NASA Technical Reports Server (NTRS)
Tserng, Hua-Quen; Ketterson, Andrew; Saunier, Paul; McCarty, Larry; Davis, Steve
1998-01-01
The design, fabrication, and performance of K-band high-efficiency, linear power pHEMT amplifiers implemented in Embedded Transmission Line (ETL) MMIC configuration with unthinned GaAs substrate and topside grounding are reported. A three-stage amplifier achieved a power-added efficiency of 40.5% with 264 mW output at 20.2 GHz. The linear gain is 28.5 dB with 1-dB gain compression output power of 200 mW and 31% power-added efficiency. The carrier-to-third-order intermodulation ratio is approx. 20 dBc at the 1-dB compression point. A RF functional yield of more than 90% has been achieved.
Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler
NASA Astrophysics Data System (ADS)
Xu, Yonggang; Yuan, Liming; Cai, Jun; Zhang, Deyuan
2013-10-01
A smart absorbing composite was prepared by mixing silicone rubber, multi-walled carbon nanotubes (MWCNTs) and flaky carbonyl iron particles (CIPs) in a two-roll mixer. The complex permittivity and permeability of composites with variable compression strain was measured by the transmission method and dc electric conductivity was measured by the standard four-point contact method, then the reflection loss (RL) could be calculated to evaluate the microwave absorbing ability. The results showed that the applied compression strain made the complex permittivity decrease but not obviously due to the broken original conductive network. The enforcement of the strain on the complex permeability was attributed to the orientation of flaky CIPs. With the compressing strain applied on the composites with thickness 1 mm or 1.5 mm, the RL value decreased (minimum -13.2 dB and -25.1 dB) and the absorbing band (RL<-10 dB) was widened (5.2-10.6 GHz and 4.0-8.4 GHz). While as the composite thickness decreased caused by the compression strain, the RL value still decreased (minimum -12.4 dB and -18.6 dB) and the absorbing band was also broadened (6.5-10.7 GHz and 4.4-10.0 GHz). Thus the smart absorbing property was effective on preparing absorbers with wide absorption band and high absorption ratio.
S-band low noise amplifier using 1 μm InGaAs/InAlAs/InP pHEMT
NASA Astrophysics Data System (ADS)
Hamaizia, Z.; Sengouga, N.; Yagoub, M. C. E.; Missous, M.
2012-02-01
This paper discusses the design of a wideband low noise amplifier (LNA) in which specific architecture decisions were made in consideration of system-on-chip implementation for radio-astronomy applications. The LNA design is based on a novel ultra-low noise InGaAs/InAlAs/InP pHEMT Linear and non-linear modelling of this pHEMT has been used to design an LNA operating from 2 to 4 GHz. A common-drain in cascade with a common source inductive degeneration, broadband LNA topology is proposed for wideband applications. The proposed configuration achieved a maximum gain of 27 dB and a noise figure of 0.3 dB with a good input and output return loss (S11 < -10 dB, S22 < -11 dB). This LNA exhibits an input 1-dB compression point of -18 dBm, a third order input intercept point of 0 dBm and consumes 85 mW of power from a 1.8 V supply.
Design and fabrication of pHEMT MMIC switches for IEEE 802.11.a/b/g WLAN applications
NASA Astrophysics Data System (ADS)
Mun, Jae Kyoung; Ji, Hong Gu; Ahn, Hyokyun; Kim, Haecheon; Park, Chong-Ook
2005-08-01
In this paper, we propose a channel structure for a promising switch pHEMT with excellent isolation characteristics based on the distribution of electric field intensity beneath the Schottky contact in the transistor. Using the proposed device channel structure, SPST and SPDT switches were designed and fabricated, applicable to 2.4 GHz and 5.8 GHz WLAN systems. We discuss the relationship between dc characteristics and switch parameters in this paper in detail. The developed SPST switch exhibits a low insertion loss of 0.26 dB and a high isolation of 34.3 dB with a control voltage of 0 V/-3 V at 5.8 GHz. The SPDT also shows a good performance of 0.85 dB insertion loss and 31.5 dB isolation under the same conditions. The measured power-handling capability at 2.4 GHz reveals that the SPDT has an output power of 27 dBm at the 1 dB compression point and a third-order intercept point of more than 46 dBm.
Vitee, Nandini; Ramiah, Harikrishnan; Chong, Wei-Keat; Tan, Gim-Heng; Kanesan, Jeevan; Reza, Ahmed Wasif
2014-01-01
A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.
Ka-band Ga-As FET noise receiver/device development
NASA Technical Reports Server (NTRS)
Schellenberg, J. M.; Feng, M.; Hackett, L. H.; Watkins, E. T.; Yamasaki, H.
1982-01-01
The development of technology for a 30 GHz low noise receiver utilizing GaAs FET devices exclusively is discussed. This program required single and dual-gate FET devices, low noise FET amplifiers, dual-gate FET mixers, and FET oscillators operating at Ka-band frequencies. A 0.25 micrometer gate FET device, developed with a minimum noise figure of 3.3 dB at 29 GHz and an associated gain of 7.4 dB, was used to fabricate a 3-stage amplifier with a minimum noise figure and associated gain of 4.4 dB and 17 dB, respectively. The 1-dB gain bandwidth of this amplifier extended from below 26.5 GHz to 30.5 GHz. A dual-gate mixer with a 2 dB conversion loss and a minimum noise figure of 10 dB at 29 GHz as well as a dielectric resonator stabilized FET oscillator at 25 GHz for the receiver L0. From these components, a hybrid microwave integrated circuit receiver was constructed which demonstrates a minimum single-side band noise figure of 4.6 dB at 29 GHz with a conversion gain of 17 dB. The output power at the 1-dB gain compression point was -5 dBm.
Millimeter-wave pseudomorphic HEMT MMIC phased array components for space communications
NASA Technical Reports Server (NTRS)
Lan, G. L.; Pao, C. K.; Wu, C. S.; Mandolia, G.; Hu, M.; Yuan, S.; Leonard, Regis
1991-01-01
Recent advances in pseudomorphic HEMT MMIC (PMHEMT/MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. This paper describes the development of PMHEMT/MMIC components at Ka-band and V-band. Specifically, the following PMHEMT/MMIC components will be described: power amplifiers at Ka-band; power amplifiers at V-band; and four-bit phase shifters at V-band. For the Ka-band amplifier, 125 mW output power with 5.5 dB gain and 21 percent power added efficiency at 2 dB compression point has been achieved. For the V-band amplifier, 112 mW output power with 6 dB gain and 26 percent power added efficiency has been achieved. And, for the V-band phase shifter, four-bit (45 deg steps) phase shifters with less than 8 dB insertion loss from 61 GHz to 63 GHz will be described.
Mulcahey, Mary K.; Monchik, Keith O.; Yongpravat, Charlie; Badger, Gary J.; Fadale, Paul D.; Hulstyn, Michael J.; Fleming, Braden C.
2011-01-01
The purpose of this study was to compare tibiofemoral (TF) kinematics and TF compressive stresses between single bundle- (SB-) and double bundle-ACL reconstruction (DB-ACLR) during simulated squatting. Twelve matched pairs of fresh frozen cadaver knees were utilized. A simulated squat through 100° of knee flexion was performed in the ACL-intact joint. The ACL was transected and SB- and DB-ACLR procedures were performed in one knee of each pair. The squat was repeated. Knee kinematics were measured using a motion tracking system and the TF compressive forces were measured using thin film pressure sensors. The posterior shifts of the tibia for SB- and DB-ACLR knees were significantly greater than the ACL-intact condition for knee flexion angles 0° to 40° (p<.05). However, there was no difference between the SB- and DB-ACLR knees at any flexion angle (0° to 100°; p=.37). SB- and DB-ACLR knees had greater IE rotation than intact knees from 90° through 50° of flexion (p<.05), but not between 40° and full extension. There was no difference between SB- and DB-ACLR knees (p=.68). The TF compressive stresses of the DB-ACLR were significantly lower than intact for all angles except 10° (p=.06), whereas SB-ACLR knees did not differ from intact at flexion angles between 30° and 50° (p>.32). There were no significant differences between the two reconstruction conditions (p=.74). This study showed that there was no difference in the TF kinematics or compressive stresses between SB- and DB-ACLR, and only minor differences when compared to the intact state. PMID:21696962
Power Amplifier Linearizer for High Frequency Medical Ultrasound Applications
Choi, Hojong; Jung, Hayong; Shung, K. Kirk
2015-01-01
Power amplifiers (PAs) are used to produce high-voltage excitation signals to drive ultrasonic transducers. A larger dynamic range of linear PAs allows higher contrast resolution, a highly desirable characteristic in ultrasonic imaging. The linearity of PAs can be improved by reducing the nonlinear harmonic distortion components of high-voltage output signals. In this paper, a linearizer circuit is proposed to reduce output signal harmonics when working in conjunction with a PA. The PA performance with and without the linearizer was measured by comparing the output power 1-dB compression point (OP1dB), and the second- and third-order harmonic distortions (HD2 and HD3, respectively). The results show that the PA with the linearizer circuit had higher OP1dB (31.7 dB) and lower HD2 (−61.0 dB) and HD3 (−42.7 dB) compared to those of the PA alone (OP1dB (27.1 dB), HD2 (−38.2 dB), and HD3 (−36.8 dB)) at 140 MHz. A pulse-echo measurement was also performed to further evaluate the capability of the linearizer circuit. The HD2 of the echo signal received by the transducer using a PA with the linearizer (−24.8 dB) was lower than that obtained for the PA alone (−16.6 dB). The linearizer circuit is capable of improving the linearity performance of PA by lowering harmonic distortions. PMID:26622209
Range side lobe inversion for chirp-encoded dual-band tissue harmonic imaging.
Shen, Che-Chou; Peng, Jun-Kai; Wu, Chi
2014-02-01
Dual-band (DB) harmonic imaging is performed by transmitting and receiving at both fundamental band (f0) and second-harmonic band (2f0). In our previous work, particular chirp excitation has been developed to increase the signal- to-noise ratio in DB harmonic imaging. However, spectral overlap between the second-order DB harmonic signals results in range side lobes in the pulse compression. In this study, a novel range side lobe inversion (RSI) method is developed to alleviate the level of range side lobes from spectral overlap. The method is implemented by firing an auxiliary chirp to change the polarity of the range side lobes so that the range side lobes can be suppressed in the combination of the original chirp and the auxiliary chirp. Hydrophone measurements show that the RSI method reduces the range side lobe level (RSLL) and thus increases the quality of pulse compression in DB harmonic imaging. With the signal bandwidth of 60%, the RSLL decreases from -23 dB to -36 dB and the corresponding compression quality improves from 78% to 94%. B-mode images also indicate that the magnitude of range side lobe is suppressed by 7 dB when the RSI method is applied.
X-band T/R switch with body-floating multi-gate PDSOI NMOS transistors
NASA Astrophysics Data System (ADS)
Park, Mingyo; Min, Byung-Wook
2018-03-01
This paper presents an X-band transmit/receive switch using multi-gate NMOS transistors in a silicon-on-insulator CMOS process. For low loss and high power handling capability, floating body multi-gate NMOS transistors are adopted instead of conventional stacked NMOS transistors, resulting in 53% reduction of transistor area. Comparing to the stacked NMOS transistors, the multi gate transistor shares the source and drain region between stacked transistors, resulting in reduced chip area and parasitics. The impedance between bodies of gates in multi-gate NMOS transistors is assumed to be very large during design and confirmed after measurement. The measured input 1 dB compression point is 34 dBm. The measured insertion losses of TX and RX modes are respectively 1.7 dB and 2.0 dB at 11 GHz, and the measured isolations of TX and RX modes are >27 dB and >20 dB in X-band, respectively. The chip size is 0.086 mm2 without pads, which is 25% smaller than the T/R switch with stacked transistors.
Experimental implementation of array-compressed parallel transmission at 7 tesla.
Yan, Xinqiang; Cao, Zhipeng; Grissom, William A
2016-06-01
To implement and validate a hardware-based array-compressed parallel transmission (acpTx) system. In array-compressed parallel transmission, a small number of transmit channels drive a larger number of transmit coils, which are connected via an array compression network that implements optimized coil-to-channel combinations. A two channel-to-eight coil array compression network was developed using power splitters, attenuators and phase shifters, and a simulation was performed to investigate the effects of coil coupling on power dissipation in a simplified network. An eight coil transmit array was constructed using induced current elimination decoupling, and the coil and network were validated in benchtop measurements, B1+ mapping scans, and an accelerated spiral excitation experiment. The developed attenuators came within 0.08 dB of the desired attenuations, and reflection coefficients were -22 dB or better. The simulation demonstrated that up to 3× more power was dissipated in the network when coils were poorly isolated (-9.6 dB), versus well-isolated (-31 dB). Compared to split circularly-polarized coil combinations, the additional degrees of freedom provided by the array compression network led to 54% lower squared excitation error in the spiral experiment. Array-compressed parallel transmission was successfully implemented in a hardware system. Further work is needed to develop remote network tuning and to minimize network power dissipation. Magn Reson Med 75:2545-2552, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers
NASA Astrophysics Data System (ADS)
Nikandish, Gholamreza; Medi, Ali
2015-02-01
The transformer-feedback (TRFB) interstage bandwidth enhancement technique for broadband multistage amplifiers is presented. Theory of the TRFB bandwidth enhancement and the design conditions for maximum bandwidth, maximally flat gain, and maximally flat group delay are provided. It is shown that the TRFB bandwidth enhancement can provide higher bandwidth compared to the conventional techniques based on reactive impedance matching networks. A three-stage low-noise amplifier (LNA) monolithic microwave integrated circuit with the TRFB between its consecutive stages is designed and implemented in a 0.1- μm GaAs pHEMT process. The TRFB is realized by coupling between the drain bias lines of transistors. The reuse of bias lines leads to bandwidth enhancement without increasing the chip area and power consumption. The LNA features average gain of 23 dB and 3-dB bandwidth of 11-39 GHz. It provides a noise figure of 2.1-3.0 dB and an output 1-dB compression point of 8.6 dBm, while consuming 40 mA of current from a 2-V supply.
Hybrid silica coarse wavelength-division multiplexer transmitter optical subassembly
NASA Astrophysics Data System (ADS)
An, Jun-Ming; Zhang, Jia-Shun; Wang, Liang-Liang; Zhu, Kaiwu; Sun, Bingli; Li, Yong; Hou, Jie; Li, Jian-Guang; Wu, Yuan-Da; Wang, Yue; Yin, Xiao-Jie
2018-01-01
Based on silica arrayed waveguide grating technology, a hybrid integrated transmitter optical subassembly was developed. Four direct-modulating distributed feedback lasers and four focusing microlenses were integrated to a coarse wavelength-division multiplexer (CWDM) on a CuW substrate. The four-channel silica-on-silicon CWDM was fabricated with 1.5% refractive index difference and 20-nm wavelength spacing. The experimental results showed that the output optical power was >3 mW with 45 mA of injection current, the slope efficiency was >0.0833 W/A, and the 3-dB bandwidth was broader than 18.15 GHz. The 1-dB compress points were higher than 18 and 15.8 dBm for frequency of 10 and 18 GHz, respectively.
Discrimination of rippled-spectrum patterns in noise: A manifestation of compressive nonlinearity
Milekhina, Olga N.; Nechaev, Dmitry I.; Klishin, Vladimir O.
2017-01-01
In normal-hearing listeners, rippled-spectrum discrimination was psychophysically investigated in both silence and with a simultaneous masker background using the following two paradigms: measuring the ripple density resolution with the phase-reversal test and measuring the ripple-shift threshold with the ripple-shift test. The 0.5-oct wide signal was centered on 2 kHz, the signal levels were 50 and 80 dB SPL, and the masker levels varied from 30 to 100 dB SPL. The baseline ripple density resolutions were 8.7 oct-1 and 8.6 oct-1 for the 50-dB and 80-dB signals, respectively. The baseline ripple shift thresholds were 0.015 oct and 0.018 oct for the 50-dB and 80-dB signals, respectively. The maskers were 0.5-oct noises centered on 2 kHz (on-frequency) or 0.75 to 1.25 oct below the signal (off-frequency maskers). The effects of the maskers were as follows: (i) both on- and low-frequency maskers reduced the ripple density resolution and increased the ripple shift thresholds, (ii) the masker levels at threshold (the ripple density resolution decrease down to 3 oct–1 or ripple shift threshold increased up to 0.1 oct) increased with increasing frequency spacing between the signal and masker, (iii) the masker levels at threshold were higher for the 80-dB signal than for the 50-dB signal, and (iv) the difference between the masker levels at threshold for the 50-dB and 80-dB signals decreased with increasing frequency spacing between the masker and signal. Within the 30-dB (from 50 to 80 dB SPL) signal level, the growth of the masker level at threshold was 27.8 dB for the on-frequency masker and 9 dB for the low-frequency masker. It is assumed that the difference between the on- and low-frequency masking of the rippled-spectrum discrimination reflects the cochlear compressive non-linearity. With this assumption, the compression was 0.3 dB/dB. PMID:28346538
Moore, Brian C J; Füllgrabe, Christian; Stone, Michael A
2011-01-01
To determine preferred parameters of multichannel compression using individually fitted simulated hearing aids and a method of paired comparisons. Fourteen participants with mild to moderate hearing loss listened via a simulated five-channel compression hearing aid fitted using the CAMEQ2-HF method to pairs of speech sounds (a male talker and a female talker) and musical sounds (a percussion instrument, orchestral classical music, and a jazz trio) presented sequentially and indicated which sound of the pair was preferred and by how much. The sounds in each pair were derived from the same token and differed along a single dimension in the type of processing applied. For the speech sounds, participants judged either pleasantness or clarity; in the latter case, the speech was presented in noise at a 2-dB signal-to-noise ratio. For musical sounds, they judged pleasantness. The parameters explored were time delay of the audio signal relative to the gain control signal (the alignment delay), compression speed (attack and release times), bandwidth (5, 7.5, or 10 kHz), and gain at high frequencies relative to that prescribed by CAMEQ2-HF. Pleasantness increased with increasing alignment delay only for the percussive musical sound. Clarity was not affected by alignment delay. There was a trend for pleasantness to decrease slightly with increasing bandwidth, but this was significant only for female speech with fast compression. Judged clarity was significantly higher for the 7.5- and 10-kHz bandwidths than for the 5-kHz bandwidth for both slow and fast compression and for both talker genders. Compression speed had little effect on pleasantness for 50- or 65-dB SPL input levels, but slow compression was generally judged as slightly more pleasant than fast compression for an 80-dB SPL input level. Clarity was higher for slow than for fast compression for input levels of 80 and 65 dB SPL but not for a level of 50 dB SPL. Preferences for pleasantness were approximately equal with CAMEQ2-HF gains and with gains slightly reduced at high frequencies and were lower when gains were slightly increased at high frequencies. Speech clarity was not affected by changing the gain at high frequencies. Effects of alignment delay were small except for the percussive sound. A wider bandwidth was slightly preferred for speech clarity. Speech clarity was slightly greater with slow compression, especially at high levels. Preferred high-frequency gains were close to or a little below those prescribed by CAMEQ2-HF.
Optimized satellite image compression and reconstruction via evolution strategies
NASA Astrophysics Data System (ADS)
Babb, Brendan; Moore, Frank; Peterson, Michael
2009-05-01
This paper describes the automatic discovery, via an Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), of vectors of real-valued coefficients representing matched forward and inverse transforms that outperform the 9/7 Cohen-Daubechies-Feauveau (CDF) discrete wavelet transform (DWT) for satellite image compression and reconstruction under conditions subject to quantization error. The best transform evolved during this study reduces the mean squared error (MSE) present in reconstructed satellite images by an average of 33.78% (1.79 dB), while maintaining the average information entropy (IE) of compressed images at 99.57% in comparison to the wavelet. In addition, this evolved transform achieves 49.88% (3.00 dB) average MSE reduction when tested on 80 images from the FBI fingerprint test set, and 42.35% (2.39 dB) average MSE reduction when tested on a set of 18 digital photographs, while achieving average IE of 104.36% and 100.08%, respectively. These results indicate that our evolved transform greatly improves the quality of reconstructed images without substantial loss of compression capability over a broad range of image classes.
Comparing NetCDF and SciDB on managing and querying 5D hydrologic dataset
NASA Astrophysics Data System (ADS)
Liu, Haicheng; Xiao, Xiao
2016-11-01
Efficiently extracting information from high dimensional hydro-meteorological modelling datasets requires smart solutions. Traditional methods are mostly based on files, which can be edited and accessed handily. But they have problems of efficiency due to contiguous storage structure. Others propose databases as an alternative for advantages such as native functionalities for manipulating multidimensional (MD) arrays, smart caching strategy and scalability. In this research, NetCDF file based solutions and the multidimensional array database management system (DBMS) SciDB applying chunked storage structure are benchmarked to determine the best solution for storing and querying 5D large hydrologic modelling dataset. The effect of data storage configurations including chunk size, dimension order and compression on query performance is explored. Results indicate that dimension order to organize storage of 5D data has significant influence on query performance if chunk size is very large. But the effect becomes insignificant when chunk size is properly set. Compression of SciDB mostly has negative influence on query performance. Caching is an advantage but may be influenced by execution of different query processes. On the whole, NetCDF solution without compression is in general more efficient than the SciDB DBMS.
An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS
NASA Astrophysics Data System (ADS)
Yanbin, Luo; Chengyan, Ma; Yebing, Gan; Min, Qian; Tianchun, Ye
2015-10-01
An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm2.
Cao, Yu; Brady, Gerald J; Gui, Hui; Rutherglen, Chris; Arnold, Michael S; Zhou, Chongwu
2016-07-26
In this paper, we report record radio frequency (RF) performance of carbon nanotube transistors based on combined use of a self-aligned T-shape gate structure, and well-aligned, high-semiconducting-purity, high-density polyfluorene-sorted semiconducting carbon nanotubes, which were deposited using dose-controlled, floating evaporative self-assembly method. These transistors show outstanding direct current (DC) performance with on-current density of 350 μA/μm, transconductance as high as 310 μS/μm, and superior current saturation with normalized output resistance greater than 100 kΩ·μm. These transistors create a record as carbon nanotube RF transistors that demonstrate both the current-gain cutoff frequency (ft) and the maximum oscillation frequency (fmax) greater than 70 GHz. Furthermore, these transistors exhibit good linearity performance with 1 dB gain compression point (P1dB) of 14 dBm and input third-order intercept point (IIP3) of 22 dBm. Our study advances state-of-the-art of carbon nanotube RF electronics, which have the potential to be made flexible and may find broad applications for signal amplification, wireless communication, and wearable/flexible electronics.
Vishwakarma, R K; Shivhare, U S; Nanda, S K
2012-09-01
Hertz's theory of contact stresses was applied to predict the splitting of guar seeds during uni-axial compressive loading between 2 rigid parallel plates. The apparent modulus of elasticity of guar seeds varied between 296.18 and 116.19 MPa when force was applied normal to hilum joint (horizontal position), whereas it varied between 171.86 and 54.18 MPa when force was applied in the direction of hilum joint (vertical position) with in moisture content range of 5.16% to 15.28% (d.b.). At higher moisture contents, the seeds yielded after considerable deformation, thus showing ductile nature. Distribution of stresses below the point of contact were plotted to predict the location of critical point, which was found at 0.44 to 0.64 mm and 0.37 to 0.53 mm below the contact point in vertical and horizontal loading, respectively, depending upon moisture content. The separation of cotyledons from each other initiated before yielding of cotyledons and thus splitting of seed took place. The relationships between apparent modulus of elasticity, principal stresses with moisture content were described using second-order polynomial equations and validated experimentally. Manufacture of guar gum powder requires dehulling and splitting of guar seeds. This article describes splitting behavior of guar seeds under compressive loading. Results of this study may be used for design of dehulling and splitting systems of guar seeds. © 2012 Institute of Food Technologists®
Ultrasonic data compression via parameter estimation.
Cardoso, Guilherme; Saniie, Jafar
2005-02-01
Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.
Compression techniques in tele-radiology
NASA Astrophysics Data System (ADS)
Lu, Tianyu; Xiong, Zixiang; Yun, David Y.
1999-10-01
This paper describes a prototype telemedicine system for remote 3D radiation treatment planning. Due to voluminous medical image data and image streams generated in interactive frame rate involved in the application, the importance of deploying adjustable lossy to lossless compression techniques is emphasized in order to achieve acceptable performance via various kinds of communication networks. In particular, the compression of the data substantially reduces the transmission time and therefore allows large-scale radiation distribution simulation and interactive volume visualization using remote supercomputing resources in a timely fashion. The compression algorithms currently used in the software we developed are JPEG and H.263 lossy methods and Lempel-Ziv (LZ77) lossless methods. Both objective and subjective assessment of the effect of lossy compression methods on the volume data are conducted. Favorable results are obtained showing that substantial compression ratio is achievable within distortion tolerance. From our experience, we conclude that 30dB (PSNR) is about the lower bound to achieve acceptable quality when applying lossy compression to anatomy volume data (e.g. CT). For computer simulated data, much higher PSNR (up to 100dB) is expectable. This work not only introduces such novel approach for delivering medical services that will have significant impact on the existing cooperative image-based services, but also provides a platform for the physicians to assess the effects of lossy compression techniques on the diagnostic and aesthetic appearance of medical imaging.
Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment
NASA Astrophysics Data System (ADS)
Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.
2016-02-01
An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.
Compression Garments, Muscle Contractile Function, and Economy in Trail Runners.
Vercruyssen, Fabrice; Gruet, Mathieu; Colson, Serge S; Ehrstrom, Sabine; Brisswalter, Jeanick
2017-01-01
Physiological mechanisms behind the use of compression garments (CGs) during off-road running are unknown. To investigate the influence of wearing CGs vs conventional running clothing (CON) on muscle contractile function and running economy before and after short-distance trail running. Knee-extensor neuromuscular function and running economy assessed from two 5-min treadmill runs (11 and 14 km/h) were evaluated before and after an 18.6-km short-distance trail run in 12 trained athletes wearing either CGs (stocking + short-tight) or CON. Quadriceps neuromuscular function was assessed from mechanical and EMG recording after maximal percutaneous electrical femoral-nerve stimulations (single-twitch doublets at 10 [Db 10 ] and 100 Hz [Db 100 ] delivered at rest and during maximal quadriceps voluntary contraction [MVC]). Running economy (in mL O 2 · km -1 · kg -1 ) increased after trail running independent of the clothing condition and treadmill speeds (P < .001). Similarly, MVC decreased after CON and CGs conditions (-11% and -13%, respectively, P < .001). For both clothing conditions, a significant decrease in quadriceps voluntary activation, Db 10 , Db 100 , and the low-to-high frequency doublet ratio were observed after trail running (time effect, all P < .01), without any changes in rectus femoris maximal M-wave. Wearing CGs does not reduce physiological alterations induced during short-distance trail running. Further studies should determine whether higher intensity of compression pressure during exercises of longer duration may be effective to induce any physiological benefits in experienced trail runners.
NASA Technical Reports Server (NTRS)
Arvin, G. H.; Israeli, L.; Stolpestad, J. H.; Stacher, G. W.
1981-01-01
The application of the superplastic forming/diffusion bonding (SPF/DB) process to supersonic cruise research is investigated. The capability of an SPF/DB titanium structure to meet the structural requirements of the inner wing area of the NASA arrow-wing advanced supersonic transport design is evaluated. Selection of structural concepts and their optimization for minimum weight, SPF/DB process optimization, fabrication of representative specimens, and specimen testing and evaluation are described. The structural area used includes both upper and lower wing panels, where the upper wing panel is used for static compression strength evaluation and the lower panel, in tension, is used for fracture mechanics evaluations. The individual test specimens, cut from six large panels, consist of 39 static specimens, 10 fracture mechanics specimens, and one each full size panel for compression stability and fracture mechanics testing. Tests are performed at temperatures of -54 C (-65 F), room temperature, and 260 C (500 F).
Solid state Ku-band spacecraft transmitters
NASA Technical Reports Server (NTRS)
Wisseman, W. R.; Tserng, H. Q.; Coleman, D. J.; Doerbeck, F. H.
1977-01-01
A transmitter is considered that consists of GaAs IMPATT and Read diodes operating in a microstrip circuit environment to provide amplification with a minimum of 63 db small signal gain and a minimum compressed gain at 5 W output of 57 db. Reported are Schottky-Read diode design and fabrication, microstrip and circulator optimization, preamplifier development, power amplifier development, dc-to-dc converter design, and integration of the breadboard transmitter modules. A four-stage power amplifier in cascade with a three-stage preamplifier had an overall gain of 56.5 db at 13.5 GHz with a power output of 4.5 W. A single-stage Read amplifier delivered 5.9 W with 4 db gain at 22% efficiency.
NASA Astrophysics Data System (ADS)
Hwang, Yuh-Jing; Chiong, Chau-Ching; Huang, Yau-De; Huang, Chi-Den; Liu, Ching-Tang; Kuo, Yue-Fang; Weng, Shou-Hsien; Ho, Chin-Ting; Chiang, Po-Han; Wu, Hsiao-Ling; Chang, Chih-Cheng; Jian, Shou-Ting; Lee, Chien-Feng; Lee, Yi-Wei; Pospieszalski, Marian; Henke, Doug; Finger, Ricardo; Tapia, Valeria; Gonzalez, Alvaro
2016-07-01
The ALMA Band-1 receiver front-end prototype cold and warm cartridge assemblies, including the system and key components for ALMA Band-1 receivers have been developed and two sets of prototype cartridge were fully tested. The measured aperture efficiency for the cold receiver is above the 80% specification except for a few frequency points. Based on the cryogenically cooled broadband low-noise amplifiers provided by NRAO, the receiver noise temperature can be as low as 15 - 32K for pol-0 and 17 - 30K for pol-1. Other key testing items are also measured. The receiver beam pattern is measured, the results is well fit to the simulation and design. The pointing error extracted from the measured beam pattern indicates the error is 0.1 degree along azimuth and 0.15 degree along elevation, which is well fit to the specification (smaller than 0.4 degree). The equivalent hot load temperature for 5% gain compression is 492 - 4583K, which well fit to the specification of 5% with 373K input thermal load. The image band suppression is higher than 30 dB typically and the worst case is higher than 20 dB for 34GHz RF signal and 38GHz LO signal, which is all higher than 7 dB required specification. The cross talk between orthogonal polarization is smaller than -85 dB based on present prototype LO. The amplitude stability is below 2.0 x 10-7 , which is fit to the specification of 4.0 x 10-7 for timescales in the range of 0.05 s ≤ T ≤ 100 s. The signal path phase stability measured is smaller than 5 fs, which is smaller than 22 fs for Long term (delay drift) 20 s ≤ T < 300 sec. The IF output phase variation is smaller than 3.5° rms typically, and the specification is less than 4.5° rms. The measured IF output power level is -28 to -30.5 dBm with 300K input load. The measured IF output power flatness is less than 5.6 dB for 2GHz window, and 1.3dB for 31MHz window. The first batch of prototype cartridges will be installed on site for further commissioning on July of 2017.
Wavelet-based audio embedding and audio/video compression
NASA Astrophysics Data System (ADS)
Mendenhall, Michael J.; Claypoole, Roger L., Jr.
2001-12-01
Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit-plane coding, index coding, and Huffman coding. To demonstrate the potential of this audio embedding and audio/video compression algorithm, we embed an audio signal into a video signal and then compress. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33 dB. Finally, the audio signal is extracted from the compressed audio/video signal without error.
Skylab S-193 radar altimeter experiment analyses and results
NASA Technical Reports Server (NTRS)
Brown, G. S. (Editor)
1977-01-01
The design of optimum filtering procedures for geoid recovery is discussed. Statistical error bounds are obtained for pointing angle estimates using average waveform data. A correlation of tracking loop bandwidth with magnitude of pointing error is established. The impact of ocean currents and precipitation on the received power are shown to be measurable effects. For large sea state conditions, measurements of sigma 0 deg indicate a distinct saturation level of about 8 dB. Near-nadir less than 15 deg values of sigma 0 deg are also presented and compared with theoretical models. Examination of Great Salt Lake Desert scattering data leads to rejection of a previously hypothesized specularly reflecting surface. Pulse-to-pulse correlation results are in agreement with quasi-monochromatic optics theoretical predictions and indicate a means for estimating direction of pointing error. Pulse compression techniques for and results of estimating significant waveheight from waveform data are presented and are also shown to be in good agreement with surface truth data. A number of results pertaining to system performance are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S; Yao, W
2015-06-15
Purpose: To study different noise-reduction algorithms and to improve the image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low-dose cone-beam CT, the reconstructed image is contaminated with excessive quantum noise. In this study, three well-developed noise reduction algorithms namely, a) penalized weighted least square (PWLS) method, b) split-Bregman total variation (TV) method, and c) compressed sensing (CS) method were studied and applied to the images of a computer–simulated “Shepp-Logan” phantom and a physical CATPHAN phantom. Up to 20% additive Gaussian noise was added to the Shepp-Logan phantom. The CATPHAN phantom was scannedmore » by a Varian OBI system with 100 kVp, 4 ms and 20 mA. For comparing the performance of these algorithms, peak signal-to-noise ratio (PSNR) of the denoised images was computed. Results: The algorithms were shown to have the potential in reducing the noise level for low-dose CBCT images. For Shepp-Logan phantom, an improvement of PSNR of 2 dB, 3.1 dB and 4 dB was observed using PWLS, TV and CS respectively, while for CATPHAN, the improvement was 1.2 dB, 1.8 dB and 2.1 dB, respectively. Conclusion: Penalized weighted least square, total variation and compressed sensing methods were studied and compared for reducing the noise on a simulated phantom and a physical phantom scanned by low-dose CBCT. The techniques have shown promising results for noise reduction in terms of PSNR improvement. However, reducing the noise without compromising the smoothness and resolution of the image needs more extensive research.« less
Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji
2016-02-22
In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.
Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan
2017-04-04
A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dB m input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dB m at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dB m at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dB m input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dB m input power was applied, the second, third, fourth, and fifth harmonic distortions of the HVPA with the power MOSFET linearizer (-41.54, -41.80, -48.86, and -46.27 dB, respectively) were also lower than that of the HVPA without the power MOSFET linearizer (-25.85, -43.56, -49.04, and -49.24 dB, respectively). Therefore, we conclude that the power MOSFET linearizer could reduce gain deviation of the HVPA, thus reducing the echo signal harmonic distortions generated by the high-frequency ultrasonic transducers in pulse-echo instrumentation.
Compressed sensing system considerations for ECG and EMG wireless biosensors.
Dixon, Anna M R; Allstot, Emily G; Gangopadhyay, Daibashish; Allstot, David J
2012-04-01
Compressed sensing (CS) is an emerging signal processing paradigm that enables sub-Nyquist processing of sparse signals such as electrocardiogram (ECG) and electromyogram (EMG) biosignals. Consequently, it can be applied to biosignal acquisition systems to reduce the data rate to realize ultra-low-power performance. CS is compared to conventional and adaptive sampling techniques and several system-level design considerations are presented for CS acquisition systems including sparsity and compression limits, thresholding techniques, encoder bit-precision requirements, and signal recovery algorithms. Simulation studies show that compression factors greater than 16X are achievable for ECG and EMG signals with signal-to-quantization noise ratios greater than 60 dB.
Optimal color coding for compression of true color images
NASA Astrophysics Data System (ADS)
Musatenko, Yurij S.; Kurashov, Vitalij N.
1998-11-01
In the paper we present the method that improves lossy compression of the true color or other multispectral images. The essence of the method is to project initial color planes into Karhunen-Loeve (KL) basis that gives completely decorrelated representation for the image and to compress basis functions instead of the planes. To do that the new fast algorithm of true KL basis construction with low memory consumption is suggested and our recently proposed scheme for finding optimal losses of Kl functions while compression is used. Compare to standard JPEG compression of the CMYK images the method provides the PSNR gain from 0.2 to 2 dB for the convenient compression ratios. Experimental results are obtained for high resolution CMYK images. It is demonstrated that presented scheme could work on common hardware.
Cost-effective TCM-based WDM-PON for highly asymmetric traffic conditions.
Lee, Danbi; Kwon, Won-Bae; Chae, Chang-Joon; Park, Chang-Soo
2015-11-16
A time compression multiplexing (TCM)-based wavelength division multiplexing passive optical network (WDM-PON) using a reflective semiconductor optical amplifier (RSOA) is proposed, and its feasibility is experimentally demonstrated. In the proposed system, the RSOA pre-amplifies a 10 Gb/s downstream signal and modulates the RSOA output, wavelength-locked to the downstream signal, with a 1.25 Gb/s upstream signal simultaneously. The sensitivity of the downstream signal is improved by about 3 dB through the RSOA. The downstream and upstream signals have power penalties of about 0.1 dB and 1.1 dB, respectively, at bit error rates (BERs) of 10(-9) after 20 km transmission.
Tanaka, Tagayasu; Inaba, Ryoichi; Aoyama, Atsuhito
2016-01-01
Objectives: This study investigated the actual situation of noise and low-frequency sounds in firework events and their impact on pyrotechnicians. Methods: Data on firework noise and low-frequency sounds were obtained at a point located approximately 100 m away from the launch site of a firework display held in "A" City in 2013. We obtained the data by continuously measuring and analyzing the equivalent continuous sound level (Leq) and the one-third octave band of the noise and low-frequency sounds emanating from the major firework detonations, and predicted sound levels at the original launch site. Results: Sound levels of 100-115 dB and low-frequency sounds of 100-125 dB were observed at night. The maximum and mean Leq values were 97 and 95 dB, respectively. The launching noise level predicted from the sounds (85 dB) at the noise measurement point was 133 dB. Occupational exposure to noise for pyrotechnicians at the remote operation point (located 20-30 m away from the launch site) was estimated to be below 100 dB. Conclusions: Pyrotechnicians are exposed to very loud noise (>100 dB) at the launch point. We believe that it is necessary to implement measures such as fixing earplugs or earmuffs, posting a warning at the workplace, and executing a remote launching operation to prevent hearing loss caused by occupational exposure of pyrotechnicians to noise. It is predicted that both sound levels and low-frequency sounds would be reduced by approximately 35 dB at the remote operation site. PMID:27725489
Tanaka, Tagayasu; Inaba, Ryoichi; Aoyama, Atsuhito
2016-11-29
This study investigated the actual situation of noise and low-frequency sounds in firework events and their impact on pyrotechnicians. Data on firework noise and low-frequency sounds were obtained at a point located approximately 100 m away from the launch site of a firework display held in "A" City in 2013. We obtained the data by continuously measuring and analyzing the equivalent continuous sound level (Leq) and the one-third octave band of the noise and low-frequency sounds emanating from the major firework detonations, and predicted sound levels at the original launch site. Sound levels of 100-115 dB and low-frequency sounds of 100-125 dB were observed at night. The maximum and mean Leq values were 97 and 95 dB, respectively. The launching noise level predicted from the sounds (85 dB) at the noise measurement point was 133 dB. Occupational exposure to noise for pyrotechnicians at the remote operation point (located 20-30 m away from the launch site) was estimated to be below 100 dB. Pyrotechnicians are exposed to very loud noise (>100 dB) at the launch point. We believe that it is necessary to implement measures such as fixing earplugs or earmuffs, posting a warning at the workplace, and executing a remote launching operation to prevent hearing loss caused by occupational exposure of pyrotechnicians to noise. It is predicted that both sound levels and low-frequency sounds would be reduced by approximately 35 dB at the remote operation site.
Behavior of visual field index in advanced glaucoma.
Rao, Harsha L; Senthil, Sirisha; Choudhari, Nikhil S; Mandal, Anil K; Garudadri, Chandra S
2013-01-14
To evaluate the magnitude of Visual Field Index (VFI) change attributable to change in the estimation algorithm from the pattern deviation probability plot (PDPP) to the total deviation probability plot (TDPP) when the mean deviation (MD) crosses -20 decibels (dB). In a retrospective study, 37 stable glaucoma eyes in which MD of the VFs crossed -20 dB were identified. For each eye, a pair of VFs was selected so that one VF of the pair had a MD better than but close to -20 dB and the other had a MD worse than but again close to -20 dB. The change in VFI in the VF pairs and its associations with the number of points in probability plots with normal threshold sensitivities were evaluated. Similar pairs of VFs from 28 stable glaucoma eyes where the MD crossed -10 dB were chosen as controls. The change in VFI in VF pairs when the MD crossed 20 dB ranged from 3% to 33% (median: 15%), while the change when MD crossed -10 dB ranged from 1% to 8% (median: 4%). Difference in the number of points with normal threshold sensitivities in PDPP when MD was better than -20 dB compared to those in TDPP when MD crossed -20 dB significantly influenced the VFI change (R(2) = 0.65). Considering the eccentricity of these points further explained the VFI change (R(2) = 0.81). The decrease in VFI when MD crosses -20 dB can be highly variable. This has to be considered with the use of VFI in clinical and research settings.
Virtual viewpoint generation for three-dimensional display based on the compressive light field
NASA Astrophysics Data System (ADS)
Meng, Qiao; Sang, Xinzhu; Chen, Duo; Guo, Nan; Yan, Binbin; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan
2016-10-01
Virtual view-point generation is one of the key technologies the three-dimensional (3D) display, which renders the new scene image perspective with the existing viewpoints. The three-dimensional scene information can be effectively recovered at different viewing angles to allow users to switch between different views. However, in the process of multiple viewpoints matching, when N free viewpoints are received, we need to match N viewpoints each other, namely matching C 2N = N(N-1)/2 times, and even in the process of matching different baselines errors can occur. To address the problem of great complexity of the traditional virtual view point generation process, a novel and rapid virtual view point generation algorithm is presented in this paper, and actual light field information is used rather than the geometric information. Moreover, for better making the data actual meaning, we mainly use nonnegative tensor factorization(NTF). A tensor representation is introduced for virtual multilayer displays. The light field emitted by an N-layer, M-frame display is represented by a sparse set of non-zero elements restricted to a plane within an Nth-order, rank-M tensor. The tensor representation allows for optimal decomposition of a light field into time-multiplexed, light-attenuating layers using NTF. Finally, the compressive light field of multilayer displays information synthesis is used to obtain virtual view-point by multiple multiplication. Experimental results show that the approach not only the original light field is restored with the high image quality, whose PSNR is 25.6dB, but also the deficiency of traditional matching is made up and any viewpoint can obtained from N free viewpoints.
Moore, Brian C J
2012-09-01
This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing "overshoot" effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression.
Experimental demonstration of fiber optical parametric chirped-pulse amplification
NASA Astrophysics Data System (ADS)
Zhou, Yue; Cheung, Kim K. Y.; Chui, P. C.; Wong, Kenneth K. Y.
2010-02-01
A fiber optical parametric chirped-pulse amplifier (FOPCPA) is experimentally demonstrated. A 1.76 ps signal at 1542 nm with a peak power of 20 mW is broadened to 40 ps, and then amplified by a 100-ps pulsed pump at 1560 nm. The corresponding idler at 1578 nm is generated as the FOPCPA output. The same medium used to stretch the signal is deployed to compress the idler to 3.8 ps, and another spool of fiber is deployed to further compress the idler to 1.87 ps. The peak power of the compressed idler is 2 W, which corresponds to a gain of 20 dB.
An Efficient Audio Watermarking Algorithm in Frequency Domain for Copyright Protection
NASA Astrophysics Data System (ADS)
Dhar, Pranab Kumar; Khan, Mohammad Ibrahim; Kim, Cheol-Hong; Kim, Jong-Myon
Digital Watermarking plays an important role for copyright protection of multimedia data. This paper proposes a new watermarking system in frequency domain for copyright protection of digital audio. In our proposed watermarking system, the original audio is segmented into non-overlapping frames. Watermarks are then embedded into the selected prominent peaks in the magnitude spectrum of each frame. Watermarks are extracted by performing the inverse operation of watermark embedding process. Simulation results indicate that the proposed watermarking system is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, MP3 compression, and low-pass filtering. Our proposed watermarking system outperforms Cox's method in terms of imperceptibility, while keeping comparable robustness with the Cox's method. Our proposed system achieves SNR (signal-to-noise ratio) values ranging from 20 dB to 28 dB, in contrast to Cox's method which achieves SNR values ranging from only 14 dB to 23 dB.
New Technologies in Amplification: Applications to the Pediatric Population.
ERIC Educational Resources Information Center
Kopun, Judy
1995-01-01
Discussion of technological advances in amplification for children with hearing impairments focuses on the advantages and limitations of fitting children with devices that have features such as dynamic-range compression, multiband signal processing, multimemory capability, digital feedback reduction, and frequency transposition. (Author/DB)
Effect of Human Auditory Efferent Feedback on Cochlear Gain and Compression
Drga, Vit; Plack, Christopher J.
2014-01-01
The mammalian auditory system includes a brainstem-mediated efferent pathway from the superior olivary complex by way of the medial olivocochlear system, which reduces the cochlear response to sound (Warr and Guinan, 1979; Liberman et al., 1996). The human medial olivocochlear response has an onset delay of between 25 and 40 ms and rise and decay constants in the region of 280 and 160 ms, respectively (Backus and Guinan, 2006). Physiological studies with nonhuman mammals indicate that onset and decay characteristics of efferent activation are dependent on the temporal and level characteristics of the auditory stimulus (Bacon and Smith, 1991; Guinan and Stankovic, 1996). This study uses a novel psychoacoustical masking technique using a precursor sound to obtain a measure of the efferent effect in humans. This technique avoids confounds currently associated with other psychoacoustical measures. Both temporal and level dependency of the efferent effect was measured, providing a comprehensive measure of the effect of human auditory efferents on cochlear gain and compression. Results indicate that a precursor (>20 dB SPL) induced efferent activation, resulting in a decrease in both maximum gain and maximum compression, with linearization of the compressive function for input sound levels between 50 and 70 dB SPL. Estimated gain decreased as precursor level increased, and increased as the silent interval between the precursor and combined masker-signal stimulus increased, consistent with a decay of the efferent effect. Human auditory efferent activation linearizes the cochlear response for mid-level sounds while reducing maximum gain. PMID:25392499
Correlation estimation and performance optimization for distributed image compression
NASA Astrophysics Data System (ADS)
He, Zhihai; Cao, Lei; Cheng, Hui
2006-01-01
Correlation estimation plays a critical role in resource allocation and rate control for distributed data compression. A Wyner-Ziv encoder for distributed image compression is often considered as a lossy source encoder followed by a lossless Slepian-Wolf encoder. The source encoder consists of spatial transform, quantization, and bit plane extraction. In this work, we find that Gray code, which has been extensively used in digital modulation, is able to significantly improve the correlation between the source data and its side information. Theoretically, we analyze the behavior of Gray code within the context of distributed image compression. Using this theoretical model, we are able to efficiently allocate the bit budget and determine the code rate of the Slepian-Wolf encoder. Our experimental results demonstrate that the Gray code, coupled with accurate correlation estimation and rate control, significantly improves the picture quality, by up to 4 dB, over the existing methods for distributed image compression.
Tan, Rose S; Guymer, Robyn H; Luu, Chi D
2018-05-01
To determine the intrasession and intersession test-retest repeatability of retinal sensitivity measurements using a dark-adapted chromatic perimeter (DACP). For intrasession testing, retinal sensitivity within the central 24° for the 505-nm stimulus was measured after 20, 30, and 40 minutes of dark adaptation (DA) and for the 625-nm stimulus was measured after the first and second 505-nm tests. For intersession testing, retinal sensitivity for both stimuli was measured after 30 minutes of DA at baseline and 1 month. The point-wise sensitivity (PWS) difference and coefficient of repeatability (CoR) of each stimulus and group were determined. For intrasession testing, 10 age-related macular degeneration (AMD) and eight control subjects were recruited. The overall CoR for the 505-nm stimulus was 8.4 dB for control subjects and 9.1 dB for AMD cases, and for the 625-nm stimulus was 6.7 dB for control subjects and 9.5 dB for AMD cases. For intersession testing, seven AMD cases and 13 control subjects returned an overall CoR for the 505-nm stimulus of 8.2 dB for the control and 11.7 dB for the AMD group. For the 625-nm stimulus the CoR was 6.2 dB for the control group and 8.4 dB for the AMD group. Approximately 80% of all test points had a PWS difference of ±5 dB between the two intrasession or intersession measurements for both stimuli. The CoR for the DACP is larger than that reported for scotopic perimeters; however, the majority of test points had a PWS difference of ±5 dB between tests. The DACP offers an opportunity to measure static and dynamic rod function at multiple locations with an acceptable reproducibility level.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...
Code of Federal Regulations, 2010 CFR
2010-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...
Code of Federal Regulations, 2012 CFR
2012-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...
Code of Federal Regulations, 2014 CFR
2014-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...
Code of Federal Regulations, 2013 CFR
2013-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.303 Definitions. As used in... operation of the landing guidance system. Beam center means the midpoint between the -3 dB points on the... main lobe measured at the -3 dB points and defined in angular units on the boresight, in the horizontal...
NASA Astrophysics Data System (ADS)
Campolina, Bruno L.
The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are identified in the 100 Hz to 10 kHz frequency range for double-walls under diffuse acoustic field and under point-force excitations. Non-resonant transmission is higher at low frequencies (frequencies lower than 1 kHz) while the structure-borne and the airborne paths dominate at mid- and high-frequencies, around 1 kHz and higher, respectively. An experimental validation on double-walls shows that the model is able to predict changes in the overall transmission caused by different structural couplings (rigid coupling, coupling via isolators and structurally uncoupled). Noise reduction means adapted to each transmission path, such as absorption, dissipation and structural decoupling, may be then derived. Keywords: Statistical energy analysis, Vibration isolator, Double-wall, Transfer path analysis, Transmission Loss.
Casas, F J; Pascual, J P; de la Fuente, M L; Artal, E; Portilla, J
2010-07-01
This paper describes a comparative nonlinear analysis of low-noise amplifiers (LNAs) under different stimuli for use in astronomical applications. Wide-band Gaussian-noise input signals, together with the high values of gain required, make that figures of merit, such as the 1 dB compression (1 dBc) point of amplifiers, become crucial in the design process of radiometric receivers in order to guarantee the linearity in their nominal operation. The typical method to obtain the 1 dBc point is by using single-tone excitation signals to get the nonlinear amplitude to amplitude (AM-AM) characteristic but, as will be shown in the paper, in radiometers, the nature of the wide-band Gaussian-noise excitation signals makes the amplifiers present higher nonlinearity than when using single tone excitation signals. Therefore, in order to analyze the suitability of the LNA's nominal operation, the 1 dBc point has to be obtained, but using realistic excitation signals. In this work, an analytical study of compression effects in amplifiers due to excitation signals composed of several tones is reported. Moreover, LNA nonlinear characteristics, as AM-AM, total distortion, and power to distortion ratio, have been obtained by simulation and measurement with wide-band Gaussian-noise excitation signals. This kind of signal can be considered as a limit case of a multitone signal, when the number of tones is very high. The work is illustrated by means of the extraction of realistic nonlinear characteristics, through simulation and measurement, of a 31 GHz back-end module LNA used in the radiometer of the QUIJOTE (Q U I JOint TEnerife) CMB experiment.
Deflection amplifier for image dissectors
NASA Technical Reports Server (NTRS)
Salomon, P. M.
1977-01-01
Balanced symmetrical y-axis amplifier uses zener-diode level shifting to interface operational amplifiers to high voltage bipolar output stages. Nominal voltage transfer characteristic is 40 differential output volts per input volt; bandwidth, between -3-dB points, is approximately 8 kHz; loop gain is nominally 89 dB with closed loop gain of 26 dB.
A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording.
Gagnon-Turcotte, Gabriel; LeChasseur, Yoan; Bories, Cyril; Messaddeq, Younes; De Koninck, Yves; Gosselin, Benoit
2017-02-01
This paper presents a wireless headstage with real-time spike detection and data compression for combined optogenetics and multichannel electrophysiological recording. The proposed headstage, which is intended to perform both optical stimulation and electrophysiological recordings simultaneously in freely moving transgenic rodents, is entirely built with commercial off-the-shelf components, and includes 32 recording channels and 32 optical stimulation channels. It can detect, compress and transmit full action potential waveforms over 32 channels in parallel and in real time using an embedded digital signal processor based on a low-power field programmable gate array and a Microblaze microprocessor softcore. Such a processor implements a complete digital spike detector featuring a novel adaptive threshold based on a Sigma-delta control loop, and a wavelet data compression module using a new dynamic coefficient re-quantization technique achieving large compression ratios with higher signal quality. Simultaneous optical stimulation and recording have been performed in-vivo using an optrode featuring 8 microelectrodes and 1 implantable fiber coupled to a 465-nm LED, in the somatosensory cortex and the Hippocampus of a transgenic mouse expressing ChannelRhodospin (Thy1::ChR2-YFP line 4) under anesthetized conditions. Experimental results show that the proposed headstage can trigger neuron activity while collecting, detecting and compressing single cell microvolt amplitude activity from multiple channels in parallel while achieving overall compression ratios above 500. This is the first reported high-channel count wireless optogenetic device providing simultaneous optical stimulation and recording. Measured characteristics show that the proposed headstage can achieve up to 100% of true positive detection rate for signal-to-noise ratio (SNR) down to 15 dB, while achieving up to 97.28% at SNR as low as 5 dB. The implemented prototype features a lifespan of up to 105 minutes, and uses a lightweight (2.8 g) and compact [Formula: see text] rigid-flex printed circuit board.
Barboni, Mirella Telles Salgueiro; Szepessy, Zsuzsanna; Ventura, Dora Fix; Németh, János
2018-04-01
To establish fluctuation limits, it was considered that not only overall macular sensitivity but also fluctuations of individual test points in the macula might have clinical value. Three repeated measurements of microperimetry were performed using the Standard Expert test of Macular Integrity Assessment (MAIA) in healthy subjects ( N = 12, age = 23.8 ± 1.5 years old) and in patients with age-related macular degeneration (AMD) ( N = 11, age = 68.5 ± 7.4 years old). A total of 37 macular points arranged in four concentric rings and in four quadrants were analyzed individually and in groups. The data show low fluctuation of macular sensitivity of individual test points in healthy subjects (average = 1.38 ± 0.28 dB) and AMD patients (average = 2.12 ± 0.60 dB). Lower sensitivity points are more related to higher fluctuation than to the distance from the central point. Fixation stability showed no effect on the sensitivity fluctuation. The 95th percentile of the standard deviations of healthy subjects was, on average, 2.7 dB, ranging from 1.2 to 4 dB, depending on the point tested. Point analysis and regional analysis might be considered prior to evaluating macular sensitivity fluctuation in order to distinguish between normal variation and a clinical change. S tatistical methods were used to compare repeated microperimetry measurements and to establish fluctuation limits of the macular sensitivity. This analysis could add information regarding the integrity of different macular areas and provide new insights into fixation points prior to the biofeedback fixation training.
Large signal design - Performance and simulation of a 3 W C-band GaAs power MMIC
NASA Astrophysics Data System (ADS)
White, Paul M.; Hendrickson, Mary A.; Chang, Wayne H.; Curtice, Walter R.
1990-04-01
This paper describes a C-band GaAs power MMIC amplifier that achieved a gain of 17 dB and 1 dB compressed CW power output of 34 dBm across a 4.5-6.25-GHz frequency range, without design iteration. The first-pass design success was achieved due to the application of a harmonic balance simulator to define the optimum output load, using a large-signal FET model determined statistically on a well controlled foundry-ready process line. The measured performance was close to that predicted by a full harmonic balance circuit analysis.
Kristensen, Jesper T; Houmann, Andreas; Liu, Xiaomin; Turchinovich, Dmitry
2008-06-23
We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 +/- 0.24 dB, and polarization extinction ratio of 19 +/- 0.68 dB. The reciprocal HC-PCF-to-PM-SMF splice loss is found to be 2.19 +/- 0.33 dB, which is caused by the mode evolution in HC-PCF. The return loss in both cases was measured to be -14 dB. We show that a splice defect is caused by the HC-PCF cleave defect, and the lossy splice can be predicted at an early stage of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond pulse delivery.
Spatially adaptive bases in wavelet-based coding of semi-regular meshes
NASA Astrophysics Data System (ADS)
Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter
2010-05-01
In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.
Experimental investigations on airborne gravimetry based on compressed sensing.
Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun
2014-03-18
Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements.
Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing
Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun
2014-01-01
Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements. PMID:24647125
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2015-03-01
Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2014-01-01
Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.
Adaptive bit plane quadtree-based block truncation coding for image compression
NASA Astrophysics Data System (ADS)
Li, Shenda; Wang, Jin; Zhu, Qing
2018-04-01
Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.
The Words-in-Noise Test (WIN), list 3: a practice list.
Wilson, Richard H; Watts, Kelly L
2012-02-01
The Words-in-Noise Test (WIN) was developed as an instrument to quantify the ability of listeners to understand monosyllabic words in background noise using multitalker babble (Wilson, 2003). The 50% point, which is calculated with the Spearman-Kärber equation (Finney, 1952), is used as the evaluative metric with the WIN materials. Initially, the WIN was designed as a 70-word instrument that presented ten unique words at each of seven signal-to-noise ratios from 24 to 0 dB in 4 dB decrements. Subsequently, the 70-word list was parsed into two 35-word lists that achieved equivalent recognition performances (Wilson and Burks, 2005). This report involves the development of a third list (WIN List 3) that was developed to serve as a practice list to familiarize the participant with listening to words presented in background babble. To determine-on young listeners with normal hearing and on older listeners with sensorineural hearing loss-the psychometric properties of the WIN List 3 materials. A quasi-experimental, repeated-measures design was used. Twenty-four young adult listeners (M = 21.6 yr) with normal pure-tone thresholds (≤ 20 dB HL at 250 to 8000 Hz) and 24 older listeners (M = 65.9 yr) with sensorineural hearing loss participated. The level of the babble was fixed at 80 dB SPL with the level of the words varied from 104 to 80 dB SPL in 4 dB decrements. For listeners with normal hearing, the 50% points for Lists 1 and 2 were similar (4.3 and 5.1 dB S/N, respectively), both of which were lower than the 50% point for List 3 (7.4 dB S/N). A similar relation was observed with the listeners with hearing loss, 50% points for Lists 1 and 2 of 12.2 and 12.4 dB S/N, respectively, compared to 15.8 dB S/N for List 3. The differences between Lists 1 and 2 and List 3 were significant. The relations among the psychometric functions and the relations among the individual data both reflected these differences. The significant ∼3 dB difference between performances on WIN Lists 1 and 2 and on WIN List 3 by the listeners with normal hearing and the listeners with hearing loss dictates caution with the use of List 3. The use of WIN List 3 should be reserved for ancillary purposes in which equivalent recognition performances are not required, for example, as a practice list or a stand alone measure. American Academy of Audiology.
Huang, Le; You, Yong-Ke; Zhu, Tracy Y; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling
2016-06-10
This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.
NASA Astrophysics Data System (ADS)
Huang, Le; You, Yong-Ke; Zhu, Tracy Y.; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling
2016-06-01
This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p < 0.05). However the indices measured at proximal tibia showed comparable trabecular BMD and microarchitecture among the four groups. Femur length in crp/db/db group was significantly shorter than db/m group (p < 0.05) and cortices were thinner in db/db and crp/db/db groups (p > 0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.
Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan
2017-01-01
A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (−1.8 and −0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (−2.95 and −3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dBm input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dBm at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dBm at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dBm input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (−48.34, −44.21, −48.34, and −46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (−45.61, −41.57, −45.01, and −45.51 dB, respectively). When five-cycle 20 dBm input power was applied, the second, third, fourth, and fifth harmonic distortions of the HVPA with the power MOSFET linearizer (−41.54, −41.80, −48.86, and −46.27 dB, respectively) were also lower than that of the HVPA without the power MOSFET linearizer (−25.85, −43.56, −49.04, and −49.24 dB, respectively). Therefore, we conclude that the power MOSFET linearizer could reduce gain deviation of the HVPA, thus reducing the echo signal harmonic distortions generated by the high-frequency ultrasonic transducers in pulse-echo instrumentation. PMID:28375165
Metabolic characterization of a mouse deficient in all known leptin receptor isoforms.
Osborn, Olivia; Sanchez-Alavez, Manuel; Brownell, Sara E; Ross, Brendon; Klaus, Joe; Dubins, Jeffrey; Beutler, Bruce; Conti, Bruno; Bartfai, Tamas
2010-01-01
We have characterized a newly generated mouse model of obesity, a mouse strain deficient in all five previously described leptin receptor isoforms. These transgenic mice, named the db (333)/db (333) mice, were identified from an ENU mutagenesis screen and carry a point mutation in the seventh exon of the db gene encoding the leptin receptor, resulting in a premature stop codon (Y(333)Stop) and gene product that lacks STAT signaling domains. db (333)/db (333) mice have a morbidly obese phenotype, with body weights diverging from wild type as early as 4 weeks of age (P < 0.05). To determine the contribution of the short isoforms of the leptin receptor in this metabolic phenotype, we performed an extensive metabolic characterization of the db (333)/db (333) mouse in relation to the well-characterized db/db mouse lacking only the long form of the leptin receptor. db (333)/db (333) mice have similar endocrine and metabolic parameters as previously described in other leptin receptor transgenic mice including db/db mice that lack only the long isoform of the leptin receptor. However, db (333)/db (333) mice show a subtle trend toward higher body weight and insulin levels, lower oxygen, carbon dioxide production, respiratory exchange ratio (RER), and temperature than db/db mice suggesting the short isoforms may play an additional role in energy homeostasis.
NASA Astrophysics Data System (ADS)
Wang, Jun; Min, Kyeong-Yuk; Chong, Jong-Wha
2010-11-01
Overdrive is commonly used to reduce the liquid-crystal response time and motion blur in liquid-crystal displays (LCDs). However, overdrive requires a large frame memory in order to store the previous frame for reference. In this paper, a high-compression-ratio codec is presented to compress the image data stored in the on-chip frame memory so that only 1 Mbit of on-chip memory is required in the LCD overdrives of mobile devices. The proposed algorithm further compresses the color bitmaps and representative values (RVs) resulting from the block truncation coding (BTC). The color bitmaps are represented by a luminance bitmap, which is further reduced and reconstructed using median filter interpolation in the decoder, while the RVs are compressed using adaptive quantization coding (AQC). Interpolation and AQC can provide three-level compression, which leads to 16 combinations. Using a rate-distortion analysis, we select the three optimal schemes to compress the image data for video graphics array (VGA), wide-VGA LCD, and standard-definitionTV applications. Our simulation results demonstrate that the proposed schemes outperform interpolation BTC both in PSNR (by 1.479 to 2.205 dB) and in subjective visual quality.
NASA Astrophysics Data System (ADS)
Damberg, W.; Floegel, K.; Sahm, A.
1983-02-01
A noise reduction device for pneumatic nailers was developed. Conditions of use, range of products available, market regulations and measuring methods were studied. Ease of operation, service life, functional reliability and maintenance capacity were studied. Results show that the essential noise sources of the device are the compressed air blasts of the working and relation phases and the impact of the piston on the bumper. Packages of measures implemented on a laboratory scale indicate noise reduction possibilities for nailers in the short, medium and long term. The sound level of a single shot can be reduced from 110 dB to 93 dB.
Near-toll quality digital speech transmission in the mobile satellite service
NASA Technical Reports Server (NTRS)
Townes, S. A.; Divsalar, D.
1986-01-01
This paper discusses system considerations for near-toll quality digital speech transmission in a 5 kHz mobile satellite system channel. Tradeoffs are shown for power performance versus delay for a 4800 bps speech compression system in conjunction with a 16 state rate 2/3 trellis coded 8PSK modulation system. The suggested system has an additional 150 ms of delay beyond the propagation delay and requires an E(b)/N(0) of about 7 dB for a Ricean channel assumption with line-of-sight to diffuse component ratio of 10 assuming ideal synchronization. An additional loss of 2 to 3 dB is expected for synchronization in fading environment.
Comparative Analysis of Red-Edge Hyperspectral Indices
NASA Astrophysics Data System (ADS)
Gupta, R.; Vijayan, D.; Prasad, T.
The spectrally continuous observations of 3 nm bandwidth in 680 to 800 nm range over the growth cycle of wheat were subjected to first order differentiation to identify the point of inflection in red to near-IR transition zone. During 40 to 84 days after sowing (DAS), the point of inflection was observed in 723 to 735 nm region with peak response at 729 nm for 64 DAS . For differentiated curve pertaining to 25 DAS (initial vegetative) and 90 DAS (initial senescence) phenological stages, the point of inflection was in 690-693 and 744-747 nm spectral region, respectively. The ratios corresponding to 1dB (RI1dB = R 735 /R720), 2dB (RI 2dB = R738/R 720), 3dB (RI3dB = R741 /R 717) down signal levels and half signal level (RIhalf = R747/R 708 ) were computed. For nomenclature point of view, R41 refers to reflectance for 3 nm7 bandwidth centered at 741 nm. Correlations for these developed RIs were studied with reference to indices given by Vogelmann i.e., VOG a = R 740 /R720 , VOG b = [(R 734-R747)/(R715+R720)] and red edge spectral parameter (RESP) = R750 /R 710. VOG a and RESP conceptually resemble with developed RI 2dB and RIhalf , respectively. All RIs were found correlated with VOGa , VOG b and RESP with r2 in the range of 0.96 to 0.99; r2 was 0.998 for RI2dB and VOG a pair and 0.996 for RI half and RESP pair; the slope factor of regression relationship improved by about 50% from RI dB to2 RI3dB and by about 125% from RI3dB to RIhalf with r2 in 0.97-0.99 range. Thus, theoretical basis for VOG a and RESP in terms of dB based indices has been provided. The wavelengths used in VOGb are noticed in dB based indices ; to provide stability to small magnitude R720, the sum of R720 and R715 has been used in VOGb. Based on regression analysis of these indices with LAI in its growth and decline phases separately, the slope value for VOG b, RI 2dB, VOG a, RIhalf, RESP and area under 680 to 760 nm for first order derivative curve (area) were in 0.08-0.11, 0.24 - 0.34, 0.27-0.38, 0.86-1.18, 0.89-1.27 and 7.6-13.87 range, respectively. Here, the first value in the range refers to slope value for the growth phase of LAI while the second value in the range refers to that for the decline phase of LAI. To judge the sensitivity for the rate of change in red - edge, the change in area for ratio indices and normalized indices in 680 to 760 nm (red-near IR transition region) with 673 nm were analysed. The rate of change for area under the red edge as a function of DAS was more for ratio indices as compared to that for normalized indices.
A joint source-channel distortion model for JPEG compressed images.
Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C
2006-06-01
The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Zhou, Weidong; Ma, Zhenqiang
2009-12-01
This paper reports the realization of flexible RF/microwave PIN diodes and switches using transferrable single-crystal Si nanomembranes (SiNM) that are monolithically integrated on low-cost, flexible plastic substrates. High frequency response is obtained through the realization of low parasitic resistance achieved with heavy ion implantation before nanomembrane release and transfer. The flexible lateral SiNM PIN diodes exhibit typical rectifying characteristics with insertion loss and isolation better than 0.9 dB and 19.6 dB, respectively, from DC to 5 GHz, as well as power handling up to 22.5 dBm without gain compression. A single-pole single-throw (SPST) flexible RF switch employing shunt-series PIN diode configuration has achieved insertion loss and isolation better than 0.6 dB and 22.9 dB, respectively, from DC to 5 GHz. Furthermore, the SPST microwave switch shows performance improvement and robustness under mechanical deformation conditions. The study demonstrates the considerable potential of using properly processed transferrable SiNM for microwave passive components. Future investigations on transferrable SiNMs will lead to eventual realization of monolithic microwave integrated systems on low-cost flexible substrates.
A real-time chirp-coded imaging system with tissue attenuation compensation.
Ramalli, A; Guidi, F; Boni, E; Tortoli, P
2015-07-01
In ultrasound imaging, pulse compression methods based on the transmission (TX) of long coded pulses and matched receive filtering can be used to improve the penetration depth while preserving the axial resolution (coded-imaging). The performance of most of these methods is affected by the frequency dependent attenuation of tissue, which causes mismatch of the receiver filter. This, together with the involved additional computational load, has probably so far limited the implementation of pulse compression methods in real-time imaging systems. In this paper, a real-time low-computational-cost coded-imaging system operating on the beamformed and demodulated data received by a linear array probe is presented. The system has been implemented by extending the firmware and the software of the ULA-OP research platform. In particular, pulse compression is performed by exploiting the computational resources of a single digital signal processor. Each image line is produced in less than 20 μs, so that, e.g., 192-line frames can be generated at up to 200 fps. Although the system may work with a large class of codes, this paper has been focused on the test of linear frequency modulated chirps. The new system has been used to experimentally investigate the effects of tissue attenuation so that the design of the receive compression filter can be accordingly guided. Tests made with different chirp signals confirm that, although the attainable compression gain in attenuating media is lower than the theoretical value expected for a given TX Time-Bandwidth product (BT), good SNR gains can be obtained. For example, by using a chirp signal having BT=19, a 13 dB compression gain has been measured. By adapting the frequency band of the receiver to the band of the received echo, the signal-to-noise ratio and the penetration depth have been further increased, as shown by real-time tests conducted on phantoms and in vivo. In particular, a 2.7 dB SNR increase has been measured through a novel attenuation compensation scheme, which only requires to shift the demodulation frequency by 1 MHz. The proposed method characterizes for its simplicity and easy implementation. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparison between Humphrey Field Analyzer and Micro Perimeter 1 in normal and glaucoma subjects.
Ratra, Vineet; Ratra, Dhanashree; Gupta, Muneeswar; Vaitheeswaran, K
2012-05-01
To determine the correlation between fundus perimetry with Micro Perimeter 1 (MP1) and conventional automated static threshold perimetry using the Humphrey Field Analyzer (HFA) in healthy individuals and in subjects with glaucoma. In this study, we enrolled 45 eyes with glaucoma and 21 eyes of age-matched, healthy individuals. All subjects underwent complete ophthalmic examination. Differential light sensitivity was measured at 21 corresponding points in a rectangular test grid in both MP1 and HFA. Similar examination settings were used with Goldmann III stimulus, stimulus presentation time of 200 ms, and white background illumination (1.27 cd/m(2)). Statistical analysis was done with the SPSS 14 using linear regression and independent t-test. The mean light thresholds of 21 matching points in control group with MP1 and HFA were 14.97 ± 2.64 dB and 30.90 ± 2.08 dB, respectively. In subjects with glaucoma, the mean values were MP1: 11.73 ± 4.36 dB and HFA: 27.96 ± 5.41 dB. Mean difference of light thresholds among the two instruments was 15.86 ± 3.25 dB in normal subjects (P < 0.001) and 16.22 ± 2.77 dB in glaucoma subjects (P < 0.001). Pearson correlation analysis of the HFA and MP1 results for each test point location in both cases and control subjects showed significant positive correlation (controls, r = 0.439, P = 0.047; glaucoma subjects, r = 0.812, P < 0.001). There was no difference between nasal and temporal points but a slight vertical asymmetry was observed with MP1. There are significant and reproducible differences in the differential light threshold in MP1 and HFA in both normal and glaucoma subjects. We found a correction factor of 17.271 for comparison of MP1 with HFA. MP1 appeared to be more sensitive in predicting loss in glaucoma.
Using Bitmap Indexing Technology for Combined Numerical and TextQueries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockinger, Kurt; Cieslewicz, John; Wu, Kesheng
2006-10-16
In this paper, we describe a strategy of using compressedbitmap indices to speed up queries on both numerical data and textdocuments. By using an efficient compression algorithm, these compressedbitmap indices are compact even for indices with millions of distinctterms. Moreover, bitmap indices can be used very efficiently to answerBoolean queries over text documents involving multiple query terms.Existing inverted indices for text searches are usually inefficient forcorpora with a very large number of terms as well as for queriesinvolving a large number of hits. We demonstrate that our compressedbitmap index technology overcomes both of those short-comings. In aperformance comparison against amore » commonly used database system, ourindices answer queries 30 times faster on average. To provide full SQLsupport, we integrated our indexing software, called FastBit, withMonetDB. The integrated system MonetDB/FastBit provides not onlyefficient searches on a single table as FastBit does, but also answersjoin queries efficiently. Furthermore, MonetDB/FastBit also provides avery efficient retrieval mechanism of result records.« less
Point-Cloud Compression for Vehicle-Based Mobile Mapping Systems Using Portable Network Graphics
NASA Astrophysics Data System (ADS)
Kohira, K.; Masuda, H.
2017-09-01
A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG) format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.
Additivity of nonsimultaneous masking for short Gaussian-shaped sinusoids.
Laback, Bernhard; Balazs, Peter; Necciari, Thibaud; Savel, Sophie; Ystad, Solvi; Meunier, Sabine; Kronland-Martinet, Richard
2011-02-01
The additivity of nonsimultaneous masking was studied using Gaussian-shaped tone pulses (referred to as Gaussians) as masker and target stimuli. Combinations of up to four temporally separated Gaussian maskers with an equivalent rectangular bandwidth of 600 Hz and an equivalent rectangular duration of 1.7 ms were tested. Each masker was level-adjusted to produce approximately 8 dB of masking. Excess masking (exceeding linear additivity) was generally stronger than reported in the literature for longer maskers and comparable target levels. A model incorporating a compressive input/output function, followed by a linear summation stage, underestimated excess masking when using an input/output function derived from literature data for longer maskers and comparable target levels. The data could be predicted with a more compressive input/output function. Stronger compression may be explained by assuming that the Gaussian stimuli were too short to evoke the medial olivocochlear reflex (MOCR), whereas for longer maskers tested previously the MOCR caused reduced compression. Overall, the interpretation of the data suggests strong basilar membrane compression for very short stimuli.
NASA Astrophysics Data System (ADS)
Starosolski, Roman
2016-07-01
Reversible denoising and lifting steps (RDLS) are lifting steps integrated with denoising filters in such a way that, despite the inherently irreversible nature of denoising, they are perfectly reversible. We investigated the application of RDLS to reversible color space transforms: RCT, YCoCg-R, RDgDb, and LDgEb. In order to improve RDLS effects, we propose a heuristic for image-adaptive denoising filter selection, a fast estimator of the compressed image bitrate, and a special filter that may result in skipping of the steps. We analyzed the properties of the presented methods, paying special attention to their usefulness from a practical standpoint. For a diverse image test-set and lossless JPEG-LS, JPEG 2000, and JPEG XR algorithms, RDLS improves the bitrates of all the examined transforms. The most interesting results were obtained for an estimation-based heuristic filter selection out of a set of seven filters; the cost of this variant was similar to or lower than the transform cost, and it improved the average lossless JPEG 2000 bitrates by 2.65% for RDgDb and by over 1% for other transforms; bitrates of certain images were improved to a significantly greater extent.
Assessment of Central Retinal Sensitivity Employing Two Types of Microperimetry Devices
Liu, Hongting; Bittencourt, Millena G.; Wang, Jiangxia; Sophie, Raafay; Annam, Rachel; Ibrahim, Mohamed A.; Sepah, Yasir J.; Moradi, Ahmadreza; Scholl, Hendrik P. N.; Nguyen, Quan Dong
2014-01-01
Purpose To compare the retinal sensitivity measurements obtained with two microperimeters, the Micro-Perimeter 1 (MP-1) and the Optos optical coherence tomography (OCT)/scanning laser ophthalmoscope (SLO) in subjects with and without maculopathies. Methods Forty-five eyes with no known ocular disease and 47 eyes with maculopathies were examined using both microperimeters. A contrast-adjusted scale was applied to resolve the different stimuli and background luminance existing between the two devices. Results There was a strong ceiling effect with the MP-1 in the healthy group, with 90.1% (1136 of 1260) test points clustered at 20 dB. The mean sensitivity for the corresponding points in the OCT/SLO was 25.8 ± 1.9 dB. A floor effect was also observed with the OCT/SLO in the maculopathy group with 9.7% (128 of 1316) points clustered at 9-dB values. The corresponding mean sensitivity in the MP-1 was 1.7 ± 3.9 dB. A regression equation between the two microperimeters was established in the common 10 to19 dB intervals as: OCT/SLO = 15.6 + 0.564 × MP-1 − 0.009 × MP-12 + k (k is an individual point constant; MP-1 coefficient P < 0.001; MP-12 coefficient P = 0.006). Conclusion The OCT/SLO and the MP-1 provide two different ranges of contrasts for microperimetry examination. Broadening the dynamic range may minimize the constraint of the ceiling and floor effect. There is a significant mathematical relationship in the common interval of the contrast scale. Translational Relevance Applying a unified and broadened dynamic range in different types of microperimeters will help to generate consistent clinical reference for measurements. PMID:25237592
Fixed-Rate Compressed Floating-Point Arrays.
Lindstrom, Peter
2014-12-01
Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.
Transceiver Design for CMUT-Based Super-Resolution Ultrasound Imaging.
Behnamfar, Parisa; Molavi, Reza; Mirabbasi, Shahriar
2016-04-01
A recently introduced structure for the capacitive micromachined ultrasonic transducers (CMUTs) has focused on the applications of the asymmetric mode of vibration and has shown promising results in construction of super-resolution ultrasound images. This paper presents the first implementation and experimental results of a transceiver circuit to interface such CMUT structures. The multiple input/multiple output receiver in this work supports both fundamental and asymmetric modes of operation and includes transimpedance amplifiers and low-power variable-gain stages. These circuit blocks are designed considering the trade-offs between gain, input impedance, noise, linearity and power consumption. The high-voltage transmitter can generate pulse voltages up to 60 V while occupying a considerably small area. The overall circuit is designed and laid out in a 0.35 μm CMOS process and a four-channel transceiver occupies 0.86 × 0.38 mm(2). The prototype chip is characterized in both electrical and mechanical domains. Measurement results show that each receiver channel has a nominal gain of 110 dBΩ with a 3 dB bandwidth of 9 MHz while consuming 1.02 mW from a 3.3 V supply. The receiver is also highly linear, with 1 dB compression point of minimum 1.05 V which is considerably higher than the previously reported designs. The transmitter consumes 98.1 mW from a 30 V supply while generating 1.38 MHz, 30 V pulses. The CMOS-CMUT system is tested in the transmit mode and shows full functionality in air medium.
Schönbach, Etienne M; Wolfson, Yulia; Strauss, Rupert W; Ibrahim, Mohamed A; Kong, Xiangrong; Muñoz, Beatriz; Birch, David G; Cideciyan, Artur V; Hahn, Gesa-Astrid; Nittala, Muneeswar; Sunness, Janet S; Sadda, SriniVas R; West, Sheila K; Scholl, Hendrik P N
2017-07-01
New outcome measures for treatment trials for Stargardt disease type 1 (STGD1) and other macular diseases are needed. Microperimetry allows mapping of light sensitivity of the macula and provides topographic information on visual function beyond visual acuity. To measure and analyze retinal light sensitivity of the macula in STGD1 using fundus-controlled perimetry (microperimetry). This was a multicenter prospective cohort study. A total of 199 patients and 326 eyes with molecularly confirmed (ABCA4) STGD1 underwent testing with the Nidek MP-1 microperimeter as part of the multicenter, prospective Natural History of the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) study. Sensitivity of 68 retinal loci was tested, and the mean sensitivity (MS) was determined; each point was categorized as "normal," "relative," or "deep" scotoma. Mean sensitivity and the number of points with normal sensitivity, relative, or deep scotomas. Mean (SD) patient age was 34.2 (14.7) years, mean (SD) best-corrected visual acuity of all eyes was 47.8 (16.9) Early Treatment Diabetic Retinopathy Study letter score (approximately 20/100 Snellen equivalent), and mean MS of all eyes of all 68 points was 11.0 (5.0) dB. The median number of normal points per eye was 49 (mean [SD], 41.3 [20.8]; range, 0-68); abnormal sensitivity and deep scotomas were more prevalent in the central macula. Mean sensitivity was lower in the fovea (mean [SD], 2.7 [4.4] dB) than in the inner (mean [SD], 6.8 [5.8] dB) and outer ring (mean [SD], 12.7 [5.3] dB). Overall MS per eye was 0.086 dB lower per year of additional age (95% CI, -0.13 to -0.041; P < .001) and 0.21 dB lower per additional year of duration of STGD1 (95% CI, -0.28 to -0.14; P < .001). Longer duration of STGD1 was associated with worse MS (β = -0.18; P < .001), with a lower number of normal test points (β = -0.71; P < .001), and with a higher number of deep scotoma points (β = -0.70; P < .001). We found 11 eyes with low MS (<6 dB) but very good best-corrected visual acuity of at least 72 Early Treatment Diabetic Retinopathy Study letter score (20/40 Snellen equivalent). We provide an extensive analysis of macular sensitivity parameters in STGD1 and demonstrate their association with demographic characteristics and vision. These data suggest microperimetry testing provides a more comprehensive assessment of retinal function and will be an important outcome measure in future clinical trials.
Acoustical Techniques/Designs Investigated During the Southeast Asia Conflict 1966-1972
1981-01-21
the inbuoy processor above, the three sensor channels, two directional and one omni, are multi - plexed together and via the RF link transmitted back to...width at the 10 db dco;.n points and mnximtum side lobe level of -15 db) requires at least six’ elements in the line. At a geometric wean frequency of...presentation provides the data to the operator in the most accessible format. The vehicle descriptors are easily extracted with the aid of multi -point
NASA Astrophysics Data System (ADS)
Grudinin, A. B.; Dianov, Evgenii M.; Korobkin, D. V.; Prokhorov, A. M.; Semenov, V. A.; Khrushchev, I. Yu
1990-08-01
An experimental investigation was made of the process of amplification of femtosecond pulses in single-mode fiber waveguides activated with erbium ions. The amplified pulses were compressed from 80 to 55 fs in the course of their propagation. The energy of the pulses was estimated to be 5 nJ. The maximum gain was 26 dB.
MRI dynamic range and its compatibility with signal transmission media
Gabr, Refaat E.; Schär, Michael; Edelstein, Arthur D.; Kraitchman, Dara L.; Bottomley, Paul A.; Edelstein, William A.
2010-01-01
As the number of MRI phased array coil elements grows, interactions among cables connecting them to the system receiver become increasingly problematic. Fiber optic or wireless links would reduce electromagnetic interference, but their dynamic range (DR) is generally less than that of coaxial cables. Raw MRI signals, however, have a large DR because of the high signal amplitude near the center of k-space. Here, we study DR in MRI in order to determine the compatibility of MRI multicoil imaging with non-coaxial cable signal transmission. Since raw signal data are routinely discarded, we have developed an improved method for estimating the DR of MRI signals from conventional magnitude images. Our results indicate that the DR of typical surface coil signals at 3 T for human subjects is less than 88 dB, even for three-dimensional acquisition protocols. Cardiac and spine coil arrays had a maximum DR of less than 75 dB and head coil arrays less than 88 dB. The DR derived from magnitude images is in good agreement with that measured from raw data. The results suggest that current analog fiber optic links, with a spurious-free DR of 60–70 dB at 500 kHz bandwidth, are not by themselves adequate for transmitting MRI data from volume or array coils with DR ~90 dB. However, combining analog links with signal compression might make non-coaxial cable signal transmission viable. PMID:19251444
MRI dynamic range and its compatibility with signal transmission media.
Gabr, Refaat E; Schär, Michael; Edelstein, Arthur D; Kraitchman, Dara L; Bottomley, Paul A; Edelstein, William A
2009-06-01
As the number of MRI phased array coil elements grows, interactions among cables connecting them to the system receiver become increasingly problematic. Fiber optic or wireless links would reduce electromagnetic interference, but their dynamic range (DR) is generally less than that of coaxial cables. Raw MRI signals, however, have a large DR because of the high signal amplitude near the center of k-space. Here, we study DR in MRI in order to determine the compatibility of MRI multicoil imaging with non-coaxial cable signal transmission. Since raw signal data are routinely discarded, we have developed an improved method for estimating the DR of MRI signals from conventional magnitude images. Our results indicate that the DR of typical surface coil signals at 3T for human subjects is less than 88 dB, even for three-dimensional acquisition protocols. Cardiac and spine coil arrays had a maximum DR of less than 75 dB and head coil arrays less than 88 dB. The DR derived from magnitude images is in good agreement with that measured from raw data. The results suggest that current analog fiber optic links, with a spurious-free DR of 60-70 dB at 500 kHz bandwidth, are not by themselves adequate for transmitting MRI data from volume or array coils with DR approximately 90 dB. However, combining analog links with signal compression might make non-coaxial cable signal transmission viable.
Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C
2016-01-01
Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, p<0.05) but had no effect on NEG. PTH therapy reduced vertebral NEG in the ND animals only (-73% vs untreated group, p<0.05), and increased femoral NEG in the DB vs. ND groups (+63%, p<0.05). PTH therapy had no effect on Ct.Po. Diabetes negatively affected bone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (p<0.05). PTH improved maximum strain in the vertebra of the ND animals (+21%, p<0.05) but did not have an effect in the DB group. PTH increased femoral maximum strain (+21%) and toughness (+28%) in ND and decreased femoral maximum stress (-13%) and toughness (-27%) in the DB animals (treated vs. untreated, p<0.05). Ct.Po correlated negatively with maximum stress (fem: R=-0.35, p<0.05, vert: R=-0.57, p<0.01), maximum strain (fem: R=-0.35, p<0.05, vert: R=-0.43, p<0.05) and toughness (fem: R=-0.34, p<0.05, vert: R=-0.55, p<0.01), and NEG correlated negatively with toughness at the femur (R=-0.34, p<0.05) and maximum strain at the vertebra (R=-0.49, p<0.05). Diabetes increased cortical porosity and reduced bone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Weber, W. J., III; Stanton, P. H.; Sumida, J. T.
1978-01-01
A bandwidth compressive modem making use of multi-amplitude minimum shift keying (MAMSK) has been designed and implemented in a laboratory environment at microwave frequencies. This system achieves a substantial bandwidth reduction over binary PSK and operates within 0.5 dB of theoretical performance. A number of easily implemented microwave transmitters have been designed to generate the required set of 16 signals. The receiver has been designed to work at 1 Mbit/s and contains the necessary phase tracking, AGC, and symbol synchronization loops as well as a lock detector, SNR estimator and provisions for differential decoding. This paper describes this entire system and presents the experimental results.
Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao
2017-04-01
Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.
Novel modes and adaptive block scanning order for intra prediction in AV1
NASA Astrophysics Data System (ADS)
Hadar, Ofer; Shleifer, Ariel; Mukherjee, Debargha; Joshi, Urvang; Mazar, Itai; Yuzvinsky, Michael; Tavor, Nitzan; Itzhak, Nati; Birman, Raz
2017-09-01
The demand for streaming video content is on the rise and growing exponentially. Networks bandwidth is very costly and therefore there is a constant effort to improve video compression rates and enable the sending of reduced data volumes while retaining quality of experience (QoE). One basic feature that utilizes the spatial correlation of pixels for video compression is Intra-Prediction, which determines the codec's compression efficiency. Intra prediction enables significant reduction of the Intra-Frame (I frame) size and, therefore, contributes to efficient exploitation of bandwidth. In this presentation, we propose new Intra-Prediction algorithms that improve the AV1 prediction model and provide better compression ratios. Two (2) types of methods are considered: )1( New scanning order method that maximizes spatial correlation in order to reduce prediction error; and )2( New Intra-Prediction modes implementation in AVI. Modern video coding standards, including AVI codec, utilize fixed scan orders in processing blocks during intra coding. The fixed scan orders typically result in residual blocks with high prediction error mainly in blocks with edges. This means that the fixed scan orders cannot fully exploit the content-adaptive spatial correlations between adjacent blocks, thus the bitrate after compression tends to be large. To reduce the bitrate induced by inaccurate intra prediction, the proposed approach adaptively chooses the scanning order of blocks according to criteria of firstly predicting blocks with maximum number of surrounding, already Inter-Predicted blocks. Using the modified scanning order method and the new modes has reduced the MSE by up to five (5) times when compared to conventional TM mode / Raster scan and up to two (2) times when compared to conventional CALIC mode / Raster scan, depending on the image characteristics (which determines the percentage of blocks predicted with Inter-Prediction, which in turn impacts the efficiency of the new scanning method). For the same cases, the PSNR was shown to improve by up to 7.4dB and up to 4 dB, respectively. The new modes have yielded 5% improvement in BD-Rate over traditionally used modes, when run on K-Frame, which is expected to yield 1% of overall improvement.
NASA Astrophysics Data System (ADS)
Stone, Michael A.; Moore, Brian C. J.
2003-08-01
Using a ``noise-vocoder'' cochlear implant simulator [Shannon et al., Science 270, 303-304 (1995)], the effect of the speed of dynamic range compression on speech intelligibility was assessed, using normal-hearing subjects. The target speech had a level 5 dB above that of the competing speech. Initially, baseline performance was measured with no compression active, using between 4 and 16 processing channels. Then, performance was measured using a fast-acting compressor and a slow-acting compressor, each operating prior to the vocoder simulation. The fast system produced significant gain variation over syllabic timescales. The slow system produced significant gain variation only over the timescale of sentences. With no compression active, about six channels were necessary to achieve 50% correct identification of words in sentences. Sixteen channels produced near-maximum performance. Slow-acting compression produced no significant degradation relative to the baseline. However, fast-acting compression consistently reduced performance relative to that for the baseline, over a wide range of performance levels. It is suggested that fast-acting compression degrades performance for two reasons: (1) because it introduces correlated fluctuations in amplitude in different frequency bands, which tends to produce perceptual fusion of the target and background sounds and (2) because it reduces amplitude modulation depth and intensity contrasts.
Anti-diabetic and hypolipidemic effects of Sargassum yezoense in db/db mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Su-Nam, E-mail: snkim@kist.re.kr; Lee, Woojung; Bae, Gyu-Un
2012-08-10
Highlights: Black-Right-Pointing-Pointer Sargassum yezoense (SY) treatment improved glucose and lipid impairment in vivo. Black-Right-Pointing-Pointer This pharmacological action is associated with PPAR{alpha}/{gamma} dual activation. Black-Right-Pointing-Pointer It decreases the expression of G6Pase for gluconeogenesis in liver. Black-Right-Pointing-Pointer It increases the expression of UCP3 for lipid metabolism in adipose tissue. Black-Right-Pointing-Pointer There are no significant side effects such as body weight gain and hepatomegaly. -- Abstract: Peroxisome proliferator-activated receptors (PPARs) have been considered to be desirable targets for metabolic syndrome, even though their specific agonists have several side effects including body weight gain, edema and tissue failure. Previously, we have reported in vitromore » effects of Sargassum yezoense (SY) and its ingredients, sargaquinoic acid (SQA) and sargahydroquinoic acid (SHQA), on PPAR{alpha}/{gamma} dual transcriptional activation. In this study, we describe in vivo pharmacological property of SY on metabolic disorders. SY treatment significantly improved glucose and lipid impairment in db/db mice model. More importantly, there are no significant side effects such as body weight gain and hepatomegaly in SY-treated animals, indicating little side effects of SY in liver and lipid metabolism. In addition, SY led to a decrease in the expression of G6Pase for gluconeogenesis in liver responsible for lowering blood glucose level and an increase in the expression of UCP3 in adipose tissue for the reduction of total and LDL-cholesterol level. Altogether, our data suggest that SY would be a potential therapeutic agent against type 2 diabetes and related metabolic disorders by ameliorating the glucose and lipid metabolism.« less
NASA Astrophysics Data System (ADS)
Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin
2018-05-01
In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.
NASA Technical Reports Server (NTRS)
Gabriel, Philip M.; Yeh, Penshu; Tsay, Si-Chee
2013-01-01
This paper presents results and analyses of applying an international space data compression standard to weather radar measurements that can easily span 8 orders of magnitude and typically require a large storage capacity as well as significant bandwidth for transmission. By varying the degree of the data compression, we analyzed the non-linear response of models that relate measured radar reflectivity and/or Doppler spectra to the moments and properties of the particle size distribution characterizing clouds and precipitation. Preliminary results for the meteorologically important phenomena of clouds and light rain indicate that for a 0.5 dB calibration uncertainty, typical for the ground-based pulsed-Doppler 94 GHz (or 3.2 mm, W-band) weather radar used as a proxy for spaceborne radar in this study, a lossless compression ratio of only 1.2 is achievable. However, further analyses of the non-linear response of various models of rainfall rate, liquid water content and median volume diameter show that a lossy data compression ratio exceeding 15 is realizable. The exploratory analyses presented are relevant to future satellite missions, where the transmission bandwidth is premium and storage requirements of vast volumes of data, potentially problematic.
Coletta, Alain; Molter, Colin; Duqué, Robin; Steenhoff, David; Taminau, Jonatan; de Schaetzen, Virginie; Meganck, Stijn; Lazar, Cosmin; Venet, David; Detours, Vincent; Nowé, Ann; Bersini, Hugues; Weiss Solís, David Y
2012-11-18
Genomics datasets are increasingly useful for gaining biomedical insights, with adoption in the clinic underway. However, multiple hurdles related to data management stand in the way of their efficient large-scale utilization. The solution proposed is a web-based data storage hub. Having clear focus, flexibility and adaptability, InSilico DB seamlessly connects genomics dataset repositories to state-of-the-art and free GUI and command-line data analysis tools. The InSilico DB platform is a powerful collaborative environment, with advanced capabilities for biocuration, dataset sharing, and dataset subsetting and combination. InSilico DB is available from https://insilicodb.org.
Implementing Connected Component Labeling as a User Defined Operator for SciDB
NASA Technical Reports Server (NTRS)
Oloso, Amidu; Kuo, Kwo-Sen; Clune, Thomas; Brown, Paul; Poliakov, Alex; Yu, Hongfeng
2016-01-01
We have implemented a flexible User Defined Operator (UDO) for labeling connected components of a binary mask expressed as an array in SciDB, a parallel distributed database management system based on the array data model. This UDO is able to process very large multidimensional arrays by exploiting SciDB's memory management mechanism that efficiently manipulates arrays whose memory requirements far exceed available physical memory. The UDO takes as primary inputs a binary mask array and a binary stencil array that specifies the connectivity of a given cell to its neighbors. The UDO returns an array of the same shape as the input mask array with each foreground cell containing the label of the component it belongs to. By default, dimensions are treated as non-periodic, but the UDO also accepts optional input parameters to specify periodicity in any of the array dimensions. The UDO requires four stages to completely label connected components. In the first stage, labels are computed for each subarray or chunk of the mask array in parallel across SciDB instances using the weighted quick union (WQU) with half-path compression algorithm. In the second stage, labels around chunk boundaries from the first stage are stored in a temporary SciDB array that is then replicated across all SciDB instances. Equivalences are resolved by again applying the WQU algorithm to these boundary labels. In the third stage, relabeling is done for each chunk using the resolved equivalences. In the fourth stage, the resolved labels, which so far are "flattened" coordinates of the original binary mask array, are renamed with sequential integers for legibility. The UDO is demonstrated on a 3-D mask of O(1011) elements, with O(108) foreground cells and O(106) connected components. The operator completes in 19 minutes using 84 SciDB instances.
Binary power multiplier for electromagnetic energy
Farkas, Zoltan D.
1988-01-01
A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.
Multi-rate, real time image compression for images dominated by point sources
NASA Technical Reports Server (NTRS)
Huber, A. Kris; Budge, Scott E.; Harris, Richard W.
1993-01-01
An image compression system recently developed for compression of digital images dominated by point sources is presented. Encoding consists of minimum-mean removal, vector quantization, adaptive threshold truncation, and modified Huffman encoding. Simulations are presented showing that the peaks corresponding to point sources can be transmitted losslessly for low signal-to-noise ratios (SNR) and high point source densities while maintaining a reduced output bit rate. Encoding and decoding hardware has been built and tested which processes 552,960 12-bit pixels per second at compression rates of 10:1 and 4:1. Simulation results are presented for the 10:1 case only.
[Comparing the ranges of defect measured with standard white on white and Pulsar perimetries].
González de la Rosa, M; González-Hernández, M; García-Feijoo, J; Sánchez Méndez, M; García-Sánchez, J
2011-04-01
Normal thresholds on Pulsar perimetry fall faster than those of standard perimetry in the peripheral visual field. Two related studies were performed. Firstly, the frequency distributions of glaucoma defects on standard automated perimetry (SAP) and the relationship of the centre and periphery (Study A) were studied first, followed by an attempt to establish the limits of pulsar perimetry (Study B). A: frequency of defects was calculated in 78.663 SAP perimetries (G1-TOP, Octopus 1-2-3, Haag-Streit). Study B: 204 eyes with mean defect (MD-SAP) lower than 9 dB were examined 8.92 ± 4.19 times with SAP (TOP-32, Octopus 311) and temporal modulation perimetry (T30W, Pulsar Perimeter, Haag-Streit). Study A: 50.7% of the SAP examinations showed MD values lower than 9 dB and 32.7% bellow 6 dB. The MD correlation of the central 20° with the MD of the most peripheral points was r=0.933. Study B: in cases with MD-TOP-32 lower than 6 dB, SAP had the maximum possibility of detecting defect in 0.02% of points and Pulsar in 0.29%. In subjects with MD-TOP-32 between 6 and 9 dB frequencies were 0.38% in SAP and 3.5% in Pulsar (5.1% for eccentricities higher than 20°). Pulsar allows detecting defects, without range limitations, in the initial half of SAP frequencies expected on glaucoma patients. In order to study the progression of deeper defects the examination should focus on the central points, where the dynamic range of both systems is more equivalent. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.
Optimal Compression Methods for Floating-point Format Images
NASA Technical Reports Server (NTRS)
Pence, W. D.; White, R. L.; Seaman, R.
2009-01-01
We report on the results of a comparison study of different techniques for compressing FITS images that have floating-point (real*4) pixel values. Standard file compression methods like GZIP are generally ineffective in this case (with compression ratios only in the range 1.2 - 1.6), so instead we use a technique of converting the floating-point values into quantized scaled integers which are compressed using the Rice algorithm. The compressed data stream is stored in FITS format using the tiled-image compression convention. This is technically a lossy compression method, since the pixel values are not exactly reproduced, however all the significant photometric and astrometric information content of the image can be preserved while still achieving file compression ratios in the range of 4 to 8. We also show that introducing dithering, or randomization, when assigning the quantized pixel-values can significantly improve the photometric and astrometric precision in the stellar images in the compressed file without adding additional noise. We quantify our results by comparing the stellar magnitudes and positions as measured in the original uncompressed image to those derived from the same image after applying successively greater amounts of compression.
Simplified design of diaphragm-based fiber optic extrinsic Fabry-Perot accelerometer
NASA Astrophysics Data System (ADS)
Wang, Zhaogang; Zhang, Wentao; Han, Jing; Huang, Wenzhu; Li, Fang
2014-11-01
A fiber optic Fabry-Perot accelerometer (FOFPA) with diaphragm-mass-collimator (DMC) gathered structure is presented. This design makes the structure more compacts and the manufacturing process more controllable. The operation principle based on Fabry-Perot interference is described. Several tests using intensity demodulation scheme which can control the working point of FOFPA were carried out. Experimental results show that: axis sensitivity of the proposed FOFPA is 36.07 dB (re: 0 dB=1 V/g) with a fluctuation less than 0.9 dB in a frequency bandwidth of 10-125 Hz, the resonant frequency is about 350 Hz, measurement range is about 70 dB@100 Hz. which are much close to theoretical values
40 Gbit/s low-loss silicon optical modulator based on a pipin diode.
Ziebell, Melissa; Marris-Morini, Delphine; Rasigade, Gilles; Fédéli, Jean-Marc; Crozat, Paul; Cassan, Eric; Bouville, David; Vivien, Laurent
2012-05-07
40 Gbit/s low-loss silicon optical modulators are demonstrated. The devices are based on the carrier depletion effect in a pipin diode to generate a good compromise between high efficiency, speed and low optical loss. The diode is embedded in a Mach-Zehnder interferometer, and a self-aligned fabrication process was used to obtain precise localization of the active p-doped region in the middle of the waveguide. Using a 4.7 mm (resp. 0.95 mm) long phase shifter, the modulator exhibits an extinction ratio of 6.6 dB (resp. 3.2 dB), simultaneously with an optical loss of 6 dB (resp. 4.5 dB) at the same operating point.
NASA Astrophysics Data System (ADS)
Nasution, A. B.; Efendi, S.; Suwilo, S.
2018-04-01
The amount of data inserted in the form of audio samples that use 8 bits with LSB algorithm, affect the value of PSNR which resulted in changes in image quality of the insertion (fidelity). So in this research will be inserted audio samples using 5 bits with MLSB algorithm to reduce the number of data insertion where previously the audio sample will be compressed with Arithmetic Coding algorithm to reduce file size. In this research will also be encryption using Triple DES algorithm to better secure audio samples. The result of this research is the value of PSNR more than 50dB so it can be concluded that the image quality is still good because the value of PSNR has exceeded 40dB.
P³DB 3.0: From plant phosphorylation sites to protein networks.
Yao, Qiuming; Ge, Huangyi; Wu, Shangquan; Zhang, Ning; Chen, Wei; Xu, Chunhui; Gao, Jianjiong; Thelen, Jay J; Xu, Dong
2014-01-01
In the past few years, the Plant Protein Phosphorylation Database (P(3)DB, http://p3db.org) has become one of the most significant in vivo data resources for studying plant phosphoproteomics. We have substantially updated P(3)DB with respect to format, new datasets and analytic tools. In the P(3)DB 3.0, there are altogether 47 923 phosphosites in 16 477 phosphoproteins curated across nine plant organisms from 32 studies, which have met our multiple quality standards for acquisition of in vivo phosphorylation site data. Centralized by these phosphorylation data, multiple related data and annotations are provided, including protein-protein interaction (PPI), gene ontology, protein tertiary structures, orthologous sequences, kinase/phosphatase classification and Kinase Client Assay (KiC Assay) data--all of which provides context for the phosphorylation event. In addition, P(3)DB 3.0 incorporates multiple network viewers for the above features, such as PPI network, kinase-substrate network, phosphatase-substrate network, and domain co-occurrence network to help study phosphorylation from a systems point of view. Furthermore, the new P(3)DB reflects a community-based design through which users can share datasets and automate data depository processes for publication purposes. Each of these new features supports the goal of making P(3)DB a comprehensive, systematic and interactive platform for phosphoproteomics research.
[Effects of infrasound on visual electrophysiology in mice].
Shi, Li; Zhang, Zuo-ming; Chen, Jing-zao; Liu, Jing
2003-04-01
To investigate the possible effects of infrasound on visual functions. One hundred and fifty mature male Kunming-mice were divided into 5 groups, in which one was control and the other four were exposed to infrasound of 8 Hz, 90 dB; 8 Hz, 130 dB; 16 Hz, 90 dB and 16 Hz, 130 dB 2 h/d respectively. The exposure time for them were 0, 1, 4, 7, 14 and 21 d respectively, each group was divided into 6 sub-groups. Electroretinogram (ERG), oscillatory potentials (OPs), and visual evoked potential (VEP) were recorded after exposure. The visual electrophysiological indices after 8 Hz, 90 dB and 16 Hz, 90 dB exposures were similar except for a little difference at some temporal points (P<0.05). Most of the indices in 8 Hz, 130 dB group changed after 7 d exposure, and the longer the exposure, the more obvious changes were observed (P<0.01). The indices in 16 Hz, 130 dB group changed obviously after 1 d and reversed with increase of exposure time (P<0.01). The effect of infrasound on visual functions are related to its frequency and intensity. Infrasound of different frequencies causes different levels of retinal resonance, which leads to different degrees of cellular lesion and produces different electrical potentials.
Effect of Pointing Error on the BER Performance of an Optical CDMA FSO Link with SIK Receiver
NASA Astrophysics Data System (ADS)
Nazrul Islam, A. K. M.; Majumder, S. P.
2017-12-01
An analytical approach is presented for an optical code division multiple access (OCDMA) system over free space optical (FSO) channel considering the effect of pointing error between the transmitter and the receiver. Analysis is carried out with an optical sequence inverse keying (SIK) correlator receiver with intensity modulation and direct detection (IM/DD) to find the bit error rate (BER) with pointing error. The results are evaluated numerically in terms of signal-to-noise plus multi-access interference (MAI) ratio, BER and power penalty due to pointing error. It is noticed that the OCDMA FSO system is highly affected by pointing error with significant power penalty at a BER of 10-6 and 10-9. For example, penalty at BER 10-9 is found to be 9 dB corresponding to normalized pointing error of 1.4 for 16 users with processing gain of 256 and is reduced to 6.9 dB when the processing gain is increased to 1,024.
NASA Technical Reports Server (NTRS)
Seller, J.
1985-01-01
The inertial pointing stability of a gimbal pointing system (AGS) was compared with a magnetic pointing/gimbal followup system (ASPS), under certain conditions of system structural flexibility and disturbance inputs from the gimbal support structure. Separate 3 degree-of-freedom (3DOF) linear models based on NASTRAN modal flexibility data for the gimbal and support structures were generated for the ASPS configurations. Using the models inertial pointing control loops providing 6dB of gain margin and 45 deg of phase margin were defined for each configuration. The pointing loop bandwidth obtained for the ASPS is more than twice the level achieved for the AGS configuration. The AGS limit is attributed to the gimbal and support structure flexibility. As a result of the higher ASPS pointing loop bandwidth and the disturbance rejection provided by the magnetic isolation ASPS pointing performane is significantly better than that of the AGS system. The low frequency peak of the ASPS transfer function from base disturbance to payload angular motion is almost 60dB lower than AGS low frequency peak.
Development for a supercompact X -band pulse compression system and its application at SLAC
Wang, Juwen W.; Tantawi, Sami G.; Xu, Chen; ...
2017-11-09
Here, we have successfully designed, fabricated, installed, and tested a super compact X -band SLAC Energy Doubler system at SLAC. It is composed of an elegant 3 dB coupler–mode converter–polarizer coupled to a single spherical energy storage cavity with high Q 0 of 94000 and a diameter less than 12 cm. The available rf peak power of 50 MW can be compressed to a peak average power of more than 200 MW in order to double the kick for the electron bunches in a rf transverse deflector system and greatly improve the measurement resolution of both the electron bunches andmore » the x-ray free-electron laser pulses. The design physics and fabrication as well as the measurement results will be presented in detail. High-power operation has demonstrated the excellent performance of this rf compression system without rf breakdown, sign of pulse heating, and rf radiation.« less
Development for a supercompact X -band pulse compression system and its application at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juwen W.; Tantawi, Sami G.; Xu, Chen
Here, we have successfully designed, fabricated, installed, and tested a super compact X -band SLAC Energy Doubler system at SLAC. It is composed of an elegant 3 dB coupler–mode converter–polarizer coupled to a single spherical energy storage cavity with high Q 0 of 94000 and a diameter less than 12 cm. The available rf peak power of 50 MW can be compressed to a peak average power of more than 200 MW in order to double the kick for the electron bunches in a rf transverse deflector system and greatly improve the measurement resolution of both the electron bunches andmore » the x-ray free-electron laser pulses. The design physics and fabrication as well as the measurement results will be presented in detail. High-power operation has demonstrated the excellent performance of this rf compression system without rf breakdown, sign of pulse heating, and rf radiation.« less
NASA Astrophysics Data System (ADS)
Zhu, Zhenyu; Wang, Jianyu
1996-11-01
In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.
HippDB: a database of readily targeted helical protein-protein interactions.
Bergey, Christina M; Watkins, Andrew M; Arora, Paramjit S
2013-11-01
HippDB catalogs every protein-protein interaction whose structure is available in the Protein Data Bank and which exhibits one or more helices at the interface. The Web site accepts queries on variables such as helix length and sequence, and it provides computational alanine scanning and change in solvent-accessible surface area values for every interfacial residue. HippDB is intended to serve as a starting point for structure-based small molecule and peptidomimetic drug development. HippDB is freely available on the web at http://www.nyu.edu/projects/arora/hippdb. The Web site is implemented in PHP, MySQL and Apache. Source code freely available for download at http://code.google.com/p/helidb, implemented in Perl and supported on Linux. arora@nyu.edu.
NASA Astrophysics Data System (ADS)
Shashikumar, C.; Pradhan, R. C.; Mishra, S.
2018-06-01
Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.
NASA Astrophysics Data System (ADS)
Shashikumar, C.; Pradhan, R. C.; Mishra, S.
2018-02-01
Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.
NASA Technical Reports Server (NTRS)
Lawton, R. M.
1976-01-01
An analysis of magnetic fields in the Orbiter Payload Bay resulting from the present grounding configuration (structure return) was presented and the amount of improvement that would result from installing wire returns for the three dc power buses was determined. Ac and dc magnetic fields at five points in a cross-section of the bay are calculated for both grounding configurations. Y and Z components of the field at each point are derived in terms of a constant coefficient and the current amplitude of each bus. The dc loads assumed are 100 Amperes for each bus. The ac noise current used is a spectrum 6 db higher than the Orbiter equipment limit for narrowband conducted emissions. It was concluded that installing return wiring to provide a single point ground for the dc Buses in the Payload Bay would reduce the ac and dc magnetic field intensity by approximately 30 db.
Robust Audio Watermarking Scheme Based on Deterministic Plus Stochastic Model
NASA Astrophysics Data System (ADS)
Dhar, Pranab Kumar; Kim, Cheol Hong; Kim, Jong-Myon
Digital watermarking has been widely used for protecting digital contents from unauthorized duplication. This paper proposes a new watermarking scheme based on spectral modeling synthesis (SMS) for copyright protection of digital contents. SMS defines a sound as a combination of deterministic events plus a stochastic component that makes it possible for a synthesized sound to attain all of the perceptual characteristics of the original sound. In our proposed scheme, watermarks are embedded into the highest prominent peak of the magnitude spectrum of each non-overlapping frame in peak trajectories. Simulation results indicate that the proposed watermarking scheme is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, and MP3 compression and achieves similarity values ranging from 17 to 22. In addition, our proposed scheme achieves signal-to-noise ratio (SNR) values ranging from 29 dB to 30 dB.
Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing
2016-09-01
Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious anabolic and anticatabolic effects. This study not only enriches our basic knowledge about bone quality and bone turnover mechanisms in leptin receptor-deficient animals, but also advances our understanding of the skeletal sensitivity of leptin-resistant db/db mice in response to external mechanical stimulation. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
A comparison between temporal and subband minimum variance adaptive beamforming
NASA Astrophysics Data System (ADS)
Diamantis, Konstantinos; Voxen, Iben H.; Greenaway, Alan H.; Anderson, Tom; Jensen, Jørgen A.; Sboros, Vassilis
2014-03-01
This paper compares the performance between temporal and subband Minimum Variance (MV) beamformers for medical ultrasound imaging. Both adaptive methods provide an optimized set of apodization weights but are implemented in the time and frequency domains respectively. Their performance is evaluated with simulated synthetic aperture data obtained from Field II and is quantified by the Full-Width-Half-Maximum (FWHM), the Peak-Side-Lobe level (PSL) and the contrast level. From a point phantom, a full sequence of 128 emissions with one transducer element transmitting and all 128 elements receiving each time, provides a FWHM of 0.03 mm (0.14λ) for both implementations at a depth of 40 mm. This value is more than 20 times lower than the one achieved by conventional beamforming. The corresponding values of PSL are -58 dB and -63 dB for time and frequency domain MV beamformers, while a value no lower than -50 dB can be obtained from either Boxcar or Hanning weights. Interestingly, a single emission with central element #64 as the transmitting aperture provides results comparable to the full sequence. The values of FWHM are 0.04 mm and 0.03 mm and those of PSL are -42 dB and -46 dB for temporal and subband approaches. From a cyst phantom and for 128 emissions, the contrast level is calculated at -54 dB and -63 dB respectively at the same depth, with the initial shape of the cyst being preserved in contrast to conventional beamforming. The difference between the two adaptive beamformers is less significant in the case of a single emission, with the contrast level being estimated at -42 dB for the time domain and -43 dB for the frequency domain implementation. For the estimation of a single MV weight of a low resolution image formed by a single emission, 0.44 * 109 calculations per second are required for the temporal approach. The same numbers for the subband approach are 0.62 * 109 for the point and 1.33 * 109 for the cyst phantom. The comparison demonstrates similar resolution but slightly lower side-lobes and higher contrast for the subband approach at the expense of increased computation time.
Motion-Compensated Compression of Dynamic Voxelized Point Clouds.
De Queiroz, Ricardo L; Chou, Philip A
2017-05-24
Dynamic point clouds are a potential new frontier in visual communication systems. A few articles have addressed the compression of point clouds, but very few references exist on exploring temporal redundancies. This paper presents a novel motion-compensated approach to encoding dynamic voxelized point clouds at low bit rates. A simple coder breaks the voxelized point cloud at each frame into blocks of voxels. Each block is either encoded in intra-frame mode or is replaced by a motion-compensated version of a block in the previous frame. The decision is optimized in a rate-distortion sense. In this way, both the geometry and the color are encoded with distortion, allowing for reduced bit-rates. In-loop filtering is employed to minimize compression artifacts caused by distortion in the geometry information. Simulations reveal that this simple motion compensated coder can efficiently extend the compression range of dynamic voxelized point clouds to rates below what intra-frame coding alone can accommodate, trading rate for geometry accuracy.
The use of ZFP lossy floating point data compression in tornado-resolving thunderstorm simulations
NASA Astrophysics Data System (ADS)
Orf, L.
2017-12-01
In the field of atmospheric science, numerical models are used to produce forecasts of weather and climate and serve as virtual laboratories for scientists studying atmospheric phenomena. In both operational and research arenas, atmospheric simulations exploiting modern supercomputing hardware can produce a tremendous amount of data. During model execution, the transfer of floating point data from memory to the file system is often a significant bottleneck where I/O can dominate wallclock time. One way to reduce the I/O footprint is to compress the floating point data, which reduces amount of data saved to the file system. In this presentation we introduce LOFS, a file system developed specifically for use in three-dimensional numerical weather models that are run on massively parallel supercomputers. LOFS utilizes the core (in-memory buffered) HDF5 driver and includes compression options including ZFP, a lossy floating point data compression algorithm. ZFP offers several mechanisms for specifying the amount of lossy compression to be applied to floating point data, including the ability to specify the maximum absolute error allowed in each compressed 3D array. We explore different maximum error tolerances in a tornado-resolving supercell thunderstorm simulation for model variables including cloud and precipitation, temperature, wind velocity and vorticity magnitude. We find that average compression ratios exceeding 20:1 in scientifically interesting regions of the simulation domain produce visually identical results to uncompressed data in visualizations and plots. Since LOFS splits the model domain across many files, compression ratios for a given error tolerance can be compared across different locations within the model domain. We find that regions of high spatial variability (which tend to be where scientifically interesting things are occurring) show the lowest compression ratios, whereas regions of the domain with little spatial variability compress extremely well. We observe that the overhead for compressing data with ZFP is low, and that compressing data in memory reduces the amount of memory overhead needed to store the virtual files before they are flushed to disk.
[First experiences with a new nickel-titanium piston with a shape memory feature].
Hornung, J; Zenk, J; Schick, B; Wurm, J; Iro, H
2007-02-01
The aim of this study was to describe a new stapes prosthesis with memory characteristics for wire crimping (SMart-Piston). This technique was used in 15 patients (mean age 43.4 years; range 28-71) undergoing routine stapes surgery. SMart-Piston prostheses with a shaft diameter of 0.5 mm and length ranging from 4.25-4.5 mm were used. Heat induced wire crimping was performed by CO2 laser in five patients, and by bipolar diathermy forceps in ten patients. In 15 patients, postoperative audiological testing was performed at an average 21.9 days and in another 10 again after 435 days following surgery. The median observed air-bone-gap (ABG) postoperatively was 8.7 dB+/-7.7 dB. A total of 73% of all patients had an ABG of 10 dB or less, and all patients had less than 20 dB. In the ten patients controlled after 435 days, the ABG was 4.4 dB+/-2.4 dB. It was lower than 10 dB in all individuals. A critical point in every stapes surgery, the prosthesis fixation to the incus, is greatly facilitated by this novel technique. Long-term results in a larger group of patients are pending.
Matching Automatic Gain Control Across Devices in Bimodal Cochlear Implant Users.
Veugen, Lidwien C E; Chalupper, Josef; Snik, Ad F M; Opstal, A John van; Mens, Lucas H M
2016-01-01
The purpose of this study was to improve bimodal benefit in listeners using a cochlear implant (CI) and a hearing aid (HA) in contralateral ears, by matching the time constants and the number of compression channels of the automatic gain control (AGC) of the HA to the CI. Equivalent AGC was hypothesized to support a balanced loudness for dynamically changing signals like speech and improve bimodal benefit for speech understanding in quiet and with noise presented from the side(s) at 90 degree. Fifteen subjects participated in the study, all using the same Advanced Bionics Harmony CI processor and HA (Phonak Naida S IX UP). In a 3-visit crossover design with 4 weeks between sessions, performance was measured using a HA with a standard AGC (syllabic multichannel compression with 1 ms attack time and 50 ms release time) or an AGC that was adjusted to match that of the CI processor (dual AGC broadband compression, 3 and 240 msec attack time, 80 and 1500 msec release time). In all devices, the AGC was activated above the threshold of 63 dB SPL. The authors balanced loudness across the devices for soft and loud input sounds in 3 frequency bands (0 to 548, 548 to 1000, and >1000 Hz). Speech understanding was tested in free field in quiet and in noise for three spatial speaker configurations, with target speech always presented from the front. Single-talker noise was either presented from the CI side or the HA side, or uncorrelated stationary speech-weighted noise or single-talker noise was presented from both sides. Questionnaires were administered to assess differences in perception between the two bimodal fittings. Significant bimodal benefit over the CI alone was only found for the AGC-matched HA for the speech tests with single-talker noise. Compared with the standard HA, matched AGC characteristics significantly improved speech understanding in single-talker noise by 1.9 dB when noise was presented from the HA side. AGC matching increased bimodal benefit insignificantly by 0.6 dB when noise was presented from the CI implanted side, or by 0.8 (single-talker noise) and 1.1 dB (stationary noise) in the more complex configurations with two simultaneous maskers from both sides. In questionnaires, subjects rated the AGC-matched HA higher than the standard HA for understanding of one person in quiet and in noise, and for the quality of sounds. Listening to a slightly raised voice, subjects indicated increased listening comfort with matched AGCs. At the end of the study, 9 of 15 subjects preferred to take home the AGC-matched HA, 1 preferred the standard HA and 5 subjects had no preference. For bimodal listening, the AGC-matched HA outperformed the standard HA in speech understanding in noise tasks using a single competing talker and it was favored in questionnaires and in a subjective preference test. When noise was presented from the HA side, AGC matching resulted in a 1.9 dB SNR additional benefit, even though the HA was at the least favorable SNR side in this speaker configuration. Our results possibly suggest better binaural processing for matched AGCs.
Performance and Uniformity of Mass-Produced SIS Mixers for ALMA Band 8 Receiver Cartridges
NASA Astrophysics Data System (ADS)
Tomura, Tomonuri; Noguchi, Takashi; Sekimoto, Yutaro; Shan, Wenlei; Sato, Naohisa; Iizuka, Yoshizo; Kumagai, Kazuyoshi; Niizeki, Yasuaki; Iwakuni, Mikio; Ito, Tetsuya
2015-05-01
The Atacama large millimeter/submillimeter array (ALMA), which was jointly built in Chile by Europe, North America and East Asia, has an observational band from 30 to 950 GHz [1], [2]. We developed receiver cartridges for ALMA Band 8 (385-500 GHz) [3]-[5] which is one of ALMA 10 frequency bands. The Band 8 receiver cartridges were produced as 73 cartridges, and 292 SIS mixers were installed in their cartridges. Also, their all cartridges were required to meet following ALMA specifications: 1. The noise temperature is less than 196 K over 80% of the frequency range and less than 292 K at any frequency from 385 to 500 GHz. 2. The image rejection ratio is larger than 10 dB over 90% of the frequency range. 3. The IF output power variation is less than 7.0 dB peak-to-peak in the 4-8 GHz band. 4. The gain compression to RF load temperatures between 77 and 373 K is less than 5%. 5. The Allan variance of the IF output power is less than 4.0×10-7 in the time scale of 0.05 s≤T≤100 s and 3.0×10-6 at 300 s. To meet these specifications, the performance and uniformity of the SIS mixers are crucial. The SIS mixers with Nb/Al-AlOx/Nb superconductor-insulator-superconductor (SIS) tunnel junctions were fabricated in a clean room of National Astronomical Observatory of Japan and over 1000 mixer chips were mass-produced. After screening these mixers, 73 Band 8 receivers were assembled and tested. We report the test results of the mass-produced mixers and the receiver cartridges in detail from a statistical point of view.
Texture Studies and Compression Behaviour of Apple Flesh
NASA Astrophysics Data System (ADS)
James, Bryony; Fonseca, Celia
Compressive behavior of fruit flesh has been studied using mechanical tests and microstructural analysis. Apple flesh from two cultivars (Braeburn and Cox's Orange Pippin) was investigated to represent the extremes in a spectrum of fruit flesh types, hard and juicy (Braeburn) and soft and mealy (Cox's). Force-deformation curves produced during compression of unconstrained discs of apple flesh followed trends predicted from the literature for each of the "juicy" and "mealy" types. The curves display the rupture point and, in some cases, a point of inflection that may be related to the point of incipient juice release. During compression these discs of flesh generally failed along the centre line, perpendicular to the direction of loading, through a barrelling mechanism. Cryo-Scanning Electron Microscopy (cryo-SEM) was used to examine the behavior of the parenchyma cells during fracture and compression using a purpose designed sample holder and compression tester. Fracture behavior reinforced the difference in mechanical properties between crisp and mealy fruit flesh. During compression testing prior to cryo-SEM imaging the apple flesh was constrained perpendicular to the direction of loading. Microstructural analysis suggests that, in this arrangement, the material fails along a compression front ahead of the compressing plate. Failure progresses by whole lines of parenchyma cells collapsing, or rupturing, with juice filling intercellular spaces, before the compression force is transferred to the next row of cells.
Compressed Air Quality, A Case Study In Paiton Coal Fired Power Plant Unit 1 And 2
NASA Astrophysics Data System (ADS)
Indah, Nur; Kusuma, Yuriadi; Mardani
2018-03-01
The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. Compressed air generation is not only sufficient in quantity (flow rate) but also meets the required air quality standards. compressed air at Steam Power Plant is used for; service air, Instrument air, and for fly Ash. This study aims to measure some important parameters related to air quality, followed by potential disturbance analysis, equipment breakdown or reduction of energy consumption from existing compressed air conditions. These measurements include counting the number of dust particles, moisture content, relative humidity, and also compressed air pressure. From the measurements, the compressed air pressure generated by the compressor is about 8.4 barg and decreased to 7.7 barg at the furthest point, so the pressure drop is 0.63 barg, this number satisfies the needs in the end user. The measurement of the number of particles contained in compressed air, for particle of 0.3 micron reaches 170,752 particles, while for the particle size 0.5 micron reaches 45,245 particles. Measurements of particles conducted at several points of measurement. For some point measurements the number of dust particle exceeds the standard set by ISO 8573.1-2010 and also NACE Code, so it needs to be improved on the air treatment process. To see the amount of moisture content in compressed air, it is done by measuring pressure dew point temperature (PDP). Measurements were made at several points with results ranging from -28.4 to 30.9 °C. The recommendation of improving compressed air quality in steam power plant, Paiton unit 1 and 2 has the potential to extend the life of instrumentation equipment, improve the reliability of equipment, and reduce the amount of energy consumption up to 502,579 kWh per year.
Generation of squeezing in a driven many-body system
NASA Astrophysics Data System (ADS)
Hebbe Madhusudhana, Bharath; Boguslawski, Matthew; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael
2016-05-01
In a spin-1 Bose-Einstein condensate, the non-linear spin-dependent collisional interactions can create entanglement and squeezing. Typically, the condensate is initialized at an unstable fixed point of the phase space, and subsequent free evolution under a time-independent Hamiltonian creates the squeezed state. Alternatively, it is possible to generate squeezing by driving the system localized at a stable fixed point. Here, we demonstrate that periodic modulation of the Hamiltonian can generate highly squeezed states. Our measurements show -5 dB of squeezing, limited by the detection, but calculations indicate that a theoretical potential of -20 dB of squeezing. We discuss the advantages of this method compared with the typical techniques.
Fast and efficient compression of floating-point data.
Lindstrom, Peter; Isenburg, Martin
2006-01-01
Large scale scientific simulation codes typically run on a cluster of CPUs that write/read time steps to/from a single file system. As data sets are constantly growing in size, this increasingly leads to I/O bottlenecks. When the rate at which data is produced exceeds the available I/O bandwidth, the simulation stalls and the CPUs are idle. Data compression can alleviate this problem by using some CPU cycles to reduce the amount of data needed to be transfered. Most compression schemes, however, are designed to operate offline and seek to maximize compression, not throughput. Furthermore, they often require quantizing floating-point values onto a uniform integer grid, which disqualifies their use in applications where exact values must be retained. We propose a simple scheme for lossless, online compression of floating-point data that transparently integrates into the I/O of many applications. A plug-in scheme for data-dependent prediction makes our scheme applicable to a wide variety of data used in visualization, such as unstructured meshes, point sets, images, and voxel grids. We achieve state-of-the-art compression rates and speeds, the latter in part due to an improved entropy coder. We demonstrate that this significantly accelerates I/O throughput in real simulation runs. Unlike previous schemes, our method also adapts well to variable-precision floating-point and integer data.
Crisp, Jonathan G; Lovato, Luis M; Jang, Timothy B
2010-12-01
Compression ultrasonography of the lower extremity is an established method of detecting proximal lower extremity deep venous thrombosis when performed by a certified operator in a vascular laboratory. Our objective is to determine the sensitivity and specificity of bedside 2-point compression ultrasonography performed in the emergency department (ED) with portable vascular ultrasonography for the detection of proximal lower extremity deep venous thrombosis. We did this by directly comparing emergency physician-performed ultrasonography to lower extremity duplex ultrasonography performed by the Department of Radiology. This was a prospective, cross-sectional study and diagnostic test assessment of a convenience sample of ED patients with a suspected lower extremity deep venous thrombosis, conducted at a single-center, urban, academic ED. All physicians had a 10-minute training session before enrolling patients. ED compression ultrasonography occurred before Department of Radiology ultrasonography and involved identification of 2 specific points: the common femoral and popliteal vessels, with subsequent compression of the common femoral and popliteal veins. The study result was considered positive for proximal lower extremity deep venous thrombosis if either vein was incompressible or a thrombus was visualized. Sensitivity and specificity were calculated with the final radiologist interpretation of the Department of Radiology ultrasonography as the criterion standard. A total of 47 physicians performed 199 2-point compression ultrasonographic examinations in the ED. Median number of examinations per physician was 2 (range 1 to 29 examinations; interquartile range 1 to 5 examinations). There were 45 proximal lower extremity deep venous thromboses observed on Department of Radiology evaluation, all correctly identified by ED 2-point compression ultrasonography. The 153 patients without proximal lower extremity deep venous thrombosis all had a negative ED compression ultrasonographic result. One patient with a negative Department of Radiology ultrasonographic result was found to have decreased compression of the popliteal vein on ED compression ultrasonography, giving a single false-positive result, yet repeated ultrasonography by the Department of Radiology 1 week later showed a popliteal deep venous thrombosis. The sensitivity and specificity of ED 2-point compression ultrasonography for deep venous thrombosis were 100% (95% confidence interval 92% to 100%) and 99% (95% confidence interval 96% to 100%), respectively. Emergency physician-performed 2-point compression ultrasonography of the lower extremity with a portable vascular ultrasonographic machine, conducted in the ED by this physician group and in this patient sample, accurately identified the presence and absence of proximal lower extremity deep venous thrombosis. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation.
Lan, Cuiling; Shi, Guangming; Wu, Feng
2010-04-01
Compound images are a combination of text, graphics and natural image. They present strong anisotropic features, especially on the text and graphics parts. These anisotropic features often render conventional compression inefficient. Thus, this paper proposes a novel coding scheme from the H.264 intraframe coding. In the scheme, two new intramodes are developed to better exploit spatial correlation in compound images. The first is the residual scalar quantization (RSQ) mode, where intrapredicted residues are directly quantized and coded without transform. The second is the base colors and index map (BCIM) mode that can be viewed as an adaptive color quantization. In this mode, an image block is represented by several representative colors, referred to as base colors, and an index map to compress. Every block selects its coding mode from two new modes and the previous intramodes in H.264 by rate-distortion optimization (RDO). Experimental results show that the proposed scheme improves the coding efficiency even more than 10 dB at most bit rates for compound images and keeps a comparable efficient performance to H.264 for natural images.
Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction
Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin
2016-01-01
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems. PMID:27814367
Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction.
Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin
2016-01-01
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.
Minami, Kouichiro; Kokubo, Yota; Maeda, Ichinosuke; Hibino, Shingo
2017-02-01
In chest compression for cardiopulmonary resuscitation (CPR), the lower half of the sternum is pressed according to the American Heart Association (AHA) guidelines 2010. These have been no studies which identify the exact location of the applied by individual chest compressions. We developed a rubber power-flexible capacitive sensor that could measure the actual pressure point of chest compression in real time. Here, we examined the pressure point of chest compression by ambulance crews during CPR using a mannequin. We included 179 ambulance crews. Chest compression was performed for 2 min. The pressure position was monitored, and the quality of chest compression was analyzed by using a flexible pressure sensor (Shinnosukekun™). Of the ambulance crews, 58 (32.4 %) pressed the center and 121 (67.6 %) pressed outside the proper area of chest compression. Many of them pressed outside the center; 8, 7, 41, and 90 pressed on the caudal, left, right, and cranial side, respectively. Average compression rate, average recoil, average depth, and average duty cycle were 108.6 counts per minute, 0.089, 4.5 cm, and 48.27 %, respectively. Many of the ambulance crews did not press on the sternal lower half definitely. This new device has the potential to improve the quality of CPR during training or in clinical practice.
Numerical study on the maximum small-signal gain coefficient in passively mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Tang, Xin; Wang, Jian; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun
2017-06-01
Ultrashort pulses have been found to have important applications in many fields, such as ultrafast diagnosis, biomedical engineering, and optical imaging. Passively mode-locked fiber lasers have become a tool for generating picosecond and femtosecond pulses. In this paper, the evolution of a picosecond laser pulse in different stable passively mode-locked fiber laser is analyzed using nonlinear Schrödinger equation. Firstly, different mode-locked regimes are calculated with different net cavity dispersion (from -0.3 ps2 to +0.3 ps2 ). Then we calculate the maximum small-signal gain on the different net cavity dispersion conditions, and estimate the pulse width, 3 dB bandwidth and time bandwidth product (TBP) when the small-signal gain coefficient is selected as the maximum value. The results show that the small signal gain coefficient is approximately proportional to the net cavity. Moreover, when the small signal gain coefficient reaches the maximum value, the pulse width of the output pulse and their corresponding TBP show a trend of increase gradually, and 3dB bandwidth shows a trend of increase firstly and then decrease. In addition, in the case that the net dispersion is positive, because of the pulse with quite large frequency chirp, the revolution to dechirp the pulse is researched and the output of the pulse is compressed and its compression ratio reached more than 10 times. The results provide a reference for the optimization of passively mode-locked fiber lasers.
Patino, Cecilia M.; Varma, Rohit; Azen, Stanley P.; Conti, David V.; Nichol, Michael B.; McKean-Cowdin, Roberta
2010-01-01
Purpose To assess the impact of change in visual field (VF) on change in health related quality of life (HRQoL) at the population level. Design Prospective cohort study Participants 3,175 Los Angles Latino Eye Study (LALES) participants Methods Objective measures of VF and visual acuity and self-reported HRQoL were collected at baseline and 4-year follow-up. Analysis of covariance was used to evaluate mean differences in change of HRQoL across severity levels of change in VF and to test for effect modification by covariates. Main outcome measures General and vision-specific HRQoL. Results Of 3,175 participants, 1430 (46%) showed a change in VF (≥1 decibel [dB]) and 1651, 1715 (54%) reported a clinically important change (≥5 points) in vision-specific HRQoL. Progressive worsening and improvement in the VF were associated with increasing losses and gains in vision-specific HRQoL for the composite score and 10 of its 11 subscales (all Ptrends<0.05). Losses in VF > 5 dB and gains > 3 dB were associated with clinically meaningful losses and gains in vision-specific HRQoL, respectively. Areas of vision-specific HRQoL most affected by greater losses in VF were driving, dependency, role-functioning, and mental health. The effect of change in VF (loss or gain) on mean change in vision-specific HRQoL varied by level of baseline vision loss (in visual field and/or visual acuity) and by change in visual acuity (all P-interactions<0.05). Those with moderate/severe VF loss at baseline and with a > 5 dB loss in visual field during the study period had a mean loss of vision-specific HRQoL of 11.3 points, while those with no VF loss at baseline had a mean loss of 0.97 points Similarly, with a > 5 dB loss in VF and baseline visual acuity impairment (mild/severe) there was a loss in vision-specific HRQoL of 10.5 points, whereas with no visual acuity impairment at baseline there was a loss of vision-specific HRQoL of 3.7 points. Conclusion Both losses and gains in VF produce clinically meaningful changes in vision-specific HRQoL. In the presence of pre-existing vision loss (VF and visual acuity), similar levels of visual field change produce greater losses in quality of life. PMID:21458074
Memory-efficient decoding of LDPC codes
NASA Technical Reports Server (NTRS)
Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon
2005-01-01
We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.
JPEG 2000-based compression of fringe patterns for digital holographic microscopy
NASA Astrophysics Data System (ADS)
Blinder, David; Bruylants, Tim; Ottevaere, Heidi; Munteanu, Adrian; Schelkens, Peter
2014-12-01
With the advent of modern computing and imaging technologies, digital holography is becoming widespread in various scientific disciplines such as microscopy, interferometry, surface shape measurements, vibration analysis, data encoding, and certification. Therefore, designing an efficient data representation technology is of particular importance. Off-axis holograms have very different signal properties with respect to regular imagery, because they represent a recorded interference pattern with its energy biased toward the high-frequency bands. This causes traditional images' coders, which assume an underlying 1/f2 power spectral density distribution, to perform suboptimally for this type of imagery. We propose a JPEG 2000-based codec framework that provides a generic architecture suitable for the compression of many types of off-axis holograms. This framework has a JPEG 2000 codec at its core, extended with (1) fully arbitrary wavelet decomposition styles and (2) directional wavelet transforms. Using this codec, we report significant improvements in coding performance for off-axis holography relative to the conventional JPEG 2000 standard, with Bjøntegaard delta-peak signal-to-noise ratio improvements ranging from 1.3 to 11.6 dB for lossy compression in the 0.125 to 2.00 bpp range and bit-rate reductions of up to 1.6 bpp for lossless compression.
Signal processing for the profoundly deaf.
Boothyroyd, A
1990-01-01
Profound deafness, defined here as a hearing loss in excess of 90 dB, is characterized by high thresholds, reduced hearing range in the intensity and frequency domains, and poor resolution in the frequency and time domains. The high thresholds call for hearing aids with unusually high gains or remote microphones that can be placed close to the signal source. The former option creates acoustic feedback problems for which digital signal processing may yet offer solutions. The latter option calls for carrier wave technology that is already available. The reduced frequency and intensity ranges would appear to call for frequency and/or amplitude compression. It might also be argued, however, that any attempts to compress the acoustic signal into the limited hearing range of the profoundly deaf will be counterproductive because of poor frequency and time resolution, especially when the signal is present in noise. In experiments with a 2-channel compression system, only 1 of 9 subjects showed an improvement of perception with the introduction of fast-release (20 ms) compression. The other 8 experienced no benefit or a slight deterioration of performance. These results support the concept of providing the profoundly deaf with simpler, rather than more complex, patterns, perhaps through the use of feature extraction hearing aids. Data from users of cochlear implants already employing feature extraction techniques also support this concept.
QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout †
Ni, Yang
2018-01-01
In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout. PMID:29443903
QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout.
Ni, Yang
2018-02-14
In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout.
Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon
2008-01-01
For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.
A test data compression scheme based on irrational numbers stored coding.
Wu, Hai-feng; Cheng, Yu-sheng; Zhan, Wen-fa; Cheng, Yi-fei; Wu, Qiong; Zhu, Shi-juan
2014-01-01
Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.
Eliminating bias in rainfall estimates from microwave links due to antenna wetting
NASA Astrophysics Data System (ADS)
Fencl, Martin; Rieckermann, Jörg; Bareš, Vojtěch
2014-05-01
Commercial microwave links (MWLs) are point-to-point radio systems which are widely used in telecommunication systems. They operate at frequencies where the transmitted power is mainly disturbed by precipitation. Thus, signal attenuation from MWLs can be used to estimate path-averaged rain rates, which is conceptually very promising, since MWLs cover about 20 % of surface area. Unfortunately, MWL rainfall estimates are often positively biased due to additional attenuation caused by antenna wetting. To correct MWL observations a posteriori to reduce the wet antenna effect (WAE), both empirically and physically based models have been suggested. However, it is challenging to calibrate these models, because the wet antenna attenuation depends both on the MWL properties (frequency, type of antennas, shielding etc.) and different climatic factors (temperature, due point, wind velocity and direction, etc.). Instead, it seems straight forward to keep antennas dry by shielding them. In this investigation we compare the effectiveness of antenna shielding to model-based corrections to reduce the WAE. The experimental setup, located in Dübendorf-Switzerland, consisted of 1.85-km long commercial dual-polarization microwave link at 38 GHz and 5 optical disdrometers. The MWL was operated without shielding in the period from March to October 2011 and with shielding from October 2011 to July 2012. This unique experimental design made it possible to identify the attenuation due to antenna wetting, which can be computed as the difference between the measured and theoretical attenuation. The theoretical path-averaged attenuation was calculated from the path-averaged drop size distribution. During the unshielded periods, the total bias caused by WAE was 0.74 dB, which was reduced by shielding to 0.39 dB for the horizontal polarization (vertical: reduction from 0.96 dB to 0.44 dB). Interestingly, the model-based correction (Schleiss et al. 2013) was more effective because it reduced the bias of unshielded periods to 0.07 dB for the horizontal polarization (vertical: 0.06 dB). Applying the same model-based correction to shielded periods reduces the bias even more, to -0.03 dB and -0.01 dB, respectively. This indicates that additional attenuation could be caused also by different effects, such as reflection of sidelobes from wet surfaces and other environmental factors. Further, model-based corrections do not capture correctly the nature of WAE, but more likely provide only an empirical correction. This claim is supported by the fact that detailed analysis of particular events reveals that both antenna shielding and model-based correction performance differ substantially from event to event. Further investigation based on direct observation of antenna wetting and other environmental variables needs to be performed to identify more properly the nature of the attenuation bias. Schleiss, M., J. Rieckermann, and A. Berne, 2013: Quantification and modeling of wet-antenna attenuation for commercial microwave links. IEEE Geosci. Remote Sens. Lett., 10.1109/LGRS.2012.2236074.
Switchable multi-wavelength fiber laser based on modal interference
NASA Astrophysics Data System (ADS)
Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng
2015-08-01
A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.
NASA Astrophysics Data System (ADS)
Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng
2016-11-01
This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power ( P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.
Quantization noise in digital speech. M.S. Thesis- Houston Univ.
NASA Technical Reports Server (NTRS)
Schmidt, O. L.
1972-01-01
The amount of quantization noise generated in a digital-to-analog converter is dependent on the number of bits or quantization levels used to digitize the analog signal in the analog-to-digital converter. The minimum number of quantization levels and the minimum sample rate were derived for a digital voice channel. A sample rate of 6000 samples per second and lowpass filters with a 3 db cutoff of 2400 Hz are required for 100 percent sentence intelligibility. Consonant sounds are the first speech components to be degraded by quantization noise. A compression amplifier can be used to increase the weighting of the consonant sound amplitudes in the analog-to-digital converter. An expansion network must be installed at the output of the digital-to-analog converter to restore the original weighting of the consonant sounds. This technique results in 100 percent sentence intelligibility for a sample rate of 5000 samples per second, eight quantization levels, and lowpass filters with a 3 db cutoff of 2000 Hz.
Quality improving techniques for free-viewpoint DIBR
NASA Astrophysics Data System (ADS)
Do, Luat; Zinger, Sveta; de With, Peter H. N.
2010-02-01
Interactive free-viewpoint selection applied to a 3D multi-view signal is a possible attractive feature of the rapidly developing 3D TV media. This paper explores a new rendering algorithm that computes a free-viewpoint based on depth image warping between two reference views from existing cameras. We have developed three quality enhancing techniques that specifically aim at solving the major artifacts. First, resampling artifacts are filled in by a combination of median filtering and inverse warping. Second, contour artifacts are processed while omitting warping of edges at high discontinuities. Third, we employ a depth signal for more accurate disocclusion inpainting. We obtain an average PSNR gain of 3 dB and 4.5 dB for the 'Breakdancers' and 'Ballet' sequences, respectively, compared to recently published results. While experimenting with synthetic data, we observe that the rendering quality is highly dependent on the complexity of the scene. Moreover, experiments are performed using compressed video from surrounding cameras. The overall system quality is dominated by the rendering quality and not by coding.
ERIC Educational Resources Information Center
Ryan, Ellen
1991-01-01
Sixty training tips are presented for university phonathon fund-raising managers, focusing on training materials, the training session, role playing, talking points with trainees, togetherness, food and prizes, morale boosters, talking points with prospects, and how to ask for a pledge. (DB)
Analog-to-digital conversion to accommodate the dynamics of live music in hearing instruments.
Hockley, Neil S; Bahlmann, Frauke; Fulton, Bernadette
2012-09-01
Hearing instrument design focuses on the amplification of speech to reduce the negative effects of hearing loss. Many amateur and professional musicians, along with music enthusiasts, also require their hearing instruments to perform well when listening to the frequent, high amplitude peaks of live music. One limitation, in most current digital hearing instruments with 16-bit analog-to-digital (A/D) converters, is that the compressor before the A/D conversion is limited to 95 dB (SPL) or less at the input. This is more than adequate for the dynamic range of speech; however, this does not accommodate the amplitude peaks present in live music. The hearing instrument input compression system can be adjusted to accommodate for the amplitudes present in music that would otherwise be compressed before the A/D converter in the hearing instrument. The methodology behind this technological approach will be presented along with measurements to demonstrate its effectiveness.
Plasma Switch for High-Power Active Pulse Compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, Jay L.
2013-11-04
Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ?more » 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.« less
Rate and power efficient image compressed sensing and transmission
NASA Astrophysics Data System (ADS)
Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan
2016-01-01
This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.
FBCOT: a fast block coding option for JPEG 2000
NASA Astrophysics Data System (ADS)
Taubman, David; Naman, Aous; Mathew, Reji
2017-09-01
Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).
Off-nadir antenna bias correction using Amazon rain forest sigma deg data. [Brazil
NASA Technical Reports Server (NTRS)
Birrer, I. J.; Bracalente, E. M.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K. (Principal Investigator)
1981-01-01
The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Ocean Satellite System (NOSS). Backscattering observations made by the SEASAT-1 scatterometer system show the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which is insensitive to polarization. The variation with angle of incidence may be adequately modeled as sigma deg (dB) = alpha theta + beta with typical values for the incidence-angle coefficient from 0.07 dB deg to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum likelihood estimation algorithms are presented which permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.
Distractions during critical phases of anaesthesia for caesarean section: an observational study.
Jenkins, A; Wilkinson, J V; Akeroyd, M A; Broom, M A
2015-05-01
Aviation's 'sterile cockpit' rule holds that distractions on the flight deck should be kept at a minimum during critical phases of flight. To assess current practice at comparable points during obstetric regional anaesthesia, we measured ambient noise and distracting events during 30 caesarean sections in three phases: during establishment of regional anaesthesia; during testing of regional blockade; and after delivery of the fetal head. Mean (SD) noise levels were 62.5 (3.9) dB during establishment of blockade, 63.9 (4.1) dB during testing and 66.8 (5.0) dB after delivery (p < 0.001). The median rates of sudden, loud (> 70 dB) noises, non-clinical conversations and numbers of staff present in the operating theatre increased during each of the three phases. Conversely, entrances into, and exits from, theatre per minute were highest during establishment of regional anaesthesia and decreased over the subsequent two time periods (p < 0.001). © 2014 The Association of Anaesthetists of Great Britain and Ireland.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Wang, Renxin; Zhang, Guojun; Du, Jin; Zhao, Long; Xue, Chenyang; Zhang, Wendong; Liu, Jun
2015-07-01
This paper presents methods of promoting the sensitivity of Microelectromechanical Systems (MEMS) vector hydrophone by increasing the sensing area of cilium and perfect insulative Parylene membrane. First, a low-density sphere is integrated with the cilium to compose a "lollipop shape," which can considerably increase the sensing area. A mathematic model on the sensitivity of the "lollipop-shaped" MEMS vector hydrophone is presented, and the influences of different structural parameters on the sensitivity are analyzed via simulation. Second, the MEMS vector hydrophone is encapsulated through the conformal deposition of insulative Parylene membrane, which enables underwater acoustic monitoring without any typed sound-transparent encapsulation. Finally, the characterization results demonstrate that the sensitivity reaches up to -183 dB (500 Hz 0dB at 1 V/ μPa ), which is increased by more than 10 dB, comparing with the previous cilium-shaped MEMS vector hydrophone. Besides, the frequency response takes on a sensitivity increment of 6 dB per octave. The working frequency band is 20-500 Hz and the concave point depth of 8-shaped directivity is beyond 30 dB, indicating that the hydrophone is promising in underwater acoustic application.
Compressed storage of arterial pressure waveforms by selection of significant points.
de Graaf, P M; van Goudoever, J; Wesseling, K H
1997-09-01
Continuous records of arterial blood pressure can be obtained non-invasively with Finapres, even for periods of 24 hours. Increasingly, storage of such records is done digitally, requiring large disc capacities. It is therefore necessary to find methods to store blood pressure waveforms in compressed form. The method of selection of significant points known from ECG data compression is adapted. Points are selected as significant wherever the first derivative of the pressure wave changes sign. As a second stage recursive partitioning is used to select additional points such that the difference between the selected points, linearly interpolated, and the original curve remains below a maximum. This method is tested on finger arterial pressure waveform epochs of 60 s duration taken from 32 patients with a wide range of blood pressures and heart rates. An average compression factor of 4.6 (SD 1.0) is obtained when accepting a maximum difference of 3 mmHg. The root mean squared error is 1 mmHg averaged over the group of patient waveforms. Clinically relevant parameters such as systolic, diastolic and mean pressure are reproduced with an offset error of less than 0.5 (0.3) mmHg and scatter less than 0.6 (0.1) mmHg. It is concluded that a substantial compression factor can be achieved with a simple and computationally fast algorithm and little deterioration in waveform quality and pressure level accuracy.
NASA Astrophysics Data System (ADS)
Mukhtubayev, Azamat B.; Aksarin, Stanislav M.; Strigalev, Vladimir E.
2017-11-01
A study of the orthogonal polarization modes crosstalk changes in the point of different mechanical actions (pressure force) in the polarization-maintaining fiber with straining elliptical cladding is presented. It was found that by increasing of the pressure force the polarization extinction ratio increases nonlinearly. Also revealed the dependence of the extinction coefficient and the angle between vector of the mechanical action and polarization axes of the test fiber, which leads to change the extinction coefficient variable from -57 dB to -25 dB under the pressure force of 0.7 N. Also it was found that the cross angle of the fiber axes doesn't influence on the extinction ratio value of the mechanical induced polarization crosstalk.
Investigation of the relationship between aircraft noise and community annoyance in China.
Guoqing, Di; Xiaoyi, Liu; Xiang, Shi; Zhengguang, Li; Qili, Lin
2012-01-01
A survey of community annoyance induced by aircraft noise exposure was carried out around Hangzhou Xiaoshan International Airport. To investigate the relationship curves between aircraft noise and the percentage of "highly annoyed" persons in China and also to get annoyance threshold of aircraft noise in China. Noise annoyance induced by aircraft noise exposure was assessed by 764 local residents around the airport using the International Commission on Biological Effect of Noise (ICBEN) scale. The status quo of aircraft noise pollution was measured by setting up 39 monitoring points. The interpolation was used to estimate the weighted effective continuous perceived noise levels (LWECPN) in different areas around the airport, and the graph of equal noise level contour was drawn. The membership function was used to calculate the annoyance threshold of aircraft noise. Data were analyzed using SPSS 16.0 and Origin 8.0. The results showed that if LWECPN was 64.3 dB (Ldn was 51.4 dB), then 15% respondents were highly annoyed. If LWECPN was 68.1 dB (Ldn was 55.0 dB), then 25% respondents were highly annoyed. The annoyance threshold of aircraft noise (LWECPN) was 73.7 dB, while the annoyance threshold of a single flight incident instantaneous noise level (LAmax) was 72.9 dB. People around the airport had felt annoyed before the aircraft noise LWECPN reached the standard limit.
A near-earth optical communications terminal with a corevolving planetary sun shield
NASA Technical Reports Server (NTRS)
Kerr, E. L.
1989-01-01
The umbra of a planet may serve as a sun shield for a space-based optical communications terminal or for a space-based astronomical observatory. An orbit that keeps the terminal or observatory within the umbra is desirable. There is a corevolution point behind every planet. A small body stabilized at the planet corevolution point will revolve about the sun at the same angular velocity as the planet, always keeping the planet between itself and the sun. This corevolution point is within the umbra of Mars but beyond the end of the umbra for Mercury, Venus, and earth. The Mars corevolution point is an ideal location for an astronomical observatory. There, Mars obstruct less than 0.00024 percent of the sky at any time, and it shades the observatory completely from the sun. At the earth corevolution point, between 51 and 84 percent of the solar disk area is blocked, as is up to 92 percent of the sunlight. This provides a reduction from 3 dB to 11 dB in sunlight that could interfere with optical communications if scattered directly into the detectors. The variations is caused by revolution of the earth about the earth-moon barycenter.
A near-earth optical communications terminal with a corevolving planetary sun shield
NASA Technical Reports Server (NTRS)
Kerr, E. L.
1987-01-01
The umbra of a planet may serve as a sun shield for a space based optical communications terminal or for a space based astronomical observatory. An orbit that keeps the terminal or observatory within the umbra is desirable. There is a corevolution point behind every planet. A small body stabilized at the planet corevolution point will revolve about the sun at the same angular velocity as the planet, always keeping the planet between itself and the sun. This corevolution point is within the umbra of Mars but beyond the end of the umbra for Mercury, Venus, and earth. The Mars corevolution point is an ideal location for an astronomical observatory. There Mars obstruct less than 0.00024 percent of the sky at any time, and it shades the observatory completely from the sun. At the earth corevolution point, between 51 and 84 percent of the solar disk area is blocked, as is up to 92 percent of the sunlight. This provides a reduction from 3 dB to 11 dB in sunlight that could interfere with optical communications if scattered directly into the detectors. The variations is caused by revolution of the earth about the earth-moon barycenter.
Evaluating Thin Compression Paddles for Mammographically Compatible Ultrasound
Booi, Rebecca C.; Krücker, Jochen F.; Goodsitt, Mitchell M.; O’Donnell, Matthew; Kapur, Ajay; LeCarpentier, Gerald L.; Roubidoux, Marilyn A.; Fowlkes, J. Brian; Carson, Paul L.
2007-01-01
We are developing a combined digital mammography/3D ultrasound system to improve detection and/or characterization of breast lesions. Ultrasound scanning through a mammographic paddle could significantly reduce signal level, degrade beam focusing, and create reverberations. Thus, appropriate paddle choice is essential for accurate sonographic lesion detection and assessment with this system. In this study, we characterized ultrasound image quality through paddles of varying materials (lexan, polyurethane, TPX, mylar) and thicknesses (0.25–2.5 mm). Analytical experiments focused on lexan and TPX, which preliminary results demonstrated were most competitive. Spatial and contrast resolution, sidelobe and range lobe levels, contrast and signal strength were compared with no-paddle images. When the beamforming of the system was corrected to account for imaging through the paddle, the TPX 2.5 mm paddle performed the best. Test objects imaged through this paddle demonstrated ≤ 15% reduction in spatial resolution, ≤ 7.5 dB signal loss, ≤ 3 dB contrast loss, and range lobe levels ≥ 35 dB below signal maximum over 4 cm. TPX paddles < 2.5 mm could also be used with this system, depending on imaging goals. In 10 human subjects with cysts, small CNR losses were observed but were determined to be statistically insignificant. Radiologists concluded that 75% of cysts in through-paddle scans were at least as detectable as in their corresponding direct-contact scans. (Email: rbooi@umich.edu) PMID:17280765
Development of sound measurement systems for auditory functional magnetic resonance imaging.
Nam, Eui-Cheol; Kim, Sam Soo; Lee, Kang Uk; Kim, Sang Sik
2008-06-01
Auditory functional magnetic resonance imaging (fMRI) requires quantification of sound stimuli in the magnetic environment and adequate isolation of background noise. We report the development of two novel sound measurement systems that accurately measure the sound intensity inside the ear, which can simultaneously provide the similar or greater amount of scanner- noise protection than ear-muffs. First, we placed a 2.6 x 2.6-mm microphone in an insert phone that was connected to a headphone [microphone-integrated, foam-tipped insert-phone with a headphone (MIHP)]. This attenuated scanner noise by 37.8+/-4.6 dB, a level better than the reference amount obtained using earmuffs. The nonmetallic optical microphone was integrated with a headphone [optical microphone in a headphone (OMHP)] and it effectively detected the change of sound intensity caused by variable compression on the cushions of the headphone. Wearing the OMHP reduced the noise by 28.5+/-5.9 dB and did not affect echoplanar magnetic resonance images. We also performed an auditory fMRI study using the MIHP system and presented increase in the auditory cortical activation following 10-dB increment in the intensity of sound stimulation. These two newly developed sound measurement systems successfully achieved the accurate quantification of sound stimuli with maintaining the similar level of noise protection of wearing earmuffs in the auditory fMRI experiment.
Catching the whispers from Uranus
NASA Technical Reports Server (NTRS)
Bartok, C. D.
1986-01-01
Sophisticated telecommunications techniques are described that were used to acquire images of Uranus, its 14 moons and ten narrow rings darker than coal. The images, equal in quality to those transmitted from Saturn several years earlier despite the signal being weaker by 6 dB due to the increased distance, were received from Voyager 2 during its January 24, 1986 flyby of Uranus. Solutions to the problem of the weakening signal were found in modifications to Voyager's image processing system and NASA's ground tracking network. In April 1985, Voyager's prime flight data computer was reconfigured to accept only nonimaging science data, and its backup, only imaging data; the latter was reprogrammed to determine only arithmetic differences between adjacent pixel intensities rather than absolute intensities. By image compression, equivalent imaging information could be sent at lower bit rates. Instead of Golay coding, Reed-Solomon onboard encoding was used. These techniques gained the equivalent of 4-dB in imaging yield. Additional improvements were gained by using earth station antennas in pairs (the Parkes radio telescope and the Canberra ground station antenna). Moves under way to prepare for the Voyager encounter with Neptune in 1989 are described (using additional antennas and arrays, scaling up the Deep Space Network antennas from 64 m to 70 m, etc.) to assure almost Saturn-equivalent pictures despite a further 3.5-dB drop in signal strength.
Cachia, Victor V; Culbert, Brad; Warren, Chris; Oka, Richard; Mahar, Andrew
2003-01-01
The purpose of this study was to evaluate the structural and mechanical characteristics of a new and unique titanium cortical-cancellous helical compression anchor with BONE-LOK (Triage Medical, Inc., Irvine, CA) technology for compressive internal fixation of fractures and osteotomies. This device provides fixation through the use of a distal helical anchor and a proximal retentive collar that are united by an axially movable pin (U.S. and international patents issued and pending). The helical compression anchor (2.7-mm diameter) was compared with 3.0-mm diameter titanium cancellous screws (Synthes, Paoli, PA) for pullout strength and compression in 7# and 12# synthetic rigid polyurethane foam (simulated bone matrix), and for 3-point bending stiffness. The following results (mean +/- standard deviation) were obtained: foam block pullout strength in 12# foam: 2.7-mm helical compression anchor 70 +/- 2.0 N and 3.0-mm titanium cancellous screws 37 +/- 11 N; in 7# foam: 2.7-mm helical compression anchor 33 +/- 3 N and 3.0-mm titanium cancellous screws 31 +/- 12 N. Three-point bending stiffness, 2.7-mm helical compression anchor 988 +/- 68 N/mm and 3.0-mm titanium cancellous screws 845 +/- 88 N/mm. Compression strength testing in 12# foam: 2.7-mm helical compression anchor 70.8 +/- 4.8 N and 3.0-mm titanium cancellous screws 23.0 +/- 3.1 N, in 7# foam: 2.7-mm helical compression anchor 42.6 +/- 3.2 N and 3.0-mm titanium cancellous screws 10.4 +/- 0.9 N. Results showed greater pullout strength, 3-point bending stiffness, and compression strength for the 2.7-mm helical compression anchor as compared with the 3.0-mm titanium cancellous screws in these testing models. This difference represents a distinct advantage in the new device that warrants further in vivo testing.
Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.
Yao, Qiuming; Xu, Dong
2017-01-01
Protein phosphorylation is one of the most pervasive protein post-translational modification events in plant cells. It is involved in many plant biological processes, such as plant growth, organ development, and plant immunology, by regulating or switching signaling and metabolic pathways. High-throughput experimental methods like mass spectrometry can easily characterize hundreds to thousands of phosphorylation events in a single experiment. With the increasing volume of the data sets, Plant Protein Phosphorylation DataBase (P3DB, http://p3db.org ) provides a comprehensive, systematic, and interactive online platform to deposit, query, analyze, and visualize these phosphorylation events in many plant species. It stores the protein phosphorylation sites in the context of identified mass spectra, phosphopeptides, and phosphoproteins contributed from various plant proteome studies. In addition, P3DB associates these plant phosphorylation sites to protein physicochemical information in the protein charts and tertiary structures, while various protein annotations from hierarchical kinase phosphatase families, protein domains, and gene ontology are also added into the database. P3DB not only provides rich information, but also interconnects and provides visualization of the data in networks, in systems biology context. Currently, P3DB includes the KiC (Kinase Client) assay network, the protein-protein interaction network, the kinase-substrate network, the phosphatase-substrate network, and the protein domain co-occurrence network. All of these are available to query for and visualize existing phosphorylation events. Although P3DB only hosts experimentally identified phosphorylation data, it provides a plant phosphorylation prediction model for any unknown queries on the fly. P3DB is an entry point to the plant phosphorylation community to deposit and visualize any customized data sets within this systems biology framework. Nowadays, P3DB has become one of the major bioinformatics platforms of protein phosphorylation in plant biology.
Energy-saving compression valve of the rock drill
NASA Astrophysics Data System (ADS)
Glazov, A. N.; Efanov, A. A.; Aikina, T. Yu
2015-11-01
The relevance of the research is due to the necessity to create pneumatic rock drills with low air consumption. The article analyzes the reasons for low efficiency of percussive machines. The authors state that applying a single distribution body in the percussive mechanism does not allow carrying out a low-energy operating cycle of the mechanism. Using the studied device as an example, it is substantiated that applying a compression valve with two distribution bodies separately operating the working chambers makes it possible to significantly reduce the airflow. The authors describe the construction of a core drill percussive mechanism and the operation of a compression valve. It is shown that in the new percussive mechanism working chambers are cut off the circuit by the time when exhaust windows are opened by the piston and air is not supplied into the cylinder up to 20% of the cycle time. The air flow rate of the new mechanism was 3.8 m3/min. In comparison with the drill PK-75, the overall noise level of the new machine is lower by 8-10 dB, while the percussive mechanism efficiency is 2.3 times higher.
Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan
2016-07-01
In this paper, a wearable and wireless ECG system is firstly designed with Bluetooth Low Energy (BLE). It can detect 3-lead ECG signals and is completely wireless. Secondly the digital Compressed Sensing (CS) is implemented to increase the energy efficiency of wireless ECG sensor. Different sparsifying basis, various compression ratio (CR) and several reconstruction algorithms are simulated and discussed. Finally the reconstruction is done by the android application (App) on smartphone to display the signal in real time. The power efficiency is measured and compared with the system without CS. The optimum satisfying basis built by 3-level decomposed db4 wavelet coefficients, 1-bit Bernoulli random matrix and the most suitable reconstruction algorithm are selected by the simulations and applied on the sensor node and App. The signal is successfully reconstructed and displayed on the App of smartphone. Battery life of sensor node is extended from 55 h to 67 h. The presented wireless ECG system with CS can significantly extend the battery life by 22 %. With the compact characteristic and long term working time, the system provides a feasible solution for the long term homecare utilization.
NASA Astrophysics Data System (ADS)
Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul
2007-06-01
The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.
An Adaptive Prediction-Based Approach to Lossless Compression of Floating-Point Volume Data.
Fout, N; Ma, Kwan-Liu
2012-12-01
In this work, we address the problem of lossless compression of scientific and medical floating-point volume data. We propose two prediction-based compression methods that share a common framework, which consists of a switched prediction scheme wherein the best predictor out of a preset group of linear predictors is selected. Such a scheme is able to adapt to different datasets as well as to varying statistics within the data. The first method, called APE (Adaptive Polynomial Encoder), uses a family of structured interpolating polynomials for prediction, while the second method, which we refer to as ACE (Adaptive Combined Encoder), combines predictors from previous work with the polynomial predictors to yield a more flexible, powerful encoder that is able to effectively decorrelate a wide range of data. In addition, in order to facilitate efficient visualization of compressed data, our scheme provides an option to partition floating-point values in such a way as to provide a progressive representation. We compare our two compressors to existing state-of-the-art lossless floating-point compressors for scientific data, with our data suite including both computer simulations and observational measurements. The results demonstrate that our polynomial predictor, APE, is comparable to previous approaches in terms of speed but achieves better compression rates on average. ACE, our combined predictor, while somewhat slower, is able to achieve the best compression rate on all datasets, with significantly better rates on most of the datasets.
Optical-communication systems for deep-space applications
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Gagliardi, R. M.
1980-01-01
The feasibility of using optical communication systems for data telemetry from deep space vehicles to Earth based receivers is evaluated. Performance analysis shows that practical, photon counting optical systems can transmit data reliably at 30 to 40 dB high rates than existing RF systems, or can be used to extend the communication range by 15 to 20 dB. The advantages of pulse-position modulation (PPM) formats are discussed, and photon counting receiver structures designed for PPM decoding are described. The effects of background interference and weather on receiver performance are evaluated. Some consideration is given to tracking and beam pointing operations, since system performance ultimately depends on the accuracy to which these operations can be carried out. An example of a tracking and pointing system utilizing an optical uplink beacon is presented, and it is shown that microradian beam pointing is within the capabilities of state-of-the-art technology. Recommendations for future theoretical studies and component development programs are presented.
Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects.
Su, Daniel; Greenberg, Andrew; Simonson, Joseph L; Teng, Christopher C; Liebmann, Jeffrey M; Ritch, Robert; Park, Sung Chul
2016-04-01
To investigate the efficacy of the Amsler grid test in detecting central visual field (VF) defects in glaucoma. Prospective, cross-sectional study. Patients with glaucoma with reliable Humphrey 10-2 Swedish Interactive Threshold Algorithm standard VF on the date of enrollment or within the previous 3 months. Amsler grid tests were performed for each eye and were considered "abnormal" if there was any perceived scotoma with missing or blurry grid lines within the central 10 degrees ("Amsler grid scotoma"). An abnormal 10-2 VF was defined as ≥3 adjacent points at P < 0.01 with at least 1 point at P < 0.005 in the same hemifield on the pattern deviation plot. Sensitivity, specificity, and positive and negative predictive values of the Amsler grid scotoma area were calculated with the 10-2 VF as the clinical reference standard. Among eyes with an abnormal 10-2 VF, regression analyses were performed between the Amsler grid scotoma area and the 10-2 VF parameters (mean deviation [MD], scotoma extent [number of test points with P < 0.01 in total deviation map] and scotoma mean depth [mean sensitivity of test points with P < 0.01 in total deviation map]). Sensitivity, specificity, and positive and negative predictive values of the Amsler grid scotoma area. A total of 106 eyes (53 patients) were included (mean ± standard deviation age, 24-2 MD and 10-2 MD = 66±12 years, -9.61±8.64 decibels [dB] and -9.75±9.00 dB, respectively). Sensitivity, specificity, and positive and negative predictive values of the Amsler grid test were 68%, 92%, 97%, and 46%, respectively. Sensitivity was 40% in eyes with 10-2 MD better than -6 dB, 58% in eyes with 10-2 MD between -12 and -6 dB, and 92% in eyes with 10-2 MD worse than -12 dB. The area under the receiver operating characteristic curve of the Amsler grid scotoma area was 0.810 (95% confidence interval, 0.723-0.880, P < 0.001). The Amsler grid scotoma area had the strongest relationship with 10-2 MD (quadratic R(2)=0.681), followed by 10-2 scotoma extent (quadratic R(2)=0.611) and 10-2 scotoma mean depth (quadratic R(2)=0.299) (all P < 0.001). The Amsler grid can be used to screen for moderate to severe central vision loss from glaucoma. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Experimental and Analytical Studies of Shielding Concepts for Point Sources and Jet Noises.
NASA Astrophysics Data System (ADS)
Wong, Raymond Lee Man
This analytical and experimental study explores concepts for jet noise shielding. Model experiments centre on solid planar shields, simulating engine-over-wing installations, and 'sugar scoop' shields. Tradeoff on effective shielding length is set by interference 'edge noise' as the shield trailing edge approaches the spreading jet. Edge noise is minimized by (i) hyperbolic cutouts which trim off the portions of most intense interference between the jet flow and the barrier and (ii) hybrid shields--a thermal refractive extension (a flame); for (ii) the tradeoff is combustion noise. In general, shielding attenuation increases steadily with frequency, following low frequency enhancement by edge noise. Although broadband attenuation is typically only several dB, the reduction of the subjectively weighted perceived noise levels is higher. In addition, calculated ground contours of peak PN dB show a substantial contraction due to shielding: this reaches 66% for one of the 'sugar scoop' shields for the 90 PN dB contour. The experiments are complemented by analytical predictions. They are divided into an engineering scheme for jet noise shielding and more rigorous analysis for point source shielding. The former approach combines point source shielding with a suitable jet source distribution. The results are synthesized into a predictive algorithm for jet noise shielding: the jet is modelled as a line distribution of incoherent sources with narrow band frequency (TURN)(axial distance)('-1). The predictive version agrees well with experiment (1 to 1.5 dB) up to moderate frequencies. The insertion loss deduced from the point source measurements for semi-infinite as well as finite rectangular shields agrees rather well with theoretical calculation based on the exact half plane solution and the superposition of asymptotic closed-form solutions. An approximate theory, the Maggi-Rubinowicz line integral, is found to yield reasonable predictions for thin barriers including cutouts if a certain correction is applied. The more exact integral equation approach (solved numerically) is applied to a more demanding geometry: a half round sugar scoop shield. It is found that the solutions of integral equation derived from Helmholtz formula in normal derivative form show satisfactory agreement with measurements.
Marouane, H; Shirazi-Adl, A; Adouni, M
2015-01-01
Knee joints are subject to large compression forces in daily activities. Due to artefact moments and instability under large compression loads, biomechanical studies impose additional constraints to circumvent the compression position-dependency in response. To quantify the effect of compression on passive knee moment resistance and stiffness, two validated finite element models of the tibiofemoral (TF) joint, one refined with depth-dependent fibril-reinforced cartilage and the other less refined with homogeneous isotropic cartilage, are used. The unconstrained TF joint response in sagittal and frontal planes is investigated at different flexion angles (0°, 15°, 30° and 45°) up to 1800 N compression preloads. The compression is applied at a novel joint mechanical balance point (MBP) identified as a point at which the compression does not cause any coupled rotations in sagittal and frontal planes. The MBP of the unconstrained joint is located at the lateral plateau in small compressions and shifts medially towards the inter-compartmental area at larger compression forces. The compression force substantially increases the joint moment-bearing capacities and instantaneous angular rigidities in both frontal and sagittal planes. The varus-valgus laxities diminish with compression preloads despite concomitant substantial reductions in collateral ligament forces. While the angular rigidity would enhance the joint stability, the augmented passive moment resistance under compression preloads plays a role in supporting external moments and should as such be considered in the knee joint musculoskeletal models.
Querques, Lea; Querques, Giuseppe; Forte, Raimondo; Souied, Eric H
2012-06-01
To investigate the microperimetric correlations of autofluorescence imaging and optical coherence tomography (OCT) in dry age-related macular degeneration (AMD). Retrospective, observational, cross-sectional study. Consecutive patients with dry AMD underwent a complete ophthalmologic examination, including best-corrected visual acuity (BCVA), blue fundus autofluorescence (FAF), near-infrared autofluorescence, and spectral-domain (SD)-OCT with integrated microperimetry. A total of 58 eyes of 29 patients (21 women; mean age 73 ± 9 years) were included. Mean BCVA was 0.28 ± 0.3 logarithm of the minimal angle of resolution (logMAR). Overall, 2842 points were analyzed as regards FAF and near-infrared autofluorescence patterns, the status of inner segment/outer segment (IS/OS) interface, and retinal sensitivity. We observed a good correlation between the FAF and near-infrared autofluorescence patterns for all the points graded (increased FAF/near-infrared autofluorescence, Pearson rho = 0.6, P = .02; decreased FAF/near-infrared autofluorescence, Pearson rho = 0.7, P = .01; normal FAF/near-infrared autofluorescence, Pearson rho = 0.7, P = .01). Mean retinal sensitivity was significantly reduced in cases of decreased FAF (4.73 ± 2.23 dB) or increased FAF (4.75 ± 2.39 dB) compared with normal FAF (7.44 ± 2.34 dB) (P = .001). Mean retinal sensitivity was significantly reduced in case of decreased near-infrared autofluorescence (3.87 ± 2.28 dB), compared with increased near-infrared autofluorescence (5.76 ± 2.44 dB) (P = .02); mean retinal sensitivity in case of increased near-infrared autofluorescence was significantly reduced compared with normal near-infrared autofluorescence (7.15 ± 2.38 dB) (P = .002). On SD-OCT, there was a high inverse correlation between retinal sensitivity and rate of disruptions in IS/OS interface (Pearson rho = -0.72, P = .001). A reduced retinal sensitivity consistently correlates with decreased FAF/near-infrared autofluorescence and a disrupted IS/OS interface. Increased near-infrared autofluorescence may represent a useful method for detection of retinal abnormalities early in dry AMD development. Copyright © 2012 Elsevier Inc. All rights reserved.
Modified Point Mass Trajectory Simulation for Base-Burn Projectiles
1992-03-01
Konrad Adenauer Ufer 2-6 1 DGAM 54 Koblenz ATTN: Mr. J.L. Perez Minguez GERMANY Poligono de Experiencias Paseo de Extremedura WTD 91 D. BW-031 28024...directly related to the average projectile base pressure, Pb, as follows: 1 Pb Cob YM2_ (1) 2 db2 where: db = base diameter of projectile in calibers M...and p v Ab is the free-stream mass flow through an area equal to the base of the projectile, Ab. Danberg (1990) has shown that ABP is linearly related
Social Psychology: Trends, Assessment, and Prognosis.
ERIC Educational Resources Information Center
Stryker, Sheldon
1981-01-01
Points out that sociologists should be aware of developments in the field of social psychology because sociological (particularly structural) analyses rest on assumptions about the social psychological properties of persons and processes. (DB)
A primary goal of computational toxicology is to generate predictive models of toxicity. An elusive target of alternative test methods and models has been the accurate prediction of systemic toxicity points of departure (PoD). We aim not only to provide a large and valuable resou...
Election-Year Bonus: Glossary of Congressional Terms
ERIC Educational Resources Information Center
Social Education, 1978
1978-01-01
The glossary present definitions of over 120 political terms, including appropriation bill, budget, contract authorizations, congressional record, minority leader, override a veto, readings of bills, point of order, and adjournment sine die. (DB)
NASA Astrophysics Data System (ADS)
Li, Benye; Jiang, Lan; Wang, Sumei; Tsai, Hai-Lung; Xiao, Hai
2011-11-01
An improved point-by-point inscription method is proposed to fabricate long period fiber gratings (LPFGs) by using a laser operating at 800 nm with 35 fs duration pulses. The sensitivity to misalignment between the core and the focus is reduced by scanning a rectangular part on the fiber. LPFGs with an attenuation depth of 20 dB are achieved within the wavelength range of 1465-1575 nm. Characterization of the temperature sensitivity and thermal stability of the LPFGs is presented. A 5.6 nm wavelength shift and a 1.2 dB decrease in the attenuation peak are observed following heat treatment at 600 °C for 4 h. The fabricated LPFGs are used as refractive index sensors. The effect of heat treatment on the response of the LPFGs to refractive index changes is also studied.
Farrell, L J; Lo, R; Wanford, J J; Jenkins, A; Maxwell, A; Piddock, L J V
2018-06-11
The current state of antibiotic discovery, research and development is insufficient to respond to the need for new treatments for drug-resistant bacterial infections. The process has changed over the last decade, with most new agents that are in Phases 1-3, or recently approved, having been discovered in small- and medium-sized enterprises or academia. These agents have then been licensed or sold to large companies for further development with the goal of taking them to market. However, early drug discovery and development, including the possibility of developing previously discontinued agents, would benefit from a database of antibacterial compounds for scrutiny by the developers. This article describes the first free, open-access searchable database of antibacterial compounds, including discontinued agents, drugs under pre-clinical development and those in clinical trials: AntibioticDB (AntibioticDB.com). Data were obtained from publicly available sources. This article summarizes the compounds and drugs in AntibioticDB, including their drug class, mode of action, development status and propensity to select drug-resistant bacteria. AntibioticDB includes compounds currently in pre-clinical development and 834 that have been discontinued and that reached varying stages of development. These may serve as starting points for future research and development.
Optimal Compression of Floating-Point Astronomical Images Without Significant Loss of Information
NASA Technical Reports Server (NTRS)
Pence, William D.; White, R. L.; Seaman, R.
2010-01-01
We describe a compression method for floating-point astronomical images that gives compression ratios of 6 - 10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process greatly improves the precision of measurements in the more coarsely quantized images. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image.
Logic programming to infer complex RNA expression patterns from RNA-seq data.
Weirick, Tyler; Militello, Giuseppe; Ponomareva, Yuliya; John, David; Döring, Claudia; Dimmeler, Stefanie; Uchida, Shizuka
2018-03-01
To meet the increasing demand in the field, numerous long noncoding RNA (lncRNA) databases are available. Given many lncRNAs are specifically expressed in certain cell types and/or time-dependent manners, most lncRNA databases fall short of providing such profiles. We developed a strategy using logic programming to handle the complex organization of organs, their tissues and cell types as well as gender and developmental time points. To showcase this strategy, we introduce 'RenalDB' (http://renaldb.uni-frankfurt.de), a database providing expression profiles of RNAs in major organs focusing on kidney tissues and cells. RenalDB uses logic programming to describe complex anatomy, sample metadata and logical relationships defining expression, enrichment or specificity. We validated the content of RenalDB with biological experiments and functionally characterized two long intergenic noncoding RNAs: LOC440173 is important for cell growth or cell survival, whereas PAXIP1-AS1 is a regulator of cell death. We anticipate RenalDB will be used as a first step toward functional studies of lncRNAs in the kidney.
NASA Astrophysics Data System (ADS)
Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe
2012-05-01
A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.
Markowitz, Michael; Fu, Dong-Jing; Levitan, Bennett; Gopal, Srihari; Turkoz, Ibrahim; Alphs, Larry
2013-07-11
Increasing availability and use of long-acting injectable antipsychotics have generated a need to compare these formulations with their oral equivalents; however, a paucity of relevant data is available. This post hoc comparison of the long-term efficacy, safety and tolerability of maintenance treatment with paliperidone palmitate (PP) versus oral paliperidone extended release (ER) used data from two similarly designed, randomised, double-blind (DB), placebo-controlled schizophrenia relapse prevention trials. Assessments included measures of time to relapse, symptom changes/functioning and treatment-emergent adverse events (TEAEs). Time to relapse between treatment groups was evaluated using a Cox proportional hazards model. Between-group differences for continuous variables for change scores during the DB phase were assessed using analysis of co-variance models. Categorical variables were evaluated using Chi-square and Fisher's exact tests. No adjustment was made for multiplicity. Approximately 45% of enrolled subjects in both trials were stabilised and randomised to the DB relapse prevention phase. Risk of relapse was higher in subjects treated with paliperidone ER than in those treated with PP [paliperidone ER/PP hazard ratio (HR), 2.52; 95% confidence interval (CI), 1.46-4.35; p < 0.001]. Similarly, risk of relapse after withdrawal of paliperidone ER treatment (placebo group of the paliperidone ER study) was higher than after withdrawal of PP (paliperidone ER placebo/PP placebo HR, 2.25; 95% CI, 1.59-3.18; p < 0.001). Stabilised schizophrenic subjects treated with PP maintained functioning demonstrated by the same proportions of subjects with mild to no difficulties in functioning at DB baseline and end point [Personal and Social Performance (PSP) scale total score >70, both approximately 58.5%; p = 1.000] compared with a 10.9% decrease for paliperidone ER (58.5% vs 47.6%, respectively; p = 0.048). The least squares mean change for Positive and Negative Syndrome Scale (PANSS) total score at DB end point in these previously stabilised subjects was 3.5 points in favour of PP (6.0 vs 2.5; p = 0.025). The rates of TEAEs and AEs of interest appeared similar. This analysis supports maintenance of effect with the injectable compared with the oral formulation of paliperidone in patients with schizophrenia. The safety profile of PP was similar to that of paliperidone ER. Future studies are needed to confirm these findings.
NASA Technical Reports Server (NTRS)
Barrie, A. C.; Smith, S. E.; Dorelli, J. C.; Gershman, D. J.; Yeh, P.; Schiff, C.; Avanov, L. A.
2017-01-01
Data compression has been a staple of imaging instruments for years. Recently, plasma measurements have utilized compression with relatively low compression ratios. The Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale (MMS) mission generates data roughly 100 times faster than previous plasma instruments, requiring a higher compression ratio to fit within the telemetry allocation. This study investigates the performance of a space-based compression standard employing a Discrete Wavelet Transform and a Bit Plane Encoder (DWT/BPE) in compressing FPI plasma count data. Data from the first 6 months of FPI operation are analyzed to explore the error modes evident in the data and how to adapt to them. While approximately half of the Dual Electron Spectrometer (DES) maps had some level of loss, it was found that there is little effect on the plasma moments and that errors present in individual sky maps are typically minor. The majority of Dual Ion Spectrometer burst sky maps compressed in a lossless fashion, with no error introduced during compression. Because of induced compression error, the size limit for DES burst images has been increased for Phase 1B. Additionally, it was found that the floating point compression mode yielded better results when images have significant compression error, leading to floating point mode being used for the fast survey mode of operation for Phase 1B. Despite the suggested tweaks, it was found that wavelet-based compression, and a DWT/BPE algorithm in particular, is highly suitable to data compression for plasma measurement instruments and can be recommended for future missions.
Compression of laminated composite beams with initial damage
NASA Technical Reports Server (NTRS)
Breivik, Nicole L.; Gurdal, Zafer; Griffin, O. H., Jr.
1993-01-01
The effect of isolated damage modes on the compressive strength and failure characteristics of laminated composite test specimens were evaluated experimentally and numerically. In addition to specimens without initial damage, specimens with three types of initial damage were considered: (1) specimens with short delaminations distributed evenly through the specimen thickness, (2) specimens with few long delaminations, and (3) specimens with local fiber damage in the surface plies under the three-point bend contact point. It was found that specimens with short multiple delamination experienced the greatest reduction in compression strength compared to the undamaged specimens. Single delaminations far from the specimen surface had little effect on the final compression strength, and moderate strength reduction was observed for specimens with localized surface ply damage.
Compressibility, Laws of Nature, Initial Conditions and Complexity
NASA Astrophysics Data System (ADS)
Chibbaro, Sergio; Vulpiani, Angelo
2017-10-01
We critically analyse the point of view for which laws of nature are just a mean to compress data. Discussing some basic notions of dynamical systems and information theory, we show that the idea that the analysis of large amount of data by means of an algorithm of compression is equivalent to the knowledge one can have from scientific laws, is rather naive. In particular we discuss the subtle conceptual topic of the initial conditions of phenomena which are generally incompressible. Starting from this point, we argue that laws of nature represent more than a pure compression of data, and that the availability of large amount of data, in general, is not particularly useful to understand the behaviour of complex phenomena.
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.
2015-01-01
The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset <0.01. The analysis demonstrates both the efficacy of the new radiometric calibration efforts and that the C6 MODIS Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.
A 5.2/5.8 GHz Dual Band On-Off Keying Transmitter Design for Bio-Signal Transmission
NASA Astrophysics Data System (ADS)
Wu, Chang-Hsi; You, Hong-Cheng; Huang, Shun-Zhao
2018-02-01
An architecture of 5.2/5.8-GHz dual-band on-off keying (DBOOK) modulated transmitter is designed in a 0.18-μm CMOS technology. The proposed DBOOK transmitter is used in the biosignal transmission system with high power efficiency and small area. To reduce power consumption and enhance output swing, two pairs of center-tapped transformers are used as both LC tank and source grounding choke for the designed voltage controlled oscillator (VCO). Switching capacitances are used to achieve dual band operations, and a complemented power combiner is used to merge the differential output power of VCO to a single-ended output. Besides, the linearizer circuits are used in the proposed power amplifier with wideband output matching to improve the linearity both at 5.2/5.8-GHz bands. The designed DBOOK transmitter is implemented by dividing it into two chips. One chip implements the dual-band switching VCO and power combiner, and the other chip implements a linear power amplifier including dual-band operation. The first chip drives an output power of 2.2mW with consuming power of 5.13 mW from 1.1 V supply voltage. With the chip size including pad of 0.61 × 0.91 m2, the measured data rate and transmission efficiency attained are 100 Mb/s and 51 pJ/bit, respectively. The second chip, for power enhanced mode, exhibits P1 dB of -9 dBm, IIP3 of 1 dBm, the output power 1 dB compression point of 12.42 dBm, OIP3 of about 21 dBm, maximum output power of 17.02/16.18 dBm, and power added efficiency of 17.13/16.95% for 5.2/ 5.8 GHz. The chip size including pads is 0:693 × 1:084mm2.
[Manual trigger point therapy of shoulder pain : Randomized controlled study of effectiveness].
Sohns, S; Schnieder, K; Licht, G; von Piekartz, H
2016-12-01
Although chronic shoulder pain is highly prevalent and myofascial trigger points (mTrP) are thought to be found in the majority of patients with shoulder complaints, the influence on the pain mechanism remains unclear. There are only very few controlled clinical studies on the effects of manual trigger point compression therapy. This randomized controlled trial (RCT) compared the short-term effects of manual trigger point compression therapy (n = 6) with manual sham therapy (n = 6) in patients with unilateral shoulder pain due to myofascial syndrome (MFS). The measurement data were collected before and after two sessions of therapy. Pressure pain thresholds (PPT) of mTrP and symmetrically located points on the asymptomatic side were measured together with neutral points in order to detect a potential unilateral or generalized hyperalgesia. Additionally, the pain was assessed on a visual analog scale (VAS) at rest and during movement and the neck disability index (NDI) and disabilities of the arm, shoulder and hand (DASH) questionnaires were also completed and evaluated. Both treatment modalities led to a significant improvement; however, the manual trigger point compression therapy was significantly more effective in comparison to sham therapy, as measured by different parameters. The significant improvement of PPT values in the interventional group even at sites that were not directly treated, indicates central mechanisms in pain threshold modulation induced by manual compression therapy. The weaker but still measurable effects of sham therapy might be explained by the sham modality being a hands on technique or by sufficient stimulation of the trigger point region during the diagnostics and PPT measurements.
Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites
NASA Astrophysics Data System (ADS)
Singh, B. P.; Prasanta; Choudhary, Veena; Saini, Parveen; Pande, Shailaja; Singh, V. N.; Mathur, R. B.
2013-04-01
Dispersion of high loading of carbon nanotubes (CNTs) in epoxy resin is a challenging task for the development of efficient and thin electromagnetic interference (EMI) shielding materials. Up to 20 wt% of multiwalled carbon nanotubes (MWCNTs) loading in the composite was achieved by forming CNT prepreg in the epoxy resin as a first step. These prepreg laminates were then compression molded to form composites which resulted in EMI shielding effectiveness of -19 dB for 0.35 mm thick film and -60 dB at for 1.75 mm thick composites in the X-band (8.2-12.4 GHz). One of the reasons for such high shielding is attributed to the high electrical conductivity of the order of 9 S cm-1 achieved in these composites which is at least an order of magnitude higher than previously reported results at this loading. In addition, an improvement of 40 % in the tensile strength over the neat resin value is observed. Thermal conductivity of the MWCNTs-epoxy composite reached 2.18 W/mK as compared to only 0.14 W/mK for cured epoxy.
Repeatability of normal multifocal VEP: implications for detecting progression.
Fortune, Brad; Demirel, Shaban; Zhang, Xian; Hood, Donald C; Johnson, Chris A
2006-04-01
To assess the repeatability of the multifocal visual evoked potential (mfVEP) and to compare it with the repeatability of standard automated perimetry (SAP) in the same group of 50 normal controls retested after 1 year. Our second aim was to assess the repeatability of false alarm rates determined previously for the mfVEP using various cluster criteria. Fifty individuals with normal vision participated in this study (33 females and 17 males). The age range was 26.7 to 77.9 years and the group average age (+/- SD) was 51.4 (+/- 12.1) years. Pattern-reversal mfVEPs were obtained using a dartboard stimulus pattern in VERIS and two 8-minute runs per eye were averaged. The average number of days between the first and second mfVEP tests was 378 (+/- 58). SAP visual fields were obtained within 17.4 (+/- 20.3) days of the mfVEP using the SITA-standard threshold algorithm. Repeatability of mfVEPs and SAP total deviation values were evaluated by calculating point-wise limits of agreement (LOA). Specificity (1-false alarm rate) was evaluated for a range of cluster criteria, whereby the number and probability level of the points defining a cluster were varied. Point-wise LOA for the mfVEP signal-to-noise ratio (SNR) ranged from 2.0 to 4.3 dB, with an average of 2.9 dB across all 60 locations. For SAP, LOA ranged from 2.4 to 8.9 dB, with an average of 4.0 dB (excluding the points immediately above and below the blind spot). Clusters of abnormal points were not likely to repeat on either mfVEP or SAP. When an mfVEP abnormality was defined as the repeat presence (confirmation) of a 3-point (P < 0.05) cluster anywhere within a single hemifield, only 1 (of 200) monocular hemifield was deemed abnormal. Although the LOA of the mfVEP were similar throughout the field, the limited dynamic range of SNR at superior field locations will limit the ability to follow progression in "depth" at those locations. Repeatability of the mfVEP was slightly better than SAP visual fields in this group of controls with a 1-year retest interval. This suggests that progression in early stages should be more easily detectable by mfVEP. However, in certain field locations (eg, superior periphery), the relatively more narrow dynamic range of the SNR of the mfVEP may limit detection of progression to just 1 event. Confirmation of a 3-point cluster abnormality is highly suggestive of a true defect on the mfVEP.
Time Concepts for Elementary School Children.
ERIC Educational Resources Information Center
Muir, Sharon Pray
1990-01-01
Points out that children have difficulty learning time concepts. Presents instructional activities for concepts associated with clocks, calendars, and chronology. Outlines Jerome Bruner's three different stages of representation for each concept: enactive, iconic, and symbolic. (DB)
ZFP compression plugin (filter) for HDF5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mark C.
H5Z-ZFP is a compression plugin (filter) for the HDF5 library based upon the ZFP-0.5.0 compression library. It supports 4- or 8-byte integer or floating point HDF5 datasets of any dimension but partitioned in 1, 2, or 3 dimensional chunks. It supports ZFP's four fundamental modes of operation; rate, precision, accuracy or expert. It is a lossy compression plugin.
Oil point and mechanical behaviour of oil palm kernels in linear compression
NASA Astrophysics Data System (ADS)
Kabutey, Abraham; Herak, David; Choteborsky, Rostislav; Mizera, Čestmír; Sigalingging, Riswanti; Akangbe, Olaosebikan Layi
2017-07-01
The study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min-1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin-1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.
Park, Sang-Sub
2014-01-01
The purpose of this study is to grasp difference in quality of chest compression accuracy between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method. Participants were progressed 64 people except 6 absentees among 70 people who agreed to participation with completing the CPR curriculum. In the classification of group in participants, the modified chest compression method was called as smartphone group (33 people). The standardized chest compression method was called as traditional group (31 people). The common equipments in both groups were used Manikin for practice and Manikin for evaluation. In the meantime, the smartphone group for application was utilized Android and iOS Operating System (OS) of 2 smartphone products (G, i). The measurement period was conducted from September 25th to 26th, 2012. Data analysis was used SPSS WIN 12.0 program. As a result of research, the proper compression depth (mm) was shown the proper compression depth (p< 0.01) in traditional group (53.77 mm) compared to smartphone group (48.35 mm). Even the proper chest compression (%) was formed suitably (p< 0.05) in traditional group (73.96%) more than smartphone group (60.51%). As for the awareness of chest compression accuracy, the traditional group (3.83 points) had the higher awareness of chest compression accuracy (p< 0.001) than the smartphone group (2.32 points). In the questionnaire that was additionally carried out 1 question only in smartphone group, the modified chest compression method with the use of smartphone had the high negative reason in rescuer for occurrence of hand back pain (48.5%) and unstable posture (21.2%).
Koopmans, Bastijn; Smit, August B; Verhage, Matthijs; Loos, Maarten
2017-04-04
Systematic, standardized and in-depth phenotyping and data analyses of rodent behaviour empowers gene-function studies, drug testing and therapy design. However, no data repositories are currently available for standardized quality control, data analysis and mining at the resolution of individual mice. Here, we present AHCODA-DB, a public data repository with standardized quality control and exclusion criteria aimed to enhance robustness of data, enabled with web-based mining tools for the analysis of individually and group-wise collected mouse phenotypic data. AHCODA-DB allows monitoring in vivo effects of compounds collected from conventional behavioural tests and from automated home-cage experiments assessing spontaneous behaviour, anxiety and cognition without human interference. AHCODA-DB includes such data from mutant mice (transgenics, knock-out, knock-in), (recombinant) inbred strains, and compound effects in wildtype mice and disease models. AHCODA-DB provides real time statistical analyses with single mouse resolution and versatile suite of data presentation tools. On March 9th, 2017 AHCODA-DB contained 650 k data points on 2419 parameters from 1563 mice. AHCODA-DB provides users with tools to systematically explore mouse behavioural data, both with positive and negative outcome, published and unpublished, across time and experiments with single mouse resolution. The standardized (automated) experimental settings and the large current dataset (1563 mice) in AHCODA-DB provide a unique framework for the interpretation of behavioural data and drug effects. The use of common ontologies allows data export to other databases such as the Mouse Phenome Database. Unbiased presentation of positive and negative data obtained under the highly standardized screening conditions increase cost efficiency of publicly funded mouse screening projects and help to reach consensus conclusions on drug responses and mouse behavioural phenotypes. The website is publicly accessible through https://public.sylics.com and can be viewed in every recent version of all commonly used browsers.
Analog-to-Digital Conversion to Accommodate the Dynamics of Live Music in Hearing Instruments
Bahlmann, Frauke; Fulton, Bernadette
2012-01-01
Hearing instrument design focuses on the amplification of speech to reduce the negative effects of hearing loss. Many amateur and professional musicians, along with music enthusiasts, also require their hearing instruments to perform well when listening to the frequent, high amplitude peaks of live music. One limitation, in most current digital hearing instruments with 16-bit analog-to-digital (A/D) converters, is that the compressor before the A/D conversion is limited to 95 dB (SPL) or less at the input. This is more than adequate for the dynamic range of speech; however, this does not accommodate the amplitude peaks present in live music. The hearing instrument input compression system can be adjusted to accommodate for the amplitudes present in music that would otherwise be compressed before the A/D converter in the hearing instrument. The methodology behind this technological approach will be presented along with measurements to demonstrate its effectiveness. PMID:23258618
Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára
2016-01-15
This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.
Unequal power allocation for JPEG transmission over MIMO systems.
Sabir, Muhammad Farooq; Bovik, Alan Conrad; Heath, Robert W
2010-02-01
With the introduction of multiple transmit and receive antennas in next generation wireless systems, real-time image and video communication are expected to become quite common, since very high data rates will become available along with improved data reliability. New joint transmission and coding schemes that explore advantages of multiple antenna systems matched with source statistics are expected to be developed. Based on this idea, we present an unequal power allocation scheme for transmission of JPEG compressed images over multiple-input multiple-output systems employing spatial multiplexing. The JPEG-compressed image is divided into different quality layers, and different layers are transmitted simultaneously from different transmit antennas using unequal transmit power, with a constraint on the total transmit power during any symbol period. Results show that our unequal power allocation scheme provides significant image quality improvement as compared to different equal power allocations schemes, with the peak-signal-to-noise-ratio gain as high as 14 dB at low signal-to-noise-ratios.
Discrete Walsh Hadamard transform based visible watermarking technique for digital color images
NASA Astrophysics Data System (ADS)
Santhi, V.; Thangavelu, Arunkumar
2011-10-01
As the size of the Internet is growing enormously the illegal manipulation of digital multimedia data become very easy with the advancement in technology tools. In order to protect those multimedia data from unauthorized access the digital watermarking system is used. In this paper a new Discrete walsh Hadamard Transform based visible watermarking system is proposed. As the watermark is embedded in transform domain, the system is robust to many signal processing attacks. Moreover in this proposed method the watermark is embedded in tiling manner in all the range of frequencies to make it robust to compression and cropping attack. The robustness of the algorithm is tested against noise addition, cropping, compression, Histogram equalization and resizing attacks. The experimental results show that the algorithm is robust to common signal processing attacks and the observed peak signal to noise ratio (PSNR) of watermarked image is varying from 20 to 30 db depends on the size of the watermark.
Montenegro, Mary L L S; Braz, Carolina A; Rosa-e-Silva, Julio C; Candido-dos-Reis, Francisco J; Nogueira, Antonio A; Poli-Neto, Omero B
2015-12-01
Chronic pelvic pain is a common condition among women, and 10 to 30 % of causes originate from the abdominal wall, and are associated with trigger points. Although little is known about their pathophysiology, variable methods have been practiced clinically. The purpose of this study was to evaluate the efficacy of local anaesthetic injections versus ischemic compression via physical therapy for pain relief of abdominal wall trigger points in women with chronic pelvic pain. We conducted a parallel group randomized trial including 30 women with chronic pelvic pain with abdominal wall trigger points. Subjects were randomly assigned to one of two intervention groups. One group received an injection of 2 mL 0.5 % lidocaine without a vasoconstrictor into a trigger point. In the other group, ischemic compression via physical therapy was administered at the trigger points three times, with each session lasting for 60 s, and a rest period of 30 s between applications. Both treatments were administered during one weekly session for four weeks. Our primary outcomes were satisfactory clinical response rates and percentages of pain relief. Our secondary outcomes are pain threshold and tolerance at the trigger points. All subjects were evaluated at baseline and 1, 4, and 12 weeks after the interventions. The study was conducted at a tertiary hospital that was associated with a university providing assistance predominantly to working class women who were treated by the public health system. Clinical response rates and pain relief were significantly better at 1, 4, and 12 weeks for those receiving local anaesthetic injections than ischemic compression via physical therapy. The pain relief of women treated with local anaesthetic injections progressively improved at 1, 4, and 12 weeks after intervention. In contrast, women treated with ischemic compression did not show considerable changes in pain relief after intervention. In the local anaesthetic injection group, pain threshold and tolerance improved with time in the absence of significant differences between groups. Lidocaine injection seems to be better for reducing the severity of chronic pelvic pain secondary to abdominal wall trigger points compared to ischemic compression via physical therapy. ClinicalTrials.gov NCT00628355. Date of registration: February 25, 2008.
Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.
Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven
2014-11-01
Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without affecting the axial resolution.
Testing of visual field with virtual reality goggles in manual and visual grasp modes.
Wroblewski, Dariusz; Francis, Brian A; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas
2014-01-01
Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4-6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.
Wi-Fi location fingerprinting using an intelligent checkpoint sequence
NASA Astrophysics Data System (ADS)
Retscher, Günther; Hofer, Hannes
2017-09-01
For Wi-Fi positioning location fingerprinting is very common but has the disadvantage that it is very labour consuming for the establishment of a database (DB) with received signal strength (RSS) scans measured on a large number of known reference points (RPs). To overcome this drawback a novel approach is developed which uses a logical sequence of intelligent checkpoints (iCPs) instead of RPs distributed in a regular grid. The iCPs are the selected RPs which have to be passed along the way for navigation from a start point A to the destination B. They are twofold intelligent because of the fact that they depend on their meaningful selection and because of their logical sequence in their correct order. Thus, always the following iCP is known due to a vector graph allocation in the DB and only a small limited number of iCPs needs to be tested when matching the current RSS scans. This reduces the required processing time significantly. It is proven that the iCP approach achieves a higher success rate than conventional approaches. In average correct matching results of 90.0% were achieved using a joint DB including RSS scans of all employed smartphones. An even higher success rate is achieved if the same mobile device is used in both the training and positioning phase.
Infrasound-induced changes on sexual behavior in male rats and some underlying mechanisms.
Zhuang, Zhiqiang; Pei, Zhaohui; Chen, Jingzao
2007-01-01
To investigate some bioeffects of infrasound on copulation as well as underlying mechanisms, we inspected the changes of sexual behavior, serum testosterone concentration and mRNA expression levels of steroidogenic factor 1 (SF-1), steroidogenic acute regulatory protein (StAR) and cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) in testes of rats exposed to infrasound of 8Hz at 90 or 130dB for 1, 7, 14 and 21 days (2h/day), respectively. Rats exposed to 90dB exhibited significant decrement in sexual behavior, serum testosterone levels and mRNA expression levels of StAR and P450scc at the time point of 1 day but not at the rest time points, and no significantly change of SF-1 mRNA expression was observed over the period of 21 days in spite of mild fluctuation. Rats exposed to 130dB exhibited significant decrement in all aspects above, which became more profound with prolonged exposure. Our conclusion is that adverse bioeffects of infrasound on reproduction depend on some exposure parameters, the mechanism of which could involve in the decreased expression of some key enzymes or regulator for testosterone biosynthesis. Copyright © 2006. Published by Elsevier B.V.
High-performance 1.3-μm laser diode by LP-MOVPE
NASA Astrophysics Data System (ADS)
Li, TongNing; Ji, Jin-yan; Yan, Xin-min; Liu, Tao; Ning, Zhou; Liu, Jiang; Liu, Zi-li; Huang, Ge-fan
1996-09-01
The progress in 1.3 micrometers wavelength InGaAsP/InP lasers for optic fiber communication and subscriber loop applications is reviewed. By using LP-MOVPE/LPE epitaxy techniques, the performance of commercial optical devices is considerably improved. The bandwidth of the 1.3 micrometers uncooled MQW-LD module could be high to 1.6GHz, threshold current Ith < 15mA, maximum fiber output power Pf >= 20mW while uniformity, reproducible, high yield are achieved. Further by growing active layer with compressive strained structure the lowest threshold current Ith equals 3.8mA was achieved with high reflection coating and the temperature performance of the SL-MQW-LD has been greatly improved, the change of slop efficiency at 25 degrees C and 85 degrees C is less than 1 dB. Using the holographic technique a high power 1.31 micrometers InGaAsP/InP multiquantum well distributed feedback laser has also been developed. The fiber output power of butterfly packaged module with optic isolator Pf > 10mW, threshold current Ith < 18mA, slop efficiency Es > 22 percent and side mode suppression ratio SMSR > 40dB. The composite triple beat CTB < -66dBc and the composite second order CSO < -56dBc by test frequencies equals 55.25 to approximately 289.25MHz with 40 NCTA channels, the carrier to noise ration CNR > 50 dB and the relative intensity noise RIN < -160dB/Hz.
High linearity current communicating passive mixer employing a simple resistor bias
NASA Astrophysics Data System (ADS)
Rongjiang, Liu; Guiliang, Guo; Yuepeng, Yan
2013-03-01
A high linearity current communicating passive mixer including the mixing cell and transimpedance amplifier (TIA) is introduced. It employs the resistor in the TIA to reduce the source voltage and the gate voltage of the mixing cell. The optimum linearity and the maximum symmetric switching operation are obtained at the same time. The mixer is implemented in a 0.25 μm CMOS process. The test shows that it achieves an input third-order intercept point of 13.32 dBm, conversion gain of 5.52 dB, and a single sideband noise figure of 20 dB.
Vibration Isolation, Suppression, Steering, and Pointing (VISSP)
NASA Technical Reports Server (NTRS)
Wada, Ben K.; Rahman, Zahidul; Kedikian, Roland
1996-01-01
The design of a six degree of freedom flight vibration isolation suppression and steering (VISS) subsystem for a mid-wave infrared camera on the top of a spacecraft is presented. The development of a long stroke piezoelectric, redundant, compact, low stiffness and power efficient actuator is summarized. A subsystem that could be built and validated for flight within 15 months was investigated. The goals of the VISS are 20 dB vibration isolation above 2 Hz, 15 dB vibration suppression of disturbances at about 60 Hz and 120 Hz, and +/- 0.3 deg steering at 2 Hz and 4 Hz.
The Tripole Antenna: An Adaptive Array with Full Polarization Flexibility.
1980-12-01
The polarization ellipse 4 3 The Poincare sphere 6 4 SINR vs. Bi. 12 8d=450 , @d=450, ad=1!5, Bd=30 °, SNR=O dB 00i= 45 , INR-4O dB. 5 SINR vs. 01, 13...y and n is most easily visualized by making use of the Poincare Sphere 4 . This tech- nique represents the state of polarization by a point on a...clockwise circular polarization (a = + 450) at the upper pole. Thus, an arbitrary plane wave coming into the array may be character- ized by four
Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform.
De Queiroz, Ricardo; Chou, Philip A
2016-06-01
In free-viewpoint video, there is a recent trend to represent scene objects as solids rather than using multiple depth maps. Point clouds have been used in computer graphics for a long time and with the recent possibility of real time capturing and rendering, point clouds have been favored over meshes in order to save computation. Each point in the cloud is associated with its 3D position and its color. We devise a method to compress the colors in point clouds which is based on a hierarchical transform and arithmetic coding. The transform is a hierarchical sub-band transform that resembles an adaptive variation of a Haar wavelet. The arithmetic encoding of the coefficients assumes Laplace distributions, one per sub-band. The Laplace parameter for each distribution is transmitted to the decoder using a custom method. The geometry of the point cloud is encoded using the well-established octtree scanning. Results show that the proposed solution performs comparably to the current state-of-the-art, in many occasions outperforming it, while being much more computationally efficient. We believe this work represents the state-of-the-art in intra-frame compression of point clouds for real-time 3D video.
The Theory of Relativity: A Metatheory for Development?
ERIC Educational Resources Information Center
Sinnott, Jan Dynda
1981-01-01
Reviews relativity theory in physics to derive a relativistic metatheory applicable to life span developmental psychology. The discussion points out ways in which relativistic thinking might enhance understanding of life span development and epistemology. (Author/DB)
Application of automatic gain control for radiometer diagnostic in SST-1 tokamak.
Makwana, Foram R; Siju, Varsha; Edappala, Praveenlal; Pathak, S K
2017-12-01
This paper describes the characterisation of a negative feedback type of automatic gain control (AGC) circuit that will be an integral part of the heterodyne radiometer system operating at a frequency range of 75-86 GHz at SST-1 tokamak. The developed AGC circuit is a combination of variable gain amplifier and log amplifier which provides both gain and attenuation typically up to 15 dB and 45 dB, respectively, at a fixed set point voltage and it has been explored for the first time in tokamak radiometry application. The other important characteristics are that it exhibits a very fast response time of 390 ns to understand the fast dynamics of electron cyclotron emission and can operate at very wide input RF power dynamic range of around 60 dB that ensures signal level within the dynamic range of the detection system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George
Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less
LNA with wide range of gain control and wideband interference rejection
NASA Astrophysics Data System (ADS)
Wang, Jhen-Ji; Chen, Duan-Yu
2016-10-01
This work presents a low-noise amplifier (LNA) design with a wide-range gain control characteristic that integrates adjustable current distribution and output impedance techniques. For a given gain characteristic, the proposed LNA provides better wideband interference rejection performance than conventional LNA. Moreover, the proposed LNA also has a wider gain control range than conventional LNA. Therefore, it is suitable for satellite communications systems. The simulation results demonstrate that the voltage gain control range is between 14.5 and 34.2 dB for such applications (2600 MHz); the input reflection coefficient is less than -18.9 dB; the noise figure (NF) is 1.25 dB; and the third-order intercept point (IIP3) is 4.52 dBm. The proposed LNA consumes 23.85-28.17 mW at a supply voltage of 1.8 V. It is implemented by using TSMC 0.18-um RF CMOS process technology.
Off-nadir antenna bias correction using Amazon rain sigma(0) data
NASA Technical Reports Server (NTRS)
Birrer, I. J.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K.
1982-01-01
The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Oceanic Satellite System (NOSS). Backscattering observations made by the SEASAT Scatterometer System (SASS) showed the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which was insensitive to polarization. The variation with angle of incidence was adequately modeled as scattering coefficient (dB) = a theta b with typical values for the incidence-angle coefficient from 0.07 to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum-likelihood estimation algorithms presented here permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.
Loss-tolerant quantum secure positioning with weak laser sources
NASA Astrophysics Data System (ADS)
Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; Chitambar, Eric; Evans, Philip G.; Qi, Bing
2016-09-01
Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. Recently, it has been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit. Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. In this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.
BioPartsDB: a synthetic biology workflow web-application for education and research.
Stracquadanio, Giovanni; Yang, Kun; Boeke, Jef D; Bader, Joel S
2016-11-15
Synthetic biology has become a widely used technology, and expanding applications in research, education and industry require progress tracking for team-based DNA synthesis projects. Although some vendors are beginning to supply multi-kilobase sequence-verified constructs, synthesis workflows starting with short oligos remain important for cost savings and pedagogical benefit. We developed BioPartsDB as an open source, extendable workflow management system for synthetic biology projects with entry points for oligos and larger DNA constructs and ending with sequence-verified clones. BioPartsDB is released under the MIT license and available for download at https://github.com/baderzone/biopartsdb Additional documentation and video tutorials are available at https://github.com/baderzone/biopartsdb/wiki An Amazon Web Services image is available from the AWS Market Place (ami-a01d07c8). joel.bader@jhu.edu. © The Author 2016. Published by Oxford University Press.
Inner ear contribution to bone conduction hearing in the human.
Stenfelt, Stefan
2015-11-01
Bone conduction (BC) hearing relies on sound vibration transmission in the skull bone. Several clinical findings indicate that in the human, the skull vibration of the inner ear dominates the response for BC sound. Two phenomena transform the vibrations of the skull surrounding the inner ear to an excitation of the basilar membrane, (1) inertia of the inner ear fluid and (2) compression and expansion of the inner ear space. The relative importance of these two contributors were investigated using an impedance lumped element model. By dividing the motion of the inner ear boundary in common and differential motion it was found that the common motion dominated at frequencies below 7 kHz but above this frequency differential motion was greatest. When these motions were used to excite the model it was found that for the normal ear, the fluid inertia response was up to 20 dB greater than the compression response. This changed in the pathological ear where, for example, otosclerosis of the stapes depressed the fluid inertia response and improved the compression response so that inner ear compression dominated BC hearing at frequencies above 400 Hz. The model was also able to predict experimental and clinical findings of BC sensitivity in the literature, for example the so called Carhart notch in otosclerosis, increased BC sensitivity in superior semicircular canal dehiscence, and altered BC sensitivity following a vestibular fenestration and RW atresia. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.
2016-03-01
Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.
Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Yamamoto, K.; Majjigi, R. K.; Brausch, J. F.
1984-01-01
Six scale-model nozzles were tested in an anechoic facility to evauate the effectiveness of convergent-divergent (C-D) terminations in reducing shock-cell noise of unsuppressed and mechanically suppressed coannular plug nozzles. One hundred fifty-three acoustic test points with inverted velocity profiles were conducted under static and simulated flight conditions. Diagnostic flow visualization with a shadowgraph and velocity measurements with a laser velocimeter were performed on selected plumes. Shock-cells were identified on the plug and downstream of the plug of the unsuppressed convergent coannular nozzle with truncated plug. Broadband peak frequencies predicted with the two shock-cell structures were correlated with the observed spectra using the measured shock-cell spacings. Relative to a convergent circular nozzle, the perceived noise level (PNL) data at an observer angle of 60 deg relative to inlet, indicated a reduction of (1) 6.5 dB and 9.2 dB with unsuppressed C-D coannular nozzle with truncated plug and (2) 7.7 dB and 8.3 dB with suppressed C-D coannular nozzle under static and simulated flight conditions, espectively. The unsuppressed C-D coannular nozzle with truncated plug, operating at the C-D design condition, had shock-cells downstream of the plug with no shock-cells on the plug. The downstream shock-cells were eliminated by replacing the truncated plug with a smooth extension to obtain an additional 2.4 dB and 3 dB front quadrant PNL reduction, under static and simulated flight conditions, respectively. Other results are discussed.
An experimental evaluation of an effective medium based compaction equation.
Mahmoodi, Foad; Alderborn, Göran; Frenning, Göran
2012-05-12
Tablet production involves compression of free flowing powder in an enclosed cavity of defined geometry. The complexity of the powder bed system necessitates that a way be found to better understand what occurs during compression. One such approach is by means of compaction equations, of which, the Heckel and Kawakita equations are the best known. This work attempts to experimentally evaluate the applicability of the effective medium (EM) equation introduced by Frenning et al. (2009) to powder systems. Two powder types (sodium chloride and lactose monohydrate), each consisting of three size fractions (<40, 125-212 and 212-300μm) were characterised and compressed to a pressure of 500MPa. These powders were chosen because of their differing mechanical properties. An invariance which is inherent in the EM equation is exposed by varying the starting points of compression, and can yield insights into compression mechanisms. Such invariant regions were observed once plastic particle deformation started to dominate the compression behaviour, and enabled the determination of the point where particle rearrangement stops. Copyright © 2012 Elsevier B.V. All rights reserved.
Heo, Dong Won; Kim, Kyoung Nam; Lee, Min Woo; Lee, Sung Bok; Kim, Chang-Sik
2017-01-01
To evaluate the properties of pattern standard deviation (PSD) according to localization of the glaucomatous optic neuropathy. We enrolled 242 eyes of 242 patients with primary open-angle glaucoma, with a best-corrected visual acuity ≥ 20/25, and no media opacity. Patients were examined via dilated fundus photography, spectral-domain optical coherence tomography, and Humphrey visual field examination, and divided into those with hemi-optic neuropathy (superior or inferior) and bi-optic neuropathy (both superior and inferior). We assessed the relationship between mean deviation (MD) and PSD. Using broken stick regression analysis, the tipping point was identified, i.e., the point at which MD became significantly associated with a paradoxical reversal of PSD. In 91 patients with hemi-optic neuropathy, PSD showed a strong correlation with MD (r = -0.973, β = -0.965, p < 0.001). The difference between MD and PSD ("-MD-PSD") was constant (mean, -0.32 dB; 95% confidence interval, -2.48~1.84 dB) regardless of visual field defect severity. However, in 151 patients with bi-optic neuropathy, a negative correlation was evident between "-MD-PSD" and MD (r2 = 0.907, p < 0.001). Overall, the MD tipping point was -14.0 dB, which was close to approximately 50% damage of the entire visual field (p < 0.001). Although a false decrease of PSD usually begins at approximately 50% visual field damage, in patients with hemi-optic neuropathy, the PSD shows no paradoxical decrease and shows a linear correlation with MD.
Liu, Xilin; Zhang, Milin; Xiong, Tao; Richardson, Andrew G; Lucas, Timothy H; Chin, Peter S; Etienne-Cummings, Ralph; Tran, Trac D; Van der Spiegel, Jan
2016-07-18
Reliable, multi-channel neural recording is critical to the neuroscience research and clinical treatment. However, most hardware development of fully integrated, multi-channel wireless neural recorders to-date, is still in the proof-of-concept stage. To be ready for practical use, the trade-offs between performance, power consumption, device size, robustness, and compatibility need to be carefully taken into account. This paper presents an optimized wireless compressed sensing neural signal recording system. The system takes advantages of both custom integrated circuits and universal compatible wireless solutions. The proposed system includes an implantable wireless system-on-chip (SoC) and an external wireless relay. The SoC integrates 16-channel low-noise neural amplifiers, programmable filters and gain stages, a SAR ADC, a real-time compressed sensing module, and a near field wireless power and data transmission link. The external relay integrates a 32 bit low-power microcontroller with Bluetooth 4.0 wireless module, a programming interface, and an inductive charging unit. The SoC achieves high signal recording quality with minimized power consumption, while reducing the risk of infection from through-skin connectors. The external relay maximizes the compatibility and programmability. The proposed compressed sensing module is highly configurable, featuring a SNDR of 9.78 dB with a compression ratio of 8×. The SoC has been fabricated in a 180 nm standard CMOS technology, occupying 2.1 mm × 0.6 mm silicon area. A pre-implantable system has been assembled to demonstrate the proposed paradigm. The developed system has been successfully used for long-term wireless neural recording in freely behaving rhesus monkey.
The Academic Neutrality Argument: Philosophical Discourse and La Regle du Jeu.
ERIC Educational Resources Information Center
Palermo, James
1981-01-01
Presents case studies representing various points of view on the question of whether academic institutions can remain neutral. Excerpts are presented from the writings of Kenneth Strike, Robert H. Ennis, John Dewey, and Louis Althusser. (DB)
How Teachers Can Help Victims of Child Abuse.
ERIC Educational Resources Information Center
Rowe, Jeanne
1981-01-01
Identifies aspects of students' behavior and appearance which may indicate child abuse, discusses various types of physical and emotional child abuse, and points out steps which teachers should take if they suspect that a student is being abused. (DB)
Demonstration of an 8*10-Gb/s OTDM system
NASA Astrophysics Data System (ADS)
Huo, Li; Yang, Yanfu; Lou, Caiyun; Gao, Yizhi
2005-03-01
An 8*10 Gb/s optical time-division-multiplexing (OTDM) system was demonstrated with an electroabsorption modulator (EAM) based short pulse generator followed by a two-stage nonlinear compression scheme which generated stable 10-GHz, 2-ps full-width at half-maximum (FWHM) pulse train, an opto-electronic oscillator (OEO) that extracted 10-GHz clock with a timing jitter of 300 fs from 80-Gb/s OTDM signal and a self cascaded EAM which produced a switching window of about 10 ps. A back-to-back error free demultiplexing experiment with a power penalty of 3.25 dB was carried out to verify the system performance.
NASA Astrophysics Data System (ADS)
Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael
2012-08-01
This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.
DWT-Based High Capacity Audio Watermarking
NASA Astrophysics Data System (ADS)
Fallahpour, Mehdi; Megías, David
This letter suggests a novel high capacity robust audio watermarking algorithm by using the high frequency band of the wavelet decomposition, for which the human auditory system (HAS) is not very sensitive to alteration. The main idea is to divide the high frequency band into frames and then, for embedding, the wavelet samples are changed based on the average of the relevant frame. The experimental results show that the method has very high capacity (about 5.5kbps), without significant perceptual distortion (ODG in [-1, 0] and SNR about 33dB) and provides robustness against common audio signal processing such as added noise, filtering, echo and MPEG compression (MP3).
Raman dissipative soliton fiber laser pumped by an ASE source.
Pan, Weiwei; Zhang, Lei; Zhou, Jiaqi; Yang, Xuezong; Feng, Yan
2017-12-15
The mode locking of a Raman fiber laser with an amplified spontaneous emission (ASE) pump source is investigated for performance improvement. Raman dissipative solitons with a compressed pulse duration of 1.05 ps at a repetition rate of 2.47 MHz are generated by utilizing nonlinear polarization rotation and all-fiber Lyot filter. A signal-to-noise ratio as high as 85 dB is measured in a radio-frequency spectrum, which suggests excellent temporal stability. Multiple-pulse operation with unique random static distribution is observed for the first time, to the best of our knowledge, at higher pump power in mode-locked Raman fiber lasers.
The variant call format and VCFtools.
Danecek, Petr; Auton, Adam; Abecasis, Goncalo; Albers, Cornelis A; Banks, Eric; DePristo, Mark A; Handsaker, Robert E; Lunter, Gerton; Marth, Gabor T; Sherry, Stephen T; McVean, Gilean; Durbin, Richard
2011-08-01
The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. http://vcftools.sourceforge.net
Photogrammetric point cloud compression for tactical networks
NASA Astrophysics Data System (ADS)
Madison, Andrew C.; Massaro, Richard D.; Wayant, Clayton D.; Anderson, John E.; Smith, Clint B.
2017-05-01
We report progress toward the development of a compression schema suitable for use in the Army's Common Operating Environment (COE) tactical network. The COE facilitates the dissemination of information across all Warfighter echelons through the establishment of data standards and networking methods that coordinate the readout and control of a multitude of sensors in a common operating environment. When integrated with a robust geospatial mapping functionality, the COE enables force tracking, remote surveillance, and heightened situational awareness to Soldiers at the tactical level. Our work establishes a point cloud compression algorithm through image-based deconstruction and photogrammetric reconstruction of three-dimensional (3D) data that is suitable for dissimination within the COE. An open source visualization toolkit was used to deconstruct 3D point cloud models based on ground mobile light detection and ranging (LiDAR) into a series of images and associated metadata that can be easily transmitted on a tactical network. Stereo photogrammetric reconstruction is then conducted on the received image stream to reveal the transmitted 3D model. The reported method boasts nominal compression ratios typically on the order of 250 while retaining tactical information and accurate georegistration. Our work advances the scope of persistent intelligence, surveillance, and reconnaissance through the development of 3D visualization and data compression techniques relevant to the tactical operations environment.
Electronic topological transitions in Zn under compression
NASA Astrophysics Data System (ADS)
Kechin, Vladimir V.
2001-01-01
The electronic structure of hcp Zn under pressure up to 10 GPa has been calculated self-consistently by means of the scalar relativistic tight-binding linear muffin-tin orbital method. The calculations show that three electronic topological transitions (ETT's) occur in Zn when the c/a axial ratio diminishes under compression. One transition occurs at c/a~=1.82 when the ``needles'' appear around the symmetry point K of the Brillouin zone. The other two transitions occur at c/a~=3, when the ``butterfly'' and ``cigar'' appear simultaneously both around the L point. It has been shown that these ETT's are responsible for a number of anomalies observed in Zn at compression.
A PDF closure model for compressible turbulent chemically reacting flows
NASA Technical Reports Server (NTRS)
Kollmann, W.
1992-01-01
The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.
Spatiotemporal dynamics of Gaussian laser pulse in a multi ions plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari Milani, M. R., E-mail: mrj.milani@gmail.com
Spatiotemporal evolutions of Gaussian laser pulse propagating through a plasma with multiple charged ions are studied, taking into account the ponderomotive nonlinearity. Coupled differential equations for beam width and pulse length parameters are established and numerically solved using paraxial ray approximation. In one-dimensional geometry, effects of laser and plasma parameters such as laser intensity, plasma density, and temperature on the longitudinal pulse compression and the laser intensity distribution are analyzed for plasmas with singly and doubly charged ions. The results demonstrate that self-compression occurs in a laser intensity range with a turning point intensity in which the self-compression process hasmore » its strongest extent. The results also show that the multiply ionized ions have different effect on the pulse compression above and below turning point intensity. Finally, three-dimensional geometry is used to analyze the simultaneous evolution of both self-focusing and self-compression of Gaussian laser pulse in such plasmas.« less
Physicsdesign point for a 1MW fusion neutron source
NASA Astrophysics Data System (ADS)
Woodruff, Simon; Melnik, Paul; Sieck, Paul; Stuber, James; Romero-Talamas, Carlos; O'Bryan, John; Miller, Ronald
2016-10-01
We are developing a design point for a spheromak experiment heated by adiabatic compression for use as a compact neutron source. We utilize the CORSICA and NIMROD MHD codes as well as analytic modeling to assess a concept with target parameters R0 =0.5m, Rf =0.17m, T0 =1keV, Tf =8keV, n0 =2e20m-3 and nf = 5e21m-3, with radial convergence of C =R0/Rf =3. We present results from CORSICA showing the placement of coils and passive structure to ensure stability during compression. We specify target parameters for the compression in terms of plasma beta, formation efficiency and energy confinement. We present results simulations of magnetic compression using the NIMROD code to examine the role of rotation on the stability and confinement of the spheromak as it is compressed. Supported by DARPA Grant N66001-14-1-4044 and IAEA CRP on Compact Fusion Neutron Sources.
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2015-01-01
Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).
Comparison of direct and heterodyne detection optical intersatellite communication links
NASA Technical Reports Server (NTRS)
Chen, C. C.; Gardner, C. S.
1987-01-01
The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.
Compression of thick laminated composite beams with initial impact-like damage
NASA Technical Reports Server (NTRS)
Breivik, N. L.; Guerdal, Z.; Griffin, O. H., Jr.
1992-01-01
While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results.
Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique
NASA Technical Reports Server (NTRS)
Li, Lihua; Coon, Michael; McLinden, Matthew
2013-01-01
Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression technique could bring significant impact on future radar development. The novel feature of this innovation is the non-linear FM (NLFM) waveform design. The traditional linear FM has the limit (-20 log BT -3 dB) for achieving ultra-low-range sidelobe in pulse compression. For this study, a different combination of 20- or 40-microsecond chirp pulse width and 2- or 4-MHz chirp bandwidth was used. These are typical operational parameters for airborne or spaceborne weather radars. The NLFM waveform design was then implemented on a FPGA board to generate a real chirp signal, which was then sent to the radar transceiver simulator. The final results have shown significant improvement on sidelobe performance compared to that obtained using a traditional linear FM chirp.
NASA Technical Reports Server (NTRS)
Rowland, John R.; Goldhirsh, Julius; Vogel, Wolfhard J.; Torrence, Geoffrey W.
1991-01-01
An overview and a status description of the planned LMSS mobile K band experiment with ACTS is presented. As a precursor to the ACTS mobile measurements at 20.185 GHz, measurements at 19.77 GHz employing the Olympus satellite were originally planned. However, because of the demise of Olympus in June of 1991, the efforts described here are focused towards the ACTS measurements. In particular, we describe the design and testing results of a gyro controlled mobile-antenna pointing system. Preliminary pointing measurements during mobile operations indicate that the present system is suitable for measurements employing a 15 cm aperture (beamwidth at approximately 7 deg) receiving antenna operating with ACTS in the high gain transponder mode. This should enable measurements with pattern losses smaller than plus or minus 1 dB over more than 95 percent of the driving distance. Measurements with the present mount system employing a 60 cm aperture (beamwidth at approximately 1.7 deg) results in pattern losses smaller than plus or minus 3 dB for 70 percent of the driving distance. Acceptable propagation measurements may still be made with this system by employing developed software to flag out bad data points due to extreme pointing errors. The receiver system including associated computer control software has been designed and assembled. Plans are underway to integrate the antenna mount with the receiver on the University of Texas mobile receiving van and repeat the pointing tests on highways employing a recently designed radome system.
Compressive Properties and Anti-Erosion Characteristics of Foam Concrete in Road Engineering
NASA Astrophysics Data System (ADS)
Li, Jinzhu; Huang, Hongxiang; Wang, Wenjun; Ding, Yifan
2018-01-01
To analyse the compression properties and anti-erosion characteristics of foam concrete, one dimensional compression tests were carried out using ring specimens of foam concrete, and unconfined compression tests were carried out using foam concrete specimens cured in different conditions. The results of one dimensional compression tests show that the compression curve of foam concrete has two critical points and three stages, which has significant difference with ordinary geotechnical materials such as soil. Based on the compression curve the compression modulus of each stage were determined. The results of erosion tests show that sea water has a slight influence on the long-term strength of foam concrete, while the sulphate solution has a significant influence on the long-term strength of foam concrete, which needs to pay more attention.
Decreased retinal sensitivity after internal limiting membrane peeling for macular hole surgery.
Tadayoni, Ramin; Svorenova, Ivana; Erginay, Ali; Gaudric, Alain; Massin, Pascale
2012-12-01
To compare the retinal sensitivity and frequency of microscotomas found by spectral domain optical coherence tomography (SD-OCT) combined with scanning laser ophthalmoscopy (SLO) microperimetry after idiopathic macular hole closure, in eyes that underwent internal limiting membrane (ILM) peeling and eyes that did not. This was a retrospective, non-randomised, comparative study. Combined SD-OCT and SLO microperimetry was performed in 16 consecutive eyes after closure of an idiopathic macular hole. A customised microperimetry pattern with 29 measurement points was used. The ILM was peeled in 8/16 eyes. The main outcome measure was mean retinal sensitivity. Mean retinal sensitivity (in dB) was lower after peeling: 9.80 ± 2.35 dB with peeling versus 13.19 ± 2.92 without (p=0.0209). Postoperative microscotomas were significantly more frequent after ILM peeling: 11.3 ± 6.6 points with retinal sensitivity below 10 dB in eyes that underwent peeling versus 2.9 ± 4.6 in those that did not (p=0.0093). These results suggest that ILM peeling may reduce retinal sensitivity, and significantly increase the incidence of microscotomas. Until a prospective trial confirming or not these results, it seems justified to avoid peeling the ILM when its potential benefit seems minor or unproved, and when peeling is carried out, to limit the surface peeled to the bare minimum.
Pattern of age-associated decline of static and dynamic balance in community-dwelling older women.
Takeshima, Nobuo; Islam, Mohammod M; Rogers, Michael E; Koizumi, Daisuke; Tomiyama, Naoki; Narita, Makoto; Rogers, Nicole L
2014-07-01
Falling is the leading cause of injury-related deaths in older adults, and a loss of balance is often the precursor to a fall. However, little is known about the rate at which balance declines with age. The objective of the present study was to determine whether there is an age-associated decline in static (SB) and/or dynamic (DB) balance in community-dwelling older women. SB and DB were determined in 971 older women. Intraclass correlation coefficients (ICC) were used to determine test-retest reliability. Sway velocity was used to measure SB standing on a platform and foam with eyes open and closed. DB was characterized by limits of stability (LOS) that measured end-point excursion (EXE) and maximum excursion (MXE) of the body's center of pressure. ICC for EXE and MXE for the LOS test were excellent (EPE = 0.96, MXE = 0.96). ICC for SB tests, except for the eyes open firm surface condition (ICC = 0.10), showed a high level of reproducibility (ICC = 0.88 and 0.90). Relationships existed between age and SB (r = 0.31, P < 0.001), and between age and DB (r = -0.46--0.48, P < 0.001). The rate of decline for both DB and SB was approximately 1% per year. Age was significantly associated with all balance measures. DB got significantly lower with advancing age until 80 years, and then plateaued. SB did not decline with age until 80 years, and then decreased significantly thereafter. Although large individual variation was found with balance ability, an age-related decline was found with both dynamic and static balance for Japanese older women. © 2013 Japan Geriatrics Society.
Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao
This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in differentmore » positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.« less
Transmitter pointing loss calculation for free-space optical communications link analyses
NASA Technical Reports Server (NTRS)
Marshall, William K.
1987-01-01
In calculating the performance of free-space optical communications links, the transmitter pointing loss is one of the two most important factors. It is shown in this paper that the traditional formula for the instantaneous pointing loss (i.e., for the transmitter telescope far-field beam pattern) is quite inaccurate. A more accurate and practical approximation is developed in which the pointing loss is calculated using a Taylor series approximation. The four-term series is shown to be accurate to 0.1 dB for the theta angles not greater than 0.9 lambda/D (wavelength/telescope diameter).
Siblings of Oedipus: Brothers and Sisters of Incest Victims.
ERIC Educational Resources Information Center
de Young, Mary
1981-01-01
Investigates the roles and problems of siblings of incest victims, describes the dynamics of the incestuous family, and identifies some behavior problems of children whose siblings were incest victims. Data from two siblings' lives are presented to illustrate points. (Author/DB)
Total Quality Management in Higher Education: Applying Deming's Fourteen Points.
ERIC Educational Resources Information Center
Masters, Robert J.; Leiker, Linda
1992-01-01
This article presents guidelines to aid administrators of institutions of higher education in applying the 14 principles of Total Quality Management. The principles stress understanding process improvements, handling variation, fostering prediction, and using psychology to capitalize on human resources. (DB)
Munro, K J; Lazenby, A
2001-10-01
The electroacoustic characteristics of a hearing instrument are normally selected for individuals using data obtained during audiological assessment. The precise inter-relationship between the electroacoustic and audiometric variables is most readily appreciated when they have been measured at the same reference point, such as the tympanic membrane. However, it is not always possible to obtain the real-ear sound pressure level (SPL) directly if this is below the noise floor of the probe-tube microphone system or if the subject is unco-operative. The real-ear SPL may be derived by adding the subject's real-ear to dial difference (REDD) acoustic transform to the audiometer dial setting. The aim of the present study was to confirm the validity of the Audioscan RM500 to measure the REDD with the ER-3A insert earphone. A probe-tube microphone was used to measure the real-ear SPL and REDD from the right ears of 16 adult subjects ranging in age from 22 to 41 years (mean age 27 years). Measurements were made from 0.25 kHz to 6 kHz at a dial setting of 70 dB with an ER-3A insert earphone and two earmould configurations: the EAR-LINK foam ear-tip and the subjects' customized skeleton earmoulds. Mean REDD varied as a function of frequency but was typically approximately 12 dB with a standard deviation (SD) of +/- 1.7 dB and +/- 2.7 dB for the foam ear-tip and customized earmould, respectively. The mean test-retest difference of the REDD varied with frequency but was typically 0.5 dB (SD 1 dB). Over the frequency range 0.5-4 kHz, the derived values were found to be within 5 dB of the measured values in 95% of subjects when using the EAR-LINK foam ear-tip and within 4 dB when using the skeleton earmould. The individually measured REDD transform can be used in clinical practice to derive a valid estimate of real-ear SPL when it has not been possible to measure this directly.
Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas
2012-01-01
Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602
Is complex signal processing for bone conduction hearing aids useful?
Kompis, Martin; Kurz, Anja; Pfiffner, Flurin; Senn, Pascal; Arnold, Andreas; Caversaccio, Marco
2014-05-01
To establish whether complex signal processing is beneficial for users of bone anchored hearing aids. Review and analysis of two studies from our own group, each comparing a speech processor with basic digital signal processing (either Baha Divino or Baha Intenso) and a processor with complex digital signal processing (either Baha BP100 or Baha BP110 power). The main differences between basic and complex signal processing are the number of audiologist accessible frequency channels and the availability and complexity of the directional multi-microphone noise reduction and loudness compression systems. Both studies show a small, statistically non-significant improvement of speech understanding in quiet with the complex digital signal processing. The average improvement for speech in noise is +0.9 dB, if speech and noise are emitted both from the front of the listener. If noise is emitted from the rear and speech from the front of the listener, the advantage of the devices with complex digital signal processing as opposed to those with basic signal processing increases, on average, to +3.2 dB (range +2.3 … +5.1 dB, p ≤ 0.0032). Complex digital signal processing does indeed improve speech understanding, especially in noise coming from the rear. This finding has been supported by another study, which has been published recently by a different research group. When compared to basic digital signal processing, complex digital signal processing can increase speech understanding of users of bone anchored hearing aids. The benefit is most significant for speech understanding in noise.
Airborne sound insulation evaluation and flanking path prediction of coupled room
NASA Astrophysics Data System (ADS)
Tassia, R. D.; Asmoro, W. A.; Arifianto, D.
2016-11-01
One of the parameters to review the acoustic comfort is based on the value of the insulation partition in the classroom. The insulation value can be expressed by the sound transmission loss which converted into a single value as weighted sound reduction index (Rw, DnTw) and also have an additional sound correction factor in low frequency (C, Ctr) .In this study, the measurements were performed in two positions at each point using BSWA microphone and dodecahedron speaker as the sound source. The results of field measurements indicate the acoustic insulation values (DnT w + C) is 19.6 dB. It is noted that the partition wall not according to the standard which the DnTw + C> 51 dB. Hence the partition wall need to be redesign to improve acoustic insulation in the classroom. The design used gypsum board, plasterboard, cement board, and PVC as the replacement material. Based on the results, all the material is simulated in accordance with established standards. Best insulation is cement board with the insulation value is 69dB, the thickness of 12.5 mm on each side and the absorber material is 50 mm. Many factors lead to increase the value of acoustic insulation, such as the thickness of the panel, the addition of absorber material, density, and Poisson's ratio of a material. The prediction of flanking path can be estimated from noise reduction values at each measurement point in the class room. Based on data obtained, there is no significant change in noise reduction from each point so that the pathway of flanking is not affect the sound transmission in the classroom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnucka-Blandzi, Ewa
The study is devoted to stability of simply supported beam under axial compression. The beam is subjected to an axial load located at any point along the axis of the beam. The buckling problem has been desribed and solved mathematically. Critical loads have been calculated. In the particular case, the Euler’s buckling load is obtained. Explicit solutions are given. The values of critical loads are collected in tables and shown in figure. The relation between the point of the load application and the critical load is presented.
Compression of facsimile graphics for transmission over digital mobile satellite circuits
NASA Astrophysics Data System (ADS)
Dimolitsas, Spiros; Corcoran, Frank L.
A technique for reducing the transmission requirements of facsimile images while maintaining high intelligibility in mobile communications environments is described. The algorithms developed are capable of achieving a compression of approximately 32 to 1. The technique focuses on the implementation of a low-cost interface unit suitable for facsimile communication between low-power mobile stations and fixed stations for both point-to-point and point-to-multipoint transmissions. This interface may be colocated with the transmitting facsimile terminals. The technique was implemented and tested by intercepting facsimile documents in a store-and-forward mode.
Quinary excitation method for pulse compression ultrasound measurements.
Cowell, D M J; Freear, S
2008-04-01
A novel switched excitation method for linear frequency modulated excitation of ultrasonic transducers in pulse compression systems is presented that is simple to realise, yet provides reduced signal sidelobes at the output of the matched filter compared to bipolar pseudo-chirp excitation. Pulse compression signal sidelobes are reduced through the use of simple amplitude tapering at the beginning and end of the excitation duration. Amplitude tapering using switched excitation is realised through the use of intermediate voltage switching levels, half that of the main excitation voltages. In total five excitation voltages are used creating a quinary excitation system. The absence of analogue signal generation and power amplifiers renders the excitation method attractive for applications with requirements such as a high channel count or low cost per channel. A systematic study of switched linear frequency modulated excitation methods with simulated and laboratory based experimental verification is presented for 2.25 MHz non-destructive testing immersion transducers. The signal to sidelobe noise level of compressed waveforms generated using quinary and bipolar pseudo-chirp excitation are investigated for transmission through a 0.5m water and kaolin slurry channel. Quinary linear frequency modulated excitation consistently reduces signal sidelobe power compared to bipolar excitation methods. Experimental results for transmission between two 2.25 MHz transducers separated by a 0.5m channel of water and 5% kaolin suspension shows improvements in signal to sidelobe noise power in the order of 7-8 dB. The reported quinary switched method for linear frequency modulated excitation provides improved performance compared to pseudo-chirp excitation without the need for high performance excitation amplifiers.
Ellis, William L.; Kibler, J.D.
1983-01-01
Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.
Method and apparatus for holding two separate metal pieces together for welding
NASA Technical Reports Server (NTRS)
Mcclure, S. R. (Inventor)
1980-01-01
A method of holding two separate metal pieces together for welding is described including the steps of overlapping a portion of one of the metal pieces on a portion of the other metal piece, encasing the overlapping metal piece in a compressible device, drawing the compressible device into an enclosure, and compressing a portion of the compressible device around the overlapping portions of the metal pieces for holding the metal pieces under constant and equal pressure during welding. The preferred apparatus for performing the method utilizes a support mechanism to support the two separate metal pieces in an overlapping configuration; a compressible device surrounding the support mechanism and at least one of the metal pieces, and a compressing device surrounding the compressible device for compressing the compressible device around the overlapping portions of the metal pieces, thus providing constant and equal pressure at all points on the overlapping portions of the metal pieces.
NASA ER-2 Doppler radar reflectivity calibration for the CAMEX project
NASA Technical Reports Server (NTRS)
Caylor, I. J.; Heymsfield, G. M.; Bidwell, S. W.; Ameen, S.
1994-01-01
The NASA ER-2 Doppler radar (EDOP) was flown aboard the ER-2 high-altitude aircraft in September and October 1993 for the Convection and Moisture Experiment. During these flights, the first reliable reflectivity observations were performed with the EDOP instrument. This report details the procedure used to convert real-time engineering data into calibrated radar reflectivity. Application of the calibration results produces good agreement between the EDOP nadir pointing reflectivity and ground truth provided by a National Weather Service WSR-88D radar. The rms deviation between WSR-88D and EDOP is 6.9 dB, while measurements of the ocean surface backscatter coefficient are less than 3 dB from reported scatterometer coefficients. After an initial 30-minute period required for the instrument to reach thermal equilibrium, the radar is stable to better than 0.25 dB during flight. The range performance of EDOP shows excellent agreement with aircraft altimeter and meteorological sounding data.
Constructing a Graph Database for Semantic Literature-Based Discovery.
Hristovski, Dimitar; Kastrin, Andrej; Dinevski, Dejan; Rindflesch, Thomas C
2015-01-01
Literature-based discovery (LBD) generates discoveries, or hypotheses, by combining what is already known in the literature. Potential discoveries have the form of relations between biomedical concepts; for example, a drug may be determined to treat a disease other than the one for which it was intended. LBD views the knowledge in a domain as a network; a set of concepts along with the relations between them. As a starting point, we used SemMedDB, a database of semantic relations between biomedical concepts extracted with SemRep from Medline. SemMedDB is distributed as a MySQL relational database, which has some problems when dealing with network data. We transformed and uploaded SemMedDB into the Neo4j graph database, and implemented the basic LBD discovery algorithms with the Cypher query language. We conclude that storing the data needed for semantic LBD is more natural in a graph database. Also, implementing LBD discovery algorithms is conceptually simpler with a graph query language when compared with standard SQL.
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin
2015-09-01
In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.
On the Use of 3dB Qualification Margin for Structural Parts on Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Yunis, Isam
2007-01-01
The standard random vibration qualification test used for Expendable Launch Vehicle components is Maximum Predicted Environment (MPE) + 6dB for a duration of 4 times the service life of the part. This can be a severe qualification test for these fatigue-sensitive structures. This paper uses flight data from several launch vehicles to establish that reducing the qualification approach to MPE+3dB for the duration of the peak environment (1x life) is valid for fatigue-sensitive structural components. Items that can be classified as fatigue-sensitive are probes, ducts, tubing, bellows, hoses, and any non-functional structure. Non-functional structure may be flight critical or carry fluid, but it cannot include any moving parts or electronics. This reduced qualification approach does not include primary or secondary structure which would be exclusively designed by peak loads, either transient or quasi-static, that are so large and of so few cycles as to make fatigue a moot point.
Loss-tolerant quantum secure positioning with weak laser sources
Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; ...
2016-09-14
Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less
Ethics in International Business Education: Perspectives from Five Business Disciplines.
ERIC Educational Resources Information Center
LeClair, Debbie Thorne; Clark, Robert; Ferrell, Linda; Joseph, Gilbert; Leclair, Daniel
1999-01-01
Examines international ethics issues and perspectives from the vantage points of five disciplines in business education: economics, management, finance, accounting, and marketing. Finds an underlying theme of management awareness, accountability, and control of ethical decision-making. Suggests some ethics-related curriculum projects. (DB)
Brancher, Luiza R.; Nunes, Maria Fernanda de O.; Grisa, Ana Maria C.; Pagnussat, Daniel T.; Zeni, Mára
2016-01-01
This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite. PMID:28787851
An approach to improve the spatial resolution of a force mapping sensing system
NASA Astrophysics Data System (ADS)
Negri, Lucas Hermann; Manfron Schiefer, Elberth; Sade Paterno, Aleksander; Muller, Marcia; Luís Fabris, José
2016-02-01
This paper proposes a smart sensor system capable of detecting sparse forces applied to different positions of a metal plate. The sensing is performed with strain transducers based on fiber Bragg gratings (FBG) distributed under the plate. Forces actuating in nine squared regions of the plate, resulting from up to three different loads applied simultaneously to the plate, were monitored with seven transducers. The system determines the magnitude of the force/pressure applied on each specific area, even in the absence of a dedicated transducer for that area. The set of strain transducers with coupled responses and a compressive sensing algorithm are employed to solve the underdetermined inverse problem which emerges from mapping the force. In this configuration, experimental results have shown that the system is capable of recovering the value of the load distributed on the plate with a signal-to-noise ratio better than 12 dB, when the plate is submitted to three simultaneous test loads. The proposed method is a practical illustration of compressive sensing algorithms for the reduction of the number of FBG-based transducers used in a quasi-distributed configuration.
Lin, Gong-Ru; Pan, Ci-Ling; Chiu, I-Hsiang
2006-03-15
A backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser (SOAFL) with a femtosecond pulse width and an ultrahigh supermode-noise suppressing ratio (SMSR) is primarily demonstrated. The mode-locked SOAFL pulse with a spectral linewidth of 0.45 nm is shortened from 15 to 8.6 ps under chirp compensation in a 420 m long dispersion-compensated fiber, corresponding to a time-bandwidth product of 0.48. The eighth-order soliton is obtained by the nonlinearly soliton's compression of the chirp-compensated SOAFL pulse in a 112 m long single-mode fiber at an input peak power of 51 W, providing the pulse width, the linewidth, and the nearly transform-limited time-bandwidth product are <200 fs, 13.8 nm, and 0.34, respectively. The phase noise and integrated timing jitter at an offset frequency below 1 MHz are -105 dBc/Hz and 0.8 ps, respectively. An ultrahigh pulse-compression ratio of 43 and a SMSR of 87 dB for the eighth-order SOAFL soliton are reported.
NASA Astrophysics Data System (ADS)
Chai, Bing-Bing; Vass, Jozsef; Zhuang, Xinhua
1997-04-01
Recent success in wavelet coding is mainly attributed to the recognition of importance of data organization. There has been several very competitive wavelet codecs developed, namely, Shapiro's Embedded Zerotree Wavelets (EZW), Servetto et. al.'s Morphological Representation of Wavelet Data (MRWD), and Said and Pearlman's Set Partitioning in Hierarchical Trees (SPIHT). In this paper, we propose a new image compression algorithm called Significant-Linked Connected Component Analysis (SLCCA) of wavelet coefficients. SLCCA exploits both within-subband clustering of significant coefficients and cross-subband dependency in significant fields. A so-called significant link between connected components is designed to reduce the positional overhead of MRWD. In addition, the significant coefficients' magnitude are encoded in bit plane order to match the probability model of the adaptive arithmetic coder. Experiments show that SLCCA outperforms both EZW and MRWD, and is tied with SPIHT. Furthermore, it is observed that SLCCA generally has the best performance on images with large portion of texture. When applied to fingerprint image compression, it outperforms FBI's wavelet scalar quantization by about 1 dB.
A Double Dwell High Sensitivity GPS Acquisition Scheme Using Binarized Convolution Neural Network
Wang, Zhen; Zhuang, Yuan; Yang, Jun; Zhang, Hengfeng; Dong, Wei; Wang, Min; Hua, Luchi; Liu, Bo; Shi, Longxing
2018-01-01
Conventional GPS acquisition methods, such as Max selection and threshold crossing (MAX/TC), estimate GPS code/Doppler by its correlation peak. Different from MAX/TC, a multi-layer binarized convolution neural network (BCNN) is proposed to recognize the GPS acquisition correlation envelope in this article. The proposed method is a double dwell acquisition in which a short integration is adopted in the first dwell and a long integration is applied in the second one. To reduce the search space for parameters, BCNN detects the possible envelope which contains the auto-correlation peak in the first dwell to compress the initial search space to 1/1023. Although there is a long integration in the second dwell, the acquisition computation overhead is still low due to the compressed search space. Comprehensively, the total computation overhead of the proposed method is only 1/5 of conventional ones. Experiments show that the proposed double dwell/correlation envelope identification (DD/CEI) neural network achieves 2 dB improvement when compared with the MAX/TC under the same specification. PMID:29747373
Synergy of adaptive thresholds and multiple transmitters in free-space optical communication.
Louthain, James A; Schmidt, Jason D
2010-04-26
Laser propagation through extended turbulence causes severe beam spread and scintillation. Airborne laser communication systems require special considerations in size, complexity, power, and weight. Rather than using bulky, costly, adaptive optics systems, we reduce the variability of the received signal by integrating a two-transmitter system with an adaptive threshold receiver to average out the deleterious effects of turbulence. In contrast to adaptive optics approaches, systems employing multiple transmitters and adaptive thresholds exhibit performance improvements that are unaffected by turbulence strength. Simulations of this system with on-off-keying (OOK) showed that reducing the scintillation variations with multiple transmitters improves the performance of low-frequency adaptive threshold estimators by 1-3 dB. The combination of multiple transmitters and adaptive thresholding provided at least a 10 dB gain over implementing only transmitter pointing and receiver tilt correction for all three high-Rytov number scenarios. The scenario with a spherical-wave Rytov number R=0.20 enjoyed a 13 dB reduction in the required SNR for BER's between 10(-5) to 10(-3), consistent with the code gain metric. All five scenarios between 0.06 and 0.20 Rytov number improved to within 3 dB of the SNR of the lowest Rytov number scenario.
Body fat mass, leptin and puberty.
Kiess, W; Müller, G; Galler, A; Reich, A; Deutscher, J; Klammt, J; Kratzsch, J
2000-07-01
Leptin, the ob gene product, provides a molecular basis for the lipostatic theory of the regulation of energy balance. Leptin circulates as a monomeric 16 kDa protein in rodent and human plasma and is also bound to leptin binding proteins that may form large high molecular weight complexes. Initial models of leptin action included leptin-deficient ob/ob mice and leptin-insensitive db/db mice. Peripheral or central administration of leptin reduced body weight, adiposity, and food intake in ob/ob mice but not in db/db mice. In ob/ob mice leptin treatment restored fertility. Leptin interacts with many messenger molecules in the brain. For example, leptin suppresses neuropeptide Y (NPY) expression in the arcuate nucleus. Increased NPY activity has an inhibitory effect on the gonadotropin axis and represents a direct mechanism for inhibiting sexual maturation and reproductive function in conditions of food restriction and/or energy expenditure. By modulating the hypothalamo-pituitary-gonadal axis both directly and indirectly, leptin may thus serve as the signal from fat to the brain about the adequacy of fat stores for pubertal development and reproduction. Normal leptin secretion is necessary for normal reproductive function to proceed and leptin may be a signal allowing for the point of initiation of and progression toward puberty.
Helleman, Hiske W; Dreschler, Wouter A
2015-02-01
To investigate the effect of a break in music exposure on temporary threshold shifts. A cross-over design where subjects are exposed to dance music for either two hours consecutively, or exposed to two hours of dance music with a one-hour break in between. Outcome measure was the change in hearing threshold, measured in 1-dB steps at different time points after ending the music. Eighteen normal-hearing subjects participated in this study. Changes in pure-tone threshold were observed in both conditions and were similar, regardless of the break. Threshold shifts could be averaged for 1000, 2000, and 4000 Hz. The shift immediately after the ending of the music was 1.7 dB for right ears, and 3.4 dB for left ears. The difference between left and right ears was significant. One hour after the exposure, right ears were recovered to baseline conditions whereas left ears showed a small but clinically irrelevant remaining shift of approximately 1 dB. The advice to use chill-out zones is still valid, because this helps to reduce the duration to the exposure. This study does not provide evidence that a rest period gives an additional reduction of temporary threshold shifts.
Efficient Prediction Structures for H.264 Multi View Coding Using Temporal Scalability
NASA Astrophysics Data System (ADS)
Guruvareddiar, Palanivel; Joseph, Biju K.
2014-03-01
Prediction structures with "disposable view components based" hierarchical coding have been proven to be efficient for H.264 multi view coding. Though these prediction structures along with the QP cascading schemes provide superior compression efficiency when compared to the traditional IBBP coding scheme, the temporal scalability requirements of the bit stream could not be met to the fullest. On the other hand, a fully scalable bit stream, obtained by "temporal identifier based" hierarchical coding, provides a number of advantages including bit rate adaptations and improved error resilience, but lacks in compression efficiency when compared to the former scheme. In this paper it is proposed to combine the two approaches such that a fully scalable bit stream could be realized with minimal reduction in compression efficiency when compared to state-of-the-art "disposable view components based" hierarchical coding. Simulation results shows that the proposed method enables full temporal scalability with maximum BDPSNR reduction of only 0.34 dB. A novel method also has been proposed for the identification of temporal identifier for the legacy H.264/AVC base layer packets. Simulation results also show that this enables the scenario where the enhancement views could be extracted at a lower frame rate (1/2nd or 1/4th of base view) with average extraction time for a view component of only 0.38 ms.
Three-dimensional dictionary-learning reconstruction of (23)Na MRI data.
Behl, Nicolas G R; Gnahm, Christine; Bachert, Peter; Ladd, Mark E; Nagel, Armin M
2016-04-01
To reduce noise and artifacts in (23)Na MRI with a Compressed Sensing reconstruction and a learned dictionary as sparsifying transform. A three-dimensional dictionary-learning compressed sensing reconstruction algorithm (3D-DLCS) for the reconstruction of undersampled 3D radial (23)Na data is presented. The dictionary used as the sparsifying transform is learned with a K-singular-value-decomposition (K-SVD) algorithm. The reconstruction parameters are optimized on simulated data, and the quality of the reconstructions is assessed with peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The performance of the algorithm is evaluated in phantom and in vivo (23)Na MRI data of seven volunteers and compared with nonuniform fast Fourier transform (NUFFT) and other Compressed Sensing reconstructions. The reconstructions of simulated data have maximal PSNR and SSIM for an undersampling factor (USF) of 10 with numbers of averages equal to the USF. For 10-fold undersampling, the PSNR is increased by 5.1 dB compared with the NUFFT reconstruction, and the SSIM by 24%. These results are confirmed by phantom and in vivo (23)Na measurements in the volunteers that show markedly reduced noise and undersampling artifacts in the case of 3D-DLCS reconstructions. The 3D-DLCS algorithm enables precise reconstruction of undersampled (23)Na MRI data with markedly reduced noise and artifact levels compared with NUFFT reconstruction. Small structures are well preserved. © 2015 Wiley Periodicals, Inc.
ATP-gamma-S shifts the operating point of outer hair cell transduction towards scala tympani.
Bobbin, Richard P; Salt, Alec N
2005-07-01
ATP receptor agonists and antagonists alter cochlear mechanics as measured by changes in distortion product otoacoustic emissions (DPOAE). Some of the effects on DPOAEs are consistent with the hypothesis that ATP affects mechano-electrical transduction and the operating point of the outer hair cells (OHCs). This hypothesis was tested by monitoring the effect of ATP-gamma-S on the operating point of the OHCs. Guinea pigs anesthetized with urethane and with sectioned middle ear muscles were used. The cochlear microphonic (CM) was recorded differentially (scala vestibuli referenced to scala tympani) across the basal turn before and after perfusion (20 min) of the perilymph compartment with artificial perilymph (AP) and ATP-gamma-S dissolved in AP. The operating point was derived from the cochlear microphonics (CM) recorded in response low frequency (200 Hz) tones at high level (106, 112 and 118 dB SPL). The analysis procedure used a Boltzmann function to simulate the CM waveform and the Boltzmann parameters were adjusted to best-fit the calculated waveform to the CM. Compared to the initial perfusion with AP, ATP-gamma-S (333 microM) enhanced peak clipping of the positive peak of the CM (that occurs during organ of Corti displacements towards scala tympani), which was in keeping with ATP-induced displacement of the transducer towards scala tympani. CM waveform analysis quantified the degree of displacement and showed that the changes were consistent with the stimulus being centered on a different region of the transducer curve. The change of operating point meant that the stimulus was applied to a region of the transducer curve where there was greater saturation of the output on excursions towards scala tympani and less saturation towards scala vestibuli. A significant degree of recovery of the operating point was observed after washing with AP. Dose response curves generated by perfusing ATP-gamma-S (333 microM) in a cumulative manner yielded an EC(50) of 19.8 microM. The ATP antagonist PPADS (0.1 mM) failed to block the effect of ATP-gamma-S on operating point, suggesting the response was due to activation of metabotropic and not ionotropic ATP receptors. Multiple perfusions of AP had no significant effect (118 and 112 dB) or moved the operating point slightly (106 dB) in the direction opposite of ATP-gamma-S. Results are consistent with an ATP-gamma-S induced transducer change comparable to a static movement of the organ of Corti or reticular lamina towards scala tympani.
Dynamic properties of quantum dot distributed feedback lasers
NASA Astrophysics Data System (ADS)
Su, Hui
Semiconductor quantum dots (QDs) are nano-structures with three-dimensional spatial confinement of electrons and holes, representing the ultimate case of the application of the size quantization concept to semiconductor hetero-structures. The knowledge about the dynamic properties of QD semiconductor diode lasers is essential to improve the device performance and understand the physics of the QDs. In this dissertation, the dynamic properties of QD distributed feedback lasers (DFBs) are studied. The response function of QD DFBs under external modulation is characterized and the gain compression with photon density is identified to be the limiting factor of the modulation bandwidth. The enhancement of the gain compression by the gain saturation with the carrier density in QDs is analyzed for the first time with suggestions to improve the high speed performance of the devices by increasing the maximum gain of the QD medium. The linewidth of the QD DFBs are found to be more than one order of magnitude narrower than that of conventional quantum well (QW) DFBs at comparable output powers. The figure of merit for the narrow linewidth is identified by the comparison between different semiconductor materials, including bulk, QWs and QDs. Linewidth rebroadening and the effects of gain offset are also investigated. The effects of external feedback on the QD DFBs are compared to QW DFBs. Higher external feedback resistance is found in QD DFBs with an 8-dB improvement in terms of the coherence collapse of the devices and 20-dB improvement in terms of the degradation of the signal-to-noise ratio under 2.5 Gbps modulation. This result enables the isolator-free operation of the QD DFBs in real communication systems based on the IEEE 802.3ae Ethernet standard. Finally, the chirp of QD DFBs is studied by time-resolved-chirp measurements. The wavelength chirping of the QD DFBs under 2.5 Gbps modulation is characterized. The above-threshold behavior of the linewidth enhancement factor in QDs is studied, in contrast to the below-threshold ones in most of the published data to-date. The strong dependence of the linewidth enhancement factor on the photon density is explained by the enhancement of gain compression by the gain saturation with the carrier density, which is related to the inhomogeneous broadening and spectral hole burning in QDs.
Carrier-envelope offset frequency stabilization of an ultrafast semiconductor laser
NASA Astrophysics Data System (ADS)
Jornod, Nayara; Gürel, Kutan; Wittwer, Valentin J.; Brochard, Pierre; Hakobyan, Sargis; Schilt, Stéphane; Waldburger, Dominik; Keller, Ursula; Südmeyer, Thomas
2018-02-01
We present the self-referenced stabilization of the carrier-envelope offset (CEO) frequency of a semiconductor disk laser. The laser is a SESAM-modelocked VECSEL emitting at a wavelength of 1034 nm with a repetition frequency of 1.8 GHz. The 270-fs pulses are amplified to 3 W and compressed to 120 fs for the generation of a coherent octavespanning supercontinuum spectrum. A quasi-common-path f-to-2f interferometer enables the detection of the CEO beat with a signal-to-noise ratio of 30 dB sufficient for its frequency stabilization. The CEO frequency is phase-locked to an external reference with a feedback signal applied to the pump current.
Jiang, Tongxiao; Wang, Guizhong; Zhang, Wei; Li, Chen; Wang, Aimin; Zhang, Zhigang
2013-02-15
We report octave-spanning spectrum generated in a tapered silica photonic crystal fiber by a mode-locked Yb:fiber ring laser at a repetition rate as high as 528 MHz. The output pulses from this laser were compressed to 62 fs. By controlling the hole expansion and core diameter, a silica PCF was tapered to 20 cm with an optimal d/Λ ratio of 0.6. Pulses with the energy of 280 pJ and the peak power of 4.5 kW were injected into the tapered fiber and the pulse spectrum was expanded from 500 to 1600 nm at the level of -30 dB.
Reinforced cementitous composite with in situ shrinking microfibers
NASA Astrophysics Data System (ADS)
Kim, Eric S.; Lee, Jason K.; Lee, Patrick C.; Huston, Dryver R.; Tan, Ting; Al-Ghamdi, Saleh
2017-03-01
This paper describes an innovative fiber reinforcement technology for cementitious composite structures that employs in situ shrinking microfibers to provide supplemental strength-enhancing compressive stresses. Reinforced concrete is one of the most commonly used structural materials in construction industry, primarily due to its cost, durability, ability to be easily fabricated into a variety of shapes on site, and locally abundant raw material availability almost everywhere. Unlike incumbent passive reinforcing microfiber technology, in situ shrinking microfibers that respond to an in situ stimulus such as heat, pH, or moisture variations can induce pre-compression to matrix and create additional resistance from external loads, creating stronger composite structures. In this paper, heat-activated-shrinking (HAS) microfibers made from polyolefin, and pH-activated-shrinking (pHAS) microfibers made from chitosan powder were used to study effects of shrinking microfiber reinforcing in concrete. Shrinking ratios and tensile strengths of both microfibers were measured. Cementitious specimens with active shrinking microfibers, passive non shrinking fibers, as well as control samples were made. Mechanical properties of the samples were compared with compression and three-point bending tests. The optimum microfiber weight percentages for HAS microfibers were 0.5 wt% in compression tests, and 1.0 wt% in three-point bending tests. For pHAS microfibers, the optimum weight percentages were 0.5 wt% in three-point bending tests. Compared to heat passive microfibers specimens, 45% increase in the maximum compression strengths, and 124% increase in the maximum bending strengths were achieved at the optimum weight percentages of HAS microfibers. In addition, with 0.5 wt% of pHAS microfibers, 145% increase in the maximum bending strengths of three-point bending tests resulted compared to pH passive microfibers specimens.
Analysis-Preserving Video Microscopy Compression via Correlation and Mathematical Morphology
Shao, Chong; Zhong, Alfred; Cribb, Jeremy; Osborne, Lukas D.; O’Brien, E. Timothy; Superfine, Richard; Mayer-Patel, Ketan; Taylor, Russell M.
2015-01-01
The large amount video data produced by multi-channel, high-resolution microscopy system drives the need for a new high-performance domain-specific video compression technique. We describe a novel compression method for video microscopy data. The method is based on Pearson's correlation and mathematical morphology. The method makes use of the point-spread function (PSF) in the microscopy video acquisition phase. We compare our method to other lossless compression methods and to lossy JPEG, JPEG2000 and H.264 compression for various kinds of video microscopy data including fluorescence video and brightfield video. We find that for certain data sets, the new method compresses much better than lossless compression with no impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× smaller than the best lossless technique (which yields 20% for the same video). The compressed size scales with the video's scientific data content. Further testing showed that existing lossy algorithms greatly impacted data analysis at similar compression sizes. PMID:26435032
Practice and Malpractice in Philosophy of Education.
ERIC Educational Resources Information Center
Popp, Jerome A.
1978-01-01
Examines educational philosophy as an area of inquiry in light of several points of view from other areas of philosophic inquiry. Topics discussed include activities engaged in by philosophers, analogues in science, theoretical vs practical inquiry, epistemic utilities in philosophy, and the scientific context of educational philosophizing. (DB)
A-posteriori error estimation for the finite point method with applications to compressible flow
NASA Astrophysics Data System (ADS)
Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio
2017-08-01
An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.
Image Processing, Coding, and Compression with Multiple-Point Impulse Response Functions.
NASA Astrophysics Data System (ADS)
Stossel, Bryan Joseph
1995-01-01
Aspects of image processing, coding, and compression with multiple-point impulse response functions are investigated. Topics considered include characterization of the corresponding random-walk transfer function, image recovery for images degraded by the multiple-point impulse response, and the application of the blur function to image coding and compression. It is found that although the zeros of the real and imaginary parts of the random-walk transfer function occur in continuous, closed contours, the zeros of the transfer function occur at isolated spatial frequencies. Theoretical calculations of the average number of zeros per area are in excellent agreement with experimental results obtained from computer counts of the zeros. The average number of zeros per area is proportional to the standard deviations of the real part of the transfer function as well as the first partial derivatives. Statistical parameters of the transfer function are calculated including the mean, variance, and correlation functions for the real and imaginary parts of the transfer function and their corresponding first partial derivatives. These calculations verify the assumptions required in the derivation of the expression for the average number of zeros. Interesting results are found for the correlations of the real and imaginary parts of the transfer function and their first partial derivatives. The isolated nature of the zeros in the transfer function and its characteristics at high spatial frequencies result in largely reduced reconstruction artifacts and excellent reconstructions are obtained for distributions of impulses consisting of 25 to 150 impulses. The multiple-point impulse response obscures original scenes beyond recognition. This property is important for secure transmission of data on many communication systems. The multiple-point impulse response enables the decoding and restoration of the original scene with very little distortion. Images prefiltered by the random-walk transfer function yield greater compression ratios than are obtained for the original scene. The multiple-point impulse response decreases the bit rate approximately 40-70% and affords near distortion-free reconstructions. Due to the lossy nature of transform-based compression algorithms, noise reduction measures must be incorporated to yield acceptable reconstructions after decompression.
Removal of ice and marine growth from ship surfaces: A concept
NASA Technical Reports Server (NTRS)
Bauman, A. J.
1975-01-01
Proposed surface is structured from sections of low-melting-point alloy. Sections are separated by network of passages for compressed air. Ice or barnacles are removed by passing electrical current through alloy and bursts of compressed air through passages.
Zhang, Hua; Chen, Qing-song; Li, Nan; Hua, Yan; Zeng, Lin; Xu, Guo-yang; Tao, Li-yuan; Zhao, Yi-ming
2013-05-01
To compare the results of noise hazard evaluations based on area sampling and personal sampling in a new thermal power plant and to analyze the similarities and differences between the two measurement methods. According to Measurement of Physical agents in Workplace Part 8: Noise(GBZff 189.8-2007), area sampling was performed at various operating points for noise measurement, and meanwhile the workers under different types of work wore noise dosimeters for personal noise exposure measurement. The two measurement methods were used to evaluate the level of noise hazards in the enterprise according to the corresponding occupational health standards, and the evaluation results were compared. Area sampling was performed at 99 operating points, the mean noise level was 88.9 ± 11.1 dB (A)(range, 51.3-107.0 dB (A)), with an over-standard rate of 75.8%. Personal sampling was performed (73 person times),and the mean noise level was 79.3 ± 6.3 dB (A), with an over-standard rate of 6.6% ( 16/241 ). There was a statistically significant difference in the over-standard rate between the evaluation results of the two measurement methods ( x2=53.869, ?<0.001 ). Because of the characteristics of the work in new thermal power plants, the noise hazard evaluation based on area sampling cannot be used instead of personal noise exposure measurement among workers. Personal sampling should be used in the noise measurement in new thermal power plant.
Visual field changes after cataract extraction: the AGIS experience.
Koucheki, Behrooz; Nouri-Mahdavi, Kouros; Patel, Gitane; Gaasterland, Douglas; Caprioli, Joseph
2004-12-01
To test the hypothesis that cataract extraction in glaucomatous eyes improves overall sensitivity of visual function without affecting the size or depth of glaucomatous scotomas. Experimental study with no control group. One hundred fifty-eight eyes (of 140 patients) from the Advanced Glaucoma Intervention Study with at least two reliable visual fields within a year both before and after cataract surgery were included. Average mean deviation (MD), pattern standard deviation (PSD), and corrected pattern standard deviation (CPSD) were compared before and after cataract extraction. To evaluate changes in scotoma size, the number of abnormal points (P < .05) on the pattern deviation plot was compared before and after surgery. We described an index ("scotoma depth index") to investigate changes of scotoma depth after surgery. Mean values for MD, PSD, and CPSD were -13.2, 6.4, and 5.9 dB before and -11.9, 6.8, and 6.2 dB after cataract surgery (P < or = .001 for all comparisons). Mean (+/- SD) number of abnormal points on pattern deviation plot was 26.7 +/- 9.4 and 27.5 +/- 9.0 before and after cataract surgery, respectively (P = .02). Scotoma depth index did not change after cataract extraction (-19.3 vs -19.2 dB, P = .90). Cataract extraction caused generalized improvement of the visual field, which was most marked in eyes with less advanced glaucomatous damage. Although the enlargement of scotomas was statistically significant, it was not clinically meaningful. No improvement of sensitivity was observed in the deepest part of the scotomas.
Li, Yi; Qian, Li; Zhou, Ciming; Fan, Dian; Xu, Qiannan; Pang, Yandong; Chen, Xi; Tang, Jianguan
2018-01-12
Multi-point vibration sensing at the low frequency range of 0.5-100 Hz is of vital importance for applications such as seismic monitoring and underwater acoustic imaging. Location-resolved multi-point sensing using a single fiber and a single demodulation system can greatly reduce system deployment and maintenance costs. We propose and demonstrate the demodulation of a fiber-optic system consisting of 500 identical ultra-weak Fiber Bragg gratings (uwFBGs), capable of measuring the amplitude, frequency and phase of acoustic signals from 499 sensing fibers covering a total range of 2.5 km. For demonstration purposes, we arbitrarily chose six consecutive sensors and studied their performance in detail. Using a passive demodulation method, we interrogated the six sensors simultaneously, and achieved a high signal-to-noise ratio of 22.1 dB, excellent linearity, phase sensitivity of around 0.024 rad/Pa, and a dynamic range of about 38 dB. We demonstrated a frequency response flatness of <1.2 dB in the range of 0.5-100 Hz. Compared to the prior state-of-the-art demonstration using a similar method, we have increased the sensing range from 1 km to 2.5 km, and increased the frequency range from 0.4 octaves to 7.6 octaves, in addition to achieving sensing in the very challenging low-frequency range of 0.5-100 Hz.
ERIC Educational Resources Information Center
Greene, Marci
1999-01-01
This response to Mahoney et al. (EC 623 392) by a parent of a child with disabilities agrees with the need for parent education in early intervention and offers the author's personal experiences to underscore points such as the importance of collaboration with families and the need to consider parents' limited time and resources. (DB)
Reflections on the Research to Practice Gap.
ERIC Educational Resources Information Center
Gersten, Russell; Smith-Jones, Joyce
2001-01-01
This article highlights major points of each of the articles in this special issue on the research to practice gap in special education. It then considers some broader implications, especially the need to foster and establish collegial networks to counter the isolation in which many teachers currently work. (Contains references.) (DB)
Methods for compressible fluid simulation on GPUs using high-order finite differences
NASA Astrophysics Data System (ADS)
Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer
2017-08-01
We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.
NASA Astrophysics Data System (ADS)
Robinson, Donald Arthur
1984-06-01
A method is presented to predict airborne and barrier transmission loss of an audible signal as it travels from a corridor based octave band sound source to a room based receiver location. Flanking pathways are not considered in the prediction model. Although the central focus of the research is on the propagation of the signal, a comprehensive review of the source, path and receiver are presented as related to emergency audible signal propagation. Linear attenuation of the signal and end wall reflection is applied along the corridor path incorporating research conducted by T. L. Redmore of Essex, England. Classical room acoustics are applied to establish the onset of linear attenuation beyond the near field. The "coincidence effect" is applied to the transmission loss through the room door barrier. A constant barrier door transmission loss from corridor-to-room is applied throughout the 250 - 8000 Hertz octave bands. In situ measurements were conducted in two separate dormitories on the University of Massachusetts Amherst campus to verify the validity of the approach. All of the experimental data points follow the corresponding points predicted by the model with all correlations exceeding 0.9. The 95 percent confidence intervals for the absolute difference between predicted and measured values ranged from 0.76 dB to 4.5 dB based on five Leq dB levels taken at each octave band along the length of the corridor. For the corridor to room attenuation in the six test rooms, with the door closed and edge sealed, the predicted minus measured levels ranged from an interval of 0.54 to 2.90 dB Leq at octave bands from 250 to 8000 Hertz. Given the inherent difficulty of in situ tests compared to laboratory or modeling approaches the confidence intervals obtained confirm the usefulness of the prediction model presented.
Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.
Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong
2015-10-01
Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.
Stability of compressible Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Chow, Chuen-Yen
1991-01-01
Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.
The cochlea as a smart structure
NASA Astrophysics Data System (ADS)
Elliott, Stephen J.; Shera, Christopher A.
2012-06-01
The cochlea is part of the inner ear and its mechanical response provides us with many aspects of our amazingly sensitive and selective hearing. The human cochlea is a coiled tube, with two main fluid chambers running along its length, separated by a 35 mm-long flexible partition that has its own internal dynamics. A dispersive wave can propagate along the cochlea due to the interaction between the inertia of the fluid and the dynamics of the partition. This partition includes about 12 000 outer hair cells, which have different structures, on a micrometre and a nanometre scale, and act both as motional sensors and as motional actuators. The local feedback action of all these cells amplifies the motion inside the inner ear by more than 40 dB at low sound pressure levels. The feedback loops become saturated at higher sound pressure levels, however, so that the feedback gain is reduced, leading to a compression of the dynamic range in the cochlear amplifier. This helps the sensory cells, with a dynamic range of only about 30 dB, to respond to sounds with a dynamic range of more than 120 dB. The active and nonlinear nature of the dynamics within the cochlea give rise to a number of other phenomena, such as otoacoustic emissions, which can be used as a diagnostic test for hearing problems in newborn children, for example. In this paper we view the mechanical action of the cochlea as a smart structure. In particular a simplified wave model of the cochlear dynamics is reviewed that represents its essential features. This can be used to predict the motion along the cochlea when the cochlea is passive, at high levels, and also the effect of the cochlear amplifier, at low levels.
NASA Astrophysics Data System (ADS)
Darwish, Abdalla M.; Burkett, Allan; Blackwell, Ashley; Taylor, Keylantra; Walker, Vernell; Sarkisov, Sergey; Koplitz, Brent
2014-09-01
We report on fabrication and investigation of optical and morphological properties of highly efficient (a quantum yield of 1%) upconversion polymer-inorganic nanocomposite thin film emitters prepared by the new technique of double beam matrix assisted pulsed laser evaporation (DB-MAPLE). Polymer poly(methyl methacrylate) (PMMA) host was evaporated on a silicon substrate using a 1064-nm pulsed laser beam using a target made of frozen (to the temperature of liquid nitrogen) solution of PMMA in chlorobenzene. Concurrently, the second 532-nm pulsed beam from the same laser was used to impregnate the polymer host with the inorganic nanoparticulate made of the rare earth upconversion compounds NaYF4: Yb3+, Er3+, NaYF4: Yb3+, Ho3+, and NaYF4: Yb3+, Tm3+. The compounds were initially synthesized using the wet process, baked, and compressed in solid pellet targets. The proposed DB-MAPLE method has the advantage of making highly homogeneous nanocomposite films with precise control of the doping rate due to the optimized overlapping of the plumes produced by the ablation of the organic and inorganic target with the infrared and visible laser beams respectively. X-ray diffraction, electron and atomic force microscopy, and optical fluorescence spectroscopy indicated that the inorganic nanoparticulate preserved its crystalline structure and upconversion properties (strong emission in green, red, and blue bands upon illumination with 980-nm laser diode) after being transferred from the target in the polymer nanocomposite film. The produced films can be used in applications varying from the efficiency enhancement of the photovoltaic cells, optical sensors and biomarkers to anti-counterfeit labels.
Chung, Kuo-Liang; Huang, Chi-Chao; Hsu, Tsu-Chun
2017-09-04
In this paper, we propose a novel adaptive chroma subsampling-binding and luma-guided (ASBLG) chroma reconstruction method for screen content images (SCIs). After receiving the decoded luma and subsampled chroma image from the decoder, a fast winner-first voting strategy is proposed to identify the used chroma subsampling scheme prior to compression. Then, the decoded luma image is subsampled as the identified subsampling scheme was performed on the chroma image such that we are able to conclude an accurate correlation between the subsampled decoded luma image and the decoded subsampled chroma image. Accordingly, an adaptive sliding window-based and luma-guided chroma reconstruction method is proposed. The related computational complexity analysis is also provided. We take two quality metrics, the color peak signal-to-noise ratio (CPSNR) of the reconstructed chroma images and SCIs and the gradient-based structure similarity index (CGSS) of the reconstructed SCIs to evaluate the quality performance. Let the proposed chroma reconstruction method be denoted as 'ASBLG'. Based on 26 typical test SCIs and 6 JCT-VC test screen content video sequences (SCVs), several experiments show that on average, the CPSNR gains of all the reconstructed UV images by 4:2:0(A)-ASBLG, SCIs by 4:2:0(MPEG-B)-ASBLG, and SCVs by 4:2:0(A)-ASBLG are 2.1 dB, 1.87 dB, and 1.87 dB, respectively, when compared with that of the other combinations. Specifically, in terms of CPSNR and CGSS, CSBILINEAR-ASBLG for the test SCIs and CSBICUBIC-ASBLG for the test SCVs outperform the existing state-of-the-art comparative combinations, where CSBILINEAR and CSBICUBIC denote the luma-aware based chroma subsampling schemes by Wang et al.
Coding gains and error rates from the Big Viterbi Decoder
NASA Technical Reports Server (NTRS)
Onyszchuk, I. M.
1991-01-01
A prototype hardware Big Viterbi Decoder (BVD) was completed for an experiment with the Galileo Spacecraft. Searches for new convolutional codes, studies of Viterbi decoder hardware designs and architectures, mathematical formulations, and decompositions of the deBruijn graph into identical and hierarchical subgraphs, and very large scale integration (VLSI) chip design are just a few examples of tasks completed for this project. The BVD bit error rates (BER), measured from hardware and software simulations, are plotted as a function of bit signal to noise ratio E sub b/N sub 0 on the additive white Gaussian noise channel. Using the constraint length 15, rate 1/4, experimental convolutional code for the Galileo mission, the BVD gains 1.5 dB over the NASA standard (7,1/2) Maximum Likelihood Convolution Decoder (MCD) at a BER of 0.005. At this BER, the same gain results when the (255,233) NASA standard Reed-Solomon decoder is used, which yields a word error rate of 2.1 x 10(exp -8) and a BER of 1.4 x 10(exp -9). The (15, 1/6) code to be used by the Cometary Rendezvous Asteroid Flyby (CRAF)/Cassini Missions yields 1.7 dB of coding gain. These gains are measured with respect to symbols input to the BVD and increase with decreasing BER. Also, 8-bit input symbol quantization makes the BVD resistant to demodulated signal-level variations which may cause higher bandwidth than the NASA (7,1/2) code, these gains are offset by about 0.1 dB of expected additional receiver losses. Coding gains of several decibels are possible by compressing all spacecraft data.
Silva, Cristina; Fresco, Paula; Monteiro, Joaquim; Rama, Ana Cristina Ribeiro
2013-08-01
Evidence-Based Practice requires health care decisions to be based on the best available evidence. The model "Information Mastery" proposes that clinicians should use sources of information that have previously evaluated relevance and validity, provided at the point of care. Drug databases (DB) allow easy and fast access to information and have the benefit of more frequent content updates. Relevant information, in the context of drug therapy, is that which supports safe and effective use of medicines. Accordingly, the European Guideline on the Summary of Product Characteristics (EG-SmPC) was used as a standard to evaluate the inclusion of relevant information contents in DB. To develop and test a method to evaluate relevancy of DB contents, by assessing the inclusion of information items deemed relevant for effective and safe drug use. Hierarchical organisation and selection of the principles defined in the EGSmPC; definition of criteria to assess inclusion of selected information items; creation of a categorisation and quantification system that allows score calculation; calculation of relative differences (RD) of scores for comparison with an "ideal" database, defined as the one that achieves the best quantification possible for each of the information items; pilot test on a sample of 9 drug databases, using 10 drugs frequently associated in literature with morbidity-mortality and also being widely consumed in Portugal. Main outcome measure Calculate individual and global scores for clinically relevant information items of drug monographs in databases, using the categorisation and quantification system created. A--Method development: selection of sections, subsections, relevant information items and corresponding requisites; system to categorise and quantify their inclusion; score and RD calculation procedure. B--Pilot test: calculated scores for the 9 databases; globally, all databases evaluated significantly differed from the "ideal" database; some DB performed better but performance was inconsistent at subsections level, within the same DB. The method developed allows quantification of the inclusion of relevant information items in DB and comparison with an "ideal database". It is necessary to consult diverse DB in order to find all the relevant information needed to support clinical drug use.
Optimal Compressed Sensing and Reconstruction of Unstructured Mesh Datasets
Salloum, Maher; Fabian, Nathan D.; Hensinger, David M.; ...
2017-08-09
Exascale computing promises quantities of data too large to efficiently store and transfer across networks in order to be able to analyze and visualize the results. We investigate compressed sensing (CS) as an in situ method to reduce the size of the data as it is being generated during a large-scale simulation. CS works by sampling the data on the computational cluster within an alternative function space such as wavelet bases and then reconstructing back to the original space on visualization platforms. While much work has gone into exploring CS on structured datasets, such as image data, we investigate itsmore » usefulness for point clouds such as unstructured mesh datasets often found in finite element simulations. We sample using a technique that exhibits low coherence with tree wavelets found to be suitable for point clouds. We reconstruct using the stagewise orthogonal matching pursuit algorithm that we improved to facilitate automated use in batch jobs. We analyze the achievable compression ratios and the quality and accuracy of reconstructed results at each compression ratio. In the considered case studies, we are able to achieve compression ratios up to two orders of magnitude with reasonable reconstruction accuracy and minimal visual deterioration in the data. Finally, our results suggest that, compared to other compression techniques, CS is attractive in cases where the compression overhead has to be minimized and where the reconstruction cost is not a significant concern.« less
2D-RBUC for efficient parallel compression of residuals
NASA Astrophysics Data System (ADS)
Đurđević, Đorđe M.; Tartalja, Igor I.
2018-02-01
In this paper, we present a method for lossless compression of residuals with an efficient SIMD parallel decompression. The residuals originate from lossy or near lossless compression of height fields, which are commonly used to represent models of terrains. The algorithm is founded on the existing RBUC method for compression of non-uniform data sources. We have adapted the method to capture 2D spatial locality of height fields, and developed the data decompression algorithm for modern GPU architectures already present even in home computers. In combination with the point-level SIMD-parallel lossless/lossy high field compression method HFPaC, characterized by fast progressive decompression and seamlessly reconstructed surface, the newly proposed method trades off small efficiency degradation for a non negligible compression ratio (measured up to 91%) benefit.
Improved image decompression for reduced transform coding artifacts
NASA Technical Reports Server (NTRS)
Orourke, Thomas P.; Stevenson, Robert L.
1994-01-01
The perceived quality of images reconstructed from low bit rate compression is severely degraded by the appearance of transform coding artifacts. This paper proposes a method for producing higher quality reconstructed images based on a stochastic model for the image data. Quantization (scalar or vector) partitions the transform coefficient space and maps all points in a partition cell to a representative reconstruction point, usually taken as the centroid of the cell. The proposed image estimation technique selects the reconstruction point within the quantization partition cell which results in a reconstructed image which best fits a non-Gaussian Markov random field (MRF) image model. This approach results in a convex constrained optimization problem which can be solved iteratively. At each iteration, the gradient projection method is used to update the estimate based on the image model. In the transform domain, the resulting coefficient reconstruction points are projected to the particular quantization partition cells defined by the compressed image. Experimental results will be shown for images compressed using scalar quantization of block DCT and using vector quantization of subband wavelet transform. The proposed image decompression provides a reconstructed image with reduced visibility of transform coding artifacts and superior perceived quality.
Method for testing the strength and structural integrity of nuclear fuel particles
Lessing, P.A.
1995-10-17
An accurate method for testing the strength of nuclear fuel particles is disclosed. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle. 13 figs.
Method for testing the strength and structural integrity of nuclear fuel particles
Lessing, Paul A.
1995-01-01
An accurate method for testing the strength of nuclear fuel particles. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle.
Electronic stethoscope with frequency shaping and infrasonic recording capabilities.
Gordon, E S; Lagerwerff, J M
1976-03-01
A small electronic stethoscope with variable frequency response characteristics has been developed for aerospace and research applications. The system includes a specially designed piezoelectric pickup and amplifier with an overall frequency response from 0.7 to 5,000 HZ (-3 dB points) and selective bass and treble boost or cut of up to 15 dB. A steep slope, high pass filter can be switched in for ordinary clinical auscultation without overload distortion from strong infrasonic signal inputs. A commercial stethoscope-type headset, selected for best overall response, is used which can adequately handle up to 100 mW of audio power delivered from the amplifier. The active components of the amplifier consist of only four opamp-type integrated circuits.
Structured FBG filters for 10-Gb/s DPSK signal demodulation in single ended applications
NASA Astrophysics Data System (ADS)
Marazzi, L.; Boffi, P.; Parolari, P.; Martinelli, M.; Gatti, D.; Coluccelli, N.; Longhi, S.
2011-05-01
Differential phase-shift keying (DPSK) demodulations operated by a structured fiber Bragg grating (FBG) filter and by a Mach-Zehnder delay interferometer (MZDI) in a single-ended configuration are compared. Experimental measurements at 10 Gb/s demonstrate that a specially designed FBG outperforms an integrated-optic MZDI of ˜4 dB and ˜3.5 dB in back-to-back and after 25-km propagation, respectively. Both demodulators show low polarization sensitivity and signal frequency detuning dependence, but only MZDI operating point requires a thermal control. FBG filter proves an interesting solution for DPSK demodulation in low-cost applications and, moreover, can be designed to match colorless requirements of wave division multiplexed passive optical network (WDM-PON) applications.
The 30 GHz communications satellite low noise receiver
NASA Technical Reports Server (NTRS)
Steffek, L. J.; Smith, D. W.
1983-01-01
A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.
Internal Cluster Validation on Earthquake Data in the Province of Bengkulu
NASA Astrophysics Data System (ADS)
Rini, D. S.; Novianti, P.; Fransiska, H.
2018-04-01
K-means method is an algorithm for cluster n object based on attribute to k partition, where k < n. There is a deficiency of algorithms that is before the algorithm is executed, k points are initialized randomly so that the resulting data clustering can be different. If the random value for initialization is not good, the clustering becomes less optimum. Cluster validation is a technique to determine the optimum cluster without knowing prior information from data. There are two types of cluster validation, which are internal cluster validation and external cluster validation. This study aims to examine and apply some internal cluster validation, including the Calinski-Harabasz (CH) Index, Sillhouette (S) Index, Davies-Bouldin (DB) Index, Dunn Index (D), and S-Dbw Index on earthquake data in the Bengkulu Province. The calculation result of optimum cluster based on internal cluster validation is CH index, S index, and S-Dbw index yield k = 2, DB Index with k = 6 and Index D with k = 15. Optimum cluster (k = 6) based on DB Index gives good results for clustering earthquake in the Bengkulu Province.
CMOS analog baseband circuitry for an IEEE 802.11 b/g/n WLAN transceiver
NASA Astrophysics Data System (ADS)
Zheng, Gong; Xiaojie, Chu; Qianqian, Lei; Min, Lin; Yin, Shi
2012-11-01
An analog baseband circuit for a direct conversion wireless local area network (WLAN) transceiver in a standard 0.13-μm CMOS occupying 1.26 mm2 is presented. The circuit consists of active-RC receiver (RX) 4th order elliptic lowpass filters(LPFs), transmit (PGAs) with DC offset cancellation (DCOC) servo loops, and on-chip output buffers. The RX baseband gain can be programmed in the range of -11 to 49 dB in 2 dB steps with 50-30.2 nV/√Hz input referred noise (IRN) and a 21 to -41 dBm in-band 3rd order interception point (IIP3). The RX/TX LPF cutoff frequencies can be switched between 5 MHz, 10 MHz, and 20 MHz to fulfill the multimode 802.11b/g/n requirements. The TX baseband gain of the I/Q paths are tuned separately from -1.6 to 0.9 dB in 0.1 dB steps to calibrate TX I/Q gain mismatches. By using an identical integrator based elliptic filter synthesis method together with global compensation applied to the LPF capacitor array, the power consumption of the RX LPF is considerably reduced and the proposed chip draws 26.8 mA/8 mA by the RX/TX baseband paths from a 1.2 V supply.
Fracture in compression of brittle solids
NASA Technical Reports Server (NTRS)
1983-01-01
The fracture of brittle solids in monotonic compression is reviewed from both the mechanistic and phenomenological points of view. The fundamental theoretical developments based on the extension of pre-existing cracks in general multiaxial stress fields are recognized as explaining extrinsic behavior where a single crack is responsible for the final failure. In contrast, shear faulting in compression is recognized to be the result of an evolutionary localization process involving en echelon action of cracks and is termed intrinsic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salloum, Maher; Fabian, Nathan D.; Hensinger, David M.
Exascale computing promises quantities of data too large to efficiently store and transfer across networks in order to be able to analyze and visualize the results. We investigate compressed sensing (CS) as an in situ method to reduce the size of the data as it is being generated during a large-scale simulation. CS works by sampling the data on the computational cluster within an alternative function space such as wavelet bases and then reconstructing back to the original space on visualization platforms. While much work has gone into exploring CS on structured datasets, such as image data, we investigate itsmore » usefulness for point clouds such as unstructured mesh datasets often found in finite element simulations. We sample using a technique that exhibits low coherence with tree wavelets found to be suitable for point clouds. We reconstruct using the stagewise orthogonal matching pursuit algorithm that we improved to facilitate automated use in batch jobs. We analyze the achievable compression ratios and the quality and accuracy of reconstructed results at each compression ratio. In the considered case studies, we are able to achieve compression ratios up to two orders of magnitude with reasonable reconstruction accuracy and minimal visual deterioration in the data. Finally, our results suggest that, compared to other compression techniques, CS is attractive in cases where the compression overhead has to be minimized and where the reconstruction cost is not a significant concern.« less
Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin.
Kim, Haseog; Park, Sangki; Lee, Seahyun
2016-07-19
There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance.
Design of a Dual Waveguide Normal Incidence Tube (DWNIT) Utilizing Energy and Modal Methods
NASA Technical Reports Server (NTRS)
Betts, Juan F.; Jones, Michael G. (Technical Monitor)
2002-01-01
This report investigates the partition design of the proposed Dual Waveguide Normal Incidence Tube (DWNIT). Some advantages provided by the DWNIT are (1) Assessment of coupling relationships between resonators in close proximity, (2) Evaluation of "smart liners", (3) Experimental validation for parallel element models, and (4) Investigation of effects of simulated angles of incidence of acoustic waves. Energy models of the two chambers were developed to determine the Sound Pressure Level (SPL) drop across the two chambers, through the use of an intensity transmission function for the chamber's partition. The models allowed the chamber's lengthwise end samples to vary. The initial partition design (2" high, 16" long, 0.25" thick) was predicted to provide at least 160 dB SPL drop across the partition with a compressive model, and at least 240 dB SPL drop with a bending model using a damping loss factor of 0.01. The end chamber sample transmissions coefficients were set to 0.1. Since these results predicted more SPL drop than required, a plate thickness optimization algorithm was developed. The results of the algorithm routine indicated that a plate with the same height and length, but with a thickness of 0.1" and 0.05 structural damping loss, would provide an adequate SPL isolation between the chambers.
Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin
Kim, Haseog; Park, Sangki; Lee, Seahyun
2016-01-01
There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance. PMID:28773711
ERIC Educational Resources Information Center
Ondrus, Martin G.; And Others
1983-01-01
Advocates use of Waters Associates Radial Compression Separation System for high performance liquid chromatography. Discusses instrumentation and reagents, outlining procedure for analyzing various foods and discussing typical student data. Points out potential problems due to impurities and pump seal life. Suggests use of ribose as internal…
76 FR 71892 - Broadband Over Power Lines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
... Commission to: (1) Make part of the rulemaking record unredacted versions of several staff technical studies... public comment on those studies, and (3) provide a reasoned explanation of its choice of the... Phase 1 Study that show that the noise floor would rise by more than 20 dB at nearly all points, and by...
Access to Microsoft Windows 95 for Persons with Low Vision: An Overview.
ERIC Educational Resources Information Center
Shragai, Y.
1995-01-01
This article examines Windows 95, pointing out differences and improvements from Windows 3.1 for persons with low vision. Windows 95 is seen as providing substantially greater accessibility than Windows 3.1, though the graphical user interface may still pose serious problems for some users with low vision. (DB)
ERIC Educational Resources Information Center
Mawhinney, Thomas C.
1992-01-01
The history and main features of organizational behavior management (OBM) are compared and integrated with those of total quality management (TQM), with emphasis on W.E. Deming's 14 points and OBM's operant-based approach to performance management. Interventions combining OBM, TQM, and statistical process control are recommended. (DB)
Investigation of L-band shipboard antennas for maritime satellite applications
NASA Technical Reports Server (NTRS)
Heckert, G. P.
1972-01-01
A basic conceptual investigation of low cost L-band antenna subsystems for shipboard use was conducted by identifying the various pertinent design trade-offs and related performance characteristics peculiar to the civilian maritime application, and by comparing alternate approaches for their simplicity and general suitability. The study was not directed at a single specific proposal, but was intended to be parametric in nature. Antenna system concepts were to be investigated for a range of gain of 3 to 18 dB, with a value of about 10 dB considered as a baseline reference. As the primary source of potential complexity in shipboard antennas, which have beamwidths less than hemispherical as the beam pointing or selecting mechanism, major emphasis was directed at this aspect. Three categories of antenna system concepts were identified: (1) mechanically pointed, single-beam antennas; (2) fixed antennas with switched-beams; and (3) electronically-steered phased arrays. It is recommended that an L-band short backfire antenna subsystem, including a two-axis motor driven gimbal mount, and necessary single channel monopulse tracking receiver portions be developed for demonstration of performance and subsystem simplicity.
NASA Technical Reports Server (NTRS)
1978-01-01
Design concepts of an array for the formation of multiple, simultaneous, independently pointed beams for satellite communication links were investigated through tradeoffs of various approaches which were conceived as possible solutions to the problem. After the preferred approach was selected, a more detailed design was configured and is presented as a candidate system that should be given further consideration for development leading to a preliminary design. This array uses an attenuator and a phase shifter with every element. The aperture excitation necessary to form the four beams is calculated and then placed across the array using these devices. Pattern analysis was performed for two beam and four beam cases with numerous patterns being presented. Parameter evaluation shown includes pointing accuracy and beam shape, sidelobe characteristics, gain control, and beam normalization. It was demonstrated that a 4 bit phase shifter and a 6 bit, 30 dB attenuator were sufficient to achieve adequate pattern performances. The phase amplitude steered multibeam array offers the flexibility of 1 to 4 beams with an increase in gain of 6 dB if only one beam is selected.
NASA Astrophysics Data System (ADS)
Parmigiani, Francesca; Finot, Christophe; Mukasa, Kazunori; Ibsen, Morten; Roelens, Michael A.; Petropoulos, Periklis; Richardson, David J.
2006-08-01
We propose a new method for generating flat self-phase modulation (SPM)-broadened spectra based on seeding a highly nonlinear fiber (HNLF) with chirp-free parabolic pulses generated using linear pulse shaping in a superstructured fiber Bragg grating (SSFBG). We show that the use of grating reshaped parabolic pulses allows substantially better performance in terms of the extent of SPM-based spectral broadening and flatness relative to conventional hyperbolic secant (sech) pulses. We demonstrate both numerically and experimentally the generation of SPM-broadened pulses centred at 1542 nm with 92% of the pulse energy remaining within the 29 nm 3 dB spectral bandwidth. Applications in spectra slicing and pulse compression are demonstrated.
Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Sheng; Cappello, Franck
Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points canmore » be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.« less
Tzaneva, L
1996-09-01
The discomfort threshold problem is not yet clear from the audiological point of view. Its significance for work physiology and hygiene is not enough clarified. This paper discussed the results of a study of the discomfort threshold, performed including 385 operators from the State Company "Kremikovtzi", divided into 4 groups (3 groups according to length of service and one control group). The most prominent changes were found in operators with increased tonal auditory threshold up to 45 and over 50 dB with high confidential probability. The observed changes are distributed in 3 groups: 1. increased tonal auditory threshold (up to 30 dB) without decrease of the discomfort threshold; 2. decreased discomfort threshold (with about 15-20 dB) at increased tonal auditory threshold (up to 45 dB); 3. decreased discomfort threshold at increased (over 50 dB) tonal auditory threshold. The auditory scope of the operators, belonging to groups III and IV (with the longest length of service) is narrowed, being distorted for the latter. This pathophysiological phenomenon can be explained by an enhanced effect of sound irritation and the presence of a recruitment phenomenon with possible engagement of the central part of the auditory analyzer. It is concluded that the discomfort threshold is a sensitive indicator for the state of the individual norms for speech-sound-noise discomfort. The comparison of the discomfort threshold with the hygienic standards and the noise levels at each particular working place can be used as a criterion for the professional selection for work in conditions of masking noise effect and its tolerance with respect to achieving the individual discomfort level depending on the intensity of the speech-sound-noise signals at a particular working place.
Seidler, Andreas; Wagner, Mandy; Schubert, Melanie; Dröge, Patrik; Römer, Karin; Pons-Kühnemann, Jörn; Swart, Enno; Zeeb, Hajo; Hegewald, Janice
2016-11-01
Several studies point to an elevated risk for cardiovascular diseases induced by traffic noise. We examined the association between aircraft, road traffic and railway noise and heart failure or hypertensive heart disease (HHD) in a large case-control study. The study population consisted of individuals that were insured by three large statutory health insurance funds in the Rhine-Main area of Germany. Based on insurance claims and prescription data, 104,145 cases of heart failure or HHD diagnosed 2006-10 were identified and compared with 654,172 control subjects. Address-specific exposure to aircraft, road and railway traffic noise in 2005 was estimated. Odds Ratios were calculated using logistic regression analysis, adjusted for age, sex, local proportion of persons receiving unemployment benefits, and individual socioeconomic status (available for 39% of the individuals). A statistically significant linear exposure-risk relationship with heart failure or hypertensive heart disease was found for aircraft traffic noise (1.6% risk increase per 10dB increase in the 24-h continuous noise level; 95% CI 0.3-3.0%), road traffic noise (2.4% per 10dB; 95% CI 1.6-3.2%), and railway noise (3.1% per 10dB; 95% CI 2.2-4.1%). For individuals with 24-h continuous aircraft noise levels <40dB and nightly maximum aircraft noise levels exceeding 50dB six or more times, a significantly increased risk was observed. In general, risks of HHD were considerably higher than the risks of heart failure. Regarding the high prevalence of traffic noise from various sources, even low risk increases for frequent diseases are relevant for the population as a whole. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ediani Machado, Michely; Tomazoni, Fernanda; Ruffo Ortiz, Fernanda; Ardenghi, Thiago Machado; Zanatta, Fabricio Batistin
2017-07-01
It is not clear how using partial-mouth periodontal examination (PMPE) protocols affects estimates of the association between gingival bleeding (GB) and oral health-related quality of life (OHRQoL). The aim of the present study is to assess impact of different PMPEs on the association between GB and OHRQoL in 12-year-old adolescents. A total of 1,134 adolescents were evaluated for clinical and subjective variables. GB was determined by full-mouth examination (FME) of six sites (disto-buccal [DB], mid-buccal [B], mesio-buccal [MB], disto-lingual [DL], mid-lingual, and mesio-lingual [ML]) and different PMPEs were calculated using a 15% cut-off point: 1) full-mouth (MB-B-DB/MB-B-DL); 2) two diagonal quadrants (six sites/MB-B-DB/MB-B-DL); 3) two randomly selected half-mouth quadrants (six sites/MB-B-DB/ MB-B-DL/MB-DB-ML-DL); and 4) the community periodontal index. OHRQoL was assessed using the Child Perceptions Questionnaire (CPQ 11-14 ). Adjusted negative binomial regression models were used to calculate the rate ratio of CPQ 11-14 scores for each PMPE. Adolescents with GB showed significantly poorer OHRQoL than their counterparts when FME was used. In contrast, more than half of PMPE protocols did not detect significant associations between GB and CPQ 11-14 scores in the adjusted analysis. Using PMPE to assess GB in adolescents significantly affects associations with OHRQoL outcomes, depending on the protocol used. PMPEs that evaluated MB-B-DL sites of randomly selected half-mouth quadrants (1 or 2 and 3 or 4) achieved results closer to those obtained with FME.
Litton, Edward; Elliott, Rosalind; Thompson, Kelly; Watts, Nicola; Seppelt, Ian; Webb, Steven A R
2017-06-01
To use clinically accessible tools to determine unit-level and individual patient factors associated with sound levels and sleep disruption in a range of representative ICUs. A cross-sectional, observational study. Australian and New Zealand ICUs. All patients 16 years or over occupying an ICU bed on one of two Point Prevalence study days in 2015. Ambient sound was measured for 1 minute using an application downloaded to a personal mobile device. Bedside nurses also recorded the total time and number of awakening for each patient overnight. The study included 539 participants with sound level recorded using an application downloaded to a personal mobile device from 39 ICUs. Maximum and mean sound levels were 78 dB (SD, 9) and 62 dB (SD, 8), respectively. Maximum sound levels were higher in ICUs with a sleep policy or protocol compared with those without maximum sound levels 81 dB (95% CI, 79-83) versus 77 dB (95% CI, 77-78), mean difference 4 dB (95% CI, 0-2), p < 0.001. There was no significant difference in sound levels regardless of single room occupancy, mechanical ventilation status, or illness severity. Clinical nursing staff in all 39 ICUs were able to record sleep assessment in 15-minute intervals. The median time awake and number of prolonged disruptions were 3 hours (interquartile range, 1-4) and three (interquartile range, 2-5), respectively. Across a large number of ICUs, patients were exposed to high sound levels and substantial sleep disruption irrespective of factors including previous implementation of a sleep policy. Sound and sleep measurement using simple and accessible tools can facilitate future studies and could feasibly be implemented into clinical practice.
Dual-Polarization Observations of Slowly Varying Solar Emissions from a Mobile X-Band Radar
Gabella, Marco; Leuenberger, Andreas
2017-01-01
The radio noise that comes from the Sun has been reported in literature as a reference signal to check the quality of dual-polarization weather radar receivers for the S-band and C-band. In most cases, the focus was on relative calibration: horizontal and vertical polarizations were evaluated versus the reference signal mainly in terms of standard deviation of the difference. This means that the investigated radar receivers were able to reproduce the slowly varying component of the microwave signal emitted by the Sun. A novel method, aimed at the absolute calibration of dual-polarization receivers, has recently been presented and applied for the C-band. This method requires the antenna beam axis to be pointed towards the center of the Sun for less than a minute. Standard deviations of the difference as low as 0.1 dB have been found for the Swiss radars. As far as the absolute calibration is concerned, the average differences were of the order of −0.6 dB (after noise subtraction). The method has been implemented on a mobile, X-band radar, and this paper presents the successful results that were obtained during the 2016 field campaign in Payerne (Switzerland). Despite a relatively poor Sun-to-Noise ratio, the “small” (~0.4 dB) amplitude of the slowly varying emission was captured and reproduced; the standard deviation of the difference between the radar and the reference was ~0.2 dB. The absolute calibration of the vertical and horizontal receivers was satisfactory. After the noise subtraction and atmospheric correction a, the mean difference was close to 0 dB. PMID:28531164
Dual-Polarization Observations of Slowly Varying Solar Emissions from a Mobile X-Band Radar.
Gabella, Marco; Leuenberger, Andreas
2017-05-22
The radio noise that comes from the Sun has been reported in literature as a reference signal to check the quality of dual-polarization weather radar receivers for the S-band and C-band. In most cases, the focus was on relative calibration: horizontal and vertical polarizations were evaluated versus the reference signal mainly in terms of standard deviation of the difference. This means that the investigated radar receivers were able to reproduce the slowly varying component of the microwave signal emitted by the Sun. A novel method, aimed at the absolute calibration of dual-polarization receivers, has recently been presented and applied for the C-band. This method requires the antenna beam axis to be pointed towards the center of the Sun for less than a minute. Standard deviations of the difference as low as 0.1 dB have been found for the Swiss radars. As far as the absolute calibration is concerned, the average differences were of the order of -0.6 dB (after noise subtraction). The method has been implemented on a mobile, X-band radar, and this paper presents the successful results that were obtained during the 2016 field campaign in Payerne (Switzerland). Despite a relatively poor Sun-to-Noise ratio, the "small" (~0.4 dB) amplitude of the slowly varying emission was captured and reproduced; the standard deviation of the difference between the radar and the reference was ~0.2 dB. The absolute calibration of the vertical and horizontal receivers was satisfactory. After the noise subtraction and atmospheric correction a, the mean difference was close to 0 dB.
NASA Astrophysics Data System (ADS)
Tombak, Ali
The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.
On heat transfer in squish gaps
NASA Astrophysics Data System (ADS)
Spurk, J. H.
1986-06-01
Attention is given to the heat transfer characteristics of a squish gap in an internal combustion engine cylinder, when the piston is nearing top dead center (TDC) on the compression stroke. If the lateral extent of the gap is much larger than its height, the inviscid flow is similar to the stagnation point flow. Surface temperature and pressure histories during compression and expansion are studied. Surface temperature has a maximum near TDC, then drops and rises again during expansion; higher values are actually achieved during expansion than during compression.
[Environmental noise levels in 2 intensive care units in a tertiary care centre].
Ornelas-Aguirre, José Manuel; Zárate-Coronado, Olivia; Gaxiola-González, Fabiola; Neyoy-Sombra, Venigna
2017-04-03
The World Health Organisation (WHO) has established a maximum noise level of 40 decibels (dB) for an intensive care unit. The aim of this study was to compare the noise levels in 2 different intensive care units at a tertiary care centre. Using a cross-sectional design study, an analysis was made of the maximum noise level was within the intensive coronary care unit and intensive care unit using a digital meter. A measurement was made in 4 different points of each room, with 5minute intervals, for a period of 60minutes 7:30, 14:30, and 20:30. The means of the observations were compared with descriptive statistics and Mann-Whitney U. An analysis with Kruskal-Wallis test was performed to the mean noise level. The noise observed in the intensive care unit had a mean of 64.77±3.33dB (P=.08), which was similar to that in the intensive coronary care unit, with a mean of 60.20±1.58dB (P=.129). Around 25% or more of the measurements exceeded the level recommended by the WHO by up to 20 points. Noise levels measured in intensive care wards exceed the maximum recommended level for a hospital. It is necessary to design and implement actions for greater participation of health personnel in the reduction of environmental noise. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.
Masking Release in Children and Adults With Hearing Loss When Using Amplification
McCreery, Ryan; Kopun, Judy; Lewis, Dawna; Alexander, Joshua; Stelmachowicz, Patricia
2016-01-01
Purpose This study compared masking release for adults and children with normal hearing and hearing loss. For the participants with hearing loss, masking release using simulated hearing aid amplification with 2 different compression speeds (slow, fast) was compared. Method Sentence recognition in unmodulated noise was compared with recognition in modulated noise (masking release). Recognition was measured for participants with hearing loss using individualized amplification via the hearing-aid simulator. Results Adults with hearing loss showed greater masking release than the children with hearing loss. Average masking release was small (1 dB) and did not depend on hearing status. Masking release was comparable for slow and fast compression. Conclusions The use of amplification in this study contrasts with previous studies that did not use amplification. The results suggest that when differences in audibility are reduced, participants with hearing loss may be able to take advantage of dips in the noise levels, similar to participants with normal hearing. Although children required a more favorable signal-to-noise ratio than adults for both unmodulated and modulated noise, masking release was not statistically different. However, the ability to detect a difference may have been limited by the small amount of masking release observed. PMID:26540194
Picou, Erin M; Marcrum, Steven C; Ricketts, Todd A
2015-03-01
While potentially improving audibility for listeners with considerable high frequency hearing loss, the effects of implementing nonlinear frequency compression (NFC) for listeners with moderate high frequency hearing loss are unclear. The purpose of this study was to investigate the effects of activating NFC for listeners who are not traditionally considered candidates for this technology. Participants wore study hearing aids with NFC activated for a 3-4 week trial period. After the trial period, they were tested with NFC and with conventional processing on measures of consonant discrimination threshold in quiet, consonant recognition in quiet, sentence recognition in noise, and acceptableness of sound quality of speech and music. Seventeen adult listeners with symmetrical, mild to moderate sensorineural hearing loss participated. Better ear, high frequency pure-tone averages (4, 6, and 8 kHz) were 60 dB HL or better. Activating NFC resulted in lower (better) thresholds for discrimination of /s/, whose spectral center was 9 kHz. There were no other significant effects of NFC compared to conventional processing. These data suggest that the benefits, and detriments, of activating NFC may be limited for this population.
Exo-Skeletal Engine: Novel Engine Concept
NASA Technical Reports Server (NTRS)
Chamis, Cristos C.; Blankson, Isaiah M.
2004-01-01
The exo-skeletal engine concept represents a new radical engine technology with the potential to substantially revolutionize engine design. It is an all-composite drum-rotor engine in which conventionally heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction and can also accommodate an inner combined-cycle thruster such as a ramjet. The exo-skeletal engine is described in some detail with respect to geometry, components, and potential benefits. Initial evaluations and results for drum rotors, bearings, and weights are summarized. Component configuration, assembly plan, and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components is described. Preliminary results obtained thus far show at least a 30-percent reduction of engine weight and about a 10-dB noise reduction, compared with a baseline conventional high-bypass-ratio engine. Potential benefits in all aspects of this engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.
High-frequency Pulse-compression Ultrasound Imaging with an Annular Array
NASA Astrophysics Data System (ADS)
Mamou, J.; Ketterling, J. A.; Silverman, R. H.
High-frequency ultrasound (HFU) allows fine-resolution imaging at the expense of limited depth-of-field (DOF) and shallow acoustic penetration depth. Coded-excitation imaging permits a significant increase in the signal-to-noise ratio (SNR) and therefore, the acoustic penetration depth. A 17-MHz, five-element annular array with a focal length of 31 mm and a total aperture of 10 mm was fabricated using a 25-μm thick piezopolymer membrane. An optimized 8-μs linear chirp spanning 6.5-32 MHz was used to excite the transducer. After data acquisition, the received signals were linearly filtered by a compression filter and synthetically focused. To compare the chirp-array imaging method with conventional impulse imaging in terms of resolution, a 25-μm wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. A tissue-mimicking phantom containing 10-μm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex-vivo ophthalmic images were formed and chirp-coded images showed features that were not visible in conventional impulse images.
New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars
NASA Technical Reports Server (NTRS)
Hossain, Murshed; Mullan, D. J.
1990-01-01
Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.
Orthodontic intrusion of maxillary incisors: a 3D finite element method study
Saga, Armando Yukio; Maruo, Hiroshi; Argenta, Marco André; Maruo, Ivan Toshio; Tanaka, Orlando Motohiro
2016-01-01
Objective: In orthodontic treatment, intrusion movement of maxillary incisors is often necessary. Therefore, the objective of this investigation is to evaluate the initial distribution patterns and magnitude of compressive stress in the periodontal ligament (PDL) in a simulation of orthodontic intrusion of maxillary incisors, considering the points of force application. Methods: Anatomic 3D models reconstructed from cone-beam computed tomography scans were used to simulate maxillary incisors intrusion loading. The points of force application selected were: centered between central incisors brackets (LOAD 1); bilaterally between the brackets of central and lateral incisors (LOAD 2); bilaterally distal to the brackets of lateral incisors (LOAD 3); bilaterally 7 mm distal to the center of brackets of lateral incisors (LOAD 4). Results and Conclusions: Stress concentrated at the PDL apex region, irrespective of the point of orthodontic force application. The four load models showed distinct contour plots and compressive stress values over the midsagittal reference line. The contour plots of central and lateral incisors were not similar in the same load model. LOAD 3 resulted in more balanced compressive stress distribution. PMID:27007765
Wireless Computing Architecture III
2013-09-01
MIMO Multiple-Input and Multiple-Output MIMO /CON MIMO with concurrent hannel access and estimation MU- MIMO Multiuser MIMO OFDM Orthogonal...compressive sensing \\; a design for concurrent channel estimation in scalable multiuser MIMO networking; and novel networking protocols based on machine...Network, Antenna Arrays, UAV networking, Angle of Arrival, Localization MIMO , Access Point, Channel State Information, Compressive Sensing 16
Determination of stresses in RC eccentrically compressed members using optimization methods
NASA Astrophysics Data System (ADS)
Lechman, Marek; Stachurski, Andrzej
2018-01-01
The paper presents an optimization method for determining the strains and stresses in reinforced concrete (RC) members subjected to the eccentric compression. The governing equations for strains in the rectangular cross-sections are derived by integrating the equilibrium equations of cross-sections, taking account of the effect of concrete softening in plastic range and the mean compressive strength of concrete. The stress-strain relationship for concrete in compression for short term uniaxial loading is assumed according to Eurocode 2 for nonlinear analysis. For reinforcing steel linear-elastic model with hardening in plastic range is applied. The task consists in the solving the set of the derived equations s.t. box constraints. The resulting problem was solved by means of fmincon function implemented from the Matlab's Optimization Toolbox. Numerical experiments have shown the existence of many points verifying the equations with a very good accuracy. Therefore, some operations from the global optimization were included: start of fmincon from many points and clusterization. The model is verified on the set of data encountered in the engineering practice.
Middendorf, Jill M; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Bartell, Lena R; Cohen, Itai; Bonassar, Lawrence J
2017-11-07
Many studies have measured the global compressive properties of tissue engineered (TE) cartilage grown on porous scaffolds. Such scaffolds are known to exhibit strain softening due to local buckling under loading. As matrix is deposited onto these scaffolds, the global compressive properties increase. However the relationship between the amount and distribution of matrix in the scaffold and local buckling is unknown. To address this knowledge gap, we studied how local strain and construct buckling in human TE constructs changes over culture times and GAG content. Confocal elastography techniques and digital image correlation (DIC) were used to measure and record buckling modes and local strains. Receiver operating characteristic (ROC) curves were used to quantify construct buckling. The results from the ROC analysis were placed into Kaplan-Meier survival function curves to establish the probability that any point in a construct buckled. These analysis techniques revealed the presence of buckling at early time points, but bending at later time points. An inverse correlation was observed between the probability of buckling and the total GAG content of each construct. This data suggests that increased GAG content prevents the onset of construct buckling and improves the microscale compressive tissue properties. This increase in GAG deposition leads to enhanced global compressive properties by prevention of microscale buckling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Song, Min-Ho; Choi, Jung-Woo; Kim, Yang-Hann
2012-02-01
A focused source can provide an auditory illusion of a virtual source placed between the loudspeaker array and the listener. When a focused source is generated by time-reversed acoustic focusing solution, its use as a virtual source is limited due to artifacts caused by convergent waves traveling towards the focusing point. This paper proposes an array activation method to reduce the artifacts for a selected listening point inside an array of arbitrary shape. Results show that energy of convergent waves can be reduced up to 60 dB for a large region including the selected listening point. © 2012 Acoustical Society of America
Comparison. US P-61 and Delft sediment samplers
Beverage, Joseph P.; Williams, David T.
1990-01-01
The Delft Bottle (DB) is a flow-through device designed by the Delft Hydraulic Laboratory (DHL), The Netherlands, to sample sand-sized sediment suspended in streams. The US P-61 sampler was designed by the Federal Interagency Sedimentation Project (FISP) at the St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minnesota, to collect suspended sediment from deep, swift rivers. The results of two point-sampling tests in the United States, the Mississippi River near Vicksburg, Mississippi, in 1983 and the Colorado River near Blythe, California, in 1984, are provided in this report. These studies compare sand-transport rates, rather than total sediment-transport rates, because fine material washes through the DB sampler. In the United States, the commonly used limits for sand-sized material are 0.062 mm to 2.00 mm (Vanoni 1975).
Potential reduction of en route noise from an advanced turboprop aircraft
NASA Technical Reports Server (NTRS)
Dittmar, James H.
1990-01-01
When the en route noise of a representative aircraft powered by an eight-blade SR-7 propeller was previously calculated, the noise level was cited as a possible concern associated with the acceptance of advanced turboprop aircraft. Some potential methods for reducing the en route noise were then investigated and are reported. Source noise reductions from increasing the blade number and from operating at higher rotative speed to reach a local minimum noise point were investigated. Greater atmospheric attenuations for higher blade passing frequencies were also indicated. Potential en route noise reductions from these methods were calculated as 9.5 dB (6.5 dB(A)) for a 10-blade redesigned propeller and 15.5 dB (11 dB(A)) for a 12-blade redesigned propeller.
A novel antenna for ultra-wide-band applications
NASA Technical Reports Server (NTRS)
Lai, Albert K. Y.; Sinopoli, Albert L.; Burnside, Walter D.
1992-01-01
An ultrawideband antenna based on a slotline feed structure, a bowtie horn, and a rolled edge termination was developed, analyzed, and measured. Empirical data showed that its beamwidths and bandwidth are dependent on its physical dimensions which are easily controllable by an antenna designer. Measured patterns of models with various radiation properties are shown to substantiate these design rules. A flat plateau-like main beam, low voltage standing-wave ratio (VSWR), the ability to produce both wide (60 deg) and narrow (30 deg) half-power beamwidths, low sidelobes and backlobe (40-50 dB down), low cross-polarized levels (20-25 dB down), and independent control of E- and H-plane beamwidths over an ultrawide bandwidth, say 2-18 GHz, are some of the strong points of this antenna type.
Comparison of Design-Build to Design-Bid-Build as a Project Delivery Method
2001-12-01
by Researcher] 40 Time growth is generally coupled with cost growth, and this rule holds true when looking at the cost growth on the DB and DBB...and Tierno, M., “Points to Remember,” The Military Engineer, No. 609, pp. 25-26, January-February 2001. 4. Crammer , Mark, “Design-Build in the
Data compression: The end-to-end information systems perspective for NASA space science missions
NASA Technical Reports Server (NTRS)
Tai, Wallace
1991-01-01
The unique characteristics of compressed data have important implications to the design of space science data systems, science applications, and data compression techniques. The sequential nature or data dependence between each of the sample values within a block of compressed data introduces an error multiplication or propagation factor which compounds the effects of communication errors. The data communication characteristics of the onboard data acquisition, storage, and telecommunication channels may influence the size of the compressed blocks and the frequency of included re-initialization points. The organization of the compressed data are continually changing depending on the entropy of the input data. This also results in a variable output rate from the instrument which may require buffering to interface with the spacecraft data system. On the ground, there exist key tradeoff issues associated with the distribution and management of the science data products when data compression techniques are applied in order to alleviate the constraints imposed by ground communication bandwidth and data storage capacity.
Three-dimensional numerical simulation for plastic injection-compression molding
NASA Astrophysics Data System (ADS)
Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn
2018-03-01
Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.
Fast and predictable video compression in software design and implementation of an H.261 codec
NASA Astrophysics Data System (ADS)
Geske, Dagmar; Hess, Robert
1998-09-01
The use of software codecs for video compression becomes commonplace in several videoconferencing applications. In order to reduce conflicts with other applications used at the same time, mechanisms for resource reservation on endsystems need to determine an upper bound for computing time used by the codec. This leads to the demand for predictable execution times of compression/decompression. Since compression schemes as H.261 inherently depend on the motion contained in the video, an adaptive admission control is required. This paper presents a data driven approach based on dynamical reduction of the number of processed macroblocks in peak situations. Besides the absolute speed is a point of interest. The question, whether and how software compression of high quality video is feasible on today's desktop computers, is examined.
Lossless Astronomical Image Compression and the Effects of Random Noise
NASA Technical Reports Server (NTRS)
Pence, William
2009-01-01
In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.
1984-01-01
each FFT-step). For a frequency domain S/N of 60dB, 12 bits are suited up to 128 points, 16 bits up to 2048 points. Experimental results gave better...Schwingungen des unendlichen, federnd gebetteten Balkens unter der Wirkung eines unrunden Rades. 19. J. KORB 1980 VDI -Berichte Nr. 381, 99-104...to squealing noise. 7. REFERENCES 1. H. STAPPENBECK 1954 Zeitschrift VDI 96, 171-175. Das Kurvengerdusch der Strafenbahn - Mglichkeiten zu seiner
Numerical simulation of the compressible Orszag-Tang vortex 2. Supersonic flow
NASA Technical Reports Server (NTRS)
Picone, J. M.; Dahlburg, Russell B.
1990-01-01
The numerical investigation of the Orszag-Tang vortex system in compressible magnetofluids will consider initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers 1.0 and 1.5 and beta 10/3 with Lundquist numbers 50, 100, or 200. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X-point and produce strong local current sheets which dissipate appreciable magnetic energy. Reconnection at the central X-point, which dominates the incompressible and subsonic systems, peaks later and has a smaller impact as M increases from 0.6 to 1.5. Similarly, correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wavenumber spectra of autocorrelations in mass density, velocity, and magnetic field.
Many-body interactions and high-pressure equations of state in rare-gas solids
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.; Tretyak, S. M.
2007-06-01
The T =0K equations of state (EOS) of rare-gas solids (RGS) (He, Ne, Ar, Kr, and Xe) are calculated in the experimentally studied ranges of pressures with the two- and three-body interatomic forces taken into account. Solid-state corrections to the pure two-body Aziz et al. potentials included the long-range Axilrod-Teller three-body interaction and short-range three-body exchange interaction. The energy-scale and length-scale parameters of the latter were taken as adjustable parameters of theory. The calculated T =0K EOS for all RGS are in excellent agreement with experiment in the whole range of pressures. The calculated EOS for Ar, Kr, and Xe exhibit inflection points where the isothermal bulk moduli have non-physical maxima, indicating that account of only three-body forces becomes insufficient. These points lie at pressures 250, 200, and 175GPa (volume compressions of approximately 4.8, 4.1, and 3.6) for Ar, Kr, and Xe, respectively. No such points were found in the calculated EOS of He and Ne. The relative magnitude of the three-body contribution to the ground-state energy with respect to the two-body one as a function of the volume compression was found to be nonmonotonic in the sequence Ne-Ar-Kr-Xe. In a large range of compressions, Kr has the highest value of this ratio. This anomalously high three-body exchange force contributes to the EOS a negative pressure so large that the EOS for Kr and Ar as a function of compression nearly coincide. At compressions higher than approximately 3.5 the curves intersect, and further on, the EOS of Kr lies lower than that of Ar.
Rescue of cardiac leptin receptors in db/db mice prevents myocardial triglyceride accumulation.
Hall, Michael E; Maready, Matthew W; Hall, John E; Stec, David E
2014-08-01
Increased leptin levels have been suggested to contribute to cardiac hypertrophy and attenuate cardiac lipid accumulation in obesity, although it has been difficult to separate leptin's direct effects from those caused by changes in body weight and adiposity. To determine whether leptin attenuates cardiac lipid accumulation in obesity or directly causes left ventricular hypertrophy (LVH), we generated a novel mouse model in which the long form of the leptin receptor (LepR) was "rescued" only in cardiomyocytes of obese db/db mice. Reexpression of cardiomyocyte leptin receptors in db/db mice did not cause LVH but reduced cardiac triglycerides and improved cardiac function. Compared with lean wild-type (WT) or db/db-cardiac LepR rescue mice, db/db mice exhibited significantly lower E/A ratio, a measurement of early to late diastolic filling, which averaged 1.5 ± 0.07 in db/db vs. 1.9 ± 0.08 and 1.8 ± 0.11 in WT and db/db-cardiac LepR rescue mice, respectively. No differences in systolic function were observed. Although db/db and db/db-cardiac LepR rescue mice exhibited similar increases in plasma triglycerides, insulin, glucose, and body weight, cardiac triglycerides were significantly higher in db/db compared with WT and db/db cardiac LepR rescue mice, averaging 13.4 ± 4.2 vs. 3.8 ± 1.6 vs. 3.8 ± 0.7 mg/g, respectively. These results demonstrate that despite significant obesity and increases in plasma glucose and triglycerides, db/db cardiac LepR rescue mice are protected against myocardial lipid accumulation. However, we found no evidence that leptin directly causes LVH. Copyright © 2014 the American Physiological Society.
Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation.
Hallstrom, A; Cobb, L; Johnson, E; Copass, M
2000-05-25
Despite extensive training of citizens of Seattle in cardiopulmonary resuscitation (CPR), bystanders do not perform CPR in almost half of witnessed cardiac arrests. Instructions in chest compression plus mouth-to-mouth ventilation given by dispatchers over the telephone can require 2.4 minutes. In experimental studies, chest compression alone is associated with survival rates similar to those with chest compression plus mouth-to-mouth ventilation. We conducted a randomized study to compare CPR by chest compression alone with CPR by chest compression plus mouth-to-mouth ventilation. The setting of the trial was an urban, fire-department-based, emergency-medical-care system with central dispatching. In a randomized manner, telephone dispatchers gave bystanders at the scene of apparent cardiac arrest instructions in either chest compression alone or chest compression plus mouth-to-mouth ventilation. The primary end point was survival to hospital discharge. Data were analyzed for 241 patients randomly assigned to receive chest compression alone and 279 assigned to chest compression plus mouth-to-mouth ventilation. Complete instructions were delivered in 62 percent of episodes for the group receiving chest compression plus mouth-to-mouth ventilation and 81 percent of episodes for the group receiving chest compression alone (P=0.005). Instructions for compression required 1.4 minutes less to complete than instructions for compression plus mouth-to-mouth ventilation. Survival to hospital discharge was better among patients assigned to chest compression alone than among those assigned to chest compression plus mouth-to-mouth ventilation (14.6 percent vs. 10.4 percent), but the difference was not statistically significant (P=0.18). The outcome after CPR with chest compression alone is similar to that after chest compression with mouth-to-mouth ventilation, and chest compression alone may be the preferred approach for bystanders inexperienced in CPR.
Merging of the Dirac points in electronic artificial graphene
NASA Astrophysics Data System (ADS)
Feilhauer, J.; Apel, W.; Schweitzer, L.
2015-12-01
Theory predicts that graphene under uniaxial compressive strain in an armchair direction should undergo a topological phase transition from a semimetal into an insulator. Due to the change of the hopping integrals under compression, both Dirac points shift away from the corners of the Brillouin zone towards each other. For sufficiently large strain, the Dirac points merge and an energy gap appears. However, such a topological phase transition has not yet been observed in normal graphene (due to its large stiffness) neither in any other electronic system. We show numerically and analytically that such a merging of the Dirac points can be observed in electronic artificial graphene created from a two-dimensional electron gas by application of a triangular lattice of repulsive antidots. Here, the effect of strain is modeled by tuning the distance between the repulsive potentials along the armchair direction. Our results show that the merging of the Dirac points should be observable in a recent experiment with molecular graphene.
Rapamycin Increases Mortality in db/db Mice, a Mouse Model of Type 2 Diabetes.
Sataranatarajan, Kavithalakshmi; Ikeno, Yuji; Bokov, Alex; Feliers, Denis; Yalamanchili, Himabindu; Lee, Hak Joo; Mariappan, Meenalakshmi M; Tabatabai-Mir, Hooman; Diaz, Vivian; Prasad, Sanjay; Javors, Martin A; Ghosh Choudhury, Goutam; Hubbard, Gene B; Barnes, Jeffrey L; Richardson, Arlan; Kasinath, Balakuntalam S
2016-07-01
We examined the effect of rapamycin on the life span of a mouse model of type 2 diabetes, db/db mice. At 4 months of age, male and female C57BLKSJ-lepr (db/db) mice (db/db) were placed on either a control diet, lacking rapamycin or a diet containing rapamycin and maintained on these diets over their life span. Rapamycin was found to reduce the life span of the db/db mice. The median survival of male db/db mice fed the control and rapamycin diets was 349 and 302 days, respectively, and the median survival of female db/db mice fed the control and rapamycin diets was 487 and 411 days, respectively. Adjusting for gender differences, rapamycin increased the mortality risk 1.7-fold in both male and female db/db mice. End-of-life pathological data showed that suppurative inflammation was the main cause of death in the db/db mice, which is enhanced slightly by rapamycin treatment. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The development of machine technology processing for earth resource survey
NASA Technical Reports Server (NTRS)
Landgrebe, D. A.
1970-01-01
The following technologies are considered for automatic processing of earth resources data: (1) registration of multispectral and multitemporal images, (2) digital image display systems, (3) data system parameter effects on satellite remote sensing systems, and (4) data compression techniques based on spectral redundancy. The importance of proper spectral band and compression algorithm selections is pointed out.
Tension and compression fatigue response of unnotched 3D braided composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.
1992-01-01
The unnotched compression and tension fatigue response of a 3-D braided composite was measured. Both gross compressive stress and tensile stress were plotted against cycles to failure to evaluate the fatigue life of these materials. Damage initiation and growth was monitored visually and by tracking compliance change during cycle loading. The intent was to establish by what means the strength of a 3-D architecture will start to degrade, at what point will it degrade beyond an acceptable level, and how this material will typically fail.
A novel method to detect ignition angle of diesel
NASA Astrophysics Data System (ADS)
Li, Baofu; Peng, Yong; Huang, Hongzhong
2018-04-01
This paper is based on the combustion signal collected by the combustion sensor of piezomagnetic type, taking how to get the diesel fuel to start the combustion as the starting point. It analyzes the operating principle and pressure change of the combustion sensor, the compression peak signal of the diesel engine in the process of compression, and several common methods. The author puts forward a new idea that ignition angle timing can be determined more accurately by the compression peak decomposition method. Then, the method is compared with several common methods.
NASA Technical Reports Server (NTRS)
Krebs, R. P.
1971-01-01
The computer program described in this report calculates the design-point characteristics of a compressed-air generator for use in V/STOL applications such as systems with a tip-turbine-driven lift fan. The program computes the dimensions and mass, as well as the thermodynamic performance of a model air generator configuration which involves a straight through-flow combustor. Physical and thermodynamic characteristics of the air generator components are also given. The program was written in FORTRAN IV language. Provision has been made so that the program will accept input values in either SI units or U.S. customary units. Each air generator design-point calculation requires about 1.5 seconds of 7094 computer time for execution.
An avoidance behavior model for migrating whale populations
NASA Astrophysics Data System (ADS)
Buck, John R.; Tyack, Peter L.
2003-04-01
A new model is presented for the avoidance behavior of migrating marine mammals in the presence of a noise stimulus. This model assumes that each whale will adjust its movement pattern near a sound source to maintain its exposure below its own individually specific maximum received sound-pressure level, called its avoidance threshold. The probability distribution function (PDF) of this avoidance threshold across individuals characterizes the migrating population. The avoidance threshold PDF may be estimated by comparing the distribution of migrating whales during playback and control conditions at their closest point of approach to the sound source. The proposed model was applied to the January 1998 experiment which placed a single acoustic source from the U.S. Navy SURTASS-LFA system in the migration corridor of grey whales off the California coast. This analysis found that the median avoidance threshold for this migrating grey whale population was 135 dB, with 90% confidence that the median threshold was within +/-3 dB of this value. This value is less than the 141 dB value for 50% avoidance obtained when the 1984 ``Probability of Avoidance'' model of Malme et al.'s was applied to the same data. [Work supported by ONR.
Optical switch based on thermocapillarity
NASA Astrophysics Data System (ADS)
Sakata, Tomomi; Makihara, Mitsuhiro; Togo, Hiroyoshi; Shimokawa, Fusao; Kaneko, Kazumasa
2001-11-01
Space-division optical switches are essential for the protection, optical cross-connects (OXCs), and optical add/drop multiplexers (OADMs) needed in future fiber-optic communication networks. For applications in these areas, we proposed a thermocapillarity switch called oil-latching interfacial-tension variation effect (OLIVE) switch. An OLIVE switch is a micro-mechanical optical switch fabricated on planar lightwave circuits (PLC) using micro-electro-mechanical systems (MEMS) technology. It consists of a crossing waveguide that has a groove at each crossing point and a pair of microheaters. The groove is partially filled with the refractive-index-matching liquid, and optical signals are switched according to the liquid's position in the groove, i.e., whether it is passing straight through the groove or reflecting at the sidewall of the groove. The liquid is driven by thermocapillarity and latched by capillarity. Using the total internal reflection to switch the optical path, the OLIVE switch exhibits excellent optical characteristics, such as high transparency (insertion loss: < 2 dB), high extinction ratio (> 50 dB), and low crosstalk (< -50 dB). Moreover, since this switch has a simple structure and bi-stability, it has wide variety of applications in wavelength division multiplexing (WDM) networks.
A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.
2018-03-01
Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.
49 CFR 173.334 - Organic phosphates mixed with compressed gas.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) onto a non-yielding surface, such as concrete or steel, impacting at the packaging's weakest point. (e...-yielding surface, such as concrete or steel, impacting at the weakest point. [67 FR 51651, Aug. 8, 2002, as...
Effect of temperature on the spectrum of fiber Bragg grating sensors embedded in polymer composite
NASA Astrophysics Data System (ADS)
Anoshkin, A. N.; Shipunov, G. S.; Voronkov, A. A.; Shardakov, I. N.
2017-12-01
This work presents the experimental results on the effect of temperature on the spectrum of fiber Bragg grating (FBG) sensors embedded in a polymer composite material manufactured by the prepreg method. The tests are carried out for flat bar specimens made of fiberglass with five embedded FBG sensors. For measuring the reflected wave power, the ASTRO X322 Interrogator is used. It is shown that embedding leads to the occurrence of an additional power peak and decreases the reflection spectrum signal by 10-12 dB. This is due to the effect of transverse compression force and the anisotropic character of the thermal expansion coefficient of the material. In heating, the reflected spectrum is close to the initial state of the material, but it has a less power.
Nishizawa, N; Chen, Y; Hsiung, P; Ippen, E P; Fujimoto, J G
2004-12-15
Real-time, ultrahigh-resolution optical coherence tomography (OCT) is demonstrated in the 1.4-1.7-microm wavelength region with a stretched-pulse, passively mode-locked, Er-doped fiber laser and highly nonlinear fiber. The fiber laser generates 100-mW, linearly chirped pulses at a 51-MHz repetition rate. The pulses are compressed and then coupled into a normally dispersive highly nonlinear fiber to generate a low-noise supercontinuum with a 180-nm FWHM bandwidth and 38 mW of output power. This light source is stable, compact, and broadband, permitting high-speed, real-time, high-resolution OCT imaging. In vivo high-speed OCT imaging of human skin with approximately 5.5-microm resolution and 99-dB sensitivity is demonstrated.
Trask, Aaron J; Delbin, Maria A; Katz, Paige S; Zanesco, Angelina; Lucchesi, Pamela A
2012-01-01
The goals of the present study were to compare coronary resistance microvessel (CRM) remodeling between type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) mice, and to determine the impact of aerobic exercise training on CRM remodeling in diabetes. Eight week old male mice were divided into T1DM: control sedentary (Control-SD), T1DM sedentary (T1DM-SD) induced by streptozotocin, and T1DM exercise trained (T1DM-TR); T2DM: control sedentary (Db/db-SD), T2DM sedentary (db/db-SD), and T2DM trained (db/db-TR). Aerobic exercise training (TR) was performed on a mouse treadmill for 8weeks. CRMs were isolated and mounted on a pressure myograph to measure and record vascular remodeling and mechanics. CRM diameters, wall thickness, stress-strain, incremental modulus remained unchanged in T1DM-SD mice compared to control, and exercise training showed no effect. In contrast, CRMs isolated from db/db-SD mice exhibited decreased luminal diameter with thicker microvascular walls, which significantly increased the wall:lumen ratio (Db/db-SD: 5.8±0.3 vs. db/db-SD: 8.9±0.7, p<0.001). Compared to db/db-SD mice, coronary arterioles isolated from db/db-TR mice had similar internal diameter and wall thickness, while wall:lumen ratio (6.8±0.2, p<0.05) and growth index (db/db-SD: 16.2 vs. db/db-TR: 4.3, % over Db/db) were reduced. These data show that CRMs undergo adverse inward hypertrophic remodeling only in T2DM, but not T1DM, and that aerobic exercise training can partially mitigate this process. Copyright © 2012 Elsevier Inc. All rights reserved.
Assessment of the impact of modeling axial compression on PET image reconstruction.
Belzunce, Martin A; Reader, Andrew J
2017-10-01
To comprehensively evaluate both the acceleration and image-quality impacts of axial compression and its degree of modeling in fully 3D PET image reconstruction. Despite being used since the very dawn of 3D PET reconstruction, there are still no extensive studies on the impact of axial compression and its degree of modeling during reconstruction on the end-point reconstructed image quality. In this work, an evaluation of the impact of axial compression on the image quality is performed by extensively simulating data with span values from 1 to 121. In addition, two methods for modeling the axial compression in the reconstruction were evaluated. The first method models the axial compression in the system matrix, while the second method uses an unmatched projector/backprojector, where the axial compression is modeled only in the forward projector. The different system matrices were analyzed by computing their singular values and the point response functions for small subregions of the FOV. The two methods were evaluated with simulated and real data for the Biograph mMR scanner. For the simulated data, the axial compression with span values lower than 7 did not show a decrease in the contrast of the reconstructed images. For span 11, the standard sinogram size of the mMR scanner, losses of contrast in the range of 5-10 percentage points were observed when measured for a hot lesion. For higher span values, the spatial resolution was degraded considerably. However, impressively, for all span values of 21 and lower, modeling the axial compression in the system matrix compensated for the spatial resolution degradation and obtained similar contrast values as the span 1 reconstructions. Such approaches have the same processing times as span 1 reconstructions, but they permit significant reduction in storage requirements for the fully 3D sinograms. For higher span values, the system has a large condition number and it is therefore difficult to recover accurately the higher frequencies. Modeling the axial compression also achieved a lower coefficient of variation but with an increase of intervoxel correlations. The unmatched projector/backprojector achieved similar contrast values to the matched version at considerably lower reconstruction times, but at the cost of noisier images. For a line source scan, the reconstructions with modeling of the axial compression achieved similar resolution to the span 1 reconstructions. Axial compression applied to PET sinograms was found to have a negligible impact for span values lower than 7. For span values up to 21, the spatial resolution degradation due to the axial compression can be almost completely compensated for by modeling this effect in the system matrix at the expense of considerably larger processing times and higher intervoxel correlations, while retaining the storage benefit of compressed data. For even higher span values, the resolution loss cannot be completely compensated possibly due to an effective null space in the system. The use of an unmatched projector/backprojector proved to be a practical solution to compensate for the spatial resolution degradation at a reasonable computational cost but can lead to noisier images. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Zeh, R; Baumann, U
2015-08-01
Cochlear implants (CI) have proven to be a highly effective treatment for severe hearing loss or deafness. Inpatient rehabilitation therapy is frequently discussed as a means to increase the speech perception abilities achieved by CI. However, thus far there exists no quantitative evaluation of the effect of these therapies. A retrospective analysis of audiometric data obtained from 1355 CI users compared standardized and qualitative speech intelligibility tests conducted at two time points (admission to and discharge from inpatient hearing therapy, duration 3-5 weeks). The test battery comprised examination of vowel/consonant identification, the Freiburg numbers and monosyllabic test (65 and 80 dB sound pressure level, SPL, free-field sound level), the Hochmair-Schulz-Moser (HSM) sentence test in quiet and in noise (65 dB SPL speech level; 15 dB signal-to-noise ratio, SNR), and a speech tracking test with and without lip-reading. An average increase of 20 percentage points was scored at discharge compared to the admission tests. Patients of all ages and duration of deafness demonstrated the same amount of benefit from the rehabilitation treatment. After completion of inpatient rehabilitation treatment, patients with short duration of CI experience (below 4 months) achieved test scores comparable to experienced long-term users. The demonstrated benefit of the treatment was independent of age and duration of deafness or CI experience. The rehabilitative training program significantly improved hearing abilities and speech perception in CI users, thus promoting their professional and social inclusion. The present results support the efficacy of inpatient rehabilitation for CI recipients. Integration of this or similar therapeutic concepts in the German catalog of follow-up treatment measures appears justified.
Vigentini, Ileana; De Lorenzis, Gabriella; Picozzi, Claudia; Imazio, Serena; Merico, Annamaria; Galafassi, Silvia; Piškur, Jure; Foschino, Roberto
2012-06-15
In enology, "Brett" character refers to the wine spoilage caused by the yeast Dekkera/Brettanomyces bruxellensis and its production of volatile phenolic off-flavours. However, the spoilage potential of this yeast is strain-dependent. Therefore, a rapid and reliable recognition at the strain level is a key point to avoid serious economic losses. The present work provides an operative tool to assess the genetic intraspecific variation in this species through the use of introns as molecular targets. Firstly, the available partial D./B. bruxellensis genome sequence was investigated in order to build primers annealing to introns 5' splice site sequence (ISS). This analysis allowed the detection of a non-random vocabulary flanking the site and, exploiting this feature, the creation of specific probes for strain discrimination. Secondly, the separation of the intron splice site PCR fragments was obtained throughout the set up of a capillary electrophoresis protocol, giving a 94% repeatability threshold in our experimental conditions. The comparison of results obtained with ISS-PCR/CE versus the ones performed by mtDNA RFLP revealed that the former protocol is more discriminating and allowed a reliable identification at strain level. Actually sixty D./B. bruxellensis isolates were recognised as unique strains, showing a level of similarity below 79% and confirming the high genetic polymorphism existing within the species. Two main clusters were grouped at similarity levels of about 46% and 47%, respectively, showing a poor correlation with the geographic area of isolation. Moreover, from the evolutionary point of view, the proposed technique could determine the frequency of the genome rearrangements that can occur in D./B. bruxellesis populations. Copyright © 2012 Elsevier B.V. All rights reserved.
Two microstrip arrays for interferometric SAR applications
NASA Technical Reports Server (NTRS)
Huang, J.
1993-01-01
Two types of C-band aircraft interferometric Synthetic Aperture Radar (SAR) are being developed at JPL to measure the ocean wave characteristics. Each type requires two identical antennas with each having a long rectangular aperture to radiate fan-shaped beam(s). One type of these radars requires each of its antennas to radiate a broadside beam that will measure the target's cross-track velocity. The other type, having each of its antennas to radiate two off-broadside pointed beams, will allow the measurement of both the cross-track and the along-track velocities of the target. Because flush mounting of the antenna on the aircraft fuselage is desirable, microstrip patch array is selected for these interferometric SAR antennas. To meet the radar system requirement, each array needs a total of 76 microstrip patches which are arranged in a 38 x 2 rectangular aperture with a physical size of 1.6m x 16.5cm. To minimize the insertion loss and physical real estate of this relatively long array, a combined series/parallel feed technique is used. Techniques to suppress cross-pol radiation and to effectively utilize the RF power are also implemented. Cross-pol level of lower than -30 dB from the co-pol peak and low insertion loss of 0.36 dB have been achieved for both types of arrays. For the type of radar that requires two off-braodside pointed beams, a simple phasing technique is used to achieve this dual-beam capability with adequate antenna gain (20 dBi) and sidelobe level (-14 dB). Both radar arrays have been flight tested on aircraft with excellent antenna performance demonstrated.
Christensen, Jeppe Schultz; Raaschou-Nielsen, Ole; Tjønneland, Anne; Overvad, Kim; Nordsborg, Rikke B; Ketzel, Matthias; Sørensen, Thorkild Ia; Sørensen, Mette
2016-03-01
Traffic noise has been associated with cardiovascular and metabolic disorders. Potential modes of action are through stress and sleep disturbance, which may lead to endocrine dysregulation and overweight. We aimed to investigate the relationship between residential traffic and railway noise and adiposity. In this cross-sectional study of 57,053 middle-aged people, height, weight, waist circumference, and bioelectrical impedance were measured at enrollment (1993-1997). Body mass index (BMI), body fat mass index (BFMI), and lean body mass index (LBMI) were calculated. Residential exposure to road and railway traffic noise exposure was calculated using the Nordic prediction method. Associations between traffic noise and anthropometric measures at enrollment were analyzed using general linear models and logistic regression adjusted for demographic and lifestyle factors. Linear regression models adjusted for age, sex, and socioeconomic factors showed that 5-year mean road traffic noise exposure preceding enrollment was associated with a 0.35-cm wider waist circumference (95% CI: 0.21, 0.50) and a 0.18-point higher BMI (95% CI: 0.12, 0.23) per 10 dB. Small, significant increases were also found for BFMI and LBMI. All associations followed linear exposure-response relationships. Exposure to railway noise was not linearly associated with adiposity measures. However, exposure > 60 dB was associated with a 0.71-cm wider waist circumference (95% CI: 0.23, 1.19) and a 0.19-point higher BMI (95% CI: 0.0072, 0.37) compared with unexposed participants (0-20 dB). The present study finds positive associations between residential exposure to road traffic and railway noise and adiposity.
Dinç, Erdal; Özdemir, Nurten; Üstündağ, Özgür; Tilkan, Müşerref Günseli
2013-01-01
Dissolution testing has a very vital importance for a quality control test and prediction of the in vivo behavior of the oral dosage formulation. This requires the use of a powerful analytical method to get reliable, accurate and precise results for the dissolution experiments. In this context, new signal processing approaches, continuous wavelet transforms (CWTs) were improved for the simultaneous quantitative estimation and dissolution testing of lamivudine (LAM) and zidovudine (ZID) in a tablet dosage form. The CWT approaches are based on the application of the continuous wavelet functions to the absorption spectra-data vectors of LAM and ZID in the wavelet domain. After applying many wavelet functions, the families consisting of Mexican hat wavelet with the scaling factor a=256, Symlets wavelet with the scaling factor a=512 and the order of 5 and Daubechies wavelet at the scale factor a=450 and the order of 10 were found to be suitable for the quantitative determination of the mentioned drugs. These wavelet applications were named as mexh-CWT, sym5-CWT and db10-CWT methods. Calibration graphs for LAM and ZID in the working range of 2.0-50.0 µg/mL and 2.0-60.0 µg/mL were obtained measuring the mexh-CWT, sym5-CWT and db10-CWT amplitudes at the wavelength points corresponding to zero crossing points. The validity and applicability of the improved mexh-CWT, sym5-CWT and db10-CWT approaches was carried out by the analysis of the synthetic mixtures containing the analyzed drugs. Simultaneous determination of LAM and ZID in tablets was accomplished by the proposed CWT methods and their dissolution profiles were graphically explored.
Baudrand, R; Lian, CG; Lian, BQ; Ricchiuti, V; Yao, TM; Li, J; Williams, GH; Adler, GK
2015-01-01
Background/Aim Obesity is associated with changes in adiponectin and pro-inflammatory adipokines. Sodium intake can affect adipokine secretion suggesting a role in cardiovascular dysfunction. We tested if long-term dietary sodium restriction modifies the expression of adiponectin and ameliorates the pro-inflammatory profile of obese, diabetic Methods/Results Db/db mice were randomized to high sodium (HS 1.6% Na+, n=6) or low sodium (LS 0.03% Na+, n=8) diet for 16 weeks and compared with lean, db/+ mice on HS diet (n=8). Insulin levels were 50% lower in the db/db mice on LS diet when compared with HS db/db (p <0.05). LS diet increased cardiac adiponectin mRNA levels in db/db mice by 5-fold when compared with db/db mice on HS diet and by 2-fold when compared with HS lean mice (both p < 0.01). LS diet increased adiponectin in adipose tissue compared with db/db mice on HS diet, achieving levels similar to those of lean mice. MCP-1, IL-6 and TNF-α expression were reduced more than 50% in adipose tissue of db/db mice on LS diet when compared with HS db/db mice (all p < 0.05), to levels observed in the HS lean mice. Further, LS db/db mice had significantly reduced circulating MCP-1 and IL-6 levels when compared with HS db/db mice (both p < 0.01). Conclusion In obese-diabetic mice, long-term LS diet increases adiponectin in heart and adipose tissue and reduces pro-inflammatory factors in adipose tissue and plasma. These additive mechanisms may contribute to the potential cardioprotective benefits of LS diet in obesity-related metabolic disorders. PMID:24418377
Trajectory NG: portable, compressed, general molecular dynamics trajectories.
Spångberg, Daniel; Larsson, Daniel S D; van der Spoel, David
2011-10-01
We present general algorithms for the compression of molecular dynamics trajectories. The standard ways to store MD trajectories as text or as raw binary floating point numbers result in very large files when efficient simulation programs are used on supercomputers. Our algorithms are based on the observation that differences in atomic coordinates/velocities, in either time or space, are generally smaller than the absolute values of the coordinates/velocities. Also, it is often possible to store values at a lower precision. We apply several compression schemes to compress the resulting differences further. The most efficient algorithms developed here use a block sorting algorithm in combination with Huffman coding. Depending on the frequency of storage of frames in the trajectory, either space, time, or combinations of space and time differences are usually the most efficient. We compare the efficiency of our algorithms with each other and with other algorithms present in the literature for various systems: liquid argon, water, a virus capsid solvated in 15 mM aqueous NaCl, and solid magnesium oxide. We perform tests to determine how much precision is necessary to obtain accurate structural and dynamic properties, as well as benchmark a parallelized implementation of the algorithms. We obtain compression ratios (compared to single precision floating point) of 1:3.3-1:35 depending on the frequency of storage of frames and the system studied.
In vivo imaging and vibration measurement of Guinea pig cochlea
NASA Astrophysics Data System (ADS)
Choudhury, Niloy; Chen, Fangyi; Zheng, Jiefu; Nuttall, Alfred L.; Jacques, Steven L.
2008-02-01
An optical coherence tomography (OCT) system was built to acquire in vivo, both images and vibration measurements of the organ of Corti of the guinea pig. The organ of Corti was viewed through a ~500-μm diameter hole in the bony wall of the scala tympani of the first cochlear turn. In imaging mode, the image was acquired as reflectance R(x,z). In vibration mode, the basilar membrane (BM) or reticular lamina (RL) was selected based on the image. Under software control, the system would move the scanning mirrors to bring the sensing volume of the measurement to the desired tissue location. To address the gain stability problem of the homodyne OCT system, arising from the system moving in and out of the quadrature point and also to resolve the 180 degree ambiguity in the phase measurement using an interferometer, a vibration calibration method is developed by adding a vibrating source to the reference arm to monitor the operating point of the interferometric system. Amplitude gain and phase of various cochlear membranes was measured for different sound pressure level (SPL) varying from 65dB SPL to 93 dB SPL.
Two-tone suppression of stimulus frequency otoacoustic emissionsa)
Keefe, Douglas H.; Ellison, John C.; Fitzpatrick, Denis F.; Gorga, Michael P.
2008-01-01
Stimulus frequency otoacoustic emissions (SFOAEs) measured using a suppressor tone in human ears are analogous to two-tone suppression responses measured mechanically and neurally in mammalian cochleae. SFOAE suppression was measured in 24 normal-hearing adults at octave frequencies (fp=0.5–8.0 kHz) over a 40 dB range of probe levels (Lp). Suppressor frequencies (fs) ranged from −2.0 to 0.7 octaves re: fp, and suppressor levels ranged from just detectable suppression to full suppression. The lowest suppression thresholds occurred for “best” fs slightly higher than fp. SFOAE growth of suppression (GOS) had slopes close to one at frequencies much lower than best fs, and shallow slopes near best fs, which indicated compressive growth close to 0.3 dB/dB. Suppression tuning curves constructed from GOS functions were well defined at 1, 2, and 4 kHz, but less so at 0.5 and 8.0 kHz. Tuning was sharper at lower Lp with an equivalent rectangular bandwidth similar to that reported behaviorally for simultaneous masking. The tip-to-tail difference assessed cochlear gain, increasing with decreasing Lp and increasing fp at the lowest Lp from 32 to 45 dB for fp from 1 to 4 kHz. SFOAE suppression provides a noninvasive measure of the saturating nonlinearities associated with cochlear amplification on the basilar membrane. PMID:18345837
Compact rf polarizer and its application to pulse compression systems
Franzi, Matthew; Wang, Juwen; Dolgashev, Valery; ...
2016-06-01
We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE 114 modes. The overcoupled spherical cavity has a Q 0 of 9.4×10 4 and coupling factor (β) ofmore » 7.69 thus providing a loaded quality factor Q L of 1.06×10 4 with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05 dB and reflection back to the input rectangular WR 90 waveguide less than -40 dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.« less
780nm-range VCSEL array for laser printer system and other applications at Ricoh
NASA Astrophysics Data System (ADS)
Jikutani, Naoto; Itoh, Akihiro; Harasaka, Kazuhiro; Sasaki, Toshihide; Sato, Shunichi
2016-03-01
A 780 nm-range 40 channels vertical-cavity surface-emitting laser (VCSEL) array was developed as a writing light source for printers. A 15° off missoriented GaAs substrate, an aluminum-free GaInAsP/GaInP compressively-strained multiple quantum well and an anisotropic-shape transverse-mode filter were employed to control polarization characteristics. The anisotropic-shape transverse-mode filter also suppressed higher transverse-mode and enabled high-power single-mode operation. Thus, orthogonal-polarization suppression-ratio (OPSR) of over 22 dB and side-mode suppression-ratio (SMSR) of 30 dB were obtained at operation power of 3mW at same time for wide oxide-aperture range below 50 μm2. Moreover, a thermal resistance was reduced for 38% by increasing a thickness of high thermal conductivity layer (3λ/4-AlAs layer) near a cavity. By this structure, a peak-power increased to 1.3 times. Moreover, a power-fall caused by self-heating at pulse-rise was decreased to 10% and the one caused by a thermal-crosstalk between channels was decreased to 46%. The VCSEL array was mounted in a ceramic package with a tilted seal glass to prevent optical-crosstalk caused by other channels. Thus, we achieved stable-output and high-quality beam characteristics for long-duration pulse drive.
NASA Astrophysics Data System (ADS)
Babichev, A. V.; Karachinsky, L. Ya.; Novikov, I. I.; Gladyshev, A. G.; Mikhailov, S.; Iakovlev, V.; Sirbu, A.; Stepniak, G.; Chorchos, L.; Turkiewicz, J. P.; Agustin, M.; Ledentsov, N. N.; Voropaev, K. O.; Ionov, A. S.; Egorov, A. Yu.
2017-02-01
We report for the first time on wafer-fused InGaAs-InP/AlGaAs-GaAs 1550 nm vertical-cavity surface-emitting lasers (VCSELs) incorporating a InAlGaAs/InP MQW active region with re-grown tunnel junction sandwiched between top and bottom undoped AlGaAs/GaAs distributed Bragg reflectors (DBRs) all grown by molecular beam epitaxy. InP-based active region includes seven compressively strained quantum wells (2.8 nm) optimized to provide high differential gain. Devices with this active region demonstrate lasing threshold current < 2.5 mA and output optical power > 2 mW in the temperature range of 10-70°C. The wall-plug efficiency (WPE) value-reaches 20 %. Lasing spectra show single mode CW operation with a longitudinal side mode suppression ratio (SMSR) up to 45 dB at > 2 mW output power. Small signal modulation response measurements show a 3-dB modulation bandwidth of 9 GHz at pump current of 10 mA and a D-factor value of 3 GHz/(mA)1/2. Open-eye diagram at 30 Gb/s of standard NRZ is demonstrated. Achieved CW and modulation performance is quite sufficient for fiber to the home (FTTH) applications where very large volumes of low-cost lasers are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verheest, Frank, E-mail: frank.verheest@ugent.be; School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000; Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za
The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic potential. The existence domains for Mach numbers and hot electron densities clearly show that both rarefactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs.more » Increasing the relative cool electron density further yields a switch to compressive double layers, which ends when the model assumptions break down. These qualitative results are but little influenced by variations in compositional parameters. A comparison with a Boltzmann distribution for the hot electrons shows that only the cool electron sonic point limit remains, giving higher maximum Mach numbers but similar densities, and a restricted range in relative hot electron density before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the double layer solutions nor the switch in rarefactive/compressive character or negative/positive polarity.« less
An X-band parabolic antenna based on gradient metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Wang; Yang, Helin, E-mail: emyang@mail.ccnu.edu.cn; Tian, Ying
We present a novel parabolic antenna by employing reflection gradient metasurface which is composed of a series of circle patches on a grounded dielectric substrate. Similar to the traditional parabolic antenna, the proposed antenna take the metasurface as a “parabolic reflector” and a patch antenna was placed at the focal point of the metasurface as a feed source, then the quasi-spherical wave emitted by the source is reflected and transformed to plane wave with high efficiency. Due to the focus effect of reflection, the beam width of the antenna has been decreased from 85.9° to 13° and the gain hasmore » been increased from 6.5 dB to 20.8 dB. Simulation and measurement results of both near and far-field plots demonstrate good focusing properties of the proposed parabolic antenna.« less
Assessment and analysis of noise pollution in Biskra public gardens (Algeria)
NASA Astrophysics Data System (ADS)
Bouzir, Tallal Abdel Karim; Zemmouri, Noureddine; Berkouk, Djihed
2018-05-01
A quantitative evaluation of noise pollution in the public gardens of Biskra, Algeria, was carried out in this research. The equivalent sound level (leq1min) was measured in 27 points distributed over the seven main gardens of the city. The results of the measurements show that the measured level of sound intensity varies from 56.38 dB in the Landon garden to 62.55 dB in the Larbi Ben Mhidi garden. By comparing, the measured values with the noise limit values recommended by the national legislation, the standards of the World Health Organization and the United States Environmental Protection Agency; it is clear that the sound environment in these public gardens do not comply with the recognized standards of acoustic comfort. The gardens' spaces are heavily over-exposed to traffic noise resulting in high levels acoustic pollution.
Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity
NASA Astrophysics Data System (ADS)
Das, S.; Sahoo, T.; Meylan, M. H.
2018-01-01
The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.
Electronic structure in 1T-ZrS2 monolayer by strain
NASA Astrophysics Data System (ADS)
Xin, Qianqian; Zhao, Xu; Ma, Xu; Wu, Ninghua; Liu, Xiaomeng; Wei, Shuyi
2017-09-01
We report electronic structure of 1T-ZrS2 monolayer with biaxial strain from -10% to 15%, basing the first principles calculations. Our calculation results indicate that the band structure of ZrS2 monolayer was changed clearly. The location of conduction band minimum (CBM) and valence band maximum (VBM) changed with the variation of isotropic strain. At compressive strain, the location of CBM and VBM retains at M and Γ point, respectively. The band gap of ZrS2 monolayer decreases from 1.111 eV to 0 eV when compressive strain increases from 0% to -8%, which means that the ZrS2 monolayer turns to metal at -8% compressive strain. Under the tensile strain, the ZrS2 monolayer also retains be an indirect band gap semiconductor. The location of CBM moves from M to Γ point and the location of VBM moves along Γ-A-K-Γ direction. The band gap of ZrS2 monolayer firstly increases and then decreases and the biggest band gap is 1.577 eV at tensile strain 6%. We can see the compression strain is more effective than tensile strain in modulating band gap of 1T-ZrS2 monolayer.
Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.
Das, S; Sahoo, T; Meylan, M H
2018-01-01
The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.
Incorporating AFEWC IMOM as an Instructional Asset for NPS Radar and Electronic Warfare Curricula
1992-09-01
Backlobe EL. dB down - 20 dB Backlobe AZ. dB down = 20 dB Ru - 400 km 215.983 nmi Scope Range = 200 km 107.991 nmi PRF = 375 Hz Pay = 600 W RCS = 10 sq m...10 dB Backlobe EL. dB down = 20 dB Backlobe AZ. dB down = 20 dB Ru = 400 km 215.983 nmi Scope Range = 400 km 215.983 nmi PRF = 375 Hz Pay = 93.75 W
In vivo evidence for unidentified leptin-induced circulating factors that control white fat mass.
Harris, Ruth B S
2015-12-15
Fat transplants increase body fat mass without changing the energy status of an animal and provide a tool for investigating control of total body fat. Early transplant studies found that small pieces of transplanted fat took on the morphology of the transplant recipient. Experiments described here tested whether this response was dependent upon expression of leptin receptors in either transplanted fat or the recipient mouse. Fat from leptin receptor deficient db/db mice or wild-type mice was placed subcutaneously in db/db mice. After 12 wk, cell size distribution in the transplant was the same as in endogenous fat of the recipient. Thus, wild-type fat cells, which express leptin receptors, were enlarged in a hyperleptinemic environment, indicating that leptin does not directly control adipocyte size. By contrast, db/db or wild-type fat transplanted into wild-type mice decreased in size, suggesting that a functional leptin system in the recipient is required for body fat mass to be controlled. In the final experiment, wild-type fat was transplanted into a db/db mouse parabiosed to either another db/db mouse to an ob/ob mouse or in control pairs in which both parabionts were ob/ob mice. Transplants increased in size in db/db-db/db pairs, decreased in db/db-ob/ob pairs and did not change in ob/ob-ob/ob pairs. We propose that leptin from db/db parabionts activated leptin receptors in their ob/ob partners. This, in turn, stimulated release of unidentified circulating factors, which travelled back to the db/db partner and acted on the transplant to reduce fat cell size. Copyright © 2015 the American Physiological Society.
Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y
2018-05-01
A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.
NASA Astrophysics Data System (ADS)
Li, Yan-Ming; Liang, Zhen-Zhen; Song, Chun-Lei
2016-05-01
To compare the effect of 3 kinds of different materials on the hemostasis of puncture site after central venous catheterization. Method: A selection of 120 patients with peripheral central venous catheter chemotherapy in the Affiliated Hospital of our university from January 2014 to April 2015, Randomly divided into 3 groups, using the same specification (3.5cm × 2cm) alginate gelatin sponge and gauze dressing, 3 kinds of material compression puncture point, 3 groups of patients after puncture 24 h within the puncture point of local blood and the catheter after the catheter 72 h within the catheter maintenance costs. Result: (1) The local infiltration of the puncture point in the 24 h tube: The use of alginate dressing and gelatin sponge hemostatic effect is better than that of compression gauze. The difference was statistically significant (P <0.05). Compared with gelatin sponge and alginate dressing hemostatic effect, The difference was not statistically significant. (2) Tube maintenance cost: Puncture point using gelatin sponge, The local maintenance costs of the catheter within 72 h after insertion of the tube are lowest, compared with alginate dressing and gauze was significant (P<0.05). Conclusion: The choice of compression hemostasis material for the puncture site after PICC implantation, using gelatin sponge and gauze dressing is more effective and economic.
Evaluation of suitable porosity for sintered porous {beta}-tricalcium phosphate as a bone substitute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin-Hong; Bae, Ji-Yong; Shim, Jaebum
2012-09-15
Structural and mechanical characterization is performed for sintered porous beta tricalcium phosphate ({beta}-TCP) to determine the appropriate porosity for use as a bone substitute. Four different types of porous {beta}-TCP specimen with different porosities are fabricated through a sintering process. For structural characterization, scanning electron microscopy and a Microfocus X-ray computed tomography system are used to investigate the pore openings on the specimen's surface, pore size, pore distribution, and pore interconnections. Compression tests of the specimens are performed, and mechanical properties such as the elastic modulus and compressive strength are obtained. Also, the geometric shape and volume of the {beta}-TCPmore » around the contact region of two pores, which need to be initially resolved after implantation in order to increase the size of the pore openings, are evaluated through simple calculations. The results show that porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute candidate in terms of sustaining external loads, and inducing and cultivating bone cells. - Highlights: Black-Right-Pointing-Pointer Structural and mechanical characterization was performed for sintered porous {beta}-TCP specimens. Black-Right-Pointing-Pointer For structural characterization, SEM and Microfocus X-ray CT system were used. Black-Right-Pointing-Pointer For mechanical characterization, compression tests were performed. Black-Right-Pointing-Pointer Porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute.« less
The second modern condition? Compressed modernity as internalized reflexive cosmopolitization.
Kyung-Sup, Chang
2010-09-01
Compressed modernity is a civilizational condition in which economic, political, social and/or cultural changes occur in an extremely condensed manner in respect to both time and space, and in which the dynamic coexistence of mutually disparate historical and social elements leads to the construction and reconstruction of a highly complex and fluid social system. During what Beck considers the second modern stage of humanity, every society reflexively internalizes cosmopolitanized risks. Societies (or their civilizational conditions) are thereby being internalized into each other, making compressed modernity a universal feature of contemporary societies. This paper theoretically discusses compressed modernity as nationally ramified from reflexive cosmopolitization, and, then, comparatively illustrates varying instances of compressed modernity in advanced capitalist societies, un(der)developed capitalist societies, and system transition societies. In lieu of a conclusion, I point out the declining status of national societies as the dominant unit of (compressed) modernity and the interactive acceleration of compressed modernity among different levels of human life ranging from individuals to the global community. © London School of Economics and Political Science 2010.
Bit-Grooming: Shave Your Bits with Razor-sharp Precision
NASA Astrophysics Data System (ADS)
Zender, C. S.; Silver, J.
2017-12-01
Lossless compression can reduce climate data storage by 30-40%. Further reduction requires lossy compression that also reduces precision. Fortunately, geoscientific models and measurements generate false precision (scientifically meaningless data bits) that can be eliminated without sacrificing scientifically meaningful data. We introduce Bit Grooming, a lossy compression algorithm that removes the bloat due to false-precision, those bits and bytes beyond the meaningful precision of the data.Bit Grooming is statistically unbiased, applies to all floating point numbers, and is easy to use. Bit-Grooming reduces geoscience data storage requirements by 40-80%. We compared Bit Grooming to competitors Linear Packing, Layer Packing, and GRIB2/JPEG2000. The other compression methods have the edge in terms of compression, but Bit Grooming is the most accurate and certainly the most usable and portable.Bit Grooming provides flexible and well-balanced solutions to the trade-offs among compression, accuracy, and usability required by lossy compression. Geoscientists could reduce their long term storage costs, and show leadership in the elimination of false precision, by adopting Bit Grooming.
1993-06-01
s )) = Op (C(s), db(s))" (26) Equation (27) defines OP. Brt(JxBR’T()-,BR as the complement of Op,. Op,(C(s), db(s)) = 0p,(C(s), db(s))’" (27) The...9.5 tf=13.0 t= 11.0 tf= 12.8 128 words tr-13.5 tf=16.9 t,=14.3 t(=17.3 t,=16.5 tf=22.0 Op,,(C(s), db( s )), Op .<(C(s), db( s )), Op ,(C(s), db( s )), Op >(C...OP.(C(s), db( s )), Op •(C(s), db( s )), Op <(C(s), db( s )), Op >(C(s), db( s )), Op .(C(s), db( s
Measurement of compressed breast thickness by optical stereoscopic photogrammetry.
Tyson, Albert H; Mawdsley, Gordon E; Yaffe, Martin J
2009-02-01
The determination of volumetric breast density (VBD) from mammograms requires accurate knowledge of the thickness of the compressed breast. In attempting to accurately determine VBD from images obtained on conventional mammography systems, the authors found that the thickness reported by a number of mammography systems in the field varied by as much as 15 mm when compressing the same breast or phantom. In order to evaluate the behavior of mammographic compression systems and to be able to predict the thickness at different locations in the breast on patients, they have developed a method for measuring the local thickness of the breast at all points of contact with the compression paddle using optical stereoscopic photogrammetry. On both flat (solid) and compressible phantoms, the measurements were accurate to better than 1 mm with a precision of 0.2 mm. In a pilot study, this method was used to measure thickness on 108 volunteers who were undergoing mammography examination. This measurement tool will allow us to characterize paddle surface deformations, deflections and calibration offsets for mammographic units.
Lagrangian statistics in compressible isotropic homogeneous turbulence
NASA Astrophysics Data System (ADS)
Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi
2011-11-01
In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.
1980-06-01
flightline) and in flight. The acuity with which they can perceive sound is important to the determination and the communi- cation of the patient’s... Preschool child 60dB 69dB School child 77dB 77dB Housewife 64dB 67dB Office Wroker 72dB 70dB Factory Worker 87dB 87dB ii eq( 2 4 ) - average sound level for...work or home environment, Jansen and Klensch have shown that the audiological re- sponses to pleasant music and to unpleasant noise were similar
POLYCOMP: Efficient and configurable compression of astronomical timelines
NASA Astrophysics Data System (ADS)
Tomasi, M.
2016-07-01
This paper describes the implementation of polycomp, a open-sourced, publicly available program for compressing one-dimensional data series in tabular format. The program is particularly suited for compressing smooth, noiseless streams of data like pointing information, as one of the algorithms it implements applies a combination of least squares polynomial fitting and discrete Chebyshev transforms that is able to achieve a compression ratio Cr up to ≈ 40 in the examples discussed in this work. This performance comes at the expense of a loss of information, whose upper bound is configured by the user. I show two areas in which the usage of polycomp is interesting. In the first example, I compress the ephemeris table of an astronomical object (Ganymede), obtaining Cr ≈ 20, with a compression error on the x , y , z coordinates smaller than 1 m. In the second example, I compress the publicly available timelines recorded by the Low Frequency Instrument (LFI), an array of microwave radiometers onboard the ESA Planck spacecraft. The compression reduces the needed storage from ∼ 6.5 TB to ≈ 0.75 TB (Cr ≈ 9), thus making them small enough to be kept in a portable hard drive.
A model for compression-weakening materials and the elastic fields due to contractile cells
NASA Astrophysics Data System (ADS)
Rosakis, Phoebus; Notbohm, Jacob; Ravichandran, Guruswami
2015-12-01
We construct a homogeneous, nonlinear elastic constitutive law that models aspects of the mechanical behavior of inhomogeneous fibrin networks. Fibers in such networks buckle when in compression. We model this as a loss of stiffness in compression in the stress-strain relations of the homogeneous constitutive model. Problems that model a contracting biological cell in a finite matrix are solved. It is found that matrix displacements and stresses induced by cell contraction decay slower (with distance from the cell) in a compression weakening material than linear elasticity would predict. This points toward a mechanism for long-range cell mechanosensing. In contrast, an expanding cell would induce displacements that decay faster than in a linear elastic matrix.
Visually lossless compression of digital hologram sequences
NASA Astrophysics Data System (ADS)
Darakis, Emmanouil; Kowiel, Marcin; Näsänen, Risto; Naughton, Thomas J.
2010-01-01
Digital hologram sequences have great potential for the recording of 3D scenes of moving macroscopic objects as their numerical reconstruction can yield a range of perspective views of the scene. Digital holograms inherently have large information content and lossless coding of holographic data is rather inefficient due to the speckled nature of the interference fringes they contain. Lossy coding of still holograms and hologram sequences has shown promising results. By definition, lossy compression introduces errors in the reconstruction. In all of the previous studies, numerical metrics were used to measure the compression error and through it, the coding quality. Digital hologram reconstructions are highly speckled and the speckle pattern is very sensitive to data changes. Hence, numerical quality metrics can be misleading. For example, for low compression ratios, a numerically significant coding error can have visually negligible effects. Yet, in several cases, it is of high interest to know how much lossy compression can be achieved, while maintaining the reconstruction quality at visually lossless levels. Using an experimental threshold estimation method, the staircase algorithm, we determined the highest compression ratio that was not perceptible to human observers for objects compressed with Dirac and MPEG-4 compression methods. This level of compression can be regarded as the point below which compression is perceptually lossless although physically the compression is lossy. It was found that up to 4 to 7.5 fold compression can be obtained with the above methods without any perceptible change in the appearance of video sequences.
High Performance Power Amplifiers Utilizing Novel Balun Design Techniques
NASA Astrophysics Data System (ADS)
Stameroff, Alexander Nicholas
In this PhD. research, a new power amplifier architecture is introduced. This work develops the push-pull architecture into a multifunctional matching network and combiner to create a high power, high efficiency, linear power amplifier (PA) that operates over a wide bandwidth. The traditional push-pull architecture uses an input balun to split a single ended signal into a differential signal, amplify it, and recombine it. This new technique realizes this architecture as a planar, hybrid, PA in X band. The first contribution of this work is the development of planar Marchand baluns that operate over a wide bandwidth. An analysis technique is developed and broadside coupled, Marchand baluns in an inhomogeneous medium are employed. These baluns operate over a bandwidth from 5 to 26 GHz with amplitude and phase imbalances less than 0.5 dB and 5 °, respectively. The even and odd mode behavior of the Marchand balun is utilized to provide harmonic matching for the PA. The balun inherently presents an open circuit to common mode signals at its center frequency. This is utilized to match the second harmonic to an open circuit condition. A band-stop filter is used as a harmonic trap to match the third harmonic to a short circuit. This achieves inverse class F matching for high efficiency operation. This network simultaneously acts as a combiner and matching network for high power and efficiency. A prototype PA was fabricated to prove this concept and achieves a saturated output power, Psat, greater than 33 dBm and a power added efficiency, PAE, greater than 62% over the bandwidth from 9.7 to 10.3 GHz. This technique was refined to operate over a wide bandwidth. The harmonic trap was removed and the out-of-band behavior of the balun was used to provide the short circuit matching at the third harmonic. A prototype PA was fabricated that achieved a 1 dB compressed power, P1dB, and PAE greater than 40 dBm and 55% respectively over the band from 8 to 12 GHz. Finally, the technique was extended to combine power from four transistors by the development of a 4-to-1 balun. A prototype PA was fabricated to prove this concept and achieves a P1dB and PAE greater than 43 dBm and 55% over the band from 8 to 12 GHz.
Trial of Continuous or Interrupted Chest Compressions during CPR.
Nichol, Graham; Leroux, Brian; Wang, Henry; Callaway, Clifton W; Sopko, George; Weisfeldt, Myron; Stiell, Ian; Morrison, Laurie J; Aufderheide, Tom P; Cheskes, Sheldon; Christenson, Jim; Kudenchuk, Peter; Vaillancourt, Christian; Rea, Thomas D; Idris, Ahamed H; Colella, Riccardo; Isaacs, Marshal; Straight, Ron; Stephens, Shannon; Richardson, Joe; Condle, Joe; Schmicker, Robert H; Egan, Debra; May, Susanne; Ornato, Joseph P
2015-12-03
During cardiopulmonary resuscitation (CPR) in patients with out-of-hospital cardiac arrest, the interruption of manual chest compressions for rescue breathing reduces blood flow and possibly survival. We assessed whether outcomes after continuous compressions with positive-pressure ventilation differed from those after compressions that were interrupted for ventilations at a ratio of 30 compressions to two ventilations. This cluster-randomized trial with crossover included 114 emergency medical service (EMS) agencies. Adults with non-trauma-related cardiac arrest who were treated by EMS providers received continuous chest compressions (intervention group) or interrupted chest compressions (control group). The primary outcome was the rate of survival to hospital discharge. Secondary outcomes included the modified Rankin scale score (on a scale from 0 to 6, with a score of ≤3 indicating favorable neurologic function). CPR process was measured to assess compliance. Of 23,711 patients included in the primary analysis, 12,653 were assigned to the intervention group and 11,058 to the control group. A total of 1129 of 12,613 patients with available data (9.0%) in the intervention group and 1072 of 11,035 with available data (9.7%) in the control group survived until discharge (difference, -0.7 percentage points; 95% confidence interval [CI], -1.5 to 0.1; P=0.07); 7.0% of the patients in the intervention group and 7.7% of those in the control group survived with favorable neurologic function at discharge (difference, -0.6 percentage points; 95% CI, -1.4 to 0.1, P=0.09). Hospital-free survival was significantly shorter in the intervention group than in the control group (mean difference, -0.2 days; 95% CI, -0.3 to -0.1; P=0.004). In patients with out-of-hospital cardiac arrest, continuous chest compressions during CPR performed by EMS providers did not result in significantly higher rates of survival or favorable neurologic function than did interrupted chest compressions. (Funded by the National Heart, Lung, and Blood Institute and others; ROC CCC ClinicalTrials.gov number, NCT01372748.).
Underwater and Dive Station Work-Site Noise Surveys
2008-03-14
A) octave band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet...band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A...noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A) level, and
Establishment of an inflamed animal model of diabetic nephropathy.
Ma, Kun Ling; Zhang, Yang; Liu, Jing; Wu, Yu; Hu, Ze Bo; Ruan, Xiong Zhong; Liu, Bi Cheng
2014-01-01
Inflammatory stress plays a crucial role in the progression of diabetic nephropathy (DN). This study aimed to establish a novel inflamed animal model of DN and to evaluate its significance in DN. Nondiabetic db/m mice and diabetic db/db mice were randomly divided into four groups: db/m, db/m+casein, db/db, and db/db+casein for eight weeks. Casein was subcutaneously injected to induce chronic inflammation. Body weight and albumin to creatinine ratio (ACR) in the urine were measured every week. The plasma levels of serum amyloid protein A (SAA) and tumour necrotic factor-α (TNF-α) were determined with the enzyme-linked immunosorbent assay. The morphological changes to the renal pathology and ultra-microstructures were checked by pathological staining and electron microscopy. Immunofluorescent staining and Western blotting were used to determine the protein expression of podocyte-specific molecules and inflammatory cytokines in kidneys. ACR, plasma levels of SAA and TNF-α, protein expression of inflammatory cytokines, mesangial expansion, collagen accumulation, and foot process effacement in kidneys of casein-injected db/db mice were significantly increased compared with the db/db mice. Casein injection markedly decreased the protein expression of Wilms' tumor-1 and nephrin in kidneys of db/db mice, which are specific podocyte biomarkers, suggesting that chronic inflammation accelerates podocyte injuries in db/db mice. Interestingly, no obvious urinary protein, inflammatory cytokine expression, or histological changes in the kidneys of casein-injected db/m mice were found compared with the db/m mice. An inflamed animal model of DN was successfully established and may provide a useful tool for investigating the pathogenesis of DN under inflammatory stress.
Elevated Steroid Hormone Production in the db/db Mouse Model of Obesity and Type 2 Diabetes.
Hofmann, Anja; Peitzsch, Mirko; Brunssen, Coy; Mittag, Jennifer; Jannasch, Annett; Frenzel, Annika; Brown, Nicholas; Weldon, Steven M; Eisenhofer, Graeme; Bornstein, Stefan R; Morawietz, Henning
2017-01-01
Obesity and type 2 diabetes have become a major public health problem worldwide. Steroid hormone dysfunction appears to be linked to development of obesity and type 2 diabetes and correction of steroid abnormalities may offer new approaches to therapy. We therefore analyzed plasma steroids in 15-16 week old obese and diabetic db/db mice using liquid chromatography-tandem mass spectrometry. Lean db/+ served as controls. Db/db mice developed obesity, hyperglycemia, hyperleptinemia, and hyperlipidemia. Hepatic triglyceride storage was increased and adiponectin and pancreatic insulin were lowered. Aldosterone, corticosterone, 11-deoxycorticosterone, and progesterone were respectively increased by 3.6-, 2.9-, 3.4, and 1.7-fold in db/db mice compared to controls. Ratios of aldosterone-to-progesterone and corticosterone-to-progesterone were respectively 2.0- and 1.5-fold higher in db/db mice. Genes associated with steroidogenesis were quantified in the adrenal glands and gonadal adipose tissues. In adrenals, Cyp11b2 , Cyp11b1 , Cyp21a1 , Hsd3b1 , Cyp11a1 , and StAR were all significantly increased in db/db mice compared with db/+ controls. In adipose tissue, no Cyp11b2 or Cyp11b1 transcripts were detected and no differences in Cyp21a1 , Hsd3b1 , Cyp11a1 , or StAR expression were found between db/+ and db/db mice. In conclusion, the present study showed an elevated steroid hormone production and adrenal steroidogenesis in the db/db model of obesity and type 2 diabetes. © Georg Thieme Verlag KG Stuttgart · New York.
Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression
NASA Astrophysics Data System (ADS)
Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping
2015-10-01
Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.
Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice
Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo
2015-01-01
Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1: AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue. Key points Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. PMID:25728242
Tonotopically Ordered Traveling Waves in the Hearing Organs of Bushcrickets in-vivo
NASA Astrophysics Data System (ADS)
Udayashankar, Arun Palghat; Kössl, Manfred; Nowotny, Manuela
2011-11-01
Experimental investigation of auditory mechanics in the mammalian cochlea has been difficult to address in-vivo due to its secure housing inside the temporal bone. Here we studied the easily accessible hearing organ of bushcrickets, located in their forelegs, known as the crista acustica. A characteristic feature of the organ is that it is lined with an array of auditory receptors in a tonotopic fashion with lower frequencies processed at the proximal part and higher frequencies at the distal part of the foreleg. Each receptor cell is associated with so called cap cells. The cap cells, graded in size, are directly involved in the mechanics of transduction along with the part of the acoustic trachea that supports the cap cells. Functional similarities between the crista acustica and the vertebrate cochlea such as frequency selectivity and distortion product otoacoustic emissions have been well documented. In this study we used laser Doppler vibrometry to study the mechanics of the organ and observed sound induced traveling waves (TW) along it's length. Frequency representation was tonotopic with TW propagating from the high frequency to the low frequency region of the organ similar to the situation in the cochlea. Traveling wave velocity increased monotonically from 4 to 12 m/s for a frequency range of 6 to 60 kHz, reflecting a smaller topographic spread (organ length: 1 mm) compared to the guinea pig cochlea (organ length: 18 mm). The wavelength of the traveling wave decreased monotonically from 0.67 mm to 0.27 mm for the same frequency range. Vibration velocity of the organ reached noise threshold levels (10 μm/s) at 30 dB SPL for a frequency of 21 kHz. A small non-linear compression (73 dB increase in velocity for an 80 dB increase in SPL) was also observed at the 21 kHz. Our results indicate that bushcrickets can be a good model system for exploration of auditory mechanics in-vivo.
All-fiber broadband supercontinuum generation in a single-mode high nonlinear silica fiber
NASA Astrophysics Data System (ADS)
Gao, Weiqing; Liao, Meisong; Yang, Lingzhen; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake
2012-06-01
We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a single-mode high nonlinear silica fiber. The SC is pumped by the 1557 nm sub-picosecond pulse, which is generated by a homemade passively mode-locked fiber laser, amplified by an EDFA and compressed to 600 fs. The high nonlinear fiber used in experiments has the zero-dispersion wavelength of 1584 nm with low dispersion slope. The pump pulse is in the normal dispersion region and the SC generation is initiated by the SPM effect. When the long-wave band of the spectrum is extended to the anomalous dispersion region, the soliton effects and intra-pulse Raman effects extend the spectrum further. Meanwhile, the dispersive waves shorter than 1100 nm begin to emerge because the phase matching condition is satisfied and the intensity increases with increasing the pump intensity. The broad SC spectrum with the spectral range from 840 to 2390 nm is obtained at the pump peak power of 46.71 kW, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave assuming the peak near 1550 nm is filtered. The temporal trace of the SC has the repetition rate of 16.7 MHz, and some satellite pulses are generated during the nonlinear process. The SC source system is constructed by all-fiber components, which can be fusion spliced together directly with low loss less than 0.1 dB and improves the energy transfer efficiency from the pump source to the SC greatly. The maximum SC average power of 332 mW is obtained for the total spectral range, and the slop efficiency to the pump source is about 70.3%, which will be lower when the peaks near 1550 nm are filtered, but is higher than those in PCFs. The spectral density for the 10 dB bandwidth is in the range from -17.3 to -7.3 dBm/nm.
Dynamics of road traffic noise in Bhadrak city, India.
Swain, Bijay Kumar; Panda, Santosh Kumar; Goswami, Shreerup
2012-11-01
Road traffic noise assessed in 13 different squares of major intersection points in Bhadrak city during four different specified times i.e. 7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m. and 7-10 p.m.. Road traffic was found to be the most important source of community noise at the studied sites. The noise levels of all the 13 squares were found to be beyond the permissible limit [70 dB (A)] during day time. Leq (equivalent noise level) values ranged from 93.4 to 100.5; 91.5 to 100.6; 95.1 to 107.3 and 97.3 to 106.3 dB during 7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m. and 7-10 p.m. respectively. LNP values range from 115.7 to 127.7; 114.2 to 129.8; 118.2 to 138.2 and 120.7 to 135 dB, while TNI values range from 134.3 to 154.7; 130.7 to 157.9; 136.7 to 168.2 and 137.2 to 165 dB during 7-10 a.m., 11 a.m.-2 p.m., 3-6 p.m. and 7-10 p.m. respectively. Reprehensibly, even minimum LNP and TNI values are more than 114 and 130 dB respectively. Analysis of variance also computed for investigated squares at the peak hour i.e. 7-10 p.m. to infer the level of significance. The observed value of F (0.47) was less than the tabulated values and was not significant at both 5 and 1% levels of significance. Thus, the noise levels of different squares did not differ significantly at their peak hours. A preliminary public health survey carried out based on questionnaire method amongst 202 local inhabitants reveal the degree of annoyance due to road traffic noise.
SAR correlation technique - An algorithm for processing data with large range walk
NASA Technical Reports Server (NTRS)
Jin, M.; Wu, C.
1983-01-01
This paper presents an algorithm for synthetic aperture radar (SAR) azimuth correlation with extraneously large range migration effect which can not be accommodated by the existing frequency domain interpolation approach used in current SEASAT SAR processing. A mathematical model is first provided for the SAR point-target response in both the space (or time) and the frequency domain. A simple and efficient processing algorithm derived from the hybrid algorithm is then given. This processing algorithm enables azimuth correlation by two steps. The first step is a secondary range compression to handle the dispersion of the spectra of the azimuth response along range. The second step is the well-known frequency domain range migration correction approach for the azimuth compression. This secondary range compression can be processed simultaneously with range pulse compression. Simulation results provided here indicate that this processing algorithm yields a satisfactory compressed impulse response for SAR data with large range migration.
Compression-based integral curve data reuse framework for flow visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Fan; Bi, Chongke; Guo, Hanqi
Currently, by default, integral curves are repeatedly re-computed in different flow visualization applications, such as FTLE field computation, source-destination queries, etc., leading to unnecessary resource cost. We present a compression-based data reuse framework for integral curves, to greatly reduce their retrieval cost, especially in a resource-limited environment. In our design, a hierarchical and hybrid compression scheme is proposed to balance three objectives, including high compression ratio, controllable error, and low decompression cost. Specifically, we use and combine digitized curve sparse representation, floating-point data compression, and octree space partitioning to adaptively achieve the objectives. Results have shown that our data reusemore » framework could acquire tens of times acceleration in the resource-limited environment compared to on-the-fly particle tracing, and keep controllable information loss. Moreover, our method could provide fast integral curve retrieval for more complex data, such as unstructured mesh data.« less
Quantum autoencoders for efficient compression of quantum data
NASA Astrophysics Data System (ADS)
Romero, Jonathan; Olson, Jonathan P.; Aspuru-Guzik, Alan
2017-12-01
Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.
The effects of wavelet compression on Digital Elevation Models (DEMs)
Oimoen, M.J.
2004-01-01
This paper investigates the effects of lossy compression on floating-point digital elevation models using the discrete wavelet transform. The compression of elevation data poses a different set of problems and concerns than does the compression of images. Most notably, the usefulness of DEMs depends largely in the quality of their derivatives, such as slope and aspect. Three areas extracted from the U.S. Geological Survey's National Elevation Dataset were transformed to the wavelet domain using the third order filters of the Daubechies family (DAUB6), and were made sparse by setting 95 percent of the smallest wavelet coefficients to zero. The resulting raster is compressible to a corresponding degree. The effects of the nulled coefficients on the reconstructed DEM are noted as residuals in elevation, derived slope and aspect, and delineation of drainage basins and streamlines. A simple masking technique also is presented, that maintains the integrity and flatness of water bodies in the reconstructed DEM.
Integer cosine transform for image compression
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.; Shahshahani, M.
1991-01-01
This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.
Beam steering performance of compressed Luneburg lens based on transformation optics
NASA Astrophysics Data System (ADS)
Gao, Ju; Wang, Cong; Zhang, Kuang; Hao, Yang; Wu, Qun
2018-06-01
In this paper, two types of compressed Luneburg lenses based on transformation optics are investigated and simulated using two different sources, namely, waveguides and dipoles, which represent plane and spherical wave sources, respectively. We determined that the largest beam steering angle and the related feed point are intrinsic characteristics of a certain type of compressed Luneburg lens, and that the optimized distance between the feed and lens, gain enhancement, and side-lobe suppression are related to the type of source. Based on our results, we anticipate that these lenses will prove useful in various future antenna applications.
Li, Hua; Ji, Hyeon-Seon; Kang, Ji-Hyun; Shin, Dong-Ha; Park, Ho-Yong; Choi, Myung-Sook; Lee, Chul-Ho; Lee, In-Kyung; Yun, Bong-Sik; Jeong, Tae-Sook
2015-08-19
This study investigated the molecular mechanisms underlying the antidiabetic effect of an ethanol extract of soy leaves (ESL) in db/db mice. Control groups (db/+ and db/db) were fed a normal diet (ND), whereas the db/db-ESL group was fed ND with 1% ESL for 8 weeks. Dietary ESL improved glucose tolerance and lowered plasma glucose, glycated hemoglobin, HOMA-IR, and triglyceride levels. The pancreatic insulin content of the db/db-ESL group was significantly greater than that of the db/db group. ESL supplementation altered pancreatic IRS1, IRS2, Pdx1, Ngn3, Pax4, Ins1, Ins2, and FoxO1 expression. Furthermore, ESL suppressed lipid accumulation and increased glucokinase activity in the liver. ESL primarily contained kaempferol glycosides and pheophorbides. Kaempferol, an aglycone of kaempferol glycosides, improved β-cell proliferation through IRS2-related FoxO1 signaling, whereas pheophorbide a, a product of chlorophyll breakdown, improved insulin secretion and β-cell proliferation through IRS1-related signaling with protein kinase A in MIN6 cells. ESL effectively regulates glucose homeostasis by enhancing IRS-mediated β-cell insulin signaling and suppressing SREBP-1-mediated hepatic lipid accumulation in db/db mice.
Fracture in Compression of Brittle Solids
1983-08-01
SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aide It necesaray and id:5ntily by block number) Acoustic Emission High Strength Steel Compression...mechanistic models are related to the phenomenological developments in dilatational plasticity that have been applied widely in concrete technology. The...is reviewed in some detail, both from the point of view of fundamentals as well as technological applications. Experimental verification of models is
Learning random networks for compression of still and moving images
NASA Technical Reports Server (NTRS)
Gelenbe, Erol; Sungur, Mert; Cramer, Christopher
1994-01-01
Image compression for both still and moving images is an extremely important area of investigation, with numerous applications to videoconferencing, interactive education, home entertainment, and potential applications to earth observations, medical imaging, digital libraries, and many other areas. We describe work on a neural network methodology to compress/decompress still and moving images. We use the 'point-process' type neural network model which is closer to biophysical reality than standard models, and yet is mathematically much more tractable. We currently achieve compression ratios of the order of 120:1 for moving grey-level images, based on a combination of motion detection and compression. The observed signal-to-noise ratio varies from values above 25 to more than 35. The method is computationally fast so that compression and decompression can be carried out in real-time. It uses the adaptive capabilities of a set of neural networks so as to select varying compression ratios in real-time as a function of quality achieved. It also uses a motion detector which will avoid retransmitting portions of the image which have varied little from the previous frame. Further improvements can be achieved by using on-line learning during compression, and by appropriate compensation of nonlinearities in the compression/decompression scheme. We expect to go well beyond the 250:1 compression level for color images with good quality levels.
Jin, Shasha; Chang, Cuiqing; Zhang, Lantao; Liu, Yang; Huang, Xianren; Chen, Zhimin
2015-01-01
The aim of this study was to examine the effects of chlorogenic acid (CGA) on glucose and lipid metabolism in late diabetic db/db mice, as well as on adiponectin receptors and their signaling molecules, to provide evidence for CGA in the prevention of type 2 diabetes. We randomly divided 16 female db/db mice into db/db-CGA and db/db-control (CON) groups equally; db/m mice were used as control mice. The mice in both the db/db-CGA and db/m-CGA groups were administered 80 mg/kg/d CGA by lavage for 12 weeks, whereas the mice in both CON groups were given equal volumes of phosphate-buffered saline (PBS) by lavage. At the end of the intervention, we assessed body fat and the parameters of glucose and lipid metabolism in the plasma, liver and skeletal muscle tissues as well as the levels of aldose reductase (AR) and transforming growth factor-β1 (TGF-β1) in the kidneys and measured adiponectin receptors and the protein expression of their signaling molecules in liver and muscle tissues. After 12 weeks of intervention, compared with the db/db-CON group, the percentage of body fat, fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) in the db/db-CGA group were all significantly decreased; TGF-β1 protein expression and AR activity in the kidney were both decreased; and the adiponectin level in visceral adipose was increased. The protein expression of adiponectin receptors (ADPNRs), the phosphorylation of AMP-activated protein kinase (AMPK) in the liver and muscle, and the mRNA and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) in the liver were all significantly greater. CGA could lower the levels of fasting plasma glucose and HbA1c during late diabetes and improve kidney fibrosis to some extent through the modulation of adiponectin receptor signaling pathways in db/db mice. PMID:25849026
High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders
NASA Astrophysics Data System (ADS)
Tantawi, Sami G.; Tamura, Fumihiko
2000-04-01
We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.
NASA Astrophysics Data System (ADS)
Zhang, Jiaying; Gang, Tie; Ye, Chaofeng; Cong, Sen
2018-04-01
Linear-chirp-Golay (LCG)-coded excitation combined with pulse compression is proposed in this paper to improve the time resolution and suppress sidelobe in ultrasonic testing. The LCG-coded excitation is binary complementary pair Golay signal with linear-chirp signal applied on every sub pulse. Compared with conventional excitation which is a common ultrasonic testing method using a brief narrow pulse as exciting signal, the performances of LCG-coded excitation, in terms of time resolution improvement and sidelobe suppression, are studied via numerical and experimental investigations. The numerical simulations are implemented using Matlab K-wave toolbox. It is seen from the simulation results that time resolution of LCG excitation is 35.5% higher and peak sidelobe level (PSL) is 57.6 dB lower than linear-chirp excitation with 2.4 MHz chirp bandwidth and 3 μs time duration. In the B-scan experiment, time resolution of LCG excitation is higher and PSL is lower than conventional brief pulse excitation and chirp excitation. In terms of time resolution, LCG-coded signal has better performance than chirp signal. Moreover, the impact of chirp bandwidth on LCG-coded signal is less than that on chirp signal. In addition, the sidelobe of LCG-coded signal is lower than that of chirp signal with pulse compression.
Incompressible material point method for free surface flow
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhang, Xiong; Sze, Kam Yim; Lian, Yanping; Liu, Yan
2017-02-01
To overcome the shortcomings of the weakly compressible material point method (WCMPM) for modeling the free surface flow problems, an incompressible material point method (iMPM) is proposed based on operator splitting technique which splits the solution of momentum equation into two steps. An intermediate velocity field is first obtained by solving the momentum equations ignoring the pressure gradient term, and then the intermediate velocity field is corrected by the pressure term to obtain a divergence-free velocity field. A level set function which represents the signed distance to free surface is used to track the free surface and apply the pressure boundary conditions. Moreover, an hourglass damping is introduced to suppress the spurious velocity modes which are caused by the discretization of the cell center velocity divergence from the grid vertexes velocities when solving pressure Poisson equations. Numerical examples including dam break, oscillation of a cubic liquid drop and a droplet impact into deep pool show that the proposed incompressible material point method is much more accurate and efficient than the weakly compressible material point method in solving free surface flow problems.
Modeling a distribution of point defects as misfitting inclusions in stressed solids
NASA Astrophysics Data System (ADS)
Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D.
2014-05-01
The chemical equilibrium distribution of point defects modeled as non-overlapping, spherical inclusions with purely positive dilatational eigenstrain in an isotropically elastic solid is derived. The compressive self-stress inside existing inclusions must be excluded from the stress dependence of the equilibrium concentration of the point defects, because it does no work when a new inclusion is introduced. On the other hand, a tensile image stress field must be included to satisfy the boundary conditions in a finite solid. Through the image stress, existing inclusions promote the introduction of additional inclusions. This is contrary to the prevailing approach in the literature in which the equilibrium point defect concentration depends on a homogenized stress field that includes the compressive self-stress. The shear stress field generated by the equilibrium distribution of such inclusions is proved to be proportional to the pre-existing stress field in the solid, provided that the magnitude of the latter is small, so that a solid containing an equilibrium concentration of point defects can be described by a set of effective elastic constants in the small-stress limit.
Milic, Dragan J; Zivic, Sasa S; Bogdanovic, Dragan C; Jovanovic, Milan M; Jankovic, Radmilo J; Milosevic, Zoran D; Stamenkovic, Dragan M; Trenkic, Marija S
2010-03-01
Venous leg ulcers (VLU) have a huge social and economic impact. An estimated 1.5% of European adults will suffer a venous ulcer at some point in their lives. Despite the widespread use of bandaging with high pressure in the treatment of this condition, recurrence rates range between 25% to 70%. Numerous studies have suggested that the compression system should provide sub-bandage pressure values in the range from 35 mm Hg to 45 mm Hg in order to achieve the best possible healing results. An open, randomized, prospective, single-center study was performed in order to determine the healing rates of VLU when treated with different compression systems and different sub-bandage pressure values. One hundred thirty-one patients (72 women, 59 men; mean age, 59-years-old) with VLU (ulcer surface >3 cm(2); duration >3 months) were randomized into three groups: group A - 42 patients who were treated using an open-toed, elastic, class III compression device knitted in tubular form (Tubulcus, Laboratoires Innothera, Arcueil, France); group B - 46 patients treated with the multi-component bandaging system comprised of Tubulcus and one elastic bandage (15 cm wide and 5 cm long with 200% stretch, Niva, Novi Sad, Serbia); and group C - forty-three patients treated with the multi-component bandaging system comprised of Tubulcus and two elastic bandages. Pressure measurements were taken with the Kikuhime device (TT MediTrade, Soro, Denmark) at the B1 measuring point in the supine, sitting, and standing positions under the three different compression systems. The median resting values in the supine and standing positions in examined study groups were as follows: group A - 36.2 mm Hg and 43.9 mm Hg; group B - 53.9 mm Hg and 68.2 mm Hg; group C - 74.0 mm Hg and 87.4 mm Hg. The healing rate during the 26-week treatment period was 25% (13/42) in group A, 67.4% (31/46) in group B, and 74.4% (32/43) in group C. The success of compression treatment in group A was strongly associated with the small ulcer surface (<5 cm(2)) and smaller calf circumference (CC; <38 cm). On the other hand, compliance in group A was good. In groups B and C, compliance was poor in patients with small CC, but the healing rate was high, especially in patients with large ulcers and a large CC (>43 cm). The results obtained in this study indicate that better healing results are achieved with two or multi-component compression systems than with single-component compression systems and that a compression system should be individually determined for each patient according to individual characteristics of the leg and CC. Target sub-bandage pressure value (B1 measuring point in the sitting position) of the compression system needed for the ulcer healing could be determined according to a simple formula, CC + CC/2.
Laser observations of the moon: Normal points for 1973
NASA Technical Reports Server (NTRS)
Mulholland, J. D.; Shelus, P. J.; Silverburg, E. C.
1975-01-01
McDonald Observatory lunar laser ranging observations for 1973 are presented in the form of compressed normal points and amendments for the 1969-1972 data set are given. Observations of the reflector mounted on the Soviet roving vehicle Lunakhod 2 have also been included.
Laser observations of the moon - Normal points for 1973
NASA Technical Reports Server (NTRS)
Mulholland, J. D.; Shelus, P. J.; Silverberg, E. C.
1975-01-01
McDonald Observatory lunar laser-ranging observations for 1973 are presented in the form of compressed normal points, and amendments for the 1969-1972 data set are given. Observations of the reflector mounted on the Soviet roving vehicle Lunakhod 2 have also been included.
Transport properties of liquid metal hydrogen under high pressures
NASA Technical Reports Server (NTRS)
Brown, R. C.; March, N. H.
1972-01-01
A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.
Distinguishing one from many using super-resolution compressive sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, Stephen Michael; Mulcahy-Stanislawczyk, Johnathan; Shields, Eric A.
We present that distinguishing whether a signal corresponds to a single source or a limited number of highly overlapping point spread functions (PSFs) is a ubiquitous problem across all imaging scales, whether detecting receptor-ligand interactions in cells or detecting binary stars. Super-resolution imaging based upon compressed sensing exploits the relative sparseness of the point sources to successfully resolve sources which may be separated by much less than the Rayleigh criterion. However, as a solution to an underdetermined system of linear equations, compressive sensing requires the imposition of constraints which may not always be valid. One typical constraint is that themore » PSF is known. However, the PSF of the actual optical system may reflect aberrations not present in the theoretical ideal optical system. Even when the optics are well characterized, the actual PSF may reflect factors such as non-uniform emission of the point source (e.g. fluorophore dipole emission). As such, the actual PSF may differ from the PSF used as a constraint. Similarly, multiple different regularization constraints have been suggested including the l 1-norm, l 0-norm, and generalized Gaussian Markov random fields (GGMRFs), each of which imposes a different constraint. Other important factors include the signal-to-noise ratio of the point sources and whether the point sources vary in intensity. In this work, we explore how these factors influence super-resolution image recovery robustness, determining the sensitivity and specificity. In conclusion, we determine an approach that is more robust to the types of PSF errors present in actual optical systems.« less
Distinguishing one from many using super-resolution compressive sensing
Anthony, Stephen Michael; Mulcahy-Stanislawczyk, Johnathan; Shields, Eric A.; ...
2018-05-14
We present that distinguishing whether a signal corresponds to a single source or a limited number of highly overlapping point spread functions (PSFs) is a ubiquitous problem across all imaging scales, whether detecting receptor-ligand interactions in cells or detecting binary stars. Super-resolution imaging based upon compressed sensing exploits the relative sparseness of the point sources to successfully resolve sources which may be separated by much less than the Rayleigh criterion. However, as a solution to an underdetermined system of linear equations, compressive sensing requires the imposition of constraints which may not always be valid. One typical constraint is that themore » PSF is known. However, the PSF of the actual optical system may reflect aberrations not present in the theoretical ideal optical system. Even when the optics are well characterized, the actual PSF may reflect factors such as non-uniform emission of the point source (e.g. fluorophore dipole emission). As such, the actual PSF may differ from the PSF used as a constraint. Similarly, multiple different regularization constraints have been suggested including the l 1-norm, l 0-norm, and generalized Gaussian Markov random fields (GGMRFs), each of which imposes a different constraint. Other important factors include the signal-to-noise ratio of the point sources and whether the point sources vary in intensity. In this work, we explore how these factors influence super-resolution image recovery robustness, determining the sensitivity and specificity. In conclusion, we determine an approach that is more robust to the types of PSF errors present in actual optical systems.« less
Isa, Mariyam I; Fenton, Todd W; Deland, Trevor; Haut, Roger C
2018-01-01
Current literature associates bending failure with butterfly fracture, in which fracture initiates transversely at the tensile surface of a bent bone and branches as it propagates toward the impact surface. The orientation of the resulting wedge fragment is often considered diagnostic of impact direction. However, experimental studies indicate bending does not always produce complete butterfly fractures or produces wedge fragments variably in tension or compression, precluding their use in interpreting directionality. This study reports results of experimental 3-point bending tests on thirteen unembalmed human femora. Complete fracture patterns varied following bending failure, but incomplete fractures and fracture surface characteristics were observed in all impacted specimens. A flat, billowy fracture surface was observed in tension, while jagged, angular peaks were observed in compression. Impact direction was accurately reconstructed using incomplete tension wedge butterfly fractures and tension and compression fracture surface criteria in all thirteen specimens. © 2017 American Academy of Forensic Sciences.
Numerical simulation of the compressible Orszag-Tang vortex. II. Supersonic flow. Interim report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picone, J.M.; Dahlburg, R.B.
The numerical investigation of the Orszag-Tang vortex system in compressible magnetofluids will consider initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers M = 1.0 and 1.5 and beta = 10/3 with Lundquist numbers S = 50, 100, or 200. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X-point and produce strong local current sheets which dissipate appreciable magnetic energy. Reconnection at the central X-point, which dominates the incompressible and subsonic systems,more » peaks later and has a smaller impact as M increases from 0.6 to 1.5. Similarly, correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wavenumber spectra of autocorrelations in mass density, velocity, and magnetic field.« less
ERIC Educational Resources Information Center
Solan, Harold A.
1987-01-01
This study involving 38 normally achieving fourth and fifth grade children confirmed previous studies indicating that both spatial-simultaneous (in which perceived stimuli are totally available at one point in time) and verbal-successive (information is presented in serial order) cognitive processing are important in normal learning. (DB)
When a Trial Becomes a Political Circus: Cases that Brought our Court System to the Breaking Point.
ERIC Educational Resources Information Center
White, Charles
1981-01-01
Reviews court litigation during the 19th and 20th centuries in the United States which was blatantly political. Also questions the extent to which political influences in the courtroom pose a threat to the administration of justice. Cases include anarchist trials of the late 1800s, the Debs Case, and the Sacco-Vanzetti Case. (DB)
Petersen, Chrissa; Bharat, Divya; Cutler, Brett Ronald; Gholami, Samira; Denetso, Christopher; Mueller, Jennifer Ellen; Cho, Jae Min; Kim, Ji-Seok; Symons, J David; Anandh Babu, Pon Velayutham
2018-07-15
Cardiovascular disease is 2-4-fold more prevalent in patients with diabetes. Human studies support the cardiovascular benefits of strawberry consumption but the effects of strawberry on diabetic vasculature are unknown. We tested the hypothesis that dietary strawberry supplementation attenuates vascular inflammation and dysfunction in diabetic mice. Seven-week-old diabetic db/db mice that consumed standard diet (db/db) or diet supplemented with 2.35% freeze-dried strawberry (db/db + SB) for ten weeks were compared to non-diabetic control mice (db/+). Indices of vascular inflammation and dysfunction were measured. Endothelial cells (ECs) were isolated from the vasculature to determine the influence of strawberry on them. The effect of metabolites of strawberry on endothelial inflammation was determined by incubating mouse aortic ECs (MAECs) with ±5% serum, obtained from strawberry fed mice (metabolites serum) or standard diet fed mice (control serum) ± 25 mM glucose and 100 μM palmitate. db/db mice exhibited an increased monocyte binding to vessel, elevated blood pressure, and reduced endothelial-dependent vasorelaxation compared with db/+ mice but each defect was attenuated in db/db + SB mice. The elevation of inflammatory molecules, NOX2 and inhibitor-κB kinase observed in ECs from db/db vs. db/+ mice was suppressed in db/db + SB mice. Glucose and palmitate increased endothelial inflammation in MAECs but were normalized by co-incubation with metabolites serum. Dietary supplementation of strawberry attenuates indices of vascular inflammation and dysfunction in diabetic db/db mice. The effect of strawberry on vasculature is endothelial-dependent and possibly mediated through their circulating metabolites. Strawberry might complement conventional therapies to improve vascular complications in diabetics. Copyright © 2017 Elsevier B.V. All rights reserved.
Ostler, Joseph E.; Maurya, Santosh K.; Dials, Justin; Roof, Steve R.; Devor, Steven T.; Ziolo, Mark T.
2014-01-01
Type 2 diabetes mellitus is associated with an accelerated muscle loss during aging, decreased muscle function, and increased disability. To better understand the mechanisms causing this muscle deterioration in type 2 diabetes, we assessed muscle weight, exercise capacity, and biochemistry in db/db and TallyHo mice at prediabetic and overtly diabetic ages. Maximum running speeds and muscle weights were already reduced in prediabetic db/db mice when compared with lean controls and more severely reduced in the overtly diabetic db/db mice. In contrast to db/db mice, TallyHo muscle size dramatically increased and maximum running speed was maintained during the progression from prediabetes to overt diabetes. Analysis of mechanisms that may contribute to decreased muscle weight in db/db mice demonstrated that insulin-dependent phosphorylation of enzymes that promote protein synthesis was severely blunted in db/db muscle. In addition, prediabetic (6-wk-old) and diabetic (12-wk-old) db/db muscle exhibited an increase in a marker of proteasomal protein degradation, the level of polyubiquitinated proteins. Chronic treadmill training of db/db mice improved glucose tolerance and exercise capacity, reduced markers of protein degradation, but only mildly increased muscle weight. The differences in muscle phenotype between these models of type 2 diabetes suggest that insulin resistance and chronic hyperglycemia alone are insufficient to rapidly decrease muscle size and function and that the effects of diabetes on muscle growth and function are animal model-dependent. PMID:24425761
Bruder-Nascimento, Thiago; Callera, Glaucia; Montezano, Augusto Cesar; Antunes, Tayze T.; He, Ying; Cat, Aurelie Nguyen Dinh; Ferreira, Nathanne S.; Barreto, Pedro A.; Olivon, Vânia C.; Tostes, Rita C.; Touyz, Rhian M.
2016-01-01
Potential benefits of statins in the treatment of chronic kidney disease beyond lipid-lowering effects have been described. However, molecular mechanisms involved in renoprotective actions of statins have not been fully elucidated. We questioned whether statins influence development of diabetic nephropathy through reactive oxygen species, RhoA and Akt/GSK3 pathway, known to be important in renal pathology. Diabetic mice (db/db) and their control counterparts (db/+) were treated with atorvastatin (10 mg/Kg/day, p.o., for 2 weeks). Diabetes-associated renal injury was characterized by albuminuria (albumin:creatinine ratio, db/+: 3.2 ± 0.6 vs. db/db: 12.5 ± 3.1*; *P<0.05), increased glomerular/mesangial surface area, and kidney hypertrophy. Renal injury was attenuated in atorvastatin-treated db/db mice. Increased ROS generation in the renal cortex of db/db mice was also inhibited by atorvastatin. ERK1/2 phosphorylation was increased in the renal cortex of db/db mice. Increased renal expression of Nox4 and proliferating cell nuclear antigen, observed in db/db mice, were abrogated by statin treatment. Atorvastatin also upregulated Akt/GSK3β phosphorylation in the renal cortex of db/db mice. Our findings suggest that atorvastatin attenuates diabetes-associated renal injury by reducing ROS generation, RhoA activity and normalizing Akt/GSK3β signaling pathways. The present study provides some new insights into molecular mechanisms whereby statins may protect against renal injury in diabetes. PMID:27649495
Evolution of the Orszag--Tang vortex system in a compressible medium. II. Supersonic flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picone, J.M.; Dahlburg, R.B.
The numerical investigation of Orszag--Tang vortex system in compressible magnetofluids continues, this time using initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers M=1.0 and 1.5 and {beta}=10/3 with Lundquist numbers {ital S}=50, 100, or 200. Depending on the particular set of parameters, the numerical grid contains 256{sup 2} or 512{sup 2} collocation points. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X point and produce strong local current sheets that dissipatemore » appreciable magnetic energy. Reconnection at the central X point, which dominates the incompressible and subsonic systems, peaks later and has a smaller impact as {ital M} increases from 0.6 to 1.5. Reconnection becomes significant only after shocks reach the central region, compressing the weak current sheet there. Similarly, the correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wave-number spectra of autocorrelations in mass density, velocity, and magnetic field. The normalized spectral amplitude of the cross helicity is almost zero over the middle and upper portions of the wave-number domain, unlike the incompressible and subsonic flows. The thermal and magnetic pressures are anticorrelated over a wide wave-number range during the earlier portion of the calculations, consistent with the presence of quasistationary structures bounded by shocks.« less
Wenzler, Tanja; Boykin, David W; Ismail, Mohamed A; Hall, James Edwin; Tidwell, Richard R; Brun, Reto
2009-10-01
African sleeping sickness is a fatal parasitic disease, and all drugs currently in use for treatment have strong liabilities. It is essential to find new, effective, and less toxic drugs, ideally with oral application, to control the disease. In this study, the aromatic diamidine DB75 (furamidine) and two aza analogs, DB820 and DB829 (CPD-0801), as well as their methoxyamidine prodrugs and amidoxime metabolites, were evaluated against African trypanosomes. The active parent diamidines showed similar in vitro profiles against different Trypanosoma brucei strains, melarsoprol- and pentamidine-resistant lines, and a P2 transporter knockout strain (AT1KO), with DB75 as the most trypanocidal molecule. In the T. b. rhodesiense strain STIB900 acute mouse model, the aza analogs DB820 and DB829 demonstrated activities superior to that of DB75. The aza prodrugs DB844 and DB868, as well as two metabolites of DB844, were orally more potent in the T. b. brucei strain GVR35 mouse central nervous system (CNS) model than DB289 (pafuramidine maleate). Unexpectedly, the parent diamidine DB829 showed high activity in the mouse CNS model by the intraperitoneal route. In conclusion, DB868 with oral and DB829 with parenteral application are potential candidates for further development of a second-stage African sleeping sickness drug.
Lam, Tze Yan; Seto, Sai Wang; Lau, Yee Man; Au, Lai Shan; Kwan, Yiu Wa; Ngai, Sai Ming; Tsui, Kwong Wing
2006-09-28
In this study, we compared the endothelium-dependent and -independent relaxation of the isolated thoracic aorta of control (+db/+m) and diabetic (+db/+db) (C57BL/KsJ) mice. The gene expression (mRNA and protein) level of the muscarinic M(3) receptors, endothelial nitric oxide synthase (eNOS) and caveolin-1 of the aorta was also evaluated. Acetylcholine caused a concentration-dependent, N(G)-nitro-L-arginine methyl-ester (20 microM)-sensitive relaxation, with approximately 100% relaxation at 10 microM, in +db/+m mice. In +db/+db mice, the acetylcholine-induced relaxation was significantly smaller (maximum relaxation: approximately 80%). The sodium nitroprusside-mediated relaxation was slightly diminished in +db/+db mice, compared to +db/+m mice. However, there was no significant difference in the isoprenaline- and cromakalim-induced relaxation observed in both species. The mRNA and protein expression levels of caveolin-1 were significantly higher in the aorta of +db/+db mice. In contrast, there was no difference in the mRNA and protein expression levels of eNOS and muscarinic M(3) receptors between these mice. Our results demonstrate that the impairment of the acetylcholine-induced, endothelium-dependent aortic relaxation observed in +db/+db mice was probably associated with an enhanced expression of caveolin-1 mRNA and protein.
Seto, Sai Wang; Lam, Tsz Yan; Or, Penelope Mei Yu; Lee, Wayne Yuk Wai; Au, Alice Lai Shan; Poon, Christina Chui Wa; Li, Rachel Wai Sum; Chan, Shun Wan; Yeung, John Hok Keung; Leung, George Pak Heng; Lee, Simon Ming Yuen; Ngai, Sai Ming; Kwan, Yiu Wa
2010-09-01
Folic acid supplementation provides beneficial effects on endothelial functions in patients with hyperhomocysteinemia. However, its effects on vascular functions under diabetic conditions are largely unknown. Therefore, the effect(s) of folic acid (5.7 and 71 microg/kg/day for 4 weeks) on aortic relaxation was investigated using obese/diabetic (+db/+db) mice and lean littermate (+db/+m) mice. Acetylcholine-induced relaxation in +db/+db mice was less than that observed in +db/+m mice. The reduced relaxation in +db/+db mice was restored by consumption of 71 microg/kg folic acid. Acetylcholine-induced relaxation (with and without folic acid treatment) was sensitive to N(G)-nitro-L-arginine methyl ester, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, geldanamycin and triciribine. In addition, acetylcholine-induced relaxation was attenuated by resistin. The plasma level of resistin in +db/+db mice was sevenfold higher than that measured in +db/+m mice, and the elevated plasma level of resistin in +db/+db mice was reduced by 25% after treatment with 71 microg/kg folic acid. Folic acid slightly increased the ratio of reduced glutathione to oxidized glutathione in +db/+db mice. Moreover, folic acid caused a reduction in PTEN (phosphatase and tensin homolog deleted on chromosome 10) expression, an increase in the phosphorylation of endothelial nitric oxide synthase (eNOS(Ser1177)) and Akt(Ser473), and an enhanced interaction of heat shock protein 90 (HSP90) with eNOS in both strains, with greater magnitude observed in +db/+db mice. In conclusion, folic acid consumption improved blunted acetylcholine-induced relaxation in +db/+db mice. The mechanism may be, at least partly, attributed to enhancement of PI3K/HSP90/eNOS/Akt cascade, reduction in plasma resistin level, down-regulation of PTEN and slight modification of oxidative state. Copyright 2010 Elsevier Inc. All rights reserved.
Thomas, Tony C; K, Aswini Kumar; Mohamed, Shamaz; Krishnan, Vinod; Mathew, Anil; V, Manju
2015-03-01
The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 - carbon fibres, group 3- glass fibres, group 4 - polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged.
An algorithm that improves speech intelligibility in noise for normal-hearing listeners.
Kim, Gibak; Lu, Yang; Hu, Yi; Loizou, Philipos C
2009-09-01
Traditional noise-suppression algorithms have been shown to improve speech quality, but not speech intelligibility. Motivated by prior intelligibility studies of speech synthesized using the ideal binary mask, an algorithm is proposed that decomposes the input signal into time-frequency (T-F) units and makes binary decisions, based on a Bayesian classifier, as to whether each T-F unit is dominated by the target or the masker. Speech corrupted at low signal-to-noise ratio (SNR) levels (-5 and 0 dB) using different types of maskers is synthesized by this algorithm and presented to normal-hearing listeners for identification. Results indicated substantial improvements in intelligibility (over 60% points in -5 dB babble) over that attained by human listeners with unprocessed stimuli. The findings from this study suggest that algorithms that can estimate reliably the SNR in each T-F unit can improve speech intelligibility.
Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid
2016-06-13
Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.
Tsouri, Gill R; Zambito, Stephanie R; Venkataraman, Jayanti
2017-02-01
We consider the on-body, off-body, and body-to-body channels in wireless body area networks utilizing creeping wave antennas. Experimental setups are used to gather measurements in the 2.4 GHz band with body area networks operating in an office environment. Data packets providing received signal strength indicators are used to assess the performance of the creeping wave antenna in reducing interference at a neighboring on-body access point while supporting reliable on-body communications. Results demonstrate that creeping wave antennas provide reliable on-body communications while significantly reducing inter-network interference; the inter-network interference is shown to be 10 dB weaker than the on-body signal. In addition, the inter-network interference when both networks utilize creeping wave antennas is shown to be 3 dB weaker than the interference when monopole antennas are used.
Yong, Zheng; Shopov, Stefan; Mikkelsen, Jared C; Mallard, Robert; Mak, Jason C C; Voinigescu, Sorin P; Poon, Joyce K S
2017-03-20
We present a silicon electro-optic transmitter consisting of a 28nm ultra-thin body and buried oxide fully depleted silicon-on-insulator (UTBB FD-SOI) CMOS driver flip-chip integrated onto a Mach-Zehnder modulator. The Mach-Zehnder silicon optical modulator was optimized to have a 3dB bandwidth of around 25 GHz at -1V bias and a 50 Ω impedance. The UTBB FD-SOI CMOS driver provided a large output voltage swing around 5 Vpp to enable a high dynamic extinction ratio and a low device insertion loss. At 44 Gbps, the transmitter achieved a high extinction ratio of 6.4 dB at the modulator quadrature operation point. This result shows open eye diagrams at the highest bit rates and with the largest extinction ratios for silicon electro-optic transmitter using a CMOS driver.
Adhikari, Srikar; Zeger, Wes; Thom, Christopher; Fields, J Matthew
2015-09-01
Two-point compression ultrasonography focuses on the evaluation of common femoral and popliteal veins for complete compressibility. The presence of isolated thrombi in proximal veins other than the common femoral and popliteal veins should prompt modification of 2-point compression technique. The objective of this study is to determine the prevalence and distribution of deep venous thrombi isolated to lower-extremity veins other than the common femoral and popliteal veins in emergency department (ED) patients with clinically suspected deep venous thrombosis. This was a retrospective study of all adult ED patients who received a lower-extremity venous duplex ultrasonographic examination for evaluation of deep venous thrombosis during a 6-year period. The ultrasonographic protocol included B-mode, color-flow, and spectral Doppler scanning of the common femoral, femoral, deep femoral, popliteal, and calf veins. Deep venous thrombosis was detected in 362 of 2,451 patients (14.7%; 95% confidence interval [CI] 13.3% to 16.1%). Thrombus confined to the common femoral vein alone was found in 5 of 362 cases (1.4%; 95% CI 0.2% to 2.6%). Isolated femoral vein thrombus was identified in 20 of 362 patients (5.5%; 95% CI 3.2% to 7.9%). Isolated deep femoral vein thrombus was found in 3 of 362 cases (0.8%; 95% CI -0.1% to 1.8%). Thrombus in the popliteal vein alone was identified in 53 of 362 cases (14.6%; 95% CI 11% to 18.2%). In our study, 6.3% of ED patients with suspected deep venous thrombosis had isolated thrombi in proximal veins other than common femoral and popliteal veins. Our study results support the addition of femoral and deep femoral vein evaluation to standard compression ultrasonography of the common femoral and popliteal vein, assuming that this does not have a deleterious effect on specificity. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Exercise Training Prevents Coronary Endothelial Dysfunction in Type 2 Diabetic Mice.
Lee, Sewon; Park, Yoonjung; Zhang, Cuihua
2011-10-01
Type 2 diabetes (T2D) is a leading risk factor for cardiovascular diseases including atherosclerosis and coronary heart disease. Exercise training (ET) is thought to have a beneficial effect on these disorders, but the basis for this effect is not fully understood. Because endothelial dysfunction plays a key role in the pathological events leading to cardiovascular complications in T2D, we hypothesized that the effects of ET will be evidenced by improvements in coronary endothelial function. To test this hypothesis, we assessed the effects of ET on vascular function of diabetic (db/db, Lepr(db)) mice by evaluating endothelial function of isolated coronary arterioles of wild-type (WT) and db/db mice with/without ET. Although dilation of vessels to the endothelial-independent vasodilator, sodium nitroprusside was not different between db/db and WT, dilation to the endothelial-dependent agonist, acetylcholine (ACh), was impaired in db/db compared to WT mice. Vasodilation to ACh was restored in db/db with ET and insulin sensitivity was improved in the db/db after ET. Exercise did not change body weight of db/db, but superoxide dismutase (SOD1 and SOD2) and phosphorylated- eNOS protein (Ser1177) expression in heart tissue was up-regulated whereas tumor necrosis factor-alpha (TNF-α) protein level was decreased by ET. Serum level of interleukin-6 (IL-6) was higher in db/db mice but ET decreased IL-6. This suggests that ET may improve endothelial function by increasing nitric oxide bioavailability as well as decreasing chronic inflammation. We suggest this connection may be the basis for the benefit of ET in T2D.
Mozaffari, Mahmood S; Abdelsayed, Rafik; Liu, Jun Yao; Zakhary, Ibrahim; Baban, Babak
2012-02-01
Hallmark features of type 2 diabetes mellitus include glucosuria and polyuria. Further, renal aquaporin 2 is pivotal to regulation of fluid excretion and urine osmolality. Accordingly, we tested the hypothesis that the db/db mouse displays increased glucosuria and fluid excretion but reduced urine osmolality in association with decreased renal aquaporin 2 level. In addition, we examined the effect of chromium picolinate (Cr(pic)3) which is purported to improve glycemic control. The db/db mice excreted more urine in association with marked glucose excretion but lower urine osmolality than db/m control group. Light microscopic examination of renal tissue revealed proliferation of tubular structures in db/db compared to the db/m mice, a feature validated with Ki67 immunostaining. Further, these tubules showed generally similar immunostaining intensity and pattern for aquaporin 2 indicating that proliferated tubules are of distal origin. On the other hand, renal aquaporin 2 protein level was significantly higher in the db/db than db/m group. Treatment of db/db mice with Cr(pic)3 reduced plasma glucose and hemoglobin A1c (~15-17%, p<0.05) and Ki67 positive cells but other parameters were similar to their untreated counterparts. Collectively, these findings suggest that proliferation of renal distal tubules and increased aquaporin 2 level likely represent an adaptive mechanism to regulate fluid excretion to prevent dehydration in the setting of marked glucosuria in the db/db mouse, features not affected by Cr(pic)3 treatment. These observations are of relevance to increasing interest in developing therapeutic agents that facilitate renal glucose elimination. Copyright © 2011 Elsevier Inc. All rights reserved.
Mozaffari, Mahmood S.; Abdelsayed, Rafik; Liu, Jun Yao; Zakhary, Ibrahim; Baban, Babak
2011-01-01
Hallmark features of type 2 diabetes mellitus include glucosuria and polyuria. Further, renal aquaporin 2 is pivotal to regulation of fluid excretion and urine osmolality. Accordingly, we tested the hypothesis that the db/db mouse displays increased glucosuria and fluid excretion but reduced urine osmolality in association with decreased renal aquaporin 2 level. In addition, we examined the effect of chromium picolinate (Cr(pic)3) which is purported to improve glycemic control. The db/db mice excreted more urine in association with marked glucose excretion but lower urine osmolality than db/m control group. Light microscopic examination of renal tissue revealed proliferation of tubular structures in db/db compared to the db/m mice, a feature validated with Ki67 immunostaining. Further, these tubules showed generally similar immunostaining intensity and pattern for aquaporin 2 indicating that proliferated tubules are of distal origin. On the other hand, renal aquaporin 2 protein level was significantly higher in the db/db than db/m group. Treatment of db/db mice with Cr(pic)3 reduced plasma glucose and hemoglobin A1c (~ 15–17%, p<0.05) and Ki67 positive cells but other parameters were similar to their untreated counterparts. Collectively, these findings suggest that proliferation of renal distal tubules and increased aquaporin 2 level likely represent an adaptive mechanism to regulate fluid excretion to prevent dehydration in the setting of marked glucosuria in the db/db mouse, features not affected by Cr(pic)3 treatment. These observations are of relevance to increasing interest in developing therapeutic agents that facilitate renal glucose elimination. PMID:21983138
Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates
NASA Technical Reports Server (NTRS)
Hiel, Clement; Brinson, H. F.
1993-01-01
Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.
Hu, Yi; Loizou, Philipos C
2010-06-01
Attempts to develop noise-suppression algorithms that can significantly improve speech intelligibility in noise by cochlear implant (CI) users have met with limited success. This is partly because algorithms were sought that would work equally well in all listening situations. Accomplishing this has been quite challenging given the variability in the temporal/spectral characteristics of real-world maskers. A different approach is taken in the present study focused on the development of environment-specific noise suppression algorithms. The proposed algorithm selects a subset of the envelope amplitudes for stimulation based on the signal-to-noise ratio (SNR) of each channel. Binary classifiers, trained using data collected from a particular noisy environment, are first used to classify the mixture envelopes of each channel as either target-dominated (SNR>or=0 dB) or masker-dominated (SNR<0 dB). Only target-dominated channels are subsequently selected for stimulation. Results with CI listeners indicated substantial improvements (by nearly 44 percentage points at 5 dB SNR) in intelligibility with the proposed algorithm when tested with sentences embedded in three real-world maskers. The present study demonstrated that the environment-specific approach to noise reduction has the potential to restore speech intelligibility in noise to a level near to that attained in quiet.
Acoustical evaluation of the NASA Lewis 9 by 15 foot low speed wind tunnel
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Woodward, Richard P.
1992-01-01
The test section of the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel was acoustically treated to allow the measurement of acoustic sources located within the tunnel test section under simulated free field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and to withstand tunnel airflow velocities up to 0.2 Mach. Evaluation tests with no tunnel airflow were conducted in the test section to assess the performance of the installed treatment. This performance would not be significantly affected by low speed airflow. Time delay spectrometry tests showed that interference ripples in the incident signal resulting from reflections occurring within the test section average from 1.7 dB to 3.2 dB wide over a 500 to 5150 Hz frequency range. Late reflections, from upstream and downstream of the test section, were found to be insignificant at the microphone measuring points. For acoustic sources with low directivity characteristics, decay with distance measurements in the test section showed that incident free field behavior can be measured on average with an accuracy of +/- 1.5 dB or better at source frequencies from 400 Hz to 10 kHz. The free field variations are typically much smaller with an omnidirectional source.
Loud speech over noise: some spectral attributes, with gender differences.
Ternström, Sten; Bohman, Mikael; Södersten, Maria
2006-03-01
In seeking an acoustic description of overloaded voice, simulated environmental noise was used to elicit loud speech. A total of 23 adults, 12 females and 11 males, read six passages of 90 s duration, over realistic noise presented over loudspeakers. The noise was canceled out, exposing the speech signal to analysis. Spectrum balance (SB) was defined as the level of the 2-6 kHz band relative to the 0.1-1 kHz band. SB averaged across many similar vowel segments became less negative with increasing sound pressure level (SPL), as described in the literature, but only at moderate SPL. At high SPL, SB exhibited a personal "saturation" point, above which the high-band level no longer increased faster than the overall SPL, or even stopped increasing altogether, on average at 90.3 dB (@30 cm) for females and 95.5 dB for males. Saturation occurred 6-8 dB below the personal maximum SPL, regardless of gender. The loudest productions were often characterized by a relative increase in low-frequency energy, apparently in a sharpened first formant. This suggests a change of vocal strategy when the high spectrum can rise no further. The progression of SB with SPL was characteristically different for individual subjects.
NASA Astrophysics Data System (ADS)
Desloge, Joseph G.; Zimmer, Martin J.; Zurek, Patrick M.
2004-05-01
Adaptive multimicrophone systems are currently used for a variety of noise-cancellation applications (such as hearing aids) to preserve signals arriving from a particular (target) direction while canceling other (jammer) signals in the environment. Although the performance of these systems is known to degrade with increasing reverberation, there are few measurements of adaptive performance in everyday reverberant environments. In this study, adaptive performance was compared to that of a simple, nonadaptive cardioid microphone to determine a measure of adaptive benefit. Both systems used recordings (at an Fs of 22
Acoltzin-Vidal, Cuauhtémoc; Rabling-Arellanos, Elizabeth
2018-01-01
Prolongation of the descending branch of the T-wave in the electrocardiogram (ECG) has been identified to be able to determine the risk for sudden death of cardiac origin, but its importance in the general population is not known. To provide a tool for easy acquisition and effective application to identify the risk of sudden death in the general population. We measured the dbT/jT index (descending branch of the T wave/space between the j point and the end of T), and it was found to be completely normal in 400 ECGs, 656 had alterations that don't affect ventricular repolarization, and 82 had branch block. We carried out the Z transformation of the nonparametric distribution curves and calculated the Z ratio to data far from the mean value. The distribution was asymmetric, with no difference in the three groups. The Z transformation showed a mean value of 30 ± 7, which suggests that 95% of the population has a dbT/jT index < 0.45. dbT/jT index results > 0.44 are beyond two standard deviations and are therefore abnormal, which should prompt specialized assessment in order to determine if there is risk for death in the carrier. Copyright: © 2018 SecretarÍa de Salud.
Albumin microvascular leakage in brains with diabetes mellitus.
Fujihara, Ryuji; Chiba, Yoichi; Nakagawa, Toshitaka; Nishi, Nozomu; Murakami, Ryuta; Matsumoto, Koichi; Kawauchi, Machi; Yamamoto, Tetsuji; Ueno, Masaki
2016-09-01
Their aim was to examine whether microvascular leakage of endogenous albumin, a representative marker for blood-brain barrier (BBB) damage, was induced in the periventricular area of diabetic db/db mice because periventricular white matter hyperintensity formation in magnetic resonance images was accelerating in elderly patients with diabetes mellitus. Using light and electron microscopes, and semi-quantitative analysis techniques, immunoreactivity of endogenous albumin, indicating vascular permeability, was examined in the periventricular area and spinal cord of db/db mice and db/+m control mice. Greater immunoreactivity of albumin was observed in the vessel wall of the periventricular area of db/db mice than in controls. Additionally, weak immunoreactivity was observed in the spinal cord of both db/db mice and controls. The number of gold particles, indicating immunoreactivity of albumin, in the perivascular area of db/db mice was significantly higher than that of control mice, but there was no significant difference in the number of particles in the spinal cord between db/db mice and controls. These findings suggest that albumin microvascular leakage, or BBB breakdown, is induced in the periventricular area of diabetic mice. Microsc. Res. Tech. 79:833-837, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Park, Chan Hum; Yokozawa, Takako; Noh, Jeong Sook
2014-08-01
This study was conducted to examine whether oligonol, a low-molecular-weight polyphenol derived from lychee fruit, has an ameliorative effect on diabetes-induced alterations, such as advanced glycation end product (AGE) formation or apoptosis in the kidneys of db/db mice with type 2 diabetes. Oligonol [10 or 20 mg/(kg body weight · d), orally] was administered every day for 8 wk to prediabetic db/db mice, and its effect was compared with vehicle-treated db/db and normal control mice (m/m). The administration of oligonol decreased the elevated renal glucose concentrations and reactive oxygen species in db/db mice (P < 0.05). The increased serum urea nitrogen and creatinine concentrations, which reflect renal dysfunction in db/db mice, were substantially lowered by oligonol. Oligonol reduced renal protein expression of NAD(P)H oxidase subunits (p22 phagocytic oxidase and NAD(P)H oxidase-4), AGEs (except for pentosidine), and c-Jun N-terminal kinase B-targeting proinflammatory tumor necrosis factor-α (P < 0.05). Oligonol improved the expressions of antiapoptotic [B-cell lymphoma protein 2 (Bcl-2) and survivin] and proapoptotic [Bcl-2-associated X protein, cytochrome c, and caspase-3] proteins in the kidneys of db/db mice (P < 0.05). In conclusion, these results provide important evidence that oligonol exhibits a pleiotropic effect on AGE formation and apoptosis-related variables, representing renoprotective effects against the development of diabetic complications in db/db mice with type 2 diabetes. © 2014 American Society for Nutrition.
Chunling, Ji; Hourong, Zhou; Xiulin, Yang; Qian, Zhang; Yuhui, Yuan; Jia, Huang
2015-12-01
To study the protective effect of erythropoietin (EPO) on brain tissue with cardiac arrest-cardiopulmonary resuscitation (CA-CPR) and its mechanism. 120 male Sprague-Dawley (SD) rats were randomly divided into three groups (each n = 40), namely: sham group, routine chest compression group, and conventional chest compression + EPO group (EPO group). The rats in each group were subdivided into CA and 6, 12, 24, 48 hours after restoration of spontaneous circulation (ROSC) five subgroups (each n = 8). The model of CA was reproduced according to the Hendrickx classical asphyxia method followed by routine chest compression, and the rats in sham group only underwent anesthesia, tracheostomy intubation and venous-puncture without asphyxia and CPR. The rats in EPO group were given the routine chest compression + EPO 5 kU/kg (2 mL/kg) after CA. Blood sample was collected at different time points of intervention for the determination the content of serum S100 β protein by enzyme linked immunosorbent assay (ELISA). All the rats were sacrificed at the corresponding time points, and the hippocampus was harvested for the calculation of the number of S100 β protein positive cells, and to examine the pathological changes and their scores at 24 hours after ROSC by light microscopy. With prolongation of ROSC time, the serum levels of S100 β protein (µg/L) in the routine chose compression group and the EPO group were significantly elevated, peaking at 24 hours (compared with CA: 305.7 ± 29.2 vs. 44.4 ± 6.2 in routine chest compression group, and 276.7 ± 28.9 vs. 44.7 ± 5.6 in the EPO group, both P < 0.05), followed by a fall. The levels of S100 β protein at each time point after ROSC in EPO group were significanthy lower than those of the routine chest compression group (83.2 ± 7.5 vs. 114.3 ± 15.3 at 6 hours, 123.9 ± 20.2 vs. 184.9 ± 22.2 at 12 hours, 276.7 ± 28.9 vs. 305.7 ± 29.2 at 24 hours, 256.3 ± 26.6 vs. 283.2 ± 23.6 at 48 hours, all P < 0.05). With the prolongation of ROSC time, the S100 β protein positive cell number in brain (cells/HP) in the routine chest compression group and the EPO group was significantly increased, peaking at 24 hours (compared with CA: 14.3 ± 2.2 vs. 6.7 ± 0.7 in the routine chest compression group, 11.3 ± 1.3 vs. 6.8 ± 0.9 in the EPO group, both P < 0.05), then it began to fall. The S100 β protein positive cell number in brain at each time point after ROSC in the EPO group was significantly lower than that of the routine chest compression group (7.0 ± 0.9 vs. 7.9 ± 1.9 at 6 hours, 8.4 ± 1.1 vs. 10.2 ± 2.2 at 12 hours, 11.3 ± 1.3 vs. 14.3 ± 2.2 at 24 hours, 8.3 ± 0.8 vs. 10.8 ± 2.0 at 48 hours, all P < 0.05). Under the light microscope, a serious brain cortex injury was found after reproduction of the model, and the degree of injury was reduced after EPO intervention. The pathological score at 24 hours after ROSC in EPO group was lower than that of routine chest compression group (3.83 ± 0.73 vs. 4.17 ± 0.75, P < 0.05). The S100 β protein level in serum and brain tissue was increased early in asphyxia CA-CPR rats. EPO intervention can reduce the expression of S100 protein and reduce the degree of brain injury.
Recent advances in lossy compression of scientific floating-point data
NASA Astrophysics Data System (ADS)
Lindstrom, P.
2017-12-01
With a continuing exponential trend in supercomputer performance, ever larger data sets are being generated through numerical simulation. Bandwidth and storage capacity are, however, not keeping pace with this increase in data size, causing significant data movement bottlenecks in simulation codes and substantial monetary costs associated with archiving vast volumes of data. Worse yet, ever smaller fractions of data generated can be stored for further analysis, where scientists frequently rely on decimating or averaging large data sets in time and/or space. One way to mitigate these problems is to employ data compression to reduce data volumes. However, lossless compression of floating-point data can achieve only very modest size reductions on the order of 10-50%. We present ZFP and FPZIP, two state-of-the-art lossy compressors for structured floating-point data that routinely achieve one to two orders of magnitude reduction with little to no impact on the accuracy of visualization and quantitative data analysis. We provide examples of the use of such lossy compressors in climate and seismic modeling applications to effectively accelerate I/O and reduce storage requirements. We further discuss how the design decisions behind these and other compressors impact error distributions and other statistical and differential properties, including derived quantities of interest relevant to each science application.
Zhao, Hong-Bao
2014-01-01
Taking the standard size coal block samples defined by ISRM as research objects, both properties of methane diffusion of coal block under triaxial compressive stress and characteristic influences caused by methane pressure were systematically studied with thermo-fluid-solid coupling with triaxial servocontrolled seepage equipment of methane-containing coal. The result shows the methane diffusion property of coal block under triaxial compressive stress was shown in four-stage as follow, first is sharply reduce stage, second is hyperbolic reduce stage, third is close to a fixed value stage, fourth stage is 0. There is a special point making the reduced rate of characteristic curve of methane diffusion speed become sharply small; the influences of shape of methane diffusion speed characteristic curve caused by methane pressure are not obvious, which only is shown in numerical size of methane diffusion speed. Test time was extended required by appear of the special point makes the reduce rate of methane diffusion speed become sharply small. The fitting four-phase relation of methane diffusion of coal block under triaxial compressive stress was obtained, and the idea is proposed that influences of the fitting four-phase relation caused by methane pressure were only shown in value of fitting parameters. PMID:25531000
Aramburu, José Antonio; García-Fernández, Pablo; García-Lastra, Juan María; Moreno, Miguel
2016-07-18
First-principle calculations together with analysis of the experimental data found for 3d(9) and 3d(7) ions in cubic oxides proved that the center found in irradiated CaO:Ni(2+) corresponds to Ni(+) under a static Jahn-Teller effect displaying a compressed equilibrium geometry. It was also shown that the anomalous positive g∥ shift (g∥ -g0 =0.065) measured at T=20 K obeys the superposition of the |3 z(2) -r(2) ⟩ and |x(2) -y(2) ⟩ states driven by quantum effects associated with the zero-point motion, a mechanism first put forward by O'Brien for static Jahn-Teller systems and later extended by Ham to the dynamic Jahn-Teller case. To our knowledge, this is the first genuine Jahn-Teller system (i.e. in which exact degeneracy exists at the high-symmetry configuration) exhibiting a compressed equilibrium geometry for which large quantum effects allow experimental observation of the effect predicted by O'Brien. Analysis of the calculated energy barriers for different Jahn-Teller systems allowed us to explain the origin of the compressed geometry observed for CaO:Ni(+) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamic Recrystallization Kinetics of 690 Alloy During Hot Compression of Double-Cone Samples
NASA Astrophysics Data System (ADS)
Wang, Jue; Zhai, Shun-Chao
2017-03-01
Hot compression tests of double-cone samples were conducted for 690 alloy to study the kinetic behavior of the complete dynamic recrystallization (DRX) process under low deformation temperatures from 960 to 1080 °C. The microstructure of 82 points in the vertical section of every deformed sample was quantitatively analyzed to determine the DRX fraction. Corresponding strain of these points was calculated by finite element simulations. Kinetic curves of the specimens with different preheating temperatures were then constructed. The features of various boundaries with different misorientation angles were investigated by electron backscatter diffraction technology and transmission electron microscope. The results showed that the strain is continuously and symmetrically distributed along the centerline of the vertical section. Large strain of 1.84 was obtained when the compression amount is 12 mm for double-cone samples. All the fitted kinetic curves display an "S" type, which possess a low growth rate of DRX at the beginning and the end of compression. The critical strain of recrystallization decreases with the increase in preheating temperature, while the completion strain remains around 1.5 for all the samples. The initial and maximum growth rates of DRX fraction have the opposite trend with the change in temperature, which is considered to be attributed to the behaviors of different misorientation boundaries.
NASA Astrophysics Data System (ADS)
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
Østergaard, Mette V; Pinto, Vanda; Stevenson, Kirsty; Worm, Jesper; Fink, Lisbeth N; Coward, Richard J M
2017-02-01
Diabetic nephropathy (DN) is the leading cause of kidney failure in the world. To understand important mechanisms underlying this condition, and to develop new therapies, good animal models are required. In mouse models of type 1 diabetes, the DBA/2J strain has been shown to be more susceptible to develop kidney disease than other common strains. We hypothesized this would also be the case in type 2 diabetes. We studied db/db and wild-type (wt) DBA/2J mice and compared these with the db/db BLKS/J mouse, which is currently the most widely used type 2 DN model. Mice were analyzed from age 6 to 12 wk for systemic insulin resistance, albuminuria, and glomerular histopathological and ultrastructural changes. Body weight and nonfasted blood glucose were increased by 8 wk in both genders, while systemic insulin resistance commenced by 6 wk in female and 8 wk in male db/db DBA/2J mice. The urinary albumin-to-creatinine ratio (ACR) was closely linked to systemic insulin resistance in both sexes and was increased ~50-fold by 12 wk of age in the db/db DBA/2J cohort. Glomerulosclerosis, foot process effacement, and glomerular basement membrane thickening were observed at 12 wk of age in db/db DBA/2J mice. Compared with db/db BLKS/J mice, db/db DBA/2J mice had significantly increased levels of urinary ACR, but similar glomerular histopathological and ultrastructural changes. The db/db DBA/2J mouse is a robust model of early-stage albuminuric DN, and its levels of albuminuria correlate closely with systemic insulin resistance. This mouse model will be helpful in defining early mechanisms of DN and ultimately the development of novel therapies. Copyright © 2017 the American Physiological Society.
Numerical simulation of the compressible Orszag-Tang vortex. Interim report, June 1988-February 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, R.B.; Picone, J.M.
Results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. Initial conditions consist of a nonrandom, periodic field in which the magnetic and velocity fields contain X-points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure-field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average flow Mach number of the flow. In the numerical simulations, this initial Mach number is varied from 0.2 to 0.6. These values correspond to average plasma beta valuesmore » ranging from 30.0 to 3.3, respectively. Compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as mass density and nonsolenoidal flow field. These effects include (1) retardation of growth of correlation between the magnetic field and the velocity field, (2) emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible-flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less
Downregulation in GATA4 and Downstream Structural and Contractile Genes in the db/db Mouse Heart
Broderick, Tom L.; Jankowski, Marek; Wang, Donghao; Danalache, Bogdan A.; Parrott, Cassandra R.; Gutkowska, Jolanta
2012-01-01
Reduced expression of GATA4, a transcriptional factor for structural and cardioprotective genes, has been proposed as a factor contributing to the development of cardiomyopathy. We investigated whether the reduction of cardiac GATA4 expression reported in diabetes alters the expression of downstream genes, namely, atrial natriuretic peptide (ANP), B-type natriuretic, peptide (BNP), and α- and β-myosin heavy chain (MHC). db/db mice, a model of type 2 diabetes, with lean littermates serving as controls, were studied. db/db mice exhibited obesity, hyperglycemia, and reduced protein expression of cardiac GLUT4 and IRAP (insulin-regulated aminopeptidase), the structural protein cosecreted with GLUT4. Hearts from db/db mice had reduced protein expression of GATA4 (~35%) with accompanying reductions in mRNA expression of ANP (~40%), BNP (~85%), and α-MHC mRNA (~50%) whereas expression of β-MHC mRNA was increased by ~60%. Low GATA4 was not explained by an increased ligase or atrogin1 expression. CHIP protein content was modestly downregulated (27%) in db/db mice whereas mRNA and protein expression of the CHIP cochaperone HSP70 was significantly decreased in db/db hearts. Our results indicate that low GATA4 in db/db mouse heart is accompanied by reduced expression of GATA4-regulated cardioprotective and structural genes, which may explain the development of cardiomyopathy in diabetes. PMID:22474596
Improved cerebral energetics and ketone body metabolism in db/db mice
Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D
2016-01-01
It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate for cerebral glucose hypometabolism and unravel the functionality of cerebral mitochondria in type 2 diabetes mellitus. Acutely isolated cerebral cortical and hippocampal slices of db/db mice were incubated in media containing [U-13C]glucose, [1,2-13C]acetate or [U-13C]β-hydroxybutyrate and tissue extracts were analysed by mass spectrometry. Oxygen consumption and ATP synthesis of brain mitochondria of db/db mice were assessed by Seahorse XFe96 and luciferin-luciferase assay, respectively. Glucose hypometabolism was observed for both cerebral cortical and hippocampal slices of db/db mice. Significant increased metabolism of [1,2-13C]acetate and [U-13C]β-hydroxybutyrate was observed for hippocampal slices of db/db mice. Furthermore, brain mitochondria of db/db mice exhibited elevated oxygen consumption and ATP synthesis rate. This study provides evidence of several changes in brain energy metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism. PMID:28058963
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, Scott; Hanson, Reed M; Wagner, Robert M
2012-01-01
This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shownmore » to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.« less
Wavelet-based scalable L-infinity-oriented compression.
Alecu, Alin; Munteanu, Adrian; Cornelis, Jan P H; Schelkens, Peter
2006-09-01
Among the different classes of coding techniques proposed in literature, predictive schemes have proven their outstanding performance in near-lossless compression. However, these schemes are incapable of providing embedded L(infinity)-oriented compression, or, at most, provide a very limited number of potential L(infinity) bit-stream truncation points. We propose a new multidimensional wavelet-based L(infinity)-constrained scalable coding framework that generates a fully embedded L(infinity)-oriented bit stream and that retains the coding performance and all the scalability options of state-of-the-art L2-oriented wavelet codecs. Moreover, our codec instantiation of the proposed framework clearly outperforms JPEG2000 in L(infinity) coding sense.
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Kwok, R.; Curlander, J. C.
1987-01-01
Five coding techniques in the spatial and transform domains have been evaluated for SAR image compression: linear three-point predictor (LTPP), block truncation coding (BTC), microadaptive picture sequencing (MAPS), adaptive discrete cosine transform (ADCT), and adaptive Hadamard transform (AHT). These techniques have been tested with Seasat data. Both LTPP and BTC spatial domain coding techniques provide very good performance at rates of 1-2 bits/pixel. The two transform techniques, ADCT and AHT, demonstrate the capability to compress the SAR imagery to less than 0.5 bits/pixel without visible artifacts. Tradeoffs such as the rate distortion performance, the computational complexity, the algorithm flexibility, and the controllability of compression ratios are also discussed.
Measurement of compressed breast thickness by optical stereoscopic photogrammetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyson, Albert H.; Mawdsley, Gordon E.; Yaffe, Martin J.
2009-02-15
The determination of volumetric breast density (VBD) from mammograms requires accurate knowledge of the thickness of the compressed breast. In attempting to accurately determine VBD from images obtained on conventional mammography systems, the authors found that the thickness reported by a number of mammography systems in the field varied by as much as 15 mm when compressing the same breast or phantom. In order to evaluate the behavior of mammographic compression systems and to be able to predict the thickness at different locations in the breast on patients, they have developed a method for measuring the local thickness of themore » breast at all points of contact with the compression paddle using optical stereoscopic photogrammetry. On both flat (solid) and compressible phantoms, the measurements were accurate to better than 1 mm with a precision of 0.2 mm. In a pilot study, this method was used to measure thickness on 108 volunteers who were undergoing mammography examination. This measurement tool will allow us to characterize paddle surface deformations, deflections and calibration offsets for mammographic units.« less
Kassassir, Hassan; Siewiera, Karolina; Talar, Marcin; Przygodzki, Tomasz; Watala, Cezary
2017-06-01
Recent studies have shown that it may be the concentration of thrombin, which is discriminative in determining of the mechanism of platelet activation via protease activated receptors (PARs). Whether the observed phenomenon of differentiated responses of mouse platelets to various thrombin concentrations in non-diabetic db/+ and diabetic db/db mice depends upon the concerted action of various PARs, remains to be established. We found elevated reactivity of platelets, as well as the enhanced PAR-3 expression in response to both the used concentrations of AYPGKF in db/db mice, as compared to db/+ heterozygotes. At low concentration of thrombin platelets from diabetic mice demonstrated hyperreactivity, reflected by higher expression of PAR-3. For higher thrombin concentration, blood platelets from db/db mice appeared hyporeactive, compared to db/+ animals, while no significant differences in PAR-3 expression were observed between diabetic and non-diabetic mice. The novel and previously unreported finding resulting from our study is that the increased expression of PAR-3 in response to either TRAP for PAR-4 or low thrombin (when PAR-4 is not the efficient thrombin receptor) may be one of the key events contributing to higher reactivity of platelets in db/db mice. Copyright © 2017 Elsevier Inc. All rights reserved.
2D-pattern matching image and video compression: theory, algorithms, and experiments.
Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth
2002-01-01
In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.
Suppression of Even-Order Photodiode Nonlinearities in Multioctave Photonic Links
NASA Astrophysics Data System (ADS)
Hastings, Alexander S.; Urick, Vincent J.; Sunderman, Christopher; Diehl, John F.; McKinney, Jason D.; Tulchinsky, David A.; Devgan, Preetpaul S.; Williams, Keith J.
2008-08-01
A balanced photonic receiver is demonstrated to suppress photodiode-generated even-order nonlinearities in a photonic link. This result is especially important for multioctave analog applications. Experimental results are presented for a high-frequency (2-30 MHz) link exhibiting 33-dB suppression of the second harmonic, resulting in an output intercept point of 99 dBm due to second-order intermodulation distortion at 26-mA average photocurrent.
NASA Technical Reports Server (NTRS)
Marinov, T.
1974-01-01
An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burley, Casey L.; Guo, Yueping
2016-01-01
Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.
Fabrication of arc-induced long-period gratings in different silica fibers
NASA Astrophysics Data System (ADS)
Ranjan, Rajeev; Esposito, Flavio; Campopiano, Stefania; Iadicicco, Agostino
2017-05-01
In this work, we report on recent results about the fabrication of Long Period Gratings (LPGs) in different single mode optical fibers, by means of Electric Arc Discharge (EAD) technique. In particular, the results are related to three optical fibers with different doping elements, i.e.: standard telecommunication Ge-doped SMF28, highly photosensitive B/Gecodoped PS1250/1500, and P-doped P-SM-5 fibers. EAD leads to a point-by-point LPG inscription, due to localized tapering of the transversal size of the core and cladding regions along the fiber, and to changes of the silica refractive index due to the stress relaxation induced by local hot spots. Here, we take into consideration both standard and unconventional silica fibers and the aim of the work is to identify an appropriate "recipe" for each fiber, for manufacturing LPGs with strong and narrow attenuation bands (depth higher than 25 dB) and trivial power losses (<0.5 dB). Indeed, a proper combination of arc power and duration, as well as fiber tension, allows for the appropriate core and cladding modulation and thus for the desired LPGs spectral features. The sensitivity characteristics towards surrounding refractive index (SRI) and temperature changes of these LPGs are also investigated, highlighting the effects of different kind of doping.
Medellin-Kowalewski, Alexandra; Wilkens, Rune; Wilson, Alexandra; Ruan, Ji; Wilson, Stephanie R
2016-01-01
The primary objective of our study was to examine the association between contrast-enhanced ultrasound (CEUS) parameters and established gray-scale ultrasound with color Doppler imaging (CDI) for the determination of disease activity in patients with Crohn disease. Our secondary objective was to develop quantitative time-signal intensity curve thresholds for disease activity. One hundred twenty-seven patients with Crohn disease underwent ultrasound with CDI and CEUS. Reviewers graded wall thickness, inflammatory fat, and mural blood flow as showing remission or inflammation (mild, moderate, or severe). If both gray-scale ultrasound and CDI predicted equal levels of disease activity, the studies were considered concordant. If ultrasound images suggested active disease not supported by CDI findings, the ultrasound results for disease activity were indeterminate. Time-signal intensity curves from CEUS were acquired with calculation of peak enhancement (PE), and AUCs. Interobserver variation and associations between PE and ultrasound parameters were examined. Multiclass ROC analysis was used to develop CEUS thresholds for activity. Ninety-six (76%) studies were concordant, 19 of which showed severe disease, and 31 (24%) studies were indeterminate. Kappa analyses revealed good interobserver agreement on grades for CDI (κ = 0.76) and ultrasound (κ = 0.80) assessments. PE values on CEUS and wall thickness showed good association with the Spearman rank correlation coefficient for the entire population (ρ = 0.62, p < 0.01) and for the concordant group (ρ = 0.70, p < 0.01). Multiclass ROC analyses of the concordant group using wall thickness alone as the reference standard showed cutoff points of 18.2 dB for differentiating mild versus moderate activity (sensitivity, 89.0% and specificity, 87.0%) and 23.0 dB for differentiating moderate versus severe (sensitivity, 90% and specificity, 86.8%). Almost identical cutoff points were observed when using ultrasound global assessment as the reference standard: using 18.2 dB to differentiate mild versus moderate activity yielded sensitivity of 89.2% and specificity of 90.9% and using 22.9 dB to differentiate moderate versus severe activity yielded sensitivity of 89.5% and specificity of 83.1%. Quantitative CEUS parameters integrated into inflammatory assessments with ultrasound reduce indeterminate results and improve disease activity level determinations.
Stapes Displacement and Intracochlear Pressure in Response to Very High Level, Low Frequency Sounds
Greene, Nathaniel T.; Jenkins, Herman A.; Tollin, Daniel J.; Easter, James R.
2018-01-01
The stapes is held in the oval window by the stapedial annular ligament (SAL), which restricts total peak-to-peak displacement of the stapes. Previous studies have suggested that for moderate (< 130 dB SPL) sound levels intracochlear pressure (PIC), measured at the base of the cochlea far from the basilar membrane, increases directly proportionally with stapes displacement (DStap), thus a current model of impulse noise exposure (the Auditory Hazard Assessment Algorithm for Humans, or AHAAH) predicts that peak PIC will vary linearly with DStap up to some saturation point. However, no direct tests of DStap, or of the relationship with PIC during such motion, have been performed during acoustic stimulation of the human ear. In order to examine the relationship between DStap and PIC to very high level sounds, measurements of DStap and PIC were made in cadaveric human temporal bones. Specimens were prepared by mastoidectomy and extended facial recess to expose the ossicular chain. Measurements of PIC were made in scala vestibuli (PSV) and scala tympani (PST), along with the SPL in the external auditory canal (PEAC), concurrently with laser Doppler vibrometry (LDV) measurements of stapes velocity (VStap). Stimuli were moderate (~100 dB SPL) to very high level (up to ~170 dB SPL), low frequency tones (20–2560 Hz). Both DStap and PSV increased proportionally with sound pressure level in the ear canal up to approximately ~150 dB SPL, above which both DStap and PSV showed a distinct deviation from proportionality with PEAC. Both DStap and PSV approached saturation: DStap at a value exceeding 150 μm, which is substantially higher than has been reported for small mammals, while PSV showed substantial frequency dependence in the saturation point. The relationship between PSV and DStap remained constant, and cochlear input impedance did not vary across the levels tested, consistent with prior measurements at lower sound levels. These results suggest that PSV sound pressure holds constant relationship with DStap, described by the cochlear input impedance, at these, but perhaps not higher, stimulation levels. Additionally, these results indicate that the AHAAH model, which was developed using results from small animals, underestimates the sound pressure levels in the cochlea in response to high level sound stimulation, and must be revised. PMID:28189837
Su, Guanyong; Letcher, Robert J; Farmahin, Reza; Crump, Doug
2018-03-01
Tetradecabromo-1,4-diphenoxybenzene (TeDB-DiPhOBz) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) are flame retardant chemicals that can undergo photolytic degradation. The present study compared the time-dependent photolyic degradation of TeDB-DiPhOBz and BDE-209, and dioxin-like product formation as a result of (UV) irradiation (I; irradiation time periods of 0, 1, 4, 15 and 40 days). Photo-degraded product fractions of UV-I-TeDB-DiPhOBz (nominal concentration: 1.9 μM) were administered to chicken embryonic hepatocytes (CEH), and significant induction of CYP1A4/5 mRNA expression was observed for fractions collected at the day 15 and 40 time points (fold change of 7.3/3.6 and 9.1/4.7, respectively). For the UV-I-BDE-209 fractions (nominal concentration: 10 μM), significant CYP1A4/5 up-regulation occurred at all time points, and the fraction collected on day 1 induced the greatest fold change of 510/86, followed by 410/68 (day 4) and 110/26 (day 15), respectively. For the UV-I-BDE-209 fraction collected at day 40, significant CEH cytotoxicity was observed. As a result, CYP1A4/5 expression was determined at a nominal concentration of 1 μM instead of 10 μM and CYP1A4/5 fold changes of 11/8.2 (day 40) were observed. Fractions eliciting the greatest CYP1A4/5 mRNA upregulation were further screened for transcriptomic effects using a PCR array comprising 27 dioxin-responsive genes. A total of 6 and 16 of the 27 target genes were up or down-regulated following UV-I-TeDB-DiPhOBz and UV-I-BDE-209 exposure, respectively. Overall, and regardless of the formation rate, these results raise concerns regarding the potential formation of dioxin-like compounds from flame retardants in products and materials such as plastics, and in natural sunlight irradiation situations in the environment (e.g. in landfill sites or electronic waste facilities). Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Lee, Yun Mi; Jo, Kyuhyung; Kim, Jin Sook
2015-01-01
Aldose reductase (AR) is the first and rate-limiting enzyme of the polyol pathway. AR-dependent synthesis of excess polyols leads to lens opacification in diabetic cataract. The purpose of this study is to investigate the protective effect of Litsea japonica extract (LJE) on diabetes-induced lens opacification and its protective mechanism in db/db mice. Seven-week-old male db/db mice were treated with LJE (100 and 250 mg/kg body weight) once a day orally for 12 weeks. LJE dose dependently inhibited rat lens aldose reductase activity in vitro (IC50 = 13.53 ± 0.74 µg/mL). In db/db mice, lens was slightly opacified, and lens fiber cells were swollen and ruptured. In addition, lenticular sorbitol accumulation was increased in db/db mice. However, the administration of LJE inhibited these lenticular sorbitol accumulation and lens architectural changes in db/db mice. Our results suggest that LJE might be beneficial for the treatment of diabetes-induced lens opacification. The ability of LJE to suppress lenticular sorbitol accumulation may be mediated by the inhibition of AR activity.
Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Lee, Yun Mi; Jo, Kyuhyung; Kim, Jin Sook
2015-01-01
Aldose reductase (AR) is the first and rate-limiting enzyme of the polyol pathway. AR-dependent synthesis of excess polyols leads to lens opacification in diabetic cataract. The purpose of this study is to investigate the protective effect of Litsea japonica extract (LJE) on diabetes-induced lens opacification and its protective mechanism in db/db mice. Seven-week-old male db/db mice were treated with LJE (100 and 250 mg/kg body weight) once a day orally for 12 weeks. LJE dose dependently inhibited rat lens aldose reductase activity in vitro (IC50 = 13.53 ± 0.74 µg/mL). In db/db mice, lens was slightly opacified, and lens fiber cells were swollen and ruptured. In addition, lenticular sorbitol accumulation was increased in db/db mice. However, the administration of LJE inhibited these lenticular sorbitol accumulation and lens architectural changes in db/db mice. Our results suggest that LJE might be beneficial for the treatment of diabetes-induced lens opacification. The ability of LJE to suppress lenticular sorbitol accumulation may be mediated by the inhibition of AR activity. PMID:25802544
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.
2001-12-01
A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.
Dinel, Anne-Laure; André, Caroline; Aubert, Agnès; Ferreira, Guillaume; Layé, Sophie; Castanon, Nathalie
2014-02-01
Although peripheral low-grade inflammation has been associated with a high incidence of mood symptoms in patients with metabolic syndrome (MetS), much less is known about the potential involvement of brain activation of cytokines in that context. Recently we showed in a mouse model of MetS, namely the db/db mice, an enhanced hippocampal inflammation associated with increased anxiety-like behavior (Dinel et al., 2011). However, depressive-like behavior was not affected in db/db mice. Based on the strong association between depressive-like behavior and cytokine-induced brain activation of indoleamine 2,3-dioxygenase (IDO), the enzyme that metabolizes tryptophan along the kynurenine pathway, these results may suggest an impairment of brain IDO activation in db/db mice. To test this hypothesis, we measured the ability of db/db mice and their healthy db/+ littermates to enhance brain IDO activity and depressive-like behavior after a systemic immune challenge with lipopolysaccharide (LPS). Here we show that LPS (5 μg/mouse) significantly increased depressive-like behavior (increased immobility time in a forced-swim test, FST) 24h after treatment in db/+ mice, but not in db/db mice. Interestingly, db/db mice also displayed after LPS treatment blunted increase of brain kynurenine/tryptophan ratio compared to their db/+ counterparts, despite enhanced induction of hippocampal cytokine expression (interleukin-1β, tumor necrosis factor-α). Moreover, this was associated with an impaired effect of LPS on hippocampal expression of the brain-derived neurotrophic factor (BDNF) that contributes to mood regulation, including under inflammatory conditions. Collectively, these data indicate that the rise in brain tryptophan catabolism and depressive-like behavior induced by innate immune system activation is impaired in db/db mice. These findings could have relevance in improving the management and treatment of inflammation-related complications in MetS. Copyright © 2013 Elsevier Ltd. All rights reserved.
Software For Tie-Point Registration Of SAR Data
NASA Technical Reports Server (NTRS)
Rignot, Eric; Dubois, Pascale; Okonek, Sharon; Van Zyl, Jacob; Burnette, Fred; Borgeaud, Maurice
1995-01-01
SAR-REG software package registers synthetic-aperture-radar (SAR) image data to common reference frame based on manual tie-pointing. Image data can be in binary, integer, floating-point, or AIRSAR compressed format. For example, with map of soil characteristics, vegetation map, digital elevation map, or SPOT multispectral image, as long as user can generate binary image to be used by tie-pointing routine and data are available in one of the previously mentioned formats. Written in FORTRAN 77.
Central Field Index Versus Visual Field Index for Central Visual Function in Stable Glaucoma.
Rao, Aparna; Padhy, Debananda; Mudunuri, Harika; Roy, Avik K; Sarangi, Sarada P; Das, Gopinath
2017-01-01
To compare the variability of central field index (CFI) versus visual field index (VFI) in stable glaucoma with central fixation involvement. For this retrospective study, we identified multiple visual fields (VFs) of patients with repeatable central fixation involvement on Humphrey VFs (24-2 and 10-2 program) which were stable (clinically and on VFs) over a very short period of 2 to 3 months. The VFI and CFI were calculated as described in earlier reports. We graded the fields as early [mean deviation (MD)>-6 dB], moderate (-6.1 to -12 dB), and severe glaucoma (<-12 dB) based on MD on 24-2 program. The variability of CFI and VFI between visits and across different severity of glaucoma was compared. Relation of the divergence to field indices and clinical parameters were assessed. The intervisit difference for VFI was greater than CFI ranging from -4% to 9% versus -1% to 8% in early (P=0.9), -13% to 18% versus -6% to 17% (P=0.056) in moderate, and -21% to 19% versus -9% to 9% (P<0.001) in severe glaucoma. The CFI within each group had narrower range than VFI with maximum range in severe glaucoma (33% to 95%). The divergence of CFI from VFI started at MD 24-2 beyond (worse) -10 dB. This difference between CFI and VFI was associated significantly with number of points with P<1% on 24-2 (R=80.3%). CFI is less variable than VFI in stable eyes with fixation involvement especially in severe glaucoma indicating need for incorporating CFI calculation for monitoring advanced disease in eyes with central defects.
Bowd, Christopher; Weinreb, Robert N; Balasubramanian, Madhusudhanan; Lee, Intae; Jang, Giljin; Yousefi, Siamak; Zangwill, Linda M; Medeiros, Felipe A; Girkin, Christopher A; Liebmann, Jeffrey M; Goldbaum, Michael H
2014-01-01
The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes representing statistically independent patterns of defect in the glaucoma clusters. FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal FDT results from the UCSD-based Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES). For all eyes, VIM input was 52 threshold test points from the 24-2 test pattern, plus age. FDT mean deviation was -1.00 dB (S.D. = 2.80 dB) and -5.57 dB (S.D. = 5.09 dB) in FDT-normal eyes and FDT-abnormal eyes, respectively (p<0.001). VIM identified meaningful clusters of FDT data and positioned a set of statistically independent axes through the mean of each cluster. The optimal VIM model separated the FDT fields into 3 clusters. Cluster N contained primarily normal fields (1109/1190, specificity 93.1%) and clusters G1 and G2 combined, contained primarily abnormal fields (651/786, sensitivity 82.8%). For clusters G1 and G2 the optimal number of axes were 2 and 5, respectively. Patterns automatically generated along axes within the glaucoma clusters were similar to those known to be indicative of glaucoma. Fields located farther from the normal mean on each glaucoma axis showed increasing field defect severity. VIM successfully separated FDT fields from healthy and glaucoma eyes without a priori information about class membership, and identified familiar glaucomatous patterns of loss.
NASA Astrophysics Data System (ADS)
Yang, Yong; Chai, Xueguang
2018-05-01
When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* < 0 can be kept for any value of B a when the rate db a /dt is greater than a certain value. There is an extreme value for any curve of maximum stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.
Han, Jing; Sun, Lidan; Huang, Xun; Li, Zheng; Zhang, Chenyu; Qian, Hai; Huang, Wenlong
2014-12-01
The short biological half-life limits the therapeutic use of glucagon-like peptide-1 (GLP-1) and chemical modification to improve the interaction of peptides with serum albumin represents an effective strategy to develop long-acting peptide analogues. Coumarin, a natural product, is known to bind tightly to plasma proteins and possesses many biological activities. Therefore, we designed and synthesized a series of coumarin-modified GLP-1 derivatives, hypothesizing that conjugation with coumarin would retain the therapeutic effects and prolong the biological half-life of the conjugates. Four cysteine-modified GLP-1 analogues (1-4) were prepared using Gly8 -GLP-1(7-36)-NH2 peptide as a starting point. These analogues were conjugated with two coumarin maleimides to yield eight compounds (conjugates 6-13) for testing. Activation of human GLP-1 receptors, stability to enzymic inactivation in plasma and binding to human albumin were assessed in vitro. In vivo, effects on oral glucose tolerance tests (OGTT) in rats and on blood glucose levels in db/db mice were studied. Most conjugates showed well preserved receptor activation efficacy, enhanced albumin-binding properties and improved in vitro plasma stability and conjugate 7 was selected to undergo further assessment. In rats, conjugate 7 had a longer circulating t1/2 than exendin-4 or liraglutide. A prolonged antidiabetic effect of conjugate 7 was observed after OGTT in rats and a prolonged hypoglycaemic effect in db/db mice. Cysteine-specific coumarin conjugation with GLP-1 offers a useful approach to the development of long-acting incretin-based antidiabetic agents. Conjugate 7 is a promising long-lasting GLP-1 derivative deserving further investigation. © 2014 The British Pharmacological Society.
Han, Jing; Sun, Lidan; Huang, Xun; Li, Zheng; Zhang, Chenyu; Qian, Hai; Huang, Wenlong
2014-01-01
Background and Purpose The short biological half-life limits the therapeutic use of glucagon-like peptide-1 (GLP-1) and chemical modification to improve the interaction of peptides with serum albumin represents an effective strategy to develop long-acting peptide analogues. Coumarin, a natural product, is known to bind tightly to plasma proteins and possesses many biological activities. Therefore, we designed and synthesized a series of coumarin-modified GLP-1 derivatives, hypothesizing that conjugation with coumarin would retain the therapeutic effects and prolong the biological half-life of the conjugates. Experimental Approach Four cysteine-modified GLP-1 analogues (1–4) were prepared using Gly8-GLP-1(7–36)-NH2 peptide as a starting point. These analogues were conjugated with two coumarin maleimides to yield eight compounds (conjugates 6–13) for testing. Activation of human GLP-1 receptors, stability to enzymic inactivation in plasma and binding to human albumin were assessed in vitro. In vivo, effects on oral glucose tolerance tests (OGTT) in rats and on blood glucose levels in db/db mice were studied. Key Results Most conjugates showed well preserved receptor activation efficacy, enhanced albumin-binding properties and improved in vitro plasma stability and conjugate 7 was selected to undergo further assessment. In rats, conjugate 7 had a longer circulating t1/2 than exendin-4 or liraglutide. A prolonged antidiabetic effect of conjugate 7 was observed after OGTT in rats and a prolonged hypoglycaemic effect in db/db mice. Conclusions and Implications Cysteine-specific coumarin conjugation with GLP-1 offers a useful approach to the development of long-acting incretin-based antidiabetic agents. Conjugate 7 is a promising long-lasting GLP-1 derivative deserving further investigation. PMID:25039358
Severity of Visual Field Loss and Health Related Quality of Life
McKean-Cowdin, Roberta; Varma, Rohit; Wu, Joanne; Hays, Ron D.; Azen, Stanley P.
2009-01-01
Purpose To examine the association between severity of visual field loss (VFL) and self-reported health-related quality of life (HRQOL) in a population-based sample. Design Population-based cross-sectional study. Methods Participants in the Los Angeles Latino Eye Study underwent a comprehensive ophthalmic examination including visual field testing using the Humphrey Automated Field Analyzer II (SITA Standard 24-2). Mean Deviation (MD) scores were used to determine severity of VFL both as a continuous variable and stratified by severity: no VFL (MD≥ − 2 decibels [dB]), mild VFL (6dB
Robust video transmission with distributed source coded auxiliary channel.
Wang, Jiajun; Majumdar, Abhik; Ramchandran, Kannan
2009-12-01
We propose a novel solution to the problem of robust, low-latency video transmission over lossy channels. Predictive video codecs, such as MPEG and H.26x, are very susceptible to prediction mismatch between encoder and decoder or "drift" when there are packet losses. These mismatches lead to a significant degradation in the decoded quality. To address this problem, we propose an auxiliary codec system that sends additional information alongside an MPEG or H.26x compressed video stream to correct for errors in decoded frames and mitigate drift. The proposed system is based on the principles of distributed source coding and uses the (possibly erroneous) MPEG/H.26x decoder reconstruction as side information at the auxiliary decoder. The distributed source coding framework depends upon knowing the statistical dependency (or correlation) between the source and the side information. We propose a recursive algorithm to analytically track the correlation between the original source frame and the erroneous MPEG/H.26x decoded frame. Finally, we propose a rate-distortion optimization scheme to allocate the rate used by the auxiliary encoder among the encoding blocks within a video frame. We implement the proposed system and present extensive simulation results that demonstrate significant gains in performance both visually and objectively (on the order of 2 dB in PSNR over forward error correction based solutions and 1.5 dB in PSNR over intrarefresh based solutions for typical scenarios) under tight latency constraints.
Atmospheric refraction correction for Ka-band blind pointing on the DSS-13 beam waveguide antenna
NASA Technical Reports Server (NTRS)
Perez-Borroto, I. M.; Alvarez, L. S.
1992-01-01
An analysis of the atmospheric refraction corrections at the DSS-13 34-m diameter beam waveguide (BWG) antenna for the period Jul. - Dec. 1990 is presented. The current Deep Space Network (DSN) atmospheric refraction model and its sensitivity with respect to sensor accuracy are reviewed. Refraction corrections based on actual atmospheric parameters are compared with the DSS-13 station default corrections for the six-month period. Average blind-pointing improvement during the worst month would have amounted to 5 mdeg at 10 deg elevation using actual surface weather values. This would have resulted in an average gain improvement of 1.1 dB.
Ye, Hongying; Zhang, Herbert J; Xu, Aimin; Hoo, Ruby L C
2013-01-01
This study was designed to (1) investigate the expression profiles of resistin in db/db mice and its dynamic association with metabolic parameters; and (2) evaluate the effects of Rosiglitazone on production of resistin. Db/db mice and their lean litter mates were used for this study. Epididymal fat tissue was excised from mice of different age (from 5 to 12 weeks) for ex vivo incubation. Resistin,along with adiponectin,in serum and conditioned culture medium of epididymal fat pads were measured with immunoassays. The gene expression of resistin was determined by real-time PCR. Rosiglitazone or the vehicle (PBS) was administered into db/db mice by daily intra-gastric gavage. Differentiated 3T3-L1 adipocytes were used for in vitro evaluation. The secretion of resistin from the fat pads in db/db mice was significantly lower than that in lean mice (P<0.01). The mRNA expression of the resistin gene in fat tissue of db/db mice at the age of 5 weeks was decreased by 60.5% compared to lean controls (p<0.05). Serum levels of resistin were comparable between the obese and lean groups, perhaps due to the increased total fat mass in db/db mice. Correlation analysis showed that serum resistin levels were positively correlated to resistin secretion from fat pads(r = 0.844,P = 0.000), while negatively associated with the body weight (r = -0.515, P = 0.000) and fasting glucose level (r = -0.357, P = 0.002). Notably, treatment with rosiglitazone increased the serum resistin levels by 66.4%(P<0.05)in db/db mice. In 3T3-L1 adipocytes, Rosiglitazone (10 uM) markedly enhanced the secretion of resistin by 120% (P<0.01) and its gene expression by 78.1% (P<0.05). Both resistin gene expression and its secretion from the epididymal adipose tissue were decreased in db/db obese mice, while the insulin-sensitizing drug rosiglitazone increased resistin production. Our results do not support the role of resistin as an etiological link between obesity and diabetes.
Efficacy of compression of different capacitance beds in the amelioration of orthostatic hypotension
NASA Technical Reports Server (NTRS)
Denq, J. C.; Opfer-Gehrking, T. L.; Giuliani, M.; Felten, J.; Convertino, V. A.; Low, P. A.
1997-01-01
Orthostatic hypotension (OH) is the most disabling and serious manifestation of adrenergic failure, occurring in the autonomic neuropathies, pure autonomic failure (PAF) and multiple system atrophy (MSA). No specific treatment is currently available for most etiologies of OH. A reduction in venous capacity, secondary to some physical counter maneuvers (e.g., squatting or leg crossing), or the use of compressive garments, can ameliorate OH. However, there is little information on the differential efficacy, or the mechanisms of improvement, engendered by compression of specific capacitance beds. We therefore evaluated the efficacy of compression of specific compartments (calves, thighs, low abdomen, calves and thighs, and all compartments combined), using a modified antigravity suit, on the end-points of orthostatic blood pressure, and symptoms of orthostatic intolerance. Fourteen patients (PAF, n = 9; MSA, n = 3; diabetic autonomic neuropathy, n = 2; five males and nine females) with clinical OH were studied. The mean age was 62 years (range 31-78). The mean +/- SEM orthostatic systolic blood pressure when all compartments were compressed was 115.9 +/- 7.4 mmHg, significantly improved (p < 0.001) over the head-up tilt value without compression of 89.6 +/- 7.0 mmHg. The abdomen was the only single compartment whose compression significantly reduced OH (p < 0.005). There was a significant increase of peripheral resistance index (PRI) with compression of abdomen (p < 0.001) or all compartments (p < 0.001); end-diastolic index and cardiac index did not change. We conclude that denervation increases vascular capacity, and that venous compression improves OH by reducing this capacity and increasing PRI. Compression of all compartments is the most efficacious, followed by abdominal compression, whereas leg compression alone was less effective, presumably reflecting the large capacity of the abdomen relative to the legs.
Zhao, Fan; Xue, Wen; Wang, Fujun; Liu, Laijun; Shi, Haoqin; Wang, Lu
2018-08-01
Stents are vital devices to treat vascular stenosis in pediatric patients with congenital heart disease. Bioresorbable stents (BRSs) have been applied to reduce challenging complications caused by permanent metal stents. However, it remains almost a total lack of BRSs with satisfactory compression performance specifically for children with congenital heart disease, leading to importantly suboptimal effects. In this work, composite bioresorbable prototype stents with superior compression resistance were designed by braiding and annealing technology, incorporating poly (p-dioxanone) (PPDO) monofilaments and polycaprolactone (PCL) multifilament. Stent prototype compression properties were investigated. The results revealed that novel composite prototype stents showed superior compression force compared to the control ones, as well as recovery ability. Furthermore, deformation mechanisms were analyzed by computational simulation, which revealed bonded interlacing points among yarns play an important role. This research presents important clinical implications in bioresorbable stent manufacture and provides further study with an innovative stent design. Copyright © 2018 Elsevier Ltd. All rights reserved.
Does team lifting increase the variability in peak lumbar compression in ironworkers?
Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W
2012-01-01
Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.
Practicality of magnetic compression for plasma density control
Gueroult, Renaud; Fisch, Nathaniel J.
2016-03-16
Here, plasma densification through magnetic compression has been suggested for time-resolved control of the wave properties in plasma-based accelerators [P. F. Schmit and N. J. Fisch, Phys. Rev. Lett. 109, 255003 (2012)]. Using particle in cell simulations with real mass ratio, the practicality of large magnetic compression on timescales shorter than the ion gyro-period is investigated. For compression times shorter than the transit time of a compressional Alfven wave across the plasma slab, results show the formation of two counter-propagating shock waves, leading to a highly non-uniform plasma density profile. Furthermore, the plasma slab displays large hydromagnetic like oscillations aftermore » the driving field has reached steady state. Peak compression is obtained when the two shocks collide in the mid-plane. At this instant, very large plasma heating is observed, and the plasmaβ is estimated to be about 1. Although these results point out a densification mechanism quite different and more complex than initially envisioned, these features still might be advantageous in particle accelerators.« less
Stability of Bifurcating Stationary Solutions of the Artificial Compressible System
NASA Astrophysics Data System (ADS)
Teramoto, Yuka
2018-02-01
The artificial compressible system gives a compressible approximation of the incompressible Navier-Stokes system. The latter system is obtained from the former one in the zero limit of the artificial Mach number ɛ which is a singular limit. The sets of stationary solutions of both systems coincide with each other. It is known that if a stationary solution of the incompressible system is asymptotically stable and the velocity field of the stationary solution satisfies an energy-type stability criterion, then it is also stable as a solution of the artificial compressible one for sufficiently small ɛ . In general, the range of ɛ shrinks when the spectrum of the linearized operator for the incompressible system approaches to the imaginary axis. This can happen when a stationary bifurcation occurs. It is proved that when a stationary bifurcation from a simple eigenvalue occurs, the range of ɛ can be taken uniformly near the bifurcation point to conclude the stability of the bifurcating solution as a solution of the artificial compressible system.