outside the houses have been measured, moreover the factors impact on I/O rate coefficient has been discussed. The results show that the I/O rate coefficient in the evening is 2.5 times greater than the I/O rate coefficient in the daytime. I/O rate coefficient of PM2.5 concentration is positive related to air temperature difference between indoor and outdoor. In addition, the impact of outdoor wind speed and predominant wind direction on the PM2.5 emission has been studied.
NASA Astrophysics Data System (ADS)
Watson, Gregory S.; Gregory, Emily A.; Johnstone, Charmaine; Berlino, Manuel; Green, David W.; Peterson, Nicola R.; Schoeman, David S.; Watson, Jolanta A.
2018-04-01
Ghost crabs, Ocypode cordimanus, inhabit relatively hostile environments subject to thermal fluctuations, including both diurnal and seasonal cycles. For many ectotherms, including ghost crabs, a major challenge is to remain cool during hot daytime temperatures. This can be achieved by adopting a fossorial lifestyle, taking advantage of thermal refuge afforded by burrows of sufficient depth. Another consideration, often overlooked, is the potential advantage associated with ready access to a thermal energy source (a "charging station") when surface temperatures are cooler. Being able to rapidly elevate body temperature during cool periods would enhance the crab's ability to maintain rate processes and carry out essential activities. We have measured ghost crab burrow temperature profiles at two times of the day with contrasting sun exposure (06:00 and 14:00), demonstrating how effective burrow depth (up to a maximum of 40 cm) provides thermal regulation below the surface of the sand (e.g., at dawn (06:00) and early afternoon (14:00) at a depth of 5 cm, temperatures (±SD) of 16.32 ± 0.96 °C and 25.04 ± 1.47 °C were recorded, respectively. Corresponding temperatures at a depth of 30 cm were 19.17 ± 0.59 °C and 19.78 ± 1.60 °C, respectively). This demonstrates that while temperature conditions at the surface vary dramatically from night to day, ghost crab burrows can maintain relatively constant temperatures at the burrow base throughout the diurnal cycle, at least during winter. As a consequence, the burrow heat signatures undergo a corresponding thermal gradient reversal between night and day, as revealed by infra-red photography. Complementing these field observations, we also determined heating and cooling times/constants for O. cordimanus in the laboratory (τ = 17.54 and 16.59 JK-1, respectively), and analysed chemical composition of their carapace (external (with β Chitin evident) and internal (predominance of α Chitin)), which is the primary thermal interface with the environment. We find that ghost crabs both gain and lose heat relatively rapidly, which likely affects the range and duration of surface activities under different thermal conditions, and renders the thermal characteristics of their burrows vital for their persistence on beaches. Finally, we speculate that the distinctly contrasting thermal signatures of ghost crab burrows in comparison to the surrounding sand could in principle be used by crabs as spatial markers for navigation and to identify holes on return from nightly excursions, being identified either by direct thermal sensing or odours rising from the burrow base as a consequence of the thermal flux.
NASA Astrophysics Data System (ADS)
Metzger, Jutta; Nied, Manuela; Corsmeier, Ulrich; Kleffmann, Jörg; Kottmeier, Christoph
2018-02-01
The Dead Sea is a terminal lake, located in an arid environment. Evaporation is the key component of the Dead Sea water budget and accounts for the main loss of water. So far, lake evaporation has been determined by indirect methods only and not measured directly. Consequently, the governing factors of evaporation are unknown. For the first time, long-term eddy covariance measurements were performed at the western Dead Sea shore for a period of 1 year by implementing a new concept for onshore lake evaporation measurements. To account for lake evaporation during offshore wind conditions, a robust and reliable multiple regression model was developed using the identified governing factors wind velocity and water vapour pressure deficit. An overall regression coefficient of 0.8 is achieved. The measurements show that the diurnal evaporation cycle is governed by three local wind systems: a lake breeze during daytime, strong downslope winds in the evening, and strong northerly along-valley flows during the night. After sunset, the strong winds cause half-hourly evaporation rates which are up to 100 % higher than during daytime. The median daily evaporation is 4.3 mm d-1 in July and 1.1 mm d-1 in December. The annual evaporation of the water surface at the measurement location was 994±88 mm a-1 from March 2014 until March 2015. Furthermore, the performance of indirect evaporation approaches was tested and compared to the measurements. The aerodynamic approach is applicable for sub-daily and multi-day calculations and attains correlation coefficients between 0.85 and 0.99. For the application of the Bowen ratio energy budget method and the Priestley-Taylor method, measurements of the heat storage term are inevitable on timescales up to 1 month. Otherwise strong seasonal biases occur. The Penman equation was adapted to calculate realistic evaporation, by using an empirically gained linear function for the heat storage term, achieving correlation coefficients between 0.92 and 0.97. In summary, this study introduces a new approach to measure lake evaporation with a station located at the shoreline, which is also transferable to other lakes. It provides the first directly measured Dead Sea evaporation rates as well as applicable methods for evaporation calculation. The first one enables us to further close the Dead Sea water budget, and the latter one enables us to facilitate water management in the region.
NASA Astrophysics Data System (ADS)
Asher, W.; Drushka, K.; Jessup, A. T.; Clark, D.
2016-02-01
Satellite-mounted microwave radiometers measure sea surface salinity (SSS) as an area-averaged quantity in the top centimeter of the ocean over the footprint of the instrument. If the horizontal variability in SSS is large inside this footprint, sub-grid-scale variability in SSS can affect comparison of the satellite-retrieved SSS with in situ measurements. Understanding the magnitude of horizontal variability in SSS over spatial scales that are relevant to the satellite measurements is therefore important. Horizontal variability of SSS at the ocean surface can be studied in situ using data recorded by thermosalinographs (TSGs) that sample water from a depth of a few meters. However, it is possible measurements made at this depth might underestimate the horizontal variability at the surface because salinity and temperature can become vertically stratified in a very near surface layer due to the effects of rain, solar heating, and evaporation. This vertical stratification could prevent horizontal gradients from propagating to the sampling depths of ship-mounted TSGs. This presentation will discuss measurements made using an underway salinity profiling system installed on the R/V Thomas Thompson that made continuous measurements of SSS and SST in the Pacific Ocean. The system samples at nominal depths of 2-m, 3-m, and 5-m, allowing the depth dependence of the horizontal variability in SSS and SST to be measured. Horizontal variability in SST is largest at low wind speeds during daytime, when a diurnal warm layer forms. In contrast, the diurnal signal in the variability of SSS was smaller with variability being slightly larger at night. When studied as a function of depth, the results show that over 100-km scales, the horizontal variability in both SSS and SST at a depth of 2 m is approximately a factor of 4 higher than the variability at 5 m.
Day and night profiles of tropospheric nitrous oxide
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Connors, Vickie S.; Levine, Joel S.; Edahl, Robert A., Jr.
1986-01-01
Daytime and nighttime vertical profiles of the tropospheric trace gas N2O were determined from grab sample collections off the Atlantic and Gulf coasts of Florida. The grab samples were collected during the week of October 7-13, 1984, from a Lear jet during descent spirals over an altitude range of 12.5-0.3 km in approximately 1.2-km intervals. During this period there were two distinct airflow regimes sampled: (1) the surface boundary layer (less than 2 km), in which the wind direction was typically easterly; and (2) the regime above the boundary layer, which was predominantly characterized by westerly flow. N2O mixing ratios, normalized to dry air, were determined from 148 daytime and nighttime samplings. N2O was found to be uniformly mixed at all altitudes at 301.9 + or - 2.4 parts per billion by volume.
Association between habitual daytime napping and metabolic syndrome: a population-based study.
Lin, Diaozhu; Sun, Kan; Li, Feng; Qi, Yiqin; Ren, Meng; Huang, Chulin; Tang, Juying; Xue, Shengneng; Li, Yan; Yan, Li
2014-12-01
Our objective was to evaluate the association between habitual daytime napping and the prevalence of metabolic syndrome. We conducted a population-based study of 8,547 subjects aged 40 years or older. Metabolic syndrome was defined according to a harmonized definition from a joint statement and the recommended thresholds for the Chinese population. Information about sleep duration was self-reported. The prevalence of metabolic syndrome in the no daytime napping group, the 0 to 1 hour daytime napping group and the more than 1 hour daytime napping group were 35.0%, 36.0% and 44.5% among the females (P<0.0001). Increased daytime napping hours were positively associated with parameters of metabolic syndrome in the female subjects, including waist circumference, systolic blood pressure, triglycerides and fasting plasma glucose (P<0.05 for all). Multivariate adjusted logistic regression analysis revealed that, compared to the no habitual daytime napping females, napping for more than 1 hour was independently associated with an increased prevalence of metabolic syndrome (odds ratio 1.39, 95% confidence interval, 1.13-1.72). Compared to the female subjects in the no daytime napping group, those habitually napped for more than 1 hour exhibited 46% and 26% increases in the prevalence of central obesity and hypertriglyceridemia (all P<0.05). No statistically significant associations were detected between daytime napping hours and metabolic syndrome among the male subjects. Daytime napping is associated with an increased prevalence of metabolic syndrome in middle-aged non-obese Chinese women. Copyright © 2014. Published by Elsevier Inc.
Associations among daytime sleepiness, depression and suicidal ideation in Korean adolescents.
Yang, Boksun; Choe, Kwisoon; Park, Youngrye; Kang, Youngmi
2017-06-09
The aim of this study was to examine the effects of daytime sleepiness on depression and suicidal ideation in adolescent high-school students. A survey of 538 high school students aged 16-17 years attending two academic schools was conducted. The Epworth Sleepiness Scale (ESS), the Beck Depression Inventory and the Scale for Suicide Ideation were used to assess subjects' daytime sleepiness, depression and suicidal ideation. The mean score for daytime sleepiness was 8.52, which indicates a sleep deficit. Significant positive correlations were found between daytime sleepiness and depression, between daytime sleepiness and suicidal ideation and between depression and suicidal ideation. Gender and depression were significant predictors of suicidal ideation, accounting for 48% of the variance in this measure. Depression acts as a mediator of the relationship between daytime sleepiness and suicidal ideation. High school students in Korea generally have insufficient sleep time and feel sleepy during the day; insufficient sleep during adolescence may be associated with depression and suicidal ideation.
NASA Astrophysics Data System (ADS)
Wærsted, Eivind G.; Haeffelin, Martial; Dupont, Jean-Charles; Delanoë, Julien; Dubuisson, Philippe
2017-09-01
Radiative cooling and heating impact the liquid water balance of fog and therefore play an important role in determining their persistence or dissipation. We demonstrate that a quantitative analysis of the radiation-driven condensation and evaporation is possible in real time using ground-based remote sensing observations (cloud radar, ceilometer, microwave radiometer). Seven continental fog events in midlatitude winter are studied, and the radiative processes are further explored through sensitivity studies. The longwave (LW) radiative cooling of the fog is able to produce 40-70 g m-2 h-1 of liquid water by condensation when the fog liquid water path exceeds 30 g m-2 and there are no clouds above the fog, which corresponds to renewing the fog water in 0.5-2 h. The variability is related to fog temperature and atmospheric humidity, with warmer fog below a drier atmosphere producing more liquid water. The appearance of a cloud layer above the fog strongly reduces the LW cooling relative to a situation with no cloud above; the effect is strongest for a low cloud, when the reduction can reach 100 %. Consequently, the appearance of clouds above will perturb the liquid water balance in the fog and may therefore induce fog dissipation. Shortwave (SW) radiative heating by absorption by fog droplets is smaller than the LW cooling, but it can contribute significantly, inducing 10-15 g m-2 h-1 of evaporation in thick fog at (winter) midday. The absorption of SW radiation by unactivated aerosols inside the fog is likely less than 30 % of the SW absorption by the water droplets, in most cases. However, the aerosols may contribute more significantly if the air mass contains a high concentration of absorbing aerosols. The absorbed radiation at the surface can reach 40-120 W m-2 during the daytime depending on the fog thickness. As in situ measurements indicate that 20-40 % of this energy is transferred to the fog as sensible heat, this surface absorption can contribute significantly to heating and evaporation of the fog, up to 30 g m-2 h-1 for thin fog, even without correcting for the typical underestimation of turbulent heat fluxes by the eddy covariance method. Since the radiative processes depend mainly on the profiles of temperature, humidity and clouds, the results of this paper are not site specific and can be generalised to fog under different dynamic conditions and formation mechanisms, and the methodology should be applicable to warmer and moister climates as well. The retrieval of approximate emissivity of clouds above fog from cloud radar should be further developed.
Comparing the effects of nocturnal sleep and daytime napping on declarative memory consolidation.
Lo, June C; Dijk, Derk-Jan; Groeger, John A
2014-01-01
Nocturnal sleep and daytime napping facilitate memory consolidation for semantically related and unrelated word pairs. We contrasted forgetting of both kinds of materials across a 12-hour interval involving either nocturnal sleep or daytime wakefulness (experiment 1) and a 2-hour interval involving either daytime napping or wakefulness (experiment 2). Beneficial effects of post-learning nocturnal sleep and daytime napping were greater for unrelated word pairs (Cohen's d=0.71 and 0.68) than for related ones (Cohen's d=0.58 and 0.15). While the size of nocturnal sleep and daytime napping effects was similar for unrelated word pairs, for related pairs, the effect of nocturnal sleep was more prominent. Together, these findings suggest that sleep preferentially facilitates offline memory processing of materials that are more susceptible to forgetting.
Orth, M; Kotterba, S
2012-04-01
Daytime sleepiness for any reason leads to impairment of daytime performance and an increased accident rate. The consequences are an increase of illness- and accident-related costs for the health system. Obstructive sleep apnea (OSA) is one of the major reasons for increased daytime sleepiness, especially in professional drivers. The accident frequency in OSA can be significantly reduced by adequate continuous positive airway pressure (CPAP) therapy. Up till now there are no uniform legal regulations about the handling of OSAS patients or patients with daytime sleepiness due to other diseases as far as driving ability is concerned.
NASA Astrophysics Data System (ADS)
Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Ikeda, Kohei; Iwata, Toru; Kameyama, Sohiko; Uematsu, Mitsuo; Gamo, Toshitaka; Ogawa, Hiroshi; Furuya, Ken
2017-07-01
Exchange of dimethyl sulfide (DMS) between the surface ocean and the lower atmosphere was examined by using proton transfer reaction-mass spectrometry coupled with the gradient flux (PTR-MS/GF) system. We deployed the PTR-MS/GF system and observed vertical gradients of atmospheric DMS just above the sea surface in the subtropical and transitional South Pacific Ocean and the subarctic North Pacific Ocean. In total, we obtained 370 in situ profiles, and of these we used 46 data sets to calculate the sea-to-air flux of DMS. The DMS flux determined was in the range from 1.9 to 31 μmol m-2 d-1 and increased with wind speed and biological activity, in reasonable accordance with previous observations in the open ocean. The gas transfer velocity of DMS derived from the PTR-MS/GF measurements was similar to either that of DMS determined by the eddy covariance technique or that of insoluble gases derived from the dual tracer experiments, depending on the observation sites located in different geographic regions. When atmospheric conditions were strongly stable during the daytime in the subtropical ocean, the PTR-MS/GF observations captured a daytime versus nighttime difference in DMS mixing ratios in the surface air overlying the ocean surface. The difference was mainly due to the sea-to-air DMS emissions and stable atmospheric conditions, thus affecting the gradient of DMS. This indicates that the DMS gradient is strongly controlled by diurnal variations in the vertical structure of the lower atmosphere above the ocean surface.
Assimilating Satellite SST Observations into a Diurnal Cycle Model
NASA Astrophysics Data System (ADS)
Pimentel, S.; Haines, K.; Nichols, N. K.
2006-12-01
The wealth of satellite sea surface temperature (SST) data now available opens the possibility of large improvements in SST estimation. However the use of such data is not straight forward; a major difficulty in assimilating satellite observations is that they represent a near surface temperature, whereas in ocean models the top level represents the temperature at a greater depth. During the day, under favourable conditions of clear skies and calm winds, the near surface temperature is often seen to have a diurnal cycle that is picked up in satellite observations. Current ocean models do not have the vertical or temporal resolution to adequately represent this daytime warming. The usual approach is to discard daytime observations as they are considered diurnally `corrupted'. A new assimilation technique is developed here that assimilates observations into a diurnal cycle model. The diurnal cycle of SSTs are modelled using a 1-D mixed layer model with fine near surface resolution and 6 hourly forcing from NWP analyses. The accuracy of the SST estimates are hampered by uncertainties in the forcing data. The extent of diurnal SST warming at a particular location and time is predominately governed by a non-linear response to cloud cover and sea surface wind speeds which greatly affect the air-sea fluxes. The method proposed here combines infrared and microwave SST satellite observations in order to derive corrections to the cloud cover and wind speed values over the day. By adjusting the forcing, SST estimation and air-sea fluxes should be improved and are at least more consistent with each other. This new technique for assimilating SST data can be considered a tool for producing more accurate diurnal warming estimates.
Observed Thermal Impacts of Wind Farms Over Northern Illinois.
Slawsky, Lauren M; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A
2015-06-25
This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003-2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18-0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades.
Observed Thermal Impacts of Wind Farms Over Northern Illinois
Slawsky, Lauren M.; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A.
2015-01-01
This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003–2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18–0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades. PMID:26121613
NASA Astrophysics Data System (ADS)
Daniel, M.; Lemonsu, Aude; Déqué, M.; Somot, S.; Alias, A.; Masson, V.
2018-06-01
Most climate models do not explicitly model urban areas and at best describe them as rock covers. Nonetheless, the very high resolutions reached now by the regional climate models may justify and require a more realistic parameterization of surface exchanges between urban canopy and atmosphere. To quantify the potential impact of urbanization on the regional climate, and evaluate the benefits of a detailed urban canopy model compared with a simpler approach, a sensitivity study was carried out over France at a 12-km horizontal resolution with the ALADIN-Climate regional model for 1980-2009 time period. Different descriptions of land use and urban modeling were compared, corresponding to an explicit modeling of cities with the urban canopy model TEB, a conventional and simpler approach representing urban areas as rocks, and a vegetated experiment for which cities are replaced by natural covers. A general evaluation of ALADIN-Climate was first done, that showed an overestimation of the incoming solar radiation but satisfying results in terms of precipitation and near-surface temperatures. The sensitivity analysis then highlighted that urban areas had a significant impact on modeled near-surface temperature. A further analysis on a few large French cities indicated that over the 30 years of simulation they all induced a warming effect both at daytime and nighttime with values up to + 1.5 °C for the city of Paris. The urban model also led to a regional warming extending beyond the urban areas boundaries. Finally, the comparison to temperature observations available for Paris area highlighted that the detailed urban canopy model improved the modeling of the urban heat island compared with a simpler approach.
Large eddy simulation of dust-uplift by haboob density currents
NASA Astrophysics Data System (ADS)
Huang, Q.
2017-12-01
Cold pool outflows have been shown from both observations and convection-permitting models to be a dominant source of dust uplift ("haboobs") in the summertime Sahel and Sahara, and to cause dust uplift over deserts across the world. In this paper large eddy model (LEM) simulations, which resolve the turbulence within the cold-pools much better than previous studies of haboobs which have used convection-permitting models, are used to investigate the winds that cause dust uplift in cold pools, and the resultant dust uplift and transport. Dust uplift largely occurs in the head of the density current, consistent with the few existing observations. In the modeled density current dust is largely restricted to the lowest coldest and well mixed layer of the cold pool outflow (below around 400 m), except above the head of the cold pool where some dust reaches 2.5 km. This rapid transport to high altitude will contribute to long atmospheric lifetimes of large dust particles from haboobs. Decreasing the model horizontal grid-spacing from 1.0 km to 100 m resolves more turbulence, locally increasing winds, increasing mixing and reducing the propagation speed of the density current. Total accumulated dust uplift is approximately twice as large in 1.0 km runs compared with 100 m runs, suggesting that for studying haboobs in convection-permitting runs the representation of turbulence and mixing is significant. Simulations with surface sensible heat fluxes representative of those from a desert region in daytime show that increasing surface fluxes slow the density current due to increased mixing, but increase dust uplift rates, due to increased downward transport of momentum to the surface.
NASA Astrophysics Data System (ADS)
Heene, V.; Buchholz, S.; Kossmann, M.
2016-12-01
Numerical studies of thermal conditions in cities based on model simulations of idealized urban domains are carried out to investigate how changes in the characteristics of urban areas influence street level air temperatures. The simulated modifications of the urban characteristics represent possible adaptation measures for heat reduction in cities, which are commonly used in urban planning. Model simulations are performed with the thermodynamic version of the 3-dimensional micro-scale urban climate model MUKLIMO_3. The simulated idealized urban areas are designed in a simplistic way, i. e. defining homogeneous squared cities of one settlement type, without orography and centered in the model domain. To assess the impact of different adaptation measures the characteristics of the urban areas have been systematically modified regarding building height, albedo of building roof and impervious surfaces, fraction of impervious surfaces between buildings, and percentage of green roofs. To assess the impact of green and blue infrastructure in cities, different configurations for parks and lakes have been investigated - e. g. varying size and distribution within the city. The experiments are performed for different combinations of typical German settlement types and surrounding rural types under conditions of a typical summer day in July. The adaptation measures implemented in the experiments show different impacts for different settlement types mainly due to the differences in building density, building height or impervious surface fraction. Parks and lakes implemented as adaptation measure show strong potential to reduce daytime air temperature, with cooling effects on their built-up surroundings. At night lakes generate negative and positive effects on air temperature, depending on water temperature. In general, all adaptation measures implemented in experiments reveal different impacts on day and night air temperature.
Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow.
Abeni, Fabio; Galli, Andrea
2017-03-01
The aim of this study was to explore the use of cow activity and rumination time by precision livestock farming tools as early alert for heat stress (HS) detection. A total of 58 Italian Friesian cows were involved in this study during summer 2015. Based on the temperature humidity index (THI), two different conditions were compared on 16 primiparous and 11 multiparous, to be representative of three lactation phases: early (15-84 DIM), around peak (85-154 DIM), and plateau (155-224 DIM). A separate dataset for the assessment of the variance partition included all the cows in the herd from June 7 to July 16. The rumination time (RT2h, min/2 h) and activity index (AI2h, bouts/2 h) were summarized every 2-h interval. The raw data were used to calculate the following variables: total daily RT (RTt), daytime RT (RTd), nighttime RT (RTn), total daily AI (AIt), daytime AI (AId), and nighttime AI (AIn). Either AIt and AId increased, whereas RTt, RTd, and RTn decreased with higher THI in all the three phases. The highest decrease was recorded for RTd and ranged from 49 % (early) to 45 % (plateau). The contribution of the cow within lactation phase was above 60 % of the total variance for AI traits and a share from 33.9 % (for RTt) to 54.8 % (RTn) for RT traits. These observations must be extended to different feeding managements and different animal genetics to assess if different thresholds could be identified to set an early alert system for the farmer.
NASA Astrophysics Data System (ADS)
da Silva, Fabricio Polifke; Justi da Silva, Maria Gertrudes Alvarez; Rotunno Filho, Otto Corrêa; Pires, Gisele Dornelles; Sampaio, Rafael João; de Araújo, Afonso Augusto Magalhães
2018-05-01
Natural disasters are the result of extreme or intense natural phenomena that cause severe impacts on society. These impacts can be mitigated through preventive measures that can be aided by better knowledge of extreme phenomena and monitoring of forecasting and alert systems. The city of Petropolis (in a mountainous region of the state of Rio de Janeiro, Brazil) is prone to heavy rain events, often leading to River overflows, landslides, and loss of life. In that context, this work endeavored to characterize the thermodynamic and dynamic synoptic patterns that trigger heavy rainfall episodes and the corresponding flooding of Quitandinha River. More specifically, we reviewed events from the time period between January 2013 and December 2014 using reanalysis data. We expect that the overall description obtained of synoptic patterns should provide adequate qualitative aid to the decision-making processes involved in operational forecasting procedures. We noticed that flooding events were related to the presence of the South Atlantic Convergence Zone (SACZ), frontal systems (FS), and convective storms (CS). These systems showed a similar behavior on high-frequency wind components, notably with respect to northwest winds before precipitation and to a strong southwest wind component during rainfall events. Clustering analyses indicated that the main component for precipitation formation with regard to CS systems comes from daytime heating, with the dynamic component presenting greater efficiency for the FS configurations. The SACZ events were influenced by moisture availability along the vertical column of the atmosphere and also due to dynamic components of precipitation efficiency and daytime heating, the latter related to the continuous transport of moisture from the Amazon region and South Atlantic Ocean towards Rio de Janeiro state.
Acute central effects of alarin on the regulation on energy homeostasis.
Mikó, Alexandra; Füredi, Nóra; Tenk, Judit; Rostás, Ildikó; Soós, Szilvia; Solymár, Margit; Székely, Miklós; Balaskó, Márta; Brunner, Susanne M; Kofler, Barbara; Pétervári, Erika
2017-08-01
Hypothalamic neuropeptides influence the main components of energy balance: metabolic rate, food intake, body weight as well as body temperature, by exerting either an overall anabolic or catabolic effect. The contribution of alarin, the most recently discovered member of the galanin peptide family to the regulation of energy metabolism has been suggested. Our aim was to analyze the complex thermoregulatory and food intake-related effects of alarin in rats. Adult male Wistar rats received different doses of alarin (0.3; 1; 3 and 15μg corresponding approximately to 0.1, 0.33, 1, and 5 nmol, respectively) intracerebroventricularly. Regarding thermoregulatory analysis, oxygen consumption (indicating metabolic rate), core temperature and heat loss (assessed by tail skin temperature) were recorded in an Oxymax indirect calorimeter system complemented with thermocouples and Benchtop thermometer. In order to investigate potential prostaglandin-mediated mechanisms of the hyperthermic effect of alarin, effects of intraperitoneally applied non-selective (indomethacin, 2mg/kg) or selective cyclooxygenase inhibitor (COX-2 inhibitor meloxicam, 1; 2mg/kg) were tested. Effects of alarin on daytime and nighttime spontaneous food intake, as well as, 24-h fasting-induced re-feeding were recorded in an automated FeedScale system. Alarin increased oxygen consumption with simultaneous suppression of heat loss leading to a slow coordinated rise in core temperature. Both applied COX-inhibitors suppressed this action. Alarin failed to induce daytime food intake, but suppressed spontaneous nighttime and also fasting-induced re-feeding food intake. Alarin appears to elicit a slow anorexigenic and prostaglandin-mediated, fever-like hyperthermic response in rats. Such a combination would characterize a catabolic mediator. The potential involvement of alarin in sickness behavior may be assumed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Daily simulations of urban heat load in Vienna for 2011
NASA Astrophysics Data System (ADS)
Hollosi, Brigitta; Zuvela-Aloise, Maja; Koch, Roland
2014-05-01
In this study, the dynamical urban climate model MUKLIMO3 (horizontal resolution of 100 m) is uni-directionally coupled with the operational weather forecast model ALARO-ALADIN of the ZAMG (horizontal resolution of 4.8 km) to simulate the development of the urban heat island in Vienna on a daily basis. The aim is to evaluate the performance of the urban climate model applied for climatological studies in a weather prediction mode. The focus of the investigation is on assessment of the urban heat load during day-time. We used the archived daily forecast data for the summer period in 2011 (April - October) as input data for the urban climate model. The high resolution simulations were initialized with vertical profiles of temperature and relative humidity and prevailing wind speed and direction in the rural area near the city in the early morning hours. The model output for hourly temperature and relative humidity has been evaluated against the monitoring data at 9 weather stations in the area of the city. Additionally, spatial gradients in temperature were evaluated by comparing the grid point values with the data collected during a mobile measuring campaign taken on a multi-vehicle bicycle tour on the 7th of July, 2011. The results show a good agreement with observations on a district scale. Particular challenge in the modeling approach is achieving robust and numerically stable model solutions for different weather situation. Therefore, we analyzed modeled wind patterns for different atmospheric conditions in the summer period. We found that during the calm hot days, due to the inhomogeneous surface and complex terrain, the local-scale temperature gradients can induce strong anomalies, which in turn could affect the circulation on a larger scale. However, these results could not be validated due to the lack of observations. In the following years extreme hot conditions are very likely to occur more frequently and with higher intensity. Combining urban climate simulations with the operational meso-scale forecasting model may identify hot spots in urban areas and bring added value in excessive heat warning systems in the future.
Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation
NASA Technical Reports Server (NTRS)
Quinn, Robert D.; Gong, Leslie
1990-01-01
A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.
Guerrero, Michel; Marshall, Andrea D.; Richardson, Anthony J.; Bennett, Mike B.; Couturier, Lydie I. E.
2018-01-01
Traditionally, large planktivorous elasmobranchs have been thought to predominantly feed on surface zooplankton during daytime hours. However, the recent application of molecular methods to examine long-term assimilated diets, has revealed that these species likely gain the majority from deeper or demersal sources. Signature fatty acid analysis (FA) of muscle tissue was used to examine the assimilated diet of the giant manta ray Mobula birostris, and then compared with surface zooplankton that was collected during feeding and non-feeding events at two aggregation sites off mainland Ecuador. The FA profiles of M. birostris and surface zooplankton were markedly different apart from similar proportions of arachidonic acid, which suggests daytime surface zooplankton may comprise a small amount of dietary intake for M. birostris. The FA profile of M. birostris muscle was found to be depleted in polyunsaturated fatty acids, and instead comprised high proportions of 18:1ω9 isomers. While 18:1ω9 isomers are not explicitly considered dietary FAs, they are commonly found in high proportions in deep-sea organisms, including elasmobranch species. Overall, the FA profile of M. birostris suggests a diet that is mesopelagic in origin, but many mesopelagic zooplankton species also vertically migrate, staying deep during the day and moving to shallower waters at night. Here, signature FA analysis is unable to resolve the depth at which these putative dietary items were consumed and how availability of this prey may drive distribution and movements of this large filter-feeder. PMID:29329295
Burgess, Katherine B; Guerrero, Michel; Marshall, Andrea D; Richardson, Anthony J; Bennett, Mike B; Couturier, Lydie I E
2018-01-01
Traditionally, large planktivorous elasmobranchs have been thought to predominantly feed on surface zooplankton during daytime hours. However, the recent application of molecular methods to examine long-term assimilated diets, has revealed that these species likely gain the majority from deeper or demersal sources. Signature fatty acid analysis (FA) of muscle tissue was used to examine the assimilated diet of the giant manta ray Mobula birostris, and then compared with surface zooplankton that was collected during feeding and non-feeding events at two aggregation sites off mainland Ecuador. The FA profiles of M. birostris and surface zooplankton were markedly different apart from similar proportions of arachidonic acid, which suggests daytime surface zooplankton may comprise a small amount of dietary intake for M. birostris. The FA profile of M. birostris muscle was found to be depleted in polyunsaturated fatty acids, and instead comprised high proportions of 18:1ω9 isomers. While 18:1ω9 isomers are not explicitly considered dietary FAs, they are commonly found in high proportions in deep-sea organisms, including elasmobranch species. Overall, the FA profile of M. birostris suggests a diet that is mesopelagic in origin, but many mesopelagic zooplankton species also vertically migrate, staying deep during the day and moving to shallower waters at night. Here, signature FA analysis is unable to resolve the depth at which these putative dietary items were consumed and how availability of this prey may drive distribution and movements of this large filter-feeder.
NASA Astrophysics Data System (ADS)
Nair, Udaysankar S.; McNider, Richard; Patadia, Falguni; Christopher, Sundar A.; Fuller, Kirk
2011-01-01
Since the middle of the last century, global surface air temperature exhibits an increasing trend, with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) where the temperature response is amplified due to shallow depth and its sensitivity to potential destabilization. A 1-D version of the Regional Atmospheric Modeling System is used to examine the sensitivity of the nocturnal boundary layer temperature to the surface longwave radiative forcing (SLWRF) from urban aerosol loading and doubled atmospheric carbon dioxide concentrations. The analysis is conducted for typical midlatitude nocturnal boundary layer case days from the CASES-99 field experiment and is further extended to urban sites in Pune and New Delhi, India. For the cases studied, locally, the nocturnal SLWRF from urban atmospheric aerosols (2.7-47 W m-2) is comparable or exceeds that caused by doubled atmospheric carbon dioxide (3 W m-2), with the surface temperature response ranging from a compensation for daytime cooling to an increase in the nocturnal minimum temperature. The sensitivity of the NBL to radiative forcing is approximately 4 times higher compared to the daytime boundary layer. Nighttime warming or cooling may occur depending on the nature of diurnal variations in aerosol optical depth. Soil moisture also modulates the magnitude of SLWRF, decreasing from 3 to 1 W m-2 when soil saturation increases from 37% to 70%. These results show the importance of aerosols on the radiative balance of the climate system.
Comparing the Effects of Nocturnal Sleep and Daytime Napping on Declarative Memory Consolidation
Lo, June C.; Dijk, Derk-Jan; Groeger, John A.
2014-01-01
Nocturnal sleep and daytime napping facilitate memory consolidation for semantically related and unrelated word pairs. We contrasted forgetting of both kinds of materials across a 12-hour interval involving either nocturnal sleep or daytime wakefulness (experiment 1) and a 2-hour interval involving either daytime napping or wakefulness (experiment 2). Beneficial effects of post-learning nocturnal sleep and daytime napping were greater for unrelated word pairs (Cohen’s d = 0.71 and 0.68) than for related ones (Cohen’s d = 0.58 and 0.15). While the size of nocturnal sleep and daytime napping effects was similar for unrelated word pairs, for related pairs, the effect of nocturnal sleep was more prominent. Together, these findings suggest that sleep preferentially facilitates offline memory processing of materials that are more susceptible to forgetting. PMID:25229457
Drake, Christopher; Nickel, Chelsea; Burduvali, Eleni; Roth, Thomas; Jefferson, Catherine; Pietro, Badia
2003-06-15
To develop a measure of daytime sleepiness suitable for middle-school children and examine the relationship between daytime sleepiness and school-related outcomes. Self-report questionnaire. Four hundred fifty, 11- to 15-year-old students, from grades 6, 7, and 8 of a public middle school in Dayton, Ohio. A pediatric daytime sleepiness questionnaire was developed using factor analysis of questions regarding sleep-related behaviors. Results of the sleepiness questionnaire were then compared across other variables, including daily sleep patterns, school achievement, mood, and extracurricular activities. Factor analysis on the 13 questions related to daytime sleepiness yielded 1 primary factor ("pediatric daytime sleepiness"; 32% of variance). Only items with factor loadings above .4 were included in the final sleepiness scale. Internal consistency (Chronbach's alpha) for the final 8-item scale was .80. Separate one-way analyses of variance and trend analyses were performed comparing pediatric daytime sleepiness scores at the 5 different levels of total sleep time and academic achievement. Participants who reported low school achievement, high rates of absenteeism, low school enjoyment, low total sleep time, and frequent illness reported significantly higher levels of daytime sleepiness compared to children with better school-related outcomes. The self-report scale developed in the present work is suitable for middle-school-age children and may be useful in future research given its ease of administration and robust psychometric properties. Daytime sleepiness is related to reduced educational achievement and other negative school-related outcomes.
Stannard, D.I.; Blanford, J.H.; Kustas, William P.; Nichols, W.D.; Amer, S.A.; Schmugge, T.J.; Weltz, M.A.
1994-01-01
A network of 9-m-tall surface flux measurement stations were deployed at eight sparsely vegetated sites during the Monsoon '90 experiment to measure net radiation, Q, soil heat flux, G, sensible heat flux, H (using eddy correlation), and latent heat flux, λE (using the energy balance equation). At four of these sites, 2-m-tall eddy correlation systems were used to measure all four fluxes directly. Also a 2-m-tall Bowen ratio system was deployed at one site. Magnitudes of the energy balance closure (Q + G + H + λE) increased as the complexity of terrain increased. The daytime Bowen ratio decreased from about 10 before the monsoon season to about 0.3 during the monsoons. Source areas of the measurements are developed and compared to scales of heterogeneity arising from the sparse vegetation and the topography. There was very good agreement among simultaneous measurements of Q with the same model sensor at different heights (representing different source areas), but poor agreement among different brands of sensors. Comparisons of simultaneous measurements of G suggest that because of the extremely small source area, extreme care in sensor deployment is necessary for accurate measurement in sparse canopies. A recently published model to estimate fetch is used to interpret measurements of H at the 2 m and 9 m heights. Three sites were characterized by undulating topography, with ridgetops separated by about 200–600 m. At these sites, sensors were located on ridgetops, and the 9-m fetch included the adjacent valley, whereas the 2-m fetch was limited to the immediate ridgetop and hillside. Before the monsoons began, vegetation was mostly dormant, the watershed was uniformly hot and dry, and the two measurements of H were in close agreement. After the monsoons began and vegetation fully matured, the 2-m measurements of H were significantly greater than the 9-m measurements, presumably because the vegetation in the valleys was denser and cooler than on the ridgetops and hillsides. At one lowland site with little topographic relief, the vegetation was more uniform, and the two measurements of H were in close agreement during peak vegetation. Values of λE could only be compared at two sites, but the 9-m values were greater than the 2-m values, suggesting λE from the dense vegetation in the valleys was greater than elsewhere.
Davis, Philip A.
2002-01-01
This study examined thermal-infrared (TIR) image data acquired using the airborne Advanced Thematic Mapper (ATM) sensor in the afternoon of July 25th, 2000 over a portion of the Colorado River corridor to determine the capability of these 100-cm resolution data to address some biologic and cultural resource requirements for GCMRC. The requirements investigated included the mapping of warm backwaters that may serve as fish habitats and the detection (and monitoring) of archaeological structures and natural springs that occur on land. This report reviews the procedure for calibration of the airborne TIR data to obtain surface water temperatures and shows the results for various river reaches within the acquired river corridor. With respect to mapping warm backwater areas, our results show that TIR data need to be acquired with a gain setting that optimizes the range of temperatures found within the water to increase sensitivity of the resulting data to a level of 0.1 °C and to reduce scan-line noise. Data acquired within a two-hour window around maximum solar heating (1:30 PM) is recommended to provide maximum solar heating of the water and to minimize cooling effects of late-afternoon shadows. Ground-truth data within the temperature range of the warm backwaters are necessary for calibration of the TIR data. The ground-truth data need to be collected with good locational accuracy. The derived water-temperature data provide the capability for rapid, wide-area mapping of warm-water fish habitats using a threshold temperature for such habitats. The collected daytime TIR data were ineffective in mapping (detecting) both archaeological structures and natural springs (seeps). The inability of the daytime TIR data to detect archaeological structures is attributed to the low thermal sensitivity (0.3 °C) of the collected data. The detection of subtle thermal differences between geologic materials requires sensitivities of at least 0.1 °C, which can be obtained by most TIR sensors using an appropriate gain setting. Simultaneous data collection for both land and water purposes can be achieved using sensors that collect TIR data in two separate channels, each channel using a gain setting most appropriate for land or water. The detection of archaeological structures and natural water seeps would also be improved by collection of data after sunset, which would require a separate data acquisition from that providing surface water temperature data and therefore additional cost. At this point, the cost for acquiring TIR data is quite high ($620/river-km) compared to the potential benefits of the data, unless reflected-wavelength data are also collected that can satisfy other GCMRC protocol requirements (such as mapping riparian vegetation). This is especially true if multiple data acquisitions are required during the year for temporal analyses of backwater areas. The cost for these data cannot be totally mitigated by its ability to partly replace the need for ground surveys of backwaters because calibration of the TIR data will require some ground-truth data from warm backwater areas (in addition to low-temperature main-stem data). However, the airborne data can provide a product that cannot be approached by ground surveys, that being an instantaneous (2 hour) map of surface water temperature over a 160-km stretch of the Grand Canyon.
Alapin, I; Fichten, C S; Libman, E; Creti, L; Bailes, S; Wright, J
2000-11-01
We compared good sleepers with minimally and highly distressed poor sleepers on three measures of daytime functioning: self-reported fatigue, sleepiness, and cognitive inefficiency. In two samples (194 older adults, 136 college students), we tested the hypotheses that (1) poor sleepers experience more problems with daytime functioning than good sleepers, (2) highly distressed poor sleepers report greater impairment in functioning during the day than either good sleepers or minimally distressed poor sleepers, (3) daytime symptoms are more closely related to psychological adjustment and to psychologically laden sleep variables than to quantitative sleep parameters, and (4) daytime symptoms are more closely related to longer nocturnal wake times than to shorter sleep times. Results in both samples indicated that poor sleepers reported more daytime difficulties than good sleepers. While low- and high-distress poor sleepers did not differ on sleep parameters, highly distressed poor sleepers reported consistently more difficulty in functioning during the day and experienced greater tension and depression than minimally distressed poor sleepers. Severity of all three daytime problems was generally significantly and positively related to poor psychological adjustment, psychologically laden sleep variables, and, with the exception of sleepiness, to quantitative sleep parameters. Results are used to discuss discrepancies between experiential and quantitative measures of daytime functioning.
Stone, Kristen C; Cuellar, Crystal R; Miller-Loncar, Cynthia L; LaGasse, Linda L; Lester, Barry M
2015-09-01
To evaluate associations between actigraphic sleep patterns, subjective sleep quality, and daytime functioning (ie, sleepiness, symptoms of depression, and delinquency and other conduct problems) in at-risk adolescents. Prospective, observational cohort study. Providence, RI, predominantly home and school and 2 visits to the Brown Center for the Study of Children at Risk. A diverse group of low-income 13-year-olds (n = 49) with and without prenatal drug exposure. None. Actigraphy, sleep diaries, and sleep and health questionnaires. Above and beyond the effects of prenatal drug exposure and postnatal adversity, actigraphic daytime sleep was a significant predictor of daytime sleepiness and delinquency. Subjective sleep quality was a significant predictor of daytime sleepiness, delinquency, and depressive symptoms. Later bed times predicted increased delinquency. There was a unique effect of actigraphic daytime sleep duration, subjective nighttime sleep quality, and bedtime on daytime functioning (ie, sleepiness, symptoms of depression, and delinquency and other conduct problems) of at-risk adolescents. In these vulnerable youth, these problematic sleep patterns may contribute to feeling and behaving poorly. Intervention studies with at-risk teens should be conducted to further explore the role of these sleep parameters on daytime functioning. Copyright © 2015 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.
Clinical assessment of excessive daytime sleepiness in the diagnosis of sleep disorders.
Rosenberg, Russell P
2015-12-01
Daytime sleepiness is common, but, in some individuals, it can be excessive and lead to distress and impairment. For many of these individuals, excessive daytime sleepiness is simply caused by poor sleep habits or self-imposed sleep times that are not sufficient to maintain alertness throughout the day. For others, daytime sleepiness may be related to a more serious disorder or condition such as narcolepsy, idiopathic hypersomnia, or obstructive sleep apnea. Clinicians must be familiar with the disorders associated with excessive daytime sleepiness and the assessment methods used to diagnose these disorders in order to identify patients who need treatment. © Copyright 2015 Physicians Postgraduate Press, Inc.
Daytime Color Appearance of Retroreflective Traffic Control Sign Materials
DOT National Transportation Integrated Search
2013-04-01
Photometric measurements of the daytime chromaticity and luminance of retroreflective sign materials were made both in the laboratory and in the field. These instrument measurements were compared with daytime perceptual judgments of color properties ...
High-Capacity Heat-Pipe Evaporator
NASA Technical Reports Server (NTRS)
Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.
1989-01-01
Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Fujio; Kuwagata, Tuneo
1995-02-01
The thermally induced local circulation over a periodic valley is simulated by a two-dimensional numerical model that does-not include condensational processes. During the daytime of a clear, calm day, heat is transported from the mountainous region to the valley area by anabatic wind and its return flow. The specific humidity is, however, transported in an inverse manner. The horizontal exchange rate of sensible heat has a horizontal scale similarity, as long as the horizontal scale is less than a critical width of about 100 km. The sensible heat accumulated in an atmospheric column over an arbitrary point can be estimatedmore » by a simple model termed the uniform mixed-layer model (UML). The model assumes that the potential temperature is both vertically and horizontally uniform in the mixed layer, even over the complex terrain. The UML model is valid only when the horizontal scale of the topography is less than the critical width and the maximum difference in the elevation of the topography is less than about 1500 m. Latent heat is accumulated over the mountainous region while the atmosphere becomes dry over the valley area. When the horizontal scale is close to the critical width, the largest amount of humidity is accumulated during the late afternoon over the mountainous region. 18 refs., 15 figs., 1 tab.« less
Radiative Properties, Dynamics, and Chemical Evolution of the Smoke from the 1991 Kuwait Oil Fires.
NASA Astrophysics Data System (ADS)
Herring, John Allan
The oil fields in Kuwait were the scene of a massive conflagration during much of 1991 that was started by Iraqi forces during the Gulf War. At this time, approximately 4 to 5 million barrels of oil were burning each day. The climatic impacts of the fires were limited by the fact that the smoke was generally confined to the lower 6 km of the atmosphere, where its removal by precipitation processes limited its lifetime. The optical properties of the smoke were such that it was an efficient absorber of solar radiation, with a single-scattering albedo of {~ }0.6. This led to rapid warming of the plume during the daytime. Instantaneous heating rates were calculated to be up to {~}90 K day ^{-1}. Because of the vertical distribution of the heating in the plume, the upper part of the plume became unstable and a turbulent mixed-layer developed. Conversely, the lower part of the plume became stably stratified due to the heating. This led to a general decoupling of the lower boundary layer, preventing the heating experienced by the plume from reaching the ground. The general warming of the plume led to mesoscale vertical transport of the plume as a whole. This mode of vertical transport was limited because of the large horizontal extent of the region of buoyant smoke. The mesoscale vertical transport occurred at roughly the same rate as the upward mixing of smoke due to smaller-scale turbulent motions. This vertical transport, however, did not occur rapidly enough to loft the smoke into the upper troposphere before it was dispersed by wind shear and the mixing caused by solar heating of the smoke. The chemical evolution of the plume was generally somewhat slow, due to the lack of ultraviolet radiation to initiate photochemistry within the smoke plume and to the generally low concentrations of nitrogen oxides, which act as catalysts for photochemical chain reactions. Heterogeneous chemical reactions between gases and black carbon particles produced by the fires were also not important. There was evidence, however, of rapid removal of sulfur dioxide and nitrogen oxides through heterogeneous chemical reactions (typically {~}7% h ^{-1} and 10% h^ {-1}, respectively) on the surfaces of alkaline soil dust particles.
Study of a high performance evaporative heat transfer surface
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Hamasaki, R. H.
1977-01-01
An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.
Kallestad, Håvard; Hansen, Bjarne; Langsrud, Knut; Hjemdal, Odin; Stiles, Tore C
2010-01-01
The relationship between presleep worry and insomnia has been investigated in previous studies, but less attention has been given to the role of daytime worry and symptoms of insomnia. The aims of the current study were (a) to assess the psychometric properties of a novel scale measuring insomnia-specific worry during daytime and (b) to examine whether levels of daytime worry predict severity of insomnia symptoms. Participants (N = 353) completed the Insomnia Daytime Worry Scale (IDWS) and the Insomnia Severity Index. An explorative principal-axis factor analysis extracted two factors from the IDWS, accounting for 70.5% of the variance. The IDWS demonstrated good reliability. The total score of IDWS and both factors predicted levels of insomnia severity in two separate hierarchical regression analyses. This preliminary evidence suggests that the IDWS is a valid and reliable scale to measure daytime worry in insomnia.
Impacts of land cover transitions on surface temperature in China based on satellite observations
NASA Astrophysics Data System (ADS)
Zhang, Yuzhen; Liang, Shunlin
2018-02-01
China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short-term analysis of land cover transitions in China means our estimates should represent local temperature effects. Changes in ET and albedo explained <60% of the variation in LST change caused by land cover transitions; thus, additional factors that affect surface climate need consideration in future studies.
Light penetration structures the deep acoustic scattering layers in the global ocean.
Aksnes, Dag L; Røstad, Anders; Kaartvedt, Stein; Martinez, Udane; Duarte, Carlos M; Irigoien, Xabier
2017-05-01
The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.
Moving into the Light: The AEOS Telescope in the Daytime Operating Environment
NASA Astrophysics Data System (ADS)
Mayo, J.
Abstract for Coming into the Light: The AEOS Telescope in the Daytime Operating Environment” Interest in daylight operation for the AEOS 3.67-m Telescope first surfaced during the preparation of the AEOS specification documentation in 1991. The author and Lt Rich Elder prepared, edited and combined requirements inputs from AFRL technical staff to create the final RFP document. In this released specification, AEOS daylight performance was limited to best effort, although provisions for adding secondary mirror sky light baffling were to be provided. In 1993, during the AEOS construction phase, AFRL requested that the author prepare a report on special considerations for operating AEOS in the solar illuminated daytime environment. This report was published and briefed to AFRL and Space Command at that time. Interest in this topic at AMOS was rekindled in 2007 by Dr Joe Janni and Lt Col Scott Hunt. The author updated his 1993 report and in June 2007 presented AEOS 1993 Daylight Operation Study Revisited” at AMOS. Subsequently, Dr Stacie Williams spearheaded additional work in this critical technical area. Recent efforts at Tau Technologies LLC have focused on external AEOS telescope baffling and shielding options assessment, solar irradiation effects on optical components, especially the primary mirror, and on modeling the solar illumination on the entire telescope during daylight operation. Solid Works and Illustrator simulation models have been developed and exercised.
Synoptic-scale characteristics and atmospheric controls of summer heat waves in China
NASA Astrophysics Data System (ADS)
Wang, Weiwen; Zhou, Wen; Li, Xiuzhen; Wang, Xin; Wang, Dongxiao
2016-05-01
Summer heat waves with persistent extreme high temperatures have been occurring with increasing frequency in recent decades. These extreme events have disastrous consequences for human health, economies, and ecosystems. In this study, we examine three summers with intense and protracted heat waves: the summers of 2003, 2006, and 2013, with high temperatures located mainly in southeastern, southwestern, and eastern China, respectively. The synoptic-scale characteristics of these heat waves and associated atmospheric circulation anomalies are investigated. In the early heat wave episode of 2003, a heat center was located in the southeast coastal provinces during the first 20 days of July. The maximum southward displacement of the East Asian jet stream (EAJS) induced anticyclonic anomalies to the south, associated with southwestward intensification of the western North Pacific subtropical high (WNPSH), and extreme high temperatures were found only to the south of the Yangtze River. In the later episode, a poleward displacement of the EAJS and an enhanced WNPSH over the midlatitudes of eastern China resulted in a "heat dome" over the region, and the heat wave extended northward to cover a larger area of eastern China. The coupling between the westward-enhanced WNPSH and poleward-displaced EAJS was found in the East China heat wave of 2013 as well. But the area of high temperatures reached far to the north in August 2013, with below-normal temperatures located in a small region of South China. In the 2006 southwestern drought and heat wave, extreme poleward displacement of the EAJS, associated with extraordinary westward extension of the WNSPH, resulted in further blocking of the moisture supply from the southwest monsoon. Large-scale moisture deficiencies, dry conditions, and downslope winds were common features of all investigated heat wave episodes. But in 2006, low-level heat lows associated with a well-mixed layer due to intensive daytime heating and atmospheric turbulence were emphasized.
Daytime Sleep Disturbance in Night Shift Work and the Role of PERIOD3.
Cheng, Philip; Tallent, Gabriel; Burgess, Helen J; Tran, Kieulinh Michelle; Roth, Thomas; Drake, Christopher L
2018-03-15
Recent evidence indicates that daytime sleep disturbance associated with night shift work may arise from both circadian misalignment and sleep reactivity to stress. This presents an important clinical challenge because there are limited means of predicting and distinguishing between the two mechanisms, and the respective treatments differ categorically; however, there is support that a polymorphism in the PERIOD3 gene ( PER3 ) may indicate differences in vulnerability to daytime sleep disturbance in shift workers. We recruited 30 fixed night shift workers for laboratory assessments of circadian misalignment (dim light melatonin onset), sleep reactivity to stress (Ford Insomnia Response to Stress Test), daytime sleep disturbance (daytime Insomnia Severity Index), and PER3 genotype ( PER3 4/4 , PER3 5 /- ). The two mechanisms for daytime sleep disturbance (circadian misalignment and sleep reactivity to stress) were compared between PER3 genotypes. Disturbed daytime sleep in the PER3 4/4 group was more likely related to sleep reactivity to stress, whereas disturbed sleep in the PER3 5 /- group was more likely related to circadian misalignment. Exploratory analyses also revealed a blunted melatonin amplitude in the PER3 4/4 genotype group. This study provides further evidence for multiple mechanisms (ie, circadian misalignment versus sleep reactivity to stress) associated with daytime sleep disturbances in shift workers. Additionally, it provides the new finding that PER3 genotype may play an important role in individual vulnerability to the different mechanisms of daytime sleep disturbance in night shift workers. © 2018 American Academy of Sleep Medicine.
NASA Astrophysics Data System (ADS)
Uma, G.; Brahmanandam, P. S.; Srinivasu, V. K. D.; Prasad, D. S. V. V. D.; Rama Rao, P. V. S.
2018-04-01
In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997-2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.
Unexpected and Unexplained Surface Temperature Variations on Mimas
NASA Astrophysics Data System (ADS)
Howett, C.; Spencer, J. R.; Pearl, J. C.; Hurford, T. A.; Segura, M.; Cassini Cirs Team
2010-12-01
Until recently it was thought one of the most interesting things about Mimas, Saturn’s innermost classical icy moon, was its resemblance to Star Wars’ Death Star. However, a bizarre pattern of daytime surface temperatures was observed on Mimas using data obtained by Cassini’s Composite Infrared Spectrometer (CIRS) in February 2010. The observations were taken during Cassini’s closest ever encounter with Mimas (<10,000 km) and cover the daytime anti-Saturn hemisphere centered on longitude ~145° W. Instead of surface temperatures smoothly increasing throughout the morning and early afternoon, then cooling in the evening, as expected, a sharp V-shaped boundary is observed separating cooler midday and afternoon temperatures (~77 K) on the leading side from warmer morning temperatures (~92 K) on the trailing side. The boundary’s apex is centered at equatorial latitudes near the anti-Saturn point and extends to low north and south latitudes on the trailing side. Subtle differences in the surface colors have been observed that are roughly spatially correlated with the observed extent of the temperature anomaly, with the cooler regions tending to be bluer (Schenk et al., Submitted). However, visible-wavelength albedo is similar in the two regions, so albedo variations are probably not directly responsible for the thermal anomaly. It is more likely that thermal inertia variations produce the anomaly, with thermal inertia being unusually high in the region with anomalously low daytime temperatures. Comparison of the February 2010 CIRS data to previous lower spatial resolution data taken at different local times tentatively confirm that the cooler regions do indeed display higher thermal inertias. Bombardment of the surface by high energy electrons from Saturn’s radiation belts has been proposed to explain the observed color variations (Schenk et al., Submitted). Electrons above ~1 MeV preferentially impact Mimas’ leading hemisphere at low latitudes where they could cause surface defects. For this process to also explain the observed temperature differences it would have to affect the surface’s thermal inertia to a depth comparable to the diurnal thermal skin-depth (~0.5 cm). However, whether the formation of the giant Herschel crater (which lies in the middle of the observed portion of the cold region) contributed to the observed temperature anomaly or if electron bombardment alone is able to explain the thermal anomaly is currently unknown. Future CIRS observations should be able to map the full spatial extent of the thermal anomaly and clarify whether it is centered on (and thus likely related to) Herschel, or is centered on the trailing hemisphere and thus likely to be related to the observed color anomaly.
Removal of daytime thermal deformations in the GBT active surface via out-of-focus holography
NASA Astrophysics Data System (ADS)
Hunter, T. R.; Mello, M.; Nikolic, B.; Mason, B.; Schwab, F.; Ghigo, F.; Dicker, S.
2009-01-01
The 100-m diameter Green Bank Telescope (GBT) was built with an active surface of 2209 actuators in order to achieve and maintain an accurate paraboloidal shape. While much of the large-scale gravitational deformation of the surface can be described by a finite element model, a significant uncompensated gravitational deformation exists. In recent years, the elevation-dependence of this residual deformation has been successfully measured during benign nighttime conditions using the out-of-focus (OOF) holography technique (Nikolic et al, 2007, A&A 465, 685). Parametrized by a set of Zernike polynomials, the OOF model correction was implemented into the active surface and has been applied during all high-frequency observations since Fall 2006, yielding a consistent gain curve that is flat with elevation. However, large-scale thermal deformation of the surface has remained a problem for daytime high-frequency observations. OOF holography maps taken throughout a clear winter day indicate that surface deformations become significant whenever the Sun is above 10 degrees elevation, but that they change slowly while tracking a single source. In this paper, we describe a further improvement to the GBT active surface that allows an observer to measure and compensate for the thermal surface deformation using the OOF technique. In order to support high-frequency observers, "AutoOOF" is a new GBT Astrid procedure that acquires a quick set of in-focus and out-of-focus on-the-fly continuum maps on a quasar using the currently active receiver. Upon completion of the maps, the data analysis software is launched automatically which produces and displays the surface map along with a set of Zernike coefficients. These coefficients are then sent to the active surface manager which combines them with the existing gravitational Zernike terms and FEM in order to compute the total active surface correction. The end-to-end functionality has been tested on the sky at Q-Band and Ka-band during several mornings and afternoons. The telescope beam profiles on a bright quasar typically change from slightly asymmetric to Gaussian, the peak antenna temperature increases, and significant sidelobes (when present) are eliminated. This technique has the potential to bring the daytime GBT aperture efficiency at high frequencies closer to its nighttime level. The total time to run the procedure and apply the corrections is about 20 minutes. The time interval over which the solutions remain valid and helpful will likely vary with the weather conditions and program of observations, and can be better evaluated once a larger dataset has been acquired. We are presently researching the OOF technique using MUSTANG, the first 90 GHz instrument on the GBT. MUSTANG is 64-pixel bolometer camera, presently operating as a shared-risk science instrument. The use of multi-pixel MUSTANG maps has the potential to significantly speed the process of measuring and correcting thermal deformations to the surface during 90 GHz observations. Of course, the efficiency of 90 GHz observations with the GBT is also limited by the small-scale surface roughness due to errors in the initial setting of the actuator zero points and the individual panel corners. We are planning to measure these errors in detail with traditional holography in the near future.
Removal of daytime thermal deformations in the GBT active surface via out-of-focus holography
NASA Astrophysics Data System (ADS)
Hunter, T. R.; Mello, M.; Nikolic, B.; Mason, B. S.; Schwab, F. R.; Ghigo, F. D.; Dicker, S. R.
2009-01-01
The 100-m diameter Green Bank Telescope (GBT) was built with an active surface of 2209 actuators in order to achieve and maintain an accurate paraboloidal shape. While much of the large-scale gravitational deformation of the surface can be described by a finite element model, a significant uncompensated gravitational deformation exists. In recent years, the elevation-dependence of this residual deformation has been successfully measured during benign nighttime conditions using the out-of-focus (OOF) holography technique (Nikolic et al, 2007, A&A 465, 685). Parametrized by a set of Zernike polynomials, the OOF model correction was implemented into the active surface and has been applied during all high frequency observations since Fall 2006, yielding a consistent gain curve that is constant with elevation. However, large-scale thermal deformation of the surface has remained a problem for daytime high-frequency observations. OOF holography maps taken throughout a clear winter day indicate that surface deformations become significant whenever the Sun is above 10 degrees elevation, but that they change slowly while tracking a single source. In this paper, we describe a further improvement to the GBT active surface that allows an observer to measure and compensate for the thermal surface deformation using the OOF technique. In order to support high-frequency observers, "AutoOOF" is a new GBT Astrid procedure that acquires a quick set of in-focus and out-of-focus on-the-fly continuum maps on a quasar using the currently active receiver. Upon completion of the maps, the data analysis software is launched automatically which produces and displays the surface map along with a set of Zernike coefficients. These coefficients are then sent to the active surface manager which combines them with the existing gravitational Zernike terms and FEM in order to compute the total active surface correction. The end-to-end functionality has been tested on the sky at Q-Band and Ka-band during several mornings and afternoons. The telescope beam profiles on a bright quasar typically change from slightly asymmetric to Gaussian, the peak antenna temperature increases, and signicant sidelobes (when present) are eliminated. This technique has the potential to bring the daytime GBT aperture efficiency at high frequencies closer to its nighttime level. The total time to run the procedure and apply the corrections is about 20 minutes. The time interval over which the solutions remain valid and helpful will likely vary with the weather conditions and program of observations, and can be better evaluated once a larger dataset has been acquired. We are presently researching the OOF technique using MUSTANG, the first 90 GHz instrument on the GBT. MUSTANG is 64-pixel bolometer camera, presently operating as a shared-risk science instrument. The use of multi-pixel MUSTANG maps has the potential to signicantly speed the process of measuring and correcting thermal deformations to the surface during 90 GHz observations. Of course, th efficiency of 90 GHz observations with the GBT is also limited by the small-scale surface roughness due to errors in the initial setting of the actuator zero points and the individual panel corners. We are planning to measure these errors in detail with traditional holography in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwamoto, A.; Mito, T.; Takahata, K.
Heat transfer of large copper plates (18 x 76 mm) in liquid helium has been measured as a function of orientation and treatment of the heat transfer surface. The results relate to applications of large scale superconductors. In order to clarify the influence of the area where the surface treatment peels off, the authors studied five types of heat transfer surface areas including: (a) 100% polished copper sample, (b) and (c) two 50% oxidized copper samples having different patterns of oxidation, (d) 75% oxidized copper sample, (e) 90% oxidized copper sample, and (f) 100% oxidized copper sample. They observed thatmore » the critical heat flux depends on the heat transfer surface orientation. The critical heat flux is a maximum at angles of 0{degrees} - 30{degrees} and decreases monotonically with increasing angles above 30{degrees}, where the angle is taken in reference to the horizontal axis. On the other hand, the minimum heat flux is less dependent on the surface orientation. More than 75% oxidation on the surface makes the critical heat flux increase. The minimum heat fluxes of the 50 and 90% oxidized Cu samples approximately agree with that of the 100% oxidized Cu sample. Experiments and calculations show that the critical and the minimum heat fluxes are a bilinear function of the fraction of oxidized surface area.« less
Hirabayashi, Hideyuki; Sasaki, Kazuhiro; Kambe, Takashi; Gannaban, Ritchel B; Miras, Monaliza A; Mendioro, Merlyn S; Simon, Eliza V; Lumanglas, Patrick D; Fujita, Daisuke; Takemoto-Kuno, Yoko; Takeuchi, Yoshinobu; Kaji, Ryota; Kondo, Motohiko; Kobayashi, Nobuya; Ogawa, Tsugufumi; Ando, Ikuo; Jagadish, Krishna S V; Ishimaru, Tsutomu
2015-03-01
A decline in rice (Oryza sativa L.) production caused by heat stress is one of the biggest concerns resulting from future climate change. Rice spikelets are most susceptible to heat stress at flowering. The early-morning flowering (EMF) trait mitigates heat-induced spikelet sterility at the flowering stage by escaping heat stress during the daytime. We attempted to develop near-isogenic lines (NILs) for EMF in the indica-type genetic background by exploiting the EMF locus from wild rice, O. officinalis (CC genome). A stable quantitative trait locus (QTL) for flower opening time (FOT) was detected on chromosome 3. A QTL was designated as qEMF3 and it shifted FOT by 1.5-2.0 h earlier for cv. Nanjing 11 in temperate Japan and cv. IR64 in the Philippine tropics. NILs for EMF mitigated heat-induced spikelet sterility under elevated temperature conditions completing flower opening before reaching 35°C, a general threshold value leading to spikelet sterility. Quantification of FOT of cultivars popular in the tropics and subtropics did not reveal the EMF trait in any of the cultivars tested, suggesting that qEMF3 has the potential to advance FOT of currently popular cultivars to escape heat stress at flowering under future hotter climates. This is the first report to examine rice with the EMF trait through marker-assisted breeding using wild rice as a genetic resource. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The relation between burnout and sleep disorders in medical students.
Pagnin, Daniel; de Queiroz, Valéria; Carvalho, Yeska Talita Maia Santos; Dutra, Augusto Sergio Soares; Amaral, Monique Bastos; Queiroz, Thiago Thomasin
2014-08-01
The aim of this study is to assess the mutual relationships between burnout and sleep disorders in students in the preclinical phase of medical school. This study collected data on 127 medical students who filled in the Maslach Burnout Inventory-Student Survey, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, Beck Depression Inventory, and Beck Anxiety Inventory. Hierarchical logistic regressions tested the reciprocal influence between sleep disorders and burnout, controlling for depression and anxiety. Regular occurrence of emotional exhaustion, poor sleep quality, and excessive daytime sleepiness affected 60, 65, and 63% of medical students, respectively. Emotional exhaustion and daytime sleepiness influenced each other. Daytime sleep dysfunctions affected unidirectionally the occurrence of cynicism and academic efficacy. The odds of emotional exhaustion (odds ratio (OR)=1.21, 95% confidence interval (CI)=1.08 to 1.35) and cynicism (OR=2.47, 95% CI=1.25 to 4.90) increased when daytime sleepiness increased. Reciprocally, the odds of excessive daytime sleepiness (OR=2.13, 95% CI=1.22 to 3.73) increased when emotional exhaustion worsened. Finally, the odds of academic efficacy decreased (OR=0.86, 95% CI=0.75 to 0.98) when daytime sleepiness increased. Burnout and sleep disorders have relevant bidirectional effects in medical students in the early phase of medical school. Emotional exhaustion and daytime sleepiness showed an important mutual influence. Daytime sleepiness linked unidirectionally with cynicism and academic efficacy.
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.
2006-01-01
Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Rosenfeld, Daniel; Yang, Yan
Extreme events such as heat waves, floods, and droughts, have become more frequent since the 1950s1-2. This is likely caused through changes in greenhouse gases and aerosols that perturb the radiative balance and alter cloud processes3-8. On 8-9 July, 2013 a catastrophic flood devastated several metropolitan areas at the foothills of the Sichuan Basin. Using a high-resolution coupled atmosphere-chemistry model, we show that this disaster was not entirely natural. Ensemble simulations robustly show that the severe anthropogenic pollution in the Sichuan Basin significantly enhanced rainfall intensity over the mountainous area northwest of the basin. The heavy air pollution (mainly blackmore » carbon) absorbs solar radiation in the lower atmosphere at the expense of surface cooling, which stabilizes the atmosphere and suppresses convection and precipitation over the basin. The enhanced moisture and moist static energy over the basin are then transported by the prevailing winds towards the mountains during daytime. As the excessive moist air that reaches the foothills at night is orographically lifted, very strong convection develops and produces extremely heavy precipitation. Reducing black carbon (BC) emissions in the basin can effectively mitigate the extreme precipitation in the mountains. Unfortunately, BC emissions have been increasing in many developing countries including China9, making them more vulnerable to enhanced disasters as reported here.« less
A study of nighttime seat belt use in Indiana
DOT National Transportation Integrated Search
2007-05-01
Overall belt use rates observed during the daytime and nighttime survey waves are presented in Table 2. Belt use observed during the daytime and nighttime pre-mobilization waves was very similar. During the post-mobilization waves, daytime belt use w...
Rossi, Sergio; Isabel, Nathalie
2017-01-01
Global warming is diurnally asymmetric, leading to a less cold, rather than warmer, climate. We investigated the effects of asymmetric experimental warming on plant phenology by testing the hypothesis that daytime warming is more effective in advancing bud break than night-time warming. Bud break was monitored daily in Picea mariana seedlings belonging to 20 provenances from Eastern Canada and subjected to daytime and night-time warming in growth chambers at temperatures varying between 8 and 16 °C. The higher advancements of bud break and shorter times required to complete the phenological phases occurred with daytime warming. Seedlings responded to night-time warming, but still with less advancement of bud break than under daytime warming. No advancement was observed when night-time warming was associated with a daytime cooling. The effect of the treatments was uniform across provenances. Our observations realized under controlled conditions allowed to experimentally demonstrate that bud break can advance under night-time warming, but to a lesser extent than under daytime warming. Prediction models using daily timescales could neglect the diverging influence of asymmetric warming and should be recalibrated for higher temporal resolutions. © 2016 John Wiley & Sons Ltd.
Deng, Jifeng; Ding, Guodong; Gao, Guanglei; Wu, Bin; Zhang, Yuqing; Qin, Shugao; Fan, Wenhui
2015-01-01
Hedysarum scoparium is an important, fast-growing and drought-resistant shrub that has been extensively used for grassland restoration and preventing desertification in semiarid regions of northwestern China. The primary objective of this study was to investigate the diurnal and seasonal variations in stem sap flow (Js) and its relation to environmental factors. The stem heat balance method was applied to plants that were approximately 17 years old (with diameters of 25, 16, 13, and 9 mm at ground level and heights of 3.1, 1.8, 1.7 and 1.4 m) and growing under natural conditions. The vertical soil temperature profile (ST), soil surface heat flux (SoilG), volumetric soil moisture content (SWC) and meteorological variables such as solar radiation (Rn), air temperature (Ta), vapour pressure deficit (VPD), wind speed (Ws) relative humidity (RH) and precipitation (P) were simultaneously measured at a meteorological station on site. Results indicated that Js varied regularly during the diurnal and seasonal term. The nocturnal Js was substantial, with a seasonal variation similar to the patterns of daytime Js. The magnitude of Js changed considerably between sunny and rainy days. Redundancy (RDA) and Kendall's tau analysis suggested that daily Js in large plants was more sensitive to environmental factors, and the variation in daily Js during the growing season could be described by a multiple linear regression against environmental variables including Ta, VPD, Ws, RH, ST, and SoilG. While the nocturnal Js in smaller plants was more sensitive to meteorological factors. Ta, VPD, and Ws were significantly correlated with nighttime Js. The hourly nighttime sap flow rate of H. scoparium corresponded closely to Ta and VPD following a non-linear pattern. The results of this study can be used to estimate the transpiration of H. scoparium.
NASA Astrophysics Data System (ADS)
Todd, M. C.; Allen, C. J. T.; Bart, M.; Bechir, M.; Bentefouet, J.; Brooks, B. J.; Cavazos-Guerra, C.; Clovis, T.; Deyane, S.; Dieh, M.; Engelstaedter, S.; Flamant, C.; Garcia-Carreras, L.; Gandega, A.; Gascoyne, M.; Hobby, M.; Kocha, C.; Lavaysse, C.; Marsham, J. H.; Martins, J. V.; McQuaid, J. B.; Ngamini, J. B.; Parker, D. J.; Podvin, T.; Rocha-Lima, A.; Traore, S.; Wang, Y.; Washington, R.
2013-08-01
The climate of the Sahara is relatively poorly observed and understood, leading to errors in forecast model simulations. We describe observations from the Fennec Supersite-2 (SS2) at Zouerate, Mauritania during the June 2011 Fennec Intensive Observation Period. These provide an improved basis for understanding and evaluating processes, models, and remote sensing. Conditions during June 2011 show a marked distinction between: (i) a "Maritime phase" during the early part of the month when the western sector of the Sahara experienced cool northwesterly maritime flow throughout the lower troposphere with shallow daytime boundary layers, very little dust uplift/transport or cloud cover. (ii) A subsequent "heat low" phase which coincided with a marked and rapid westward shift in the Saharan heat low towards its mid-summer climatological position and advection of a deep hot, dusty air layer from the central Sahara (the "Saharan residual layer"). This transition affected the entire western-central Sahara. Dust advected over SS2 was primarily from episodic low-level jet (LLJ)-generated emission in the northeasterly flow around surface troughs. Unlike Fennec SS1, SS2 does not often experience cold pools from moist convection and associated dust emissions. The diurnal evolution at SS2 is strongly influenced by the Atlantic inflow (AI), a northwesterly flow of shallow, cool and moist air propagating overnight from coastal West Africa to reach SS2 in the early hours. The AI cools and moistens the western Saharan and weakens the nocturnal LLJ, limiting its dust-raising potential. We quantify the ventilation and moistening of the western flank of the Sahara by (i) the large-scale flow and (ii) the regular nocturnal AI and LLJ mesoscale processes.
Spatiotemporal structure of wind farm-atmospheric boundary layer interactions
NASA Astrophysics Data System (ADS)
Cervarich, Matthew; Baidya Roy, Somnath; Zhou, Liming
2013-04-01
Wind power is currently one of the fastest growing energy sources in the world. Most of the growth is in the utility sector consisting of large wind farms with numerous industrial-scale wind turbines. Wind turbines act as a sink of mean kinetic energy and a source of turbulent kinetic energy in the atmospheric boundary layer (ABL). In doing so, they modify the ABL profiles and land-atmosphere exchanges of energy, momentum, mass and moisture. This project explores theses interactions using remote sensing data and numerical model simulations. The domain is central Texas where 4 of the world's largest wind farms are located. A companion study of seasonally-averaged Land Surface Temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on TERRA and AQUA satellites shows a warming signal at night and a mixed cooling/warming signal during the daytime within the wind farms. In the present study, wind farm-ABL interactions are simulated with the Weather Research and Forecasting (WRF) model. The simulations show that the model is capable of replicating the observed signal in land surface temperature. Moreover, similar warming/cooling effect, up to 1C, was observed in seasonal mean 2m air temperature as well. Further analysis show that enhanced turbulent mixing in the rotor wakes is responsible for the impacts on 2m and surface air temperatures. The mixing is due to 2 reasons: (i) turbulent momentum transport to compensate the momentum deficit in the wakes of the turbines and (ii) turbulence generated due to motion of turbine rotors. Turbulent mixing also alters vertical profiles of moisture. Changes in land-atmosphere temperature and moisture gradient and increase in turbulent mixing leads to more than 10% change in seasonal mean surface sensible and latent heat flux. Given the current installed capacity and the projected installation across the world, wind farms are likely becoming a major driver of anthropogenic land use change on Earth. Hence, understanding WF-ABL interactions and its effects is of significant scientific and societal importance.
Hot Spot Detection System Using Landsat 8/OLI Data
NASA Astrophysics Data System (ADS)
Kato, S.; Nakamura, R.; Oda, A.; Iijima, A.; Kouyama, T.; Iwata, T.
2015-12-01
We developed a simple algorithm and a Web-based visualizing system to detect hot spots using Landsat 8 OLI multispectral data as one of the applications of the real-time processing of Landsat 8 data. An empirical equation and radiometric and reflective thresholds were derived to detect hot spots using the OLI data at band 5 (0.865 μm) and band 7 (2.200 μm) based on the increase in spectral radiance at shortwave infrared (SWIR) region due to the emission from objects with high surface temperature. We surveyed typical patterns of surface spectra using the ASTER spectral library to delineate a threshold to distinguish hot spots from background surfaces. To adjust the empirical coefficients of our detection algorithm, we visually inspected the detected hot spots using 6593 Landsat 8 scenes, which cover eastern part of East Asia, taken from January 1, 2014 to December 31, 2014, displayed on a dedicated Web GIS system. Eventually we determined threshold equations which can theoretically detect hot spots at temperatures above 230 °C over isothermal pixels and hot spots as small as 1 m2 at temperatures of 1000 °C as the lowest temperature and the smallest subpixel coverage, respectively, for daytime scenes. The algorithm detected hot spots including wildfires, volcanos, open burnings and factories. 30-m spatial resolution of Landsat 8 enabled to detect wild fires and open burnings accompanied by clearer shapes of fire front lines than MODIS and VIIRS fire products. Although the 16-day revisit cycle of Landsat 8 is too long to effectively find unexpected wildfire or outbreak of eruption, the revisit cycle is enough to monitor temporally stable heat sources, such as continually erupting volcanos and factories. False detection was found over building rooftops, which have relatively smooth surfaces at longer wavelengths, when specular reflection occurred at the satellite overpass.
Aerosol optical properties and their radiative effects in northern China
NASA Astrophysics Data System (ADS)
Li, Zhanqing; Xia, Xiangao; Cribb, Maureen; Mi, Wen; Holben, Brent; Wang, Pucai; Chen, Hongbin; Tsay, Si-Chee; Eck, T. F.; Zhao, Fengsheng; Dutton, E. G.; Dickerson, R. E.
2007-11-01
As a fast developing country covering a large territory, China is experiencing rapid environmental changes. High concentrations of aerosols with diverse properties are emitted in the region, providing a unique opportunity for understanding the impact of environmental changes on climate. Until very recently, few observational studies were conducted in the source regions. The East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE) attempts to characterize the physical, optical and chemical properties of the aerosols and their effects on climate over China. This study presents some preliminary results using continuous high-quality measurements of aerosol, cloud and radiative quantities made at the first EAST-AIRE baseline station at Xianghe, about 70 km east of Beijing over a period of one year (September 2004 to September 2005). It was found that the region is often covered by a thick layer of haze (with a yearly mean aerosol optical depth equal to 0.82 at 500 nm and maximum greater than 4) due primarily to anthropogenic emissions. An abrupt "cleanup" of the haze often took place in a matter of one day or less because of the passage of cold fronts. The mean single scattering albedo is approximately 0.9 but has strong day-to-day variations with maximum monthly averages occurring during the summer. Large aerosol loading and strong absorption lead to a very large aerosol radiative effect at the surface (the annual 24-hour mean values equals 24 W m-2), but a much smaller aerosol radiative effect at the top of the atmosphere (one tenth of the surface value). The boundary atmosphere is thus heated dramatically during the daytime, which may affect atmospheric stability and cloud formation. In comparison, the cloud radiative effect at the surface is only moderately higher (-41 W m-2) than the aerosol radiative effect at the surface.
Heat exposure in cities: combining the dynamics of temperature and population
NASA Astrophysics Data System (ADS)
Hu, L.; Wilhelmi, O.; Uejio, C. K.
2017-12-01
Assessment of human exposure to extreme heat requires the distributions of temperature and population. However, both variables are dynamic, thus presenting many challenges in capturing temperature and population patterns spatially and over time in an urban context. This study aims to improve the understanding of spatiotemporal patterns of urban population exposure to heat, taking Chicago, USA as an example. We estimate the hourly, geographically variable, population distribution considering commute of workers and students in a regular weekday and analyze the diurnal air temperature patterns during different meteorological conditions from satellite observations. The results show a relatively larger temperature increase in less urbanized areas during extreme heat events (EHEs), resulting in a spatially homogeneous temperature distribution over Chicago Metropolitan area. A lake cooling effect is weaker during EHEs. Population dynamics due to daily commute determine higher population density in more urbanized areas during daytime. The city-wide analysis reveals that the exposure is more sensitive to the nighttime temperature increases, and EHEs enhance this sensitivity. The high exposure hotspots are identified at the northwest Chicago, Cicero and Oak Park areas, where the influence from Lake Michigan is weakened, while the spatial extent of high outdoor exposure areas varies diurnally. This study's findings have potential to better inform general heat mitigation strategies during hot summer months and facilitate emergency response during EHEs. Availability of remotely-sensed temperature observations as well as the workers and students commute-adjusted population data allows for the adoption of this study's methodology in other major metropolitan areas. A better understanding of space-time patterns of urban population's exposure to heat will further enable local decision makers to mitigate extreme heat health risks and develop more targeted heat preparedness and response strategies.
Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong
2014-01-01
An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219
Method for welding an article and terminating the weldment within the perimeter of the article
NASA Technical Reports Server (NTRS)
Snyder, John H. (Inventor); Smashey, Russell W. (Inventor); Boerger, Eric J. (Inventor); Borne, Bruce L. (Inventor)
2000-01-01
An article is welded, as in weld repair of a defect, by positioning a weld lift-off block at a location on the surface of the article adjacent to the intended location of the end of the weldment on the surface of the article. The weld lift-off block has a wedge shape including a base contacting the surface of the article, and an upper face angled upwardly from the base from a base leading edge. A weld pool is formed on the surface of the article by directly heating the surface of the article using a heat source. The heat source is moved relative to the surface of the article and onto the upper surface of the weld lift-off block by crossing the leading edge of the wedge, without discontinuing the direct heating of the article by the heat source. The heating of the article with the heat source is discontinued only after the heat source is directly heating the upper face of the weld lift-off block, and not the article.
Costa, Deena Kelly; Wallace, David J; Kahn, Jeremy M
2015-11-01
Daytime intensivist physician staffing is associated with improved outcomes in the ICU. However, it is unclear whether this association persists in the era of interprofessional, protocol-directed critical care. We sought to reexamine the association between daytime intensivist physician staffing and ICU mortality and determine if interprofessional rounding and protocols for mechanical ventilation in part mediate this relationship. Retrospective cohort study of ICUs in the Acute Physiology and Chronic Health Evaluation clinical information system from 2009 to 2010. Forty-nine ICUs in 25 U.S. hospitals. Adults (17 yr and older) admitted to a study ICU. None. We defined high-intensity daytime intensivist staffing as either a mandatory consult or closed ICU model; interprofessional rounds as rounds that included a respiratory therapist, pharmacist, physician and nurse; and protocol use as having protocols for liberation from mechanical ventilation and lung protective mechanical ventilation. Using multivariable logistic regression, we estimated the independent effect of daytime intensivist physician staffing on in-hospital mortality controlling for interprofessional rounds and protocols for mechanical ventilation, as well as other patient and hospital characteristics. Twenty-seven ICUs (55%) reported high-intensity daytime physician staffing, 42 ICUs (85%) reported daily interprofessional rounds, and 31 (63%) reported having protocols for mechanical ventilation. There was no association between daytime intensivist physician staffing and in-hospital mortality (adjusted odds ratio, 0.86; 95% CI, 0.65-1.14). After adjusting for interprofessional rounds and protocols for mechanical ventilation, the effect of daytime intensivist physician staffing remained nonsignificant (adjusted odds ratio, 0.90; 95% CI, 0.70-1.17). High-intensity daytime physician staffing in the ICU was not significantly associated with lower mortality in a modern cohort. This association was not affected by interprofessional rounds or protocols for mechanical ventilation.
Causes of Potential Urban Heat Island Space Using Heat flux Budget Under Urban Canopy
NASA Astrophysics Data System (ADS)
Kwon, Y. J.; Lee, D. K.
2017-12-01
Raised concerns about possible contribution from urban heat island to global warming is about 30 percent. Therefore, mitigating urban heat island became one of major issues to solve among urban planners, urban designers, landscape architects, urban affair decision makers and etc. Urban heat island effect on a micro-scale is influenced by factors such as wind, water vapor and solar radiation. Urban heat island effect on a microscale is influenced by factors like wind, water vapor and solar radiation. These microscopic climates are also altered by factors affecting the heat content in space, like SVF and aspect ratio depending on the structural characteristics of various urban canyon components. Indicators of heat mitigation in urban design stage allows us to create a spatial structure considering the heat balance budget. The spatial characteristics affect thermal change by varying heat storage, emitting or absorbing the heat. The research defines characteristics of the space composed of the factors affecting the heat flux change as the potential urban heat island space. Potential urban heat island spaces are that having higher heat flux than periphery space. The study is to know the spatial characteristics that affects the subsequent temperature rise by the heat flux. As a research method, four types of potential heat island space regions were analyzed. I categorized the spatial types by comparing parameters' value of energy balance in day and night: 1) day severe areas, 2) day comfort areas, 3) night severe areas, 4) night comfort areas. I have looked at these four types of potential urban heat island areas from a microscopic perspective and investigated how various forms of heat influences on higher heat flux areas. This research was designed to investigate the heat indicators to be reflected in the design of urban canyon for heat mitigation. As a result, severe areas in daytime have high SVF rate, sensible heat is generated. Day comfort areas have shadow effect, or latent heat, though they are exposed to heat due to a lot sensible heat in the air. Third, in the severe areas at night time, the latent heat was not effective but storage heat flux from the day time was emitted in the air which made the space still warm after sunset. Lastly, the comfort areas at night time have a low SVF rate, and had the large shadow effect during day time.
NASA Technical Reports Server (NTRS)
Duda, David P.; Khlopenkov, Konstantin V.; Thiemann, Mandana; Palikonda, Rabindra; Sun-Mack, Sunny; Minnis, Patrick; Su, Wenying
2016-01-01
With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can be computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and details of how data from the multi-satellite measurements are selected.
Surface-atmospheric water cycle at Gale crater through multi-year MSL/REMS observations
NASA Astrophysics Data System (ADS)
Harri, A. M.; Genzer, M.; McConnochie, T. H.; Savijarvi, H. I.; Smith, M. D.; Martinez, G.; de la Torre Juarez, M.; Haberle, R. M.; Polkko, J.; Gomez-Elvira, J.; Renno, N. O.; Kemppinen, O.; Paton, M.; Richardson, M. I.; Newman, C. E.; Siili, T. T.; Mäkinen, T.
2017-12-01
The Mars Science laboratory (MSL) has been successfully operating for almost three Martian years. That includes an unprecedented long time series of atmospheric observations by the REMS instrument performing measurements of atmospheric pressure, relative humidity (REMS-H), temperature of the air, ground temperature, UV and wind speed and direction. The REMS-H relative humidity device is based on polymeric capacitive humidity sensors developed by Vaisala Inc. and it makes use of three (3) humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The REMS-H humidity instrument has created an unprecedented data record of more than two full Martian. REMS-H measured the relative humidity and temperature at 1.6 m height for a period of 5 minutes every hour as part of the MSL/REMS instrument package. We focus on describing the annual in situ water cycle with the REMS-H instrument data for the period of almost three Martian years. The results will be constrained through comparison with independent indirect observations and through modeling efforts. We inferred the hourly atmospheric VMR from the REMS-H observations and compared these VMR measurements with predictions of VMR from our 1D column Martian atmospheric model and regolith to investigate the local water cycle, exchange processes and the local climate in Gale Crater. The strong diurnal variation suggests there are surface-atmosphere exchange processes at Gale Crater during all seasons, which depletes moisture to the ground in the evening and nighttime and release the moisture back to the atmosphere during the daytime. On the other hand, these processes do not seem to result in significant water deposition on the ground. Hence, our modelling results presumably indicate that adsorption processes take place during the nighttime and desorption during the daytime. Other processes, e.g. convective turbulence play a significant role in the daytime in conveying the moisture into the atmosphere.
NASA Astrophysics Data System (ADS)
Duda, D. P.; Khlopenkov, K. V.; Palikonda, R.; Khaiyer, M. M.; Minnis, P.; Su, W.; Sun-Mack, S.
2016-12-01
With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and details of how data from the multi-satellite measurements are selected.
Impact of Modafinil Add-on with Atypical Anti-psychotics on Excessive Daytime Drowsiness
Prasuna, P Lakshmi; Sudhakar, TP
2015-01-01
Background: Atypical antipsychotic drugs are known to cause many side effects which include daytime drowsiness. So many add on drugs are tried to reduce the same. Materials and Methods: 72 patients who were on atypical antipsychotic drugs were randomly assigned to either Modafinil or placebo and were followed for a period of 12 weeks. Daytime drowsiness, was taken at baseline, week 3, and at week 12 by using VAS, EDD scales. Results: The results were analyzed and showed that the Modafinil add on therapy significantly reduced the daytime Drowsiness. Conclusions: Modafinil could be a potential candidate in selected group of patients to decrease some of the unwanted adverse events like daytime drowsiness produced by atypical antipsychotics. PMID:26702168
High-resolution hot-film measurement of surface heat flux to an impinging jet
NASA Astrophysics Data System (ADS)
O'Donovan, T. S.; Persoons, T.; Murray, D. B.
2011-10-01
To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.
Evaluation of Maine's seat belt law change from secondary to primary enforcement.
DOT National Transportation Integrated Search
2010-04-01
Maine upgraded its seat belt law to primary enforcement on September 20, 2007. Both daytime and nighttime observed belt use increased in the months following implementation of the law (daytime 77% to 84%; night 69% to 81%). Although daytime belt use ...
Daytime and nighttime seat belt use at selected sites in New Mexico
DOT National Transportation Integrated Search
2007-01-01
Observational surveys of seat belt use were conducted at 108 observation sites across New Mexico during both daytime and nighttime hours. Belt use at night measured 6.2 percentage points lower than daytime. Belt use was related to sex, vehicle type, ...
Global Surface Net-Radiation at 5 km from MODIS Terra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Manish; Fisher, Joshua; Mallick, Kaniska
Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributedmore » sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott's index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W.m -2 in boreal to 72.0 ± 4.1 W.m -2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° x 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth's Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10W.m -2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth's surface.« less
Global Surface Net-Radiation at 5 km from MODIS Terra
Verma, Manish; Fisher, Joshua; Mallick, Kaniska; ...
2016-09-06
Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributedmore » sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott's index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W.m -2 in boreal to 72.0 ± 4.1 W.m -2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° x 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth's Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10W.m -2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth's surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scalemore » horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime non-precipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land-surface forcing, and are not influenced by synoptic weather events. The case includes: early-morning initial profiles of temperature and moisture with a residual layer; diurnally-varying sensible and latent heat fluxes which represent a domain average over different land-surface types; simplified large-scale horizontal advective tendencies andmore » subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well-reproduced by LES, however the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 meters. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity and updraft mass flux. Finally, both observation and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less
Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen; ...
2017-09-19
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime non-precipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land-surface forcing, and are not influenced by synoptic weather events. The case includes: early-morning initial profiles of temperature and moisture with a residual layer; diurnally-varying sensible and latent heat fluxes which represent a domain average over different land-surface types; simplified large-scale horizontal advective tendencies andmore » subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well-reproduced by LES, however the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 meters. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity and updraft mass flux. Finally, both observation and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less
Turbulence measurements using tethered balloon instrumentation during FIRE 1987
NASA Technical Reports Server (NTRS)
Hignett, Phillip
1990-01-01
As part of the surface-based observations conducted on San Nicolas Island, the U.K. Meteorological Office operated a set of turbulence probes attached to a balloon tether cable. Typically six probes were used, each capable of measuring momentum, heat, and humidity fluxes. Two probes were fitted with net radiometers, one positioned above cloud and the other below; a third probe carried a Lyman-alpha hygrometer fitted with a pre-heater for the measurement of total water content. Some preliminary results are presented from the 14th July describing the variation in structure of the cloudy boundary layer during the daytime. This day was characterized by a complete cloud cover, an inversion height of approximately 600 m. and north-westerly winds of approximately 6 m.s(-1). As an illustration the equivalent potential temperature derived from a profile ascent made between approximately 0830 and 0930 (PDT) is shown. The data has been smoothed to a height resolution of about 4 metres. At this time the cloud base was approximately 200 m. and very light drizzle was reaching the surface. The vertical velocity variance and potential temperature flux for two periods are shown; the first (shown by full lines) immediately follows the profile and the second (shown by dashed lines) is central around 1400 (PDT). The data have been normalized by their maximum values in the first period. Cloud base has now risen to approximately 300 m. There is a marked variation during the morning, particularly in sigma w. The net radiative flux above cloud top has by now reached its maximum value.
Chambers, Scott D; Galeriu, Dan; Williams, Alastair G; Melintescu, Anca; Griffiths, Alan D; Crawford, Jagoda; Dyer, Leisa; Duma, Marin; Zorila, Bogdan
2016-04-01
A radon-based nocturnal stability classification scheme is developed for a flat inland site near Bucharest, Romania, characterised by significant local surface roughness heterogeneity, and compared with traditional meteorologically-based techniques. Eight months of hourly meteorological and atmospheric radon observations from a 60 m tower at the IFIN-HH nuclear research facility are analysed. Heterogeneous surface roughness conditions in the 1 km radius exclusion zone around the site hinder accurate characterisation of nocturnal atmospheric mixing conditions using conventional meteorological techniques, so a radon-based scheme is trialled. When the nocturnal boundary layer is very stable, the Pasquill-Gifford "radiation" scheme overestimates the atmosphere's capacity to dilute pollutants with near-surface sources (such as tritiated water vapour) by 20% compared to the radon-based scheme. Under these conditions, near-surface wind speeds drop well below 1 m s(-1) and nocturnal mixing depths vary from ∼ 25 m to less than 10 m above ground level (a.g.l.). Combining nocturnal radon with daytime ceilometer data, we were able to reconstruct the full diurnal cycle of mixing depths. Average daytime mixing depths at this flat inland site range from 1200 to 1800 m a.g.l. in summer, and 500-900 m a.g.l. in winter. Using tower observations to constrain the nocturnal radon-derived effective mixing depth, we were able to estimate the seasonal range in the Bucharest regional radon flux as: 12 mBq m(-2) s(-1) in winter to 14 mBq m(-2) s(-1) in summer. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nemitz, E.; Sutton, M. A.; Wyers, G. P.; Jongejan, P. A. C.
2004-07-01
A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd), canopy resistances (Rc) and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3) fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only) using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+]) of 1200 estimated from the measurements is large for semi-natural vegetation, but smaller than indicated by previous measurements at this site.
NASA Astrophysics Data System (ADS)
Nemitz, E.; Sutton, M. A.; Wyers, G. P.; Jongejan, P. A. C.
2004-03-01
A field measurement campaign was carried out over a Dutch heathland to investigate the effect of gas-to-particle conversion and ammonium aerosol evaporation on surface/atmosphere fluxes of ammonia and related species. Continuous micrometeorological measurements of the surface exchange of NH3, SO2, HNO3 and HCl were made and are analyzed here with regard to average fluxes, deposition velocities (Vd), canopy resistances (Rc) and canopy compensation point for NH3. Gradients of SO2, HNO3 and HCl were measured with a novel wet-denuder system with online anion chromatography. Measurements of HNO3 and HCl indicate an Rc of 100 to 200 s m-1 during warm daytime periods, probably at least partly due to non-zero acid partial pressures above NH4NO3 and NH4Cl on the leaf surfaces. Although it is likely that this observation is exacerbated by the effect of the evaporation of airborne NH4+ on the gradient measurements, the findings nevertheless add to the growing evidence that HNO3 and HCl are not always deposited at the maximum rate. Ammonia (NH3) fluxes show mainly deposition, with some periods of significant daytime emission. The net exchange could be reproduced both with an Rc model (deposition fluxes only) using resistance parameterizations from former measurements, as well as with the canopy compensation point model, using parameterizations derived from the measurements. The apoplastic ratio of ammonium and hydrogen concentration (Γs=[NH4+]/[H+]) of 1200 estimated from the measurements is large for semi- natural vegetation, but smaller than indicated by previous measurements at this site.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1976-01-01
An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number.
Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets
NASA Technical Reports Server (NTRS)
Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas
2013-01-01
Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.
When do Indians feel hot? Internet searches indicate seasonality suppresses adaptation to heat
NASA Astrophysics Data System (ADS)
Singh, Tanya; Siderius, Christian; Van der Velde, Ype
2018-05-01
In a warming world an increasing number of people are being exposed to heat, making a comfortable thermal environment an important need. This study explores the potential of using Regional Internet Search Frequencies (RISF) for air conditioning devices as an indicator for thermal discomfort (i.e. dissatisfaction with the thermal environment) with the aim to quantify the adaptation potential of individuals living across different climate zones and at the high end of the temperature range, in India, where access to health data is limited. We related RISF for the years 2011–2015 to daily daytime outdoor temperature in 17 states and determined at which temperature RISF for air conditioning starts to peak, i.e. crosses a ‘heat threshold’, in each state. Using the spatial variation in heat thresholds, we explored whether people continuously exposed to higher temperatures show a lower response to heat extremes through adaptation (e.g. physiological, behavioural or psychological). State-level heat thresholds ranged from 25.9 °C in Madhya Pradesh to 31.0 °C in Orissa. Local adaptation was found to occur at state level: the higher the average temperature in a state, the higher the heat threshold; and the higher the intra-annual temperature range (warmest minus coldest month) the lower the heat threshold. These results indicate there is potential within India to adapt to warmer temperatures, but that a large intra-annual temperature variability attenuates this potential to adapt to extreme heat. This winter ‘reset’ mechanism should be taken into account when assessing the impact of global warming, with changes in minimum temperatures being an important factor in addition to the change in maximum temperatures itself. Our findings contribute to a better understanding of local heat thresholds and people’s adaptive capacity, which can support the design of local thermal comfort standards and early heat warning systems.
Daytime distribution of DDT-resistant houseflies inside DDT-sprayed buildings*†
Mer, G. G.
1953-01-01
The development of DDT resistance in houseflies makes necessary the use of an additional or substitute insecticide in fly control. For the sake of economy, and to prevent the rapid production of new resistant strains, spraying of this insecticide should be restricted as far as possible to those surfaces known to be the most frequented by flies. Between July and October 1952, an investigation into the day-time distribution and resting habits of flies inside a number of different buildings sprayed bi-monthly with 5% DDT in kerosene was carried out by the author. The results showed that walls and ceilings were the least frequented, windows and doors highly frequented, and furniture the most frequented. These data indicate the desirability of developing an insecticidal preparation adaptable to the residual treatment of furniture, and, in the absence of such a preparation, of restricting treatment to doors and windows and such night-time resting-places as are to be found inside rooms. PMID:13066986
Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing
NASA Astrophysics Data System (ADS)
Qu, H.; Wang, Y.; Zhang, R.
2017-12-01
We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.
An Analysis of Inter-annual Variability and Uncertainty of Continental Surface Heat Fluxes
NASA Astrophysics Data System (ADS)
Huang, S. Y.; Deng, Y.; Wang, J.
2016-12-01
The inter-annual variability and the corresponding uncertainty of land surface heat fluxes during the first decade of the 21st century are re-evaluated at continental scale based on the heat fluxes estimated by the maximum entropy production (MEP) model. The MEP model predicted heat fluxes are constrained by surface radiation fluxes, automatically satisfy surface energy balance, and are independent of temperature/moisture gradient, wind speed, and roughness lengths. The surface radiation fluxes and temperature data from Clouds and the Earth's Radiant Energy System and the surface specific humidity data from Modern-Era Retrospective analysis for Research and Applications were used to reproduce the global surface heat fluxes with land-cover data from the NASA Energy and Water cycle Study (NEWS). Our analysis shows that the annual means of continental latent heat fluxes have increasing trends associated with increasing trends in surface net radiative fluxes. The sensible heat fluxes also have increasing trends over most continents except for South America. Ground heat fluxes have little trends. The continental-scale analysis of the MEP fluxes are compared with other existing global surface fluxes data products and the implications of the results for inter-annual to decadal variability of regional surface energy budget are discussed.
Mechanisms of Ocean Heat Uptake
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi
An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.
Simulation of Longwave Enhancement beneath Montane and Boreal Forests in CLM4.5
NASA Astrophysics Data System (ADS)
Todt, M.; Rutter, N.; Fletcher, C. G.; Wake, L. M.; Loranty, M. M.
2017-12-01
CMIP5 models have been shown to underestimate both trend and variability in northern hemisphere spring snow cover extent. A substantial fraction of this area is covered by boreal forests, in which the snow energy balance is dominated by radiation. Forest coverage impacts the surface radiation budget by shading the ground and enhancing longwave radiation. Longwave enhancement in boreal forests is a potential mechanism that contributes to uncertainty in snowmelt modelling, however, its impact on snowmelt in global land models has not been analysed yet. This study assesses the simulation of sub-canopy longwave radiation and longwave enhancement by CLM4.5, the land component of the NCAR Community Earth System Model, in which boreal forests are represented by three plant functional types (PFT): evergreen needleleaf trees (ENT), deciduous needleleaf trees (DNT), and deciduous broadleaf trees (DBT). Simulation of sub-canopy longwave enhancement is evaluated at boreal forest sites covering the three boreal PFT in CLM4.5 to assess the dependence of simulation errors on meteorological forcing, vegetation type and vegetation density. ENT are evaluated over a total of six snowmelt seasons in Swiss alpine and subalpine forests, as well as a single season at a Finnish arctic site with varying vegetation density. A Swedish artic site features varying vegetation density for DBT for a single winter, and two sites in Eastern Siberia are included covering a total of four snowmelt seasons in DNT forests. CLM4.5 overestimates the diurnal range of sub-canopy longwave radiation and consequently longwave enhancement, overestimating daytime values and underestimating nighttime values. Simulation errors result mainly from clear sky conditions, due to high absorption of shortwave radiation during daytime and radiative cooling during nighttime. Using recent improvements to the canopy parameterisations of SNOWPACK as a guideline, CLM4.5 simulations of sub-canopy longwave radiation improved through the implementation of a heat mass parameterisation, i.e. including thermal inertia due to biomass. However, this improvement does not substantially reduce the amplitude of the diurnal cycle, a result also found during the development of SNOWPACK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasseur, James G.
The central aims of the DOE-supported “Cyber Wind Facility” project center on the recognition that wind turbines over land and ocean generate power from atmospheric winds that are inherently turbulent and strongly varying, both spatially over the rotor disk and in temporally as the rotating blades pass through atmospheric eddies embedded within the mean wind. The daytime unstable atmospheric boundary layer (ABL) is particularly variable in space time as solar heating generates buoyancy-driven motions that interact with strong mean shear in the ABL “surface layer,” the lowest 200 - 300 m where wind turbines reside in farms. With the “Cybermore » Wind Facility” (CWF) program we initiate a research and technology direction in which “cyber data” are generated from “computational experiments” within a “facility” akin to a wind tunnel, but with true space-time atmospheric turbulence that drive utility-scale wind turbines at full-scale Reynolds numbers. With DOE support we generated the key “modules” within a computational framework to create a first generation Cyber Wind Facility (CWF) for single wind turbines in the daytime ABL---both over land where the ABL globally unstable and over water with closer-to-neutral atmospheric conditions but with time response strongly affected by wave-induced forcing of the wind turbine platform (here a buoy configuration). The CWF program has significantly improved the accuracy of actuator line models, evaluated with the Cyber Wind Facility in full blade-boundary-layer-resolved mode. The application of the CWF made in this program showed the existence of important ramp-like response events that likely contribute to bearing fatigue failure on the main shaft and that the advanced ALM method developed here captures the primary nonsteady response characteristics. Long-time analysis uncovered distinctive key dynamics that explain primary mechanisms that underlie potentially deleterious load transients. We also showed that blade bend-twist coupling plays a central role in the elastic responses of the blades to atmospheric turbulence, impacting turbine power.« less
NASA Astrophysics Data System (ADS)
Zhizhin, M.; Poyda, A.; Velikhov, V.; Novikov, A.; Polyakov, A.
2016-02-01
All Most of the remote sensing applications rely on the daytime visible and infrared images of the Earth surface. Increase in the number of satellites, their spatial resolution as well as the number of the simultaneously observed spectral bands ensure a steady growth of the data volumes and computational complexity in the remote sensing sciences. Recent advance in the night time remote sensing is related to the enhanced sensitivity of the on-board instruments and to the unique opportunity to observe “pure” emitters in visible infrared spectra without contamination from solar heat and reflected light. A candidate set of the night-time emitters observable from the low-orbiting and geostationary satellites include steady state and temporal changes in the city and traffic electric lights, fishing boats, high-temperature industrial objects such as steel mills, oil cracking refineries and power plants, forest and agricultural fires, gas flares, volcanic eruptions and similar catastrophic events. Current satellite instruments can detect at night 10 times more of such objects compared to daytime. We will present a new data-intensive workflow of the night time remote sensing algorithms for map-reduce processing of visible and infrared images from the multispectral radiometers flown by the modern NOAA/NASA Suomi NPP and the USGS Landsat 8 satellites. Similar radiometers are installed on the new generation of the US geostationary GOES-R satellite to be launched in 2016. The new set of algorithms allows us to detect with confidence and track the abrupt changes and long-term trends in the energy of city lights, number of fishing boats, as well as the size, geometry, temperature of gas flares and to estimate monthly and early flared gas volumes by site or by country. For real-time analysis of the night time multispectral satellite images with global coverage we need gigabit network, petabyte data storage and parallel compute cluster with more than 20 nodes. To meet the processing requirements, we have used the supercomputer at the Kurchatov Institute in Moscow.
Turbulent convection driven by internal radiative heating of melt ponds on sea ice
NASA Astrophysics Data System (ADS)
Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok
2016-11-01
The melting of Arctic sea ice is strongly influenced by heat transfer through melt ponds which form on the ice surface. Melt ponds are internally heated by the absorption of incoming radiation and cooled by surface heat fluxes, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal heating predicted from a two-stream radiation model. A linearised thermal boundary condition describes heat exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming heat flux between emission at the upper and lower boundaries. We determine how the downward heat flux into the ice varies with a Rayleigh number based on the internal heating rate, the flux ratio of background surface cooling compared to internal heating, and a Biot number characterising the sensitivity of surface fluxes to surface temperature. Thus we elucidate the physical controls on heat transfer through Arctic melt ponds which determine the fate of sea ice in the summer.
Analysis of the surface heat balance over the world ocean
NASA Technical Reports Server (NTRS)
Esbenson, S. K.
1981-01-01
The net surface heat fluxes over the global ocean for all calendar months were evaluated. To obtain a formula in the form Qs = Q2(T*A - Ts), where Qs is the net surface heat flux, Ts is the sea surface temperature, T*A is the apparent atmospheric equilibrium temperature, and Q2 is the proportionality constant. Here T*A and Q2, derived from the original heat flux formulas, are functions of the surface meteorological parameters (e.g., surface wind speed, air temperature, dew point, etc.) and the surface radiation parameters. This formulation of the net surface heat flux together with climatological atmospheric parameters provides a realistic and computationally efficient upper boundary condition for oceanic climate modeling.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 18 March 2004 The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars. Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. This daytime IR image was collected on February 3, 2003 during the northern summer season. This image shows a younger channel cutting through an older crater. Image information: IR instrument. Latitude 30.8, Longitude 19 East (341 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Founda, Dimitra; Pierros, Fragiskos; Santamouris, Mathew
2016-04-01
Considerable recent research suggests that heat waves are becoming more frequent, more intense and longer in the future. Heat waves are characterised by the dominance of prolonged abnormally hot conditions related to synoptic scale anomalies, thus they affect extensive geographical areas. Heat waves (HW) have a profound impact on humans and they have been proven to increase mortality. Urban areas are known to be hotter than the surrounding rural areas due to the well documented urban heat island (UHI) phenomenon. Urban areas face increased risk under heat waves, due to the added heat from the urban heat island and increased population density. Given that urban populations keep increasing, citizens are exposed to significant heat related risk. Mitigation and adaptation strategies require a deep understanding of the response of the urban heat islands under extremely hot conditions. The response of the urban heat island under selected episodes of heat waves is examined in the city of Athens, from the comparison between stations of different characteristics (urban, suburban, coastal and rural). Two distinct episodes of heat waves occurring during summer 2000 were selected. Daily maximum air temperature at the urban station of the National Observatory of Athens (NOA) exceeded 40 0C for at least three consecutive days for both episodes. The intensity of UHI during heat waves was compared to the intensity under 'normal' conditions, represented from a period 'before' and 'after' the heat wave. Striking differences of UHI features between HW and no HW cases were observed, depending on the time of the day and the type of station. The comparison between the urban and the coastal station showed an increase of the order of 3 0C in the intensity of UHI during the HW days, as regards both daytime and nighttime conditions. The comparison between urban and a suburban (inland) station, revealed some different behaviour during HWs, with increases of the order of 3 0C in the nocturnal UHI intensity under HW, but decrease in the daily UHI. The findings were confirmed qualitatively and quantitatively from other two severe episodes of heat waves, occurring during summer 2007.
Present and projected future mean radiant temperature for three European cities
NASA Astrophysics Data System (ADS)
Thorsson, Sofia; Rayner, David; Lindberg, Fredrik; Monteiro, Ana; Katzschner, Lutz; Lau, Kevin Ka-Lun; Campe, Sabrina; Katzschner, Antje; Konarska, Janina; Onomura, Shiho; Velho, Sara; Holmer, Björn
2017-09-01
Present-day and projected future changes in mean radiant temperature, T mrt in one northern, one mid-, and one southern European city (represented by Gothenburg, Frankfurt, and Porto), are presented, and the concept of hot spots is adopted. Air temperature, T a , increased in all cities by 2100, but changes in solar radiation due to changes in cloudiness counterbalanced or exacerbated the effects on T mrt. The number of days with high T mrt in Gothenburg was relatively unchanged at the end of the century (+1 day), whereas it more than doubled in Frankfurt and tripled in Porto. The use of street trees to reduce daytime radiant heat load was analyzed using hot spots to identify where trees could be most beneficial. Hot spots, although varying in intensity and frequency, were generally confined to near sunlit southeast-southwest facing walls, in northeast corner of courtyards, and in open spaces in all three cities. By adding trees in these spaces, the radiant heat load can be reduced, especially in spaces with no or few trees. A set of design principles for reducing the radiant heat load is outlined based on these findings and existing literature.
47 CFR 73.187 - Limitation on daytime radiation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Limitation on daytime radiation. 73.187 Section... BROADCAST SERVICES AM Broadcast Stations § 73.187 Limitation on daytime radiation. (a)(1) Except as..., subsequent changes of facilities which do not involve a change in frequency, an increase in radiation toward...
47 CFR 73.187 - Limitation on daytime radiation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Limitation on daytime radiation. 73.187 Section... BROADCAST SERVICES AM Broadcast Stations § 73.187 Limitation on daytime radiation. (a)(1) Except as..., subsequent changes of facilities which do not involve a change in frequency, an increase in radiation toward...
47 CFR 73.187 - Limitation on daytime radiation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Limitation on daytime radiation. 73.187 Section... BROADCAST SERVICES AM Broadcast Stations § 73.187 Limitation on daytime radiation. (a)(1) Except as..., subsequent changes of facilities which do not involve a change in frequency, an increase in radiation toward...
47 CFR 73.187 - Limitation on daytime radiation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Limitation on daytime radiation. 73.187 Section... BROADCAST SERVICES AM Broadcast Stations § 73.187 Limitation on daytime radiation. (a)(1) Except as..., subsequent changes of facilities which do not involve a change in frequency, an increase in radiation toward...
47 CFR 73.187 - Limitation on daytime radiation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Limitation on daytime radiation. 73.187 Section... BROADCAST SERVICES AM Broadcast Stations § 73.187 Limitation on daytime radiation. (a)(1) Except as..., subsequent changes of facilities which do not involve a change in frequency, an increase in radiation toward...
Byun, Eeeseung; Kim, Jinyoung; Riegel, Barbara
2017-01-01
This study examined the association of subjective nighttime sleep quality and daytime sleepiness with cognitive impairment in 105 adults (< 60 years old) and 167 elders (≥ 60 years old) with heart failure. Nighttime sleep quality and daytime sleepiness were measured by the Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale. Cognitive impairment was assessed using a neuropsychological battery measuring attention, memory, and processing speed. Multivariate logistic regression was used. In adults, daytime sleepiness was associated with cognitive impairment, whereas poor nighttime sleep quality was associated with cognitive impairment in elders. Age may play an important role in how sleep impacts cognition in persons with heart failure. Improving nighttime sleep quality and daytime sleepiness in this population may improve cognition.
Sun, Jia-Ling; Lin, Chia-Chin
2016-01-01
The relationships among napping and sleep quality, fatigue, and quality of life (QOL) in cancer patients are not clearly understood. The aim of the study was to determine whether daytime napping is associated with nighttime sleep, fatigue, and QOL in cancer patients. In total, 187 cancer patients were recruited. Daytime napping, nighttime self-reported sleep, fatigue, and QOL were assessed using a questionnaire. Objective sleep parameters were collected using a wrist actigraph. According to waking-after-sleep-onset measurements, patients who napped during the day experienced poorer nighttime sleep than did patients who did not (t = -2.44, P = .02). Daytime napping duration was significantly negatively correlated with QOL. Patients who napped after 4 PM had poorer sleep quality (t = -1.93, P = .05) and a poorer Short-Form Health Survey mental component score (t = 2.06, P = .04) than did patients who did not. Fatigue, daytime napping duration, and sleep quality were significant predictors of the mental component score and physical component score, accounting for 45.7% and 39.3% of the variance, respectively. Daytime napping duration was negatively associated with QOL. Napping should be avoided after 4 PM. Daytime napping affects the QOL of cancer patients. Future research can determine the role of napping in the sleep hygiene of cancer patients.
Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei
2017-09-12
Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.
Integrated Heat Exchange For Recuperation In Gas Turbine Engines
2016-12-01
exchange system within the engine using existing blade surfaces to extract and insert heat. Due to the highly turbulent and transient flow, heat...transfer coefficients in turbomachinery are extremely high, making this possible. Heat transfer between the turbine and compressor blade surfaces could be...exchange system within the engine using existing blade surfaces to extract and insert heat. Due to the highly turbulent and transient flow, heat transfer
NASA Technical Reports Server (NTRS)
Eaton, L. R. (Inventor)
1976-01-01
An improved heat transfer device particularly suited for use as an evaporator plate in a diffusion cloud chamber. The device is characterized by a pair of mutually spaced heat transfer plates, each being of a planar configuration, having a pair of opposed surfaces defining therebetween a heat pipe chamber. Within the heat pipe chamber, in contiguous relation with the pair of opposed surfaces, there is disposed a pair of heat pipe wicks supported in a mutually spaced relationship by a foraminous spacer of a planar configuration. A wick including a foraminous layer is contiguously related to the external surfaces of the heat transfer plates for uniformly wetting these surfaces.
NASA Astrophysics Data System (ADS)
Solanki, Raman; Singh, Narendra; Kiran Kumar, N. V. P.; Rajeev, K.; Dhaka, S. K.
2016-03-01
We present the diurnal variations of surface-layer characteristics during spring (March-May 2013) observed near a mountain ridge at Nainital (29.4°N, 79.5°E, 1926 m above mean sea level), a hill station located in the southern part of the central Himalayas. During spring, this region generally witnesses fair-weather conditions and significant solar heating of the surface, providing favourable conditions for the systematic diurnal evolution of the atmospheric boundary layer. We mainly utilize the three-dimensional wind components and virtual temperature observed with sonic anemometers (sampling at 25 Hz) mounted at 12- and 27-m heights on a meteorological tower. Tilt corrections using the planar-fit method have been applied to convert the measurements to streamline-following coordinate system before estimating turbulence parameters. The airflow at this ridge site is quite different from slope flows. Notwithstanding the prevalence of strong large-scale north-westerly winds, the diurnal variation of the mountain circulation is clearly discernible with the increase of wind speed and a small but distinct change in wind direction during the afternoon period. Such an effect further modulates the surface-layer water vapour content, which increases during the daytime and results in the development of boundary-layer clouds in the evening. The sensible heat flux ( H) shows peak values around noon, with its magnitude increasing from March (222± 46 W m^{-2}) to May (353± 147 W m^{-2}). The diurnal variation of turbulent kinetic energy ( e) is insignificant during March while its mean value is enhanced by 30-50 % of the post-midnight value during the afternoon (1400-1600 IST), delayed by {≈ }2 h compared to the peak in H. This difference between the phase variations of incoming shortwave flux, H and e primarily arise due to the competing effects of turbulent eddies produced by thermals and wind shear, the latter increase significantly with time until nighttime during April-May. Variations of the standard deviations of vertical wind normalized with friction velocity (σ _w/u_{*}) and temperature normalized with scaling temperature (σ _{θ }/T_{*}) as functions of stability parameter ( z / L) indicate that they follow a power-law variation during unstable conditions, with an index of 1/3 for the former and -1/3 for the latter. The coefficients defining the above variations are found in agreement with those derived over flat as well as complex terrain.