Conversion gain and noise of niobium superconducting hot-electron-mixers
NASA Technical Reports Server (NTRS)
Ekstrom, Hans; Karasik, Boris S.; Kollberg, Erik L.; Yngvesson, Sigfrid
1995-01-01
A study has been done of microwave mixing at 20 GHz using the nonlinear (power dependent) resistance of thin niobium strips in the resistive state. Our experiments give evidence that electron-heating is the main cause of the nonlinear phenomenon. Also a detailed phenomenological theory for the determination of conversion properties is presented. This theory is capable of predicting the frequency-conversion loss rather accurately for arbitrary bias by examining the I-V-characteristic. Knowing the electron temperature relaxation time, and using parameters derived from the I-V-characteristic also allows us to predict the -3 dB IF bandwidth. Experimental results are in excellent agreement with the theoretical predictions. The requirements on the mode of operation and on the film parameters for minimizing the conversion loss (and even achieving conversion gain) are discussed in some detail. Our measurements demonstrate an intrinsic conversion loss as low as 1 dB. The maximum IF frequency defined for -3 dB drop in conversion gain, is about 80 MHz. Noise measurements indicate a device output noise temperature of about 50 K and SSB mixer noise temperature below 250 K. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.
NASA Technical Reports Server (NTRS)
Liu, Louis C. T.; Liu, Carol S.; Kessler, Joel R.; Wang, Shing-Kuo; Chang, Ching-Der
1986-01-01
Several monolithic integrated circuits have been developed to make a 30-GHz receiver. The receiver components include a low-noise amplifier (LNA), an IF amplifier, a mixer, and a phase shifter. The LNA has a 7-dB noise figure with over 17 dB of associated gain. The IF amplifier has a 13-dB gain with a 30-dB control range. The mixer has a conversion loss of 10.5 dB. The phase shifter has a 180-deg phase shift control and a minimum insertion loss of 1.6 dB.
Ka-band Ga-As FET noise receiver/device development
NASA Technical Reports Server (NTRS)
Schellenberg, J. M.; Feng, M.; Hackett, L. H.; Watkins, E. T.; Yamasaki, H.
1982-01-01
The development of technology for a 30 GHz low noise receiver utilizing GaAs FET devices exclusively is discussed. This program required single and dual-gate FET devices, low noise FET amplifiers, dual-gate FET mixers, and FET oscillators operating at Ka-band frequencies. A 0.25 micrometer gate FET device, developed with a minimum noise figure of 3.3 dB at 29 GHz and an associated gain of 7.4 dB, was used to fabricate a 3-stage amplifier with a minimum noise figure and associated gain of 4.4 dB and 17 dB, respectively. The 1-dB gain bandwidth of this amplifier extended from below 26.5 GHz to 30.5 GHz. A dual-gate mixer with a 2 dB conversion loss and a minimum noise figure of 10 dB at 29 GHz as well as a dielectric resonator stabilized FET oscillator at 25 GHz for the receiver L0. From these components, a hybrid microwave integrated circuit receiver was constructed which demonstrates a minimum single-side band noise figure of 4.6 dB at 29 GHz with a conversion gain of 17 dB. The output power at the 1-dB gain compression point was -5 dBm.
MO detector (MOD): a dual-function optical modulator-detector for on-chip communication
NASA Astrophysics Data System (ADS)
Sun, Shuai; Zhang, Ruoyu; Peng, Jiaxin; Narayana, Vikram K.; Dalir, Hamed; El-Ghazawi, Tarek; Sorger, Volker J.
2018-04-01
Physical challenges at the device and interconnect level limit both network and computing energy efficiency. While photonics is being considered to address interconnect bottlenecks, optical routing is still limited by electronic circuitry, requiring substantial overhead for optical-electrical-optical conversion. Here we show a novel design of an integrated broadband photonic-plasmonic hybrid device termed MODetector featuring dual light modulation and detection function to act as an optical transceiver in the photonic network-on-chip. With over 10 dB extinction ratio and 0.8 dB insertion loss at the modulation state, this MODetector provides 0.7 W/A responsivity in the detection state with 36 ps response time. This multi-functional device: (i) eliminates OEO conversion, (ii) reduces optical losses from photodetectors when not needed, and (iii) enables cognitive routing strategies for network-on-chips.
Multi/demulti-plexer based on transverse mode conversion in photonic crystal waveguides.
Zhou, Wen; Zhuang, Yuyang; Ji, Ke; Chen, He-ming
2015-09-21
A novel mode multiplexer and demultiplexer (MMUX/DEMMUX) based on 2-D photonic crystal (PC) at 1550 nm is proposed. The PC-based mode MMUX/DEMMUX including mode conversion function with a single-mode and multi-mode waveguides can be realized by quasi phase-matching TE(0) & TE(1) modes of two waveguides. 2DFinite-Difference-Time-Domain and beam propagation methods are used for simulation. The results show that PC-based mode MMUX/DEMMUX has the potential for high-capacity MDM optical communication systems with a low insertion loss (<0.36dB), low mode crosstalk (< -20.9 dB) and wide bandwidth (~100 nm).
High-efficiency W-band hybrid integrated photoreceiver module using UTC-PD and pHEMT amplifier
NASA Astrophysics Data System (ADS)
Umezawa, T.; Katshima, K.; Kanno, A.; Akahane, K.; Matsumoto, A.; Yamamoto, N.; Kawanishi, T.
2016-02-01
A 100-GHz narrowband photoreceiver module integrated with a zero-bias operational uni-traveling-carrier photodiode (UTC-PD) and a GaAs-based pseudomorphic high-electron-mobility transistor (pHEMT) amplifier was fabricated and characterized. Both devices exhibited flat frequency response and outstanding overall performance. The UTC-PD showed a 3-dB bandwidth beyond 110 GHz while the pHEMT amplifier featured low power consumption and a gain of 24 dB over the 85-100 GHz range. A butterfly metal package equipped with a 1.0 mm (W) coaxial connector and a microstrip-coplanar waveguide conversion substrate was designed for low insertion loss and low return loss. The fabricated photoreceiver module demonstrated high conversion gain, a maximum output power of +9.5 dBm at 96 GHz, and DC-power consumption of 0.21 W.
NASA Technical Reports Server (NTRS)
Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.
2011-01-01
We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW
NASA Technical Reports Server (NTRS)
Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.
2010-01-01
We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW.
Symbol signal-to-noise ratio loss in square-wave subcarrier downconversion
NASA Technical Reports Server (NTRS)
Feria, Y.; Statman, J.
1993-01-01
This article presents the simulated results of the signal-to-noise ratio (SNR) loss in the process of a square-wave subcarrier down conversion. In a previous article, the SNR degradation was evaluated at the output of the down converter based on the signal and noise power change. Unlike in the previous article, the SNR loss is defined here as the difference between the actual and theoretical symbol SNR's for the same symbol-error rate at the output of the symbol matched filter. The results show that an average SNR loss of 0.3 dB can be achieved with tenth-order infinite impulse response (IIR) filters. This loss is a 0.2-dB increase over the SNR degradation in the previous analysis where neither the signal distortion nor the symbol detector was considered.
Surface acoustic wave unidirectional transducers for quantum applications
NASA Astrophysics Data System (ADS)
Ekström, Maria K.; Aref, Thomas; Runeson, Johan; Björck, Johan; Boström, Isac; Delsing, Per
2017-02-01
The conversion efficiency of electric microwave signals into surface acoustic waves in different types of superconducting transducers is studied with the aim of quantum applications. We compare delay lines containing either conventional symmetric transducers (IDTs) or unidirectional transducers (UDTs) at 2.3 GHz and 10 mK. The UDT delay lines improve the insertion loss with 4.7 dB and a directivity of 22 dB is found for each UDT, indicating that 99.4% of the acoustic power goes in the desired direction. The power lost in the undesired direction accounts for more than 90% of the total loss in IDT delay lines, but only ˜3% of the total loss in the floating electrode unidirectional transducer delay lines.
Proposal of optical mode switch
NASA Astrophysics Data System (ADS)
Takakura, Ryuta; Jizodo, Makoto; Fujino, Asuka; Tanaka, Tatsushi; Hamamoto, Kiichi
2014-08-01
Here, we propose a novel optical mode switch, which is a new concept of the optical switch. It can overcome the matrix size limitation issue, which has been a general issue for the waveguide optical space switch, because of its simple fiber coupling configuration. In addition, it contributes to the lossless mux/demux function such as wavelength multiplexing with powerless mode conversion unlike wavelength conversion. In this paper, we propose the principle of the optical mode switch. The simulation results showed less than -30 dB mode crosstalk, with less than only 0.1 dB excess loss for a two-mode optical switch. Moreover, the scalable configuration up to four modes is also proposed in this paper.
NASA Astrophysics Data System (ADS)
Wang, Cheng; He, Yue; Lu, Bin; Jiang, Jun; Miao, Li; Deng, Xian-Jin; Xiong, Yong-zhong; Zhang, Jian
2017-11-01
This paper presents a sub-harmonic mixer at 340 GHz based on anti-parallel Schottky diodes (SBDs). Intrinsic resonances in low-pass hammer-head filter have been adopted to enhance the isolation for different harmonic components, while greatly minimizing the transmission loss. The application of new DC grounding structure, impedance matching structure, and suspended micro-strip mitigates the negative influences of fabrication errors from metal cavity, quartz substrate, and micro-assembly. An improved lumped element equivalent circuit model of SBDs guarantees the accuracy of simulation, which takes current-voltage (I/V) behavior, capacitance-voltage (C/V) behavior, carrier velocity saturation, DC series resistor, plasma resonance, skin effect, and four kinds of noise generation mechanisms into consideration thoroughly. The measurement indicates that with local oscillating signal of 2 mW, the lowest double sideband conversion loss is 5.5 dB at 339 GHz; the corresponding DSB noise temperature is 757 K. The 3 dB bandwidth of conversion loss is 50 GHz from 317 to 367 GHz.
10 GHz Standing-Wave Coplanar Stripline on LiNbO3 Crystal for Radio to Optical-Wave Conversion
NASA Astrophysics Data System (ADS)
Darwis, F.; Wijayanto, Y. N.; Setiawan, A.; Mahmudin, D.; Rahman, A. N.; Daud, P.
2018-04-01
Recently, X-band radar systems are used widely for surveillance and navigation applications. Especially in archipelago or maritime country, the surveillance/navigation radar systems are required to monitoring critical areas and managing marine traffic. Accurate detection and fast analysis should be improved furthermore to provide security and safety condition. Therefore, several radar systems should be installed in many places to coverage the critical areas within radar networks. The radar network can be connected using optical fibers since it has extremely low propagation loss with optical-wave to carry-out the radar-wave. One important component in the scenario is a radio to optical-wave conversion component. In this paper, we report a 10 GHz radio to optical-wave conversion component using standing-wave coplanar stripline (CPS) on LiNbO3 optical crystal as the substrate. The standing-wave CPS electrodes with narrow slot are arranged in an array structure. An optical waveguide is located close to the narrow slot. The CPS electrodes were analysed using electromagnetic analysis software for 10 GHz operational frequency. Responses for slot width and electrode length variation are reported. As results, return loss of -14.580 dB and -19.517 dB are obtained for single and array CPS electrodes respectively. Optimization of the designed radio to optical-wave conversion devices was also done.
NASA Technical Reports Server (NTRS)
Ali-Ahmad, Walid Y.; Eleftheriades, George V.; Rebeiz, Gabriel M.
1992-01-01
A receiver belonging to the family of integrated planar receivers has been developed at 90 GHz. It consists of a planar Schottky-diode placed at the feed of a dipole-probe suspended inside an integrated horn antenna. The measured planar mixer single-sideband conversion loss at 91.2 GHz (LO) with a 200 MHz IF frequency is 8.3dB plus or minus 0.3dB. The low cost of fabrication and simplicity of this design makes it ideal for millimeter and submillimeter-wave receivers.
Doyle, J; Wong, L L
1996-12-01
This paper addresses the observation that some Cantonese-speaking adults do not perceive a hearing problem even when hearing screening identifies hearing loss. A sample of 49 Cantonese speakers was surveyed about their self-perceptions of hearing prior to a 25 dB HTL pure-tone screening test. All 49 persons failed the screening test, yet 34 (69.4%) reported that they had no problems hearing during conversations. Persons who admitted hearing difficulties tended to have mean hearing levels in excess of 45 dB HTL. A number of hypotheses concerning cultural and linguistic influences are proposed as explanations for the apparent lack of significance of auditory sensitivity loss for some Cantonese speakers. Ways in which these hypotheses might be tested are suggested.
Wang, G; Peebles, W A; Doyle, E J; Crocker, N A; Wannberg, C; Lau, C; Hanson, G R; Doane, J L
2017-10-01
The present design concept for the ITER low-field-side reflectometer transmission line (TL) consists of an ∼40 m long, 6.35 cm diameter helically corrugated waveguide (WG) together with ten 90° miter bends. This paper presents an evaluation of the TL performance at low frequencies (33-50 GHz) where the predicted HE 11 mode ohmic and mode conversion losses start to increase significantly. Quasi-optical techniques were used to form a near Gaussian beam to efficiently couple radiation in this frequency range into the WG. It was observed that the output beams from the guide remained linearly polarized with cross-polarization power levels of ∼1.5%-3%. The polarization rotation due to the helical corrugations was in the range ∼1°-3°. The radiated beam power profiles typically show excellent Gaussian propagation characteristics at distances >20 cm from the final exit aperture. The round trip propagation loss was found to be ∼2.5 dB at 50 GHz and ∼6.5 dB at 35 GHz, showing an inverse increase with frequency. This was consistent with updated calculations of miter bend and ohmic losses. At low frequencies (33-50 GHz), the mode purity remained very good at the exit of the waveguide, and the losses are perfectly acceptable for operation in ITER. The primary challenge may come from the future addition of a Gaussian telescope and other filter components within the corrugated guide, which will likely introduce additional perturbations to the beam profile and an increase in mode-conversion loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guiding; Peebles, W. A.; Doyle, E. J.
The present design concept for the ITER low-field-side reflectometer transmission line (TL) consists of an ~40 m long, 6.35 cm diameter helically corrugated waveguide (WG) together with ten 90° miter bends. This paper presents an evaluation of the TL performance at low frequencies (33-50 GHz) where the predicted HE11 mode ohmic and mode conversion losses start to increase significantly. Quasi-optical techniques were used to form a near Gaussian beam to efficiently couple radiation in this frequency range into the WG. We observed that the output beams from the guide remained linearly polarized with cross-polarization power levels of ~1.5%-3%. The polarizationmore » rotation due to the helical corrugations was in the range ~1°-3°. The radiated beam power profiles typically show excellent Gaussian propagation characteristics at distances >20 cm from the final exit aperture. The round trip propagation loss was found to be ~2.5 dB at 50 GHz and ~6.5 dB at 35 GHz, showing an inverse increase with frequency. This was consistent with updated calculations of miter bend and ohmic losses. At low frequencies (33-50 GHz), the mode purity remained very good at the exit of the waveguide, and the losses are perfectly acceptable for operation in ITER. Finally, the primary challenge may come from the future addition of a Gaussian telescope and other filter components within the corrugated guide, which will likely introduce additional perturbations to the beam profile and an increase in mode-conversion loss.« less
Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko
2013-11-04
We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.
Silicon-nitride/oxynitride wavelength demultiplexer and resonators for quantum photonics
NASA Astrophysics Data System (ADS)
Lim, Soon Thor; Gandhi, Alagappan; Ong, Jun Rong; Ang, Thomas; Png, Ching Eng; Lu, Ding; Ang, Norman Soo Seng; Teo, Ee Jin; Teng, Jinghua
2018-02-01
SiOxNy shows promises for bright emitters of single photons. We successfully fabricated ultra-low-loss SiOxNy waveguide and AWG with low insertion loss <1dB and <3dB total loss (<2dB on-chip loss and <1dB coupling loss) at 1310nm.
Moore, Brian C J; Stone, Michael A; Füllgrabe, Christian; Glasberg, Brian R; Puria, Sunil
2008-12-01
It is possible for auditory prostheses to provide amplification for frequencies above 6 kHz. However, most current hearing-aid fitting procedures do not give recommended gains for such high frequencies. This study was intended to provide information that could be useful in quantifying appropriate high-frequency gains, and in establishing the population of hearing-impaired people who might benefit from such amplification. The study had two parts. In the first part, wide-bandwidth recordings of normal conversational speech were obtained from a sample of male and female talkers. The recordings were used to determine the mean spectral shape over a wide frequency range, and to determine the distribution of levels (the speech dynamic range) as a function of center frequency. In the second part, audiometric thresholds were measured for frequencies of 0.125, 0.25, 0.5, 1, 2, 3, 4, 6, 8, 10, and 12.5 kHz for both ears of 31 people selected to have mild or moderate cochlear hearing loss. The hearing loss was never greater than 70 dB for any frequency up to 4 kHz. The mean spectrum level of the speech fell progressively with increasing center frequency above about 0.5 kHz. For speech with an overall level of 65 dB SPL, the mean 1/3-octave level was 49 and 37 dB SPL for center frequencies of 1 and 10 kHz, respectively. The dynamic range of the speech was similar for center frequencies of 1 and 10 kHz. The part of the dynamic range below the root-mean-square level was larger than reported in previous studies. The mean audiometric thresholds at high frequencies (10 and 12.5 kHz) were relatively high (69 and 77 dB HL, respectively), even though the mean thresholds for frequencies below 4 kHz were 41 dB HL or better. To partially restore audibility for a hearing loss of 65 dB at 10 kHz would require an effective insertion gain of about 36 dB at 10 kHz. With this gain, audibility could be (partly) restored for 25 of the 62 ears assessed.
Zhang, Xingmiao; Ji, Guangbin; Liu, Wei; Quan, Bin; Liang, Xiaohui; Shang, Chaomei; Cheng, Yan; Du, Youwei
2015-08-14
A novel FeCo nanoparticle embedded nanoporous carbon composite (Fe-Co/NPC) was synthesized via in situ carbonization of dehydro-ascorbic acid (DHAA) coated Fe3O4 nanoparticles encapsulated in a metal-organic framework (zeolitic imidazolate framework-67, ZIF-67). The molar ratio of Fe/Co significantly depends on the encapsulated content of Fe3O4 in ZIF-67. The composites filled with 50 wt% of the Fe-Co/NPC-2.0 samples in paraffin show a maximum reflection loss (RL) of -21.7 dB at a thickness of 1.2 mm; in addition, a broad absorption bandwidth for RL < -10 dB which covers from 12.2 to 18 GHz can be obtained, and its minimum reflection loss and bandwidth (RL values exceeding -10 dB) are far greater than those of commercial carbonyl iron powder under a very low thickness (1-1.5 mm). This study not only provides a good reference for future preparation of carbon-based lightweight microwave absorbing materials but also broadens the application of such kinds of metal-organic frameworks.
Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults
Van Dun, Bram; Kania, Anna; Dillon, Harvey
2016-01-01
Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds—/m/, /g/, and /t/—were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users. PMID:27587919
Planar doped barrier subharmonic mixers
NASA Technical Reports Server (NTRS)
Lee, T. H.; East, J. R.; Haddad, G. I.
1992-01-01
The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.
On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene A.; Fung, KingMan; Pukala, David M.; Kangaslahti, Pekka P.; Lai, Richard; Ferreira, Linda
2012-01-01
JPL has measured and calibrated a WR2.2 waveguide wafer probe from GGB Industries in order to allow for measurement of circuits in the 325-500 GHz range. Circuits were measured, and one of the circuits exhibited 10 dB of gain at 475 GHz. The MMIC circuit was fabricated at Northrop Grumman Corp. (NGC) as part of a NASA Innovative Partnerships Program, using NGC s 35-nm-gatelength InP HEMT process technology. The chip utilizes three stages of HEMT amplifiers, each having two gate fingers of 10 m in width. The circuits use grounded coplanar waveguide topology on a 50- m-thick substrate with through substrate vias. Broadband matching is achieved with coplanar waveguide transmission lines, on-chip capacitors, and open stubs. When tested with wafer probing, the chip exhibited 10 dB of gain at 475 GHz, with over 9 dB of gain from 445-490 GHz. Low-noise amplifiers in the 400-500 GHz range are useful for astrophysics receivers and earth science remote sensing instruments. In particular, molecular lines in the 400-500 GHz range include the CO 4-3 line at 460 GHz, and the CI fine structure line at 492 GHz. Future astrophysics heterodyne instruments could make use of high-gain, low-noise amplifiers such as the one described here. In addition, earth science remote sensing instruments could also make use of low-noise receivers with MMIC amplifier front ends. Present receiver technology typically employs mixers for frequency down-conversion in the 400-500 GHz band. Commercially available mixers have typical conversion loss in the range of 7-10 dB with noise figure of 1,000 K. A low-noise amplifier placed in front of such a mixer would have 10 dB of gain and lower noise figure, particularly if cooled to low temperature. Future work will involve measuring the noise figure of this amplifier.
Quantum key distribution with entangled photon sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.
2007-07-15
A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDCmore » source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses.« less
Prevalence of Hearing Loss by Severity in the United States.
Goman, Adele M; Lin, Frank R
2016-10-01
To estimate the age- and severity-specific prevalence of hearing impairment in the United States. We conducted cross-sectional analyses of 2001 through 2010 data from the National Health and Nutrition Examination Survey on 9648 individuals aged 12 years or older. Hearing loss was defined as mild (> 25 dB through 40 dB), moderate (> 40 dB through 60 dB), severe (> 60 dB through 80 dB), or profound (> 80 dB). An estimated 25.4 million, 10.7 million, 1.8 million, and 0.4 million US residents aged 12 years or older, respectively, have mild, moderate, severe, and profound better-ear hearing loss. Older individuals displayed a higher prevalence of hearing loss and more severe levels of loss. Across most ages, the prevalence was higher among Hispanic and non-Hispanic Whites than among non-Hispanic Blacks and was higher among men than women. Hearing loss directly affects 23% of Americans aged 12 years or older. The majority of these individuals have mild hearing loss; however, moderate loss is more prevalent than mild loss among individuals aged 80 years or older. Our estimates can inform national public health initiatives on hearing loss and help guide policy recommendations currently being discussed at the Institute of Medicine and the White House.
System Architecture of Small Unmanned Aerial System for Flight Beyond Visual Line-of-Sight
2015-09-17
Signal Strength PT = Transmitter Power GT = Transmitter antenna gain LT = Transmitter loss Lp = Propagation loss GR = Receiver antenna...gain (dBi) LR(db) = Receiver losses (dB) 15 Lm = Link margin (dB) PT = Transmitter Power (dBm) GT = Transmitter antenna gain (dBi) LT... Transmitter loss (dB) The maximum range is determined by four components, 1) Transmission, 2) Propagation, 3) Reception and 4) Link Margin
NASA Astrophysics Data System (ADS)
Zhang, Yachun; He, Xiang; Chen, Jianping; Chen, Hongqing; Chen, Li; Zhang, Hongchao; Ni, Xiaowu; Lu, Jian; Shen, Zhonghua
2018-03-01
The relationships between return losses of the cylindrical inlet and plasma discharge parameters are investigated experimentally and numerically. The return losses are measured using a high dynamic range measurement system and simulated by COMSOL Multiphysics when the frequency band of the microwaves is in the range 1-4 GHz. The profiles of the plasma density are estimated using Epstein and Bessel functions. Results show that the incident microwaves can be absorbed by plasma efficaciously. The maximal return loss can reach -13.84 dB when the microwave frequency is 2.3 GHz. The increase of applied power implies augmentation of the return loss, which behaves conversely for gas pressure. The experimental and numerical results display reasonable agreement on return loss, suggesting that the use of plasma is effective in the radar cross section reduction of aircraft inlets.
CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.
Boppel, Sebastian; Lisauskas, Alvydas; Max, Alexander; Krozer, Viktor; Roskos, Hartmut G
2012-02-15
We demonstrate the principle applicability of antenna-coupled complementary metal oxide semiconductor (CMOS) field-effect transistor arrays as cameras for real-time coherent imaging at 591.4 GHz. By scanning a few detectors across the image plane, we synthesize a focal-plane array of 100×100 pixels with an active area of 20×20 mm2, which is applied to imaging in transmission and reflection geometries. Individual detector pixels exhibit a voltage conversion loss of 24 dB and a noise figure of 41 dB for 16 μW of the local oscillator (LO) drive. For object illumination, we use a radio-frequency (RF) source with 432 μW at 590 GHz. Coherent detection is realized by quasioptical superposition of the image and the LO beam with 247 μW. At an effective frame rate of 17 Hz, we achieve a maximum dynamic range of 30 dB in the center of the image and more than 20 dB within a disk of 18 mm diameter. The system has been used for surface reconstruction resolving a height difference in the μm range.
NASA Technical Reports Server (NTRS)
Bauhahn, P.; Contolatis, A.; Sokolov, V.; Chao, C.
1986-01-01
An all ion-implanted Schottky barrier mixer diode which has a cutoff frequency greater than 1000 GHz has been developed. This new device is planar and FET-compatible and employs a projection lithography 3-inch wafer process. A Ka-band monolithic balanced mixer based on this device has been designed, fabricated and tested. A conversion loss of 8 dB has been measured with a LO drive of 10 dBm at 30 GHz.
Acoustic metamaterials capable of both sound insulation and energy harvesting
NASA Astrophysics Data System (ADS)
Li, Junfei; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai
2016-04-01
Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications.
Research in millimeter wave techniques
NASA Technical Reports Server (NTRS)
Mcmillan, R. W.
1977-01-01
The following is investigated; (1) the design of a 183 GHz single ended fundamental mixer to serve as a back up mixer to the subharmonic mixer for airborne applications, (2) attainment of 6 db single sideband conversion loss with the 6 GHz subharmonic mixer model, together with initial tests to determine the feasibility of pumping the mixer at w sub s/4, (3) additional ground based radiometric measurements, and (4) derivation of equations for power transmission of wire grid interferometers, and initial tests to verify these equations.
The effect of noise-induced hearing loss on the intelligibility of speech in noise
NASA Astrophysics Data System (ADS)
Smoorenburg, G. F.; Delaat, J. A. P. M.; Plomp, R.
1981-06-01
Speech reception thresholds, both in quiet and in noise, and tone audiograms were measured for 14 normal ears (7 subjects) and 44 ears (22 subjects) with noise-induced hearing loss. Maximum hearing loss in the 4-6 kHz region equalled 40 to 90 dB (losses exceeded by 90% and 10%, respectively). Hearing loss for speech in quiet measured with respect to the median speech reception threshold for normal ears ranged from 1.8 dB to 13.4 dB. For speech in noise the numbers are 1.2 dB to 7.0 dB which means that the subjects with noise-induced hearing loss need a 1.2 to 7.0 dB higher signal-to-noise ratio than normal to understand sentences equally well. A hearing loss for speech of 1 dB corresponds to a decrease in sentence intelligibility of 15 to 20%. The relation between hearing handicap conceived as a reduced ability to understand speech and tone audiogram is discussed. The higher signal-to-noise ratio needed by people with noise-induced hearing loss to understand speech in noisy environments is shown to be due partly to the decreased bandwidth of their hearing caused by the noise dip.
Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits
NASA Astrophysics Data System (ADS)
Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Moores, Bradley A.; Vale, Leila R.; Mates, J. A. B.; Hilton, Gene C.; Lalumière, Kevin; Blais, Alexandre; Lehnert, K. W.
2017-10-01
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.
Nonreciprocal Microwave Signal Processing with a Field-Programmable Josephson Amplifier
NASA Astrophysics Data System (ADS)
Lecocq, F.; Ranzani, L.; Peterson, G. A.; Cicak, K.; Simmonds, R. W.; Teufel, J. D.; Aumentado, J.
2017-02-01
We report on the design and implementation of a field-programmable Josephson amplifier (FPJA)—a compact and lossless superconducting circuit that can be programmed in situ by a set of microwave drives to perform reciprocal and nonreciprocal frequency conversion and amplification. In this work, we demonstrate four modes of operation: frequency conversion (transmission of -0.5 dB, reflection of -30 dB), circulation (transmission of -0.5 dB, reflection of -30 dB, isolation of 30 dB), phase-preserving amplification (gain >20 dB , one photon of added noise) and directional phase-preserving amplification (reflection of -10 dB, forward gain of 18 dB, reverse isolation of 8 dB, one photon of added noise). The system exhibits quantitative agreement with the theoretical prediction. Based on a gradiometric superconducting quantum-interference device with Nb /Al -Al Ox/Nb Josephson junctions, the FPJA is first-order insensitive to flux noise and can be operated without magnetic shielding at low temperature. Owing to its flexible design and compatibility with existing superconducting fabrication techniques, the FPJA offers a straightforward route toward on-chip integration with superconducting quantum circuits such as qubits and microwave optomechanical systems.
Vapor-Redissolution Technique for Reduction of POLYMER/Si Arrayed Waveguide Grating Loss
NASA Astrophysics Data System (ADS)
Zhang, Haiming; Zhang, Daming; Qin, Zhenkun; Ma, Chunsheng
An efficient vapor-redissolution technique is used to greatly reduce sidewall scattering loss in the polymer arrayed waveguide grating (AWG) fabricated on a silicon substrate. Smoother sidewalls are achieved and verified by scanning electron microscopy. Reduction of sidewall scattering loss is further measured for the loss measurement of both straight waveguides and AWG devices. The sidewall loss in straight polymer waveguide is decreased by 2.1 dB/cm, the insertion loss of our AWG device is reduced by about 5.5 dB for the central channel and 6.7 dB for the edge channels, the crosstalk is reduced by 2.5 dB, and 3-dB bandwidth is narrowed by 0.05 nm after the vapor-redissoluton treatment.
A wide-band 760-GHz planar integrated Schottky receiver
NASA Technical Reports Server (NTRS)
Gearhart, Steven S.; Hesler, Jeffrey; Bishop, William L.; Crowe, Thomas W.; Rebeiz, Gabriel M.
1993-01-01
A wideband planar integrated heterodyne receiver has been developed for use at submillimeter-wave to FIR frequencies. The receiver consists of a log-periodic antenna integrated with a planar 0.8-micron GaAs Schottky diode. The monolithic receiver is placed on a silicon lens and has a measured room temperature double side-band conversion loss and noise temperature of 14.9 +/- 1.0 dB and 8900 +/- 500 K, respectively, at 761 GHz. These results represent the best performance to date for room temperature integrated receivers at this frequency.
Effects of conversation interference on annoyance due to aircraft noise
NASA Technical Reports Server (NTRS)
Key, K. F.; Powell, C. A.
1980-01-01
The annoyance and interference effects of aircraft flyover noise on face to face conversation were investigated. Twenty 5 minute sessions, each composed of three flyovers, were presented to each of 20 pairs of female subjects in a simulated living room. Flyovers varied in peak noise level (55-79 dB, A-weighted) and spectrum (low or high frequency components). Subjects engaged in conversation for 10 sessions and in reverie for the other 10 sessions, and completed subjective ratings following every session. Annoyance was affected by noise level, but was not significantly different for the two activities of reverie and conversation. A noise level of 77 db was found unacceptable for conversation by 50 percent of the subjects. Conversation interference was assessed by incidence of increased vocal effort and/or interruption of conversation during flyovers. Although conversation interference increased with noise level, the conversation interference measures did not improve prediction of individual annoyance judgments.
The use of transient evoked otoacoustic emissions as a hearing screen following grommet insertion.
Dale, O T; McCann, L J; Thio, D; Wells, S C; Drysdale, A J
2011-07-01
This study aimed to evaluate the sensitivity of transient evoked otoacoustic emission testing as a screening tool for hearing loss in children, after grommet insertion. A prospective study was conducted of 48 children (91 ears) aged three to 16 years who had undergone grommet insertion for glue ear. At post-operative review, pure tone audiometry was performed followed by transient evoked otoacoustic emission testing. Outcomes for both tests, in each ear, were compared. The pure tone audiometry threshold was ≤ 20 dB in 85 ears (93.4 per cent), 25 dB in two ears (2.2 per cent) and ≥ 30 dB in four ears (4.4 per cent). Transient evoked otoacoustic emissions were detected in 69 ears (75.8 per cent). The sensitivity of transient evoked otoacoustic emission testing for detecting hearing loss was 100 per cent for ≥ 30 dB loss but only 66.7 per cent for ≥ 25 dB loss. Transient evoked otoacoustic emission testing offers a sensitive means of detecting hearing loss of ≥ 30 dB following grommet insertion in children. However, the use of such testing as a screening tool may miss some cases of mild hearing loss.
Maximum powers of low-loss series-shunt FET RF switches
NASA Astrophysics Data System (ADS)
Yang, Z.; Hu, X.; Yang, J.; Simin, G.; Shur, M.; Gaska, R.
2009-02-01
Low-loss high-power single pole single throw (SPST) monolithic RF switch based on AlGaN/GaN heterojunction field effect transistors (HFETs) demonstrate the insertion loss and isolation of 0.15 dB and 45.9 dB at 0.5 GHz and 0.23 dB and 34.3 dB at 2 GHz. Maximum switching powers are estimated +47 dBm or higher. Factors determining the maximum switching powers are analyzed. Design principles to obtain equally high switching powers in the ON and OFF-states are developed.
Fully suspended slot waveguide platform
NASA Astrophysics Data System (ADS)
Zhou, Wen; Cheng, Zhenzhou; Wu, Xinru; Sun, Xiankai; Tsang, Hon Ki
2018-02-01
A fully suspended slot waveguide (FSSWG) platform, including straight slot waveguides, 90° bends, high-Q racetrack resonators, and strip-to-slot mode converters, is demonstrated for broadband and low-loss operation in the mid-infrared spectral region. The proposed FSSWG platform has inherent merits of a broad spectral range of transparency which is limited only by the absorption of silicon, strong light-analyte interaction, good mechanical stability, and single lithography step fabrication process. By using asymmetric FSSWGs, the propagation loss, bending loss, and intrinsic optical Q factor are demonstrated to be 2.8 dB/cm, 0.15 dB/90°, and 12 600, respectively. The average conversion efficiency of a mode converter is 95.4% over a bandwidth of 170 nm and 97.0% at 2231 nm. The FSSWG platform would be promising for a long-range and cavity-enhanced light-analyte interaction.
NASA Astrophysics Data System (ADS)
Wang, Jian; Sun, Junqiang; Luo, Chuanhong
2006-06-01
A novel cascaded χ (2) wavelength conversion of picosecond pulses based on sum frequency generation and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in LiNbO 3 waveguides. The signal pulse with 40-GHz repetition rate and 1.57-ps pulse width is adopted. First of all, high conversion efficiency about -18.93dB can be achieved with low power level required for both two pump lights, which is greatly enhanced approximately 8dB compared with the conventional cascaded second-order nonlinear interactions (SHG+DFG) with a single and much higher power pump. Secondly, the wavelength of the converted idler wave can be tuned from 1527.4 to 1540.5nm when the signal wavelength is changed from 1561.9 to 1548.4nm, and about 13.1nm converted idler bandwidth is achieved with the conversion efficiency higher than -31dB. Thirdly, two pump wavelengths can be separated as large as 17.3nm. Meanwhile, when one pump wavelength is fixed at 1549.1nm, the other can be tuned within a wide wavelength range about 7.6nm with the conversion efficiency higher than -34dB, which is much larger than that in the SHG+DFG situation. Finally, the temporal waveform of the converted idler pulse is observed with rather clear appearance achieved, and no obvious changes of the pulse shape and width are found compared with its corresponding original injected signal, showing that our proposed scheme exhibits a very good conversion performance.
Viterbi decoder node synchronization losses in the Reed-Solomon/Veterbi concatenated channel
NASA Technical Reports Server (NTRS)
Deutsch, L. J.; Miller, R. L.
1982-01-01
The Viterbi decoders currently used by the Deep Space Network (DSN) employ an algorithm for maintaining node synchronization that significantly degrades at bit signal-to-noise ratios (SNRs) of below 2.0 dB. In a recent report by the authors, it was shown that the telemetry receiving system, which uses a convolutionally encoded downlink, will suffer losses of 0.85 dB and 1.25 dB respectively at Voyager 2 Uranus and Neptune encounters. This report extends the results of that study to a concatenated (255,223) Reed-Solomon/(7, 1/2) convolutionally coded channel, by developing a new radio loss model for the concatenated channel. It is shown here that losses due to improper node synchronization of 0.57 dB at Uranus and 1.0 dB at Neptune can be expected if concatenated coding is used along with an array of one 64-meter and three 34-meter antennas.
Satellite sound broadcast propagation measurements
NASA Technical Reports Server (NTRS)
Vogel, Wolfhard J.; Torrence, Geoffrey W.
1991-01-01
Power transmitted from atop a 17.9 m tower in simulation of a satellite signal, emitted by a tone generator sweeping from 700 to 1800 MHz, was received using a 90 deg beamwidth linearly scanning antenna at many locations inside six buildings of solid brick, corrugated sheet-metal, wood-frame, mobile home, and concrete wall construction. The signal levels are found to have much structure in the spatial and frequency domain but were relatively stable in time. Typically, people moving nearby produced less than 0.5 dB variations, whereas a person blocking the transmission path produces 6 to 10 dB fades. Losses, which at an average position in a room increased from 6 to 12 dB over 750 to 1750 MHz, could be mitigated to 2 to 6 dB by moving the antenna typically less than 30 cm. Severe losses (17.5 dB, mitigated to 12.5 dB) were observed in a concrete wall building, which also exhibited the longest multipath delays (greater than 100 ns). Losses inside a mobile home were even larger (greater than 20 dB) and independent of antenna orientation. The losses showed a clear frequency dependence.
NASA Astrophysics Data System (ADS)
Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-01-01
We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.
40 Gbit/s low-loss silicon optical modulator based on a pipin diode.
Ziebell, Melissa; Marris-Morini, Delphine; Rasigade, Gilles; Fédéli, Jean-Marc; Crozat, Paul; Cassan, Eric; Bouville, David; Vivien, Laurent
2012-05-07
40 Gbit/s low-loss silicon optical modulators are demonstrated. The devices are based on the carrier depletion effect in a pipin diode to generate a good compromise between high efficiency, speed and low optical loss. The diode is embedded in a Mach-Zehnder interferometer, and a self-aligned fabrication process was used to obtain precise localization of the active p-doped region in the middle of the waveguide. Using a 4.7 mm (resp. 0.95 mm) long phase shifter, the modulator exhibits an extinction ratio of 6.6 dB (resp. 3.2 dB), simultaneously with an optical loss of 6 dB (resp. 4.5 dB) at the same operating point.
A monolithic RF transceiver for DC-OFDM UWB
NASA Astrophysics Data System (ADS)
Yunfeng, Chen; Wei, Li; Haipeng, Fu; Ting, Gao; Danfeng, Chen; Feng, Zhou; Deyun, Cai; Dan, Li; Yangyang, Niu; Hanchao, Zhou; Ning, Zhu; Ning, Li; Junyan, Ren
2012-02-01
This paper presents a first monolithic RF transceiver for DC-OFDM UWB applications. The proposed direct-conversion transceiver integrates all the building blocks including two receiver (Rx) cores, two transmitter (Tx) cores and a dual-carrier frequency synthesizer (DC-FS) as well as a 3-wire serial peripheral interface (SPI) to set the operating status of the transceiver. The ESD-protected chip is fabricated by a TSMC 0.13-μm RF CMOS process with a die size of 4.5 × 3.6 mm2. The measurement results show that the wideband Rx achieves an NF of 5-6.2 dB, a max gain of 76-84 dB with 64-dB variable gain, an in-/out-of-band IIP3 of -6/+4 dBm and an input loss S11 of < -10 in all bands. The Tx achieves an LOLRR/IMGRR of -34/-33 dBc, a typical OIP3 of +6 dBm and a maximum output power of -5 dBm. The DC-FS outputs two separate carriers simultaneously with an inter-band hopping time of < 1.2 ns. The full chip consumes a maximum current of 420 mA under a 1.2-V supply.
Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
Harding, Gary W; Bohne, Barbara A; Lee, Steve C; Salt, Alec N
2007-03-01
Infrasound (i.e., <20 Hz for humans; <100 Hz for chinchillas) is not audible, but exposure to high-levels of infrasound will produce large movements of cochlear fluids. We speculated that high-level infrasound might bias the basilar membrane and perhaps be able to minimize noise-induced hearing loss. Chinchillas were simultaneously exposed to a 30 Hz tone at 100 dB SPL and a 4 kHz OBN at either 108 dB SPL for 1.75 h or 86 dB SPL for 24h. For each animal, the tympanic membrane (TM) in one ear was perforated ( approximately 1 mm(2)) prior to exposure to attenuate infrasound transmission to that cochlea by about 50 dB SPL. Controls included animals that were exposed to the infrasound only or the 4 kHz OBN only. ABR threshold shifts (TSs) and DPOAE level shifts (LSs) were determined pre- and post-TM-perforation and immediately post-exposure, just before cochlear fixation. The cochleae were dehydrated, embedded in plastic, and dissected into flat preparations of the organ of Corti (OC). Each dissected segment was evaluated for losses of inner hair cells (IHCs) and outer hair cells (OHCs). For each chinchilla, the magnitude and pattern of functional and hair cell losses were compared between their right and left cochleae. The TM perforation produced no ABR TS across frequency but did produce a 10-21 dB DPOAE LS from 0.6 to 2 kHz. The infrasound exposure alone resulted in a 10-20 dB ABR TS at and below 2 kHz, no DPOAE LS and no IHC or OHC losses. Exposure to the 4 kHz OBN alone at 108 dB produced a 10-50 dB ABR TS for 0.5-12 kHz, a 10-60 dB DPOAE LS for 0.6-16 kHz and severe OHC loss in the middle of the first turn. When infrasound was present during exposure to the 4 kHz OBN at 108 dB, the functional losses and OHC losses extended much further toward the apical and basal tips of the OC than in cochleae exposed to the 4 kHz OBN alone. Exposure to only the 4 kHz OBN at 86 dB produces a 10-40 dB ABR TS for 3-12 kHz and 10-30 dB DPOAE LS for 3-8 kHz but little or no OHC loss in the middle of the first turn. No differences were found in the functional and hair-cell losses from exposure to the 4 kHz OBN at 86 dB in the presence or absence of infrasound. We hypothesize that exposure to infrasound and an intense 4 kHz OBN increases cochlear damage because the large fluid movements from infrasound cause more intermixing of cochlear fluids through the damaged reticular lamina. Simultaneous infrasound and a moderate 4 kHz OBN did not increase cochlear damage because the reticular lamina rarely breaks down during this moderate level exposure.
Effect of infrasound on cochlear damage from exposure to a 4-kHz octave band of noise
Harding, Gary W.; Bohne, Barbara A.; Lee, Steve C.; Salt, Alec N.
2008-01-01
Infrasound (i.e., < 20 Hz for humans; < 100 Hz for chinchillas) is not audible, but exposure to high levels of infrasound will produce large movements of cochlear fluids. We speculated that high-level infrasound might bias the basilar membrane and perhaps be able to minimize noise-induced hearing loss. Chinchillas were simultaneously exposed to a 30 Hz tone at 100 dB SPL and a 4-kHz OBN at either 108 dB SPL for 1.75 h or 86 dB SPL for 24 h. For each animal, the tympanic membrane (TM) in one ear was perforated (~1 mm2) prior to exposure to attenuate infrasound transmission to that cochlea by about 50 dB SPL. Controls included animals that were exposed to the infrasound only or the 4-kHz OBN only. ABR threshold shifts (TSs) and DPOAE level shifts (LSs) were determined pre- and post-TM-perforation and immediately post-exposure, just before cochlear fixation. The cochleae were dehydrated, embedded in plastic, and dissected into flat preparations of the organ of Corti (OC). Each dissected segment was evaluated for losses of inner hair cells (IHCs) and outer hair cells (OHCs). For each chinchilla, the magnitude and pattern of functional and hair cell losses were compared between their right and left cochleae. The TM perforation produced no ABR TS across frequency but did produce a 10–21 dB DPOAE LS from 0.6–2 kHz. The infrasound exposure alone resulted in a 10–20 dB ABR TS at and below 2 kHz, no DPOAE LS and no IHC or OHC losses. Exposure to the 4-kHz OBN alone at 108 dB produced a 10–50 dB ABR TS for 0.5–12 kHz, a 10–60 dB DPOAE LS for 0.6–16 kHz and severe OHC loss in the middle of the first turn. When infrasound was present during exposure to the 4-kHz OBN at 108 dB, the functional losses and OHC losses extended much further toward the apical and basal tips of the OC than in cochleae exposed to the 4-kHz OBN alone. Exposure to only the 4-kHz OBN at 86 dB produces a 10–40 dB ABR TS for 3–12 kHz and 10–30 dB DPOAE LS for 3–8 kHz but little or no OHC loss in the middle of the first turn. No differences were found in the functional and hair-cell losses from exposure to the 4-kHz OBN at 86 dB in the presence or absence of infrasound. We hypothesize that exposure to infrasound and an intense 4-kHz OBN increases cochlear damage because the large fluid movements from infrasound cause more intermixing of cochlear fluids through the damaged reticular lamina. Simultaneous infrasound and a moderate 4-kHz OBN did not increase cochlear damage because the reticular lamina rarely breaks down during this moderate level exposure. PMID:17300889
Design of Multi-core Fiber Patch Panel for Space Division Multiplexing Implementations
NASA Astrophysics Data System (ADS)
González, Luz E.; Morales, Alvaro; Rommel, Simon; Jørgensen, Bo F.; Porras-Montenegro, N.; Tafur Monroy, Idelfonso
2018-03-01
A multi-core fiber (MCF) patch panel was designed, allowing easy coupling of individual signals to and from a 7-core MCF. The device was characterized, measuring insertion loss and cross talk, finding highest insertion loss and lowest crosstalk at 1300 nm with values of 9.7 dB and -36.5 dB respectively, while at 1600 nm insertion loss drops to 4.8 dB and crosstalk increases to -24.1 dB. Two MCF splices between the fan-in module, the MCF, and the fan-out module are included in the characterization, and splicing parameters are discussed.
A Comparison of Presentation Levels to Maximize Word Recognition Scores
Guthrie, Leslie A.; Mackersie, Carol L.
2010-01-01
Background While testing suprathreshold word recognition at multiple levels is considered best practice, studies on practice patterns do not suggest that this is common practice. Audiologists often test at a presentation level intended to maximize recognition scores, but methods for selecting this level are not well established for a wide range of hearing losses. Purpose To determine the presentation level methods that resulted in maximum suprathreshold phoneme-recognition scores while avoiding loudness discomfort. Research Design Performance-intensity functions were obtained for 40 participants with sensorineural hearing loss using the Computer-Assisted Speech Perception Assessment. Participants had either gradually sloping (mild, moderate, moderately severe/severe) or steeply sloping losses. Performance-intensity functions were obtained at presentation levels ranging from 10 dB above the SRT to 5 dB below the UCL (uncomfortable level). In addition, categorical loudness ratings were obtained across a range of intensities using speech stimuli. Scores obtained at UCL – 5 dB (maximum level below loudness discomfort) were compared to four alternative presentation-level methods. The alternative presentation-level methods included sensation level (SL; 2 kHz reference, SRT reference), a fixed-level (95 dB SPL) method, and the most comfortable loudness level (MCL). For the SL methods, scores used in the analysis were selected separately for the SRT and 2 kHz references based on several criteria. The general goal was to choose levels that represented asymptotic performance while avoiding loudness discomfort. The selection of SLs varied across the range of hearing losses. Results Scores obtained using the different presentation-level methods were compared to scores obtained using UCL – 5 dB. For the mild hearing loss group, the mean phoneme scores were similar for all presentation levels. For the moderately severe/severe group, the highest mean score was obtained using UCL - 5 dB. For the moderate and steeply sloping groups, the mean scores obtained using 2 kHz SL were equivalent to UCL - 5 dB, whereas scores obtained using the SRT SL were significantly lower than those obtained using UCL - 5 dB. The mean scores corresponding to MCL and 95 dB SPL were significantly lower than scores for UCL - 5 dB for the moderate and the moderately severe/severe group. Conclusions For participants with mild to moderate gradually sloping losses and for those with steeply sloping losses, the UCL – 5 dB and the 2 kHz SL methods resulted in the highest scores without exceeding listeners' UCLs. For participants with moderately severe/severe losses, the UCL - 5 dB method resulted in the highest phoneme recognition scores. PMID:19594086
Performance of a high T (sub c) superconducting ultra-low loss microwave stripline filter
NASA Technical Reports Server (NTRS)
Bautista, J. J.; Ortiz, G.; Zahopoulos, C.; Sridhar, S.; Lanagan, M.
1991-01-01
Discussed here is the successful fabrication of a five-pole interdigital stripline filter made of the 93 K superconductor (Y1Ba2Cu3O sub y) coated on a silver substrate, with center frequency of 8.5 GHz and an extremely high rejection ratio of 80 dB. The lowest injection loss measured was 0.1 dB at 12 K, with a return loss of better than 16 dB, representing a significant improvement over a similar copper filter, and is comparable to low critical temperature filters. The insertion loss appears to be limited by extrinsic factors, such as tuning mismatch and joint losses, and not by superconducting material losses.
Performance of a high Tc superconducting ultralow-loss microwave stripline filter
NASA Technical Reports Server (NTRS)
Zahopoulos, C.; Sridhar, S.; Bautista, J. J.; Ortiz, G.; Lanagan, M.
1991-01-01
The successful fabrication is reported of a five-pole interdigital stripline filter made of the 93 K superconductor Y1Ba2Cu3O(y) coated on a silver substrate, with a center frequency of 8.5 GHz and an extremely high rejection ratio of 80 dB. The lowest insertion loss measured was 0.1 dB at 12 K, with a return loss better than 16 dB, representing significant improvements over a similar Cu filter, and comparable to low Tc filters. The insertion loss appears to be limited by extrinsic factors such as tuning mismatch and joint losses, and not by the superconducting material losses.
Segal, Nili; Shkolnik, Mark; Kochba, Anat; Segal, Avichai; Kraus, Mordechai
2007-01-01
We evaluated the correlation of asymmetric hearing loss, in a random population of patients with mild to moderate sensorineural hearing loss, to several clinical factors such as age, sex, handedness, and noise exposure. We randomly selected, from 8 hearing institutes in Israel, 429 patients with sensorineural hearing loss of at least 30 dB at one frequency and a speech reception threshold not exceeding 30 dB. Patients with middle ear disease or retrocochlear disorders were excluded. The results of audiometric examinations were compared binaurally and in relation to the selected factors. The left ear's hearing threshold level was significantly higher than that of the right ear at all frequencies except 1.0 kHz (p < .05). One hundred fifty patients (35%) had asymmetric hearing loss (more than 10 dB difference between ears). In most of the patients (85%) the binaural difference in hearing threshold level, at any frequency, was less than 20 dB. Age, handedness, and sex were not found to be correlated to asymmetric hearing loss. Noise exposure was found to be correlated to asymmetric hearing loss.
Integration of GaN/AlN all-optical switch with SiN/AlN waveguide utilizing spot-size conversion.
Iizuka, Norio; Yoshida, Haruhiko; Managaki, Nobuto; Shimizu, Toshimasa; Hassanet, Sodabanlu; Cumtornkittikul, Chiyasit; Sugiyama, Masakazu; Nakano, Yoshiaki
2009-12-07
Spot-size converters for an all-optical switch utilizing the intersubband transition in GaN/AlN multiple quantum wells are studied with the purpose of reducing operation power by improving the coupling efficiency between the input fiber and the switch. With a stair-like spot-size converter, the absorption saturation of 5 dB is achieved with a pulse energy of 25 pJ. The switch is integrated with a SiN/AlN waveguide and spot-size converters, and the structure provides the possibility of an integration of the switch with other functional devices. To further improve the coupling loss between the waveguide and the switch, triangular-shaped converters are investigated, demonstrating losses as low as 2 dB/facet.
Kristensen, Jesper T; Houmann, Andreas; Liu, Xiaomin; Turchinovich, Dmitry
2008-06-23
We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 +/- 0.24 dB, and polarization extinction ratio of 19 +/- 0.68 dB. The reciprocal HC-PCF-to-PM-SMF splice loss is found to be 2.19 +/- 0.33 dB, which is caused by the mode evolution in HC-PCF. The return loss in both cases was measured to be -14 dB. We show that a splice defect is caused by the HC-PCF cleave defect, and the lossy splice can be predicted at an early stage of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond pulse delivery.
Low-loss ultracompact optical power splitter using a multistep structure.
Huang, Zhe; Chan, Hau Ping; Afsar Uddin, Mohammad
2010-04-01
We propose a low-loss ultracompact optical power splitter for broadband passive optical network applications. The design is based on a multistep structure involving a two-material (core/cladding) system. The performance of the proposed device was evaluated through the three-dimensional finite-difference beam propagation method. By using the proposed design, an excess loss of 0.4 dB was achieved at a full branching angle of 24 degrees. The wavelength-dependent loss was found to be less than 0.3 dB, and the polarization-dependent loss was less than 0.05 dB from O to L bands. The device offers the potential of being mass-produced using low-cost polymer-based embossing techniques.
Liu, Hung-Wen; Chen, Yen-Ju; Chang, Yun-Ching; Chang, Sue-Joan
2017-09-20
Stimulation of the ubiquitin-proteasome pathway-especially E3 ubiquitin ligases Atrogin-1 and MuRF1-is associated with muscle loss in diabetes. Elevated lipid metabolites impair myogenesis. Oligonol, a low molecular weight polyphenol derived from lychee, exhibited anti-diabetic and anti-obesity properties, suggesting it could be a proper supplement for attenuating muscle loss. Dietary (10 weeks) oligonol supplementation (20 or 200 mg/kg diet) on the skeletal muscle loss was investigated in diabetic db/db mice. Transcription factors NF-κB and FoxO3a involved in regulation of Atrogin-1 and MuRF1 were also investigated. Attenuation of muscle loss by oligonol (both doses) was associated with down-regulation of Atrogin-1 and MuRF1 gene expression. Oligonol supplementation decreased NF-κB expression in the nuclear fraction compared with db/db mice without oligonol supplement. Upregulation of sirtuin1 (SIRT1) expression prevented FoxO3a nuclear localization in db/db mice supplemented with oligonol. Marked increases in AMPKα activity and Ppara mRNA expression leading to lower lipid accumulation by oligonol provided additional benefits for attenuating muscle loss. Oligonol limited palmitate-induced senescent phenotype and cell cycle arrest and suppressed Atrogin-1 and MuRF1 mRNA expression in palmitate-treated C2C12 muscle cells, thus contributing to improving the impaired myotube formation. In conclusion, oligonol-mediated downregulation of Atrogin-1 and MuRF1 gene expression alleviates muscle loss and improves the impaired myotube formation, indicating that oligonol supplementation may be useful for the attenuation of myotube loss.
Tapered waveguides for guided wave optics.
Campbell, J C
1979-03-15
Strip waveguides having half-paraboloid shaped tapers that permit efficient fiber to waveguide coupling have been fabricated by Ag ion exchange in soda-lime glass. A reduction in the input coupling loss has been accomplished by tailoring the diffusion to provide a gradual transition from a single-mode waveguide to a multimode waveguide having cross-sectional dimensions comparable to the core diameter of a single-mode fiber. Waveguides without tapers exhibit an attenuation of 1.0 dB/cm and an input coupling loss of 0.6 dB. The additional loss introduced by the tapered region is 0.5 dB. By way of contrast, an input coupling loss of 2.4 dB is obtained by coupling directly to a single-mode waveguide, indicating a net improvement of 1.3 dB for the tapered waveguides.
NASA Technical Reports Server (NTRS)
Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.
1993-01-01
This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Enrique, E-mail: villae@unican.es; Aja, Beatriz; Cagigas, Jaime
2013-12-15
This paper presents the analysis, design, and characterization of a wideband 90° phase switch in Ka-band. The phase switch is based on two microstrip bandpass filters in which the commutation is performed by a novel single-pole double-throw (SPDT) switch. The analysis of π-network bandpass filters is provided, obtaining the phase difference and amplitude imbalance between filters and their scattering parameters; tested results show an average phase difference of 88.9° ± 5° and an amplitude imbalance of 0.15 dB from 24 to 37 GHz. The new broadband SPDT switch is based on a coplanar waveguide-to-slotline-to-microstrip structure, which enables a full planarmore » integration with shifting branches. PIN diodes are used to perform the switching between outputs. The SPDT shows isolation better than 19 dB, insertion loss of around 1.8 dB, and return loss better than 15 dB. The full integration of the phase switch achieves a return loss better than 11 dB and insertion loss of around 4 dB over the band 26–36 GHz, with an average phase difference of 87.1° ± 4° and an average amplitude imbalance of 0.3 dB. It provides an excellent performance for this frequency range, suitable for radio-astronomy receivers.« less
MEMS, Ka-Band Single-Pole Double-Throw (SPDT) Switch for Switched Line Phase Shifters
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.
2002-01-01
Ka-band MEMS doubly anchored cantilever beam capacitive shunt devices are used to demonstrate a MEMS SPDT switch fabricated on high resistivity silicon (HRS) utilizing finite ground coplanar waveguide (FGC) transmission lines. The SPDT switch has an insertion loss (IL), return loss (RL), and isolation of 0.3dB, 40dB, and 30 dB, respectively at Ka-band.
NASA Astrophysics Data System (ADS)
Datta, Shubhashish; Rajagopalan, Sruti; Lemke, Shaun; Joshi, Abhay
2014-06-01
We report a balanced PIN-TIA photoreceiver integrated with a 3 dB fiber coupler for distributed fiber optic sensors. This detector demonstrates -3 dB bandwidth >15 GHz and coupled conversion gain >65 V/W per photodiode through either input port of the 3 dB coupler, and can be operated at local oscillator power of +17 dBm. The combined common mode rejection of the balanced photoreceiver and the integrated 3 dB coupler is >20 dB. We also present measurement results with various optical stimuli, namely impulses, sinusoids, and pseudo-random sequences, which are relevant for time domain reflectometry, frequency domain reflectometry, and code correlation sensors, respectively.
Wardenga, Nina; Batsoulis, Cornelia; Wagener, Kirsten C; Brand, Thomas; Lenarz, Thomas; Maier, Hannes
2015-01-01
The aim of this study was to determine the relationship between hearing loss and speech reception threshold (SRT) in a fixed noise condition using the German Oldenburg sentence test (OLSA). After training with two easily-audible lists of the OLSA, SRTs were determined monaurally with headphones at a fixed noise level of 65 dB SPL using a standard adaptive procedure, converging to 50% speech intelligibility. Data was obtained from 315 ears of 177 subjects with hearing losses ranging from -5 to 90 dB HL pure-tone average (PTA, 0.5, 1, 2, 3 kHz). Two domains were identified with a linear dependence of SRT on PTA. The SRT increased with a slope of 0.094 ± 0.006 dB SNR/dB HL (standard deviation (SD) of residuals = 1.17 dB) for PTAs < 47 dB HL and with a slope of 0.811 ± 0.049 dB SNR/dB HL (SD of residuals = 5.54 dB) for higher PTAs. The OLSA can be applied to subjects with a wide range of hearing losses. With 65 dB SPL fixed noise presentation level the SRT is determined by listening in noise for PTAs < ∼47 dB HL, and above it is determined by listening in quiet.
Mirhashemi, Farshad; Kluth, Oliver; Scherneck, Stephan; Vogel, Heike; Kluge, Reinhart; Schurmann, Annette; Joost, Hans-Georg; Neschen, Susanne
2008-01-01
We have previously reported that a high-fat, carbohydrate-free diet prevents diabetes and beta-cell destruction in the New Zealand Obese (NZO) mouse strain. Here we investigated the effect of diets with and without carbohydrates on obesity and development of beta-cell failure in a second mouse model of type 2 diabetes, the db/db mouse. When kept on a carbohydrate-containing standard (SD; with (w/w) 5.1, 58.3, and 17.6% fat, carbohydrates and protein, respectively) or high-fat diet (HFD; 14.6, 46.7 and 17.1%), db/db mice developed severe diabetes (blood glucose >20 mmol/l, weight loss, polydipsia and polyurea) associated with a selective loss of pancreatic beta-cells, reduced GLUT2 expression in the remaining beta-cells, and reduced plasma insulin levels. In contrast, db/db mice kept on a high-fat, carbohydrate-free diet (CFD; with 30.2 and 26.4% (w/w) fat or protein) did not develop diabetes and exhibited near-normal, hyperplastic islets in spite of a morbid obesity (fat content >60%) associated with hyperinsulinaemia. These data indicate that in genetically different mouse models of obesity-associated diabetes, obesity and dietary fat are not sufficient, and dietary carbohydrates are required, for beta-cell destruction.
NASA Astrophysics Data System (ADS)
Ji, Renlong; Cao, Chuanbao
2014-10-01
Barium titanate (BTO) with different morphology is prepared through hydrothermal method using titania spheres as precursor, then calcined at different temperatures and ultimately coated with cobalt ferrite (BTO/CFO). The dielectric dispersion of the composite containing BTO (75 wt. % ratio in paraffin wax) shows evidence of resonance behaviour in the microwave spectrum, rather than the usually observed relaxation mode. The imaginary part of permittivity (ɛ″) displays a strong peak in the 10-13 GHz frequency region, especially for buckhorn-like BTO (hydrothermally synthesized at 110 °C and calcined at 1100 °C). The dielectric response anomaly of BTO in special morphology is due to the emission of plane acoustic waves caused by electrostrictive and converse piezoelectric effects. An accepted model is adopted to simulate the resonance frequency. The minimum reflection loss of cauliflower-like BTO (hydrothermally synthesized at 110 °C, then calcined at 600 °C for 2 h, 75 wt. % ratio) in paraffin wax reaches -30.831 dB at 10.56 GHz with a matching thickness of 2 mm, lower than all the reported values. When the sintering temperature is changed to 1100 °C (buckhorn-like BTO), the minimum reflection loss value is -24.37 dB at 12.56 GHz under the thickness of 3 mm. After combination with CFO, the value reaches -42.677 dB when the thickness is 5.6 mm. The ginger-like BTO (hydrothermally synthesized at 200 °C and calcined at different temperatures) is inferior in microwave reflection reduction. The electromagnetic interference shielding effectiveness of buckhorn-like BTO composite is calculated to be -12.7 dB (94.6% shielding) at resonance frequency (2 mm, 11.52 GHz). This work clearly shows the potential to tune the dielectric property of ferroelectrics through control of morphology, facilitating new comprehension of the ferroelectrics in microwave regime.
Saddik, George N; York, Robert A
2012-09-01
This paper reports on the modeling, fabrication, and experimental results of a voltage switchable barium strontium titanate solidly mounted resonator filter at 6 GHz. The filter insertion loss was measured to be -4.26 dB and the return loss to be -13.5 dB. The 3-dB bandwidth was measured to be 72 MHz and the quality factor was calculated to be 83. The data were collected at a dc bias voltage of 10 V. Temperature data were also collected, and the filter demonstrated a 0.71-dB increase in insertion loss and a 7-MHz decrease in center frequency with increase in temperature.
Analog-to-digital conversion to accommodate the dynamics of live music in hearing instruments.
Hockley, Neil S; Bahlmann, Frauke; Fulton, Bernadette
2012-09-01
Hearing instrument design focuses on the amplification of speech to reduce the negative effects of hearing loss. Many amateur and professional musicians, along with music enthusiasts, also require their hearing instruments to perform well when listening to the frequent, high amplitude peaks of live music. One limitation, in most current digital hearing instruments with 16-bit analog-to-digital (A/D) converters, is that the compressor before the A/D conversion is limited to 95 dB (SPL) or less at the input. This is more than adequate for the dynamic range of speech; however, this does not accommodate the amplitude peaks present in live music. The hearing instrument input compression system can be adjusted to accommodate for the amplitudes present in music that would otherwise be compressed before the A/D converter in the hearing instrument. The methodology behind this technological approach will be presented along with measurements to demonstrate its effectiveness.
Kales, S N; Freyman, R L; Hill, J M; Polyhronopoulos, G N; Aldrich, J M; Christiani, D C
2001-07-01
We investigated firefighters' hearing relative to general population data to adjust for age-expected hearing loss. For five groups of male firefighters with increasing mean ages, we compared their hearing thresholds at the 50th and 90th percentiles with normative and age- and sex-matched hearing data from the International Standards Organization (databases A and B). At the 50th percentile, from a mean age of 28 to a mean age of 53 years, relative to databases A and B, the firefighters lost an excess of 19 to 23 dB, 20 to 23 dB, and 16 to 19 dB at 3000, 4000, and 6000 Hz, respectively. At the 90th percentile, from a mean age of 28 to a mean age of 53 years, relative to databases A and B, the firefighters lost an excess of 12 to 20 dB, 38 to 44 dB, 41 to 45 dB, and 22 to 28 dB at 2000, 3000, 4000, and 6000 Hz, respectively. The results are consistent with accelerated hearing loss in excess of age-expected loss among the firefighters, especially at or above the 90th percentile.
W-band integrated circuit PIN switches
NASA Astrophysics Data System (ADS)
Tahim, R. S.; Pham, T.; Chang, K.
1986-12-01
Both single-pole single-throw (SPST) and single-pole double-throw (SPDT) PIN switches have been developed at W band using microstrip integrated circuits. In SPST configurations, these switches have less than 1 dB of insertion loss under forward-voltage conditions from 90 to 108 GHz. Isolation greater than 20 dB over 3 GHz and greater than 10 dB over 7 GHz has been achieved. In SPDT configurations, insertion loss of less than 2 dB and isolation of more than 15 dB over 10 GHz (90 to 110 GHz) have been achieved. Beam-lead PIN diodes were used. Major features included mechanical ruggedness, light weight, small size and low-cost manufacturing.
NASA Astrophysics Data System (ADS)
Tang, Renyong; Voss, Paul L.; Lasri, Jacob; Devgan, Preetpaul; Kumar, Prem
2004-10-01
Recent theoretical work predicts that the quantum-limited noise figure of a chi(3)-based fiber-optical parametric amplifier operating as a phase-insensitive in-line amplifier or as a wavelength converter exceeds the standard 3-dB limit at high gain. The degradation of the noise figure is caused by the excess noise added by the unavoidable Raman gain and loss occurring at the signal and the converted wavelengths. We present detailed experimental evidence in support of this theory through measurements of the gain and noise-figure spectra for phase-insensitive parametric amplification and wavelength conversion in a continuous-wave amplifier made from 4.4 km of dispersion-shifted fiber. The theory is also extended to include the effect of distributed linear loss on the noise figure of such a long-length parametric amplifier and wavelength converter.
Polymer taper bridge for silicon waveguide to single mode waveguide coupling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Middlebrook, Christopher T.
2016-03-01
Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.
Non-blocking four-port optical router based on thermooptic silicon microrings
NASA Astrophysics Data System (ADS)
Dang, Pei-pei; Li, Cui-ting; Zheng, Wen-xue; Zheng, Chuan-tao; Wang, Yi-ding
2016-07-01
By using silicon-on-insulator (SOI) platform, 12 channel waveguides, and four parallel-coupling one-microring resonator routing elements, a non-blocking four-port optical router is proposed. Structure design and optimization are performed on the routing elements at 1 550 nm. At drop state with a power consumption of 0 mW, the insertion loss of the drop port is less than 1.12 dB, and the crosstalk between the two output ports is less than -28 dB; at through state with a power consumption of 22 mW, the insertion loss of the through port is less than 0.45 dB, and the crosstalk between the two output ports is below -21 dB. Routing topology and function are demonstrated for the four-port optical router. The router can work at nine non-blocking routing states using the thermo-optic (TO) effect of silicon for tuning the resonance of each switching element. Detailed characterizations are presented, including output spectrum, insertion loss, and crosstalk. According to the analysis on all the data links of the router, the insertion loss is within the range of 0.13—3.36 dB, and the crosstalk is less than -19.46 dB. The router can meet the need of large-scale optical network-on-chip (ONoC).
Distractions during critical phases of anaesthesia for caesarean section: an observational study.
Jenkins, A; Wilkinson, J V; Akeroyd, M A; Broom, M A
2015-05-01
Aviation's 'sterile cockpit' rule holds that distractions on the flight deck should be kept at a minimum during critical phases of flight. To assess current practice at comparable points during obstetric regional anaesthesia, we measured ambient noise and distracting events during 30 caesarean sections in three phases: during establishment of regional anaesthesia; during testing of regional blockade; and after delivery of the fetal head. Mean (SD) noise levels were 62.5 (3.9) dB during establishment of blockade, 63.9 (4.1) dB during testing and 66.8 (5.0) dB after delivery (p < 0.001). The median rates of sudden, loud (> 70 dB) noises, non-clinical conversations and numbers of staff present in the operating theatre increased during each of the three phases. Conversely, entrances into, and exits from, theatre per minute were highest during establishment of regional anaesthesia and decreased over the subsequent two time periods (p < 0.001). © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Design for beam splitting components employing silicon-on-insulator rib waveguide structures.
Hsiao, C S; Wang, Likarn
2005-12-01
We present a new design for beam splitting components employing a silicon-on-insulator rib waveguide structures. In the new design, a high-index thin-film layer is deposited in the rib section to reduce the wave field dispersive tails in the slab section and accordingly render the mode field a confined spot. This in turn improves the beam splitting performance of some conventional waveguide components such as y branches and multimode interference couplers (MMICs), in terms of the excess loss, fiber coupling loss, and compactness of these components. For a 1 x 2 y-branch beam splitter, the excess loss can be as small as 0.43 dB in the new design, which is much lower than that for a conventional rib waveguide structure (which is 1.28 dB). For a 1 x 2 MMIC in our example, the new rib waveguide structure presents an excess loss of 0.064 dB for the TE mode and 0.046 dB for the TM mode, with negligible nonuniformity in dimensions of 30 microm x 1040 microm, whereas its counterpart (i.e., the one with the same dimensions but without a thin-film layer) presents an excess loss of approximately 0.86 dB for both modes. A conventional MMIC must have dimensions larger than 70 microm x 5650 microm to maintain almost the same low excess loss.
A Ka-Band Wide-Bandgap Solid-State Power Amplifier: Architecture Performance Estimates
NASA Technical Reports Server (NTRS)
Epp, L.; Khan, P.; Silva, A.
2005-01-01
Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solidstate power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents the results of a study to investigate power-combining technology and SSPA architectures that can enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results of the study indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. The proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This corresponds to MMIC requirements of 5- to 10-W output power and >48 percent PAE. For the three proposed architectures [1], detailed analysis and design of the power combiner are presented. The first architecture studied is based on a 16-way septum combiner that offers low loss and high isolation over the design band of 31 to 36 GHz. Analysis of a 2-way prototype septum combiner had an input match >25 dB, output match >30 dB, insertion loss <0.02 dB, and isolation >30 dB over the design band. A 16-way design, based on cascading this combiner in a binary fashion, is documented. The second architecture is based on a 24-way waveguide radial combiner. A prototype 24-way radial base was analyzed to have an input match >30 dB (under equal excitation of all input ports). The match of the mode transducer that forms the output of a radial combiner was found to be >27 dB. The functional bandwidth of the radial base and mode transducer, which together will form a radial combiner/divider, exceeded the design band. The third architecture employs a 32-way, parallel-plate radial combiner. Simulation results indicated an input match >24 dB, output match >22 dB, insertion loss <0.23 dB, and adjacent port isolation >20 dB over the design band. All three architectures utilize a low-loss MMIC amplifier module based on commercial MMIC packaging and a custom microstrip-to-rectangular-waveguide transition. The insertion loss of the module is expected to be 0.45 dB over the design band.
Occupational noise-induced hearing loss in auto part factory workers in welding units in Thailand.
Sriopas, Apiradee; Chapman, Robert S; Sutammasa, Saravudh; Siriwong, Wattasit
2017-01-24
Most workers in auto part factories in Thailand are usually exposed to excessive noise in their workplace. This study aimed to assess the level of occupational noise-induced hearing loss and investigate risk factors causing hearing loss in auto part factory workers in the welding units in Thailand. This was a cross-sectional study. One hundred eighty subjects were recruited from 356 workers in the welding unit of three factories. Sixty eligible subjects in each factory were selected by systemic random sampling. The subjects were interviewed using a face-to-face questionnaire. Noise exposure levels and audiograms were measured by a noise dosimeter and an audiometer, respectively. The findings confirmed that noise exposure levels of 86-90 dB (A) and exceeding 90 dB (A) significantly increased the risk of hearing loss in either ear. A noise exposure level exceeding 90 dB (A) significantly increased the prevalence of hearing loss in both ears. Regarding, a 10-pack-year smoking history increased the prevalence of hearing loss in either ear or both ears. In addition, subjects with employment duration exceeding 10 years significantly developed hearing loss in either ear. The engineering control or personal control by wearing hearing protection device should be used to decrease noise exposure levels lower than 85 dB (A) for 8 h. Moreover, if the exposure level reaches 85 dB (A) for 8 h, the employer needs to implement a hearing conservation program in the workplace.
Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems.
Park, Jiwoong; Garudadri, Harinath; Mercier, Patrick P
2017-02-01
The purpose of this contribution is to estimate the path loss of capacitive human body communication (HBC) systems under practical conditions. Most prior work utilizes large grounded instruments to perform path loss measurements, resulting in overly optimistic path loss estimates for wearable HBC devices. In this paper, small battery-powered transmitter and receiver devices are implemented to measure path loss under realistic assumptions. A hybrid electrostatic finite element method simulation model is presented that validates measurements and enables rapid and accurate characterization of future capacitive HBC systems. Measurements from form-factor-accurate prototypes reveal path loss results between 31.7 and 42.2 dB from 20 to 150 MHz. Simulation results matched measurements within 2.5 dB. Comeasurements using large grounded benchtop vector network analyzer (VNA) and large battery-powered spectrum analyzer (SA) underestimate path loss by up to 33.6 and 8.2 dB, respectively. Measurements utilizing a VNA with baluns, or large battery-powered SAs with baluns still underestimate path loss by up to 24.3 and 6.7 dB, respectively. Measurements of path loss in capacitive HBC systems strongly depend on instrumentation configurations. It is thus imperative to simulate or measure path loss in capacitive HBC systems utilizing realistic geometries and grounding configurations. HBC has a great potential for many emerging wearable devices and applications; accurate path loss estimation will improve system-level design leading to viable products.
Relationship among visual field, blood flow, and neural structure measurements in glaucoma.
Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David
2012-05-17
To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P < 0.001). Visual field loss was correlated with both reduced retinal blood flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.
Lierstuen, L O; Sudbø, A S
1995-02-20
The butt-coupling loss between different tapered rectangular waveguides and a standard single-mode optical fiber has been calculated. Losses as low as 0.16 dB can be reached for waveguides with a refractive-index contrast in the range of 0.5% to 1.96%. The fabrication tolerances are such that practical devices with coupling losses below 0.25 dB are feasible.
NASA Astrophysics Data System (ADS)
Ellinger, Frank; Fritsche, David; Tretter, Gregor; Leufker, Jan Dirk; Yodprasit, Uroschanit; Carta, C.
2017-01-01
In this paper we review high-speed radio-frequency integrated circuits operating up to 210 GHz and present selected state-of-the-art circuits with leading-edge performance, which we have designed at our chair. The following components are discussed employing bipolar complementary metal oxide semiconductors (BiCMOS) technologies: a 200 GHz amplifier with 17 dB gain and around 9 dB noise figure consuming only 18 mW, a 200 GHz down mixer with 5.5 dB conversion gain and 40 mW power consumption, a 190 GHz receiver with 47 dB conversion gain and 11 dB noise figure and a 60 GHz power amplifier with 24.5 dBm output power and 12.9 % power added efficiency (PAE). Moreover, we report on a single-core flash CMOS analogue-to-digital converter (ADC) with 3 bit resolution and a speed of 24 GS/s. Finally, we discuss a 60 GHz on-off keying (OOK) BiCMOS transceiver chip set. The wireless transmission of data with 5 Gb/s at 42 cm distance between transmitter and receiver was verified by experiments. The complete transceiver consumes 396 mW.
A 850 GHz SIS receiver employing silicon micro-machining technology
NASA Technical Reports Server (NTRS)
Kooi, J. W.; Pety, J.; Schaffer, P. L.; Phillips, T. G.; Bumble, B.; LeDuc, H. G.; Walker, C. K.
1996-01-01
A 850 GHz superconductor-insulator-superconductor (SIS) heterodyne receiver which uses a radiofrequency tuned niobium tunnel junction fabricated on a 1 micron thick silicon nitrate membrane, is reported. From video and heterodyne measurements, it was calculated that the niobium film loss in the radiofrequency matching network is about 6.8 dB at 822 GHz. These results are approximately a factor of two higher than the theoretical loss predicted by the Mattis-Bardeen theory in the extreme anomalous limit. The junction design and the receiver configuration are described, including the mixer block, the membrane construction and the cooled optics. The performance tests using a Fourier transform spectrometer to measure the response of the radiofrequency matching network, and the SIS simulations of the receiver response to cold and hot loads, the infrared noise contribution and the overall mixer conversion efficiency, are reported. It is concluded that the receiver response is limited by the absorption loss in the radiofrequency matching network.
Land-mobile satellite excess path loss measurements
NASA Astrophysics Data System (ADS)
Hess, G. C.
1980-05-01
An experiment conducted with the ATS-6 satellite to determine the additional path loss over free-space loss experienced by land-mobile communication links is described. This excess path loss is measured as a function of 1) local environment, 2) vehicle heading, 3) link frequency, 4) satellite elevation angle, and 5) street side. A statistical description of excess loss developed from the data shows that the first two parameters dominate. Excess path loss on the order of 25 dB is typical in urban situations, but decreases to under 10 dB in suburban/rural areas. Spaced antenna selection diversity is found to provide only a slight decrease (4 dB, typically) in the urban excess path loss observed. Level crossing rates are depressed in satellite links relative to those of Rayleigh-faded terrestrial links, but increases in average fade durations tend to offset that advantage. The measurements show that the excess path loss difference between 860-MHz links and 1550-MHz links is generally negligible.
Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications
Han, S. T.; Comfoltey, E. N.; Shapiro, M. A.; Sirigiri, J. R.; Tax, D. S.; Temkin, R. J.; Woskov, P. P.; Rasmussen, D. A.
2008-01-01
We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3±0.1 dB per miter bend using a VNA; and 0.22±0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05±0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications. PMID:19081774
Loss-tolerant quantum secure positioning with weak laser sources
NASA Astrophysics Data System (ADS)
Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; Chitambar, Eric; Evans, Philip G.; Qi, Bing
2016-09-01
Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. Recently, it has been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit. Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. In this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.
NASA Astrophysics Data System (ADS)
Song, Ho Seung; Ghergherehchi, Mitra; Oh, Seyoung; Chai, Jong Seo
2017-03-01
We design a stripline-type Wilkinson power divider and combiner for a 3.2 kW solid-state radio frequency (RF) amplifier module and optimize this setup. A Teflon-based printed circuit board is used in the power combiner to transmit high RF power efficiently in the limited space. The reflection coefficient (S11) and insertion loss (S21) related to impedance matching are characterized to determine the optimization process. The resulting two-way divider reflection coefficient and insertion loss were -48.00 dB and -3.22 dB, respectively. The two-way power combiner reflection coefficient and insertion loss were -20 dB and -3.3 dB, respectively. Moreover, the 3.2 kW solid-state RF power test results demonstrate that the proposed power divider and combiner exhibit a maximum efficiency value of 71.3% (combiner loss 5%) at 48 V supply voltage.
Compact, low-loss and low-power 8×8 broadband silicon optical switch.
Chen, Long; Chen, Young-kai
2012-08-13
We demonstrated a 8×8 broadband optical switch on silicon for transverse-electrical polarization using a switch-and-selector architecture. The switch has a footprint of only 8 mm × 8 mm, minimum on-chip loss of about 4 dB, and a port-to-port insertion loss variation of only 0.8 dB near some spectral regions. The port-to-port isolation is above 30 dB over the entire 80-nm-wide spectral range or above 45 dB near the central 30 nm. We also demonstrated a switching power of less than 1.5 mW per element and a speed of 2 kHz, and estimated the upper bound of total power consumption to be less than 70 mW even without optimization of the default state of the individual switch elements.
Li, Zhengxuan; Yi, Lilin; Hu, Weisheng
2014-10-06
In this paper, we propose to use a semiconductor optical amplifier (SOA) in the optical network unit (ONU) to improve the loss budget in time and wavelength division multiplexed-passive optical network (TWDM-PON) systems. The SOA boosts the upstream signal to increase the output power of the electro-absorption modulated laser (EML) and simultaneously pre-amplifies the downstream signal for sensitivity improvement. The penalty caused by cross gain modulation (XGM) effect is negligible due to the low extinction ratio (ER) of upstream signal and the large wavelength difference between upstream and downstream links. In order to achieve a higher output power, the SOA is driven into its saturation region, where the self-phase modulation (SPM) effect converts the intensity into phase information and realizes on-off-keying (OOK) to phase-shifted-keying (PSK) format conversion. In this way, the pattern effect is eliminated, which releases the requirement of gain-clamping on SOA. To further improve the loss budget of upstream link, an Erbium doped fiber amplifier (EDFA) is used in the optical line terminal (OLT) to pre-amplify the received signal. For the downstream direction, directly modulated laser (DML) is used as the laser source. Taking advantage of its carrier-less characteristic, directly modulated signal shows high tolerance to fiber nonlinearity, which could support a downstream launch power as high as + 16 dBm per channel. In addition, the signal is pre-amplified by the SOA in ONU before being detected, so the sensitivity limitation for downstream link is also removed. As a result, a truly passive symmetric 40-Gb/s TWDM-PON was demonstrated, achieving a link loss budget of 51 dB.
NASA Astrophysics Data System (ADS)
Jie, Cui; Lei, Chen; Peng, Zhao; Xu, Niu; Yi, Liu
2014-06-01
A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than -45 dB isolation and maximum -103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator.
NASA Technical Reports Server (NTRS)
Saunier, P.; Nelson, S.
1983-01-01
Sixteen 30 dB 0.5 W amplifier modules were combined to satisfy the requirement for a graceful degradation. If one module fails, the output power drops by only 0.43 dB. Also, by incorporating all the gain stages within the combiner the overall combining efficiency is maximized. A 16 way waveguide divider combiner was developed to minimize the insertion loss associated with such a large corporate feed structure. Tests showed that the 16 way insertion loss was less than 0.5 dB. To minimize loss, a direct transition from waveguide to microstrip, using a finline on duroid substrate, was developed. The FETs fabricated on MBE grown material, demonstrated superior performances. For example, a 600 micrometer device was capable of 320 mW output power with 5 dB gain and 26.6% efficiency at 21 GHz. The 16 module amplifier gave 8.95 W saturated output power with 30 dB gain. The overall efficiency was 9%. The 3 dB bandwidth was 2.5 GHz. At 17.7 GHz the amplifier had 5 W output power and at 20.2 GHz it still had 4.4 W.
Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.
Shang, Kuanping; Pathak, Shibnath; Guan, Binbin; Liu, Guangyao; Yoo, S J B
2015-08-10
We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm(2) footprint, lateral misalignment tolerance up to 400 nm, and less than -52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.
Prolonged noise exposure-induced auditory threshold shifts in rats
Chen, Guang-Di; Decker, Brandon; Muthaiah, Vijaya Prakash Krishnan; Sheppard, Adam; Salvi, Richard
2014-01-01
Noise-induced hearing loss (NIHL) initially increases with exposure duration, but eventually reaches an asymptotic threshold shift (ATS) once the exposure duration exceeds 18-24 h. Equations for predicting the ATS have been developed for several species, but not for rats, even though this species is extensively used in noise exposure research. To fill this void, we exposed rats to narrowband noise (NBN, 16-20 kHz) for 5 weeks starting at 80 dB SPL in the first week and then increasing the level by 6 dB per week to a final level of 104 dB SPL. Auditory brainstem responses (ABR) were recorded before, during, and following the exposure to determine the amount of hearing loss. The noise induced threshold shift to continuous long-term exposure, defined as compound threshold shift (CTS), within and above 16-20 kHz increased with noise level at the rate of 1.82 dB threshold shift per dB of noise level (NL) above a critical level (C) of 77.2 dB SPL i.e. CTS = 1.82(NL-77.2). The normalized amplitude of the largest ABR peak measured at 100 dB SPL decreased at the rate of 3.1% per dB of NL above the critical level of 76.9 dB SPL, i.e., %ABR Reduction = 3.1%(NL-76.9). ABR thresholds measured >30 days post-exposure only partially recovered resulting in a permanent threshold shift of 30-40 dB along with severe hair cell loss in the basal, high-frequency region of the cochlea. In the rat, CTS increases with noise level with a slope similar to humans and chinchillas. The critical level (C) in the rat is similar to that of humans, but higher than that of chinchillas. PMID:25219503
Susceptibility to acoustic trauma in young and aged gerbils
NASA Astrophysics Data System (ADS)
Boettcher, Flint A.
2002-12-01
The effect of age on susceptibility to noise-induced hearing loss (NIHL), the effect of gender on the interaction of age-related hearing loss (ARHL) and NIHL, and the relative contributions of ARHL and NIHL to total hearing loss are poorly understood. The issues are difficult to resolve empirically in human subjects because of lack of control over extrinsic variables and for ethical reasons. Accordingly, these issues were examined in a well-studied animal model of both ARHL and NIHL, the Mongolian gerbil. Animals were exposed to an intense tone (3.5 kHz, 113 dB SPL, 1 h) either as young adults (6-8 months) or near the end of the average lifespan of the species (34-38 months). Hearing thresholds were determined with the auditory brainstem response (ABR). ARHL was approximately 5-10 dB, with slightly more observed in males at 16 kHz (p<0.05). NIHL of approximately 15-20 dB was similar for the young and old groups, suggesting no differences in susceptibility as a function of age. There were no gender differences in NIHL. The relative contributions of ARHL and NIHL to total hearing loss in aged, noise-exposed gerbils were predicted by an addition of ARHL and NIHL in dB, similar to an international standard on hearing loss allocation, ISO-1999 [Determination of Occupational Noise Exposure and Estimation of Noise-Induced Hearing Impairment (1990)]. Previous evaluations of ISO-1999 using the gerbil animal model concluded that addition of ARHL and NIHL in dB overpredicts total hearing loss. However, in these studies, ARHL was large and nearly equal to NIHL. In the current study, where ARHL was much less than NIHL, addition of the two factors in dB, as recommended by ISO-1999, results in fairly accurate predictions of total hearing loss.
Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice.
Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H
2012-07-23
Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks-26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM.
Xu, Yin; Xiao, Jinbiao
2016-01-20
A compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides is proposed and characterized. For the input TM mode, it is first transferred into the cross strip waveguide using a tapered directional coupler (DC), and then efficiently rotated to the corresponding TE mode using an L-shaped bending polarization rotator (PR). Finally, the TE mode for slot waveguide at the output end is obtained with the help of a strip-to-slot mode converter. By contrast, for the input TE mode, it almost passes through the slot waveguide directly and outputs at the bar end with nearly neglected coupling due to a large mode mismatch. Moreover, an additional S-bend connecting the tapered DC and bending PR is used to enhance the performance. Results show that a total device length of 19.6 μm is achieved, where the crosstalk (CT) and polarization conversion loss are, respectively -26.09 and 0.54 dB, for the TM mode, and the CT and insertion loss are, respectively, -22.21 and 0.41 dB, for the TE mode, both at 1.55 μm. The optical bandwidth is approximately 50 nm with a CT<-20 dB. In addition, fabrication tolerances and field evolution are also presented.
Study of transmission line attenuation in broad band millimeter wave frequency range.
Pandya, Hitesh Kumar B; Austin, M E; Ellis, R F
2013-10-01
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.
AlGaAs/GaAs quasi-bulk effect mixers: Analysis and experiments
NASA Technical Reports Server (NTRS)
Yngvesson, K. S.; Yang, J.-X.; Agahi, F.; Dai, D.; Musante, C.; Grammer, W.; Lau, K. M.
1992-01-01
The lowest noise temperature for any receiver in the 0.5 to 1 THz range has been achieved with the bulk InSb hot electron mixer, which unfortunately suffers from the problem of having a very narrow bandwidth (1-2 MHz). We have demonstrated a three order of magnitude improvement in the bandwidth of hot electron mixers, by using the two-dimensional electron gas (2DEG) medium at the hetero-interface between AlGaAs and GaAs. We have tested both inhouse MOCVD-grown material, and MBE materials, with similar results. The conversion loss (L(sub c)) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that L(sub c) can be decreased to about 10 dB in future devices. Calculated and measured curves of L(sub c), versus PLO and IDC, respectively, agree well. We argue that there are several different configurations of hot electron mixers, which will also show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.
Vitee, Nandini; Ramiah, Harikrishnan; Chong, Wei-Keat; Tan, Gim-Heng; Kanesan, Jeevan; Reza, Ahmed Wasif
2014-01-01
A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.
NASA Astrophysics Data System (ADS)
Fischman, Mark Andrew
Synthetic thinned array radiometry, or STAR, has emerged as an attractive technique for high spatial resolution satellite imaging at L-band frequencies (1.4 GHz), especially for recovering soil moisture information. However, the implementation of aperture synthesis is limited by the complexity of controlling and synchronizing over 100 microwave heterodyne receivers in the array. In this dissertation, a 1.4 GHz direct-sampling digital radiometer (DSDR) is investigated as an alternative receiver architecture which simplifies the circuitry at each element and leads toward single-chip integration. A discrete-time statistical model of the direct-sampling radiometer is developed for the two constituent parts of aperture synthesis: the total power DSDR and the two-element correlation DSDR. General expressions for noise-equivalent sensitivity (NEDeltaT) and phase stability are derived in terms of quantization resolution, converter bias error, sampling rate, and rms timing jitter. Theoretical results show that a 3-bit L-band DSDR could attain a sensitivity within 4% of the figure for an ideal analog radiometer, and that sampling jitter has a negligible impact on the phase coherence between receivers. To accommodate large baseline STAR, which may suffer from fringe washing effects, a novel band division correlation (BDC) processor is proposed. Numerical simulations of a 27 meter L-band STAR sensor show that BDC improves spatial resolution by 40% at the swath edge. An L-band correlation DSDR prototype was designed and evaluated in a series of lab and field experiments. From noise floor tests, the observed sensitivity of the correlation DSDR fell within +/-0.4 dB of the theoretical NEDeltaT limit. Measurement of partially correlated noise sources demonstrated less than 0.1 dB loss in the cross-correlation output, implying a high level of phase stability in the samplers. However, an excess loss in fringe washing was discovered due to the non-linear nature of A/D conversion; as a remedy, coherence loss may be alleviated by applying the BDC technique. The DSDR hardware has served as a test bed for several important technologies, including wideband flash A/D conversion, field programmable logic, embedded systems, and thermoelectric temperature control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George
Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less
Continuous variable quantum cryptography: beating the 3 dB loss limit.
Silberhorn, Ch; Ralph, T C; Lütkenhaus, N; Leuchs, G
2002-10-14
We demonstrate that secure quantum key distribution systems based on continuous variable implementations can operate beyond the apparent 3 dB loss limit that is implied by the beam splitting attack. The loss limit was established for standard minimum uncertainty states such as coherent states. We show that, by an appropriate postselection mechanism, we can enter a region where Eve's knowledge on Alice's key falls behind the information shared between Alice and Bob, even in the presence of substantial losses.
On the Etiology of Listening Difficulties in Noise Despite Clinically Normal Audiograms
2017-01-01
Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example. PMID:28002080
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh
2006-09-01
By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.
Shibata, Hiroyuki; Honjo, Toshimori; Shimizu, Kaoru
2014-09-01
We report the first quantum key distribution (QKD) experiment over a 72 dB channel loss using superconducting nanowire single-photon detectors (SSPD, SNSPD) with the dark count rate (DCR) of 0.01 cps. The DCR of the SSPD, which is dominated by the blackbody radiation at room temperature, is blocked by introducing cold optical bandpass filter. We employ the differential phase shift QKD (DPS-QKD) scheme with a 1 GHz system clock rate. The quantum bit error rate (QBER) below 3% is achieved when the length of the dispersion shifted fiber (DSF) is 336 km (72 dB loss), which is low enough to generate secure keys.
Carnevale, Claudio; Til-Pérez, Guillermo; Arancibia-Tagle, Diego J; Tomás-Barberán, Manuel D; Sarría-Echegaray, Pedro L
2018-05-18
The active transcutaneous bone conduction implant Bonebridge ® , is indicated for patients affected by bilateral conductive/mixed hearing loss or unilateral sensorineural hearing loss, showing hearing outcomes similar to other percutaneous bone conduction implants, but with a lower rate of complications. The aim of this study was to analyze the hearing outcomes in a series of 26 patients affected by conductive or mixed hearing loss and treated with Bonebridge ® . 26 of 30 patients implanted with Bonebridge ® between October 2012 and May 2017, were included in the study. We compared the air conduction thresholds at the frequencies 500, 1000, 2000, 3000, 4000Hz, the SRT50% and the percentage of correct answers at an intensity of 50dB with and without the implant. "Pure tone average" with the implant was 34.91dB showing an average gain of 33.46dB. Average SRT 50% with the implant was 34.33dB, whereas before the surgery no patient achieved 50% of correct answers at a sound intensity of 50dB. The percentage of correct answers at 50dB changed from 11% without the implant to 85% with it. We only observed one complication consisting of an extrusion of the implant in a patient with a history of 2 previous rhytidectomies. The hearing outcomes obtained in our study are similar to those published in the literature. Bonebridge ® represents an excellent alternative in the treatment of conductive or mixed hearing loss, and with a lower rate of complications. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
Cognition and screening for hearing loss in nursing home residents.
Jupiter, Tina
2012-10-01
To compare hearing screening results using pure tones and distortion product otoacoustic emissions (DPOAEs) with nursing home residents who have dementia and explore the relationship of hearing impairment and cognitive function using the Mini- Mental Status Evaluation (MMSE). A correlational design was implemented to evaluate residents in a large inner city nursing home. One hundred one nursing home residents 65-108 years. DPOAEs and pure tone screenings were conducted at 30 dB HL and 40 dB HL at 1, 2, and 3 kHz. Pure tone thresholds at 1, 2, and 3 kHz were obtained. The MMSE was administered to all participants. Results showed that all residents failed the DPOAE screen, 97.1% failed at 30 dB HL, and 90.0% failed at 40 dB HL. Kendall's tau, phi correlation, linear by linear association, and χ(2) results indicated no significant relationship for any of the screening protocols and cognitive status other than a significant finding with left ear screening at 40 dB HL. Logistic regression analysis indicated that individuals who passed the screen had better MMSE scores. Results of the t test and Mann-Whitney U test revealed a significant difference in cognitive function for residents with a mild hearing loss compared with those with a more significant hearing loss. For screening nursing home residents, 40 dB HL screening level or DPOAEs can be used. The significant finding that residents with greater than a mild hearing loss have poorer cognitive function reinforces the importance of identifying residents with a hearing loss and providing rehabilitation and follow-up. Copyright © 2012 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
Low-loss pigtail reflector for fiber lasers.
Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatsu, Yuta; Endo, Masamori
2017-05-01
We demonstrate a low-loss pigtail reflector for a fiber laser comprising off-the-shelf components. A pigtail configuration has the advantage of easy alteration of the reflection properties, which is highly desired for basic studies and metrological applications. Our proposed reflector consists of a dielectric-coated bulk mirror and an Ferrule connector (FC)-type fiber receptacle, which are fixed with a machined holder such that the FC-type connector at the fiber end can be attached onto the mirror surface with an appropriate amount of pressure, which is essential for minimal reflection loss. The measured reflection loss is 0.07 dB, which is one order of magnitude less than that of the typical connection loss, 0.52 dB, of an FC-FC interconnection; it is comparable to the typical splice loss of a single-mode fiber (0.05 dB). The benefit of the proposed method is its versatility that enables its application to various types of fiber lasers.
Loss-tolerant quantum secure positioning with weak laser sources
Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; ...
2016-09-14
Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less
Investigation of AWG demultiplexer based SOI for CWDM application
NASA Astrophysics Data System (ADS)
Juhari, Nurjuliana; Susthitha Menon, P.; Shaari, Sahbudin; Annuar Ehsan, Abang
2017-11-01
9-channel Arrayed Waveguide Grating (AWG) demultiplexer for conventional and tapered structure were simulated using beam propagation method (BPM) with channel spacing of 20 nm. The AWG demultiplexer was design using high refractive index (n 3.47) material namely silicon-on-insulator (SOI) with rib waveguide structure. The characteristics of insertion loss, adjacent crosstalk and output spectrum response at central wavelength of 1.55 μm for both designs were compared and analyzed. The conventional AWG produced a minimum insertion loss of 6.64 dB whereas the tapered AWG design reduced the insertion loss by 2.66 dB. The lowest adjacent crosstalk value of -16.96 dB was obtained in the conventional AWG design and this was much smaller compared to the tapered AWG design where the lowest crosstalk value is -17.23 dB. Hence, a tapered AWG design significantly reduces the insertion loss but has a slightly higher adjacent crosstalk compared to the conventional AWG design. On the other hand, the output spectrum responses that are obtained from both designs were close to the Coarse Wavelength Division Multiplexing (CWDM) wavelength grid.
Photonic lantern with multimode fibers embedded
NASA Astrophysics Data System (ADS)
Yu, Hai-Jiao; Yan, Qi; Huang, Zong-Jun; Tian, He; Jiang, Yu; Liu, Yong-Jun; Zhang, Jian-Zhong; Sun, Wei-Min
2014-08-01
A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined.
Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung
2016-12-13
Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64-0.82 THz and 0.96-1.3 THz with an insertion loss ranging from -3.9 to -10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves.
Analog-to-Digital Conversion to Accommodate the Dynamics of Live Music in Hearing Instruments
Bahlmann, Frauke; Fulton, Bernadette
2012-01-01
Hearing instrument design focuses on the amplification of speech to reduce the negative effects of hearing loss. Many amateur and professional musicians, along with music enthusiasts, also require their hearing instruments to perform well when listening to the frequent, high amplitude peaks of live music. One limitation, in most current digital hearing instruments with 16-bit analog-to-digital (A/D) converters, is that the compressor before the A/D conversion is limited to 95 dB (SPL) or less at the input. This is more than adequate for the dynamic range of speech; however, this does not accommodate the amplitude peaks present in live music. The hearing instrument input compression system can be adjusted to accommodate for the amplitudes present in music that would otherwise be compressed before the A/D converter in the hearing instrument. The methodology behind this technological approach will be presented along with measurements to demonstrate its effectiveness. PMID:23258618
Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung
2016-01-01
Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64–0.82 THz and 0.96–1.3 THz with an insertion loss ranging from −3.9 to −10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves. PMID:27958358
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838
A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.
2018-03-01
Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.
Modified Sierpenski Antenna With Metamaterial For Wireless Applications
NASA Astrophysics Data System (ADS)
Aggarwal, Ishita; Pandey, Sujata
2017-08-01
This paper presents a multiband antenna based on modified sierpenski fractal structure along with metamaterials for wireless applications. Multi bands are obtained at 2.1 GHz, 5.73 GHz, 7.6 GHz and 8.4 GHz with return losses -21.49 dB,-36.36 dB,-45dB, and -23.46 dBrespectively. The dimension of the substrate used for this antenna is 52 x 60 x 1.6 mm3 and dielectric constant is 4.4 with tanδ of 0.002. The peak gain of 6.6 dB, return loss of -45 dB and VSWR of 1 are obtained at 7.6 GHz. Metamaterial unit cells are loaded on ground to improve the antenna parameters. This is a simple and compact design and has multiband features suitable for WIMAX, WLAN, C-band and X-band applications. This design is simulated by using HFSS 14.
MPI investigation for 40G NRZ link with low-RL cable assemblies
NASA Astrophysics Data System (ADS)
Satake, Toshiaki; Berdinskikh, Tatiana; Thongdaeng, Rutsuda; Faysanyo, Pitak; Gurreri, Michael
2017-01-01
Bit Error Ratio (BER) dependence on received power was studied for 40Gb/s NRZ short optical fiber transmission, including a series of four low return loss (RL 21dB) and low insertion loss (IL 0.1dB) connections. The calculated power penalty (PP) was 0.15dB for BER 10-11. Although the fiber length was within DFB laser's coherent length of 100m and the multi path interference (MPI) value was 34.3dB, no PP of BER was observed. There was no PP due to low MPI probably because the polarization of the signal pulses were not aligned for optical interference, indicating that NRZ systems have a high resistance to MPI.
A further test of the linearity of temporal summation in forward masking.
Plack, Christopher J; Carcagno, Samuele; Oxenham, Andrew J
2007-10-01
An experiment tested the hypothesis that the masking effects of two nonoverlapping forward maskers are summed linearly over time. First, the levels of individual noise maskers required to mask a brief 4-kHz signal presented at 10-, 20-, 30-, or 40-dB sensation level (SL) were found. The hypothesis predicts that a combination of the first masker presented at the level required to mask the 10-dB SL signal and the second masker presented at the level required to mask the 20-dB SL signal, should produce the same amount of masking as the converse situation (i.e., the first masker presented at the level required to mask the 20-dB SL signal and the second masker presented at the level required to mask the 10-dB SL signal), and similarly for the 30- and 40-dB SL signals. The results were consistent with the predictions.
InGaAs/InP heteroepitaxial Schottky barrier diodes for terahertz applications
NASA Technical Reports Server (NTRS)
Bhapkar, Udayan V.; Li, Yongjun; Mattauch, Robert J.
1992-01-01
This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model. Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are expected to have an I-V characteristic with an ideality factor comparable to that of GaAs Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be much greater than that of GaAs diodes. These predictions are confirmed by experiment. The mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.
Davidson, J.; Bebak, J.; Mazik, P.
2009-01-01
Intensive aquaculture systems, particularly recirculating systems, utilize equipment such as aerators, air and water pumps, blowers, and filtration systems that inadvertently increase noise levels in fish culture tanks. Sound levels and frequencies measured within intensive aquaculture systems are within the range of fish hearing, but species-specific effects of aquaculture production noise are not well defined. Field and laboratory studies have shown that fish behavior and physiology can be negatively impacted by intense sound. Therefore, chronic exposure to aquaculture production noise could cause increased stress, reduced growth rates and feed conversion efficiency, and decreased survival. The objective of this study was to provide an in-depth evaluation of the long term effects of aquaculture production noise on the growth, condition factor, feed conversion efficiency, and survival of cultured rainbow trout, Oncorhynchus mykiss. Rainbow trout were cultured in replicated tanks using two sound treatments: 117??dB re 1????Pa RMS which represented sound levels lower than those recorded in an intensive recycle system and 149??dB re 1????Pa RMS, representing sound levels near the upper limits known to occur in recycle systems. To begin the study mean fish weights in the 117 and 149??dB tanks were 40 and 39??g, respectively. After five months of exposure no significant differences were identified between treatments for mean weight, length, specific growth rates, condition factor, feed conversion, or survival (n = 4). Mean final weights for the 117 and 149??dB treatments were 641 ?? 3 and 631 ?? 10??g, respectively. Overall specific growth rates were equal, i.e. 1.84 ?? 0.00 and 1.84 ?? 0.01%/day. Analysis of growth rates of individually tagged rainbow trout indicated that fish from the 149??dB tanks grew slower during the first month of noise exposure (p < 0.05); however, fish acclimated to the noise thereafter. This study further suggests that rainbow trout growth and survival are unlikely to be affected over the long term by noise levels common to intensive aquaculture systems. ?? 2008 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Fan, G. F.; Orobtchouk, R.; Fédéli, J. M.
2010-05-01
In this paper, we demonstrate a compact 8x8 λ-router using multimode-interference (MMI) crossing based on the microring resonator. The 8x8 λ-router was designed and fabricated with a CMOS compatible silicon on insulator technology. MMI is used to reduce the cross talk and the crossing losses of the device. Microrings with a nominal radius of 2.5 μm and small variations of 10 nm of the nominal value allow respectively a free spectral range of 32 nm and spacing between channels of 4 nm. The experimental results are in good agreement with the modeling. The basic add drop filters of the devices exhibit losses of -2 dB and on/off contrast of the resonance of 20 dB. The total losses for one channel are about -4 dB and the imbalance between the 8 channels is lower than 2 dB.
Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice
Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H
2012-01-01
Objective: Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Design: Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks–26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. Results: The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. Conclusion: This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM. PMID:23448719
CAD of 0.1- to 10-GHz GaAs MMIC SPST switch
NASA Astrophysics Data System (ADS)
Yadav, Ramchandra; Kirty, V. S. R.
1998-04-01
The design of the SPST switch provides an insertion loss less than 2 dB, isolation more than 40 dB and return loss better than 17.5 dB in the frequency range of 0.1 GHz to 10 GHz. The insertion loss is improved by treating SPST switch as a 50 (Omega) artificial transmission line with incorporation of inductor in series arm and the capacitance of MESFET in the shunt arm. High isolation is ensured by the lower value of `ON' resistance of MESFET in shunt arm. Also good return loss is achieved by paralleling a 50 (Omega) resistor with capacitance of MESFET in series arm. The absence of DC blocking capacitors and replacement of large value bias chokes with 5 K(Omega) resistors effectively improved the performance of SPST switch at low frequency and also reduced the chip size. The overall chip dimension is 2.2 mm X 1.7 mm.
Design issues of a multimode interference-based 3-dB splitter.
Themistos, Christos; Rahman, B M Azizur
2002-11-20
We have investigated important issues such as the power loss, the loss imbalance the fabrication tolerances, and the wavelength dependence for the design of a multimode interference-based 3-dB splitter on deeply etched InP waveguides under general, restricted, and symmetric interference mechanisms. For this investigation, we used the finite-element-based beam propagation approach. Results are presented.
Finite Ground Coplanar Waveguide Shunt MEMS Switches for Switched Line Phase Shifters
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Simons, Rainee N.; Scardelletti, Maximillian; Varaljay, Nicholas C.
2000-01-01
Switches with low insertion loss and high isolation are required for switched line phase shifters and the transmit/receive switch at the front end of communication systems. A Finite Ground Coplanar (FGC) waveguide capacitive, shunt MEMS switch has been implemented on high resistivity Si. The switch has demonstrated an insertion loss of less than 0.3 dB and a return loss greater than 15 dB from 10 to 20, GHz. The switch design, fabrication, and characteristics are presented.
Improvement in transmission loss of aircraft double wall with resonators
NASA Astrophysics Data System (ADS)
Sun, Jincai; Shi, Liming; Ye, Xining
1991-08-01
A little volume low frequency resonator applicable to double-wall configuration of propeller-driven aircraft was designed on the basis of the principle of Helmholtz resonator. The normal incidence absorption coefficient of the various single resonator has been measured. The agreement between theoretical and experimental results is encouraging. An array of resonators whose resonant frequency at 85 Hz and 160 Hz, respectively, are installed between aircraft double-panel, and it has been shown that transmission loss of the double wall structure with resonators improve 4 dB and 6.5 dB in 1/3rd octave bandwidth at 80 Hz and 160 Hz center frequency, respectively, and 5 dB and 7 dB at resonant frequencies, compared with that of the double wall configuration without resonators.
Patino, Cecilia M.; Varma, Rohit; Azen, Stanley P.; Conti, David V.; Nichol, Michael B.; McKean-Cowdin, Roberta
2010-01-01
Purpose To assess the impact of change in visual field (VF) on change in health related quality of life (HRQoL) at the population level. Design Prospective cohort study Participants 3,175 Los Angles Latino Eye Study (LALES) participants Methods Objective measures of VF and visual acuity and self-reported HRQoL were collected at baseline and 4-year follow-up. Analysis of covariance was used to evaluate mean differences in change of HRQoL across severity levels of change in VF and to test for effect modification by covariates. Main outcome measures General and vision-specific HRQoL. Results Of 3,175 participants, 1430 (46%) showed a change in VF (≥1 decibel [dB]) and 1651, 1715 (54%) reported a clinically important change (≥5 points) in vision-specific HRQoL. Progressive worsening and improvement in the VF were associated with increasing losses and gains in vision-specific HRQoL for the composite score and 10 of its 11 subscales (all Ptrends<0.05). Losses in VF > 5 dB and gains > 3 dB were associated with clinically meaningful losses and gains in vision-specific HRQoL, respectively. Areas of vision-specific HRQoL most affected by greater losses in VF were driving, dependency, role-functioning, and mental health. The effect of change in VF (loss or gain) on mean change in vision-specific HRQoL varied by level of baseline vision loss (in visual field and/or visual acuity) and by change in visual acuity (all P-interactions<0.05). Those with moderate/severe VF loss at baseline and with a > 5 dB loss in visual field during the study period had a mean loss of vision-specific HRQoL of 11.3 points, while those with no VF loss at baseline had a mean loss of 0.97 points Similarly, with a > 5 dB loss in VF and baseline visual acuity impairment (mild/severe) there was a loss in vision-specific HRQoL of 10.5 points, whereas with no visual acuity impairment at baseline there was a loss of vision-specific HRQoL of 3.7 points. Conclusion Both losses and gains in VF produce clinically meaningful changes in vision-specific HRQoL. In the presence of pre-existing vision loss (VF and visual acuity), similar levels of visual field change produce greater losses in quality of life. PMID:21458074
Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics.
Rokhsari, H; Vahala, K J
2004-06-25
We demonstrate a low-loss, optical four port resonant coupler (add-drop geometry), using ultrahigh Q (>10(8)) toroidal microcavities. Different regimes of operation are investigated by variation of coupling between resonator and fiber taper waveguides. As a result, waveguide-to-waveguide power transfer efficiency of 93% (0.3 dB loss) and nonresonant insertion loss of 0.02% (<0.001 dB) for narrow bandwidth (57 MHz) four port couplers are achieved in this work. The combination of low-loss, fiber compatibility, and wafer-scale design would be suitable for a variety of applications ranging from quantum optics to photonic networks.
NASA Astrophysics Data System (ADS)
Afzali, Arezoo; Mottaghitalab, Vahid; Seyyed Afghahi, Seyyed Salman; Jafarian, Mojtaba; Atassi, Yomen
2017-11-01
Current investigation focuses on the electromagnetic properties of nonwoven fabric coated with BaFe12O19 (BHF) /MWCNTs/PANi nanocomposite in X and Ku bands. The BHF/MWCNTs and BHF/MWCNTs/PANi nanocomposites are prepared using the sol gel and in-situ polymerization methods respectively. The absorbent fabric was prepared based on applying a 40 wt% of BHF/MWCNTs/PANi nanocomposite in silicon resin on nonwoven fabric via roller coating technique The X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and vector network analysis (VNA) are used to peruse microstructural, magnetic and electromagnetic features of the composite and absorber fabric respectively. The microscopic images of the fabric coated with magnetic nanocomposite shows a homogenous layer of nanoparticles on the fabric surface. The maximum reflection loss of binary nano-composite BHF/MWCNTs was measured about -28.50 dB at 11.72 GHz with 1.7 GHz bandwidth (RL < -10 dB) in X band. Moreover in Ku band, the maximum reflection loss is -29.66 dB at 15.78 GHz with 3.2 GHz bandwidths. Also the ternary nanocomposite BHF/MWCNTs/PANi exhibits a broad band absorber over a wide range of X band with a maximum reflection loss of -36.2 dB at 10.2 GHz with 1.5 GHz bandwidth and in the Ku band has arrived a maximum reflection loss of -37.65 dB at 12.84 GHz with 2.43 GHz bandwidth. This result reflects the synergistic effect of the different components with different loss mechanisms. As it is observed due to the presence of PANi in the structure of nanocomposite, the amount of absorption has increased extraordinarily. The absorber fabric exhibits a maximum reflection loss of -24.2 dB at 11.6 GHz with 4 GHz bandwidth in X band. However, in Ku band, the absorber fabric has had the maximum absorption in 16.88 GHz that is about -24.34 dB with 6 GHz bandwidth. Therefore, results indicate that the fabric samples coated represents appreciable maximum absorption value of more than 99% in X and Ku bands which can be attributed to presence of carbon and polyaniline structure in composite material.
The Mars Observer Ka-band link experiment
NASA Technical Reports Server (NTRS)
Rebold, T. A.; Kwok, A.; Wood, G. E.; Butman, S.
1994-01-01
The Ka-Band Link Experiment was the first demonstration of a deep-space communications link in the 32- to 35-GHz band (Ka-band). It was carried out using the Mars Observer spacecraft while the spacecraft was in the cruise phase of its mission and using a 34-meter beam-waveguide research and development antenna at the Goldstone complex of the DSN. The DSN has been investigating the performance benefits of a shift from X-band (8.4 GHz) to Ka-band (32 GHz) for deep-space communications. The fourfold increase in frequency is expected to offer a factor of 3 to 10 improvement (5 to 10 dB) in signal strength for a given spacecraft transmitter power and antenna size. Until recently, the expected benefits were based on performance studies, with an eye to implementing such a link, but theory was transformed to reality when a 33.7-GHz Ka-band signal was received from the spacecraft by DSS 13. This article describes the design and implementation of the Ka-Band Link Experiment from the spacecraft to the DSS-13 system, as well as results from the Ka-band telemetry demonstration, ranging demonstration, and long-term tracking experiment. Finally, a preliminary analysis of comparative X- and Ka-band tracking results is included. These results show a 4- to 7-dB advantage for Ka-band using the system at DSS 13, assuming such obstacles as antenna pointing loss and power conversion loss are overcome.
Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming
2015-11-06
This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within -T(clk)~+T(clk). A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.
Study of transmission line attenuation in broad band millimeter wave frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.
2013-10-15
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmosphericmore » water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.« less
Research in millimeter wave techniques
NASA Technical Reports Server (NTRS)
Mcmillan, R. W.
1978-01-01
During the past six months, efforts on this project have been devoted to: (1) continuation of construction and testing of a 6 GHz subharmonic mixer model with extension of the pumping frequency of this mixer to omega sub s/4, (2) construction of a 183 GHz subharmonic mixer based on the results of tests on this 6 GHz model, (3) ground-based radiometric measurements at 183 GHz, (4) fabrication and testing of wire grid interferometers, (5) calculations of reflected and lost power in these interferometers, and (6) calculations of the antenna temperature due to water vapor to be expected in down-looking radiometry as a function of frequency. Significant events during the past six months include: (1) Receipt of a 183 GHz single-ended fundamental mixer, (2) attainment of 6 db single sideband conversion loss with the 6 GHz subharmonic mixer model by using a 1.5 GHz (omega sub s/4) pump frequency, (3) additional ground-based radiometric measurements and (4) derivation of equations for reflection and loss for wire grid interferometers.
Multiport optical circulator by using polarizing beam splitter cubes as spatial walk-off polarizers.
Chen, Jing-Heng; Chen, Kun-Huang; Lin, Jiun-You; Hsieh, Hsiang-Yung
2010-03-10
Optical circulators are necessary passive devices applied in optical communication systems. In the design of optical circulators, the implementation of the function of spatial walk-off polarizers is a key technique that significantly influences the performance and cost of a device. This paper proposes a design of a multiport optical circulator by using polarizing beam splitter cubes as spatial walk-off polarizers. To show the feasibility of the design, a prototype of a six-port optical circulator was fabricated. The insertion losses are 0.94-1.49 dB, the isolations are 25-51 dB, and return losses are 27.72 dB.
Low-loss single mode light waveguides in polymer
NASA Astrophysics Data System (ADS)
Sieber, Heinrich; Boehm, Hans-Jürgen; Hollenbach, Uwe; Mohr, Jürgen; Ostrzinski, Ute; Pfeiffer, Karl; Szczurowski, Marcin; Urbanczyk, Waclaw
2012-06-01
We report on the development of a UV-lithography manufacturing process for low loss single mode light waveguides in a novel polymer and the characterization of the fabricated components in a broad wavelength range from 808 nm to 1550 nm. The main focus of this work lies in providing a quick and cost efficient production technique for single mode waveguides and low loss integrated optical circuits. To achieve this goal we chose a novel photo-structurable polymer host-guest-system consisting of SU8 and a low refractive dopant monomer. Near and far-field measurements at different wavelengths show that the mode propagating within a well designed integrated waveguide structure and the mode of a standard fiber can exhibit a mode overlap value of approximately 1 and suffer only very low coupling losses. We demonstrate excess loss of 0.14 dB/cm for 808 nm, 0.33 dB/cm for 1310 nm and 2.86 dB/cm for 1550 nm. Typical insertion loss values of straight waveguides with a length of 36 mm are 0.9 dB for 808 nm, 1.5 dB for 1310 nm and 10.4 dB for 1550 nm. Polarization dependent loss was found to be less than 0.2 dB on sets of test structures of 36 mm length. We measured material attenuation in the novel polymer material before cross-linking of approximately 0.04 dB/cm for 808 nm and around 0.20 dB/cm for 1310 nm respectively. The presented production technique is suitable to provide low loss and low cost integrated optical circuits for sensor and communication applications in a broad wavelength range.
Hearing and Mortality Outcomes following Temporal Bone Fractures.
Honeybrook, Adam; Patki, Aniruddha; Chapurin, Nikita; Woodard, Charles
2017-12-01
The aim of this article is to determine hearing and mortality outcomes following temporal bone fractures. Retrospective chart review was performed of 152 patients diagnosed with a temporal bone fracture presenting to the emergency room at a tertiary care referral center over a 10-year period. Utilizing Patients' previously obtained temporal bone computed tomographic scans and audiograms, fractures were classified based on several classification schemes. Correlations between fracture patterns, mortality, and hearing outcomes were analyzed using χ 2 tests. Ossicular chain disruption was seen in 11.8% of patients, and otic capsule violation was seen in 5.9%; 22.7% of patients presented for audiologic follow-up. Seventeen patients with conductive hearing loss had air-bone gaps of 26 ± 7.5 dB (500 Hz), 27 ± 6.8 dB (1,000 Hz), 18 ± 6.2 dB (2,000 Hz), and 32 ± 7.7 dB (4,000 Hz). Two cases of profound sensorineural hearing loss were associated with otic capsule violation. No fracture classification scheme was predictive of hearing loss, although longitudinal fractures were statistically associated with ossicular chain disruption ( p < 0.01). Temporal bone fractures in patients older than 60 years carried a relative risk of death of 3.15 compared with those younger than 60 years. The average magnitude of conductive hearing loss resulting from temporal bone fracture ranged from 18 to 32 dB in this cohort. Classification of fracture type was not predictive of hearing loss, despite the statistical association between ossicular chain disruption and longitudinal fractures. This finding may be due to the low follow-up rates of this patient population. Physicians should make a concerted effort to ensure that audiological monitoring is executed to prevent and manage long-term hearing impairment.
Cross-guide Moreno directional coupler in empty substrate integrated waveguide
NASA Astrophysics Data System (ADS)
Miralles, E.; Belenguer, A.; Esteban, H.; Boria, V.
2017-05-01
Substrate integrated waveguides (SIWs) combine the advantages of rectangular waveguides (low losses) and planar circuits (low cost and low profile). Empty substrate integrated waveguide (ESIW) has been proposed as a novel configuration in SIWs recently. This technology significantly reduces the losses of conventional SIW by removing its inner dielectric. The cross-guide directional coupler is a well-known low-profile design for having a broadband waveguide coupler. In this paper a cross-guide coupler with ESIW technique is proposed. In such a manner, the device can be integrated with microwave circuits and other printed circuit board components. It is the first time that a cross-guide coupler is implemented in ESIW technology. The designed, fabricated, and measured device presents good results as a matter of insertion loss of 1 dB (including transitions), reflection under 20 dB, coupling between 19.5 and 21.5 dB, and directivity higher than 15 dB over targeted frequency range from 12.4 GHz to 18 GHz. The coupler implemented in ESIW improves the directivity when compared to similar solutions in other empty substrate integrated waveguide solutions.
NASA Astrophysics Data System (ADS)
Katayose, Satomi; Hashizume, Yasuaki; Itoh, Mikitaka
2016-08-01
We experimentally demonstrated a 1 × 8 silicon-silica hybrid thermo-optic switch based on an optical phased array using a multi-chip integration technique. The switch consists of a silicon chip with optical phase shifters and two silica-based planar lightwave circuit (PLC) chips composed of optical couplers and fiber connections. We adopted a rib waveguide as the silicon waveguide to reduce the coupling loss and increase the alignment tolerance for coupling between silicon and silica waveguides. As a result, we achieved a fast switching response of 81 µs, a high extinction ratio of over 18 dB and a low insertion loss of 4.9-8.1 dB including a silicon-silica coupling loss of 0.5 ± 0.3 dB at a wavelength of 1.55 µm.
Conversation Begins at Home--Around the Table.
ERIC Educational Resources Information Center
Bodner-Johnson, Barbara
1988-01-01
Suggestions are made for encouraging conversation skills in the deaf child at the family dinner table. Among suggestions to families are to use dinnertime to catch up on each other's news, make the physical environment pleasant, use modes of communication accessible to the deaf child, and be responsive to the deaf child. (DB)
Wall, Michael; McDermott, Michael P; Kieburtz, Karl D; Corbett, James J; Feldon, Steven E; Friedman, Deborah I; Katz, David M; Keltner, John L; Schron, Eleanor B; Kupersmith, Mark J
Acetazolamide is commonly used to treat idiopathic intracranial hypertension (IIH), but there is insufficient information to establish an evidence base for its use. To determine whether acetazolamide is beneficial in improving vision when added to a low-sodium weight reduction diet in patients with IIH and mild visual loss. Multicenter, randomized, double-masked, placebo-controlled study of acetazolamide in 165 participants with IIH and mild visual loss who received a low-sodium weight-reduction diet. Participants were enrolled at 38 academic and private practice sites in North America from March 2010 to November 2012 and followed up for 6 months (last visit in June 2013). All participants met the modified Dandy criteria for IIH and had a perimetric mean deviation (PMD) between -2 dB and -7 dB. The mean age was 29 years and all but 4 participants were women. Low-sodium weight-reduction diet plus the maximally tolerated dosage of acetazolamide (up to 4 g/d) or matching placebo for 6 months. The planned primary outcome variable was the change in PMD from baseline to month 6 in the most affected eye, as measured by Humphrey Field Analyzer. Perimetric mean deviation is a measure of global visual field loss (mean deviation from age-corrected normal values), with a range of 2 to -32 dB; larger negative values indicate greater vision loss. Secondary outcome variables included changes in papilledema grade, quality of life (Visual Function Questionnaire 25 [VFQ-25] and 36-Item Short Form Health Survey), headache disability, and weight at month 6. The mean improvement in PMD was greater with acetazolamide (1.43 dB, from -3.53 dB at baseline to -2.10 dB at month 6; n = 86) than with placebo (0.71 dB, from -3.53 dB to -2.82 dB; n = 79); the difference was 0.71 dB (95% CI, 0 to 1.43 dB; P = .050). Mean improvements in papilledema grade (acetazolamide: -1.31, from 2.76 to 1.45; placebo: -0.61, from 2.76 to 2.15; treatment effect, -0.70; 95% CI, -0.99 to -0.41; P < .001) and vision-related quality of life as measured by the National Eye Institute VFQ-25 (acetazolamide: 8.33, from 82.97 to 91.30; placebo: 1.98, from 82.97 to 84.95; treatment effect, 6.35; 95% CI, 2.22 to 10.47; P = .003) and its 10-item neuro-ophthalmic supplement (acetazolamide: 9.82, from 75.45 to 85.27; placebo: 1.59, from 75.45 to 77.04; treatment effect, 8.23; 95% CI, 3.89 to 12.56; P < .001) were also observed with acetazolamide. Participants assigned to acetazolamide also experienced a reduction in weight (acetazolamide: -7.50 kg, from 107.72 kg to 100.22 kg; placebo: -3.45 kg, from 107.72 kg to 104.27 kg; treatment effect, -4.05 kg, 95% CI, -6.27 to -1.83 kg; P < .001). In patients with IIH and mild visual loss, the use of acetazolamide with a low-sodium weight-reduction diet compared with diet alone resulted in modest improvement in visual field function. The clinical importance of this improvement remains to be determined. clinicaltrials.gov Identifier: NCT01003639.
A Compact Low-loss Magic-T using Microstrip-Slotline Transitions
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Wollack, Edward J.; Moseley, Samuel H.; Papapolymerou, John; Laskar, Joy
2007-01-01
The design of a compact low-loss magic-T is proposed. The planar magic-T incorporates the compact microstrip-slotline tee junction and small microstrip-slotline transition area to reduce slotline radiation. The experimental results show that the magic-T produces broadband in-phase and out-of-phase power combiner/divider responses, has an average in-band insertion loss of 0.3 dB and small in-band phase and amplitude imbalance of less than plus or minus 1.6 deg. and plus or minus 0.3 dB, respectively.
Packaging of microwave integrated circuits operating beyond 100 GHz
NASA Technical Reports Server (NTRS)
Samoska, L.; Daniel, E.; Sokolov, V.; Sommerfeldt, S.; Bublitz, J.; Olson, K.; Gilbert, B.; Chow, D.
2002-01-01
Several methods of packaging high speed (75-330 GHz) InP HEMT MMIC devices are discussed. Coplanar wirebonding is presented with measured insertion loss of less than 0.5dB and return loss better than -17 dB from DC to 110 GHz. A motherboard/daughterboard packaging scheme is presented which supports minimum loss chains of MMICs using this coplanar wirebonding method. Split waveguide block packaging approaches are presented in G-band (140-220 GHz) with two types of MMIC-waveguide transitions: E-plane probe andantipodal finline.
Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits.
Wood, Michael; Sun, Peng; Reano, Ronald M
2012-01-02
We demonstrate coupling from tapered optical fibers to 450 nm by 250 nm silicon strip waveguides using compact cantilever couplers. The couplers consist of silicon inverse width tapers embedded within silicon dioxide cantilevers. Finite difference time domain simulations are used to design the length of the silicon inverse width taper to as short as 6.5 μm for a cantilever width of 2 μm. Modeling of various strip waveguide taper profiles shows reduced coupling losses for a quadratic taper profile. Infrared measurements of fabricated devices demonstrate average coupling losses of 0.62 dB per connection for the quasi-TE mode and 0.50 dB per connection for the quasi-TM mode across the optical telecommunications C band. In the wavelength range from 1477 nm to 1580 nm, coupling losses for both polarizations are less than 1 dB per connection. The compact, broadband, and low-loss coupling scheme enables direct access to photonic integrated circuits on an entire chip surface without the need for dicing or cleaving the chip.
Flicker-defined form perimetry in glaucoma patients.
Horn, Folkert K; Kremers, Jan; Mardin, Christian Y; Jünemann, Anselm G; Adler, Werner; Tornow, Ralf P
2015-03-01
To assess the potential of flicker-defined form (FDF) perimetry to detect functional loss in patient groups with beginning glaucoma, and to evaluate the dynamic range of the FDF stimulus in individual patients and at individual test positions. FDF perimetry and standard automated perimetry (SAP) were performed at identical test locations (adapted G1 protocol) in 60 healthy subjects and 111 glaucoma patients. All patients showed glaucomatous optic disc appearance. Grouping within the glaucoma cohort was based on SAP-performance: 33 "preperimetric" open-angle glaucoma (OAG) patients, 28 "borderline" OAG (focal defects and SAP-mean defect (MD) <2 dB), 33 "early" OAG (SAP-MD < 5 dB), 17 "advanced" OAG. All participants were experienced in psychophysical and perimetric tests. Defect values and the areas under receiver operating characteristic curves (ROC) in patient groups were statistically compared. The values of FDF-MD in the preperimetric, borderline, and early OAG group were 2.7 ± 3.4 dB, 5.5 ± 2.6 dB, and 8.5 ± 3.4 dB respectively (all significantly above normal). The percentage of patients exceeding normal FDF-MD was 27.3 %, 60.7 %, and 87.9 % respectively. The age-adjusted FDF-mean defect (MD) of the G1X-protocol was not significantly correlated with refractive error, lens opacity, pupil size, or gender. Occurrence of ceiling effects (inability to detect targets at highest contrast) showed a high correlation with visual field losses (R = 0.72, p < 0.001). Local analysis indicates that SAP losses exceeding 5 dB could not be distinguished with the FDF technique. The FDF stimulus was able to detect beginning glaucoma damage. Patients with SAP-MD values exceeding 5 dB should be monitored with conventional perimetry because of its larger dynamic range.
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2012 CFR
2012-10-01
... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2014 CFR
2014-10-01
... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2011 CFR
2011-10-01
... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...
47 CFR 80.767 - Propagation curve.
Code of Federal Regulations, 2013 CFR
2013-10-01
... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...
Hearing: Noise-Induced Hearing Loss
... stereo headsets (at about 110 dB), attending a rock concert (at about l20 dB), or hearing a ... by listening to parents, teachers, television, and radio. Music, the sounds of nature, and the voices of ...
The Words-in-Noise Test (WIN), list 3: a practice list.
Wilson, Richard H; Watts, Kelly L
2012-02-01
The Words-in-Noise Test (WIN) was developed as an instrument to quantify the ability of listeners to understand monosyllabic words in background noise using multitalker babble (Wilson, 2003). The 50% point, which is calculated with the Spearman-Kärber equation (Finney, 1952), is used as the evaluative metric with the WIN materials. Initially, the WIN was designed as a 70-word instrument that presented ten unique words at each of seven signal-to-noise ratios from 24 to 0 dB in 4 dB decrements. Subsequently, the 70-word list was parsed into two 35-word lists that achieved equivalent recognition performances (Wilson and Burks, 2005). This report involves the development of a third list (WIN List 3) that was developed to serve as a practice list to familiarize the participant with listening to words presented in background babble. To determine-on young listeners with normal hearing and on older listeners with sensorineural hearing loss-the psychometric properties of the WIN List 3 materials. A quasi-experimental, repeated-measures design was used. Twenty-four young adult listeners (M = 21.6 yr) with normal pure-tone thresholds (≤ 20 dB HL at 250 to 8000 Hz) and 24 older listeners (M = 65.9 yr) with sensorineural hearing loss participated. The level of the babble was fixed at 80 dB SPL with the level of the words varied from 104 to 80 dB SPL in 4 dB decrements. For listeners with normal hearing, the 50% points for Lists 1 and 2 were similar (4.3 and 5.1 dB S/N, respectively), both of which were lower than the 50% point for List 3 (7.4 dB S/N). A similar relation was observed with the listeners with hearing loss, 50% points for Lists 1 and 2 of 12.2 and 12.4 dB S/N, respectively, compared to 15.8 dB S/N for List 3. The differences between Lists 1 and 2 and List 3 were significant. The relations among the psychometric functions and the relations among the individual data both reflected these differences. The significant ∼3 dB difference between performances on WIN Lists 1 and 2 and on WIN List 3 by the listeners with normal hearing and the listeners with hearing loss dictates caution with the use of List 3. The use of WIN List 3 should be reserved for ancillary purposes in which equivalent recognition performances are not required, for example, as a practice list or a stand alone measure. American Academy of Audiology.
NASA Astrophysics Data System (ADS)
Chack, Devendra; Kumar, V.; Raghuwanshi, Sanjeev Kumar; Singh, Dev Prakash
2017-01-01
Compact triple O-S-C band wavelength demultiplexer, which consists of series cascaded multimode interference (MMI) couplers has been carried out in this paper. The MMI coupler has been used to drop the wavelengths of 1510 nm and 1550 nm at bar port while the wavelength 1300 nm into the cross port. Then another MMI coupler has been designed to separate the wavelength 1510 nminto one port and wavelength 1550 nm into another port. The triple wavelength demultiplexer function has been performed by choosing a suitable refractive index of the guiding region and geometrical parameters such as the width and length of MMI coupler. Numerical simulation with finite difference beam propagation method (BPM) has been utilized to design and optimize the operation of the proposed triple wavelength demultiplexer. The simulation results show that insertion losses of wavelength O, S and C, bands are 1.884 dB, 1.452 dB and 2.568 dB, respectively, with isolations for each output waveguide ranging from 10 dB to 28.72 dB. The 3-dB bandwidth of insertion loss for 1300 nm, 1510 nm and 1550 nm are 80 nm, 20 nm and 10 nm, respectively.
Arora, Karun S; Boland, Michael V; Friedman, David S; Jefferys, Joan L; West, Sheila K; Ramulu, Pradeep Y
2013-12-01
To determine the extent of difference between better-eye visual field (VF) mean deviation (MD) and integrated VF (IVF) MD among Salisbury Eye Evaluation (SEE) subjects and a larger group of glaucoma clinic subjects and to assess how those measures relate to objective and subjective measures of ability/performance in SEE subjects. Retrospective analysis of population- and clinic-based samples of adults. A total of 490 SEE and 7053 glaucoma clinic subjects with VF loss (MD ≤-3 decibels [dB] in at least 1 eye). Visual field testing was performed in each eye, and IVF MD was calculated. Differences between better-eye and IVF MD were calculated for SEE and clinic-based subjects. In SEE subjects with VF loss, models were constructed to compare the relative impact of better-eye and IVF MD on driving habits, mobility, self-reported vision-related function, and reading speed. Difference between better-eye and IVF MD and relationship of better-eye and IVF MD with performance measures. The median difference between better-eye and IVF MD was 0.41 dB (interquartile range [IQR], -0.21 to 1.04 dB) and 0.72 dB (IQR, 0.04-1.45 dB) for SEE subjects and clinic-based patients with glaucoma, respectively, with differences of ≥ 2 dB between the 2 MDs observed in 9% and 18% of the groups, respectively. Among SEE subjects with VF loss, both MDs demonstrated similar associations with multiple ability and performance metrics as judged by the presence/absence of a statistically significant association between the MD and the metric, the magnitude of observed associations (odds ratios, rate ratios, or regression coefficients associated with 5-dB decrements in MD), and the extent of variability in the metric explained by the model (R(2)). Similar associations of similar magnitude also were noted for the subgroup of subjects with glaucoma and subjects in whom better-eye and IVF MD differed by ≥ 2 dB. The IVF MD rarely differs from better-eye MD, and similar associations between VF loss and visual disability are obtained using either MD. Unlike better-eye MD, IVF measurements require extra software/calculation. As such, information from studies using better-eye MD can be more easily integrated into clinical decision-making, making better-eye MD a robust and meaningful method for reporting VF loss severity. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
The Effect of Superior Semicircular Canal Dehiscence on Intracochlear Sound Pressures
Pisano, Dominic V.; Niesten, Marlien E.F.; Merchant, Saumil N.; Nakajima, Hideko Heidi
2013-01-01
Semicircular canal dehiscence (SCD) is a pathological opening in the bony wall of the inner ear that can result in conductive hearing loss. The hearing loss is variable across patients, and the precise mechanism and source of variability are not fully understood. Simultaneous measurements of basal intracochlear sound pressures in scala vestibuli (SV) and scala tympani (ST) enable quantification of the differential pressure across the cochlear partition, the stimulus that excites the cochlear partition. We used intracochlear sound pressure measurements in cadaveric preparations to study the effects of SCD size. Sound-induced pressures in SV and ST, as well as stapes velocity and ear-canal pressure were measured simultaneously for various sizes of SCD followed by SCD patching. Our results showed that at low frequencies (<600 Hz), SCD decreased the pressure in both SV and ST, as well as differential pressure, and these effects became more pronounced as dehiscence size was increased. Near 100 Hz, SV decreased about 10 dB for a 0.5 mm dehiscence and 20 dB for a 2 mm dehiscence, while ST decreased about 8 dB for a 0.5 mm dehiscence and 18 dB for a 2mm dehiscence. Differential pressure decreased about 10 dB for a 0.5 mm dehiscence and about 20 dB for a 2 mm dehiscense at 100 Hz. In some ears, for frequencies above 1 kHz, the smallest pinpoint dehiscence had bigger effects on the differential pressure (10 dB decrease) than larger dehiscenses (less than 10 dB decrease), suggesting larger hearing losses in this frequency range. These effects due to SCD were reversible by patching the dehiscence. We also showed that under certain circumstances such as SCD, stapes velocity is not related to how the ear can transduce sound across the cochlear partition because it is not directly related to the differential pressure, emphasizing that certain pathologies cannot be fully assessed by measurements such as stapes velocity. PMID:22814034
Design of Dual Band Microstrip Patch Antenna using Metamaterial
NASA Astrophysics Data System (ADS)
Rafiqul Islam, Md; Alsaleh Adel, A. A.; Mimi, Aminah W. N.; Yasmin, M. Sarah; Norun, Farihah A. M.
2017-11-01
Metamaterial has received great attention due to their novel electromagnetic properties. It consists of artificial metallic structures with negative permittivity (ɛ) and permeability (µ). The average cell size of metamaterial must be less than a quarter of wavelength, hence, size reduction for the metamaterial antenna is possible. In addition, metamaterial can be used to enhance the low gain and efficiency in conventional patch antenna, which is important in wireless communication. In this paper, dual band microstrip patch antenna design using metamaterial for mobile GSM and WiMax application is introduced. The antenna structure consists of microstrip feed line connected to a rectangular patch. An array of five split ring resonators (SRRs) unit cells is inserted under the patch. The presented antenna resonates at 1.8 GHz for mobile GSM and 2.4 GHz for WIMAX applications. The return loss in the FR4 antenna at 1.8 GHz is -22.5 dB. Using metamaterial the return loss has improved to -25 dB at 2.4 GHz and -23.5 dB at 1.8 GHz. A conventional microstrip patch antenna using pair of slots is also designed which resonates at 1.8 GHz and 2.4 GHz. The return loss at 1.8 GHz and 2.4 GHz were -12.1 dB and -21.8 dB respectively. The metamaterial antenna achieved results with major size reduction of 45%, better bandwidth and better returns loss if it is compared to the pair of slots antenna. The software used to design, simulate and optimize is CST microwave studio.
A Plasmonic based Ultracompact Polarization Beam Splitter on Silicon-on-Insulator Waveguides
Tan, Qilong; Huang, Xuguang; Zhou, Wen; Yang, Kun
2013-01-01
An ultracompact polarization beam splitter (PBS) is designed on silicon-on-insulator (SOI) platform based on the localized surface plasmons (LSPs) excited by particular polarization light. The device uses nanoscale silver cylinders as the polarization selection between two silicon waveguides of a directional coupler. The transverse-magnetic (TM) polarization light excites localized surface plasmons and is coupled into the cross port of the directional coupler with a low insert loss, while the transverse-electric (TE) polarization light is under restriction. The PBS has a coupling layer with 50 nm width and 1.1 μm length supporting broadband operation. The simulation calculations show that 22.06dB and 23.06dB of extinction ratios for the TE and TM polarizations were obtained, together with insertion losses of 0.09dB and 0.40dB. PMID:23856635
MMIC LNA based novel composite-channel Al0.3Ga0.7N/Al0.05Ga0.95N/GaNHEMTs
NASA Astrophysics Data System (ADS)
Cheng, Zhi-Qun; Cai, Yong; Liu, Jie; Zhou, Yu-Gang; Lau Kei, May; Chen, Kevin J.
2007-11-01
A microwave monolithic integrated circuit (MMIC) C-band low noise amplifier (LNA) using 1 μm-gate composite-channel Al0.3Ga0.7N/Al0.05Ga0.95N/GaN high electron mobility transistors (CC-HEMTs) has been designed, fabricated and characterized. The material structure and special channel of CC-HEMT were given and analysed. The MMIC LNA with CC-HEMT showed a noise figure of 2.4 dB, an associated gain of 12.3 dB, an input return loss of -6 dB and an output return loss of -16 dB at 6 GHz. The IIP3 of the LNA is 13 dBm at 6 GHz. The LNA with 1 μm × 100 μm device showed very high-dynamic range with decent gain and noise figure.
Chou, Jonathan C.; Rollins, Stuart D.; Ye, Minghao; Batlle, Daniel; Fawzi, Amani A.
2014-01-01
Purpose. We sought to determine the effects of atrasentan, a selective endothelin-A receptor antagonist, on the retinal vascular and structural integrity in a db/db mouse, an animal model of type 2 diabetes and diabetic retinopathy. Methods. Diabetic mice, 23 weeks old, were given either atrasentan or vehicle treatment in drinking water for 8 weeks. At the end of the treatment period, eyes underwent trypsin digest to assess the retinal vascular pathology focusing on capillary degeneration, endothelial cell, and pericyte loss. Paraffin-embedded retinal cross sections were used to evaluate retinal sublayer thickness both near the optic nerve and in the retinal periphery. Immunohistochemistry and TUNEL assay were done to evaluate retinal cellular and vascular apoptosis. Results. Compared with untreated db/db mice, atrasentan treatment was able to ameliorate the retinal vascular pathology by reducing pericyte loss (29.2% ± 0.4% vs. 44.4% ± 2.0%, respectively, P < 0.05) and capillary degeneration as determined by the percentage of acellular capillaries (8.6% ± 0.3% vs. 3.3% ± 0.41%, respectively, P < 0.05). A reduction in inner retinal thinning both at the optic nerve and at the periphery in treated diabetic mice was also observed in db/db mice treated with atrasentan as compared with untreated db/db mice (P < 0.05). TUNEL assay suggested that atrasentan may decrease enhanced apoptosis in neuroretinal layers and vascular pericytes in the db/db mice. Conclusions. Endothelin-A receptor blockade using atrasentan significantly reduces the vascular and neuroretinal complications in diabetic mice. Endothelin-A receptor blockade is a promising therapeutic target in diabetic retinopathy. PMID:24644048
Hearing Loss After Radiotherapy for Pediatric Brain Tumors: Effect of Cochlear Dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Chiaho; Bass, Johnnie K.; Khan, Raja
Purpose: To determine the effect of cochlear dose on sensorineural hearing loss in pediatric patients with brain tumor treated by using conformal radiation therapy (CRT). Patients and Methods: We studied 78 pediatric patients (155 ears) with localized brain tumors treated in 1997-2001 who had not received platinum-based chemotherapy and were followed up for at least 48 months. They were evaluated prospectively by means of serial pure-tone audiograms (250 Hz-8 kHz) and/or auditory brainstem response before and every 6 months after CRT. Results: Hearing loss occurred in 14% (11 of 78) of patients and 11% (17 of 155) of cochleae, withmore » onset most often at 3-5 years after CRT. The incidence of hearing loss was low for a cochlear mean dose of 30 Gy or less and increased at greater than 40-45 Gy. Risk was greater at high frequencies (6-8 kHz). In children who tested abnormal for hearing, average hearing thresholds increased from a less than 25 decibel (dB) hearing level (HL) at baseline to a mean of 46 {+-} 13 (SD) dB HL for high frequencies, 41 {+-} 7 dB HL for low frequencies, and 38 {+-} 6 dB HL for intermediate frequencies. Conclusions: Sensorineural hearing loss is a late effect of CRT. In the absence of other factors, including ototoxic chemotherapy, increase in cochlear dose correlates positively with hearing loss in pediatric patients with brain tumor. To minimize the risk of hearing loss for children treated with radiation therapy, a cumulative cochlear dose less than 35 Gy is recommended for patients planned to receive 54-59.4 Gy in 30-33 treatment fractions.« less
NASA Astrophysics Data System (ADS)
Nur Farid, Mifta; Arifianto, Dhany
2016-11-01
A person who is suffering from hearing loss can be helped by using hearing aids and the most optimal performance of hearing aids are binaural hearing aids because it has similarities to human auditory system. In a conversation at a cocktail party, a person can focus on a single conversation even though the background sound and other people conversation is quite loud. This phenomenon is known as the cocktail party effect. In an early study, has been explained that binaural hearing have an important contribution to the cocktail party effect. So in this study, will be performed separation on the input binaural sound with 2 microphone sensors of two sound sources based on both the binaural cue, interaural time difference (ITD) and interaural level difference (ILD) using binary mask. To estimate value of ITD, is used cross-correlation method which the value of ITD represented as time delay of peak shifting at time-frequency unit. Binary mask is estimated based on pattern of ITD and ILD to relative strength of target that computed statistically using probability density estimation. Results of sound source separation performing well with the value of speech intelligibility using the percent correct word by 86% and 3 dB by SNR.
Remote powering platform for implantable sensor systems at 2.45 GHz.
Kazanc, Onur; Yilmaz, Gurkan; Maloberti, Franco; Dehollain, Catherine
2014-01-01
Far-field remotely powered sensor systems enable long distance operation for low-power sensor systems. In this work, we demonstrate a remote powering platform with a miniaturized antenna and remote powering base station operating at 2.45 GHz. The rectenna, which is the energy receiving and conversion element of the sensor system, is designed and measured. The measurements for the tag are performed within 15 cm distance from the remote powering base station. The realized gain of the tag antenna is measured as -3.3 dB, which is 0.5 dB close to the simulations, where simulated realized gain is -2.8 dB.
Microwave Landing System. Phase II. Tracker Error Study.
1974-12-01
the runways and environs. The geographical locations of the four phototheodolite towers are indicated on Figure 1-1. A Contraves Model C phototheodolite...temperature 400 K above 500 elevation (dark sky) Side lobe location 1.720 (Ist) Type of scan Monopulse R-f transmission line Rectangular waveguide Line loss ...receiving 1.3 db Line loss transmitting 2.3 db System Facts Azimuth coverage 3600 Elevation coverage -10* to 190* (tracking -10* to 85*) Range accuracy
Broadband and scalable optical coupling for silicon photonics using polymer waveguides
NASA Astrophysics Data System (ADS)
La Porta, Antonio; Weiss, Jonas; Dangel, Roger; Jubin, Daniel; Meier, Norbert; Horst, Folkert; Offrein, Bert Jan
2018-04-01
We present optical coupling schemes for silicon integrated photonics circuits that account for the challenges in large-scale data processing systems such as those used for emerging big data workloads. Our waveguide based approach allows to optimally exploit the on-chip optical feature size, and chip- and package real-estate. It further scales well to high numbers of channels and is compatible with state-of-the-art flip-chip die packaging. We demonstrate silicon waveguide to polymer waveguide coupling losses below 1.5 dB for both the O- and C-bands with a polarisation dependent loss of <1 dB. Over 100 optical silicon waveguide to polymer waveguide interfaces were assembled within a single alignment step, resulting in a physical I/O channel density of up to 13 waveguides per millimetre along the chip-edge, with an average coupling loss of below 3.4 dB measured at 1310 nm.
Er 3+-Yb 3+ co-doped glass waveguide amplifiers using ion exchange and field-assisted annealing
NASA Astrophysics Data System (ADS)
Zhang, X. Z.; Liu, K.; Mu, S. K.; Tan, C. Z.; Zhang, D.; Pun, E. Y. B.; Zhang, D. M.
2006-12-01
Er 3+-Yb 3+ co-doped waveguide amplifiers fabricated using thermal two-step ion-exchange are demonstrated. K +-Na + ion-exchange process was first carried out in pure KNO 3 molten bath, and then field-assisted annealing (FAA) was used to make the buried waveguides. The effective buried depth is estimated to be ˜3.4 μm for the buried FAA waveguides. With the use of cut-back method, the fiber-to-guide coupling loss of ˜4.38 dB, the waveguide loss of ˜2.27 dB/cm, and Er 3+ absorption loss ˜5.7 dB were measured for a ˜1.24-cm-long waveguide. Peak relative gain of ˜7.0 dB is obtained for a ˜1.24-cm-long waveguide. The potential for the fabrication of compact optical amplifiers operating in the range of 1520-1580 nm is also demonstrated.
NASA Astrophysics Data System (ADS)
Pourabdollahi, Hakimeh; Zarei, Ali Reza
In this research, the electromagnetic absorption properties of the carbonyl iron-carbon (CI/C) nanocomposite prepared via hydrothermal reaction using glucose as carbon precursor was studied in the range of 8.2-12.4 GHz. In hydrothermal reaction, glucose solution containing CI particles, placed in autoclave for 4 h under 453 K. Using surface coating technology is a method that prevents Cl oxidation and improves CI electromagnetic absorption. The structure, morphology and magnetic performances of the prepared nanocomposites were characterized by X-ray diffraction (XRD), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The electromagnetic properties including complex permittivity (εr), the permeability (μr), dielectric loss, magnetic loss, reflection loss, and attenuation constant were investigated using a vector network analyzer. For The CI/C nanocomposite, the bandwidth of -10 dB and -20 dB were obtained in the frequency range of 9.8-12.4 and 11.0-11.8 GHz, respectively. As well as, the reflection loss was -46.69 dB at the matching frequency of 11.5 GHz, when the matching thickness was 1.3 mm. While for CI particles the reflection loss for 4.4 mm thickness was -16.86 dB at the matching frequency of 12.3 GHz. The results indicate that the existence layer of carbon on carbonyl iron enhance the electromagnetic absorbing properties. Therefore, this nanocomposite can be suitable for in the radar absorbing coatings.
Design and fabrication of pHEMT MMIC switches for IEEE 802.11.a/b/g WLAN applications
NASA Astrophysics Data System (ADS)
Mun, Jae Kyoung; Ji, Hong Gu; Ahn, Hyokyun; Kim, Haecheon; Park, Chong-Ook
2005-08-01
In this paper, we propose a channel structure for a promising switch pHEMT with excellent isolation characteristics based on the distribution of electric field intensity beneath the Schottky contact in the transistor. Using the proposed device channel structure, SPST and SPDT switches were designed and fabricated, applicable to 2.4 GHz and 5.8 GHz WLAN systems. We discuss the relationship between dc characteristics and switch parameters in this paper in detail. The developed SPST switch exhibits a low insertion loss of 0.26 dB and a high isolation of 34.3 dB with a control voltage of 0 V/-3 V at 5.8 GHz. The SPDT also shows a good performance of 0.85 dB insertion loss and 31.5 dB isolation under the same conditions. The measured power-handling capability at 2.4 GHz reveals that the SPDT has an output power of 27 dBm at the 1 dB compression point and a third-order intercept point of more than 46 dBm.
X-band T/R switch with body-floating multi-gate PDSOI NMOS transistors
NASA Astrophysics Data System (ADS)
Park, Mingyo; Min, Byung-Wook
2018-03-01
This paper presents an X-band transmit/receive switch using multi-gate NMOS transistors in a silicon-on-insulator CMOS process. For low loss and high power handling capability, floating body multi-gate NMOS transistors are adopted instead of conventional stacked NMOS transistors, resulting in 53% reduction of transistor area. Comparing to the stacked NMOS transistors, the multi gate transistor shares the source and drain region between stacked transistors, resulting in reduced chip area and parasitics. The impedance between bodies of gates in multi-gate NMOS transistors is assumed to be very large during design and confirmed after measurement. The measured input 1 dB compression point is 34 dBm. The measured insertion losses of TX and RX modes are respectively 1.7 dB and 2.0 dB at 11 GHz, and the measured isolations of TX and RX modes are >27 dB and >20 dB in X-band, respectively. The chip size is 0.086 mm2 without pads, which is 25% smaller than the T/R switch with stacked transistors.
A compact dual band MIMO PIFA for 5G applications
NASA Astrophysics Data System (ADS)
Rachakonda, A.; Bang, P.; Mudiganti, J.
2017-11-01
5G applications support operations in 28, 37, 60 and 73GHz bands and is expected to support 1GHz bandwidth. In the present paper, planar inverted F antenna for 28GHz operation has been proposed for 5G applications for which a return loss of -17.46dB and a gain of 9.30dB have been observed. In addition, the design has been extended for dual band operation at 28 and 37GHz by implementing an L slot in the patch. An excellent return loss of -32.54dB and -18.57dB with a gain of 8.62dB has been observed. Moreover, a feasible bandwidth of 1.02GHz has been obtained in former design, while an enhanced bandwidth of 1.3GHz has been obtained at both bands in case of latter design. However, for better gain & data rate considerations, the previous design has been extended as a MIMO configuration with 2 antenna elements (2x1) and corresponding performance parameters have been evaluated.
Midinfrared wavelength conversion in hydrogenated amorphous silicon waveguides
NASA Astrophysics Data System (ADS)
Wang, Jiang; Wang, Zhaolu; Huang, Nan; Han, Jing; Li, Yongfang; Liu, Hongjun
2017-10-01
Midinfrared (MIR) wavelength conversion based on degenerate four-wave mixing is theoretically investigated in hydrogenated amorphous silicon (a-Si:H) waveguides. The broadband phase mismatch is achieved in the normal group-velocity dispersion regime. The conversion bandwidth is extended to 900 nm, and conversion efficiency of up to -14 dB with a pump power of 70 mW in a 2-mm long a-Si:H rib waveguides is obtained. This low-power on-chip wavelength converter will have potential for application in a wide range of MIR nonlinear optic devices.
Raz, O; Herrera, J; Dorren, H J S
2009-02-02
By using a tunable filter with tunability of both bandwidth and wavelength and a very sharp filter roll-off, considerable improvement of all optical Wavelength Conversion, based on Cross Gain and Phase Modulation effects in a Semiconductor Optical Amplifier and spectral slicing, is shown. At 40 Gb/s slicing of blue spectral components is shown to result in a small penalty of 0.7 dB, with a minimal eye broadening, and at 80 Gb/s the low demonstrated 0.5 dB penalty is a dramatic improvement over previously reported wavelength converters using the same principal. Additionally, we give for the first time quantitative results for the case of red spectral slicing at 40 Gb/s which we found to have only 0.5 dB penalty and a narrower time response, as anticipated by previously published theoretical papers. Numerical simulations for the dependence of the eye opening on the filter characteristics highlight the importance of the combination of a sharp filter roll-off and a broad passband.
A 1.2-V CMOS front-end for LTE direct conversion SAW-less receiver
NASA Astrophysics Data System (ADS)
Riyan, Wang; Jiwei, Huang; Zhengping, Li; Weifeng, Zhang; Longyue, Zeng
2012-03-01
A CMOS RF front-end for the long-term evolution (LTE) direct conversion receiver is presented. With a low noise transconductance amplifier (LNA), current commutating passive mixer and transimpedance operational amplifier (TIA), the RF front-end structure enables high-integration, high linearity and simple frequency planning for LTE multi-band applications. Large variable gain is achieved using current-steering transconductance stages. A current commutating passive mixer with 25% duty-cycle LO improves gain, noise and linearity. A direct coupled current-input filter (DCF) is employed to suppress the out-of-band interferer. Fabricated in a 0.13-μm CMOS process, the RF front-end achieves a 45 dB conversion voltage gain, 2.7 dB NF, -7 dBm IIP3, and +60 dBm IIP2 with calibration from 2.3 to 2.7 GHz. The total RF front end with divider draws 40 mA from a single 1.2-V supply.
Waveguide Transition for Submillimeter-Wave MMICs
NASA Technical Reports Server (NTRS)
Leong, Kevin M.; Deal, William R.; Radisic, Vesna; Mei, Xiaobing; Uyeda, Jansen; Lai, Richard; Fung, King Man; Gaier, Todd C.
2009-01-01
An integrated waveguide-to-MMIC (monolithic microwave integrated circuit) chip operating in the 300-GHz range is designed to operate well on high-permittivity semiconductor substrates typical for an MMIC amplifier, and allows a wider MMIC substrate to be used, enabling integration with larger MMICs (power amplifiers). The waveguide-to- CBCPW (conductor-backed coplanar waveguide) transition topology is based on an integrated dipole placed in the E-plane of the waveguide module. It demonstrates low loss and good impedance matching. Measurement and simulation demonstrate that the loss of the transition and waveguide loss is less than 1-dB over a 340-to-380-GHz bandwidth. A transition is inserted along the propagation direction of the waveguide. This transition uses a planar dipole aligned with the maximum E-field of the TE10 waveguide mode as an inter face between the waveguide and the MMIC. Mode conversion between the coplanar striplines (CPS) that feed the dipole and the CBCPW transmission line is accomplished using a simple air-bridge structure. The bottom side ground plane is truncated at the same reference as the top-side ground plane, leaving the end of the MMIC suspended in air.
Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF.
Zheng, Ximeng; Debord, Benoît; Vincetti, Luca; Beaudou, Benoît; Gérôme, Frédéric; Benabid, Fetah
2016-06-27
We report for the first time on tapering inhibited coupling (IC) hypocycloid-core shape Kagome hollow-core photonic crystal fibers whilst maintaining their delicate core-contour negative curvature with a down-ratio as large as 2.4. The transmission loss of down-tapered sections reaches a figure as low as 0.07 dB at 1550 nm. The tapered IC fibers are also spliced to standard SMF with a total insertion loss of 0.48 dB. These results show that all-fiber photonic microcells with the ultra-low loss hypocycloid core-contour Kagome fibers is now possible.
Chapouly, Candice; Yao, Qinyu; Vandierdonck, Soizic; Larrieu-Lahargue, Frederic; Mariani, John N; Gadeau, Alain-Pierre; Renault, Marie-Ange
2016-02-01
Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function. By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy. The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Propagation measurements for satellite radio reception inside buildings
NASA Technical Reports Server (NTRS)
Vogel, Wolfhard J.; Torrence, Geoffrey W.
1993-01-01
Swept CW signals (from 700 to 1800 MHz) were received inside six buildings of brick, corrugated sheet-metal, wood-frame, mobile-home, and reinforced concrete-wall construction. A transmitter antenna was mounted outdoors on top of an 18 m tower to simulate a satellite, and a linearly scanned directional receiver antenna was used to probe the spatial, spectral, and temporal variability of the signal indoors. Levels were found to have much structure in the spatial and frequency domain, but were relatively stable in time. Typically, people moving nearby produced variations of less than 0.5 dB, whereas a person blocking the transmission path produced fades of 6 to 10 dB. Severe losses (17.5 dB) were observed in the concrete-wall building, which also exhibited the longest multipath delays (over 100 ns). Losses inside a mobile home were even larger (over 20 dB) and were independent of antenna orientation. The power-frequency distortion increased with the logarithm of the bandwidth, but could be reduced by moving to a position of higher power. Only the losses showed a clear frequency dependence, but they could be mitigated by moving the antenna.
Kraaijenga, Véronique J C; van Munster, J J C M; van Zanten, G A
2018-06-01
To date, factors associated with noise-induced hearing loss at music festivals have not yet been analyzed in a single comprehensive data set. In addition, little is known about the hearing loss-associated behavior of music festival attendees. To assess which factors are associated with the occurrence of a temporary threshold shift (TTS) after music exposure and to investigate the behavior of music festival attendees. This prospective post hoc analysis gathered data from a randomized, single-blind clinical trial conducted on September 5, 2015, at an outdoor music festival in Amsterdam, the Netherlands. Adult volunteers with normal hearing were recruited via social media from August 26 through September 3, 2015. Intention to use earplugs was an exclusion criterion. Of 86 volunteers assessed, 51 were included. This post hoc analysis was performed from October 3, 2016, through February 27, 2017. Music festival visit for 4.5 hours. The primary outcome was a TTS on a standard audiogram for the frequencies 3.0- and 4.0-kHz. Multivariable linear regression was performed to determine which factors are associated with a TTS. A questionnaire on behavior, hearing, and tinnitus was distributed to the participants before and after the festival visit. A total of 51 participants were included (18 men [35%] and 33 women [65%]) with a mean (SD) age of 27 (6) years. Mean (SD) threshold change across 3.0 and 4.0 kHz was 5.4 (5.7) dB for the right ear and 4.0 (6.1) dB for the left ear. Earplug use (absolute difference in the left ear, -6.0 dB [95% CI, -8.7 to -3.2 dB]; in the right ear, -6.4 dB [95% CI, -8.8 to -4.1 dB]), quantity of alcohol use (absolute difference per unit in the left ear, 1.1 dB [95% CI, 0.5 to 1.7 dB]; in the right ear, 0.7 dB [95% CI, 0.1 to 1.4 dB]), drug use (absolute difference in the right ear, 6.0 dB [95% CI, 0.9 to 11.1 dB]), and male sex (absolute difference in the right ear, 4.1 dB [95% CI, 0.3 to 5.9 dB]) were independently associated with hearing loss, with earplug use being the most important factor. Unprotected participants reported significantly worse subjective hearing performance and tinnitus after the festival visit than did participants using earplugs (Cramer V, 0.62 [95% CI, 0.47-0.79] and 0.39 [95% CI, 0.16-0.62], respectively). In the earplug group, the perceived loudness (r = -0.72; 95% CI, -1.00 to -0.43) and appreciation (r = 0.53; 95% CI, 0.29 to 0.78) of music and speech perception (r = 0.21; 95% CI, 0.09 to 0.35) were correlated with the duration of earplug use. The present study identified nonuse of earplugs, use of alcohol and drugs, and male sex as associated with a TTS at an outdoor music festival. Physicians should consider these factors to raise awareness about the combined risk of attending music festivals without using earplugs while consuming alcohol and/or drugs. The intention to use earplugs was correlated with the loudness and appreciation of music with earplugs, which may advocate for the use of personalized earplugs. trialregister.nl Identifier: NTR5401.
Memory-efficient decoding of LDPC codes
NASA Technical Reports Server (NTRS)
Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon
2005-01-01
We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.
NASA Astrophysics Data System (ADS)
Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming
2017-10-01
In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.
NASA Astrophysics Data System (ADS)
Rekhy, Anuj
Acoustic absorbers like foams, fiberglass or liners have been used commonly in structures for infrastructural, industrial, automotive and aerospace applications to mitigate noise. However, these conventional materials have limited effectiveness to mitigate low-frequency (LF) acoustic waves with frequency less than 400 Hz owing to the need for impractically large mass or volume. LF acoustic waves contribute significantly towards environmental noise pollution as well as unwanted structural responses. Therefore, there is a need to develop lightweight, compact, structurally-integrated solutions to mitigate LF noise in several applications. Inspired by metamaterials, which are man-made structural materials that derive their unique dynamic behavior not just from material constituents but more so from engineered configurations, tuned mass-loaded membranes as vibro-impact attachments on a baseline structure are investigated to determine their performance as a LF acoustic barrier. The hypothesis is that the LF incident waves are up-converted via impact to higher modes in the baseline structure which are far more evanescent and may then be effectively mitigated using conventional means. Such Metamaterials-Inspired Vibro-Impact Structures (MIVIS) could be tuned to match the dominant frequency content of LF acoustic sources in specific applications. Prototype MIVIS unit cells were designed and tested to study the energy transfer mechanism via impact-induced frequency up-conversion, and the consequent sound transmission loss. Structural acoustic simulations were done to predict responses using models based on normal incidence transmission loss tests. Experimental proof-of-concept was achieved and further correlations to simulations were utilized to optimize the energy up-conversion mechanism using parametric studies. Up to 36 dB of sound transmission loss increase is obtained at the anti-resonance frequency (326 Hz) within a tunable LF bandwidth of about 200 Hz while impact-induced up-conversion could enable further broadband transmission loss via subsequent dissipation in conventional absorbers. Moreover, this approach while minimizing parasitic mass addition retains or could conceivably augment primary functionalities of the baseline structure. Successful transition to applications could enable new mission capabilities for aerospace and military vehicles and help create quieter built environments.
How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss
NASA Astrophysics Data System (ADS)
Meyer-Scott, Evan; Yan, Zhizhong; MacDonald, Allison; Bourgoin, Jean-Philippe; Hübel, Hannes; Jennewein, Thomas
2011-12-01
Quantum key distribution (QKD) takes advantage of fundamental properties of quantum physics to allow two distant parties to share a secret key; however, QKD is hampered by a distance limitation of a few hundred kilometers on Earth. The most immediate solution for global coverage is to use a satellite, which can receive separate QKD transmissions from two or more ground stations and act as a trusted node to link these ground stations. In this article we report on a system capable of performing QKD in the high loss regime expected in an uplink to a satellite using weak coherent pulses and decoy states. Such a scenario profits from the simplicity of its receiver payload, but has so far been considered to be infeasible due to very high transmission losses (40-50 dB). The high loss is overcome by implementing an innovative photon source and advanced timing analysis. Our system handles up to 57 dB photon loss in the infinite key limit, confirming the viability of the satellite uplink scenario. We emphasize that while this system was designed with a satellite uplink in mind, it could just as easily overcome high losses on any free space QKD link.
A novel micro/nano 1 × 4 mechanical optical switch
NASA Astrophysics Data System (ADS)
Lin, Wu-Lang; Fan, Kuang-Chao; Chiang, Li-Hung; Yang, Yao-Joe; Kuo, Wen-Cheng; Chung, Tien-Tung
2006-07-01
This paper presents the design, fabrication and testing of a novel 1 × 4 mechanical optical switch, whose components are fabricated by precision machining and MEMS technologies. The switch uses two relays as the two actuators whose switching direction is perpendicular to each other by an orthogonal arrangement. We adopt a direct fiber-to-fiber principle that aligns the input fiber directly to four output fibers. This configuration eliminates the use of traditional parts such as collimators, turning mirrors or prisms. In addition, due to the use of a fiber holder, the fiber position errors could be reduced to less than 0.27 µm using the two-stage geometry error reduction principle. We have successfully developed a simple and low-cost switch, which performs like most of the 1 × 4 mechanical optical switches that dominate the optics communications market. The advantages of our switch are a small size (20 × 20 × 25 mm3), low cost, high reliability, and the latching function does not need external force for maintaining the state. The experimental results showed that the insertion losses of the four channels are ch1: 0.68 dB, ch2: 1.49 dB, ch3: 0.71 dB and ch4: 0.97 dB. The switching time is 5 ms, the crosstalk <=80 dB. The reliability tests of the insertion loss after 10 000 cycles in four channels yield ch1: 1.67 dB, ch2: 1.63 dB, ch3: 0.75 dB and ch4: 0.98 dB. The size and the cost of our 1 × 4 mechanical optical switch are only about 1/5-1/10 and 1/10 of the series-connect-type and prism-type switches, respectively.
Wang, Yang; Gao, Shitao; Wang, Ke; Skafidas, Efstratios
2016-05-01
A broadband, low-loss and polarization-insensitive 3 dB optical power splitter based on adiabatic tapered silicon waveguides is proposed and investigated. 3D-FDTD simulation results show that the splitter achieves an output transmission efficiency of nearly 50% over an ultra-broad wavelength range from 1200 to 1700 nm. The device is fabricated, and experimental results show that the splitter exhibits a low excess loss of <0.19 dB for the TE polarization and <0.14 dB for the TM polarization over the entire measured wavelength range from 1530 to 1600 nm, while having an adiabatic taper length of only 5 μm. In addition, the measured power uniformity of the cascaded 1×8 splitter is only 0.47 dB, and 0.17 dB for the TE and TM polarizations, respectively. With the advantages of low loss, broad bandwidth, and compact size, the proposed splitter is a promising element for large-scale silicon integrated photonic circuits.
Jiang, Hua; Lu, Wenke; Zhang, Guoan
2013-07-01
In this paper, we propose a low insertion loss and miniaturization wavelet transform and inverse transform processor using surface acoustic wave (SAW) devices. The new SAW wavelet transform devices (WTDs) use the structure with two electrode-widths-controlled (EWC) single phase unidirectional transducers (SPUDT-SPUDT). This structure consists of the input withdrawal weighting interdigital transducer (IDT) and the output overlap weighting IDT. Three experimental devices for different scales 2(-1), 2(-2), and 2(-3) are designed and measured. The minimum insertion loss of the three devices reaches 5.49dB, 4.81dB, and 5.38dB respectively which are lower than the early results. Both the electrode width and the number of electrode pairs are reduced, thus making the three devices much smaller than the early devices. Therefore, the method described in this paper is suitable for implementing an arbitrary multi-scale low insertion loss and miniaturization wavelet transform and inverse transform processor using SAW devices. Copyright © 2013 Elsevier B.V. All rights reserved.
Quality of Life and Hearing Eight Years After Sudden Sensorineural Hearing Loss.
Härkönen, Kati; Kivekäs, Ilkka; Rautiainen, Markus; Kotti, Voitto; Vasama, Juha-Pekka
2017-04-01
To explore long-term hearing results, quality of life (QoL), quality of hearing (QoH), work-related stress, tinnitus, and balance problems after idiopathic sudden sensorineural hearing loss (ISSNHL). Cross-sectional study. We reviewed the audiograms of 680 patients with unilateral ISSNHL on average 8 years after the hearing impairment, and then divided the patients into two study groups based on whether their ISSNHL had recovered to normal (pure tone average [PTA] ≤ 30 dB) or not (PTA > 30 dB). The inclusion criteria were a hearing threshold decrease of 30 dB or more in at least three contiguous frequencies occurring within 72 hours in the affected ear and normal hearing in the contralateral ear. Audiograms of 217 patients fulfilled the criteria. We reviewed their medical records; measured present QoL, QoH, and work-related stress with specific questionnaires; and updated the hearing status. Poor hearing outcome after ISSNHL was correlated with age, severity of hearing loss, and vertigo together with ISSNHL. Quality of life and QoH were statistically significantly better in patients with recovered hearing, and the patients had statistically significantly less tinnitus and balance problems. During the 8-year follow-up, the PTA of the affected ear deteriorated on average 7 dB, and healthy ear deteriorated 6 dB. Idiopathic sudden sensorineural hearing loss that failed to recover had a negative impact on long-term QoL and QoH. The hearing deteriorated as a function of age similarly both in the affected and the healthy ear, and there were no differences between the groups. The cumulative recurrence rate for ISSNHL was 3.5%. 4 Laryngoscope, 127:927-931, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures
NASA Astrophysics Data System (ADS)
Dey, Sukomal; Koul, Shiban K.; Poddar, Ajay K.; Rohde, Ulrich L.
2017-10-01
This work presents a micro-electro-mechanical system (MEMS) based on a wide-band 4-bit phase shifter using two back-to-back single-pole-four-throw (SP4T) switches and four different distributed MEMS transmission line (DMTL) structures that are implemented on 635 µm alumina substrate using surface micromachining process. An SP4T switch is designed with a series-shunt configuration and it demonstrates an average return loss of >17 dB, an insertion loss of <1.97 dB and maximum isolation of >28 dB up to 60 GHz. A maximum area of the SP4T switch is ~0.76 mm2. Single-pole-single-throw and SP4T switches are capable of handling 1 W of radio frequency (RF) power up to >100 million cycles at 25° C; they can even sustained up to >70 million cycles with 1 W at 85 °C. The proposed wide-band phase shifter works at 17 GHz (Ku-band), 25 GHz (K-band), 35 GHz (Ka-band) and 60 GHz (V-band) frequencies. Finally,a 4-bit phase shifter demonstrates an average insertion loss of <6 dB, return loss of >10 dB and maximum phase error of ~3.8° at 60 GHz frequency over 500 MHz bandwidth. Total area of the fabricated device is ~11 mm2. In addition, the proposed device works well up to >107 cycles with 1 W of RF power. To the best of the author’s knowledge, this is the best reported wide-band MEMS 4-bit phase shifter in the literature that works with a constant resolution.
Amplification and noise properties of an erbium-doped multicore fiber amplifier.
Abedin, K S; Taunay, T F; Fishteyn, M; Yan, M F; Zhu, B; Fini, J M; Monberg, E M; Dimarcello, F V; Wisk, P W
2011-08-15
A multicore erbium-doped fiber (MC-EDF) amplifier for simultaneous amplification in the 7-cores has been developed, and the gain and noise properties of individual cores have been studied. The pump and signal radiation were coupled to individual cores of MC-EDF using two tapered fiber bundled (TFB) couplers with low insertion loss. For a pump power of 146 mW, the average gain achieved in the MC-EDF fiber was 30 dB, and noise figure was less than 4 dB. The net useful gain from the multicore-amplifier, after taking into consideration of all the passive losses, was about 23-27 dB. Pump induced ASE noise transfer between the neighboring channel was negligible. © 2011 Optical Society of America
Dry-film polymer waveguide for silicon photonics chip packaging.
Hsu, Hsiang-Han; Nakagawa, Shigeru
2014-09-22
Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.
NASA Astrophysics Data System (ADS)
Morioka, T.; Kawanishi, S.; Saruwatari, M.
1994-05-01
Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.
Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.
Xu, Longtao; Jin, Shilei; Li, Yifei
2016-04-18
We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.
Type 2 diabetes and hearing loss in personnel of the Self-Defense Forces.
Sakuta, Hidenari; Suzuki, Takashi; Yasuda, Hiroko; Ito, Teizo
2007-02-01
The association of type 2 diabetes with hearing loss was evaluated in middle-aged male personnel of the Self-Defense Forces (SDFs). Hearing loss was defined as the pure-tone average (PTA) of the thresholds frequency at 0.5, 1, 2, and 4 kHz greater than 25 dB hearing levels (HL) in the worse ear. Diabetes status was determined by self-report of physician-diagnosed diabetes or by oral glucose tolerance test (OGTT). Of 699 subjects studied (age 52.9+/-1.0 years), 103 subjects were classified as having type 2 diabetes. Fasting plasma glucose of diabetic subjects was 120+/-19 mg/dl. Hearing loss levels were (worse) higher among diabetic subjects compared with subjects with normal glucose tolerance (NGT) (30.7+/-13.0 dB versus 27.4+/-12.3 dB, P=0.014). Hearing loss was more prevalent among diabetic subjects than among subjects with normal glucose tolerance (60.2% versus 45.2%, P=0.006). The odds ratio (OR) of type 2 diabetes for the presence of hearing loss was 1.87 (95% confidence interval 1.20-2.91, P=0.006) in a logistic regression analysis adjusted for age, rank, cigarette smoking and ethanol consumption. These results suggest that type 2 diabetes is associated with hearing loss independently of lifestyle factors in middle-aged men.
Proceedings of the 2007 Antenna Applications Symposium. Volume 2
2007-12-20
field strength at 1 km [1]. It is based on an ideal short monopole, with 1 kW available power and no earth losses. Losses from the ideal monopole are...antenna operates over UHF and L Bands, providing ground- based transmit/receive capability for next generation radios. Filters are integrated into...enclosed in a housing which also serves as the base of the antenna (see Figure 6). The filters achieve approximately 40 dB (UHF low-pass) and 50 dB
ALOS-PALSAR multi-temporal observation for describing land use and forest cover changes in Malaysia
NASA Astrophysics Data System (ADS)
Avtar, R.; Suzuki, R.; Ishii, R.; Kobayashi, H.; Nagai, S.; Fadaei, H.; Hirata, R.; Suhaili, A. B.
2012-12-01
The establishment of plantations in carbon rich peatland of Southeast Asia has shown an increase in the past decade. The need to support development in countries such as Malaysia has been reflected by having a higher rate of conversion of its forested areas to agricultural land use in particular oilpalm plantation. Use of optical data to monitor changes in peatland forests is difficult because of the high cloudiness in tropical region. Synthetic Aperture Radar (SAR) based remote sensing can potentially be used to monitor changes in such forested landscapes. In this study, we have demonstrated the capability of multi-temporal Fine-Beam Dual (FBD) data of Phased Array L-band Synthetic Aperture Radar (PALSAR) to detect forest cover changes in peatland to other landuse such as oilpalm plantation. Here, the backscattering properties of radar were evaluated to estimate changes in the forest cover. Temporal analysis of PALSAR FBD data shows that conversion of peatland forest to oilpalm can be detected by analyzing changes in the value of σoHH and σoHV. This is characterized by a high value of σoHH (-7.89 dB) and σoHV (-12.13 dB) for areas under peat forests. The value of σoHV decreased about 2-4 dB due to the conversion of peatland to a plantation area. There is also an increase in the value of σoHH/σoHV. Changes in σoHV is more prominent to identify the peatland conversion than in the σoHH. The results indicate the potential of PALSAR to estimate peatland forest conversion based on thresholding of σoHV or σoHH/σoHV for monitoring changes in peatland forest. This would improve our understanding of the temporal change and its effect on the peatland forest ecosystem.
High-performance and power-efficient 2×2 optical switch on Silicon-on-Insulator.
Han, Zheng; Moille, Grégory; Checoury, Xavier; Bourderionnet, Jérôme; Boucaud, Philippe; De Rossi, Alfredo; Combrié, Sylvain
2015-09-21
A compact (15µm × 15µm) and highly-optimized 2×2 optical switch is demonstrated on a CMOS-compatible photonic crystal technology. On-chip insertion loss are below 1 dB, static and dynamic contrast are 40 dB and >20 dB respectively. Owing to efficient thermo-optic design, the power consumption is below 3 mW while the switching time is 1 µs.
Low-Power Consumption InGaAs PIN Diode Switches for V-band Applications
NASA Astrophysics Data System (ADS)
Ziegler, Volker; Berg, Michael; Tobler, Hans; Woelk, Claus; Deufel, Reinhard; Trasser, Andreas; Schumacher, Hermann; Alekseev, Egor; Pavlidis, Dimitris; Dickmann, Juergen
1999-02-01
In this paper, we present the measurement results of two InP-based coplanar SPST (single pole single throw) PIN diode switches operating at V-band frequencies. The switches show excellent mm-wave performance combined with a very low DC-power consumption. The SPST with on-chip biasing and DC-blocking capacitors demonstrates an insertion loss as low as 0.84 dB and a high isolation value of 21.8 dB at a center frequency of 53 GHz with only 0.8 mW of DC-power consumption. A more simple SPST exhibits under equivalent conditions (0.9 mW) an excellent insertion loss of 0.52 dB and an isolation of 21.7 dB. Furthermore the power-handling capability of the InGaAs PIN diodes, which are used as active switching elements, is investigated in this paper and found to exceed 25 dBm at a reverse voltage of -5 V.
Magnetostatic wave tunable resonators
NASA Astrophysics Data System (ADS)
Castera, J.-P.; Hartemann, P.
1983-06-01
Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.
NASA Astrophysics Data System (ADS)
Kwak, J. S.; Lee, J. H.; Kim, C. O.; Hong, J. P.; Han, S. K.; Char, K.
2002-07-01
Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5 × 17 × 41 mm3. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge.
Low-profile fiber connector for co-packaged optics
NASA Astrophysics Data System (ADS)
Brusberg, Lars; DeJong, Michael; Butler, Douglas L.; Clark, Jeffrey S.; Sutton, Clifford G.
2018-02-01
We developed a small form factor connector that can be assembled on all four sides of a high-data switch package for fiber connectivity. This paper discusses a novel connector approach that has the potential to meet all co-packaging requirements including solder-reflow-compatibility, de-mateability, low insertion loss and state-of-the art FAU attach. The connector was attached to the PIC for performance evaluation. The average insertion loss across all eight fibers of the assembly was 1.77 dB, including the three optical interfaces: (1) MT-to-MT between connector and receptacle, (2) receptacle-to-PLC and (3) PIC-to-FAU. Also included is the propagation loss of the PIC waveguide. Optical return loss was measured to be -55 dB or lower.
TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform
NASA Astrophysics Data System (ADS)
Dabos, G.; Manolis, A.; Giesecke, A. L.; Porschatis, C.; Chmielak, B.; Wahlbrink, T.; Pleros, N.; Tsiokos, D.
2017-12-01
We demonstrate, for the first time to our knowledge, a fully etched TM grating coupler for low-loss Low-Pressure-Chemical-Vapor-Deposition (LPCVD) based silicon nitride platform with a coupling loss of 6.5 dB at 1541 nm and a 1 dB bandwidth of 55 nm, addressing applications where TM polarization is a pre-requisite. The proposed GC and the 360 nm × 800 nm strip based Si3N4 waveguides have been fabricated by optical projection lithography using an i-line stepper tool enabling low-cost and mass manufacturing of photonic-integrated-circuits.
Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.
Wang, Ke-Yao; Foster, Amy C
2012-04-15
We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America
McFadden, Sandra L.; Ding, Da-Lian; Lear, Patricia M.; Ho, Ye-Shih
2000-01-01
Reactive oxygen species (ROS) and oxidative stress have been implicated in cochlear injury following loud noise and ototoxins. Genetic mutations that impair antioxidant defenses would be expected to increase cochlear injury following acute insults and to contribute to cumulative injury that presents as age-related hearing loss. We examined whether genetically based deficiency of cellular glutathione peroxidase, a major antioxidant enzyme, increases noise-induced hearing loss in mice. Two-month-old "knockout" mice with a targeted inactivating mutation of the gene coding for glutathione peroxidase (Gpx1) and wild type controls were exposed to broadband noise for one hour at 110 dB SPL. Auditory brainstem response (ABR) thresholds at test frequencies ranging from 5 to 40 kHz were obtained two and four weeks after exposure to determine the stable permanent component of the hearing loss. Depending on test frequency, Gpx1 knockout mice showed up to 16 dB higher ABR thresholds prior to noise exposure, and up to 15 dB greater noise-induced hearing loss, compared with controls. Within the cochlear base, there was also a significant contribution of the knockout to inner and outer hair cell loss, as well as nerve fiber loss. Our results support a link between genetic impairment of antioxidant defenses, vulnerability of the cochlea injury, and cochlear degeneration. Such impairment produces characteristics expected of some mutations associated with age-related hearing loss and offers one possible mechanism for their action. PMID:11545230
Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator.
Qiu, Xiaoming; Ruan, Xiaoke; Li, Yanping; Zhang, Fan
2018-05-28
In this study, a multi-layer metal-oxide-semiconductor capacitor (MLMOSC) polarization insensitive modulator is proposed. The design is validated by numerical simulation with commercial software LUMERICAL SOLUTION. Based on the epsilon-near-zero (ENZ) effect of indium tin oxide (ITO), the device manages to uniformly modulate both the transverse electric (TE) and the transverse magnetic (TM) modes. With a 20μm-long double-layer metal-oxide-semiconductor capacitor (DLMOSC) polarization insensitive modulator, in which two metal-oxide-semiconductor (MOS) structures are formed by the n-doped Si/HfO 2 /ITO/HfO 2 / n-doped Si stack, the extinction ratios (ERs) of both the TE and the TM modes can be over 20dB. The polarization dependent losses of the device can be as low as 0.05dB for the "OFF" state and 0.004dB for the "ON" state. Within 1dB polarization dependent loss, the device can operate with over 20dB ERs at the S, C, and L bands. The polarization insensitive modulator offers various merits including ultra-compact size, broadband spectrum, and complementary metal oxide semiconductor (CMOS) compatibility.
NASA Astrophysics Data System (ADS)
Agusu, L.; Ahmad, L. O.; Alimin; Nurdin, M.; Herdianto; Mitsudo, S.; Kikuchi, H.
2018-05-01
We report a strong absorption of microwave energy at X-band (8 GHz to 12 GHz) by N-doped graphene. Attachment of nitrogen on the layered structure of GO improves the reflection loss of GO slab (2.0 mm, thickness) from –10 dB to –25.0 dB with a sharp bandwidth ∼0.3 GHz. As for the broader bandwidth of about 1.4 GHz, reflection loss is –10.5 dB. This significant absorption may take place by improvement of magnetic property of NG through high magnetic coupling of localized spins induced by a defect on the surface of graphene. N atoms play as the electron trapper, easily influenced by self-magnetic moments and incoming electromagnetic fields to produce electric and/or magnetic losses. Here, urea acts as the reducing agent and N atoms donor for graphene oxide in hydrothermal process at a temperature of 190 °C.
Splice loss requirements in multi-mode fiber mode-division-multiplex transmission links.
Warm, Stefan; Petermann, Klaus
2013-01-14
We investigate numerically the influence of fiber splices and fiber connectors to the statistics of mode dependent loss (MDL) and multiple-input multiple-output (MIMO) outage capacity in mode multiplexed multi-mode fiber links. Our results indicate required splice losses much lower than currently feasible to achieve a reasonable outage capacity in long-haul transmission systems. Splice losses as low as 0.03dB may effectively lead to an outage of MIMO channels after only a few hundred kilometers transmission length. In a first approximation, the relative capacity solely depends on the accumulated splice loss and should be less than ≈ 2dB to ensure a relative capacity of 90%. We also show that discrete mode permutation (mixing) within the transmission line may effectively increase the maximum transmission distance by a factor of 5 for conventional splice losses.
Tone perception in Mandarin-speaking school age children with otitis media with effusion
McPherson, Bradley; Li, Caiwei; Yang, Feng
2017-01-01
Objectives The present study explored tone perception ability in school age Mandarin-speaking children with otitis media with effusion (OME) in noisy listening environments. The study investigated the interaction effects of noise, tone type, age, and hearing status on monaural tone perception, and assessed the application of a hierarchical clustering algorithm for profiling hearing impairment in children with OME. Methods Forty-one children with normal hearing and normal middle ear status and 84 children with OME with or without hearing loss participated in this study. The children with OME were further divided into two subgroups based on their severity and pattern of hearing loss using a hierarchical clustering algorithm. Monaural tone recognition was measured using a picture-identification test format incorporating six sets of monosyllabic words conveying four lexical tones under speech spectrum noise, with the signal-to-noise ratio (SNR) conditions ranging from -9 to -21 dB. Results Linear correlation indicated tone recognition thresholds of children with OME were significantly correlated with age and pure tone hearing thresholds at every frequency tested. Children with hearing thresholds less affected by OME performed similarly to their peers with normal hearing. Tone recognition thresholds of children with auditory status more affected by OME were significantly inferior to those of children with normal hearing or with minor hearing loss. Younger children demonstrated poorer tone recognition performance than older children with OME. A mixed design repeated-measure ANCOVA showed significant main effects of listening condition, hearing status, and tone type on tone recognition. Contrast comparisons revealed that tone recognition scores were significantly better under -12 dB SNR than under -15 dB SNR conditions and tone recognition scores were significantly worse under -18 dB SNR than those obtained under -15 dB SNR conditions. Tone 1 was the easiest tone to identify and Tone 3 was the most difficult tone to identify for all participants, when considering -12, -15, and -18 dB SNR as within-subject variables. The interaction effect between hearing status and tone type indicated that children with greater levels of OME-related hearing loss had more impaired tone perception of Tone 1 and Tone 2 compared to their peers with lesser levels of OME-related hearing loss. However, tone perception of Tone 3 and Tone 4 remained similar among all three groups. Tone 2 and Tone 3 were the most perceptually difficult tones for children with or without OME-related hearing loss in all listening conditions. Conclusions The hierarchical clustering algorithm demonstrated usefulness in risk stratification for tone perception deficiency in children with OME-related hearing loss. There was marked impairment in tone perception in noise for children with greater levels of OME-related hearing loss. Monaural lexical tone perception in younger children was more vulnerable to noise and OME-related hearing loss than that in older children. PMID:28829840
Tone perception in Mandarin-speaking school age children with otitis media with effusion.
Cai, Ting; McPherson, Bradley; Li, Caiwei; Yang, Feng
2017-01-01
The present study explored tone perception ability in school age Mandarin-speaking children with otitis media with effusion (OME) in noisy listening environments. The study investigated the interaction effects of noise, tone type, age, and hearing status on monaural tone perception, and assessed the application of a hierarchical clustering algorithm for profiling hearing impairment in children with OME. Forty-one children with normal hearing and normal middle ear status and 84 children with OME with or without hearing loss participated in this study. The children with OME were further divided into two subgroups based on their severity and pattern of hearing loss using a hierarchical clustering algorithm. Monaural tone recognition was measured using a picture-identification test format incorporating six sets of monosyllabic words conveying four lexical tones under speech spectrum noise, with the signal-to-noise ratio (SNR) conditions ranging from -9 to -21 dB. Linear correlation indicated tone recognition thresholds of children with OME were significantly correlated with age and pure tone hearing thresholds at every frequency tested. Children with hearing thresholds less affected by OME performed similarly to their peers with normal hearing. Tone recognition thresholds of children with auditory status more affected by OME were significantly inferior to those of children with normal hearing or with minor hearing loss. Younger children demonstrated poorer tone recognition performance than older children with OME. A mixed design repeated-measure ANCOVA showed significant main effects of listening condition, hearing status, and tone type on tone recognition. Contrast comparisons revealed that tone recognition scores were significantly better under -12 dB SNR than under -15 dB SNR conditions and tone recognition scores were significantly worse under -18 dB SNR than those obtained under -15 dB SNR conditions. Tone 1 was the easiest tone to identify and Tone 3 was the most difficult tone to identify for all participants, when considering -12, -15, and -18 dB SNR as within-subject variables. The interaction effect between hearing status and tone type indicated that children with greater levels of OME-related hearing loss had more impaired tone perception of Tone 1 and Tone 2 compared to their peers with lesser levels of OME-related hearing loss. However, tone perception of Tone 3 and Tone 4 remained similar among all three groups. Tone 2 and Tone 3 were the most perceptually difficult tones for children with or without OME-related hearing loss in all listening conditions. The hierarchical clustering algorithm demonstrated usefulness in risk stratification for tone perception deficiency in children with OME-related hearing loss. There was marked impairment in tone perception in noise for children with greater levels of OME-related hearing loss. Monaural lexical tone perception in younger children was more vulnerable to noise and OME-related hearing loss than that in older children.
Design of Compact Wilkinson Power Divider with Harmonic Suppression using T-Shaped Resonators
NASA Astrophysics Data System (ADS)
Siahkamari, Hesam; Yasoubi, Zahra; Jahanbakhshi, Maryam; Mousavi, Seyed Mohammad Hadi; Siahkamari, Payam; Nouri, Mohammad Ehsan; Azami, Sajad; Azadi, Rasoul
2018-04-01
A novel scheme of a shrunken Wilkinson power divider with harmonic suppression, using two identical resonators in the conventional Wilkinson power divider is designed. Moreover, the LC equivalent circuit and its relevant formulas are provided. To substantiate the functionality and soundness of design, a microstrip implementation of this design operating at 1 GHz with the second to eighth harmonic suppression, is developed. The proposed circuit is relatively smaller than the conventional circuit, (roughly 55% of the conventional circuit). Simulation and measurement results for the proposed scheme, which are highly consistent with one another, indicate a good insertion loss about 3.1 dB, input return loss of 20 dB and isolation of 20 dB, while sustaining high-power handling capability over the Wilkinson power divider.
Optimized optical devices for edge-coupling-enabled silicon photonics platform
NASA Astrophysics Data System (ADS)
Png, Ching Eng; Ang, Thomas Y. L.; Ong, Jun Rong; Lim, Soon Thor; Sahin, Ezgi; Chen, G. F. R.; Tan, D. T. H.; Guo, Tina X.; Wang, Hong
2018-02-01
We present a library of high-performance passive and active silicon photonic devices at the C-band that is specifically designed and optimized for edge-coupling-enabled silicon photonics platform. These devices meet the broadband (100 nm), low-loss (< 2dB per device), high speed (>= 25 Gb/s), and polarization diversity requirements (TE and TM polarization extinction ratio <= 25 dB) for optical communication applications. Ultra-low loss edge couplers, broadband directional couplers, high-extinction ratio polarization beam splitters (PBSs), and high-speed modulators are some of the devices within our library. In particular, we have designed and fabricated inverse taper fiber-to-waveguide edge couplers of tip widths ranging from 120 nm to 200 nm, and we obtained a low coupling loss of 1.80+/-0.28 dB for 160 nm tip width. To achieve polarization diversity operation for inverse tapers, we have experimentally realized different designs of polarization beam splitters (PBS). Our optimized PBS has a measured extinction ratio of <= 25 dB for both the quasiTE modes, and quasi-TM modes. Additionally, a broadband (100 nm) directional coupler with a 50/50 power splitting ratio was experimentally realized on a small footprint of 20×3 μm2 . Last but not least, high-speed silicon modulators with a range of carrier doping concentrations and offset of the PN junction can be used to optimise the modulation efficiency, and insertion losses for operation at 25 GHz.
NASA Astrophysics Data System (ADS)
Li, Wanrong; Zhou, Min; Lu, Fei; Liu, Hongfei; Zhou, Yuxue; Zhu, Jun; Zeng, Xianghua
2018-06-01
Microwave-absorbing materials with light weight and high efficiency are desirable in addressing electromagnetic interference (EMI) problems. Herein, a nickel–cobalt sulfide (NCS) nanostructure was employed as a robust microwave absorber, which displayed an optimized reflection loss of ‑49.1 dB in the gigahertz range with a loading of only 20 wt% in an NCS/paraffin wax composite. High electrical conductivity was found to contribute prominent conductive loss in NCS, leading to intense dielectric loss within a relatively low mass loading. Furthermore, owing to its high electrical conductivity and remarkable dielectric loss to microwaves, the prepared NCS exhibited excellent performance in EMI shielding. The EMI shielding efficiency of the 50 wt% NCS/paraffin composite exceeded 55 dB at the X-band, demonstrating NCS is a versatile candidate for solving EMI problems.
Dual-pumped nondegenerate four-wave mixing in semiconductor laser with a built-in external cavity
NASA Astrophysics Data System (ADS)
Wu, Jian-Wei; Qiu, Qi; Hyub Won, Yong
2017-04-01
In this paper, a semiconductor laser system consisting of a conventional multimode Fabry-Pérot laser diode with a built-in external cavity is presented and demonstrated. More than two resonance modes, whose peak levels are significantly higher than other residual modes, are simultaneously supported and output by adjusting the bias current and operating temperature of the active region. Based on this device, dual-pumped nondegenerate four-wave mixing—in which two pump waves and a single signal wave are simultaneously fed into the laser, and the injection power and wavelength of the injected pump and signal waves are changed—is observed and discussed thoroughly. The results show that while the wavelengths of pump wave A and signal wave S are kept constant, the other pump wave B jumps from about 1535 nm to 1578 nm, generating conversion signals with changed wavelengths. The achieved conversion bandwidth between the primary signal and the converted signal waves is broadly tunable in the range of several terahertz frequencies. Both the conversion efficiency and optical signal-to-noise ratio of the newly generated conversion signals are adopted to evaluate the performance of the proposed four-wave mixing process, and are strongly dependent on the wavelength and power of the injected waves. Here, the attained maximum conversion efficiency and optical signal-to-noise ratio are close to -22 dB and 15 dB, respectively.
A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS
NASA Astrophysics Data System (ADS)
Kuan, Bao; Xiangning, Fan; Wei, Li; Zhigong, Wang
2013-01-01
This paper reports a wideband passive mixer for direct conversion multi-standard receivers. A brief comparison between current-commutating passive mixers and active mixers is presented. The effect of source and load impedance on the linearity of a mixer is analyzed. Specially, the impact of the input impedance of the transimpedance amplifier (TIA), which acts as the load impedance of a mixer, is investigated in detail. The analysis is verified by a passive mixer implemented with 0.18 μm CMOS technology. The circuit is inductorless and can operate over a broad frequency range. On wafer measurements show that, with radio frequency (RF) ranges from 700 MHz to 2.3 GHz, the mixer achieves 21 dB of conversion voltage gain with a -1 dB intermediate frequency (IF) bandwidth of 10 MHz. The measured IIP3 is 9 dBm and the measured double-sideband noise figure (NF) is 10.6 dB at 10 MHz output. The chip occupies an area of 0.19 mm2 and drains a current of 5.5 mA from a 1.8 V supply.
Selective Window Application of Gentamicin+ Dexamethasone in Meniere's Disease.
Ardıç, Fazıl Necdet; Tümkaya, Funda; Aykal, Kamil; Çabuk, Burçin
2017-08-01
The purpose of the study is to prevent hearing loss when using intratympanic (IT) gentamicin for intractable Meniere's disease. It is a retrospective case review study. Twenty five patients who had definite Meniere's disease and had either selective window application or weekly IT gentamicin were included into the study. First group (selective) had dexamethasone on the round window and gentamicin on oval window during exploratory tympanotomy procedure. The second group had IT gentamicin at weekly intervals. The degree of caloric weakness (CW), average hearing level in low pitch (HLP) (250, 500, 1000, 2000 Hz) and high pitch (HHP) (4000, 6000, 8000 Hz) were compared before and after treatment. The need for further treatment was noted. In the first group, the average HLP was increased from 51.6±7dB to 52.2±5.6 dB. The average HHP was increased 41.96±20.2 dB to 47.2±18.3 dB after treatment. The CW changed from 37.6±23.9 % to 54.6±30.6 %. In the second group, the average HLP was increased from 56.3±10.5 dB to 61.65±18.3 dB. The average HHP was increased 59.05±17.4 dB to 69.4±21.98 dB after treatment. The CW changed from 45.8±22.3% to 71.53±29.63 %. Both methods had statisticaly significant increase in caloric weakness. But only IT gentamicin led a significant hearing loss in HHP. The use of dexamethasone and gentamycin via different windows in the middle ear is safe and effective method for Meniere's disease in the short term. Application of dexamethasone protects not only the hearing cells but vestibular cells also.
Liquid-crystal WDM power equalizer
NASA Astrophysics Data System (ADS)
Chiao, Jung-Chih; Huang, Tizhi
2002-06-01
In this work, we demonstrated a liquid-crystal WDM (wavelength-division-multiplexing) power equalizer. It provides functionality of optical power equalization and tilting using liquid-crystal modulators and harmonic synthesis approach. The demonstrations show fast gain equalization with a flatness of +/- 0.3dB for several EDFA profiles in C or L bands. The equalization for WDM discrete-channel cases also reached flatness within +/- 0.3dB. The measured polarization dependent losses are less than 0.15dB and 0.1dB for flattened and through-state profiles, respectively. The measured polarization mode dispersions are less than 0.15ps under the through, flattened and 10-dB attenuation states. The measured chromatic dispersion is less than degree(s)7ps/nm.
Ostler, Joseph E.; Maurya, Santosh K.; Dials, Justin; Roof, Steve R.; Devor, Steven T.; Ziolo, Mark T.
2014-01-01
Type 2 diabetes mellitus is associated with an accelerated muscle loss during aging, decreased muscle function, and increased disability. To better understand the mechanisms causing this muscle deterioration in type 2 diabetes, we assessed muscle weight, exercise capacity, and biochemistry in db/db and TallyHo mice at prediabetic and overtly diabetic ages. Maximum running speeds and muscle weights were already reduced in prediabetic db/db mice when compared with lean controls and more severely reduced in the overtly diabetic db/db mice. In contrast to db/db mice, TallyHo muscle size dramatically increased and maximum running speed was maintained during the progression from prediabetes to overt diabetes. Analysis of mechanisms that may contribute to decreased muscle weight in db/db mice demonstrated that insulin-dependent phosphorylation of enzymes that promote protein synthesis was severely blunted in db/db muscle. In addition, prediabetic (6-wk-old) and diabetic (12-wk-old) db/db muscle exhibited an increase in a marker of proteasomal protein degradation, the level of polyubiquitinated proteins. Chronic treadmill training of db/db mice improved glucose tolerance and exercise capacity, reduced markers of protein degradation, but only mildly increased muscle weight. The differences in muscle phenotype between these models of type 2 diabetes suggest that insulin resistance and chronic hyperglycemia alone are insufficient to rapidly decrease muscle size and function and that the effects of diabetes on muscle growth and function are animal model-dependent. PMID:24425761
Childhood Otitis Media: A Cohort Study With 30-Year Follow-Up of Hearing (The HUNT Study).
Aarhus, Lisa; Tambs, Kristian; Kvestad, Ellen; Engdahl, Bo
2015-01-01
To study the extent to which otitis media (OM) in childhood is associated with adult hearing thresholds. Furthermore, to study whether the effects of OM on adult hearing thresholds are moderated by age or noise exposure. Population-based cohort study of 32,786 participants who had their hearing tested by pure-tone audiometry in primary school and again at ages ranging from 20 to 56 years. Three thousand sixty-six children were diagnosed with hearing loss; the remaining sample had normal childhood hearing. Compared with participants with normal childhood hearing, those diagnosed with childhood hearing loss caused by otitis media with effusion (n = 1255), chronic suppurative otitis media (CSOM; n = 108), or hearing loss after recurrent acute otitis media (rAOM; n = 613) had significantly increased adult hearing thresholds in the whole frequency range (2 dB/17-20 dB/7-10 dB, respectively). The effects were adjusted for age, sex, and noise exposure. Children diagnosed with hearing loss after rAOM had somewhat improved hearing thresholds as adults. The effects of CSOM and hearing loss after rAOM on adult hearing thresholds were larger in participants tested in middle adulthood (ages 40 to 56 years) than in those tested in young adulthood (ages 20 to 40 years). Eardrum pathology added a marginally increased risk of adult hearing loss (1-3 dB) in children with otitis media with effusion or hearing loss after rAOM. The study could not reveal significant differences in the effect of self-reported noise exposure on adult hearing thresholds between the groups with OM and the group with normal childhood hearing. This cohort study indicates that CSOM and rAOM in childhood are associated with adult hearing loss, underlining the importance of optimal treatment in these conditions. It appears that ears with a subsequent hearing loss after OM in childhood age at a faster rate than those without; however this should be confirmed by studies with several follow-up tests through adulthood.
Validation of air displacement plethysmography for assessing body composition.
Wagner, D R; Heyward, V H; Gibson, A L
2000-07-01
The purpose of this study was to verify the validity of an air displacement plethysmography device (Bod Pod) for estimating body density (Db). The Db from the Bod Pod (DbBP) was compared with the Db from hydrostatic weighing (DbHW) at residual lung volume in a heterogeneous sample of 30 black men who varied in age (32.0 +/- 7.7 yr), height (180.3 +/- 7.5 cm), body mass (84.2 +/- 15.0 kg), body fatness (16.1 +/- 7.5%), and self-reported physical activity level and socioeconomic status. The Db for each method was converted to relative body fat (%BF) using race-specific conversion formulas and subsequently compared with %BF obtained from dual-energy x-ray absorptiometry (%BFDXA). Linear regression, using DbHW as the dependent variable and DbBP as the predictor, produced an R2 = 0.84 and SEE = 0.00721 g x cc(-1). However, the mean difference between the two methods (0.00450 +/- 0.00718 g x cc(-1) was significant (P < 0.01). The Bod Pod underestimated the Db of 73% of the sample. The %BF estimates from the Bod Pod, HW, and DXA differed significantly (P < 0.01). The average %BFBP (17.7 +/- 7.4%) was significantly greater than %BFHW (15.8 +/- 7.5%) and %BFDXA (16.1 +/- 7.5%); however, there was no significant difference between %BFHW and %BFDXA. The Bod Pod significantly and systematically underestimated Db, resulting in an overestimation of %BF. More cross-validation research is needed before recommending the Bod Pod as a reference method.
Ka-Band, RF MEMS Switches on CMOS Grade Silicon with a Polyimide Interface Layer
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Varaljay, Nicholas C.; Papapolymerou, John
2003-01-01
For the first time, RF MEMS switcbes on CMOS grade Si witb a polyimide interface layer are fabricated and characterized. At Ka-Band (36.6 GHz), an insertion loss of 0.52 dB and an isolation of 20 dB is obtained.
Micro-device for coupling, multiplexing and demultiplexing using elliptical-core two-mode fiber
NASA Technical Reports Server (NTRS)
Wang, A.; Murphy, K. A.; Wang, G. Z.; Vengsarkar, A. M.; Claus, R. O.
1990-01-01
We propose and demonstrate experimentally a fiber optic micro-device that is capable of tunably splitting, multiplexing, and demultiplexing optical signals using elliptical-core two-mode optical fiber. A crosstalk of 15 dB with an insertion loss of 1.2 dB was obtained.
NASA Astrophysics Data System (ADS)
Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun
2018-01-01
Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.
The idiopathic intracranial hypertension treatment trial: clinical profile at baseline.
Wall, Michael; Kupersmith, Mark J; Kieburtz, Karl D; Corbett, James J; Feldon, Steven E; Friedman, Deborah I; Katz, David M; Keltner, John L; Schron, Eleanor B; McDermott, Michael P
2014-06-01
To our knowledge, there are no large prospective cohorts of untreated patients with idiopathic intracranial hypertension (IIH) to characterize the disease. To report the baseline clinical and laboratory features of patients enrolled in the Idiopathic Intracranial Hypertension Treatment Trial. We collected data at baseline from questionnaires, examinations, automated perimetry, and fundus photography grading. Patients (n = 165) were enrolled from March 17, 2010, to November 27, 2012, at 38 academic and private practice sites in North America. All participants met the modified Dandy criteria for IIH and had a perimetric mean deviation between -2 dB and -7 dB. All but 4 participants were women. Baseline and laboratory characteristics. The mean (SD) age of our patients was 29.0 (7.4) years and 4 (2.4%) were men. The average (SD) body mass index (calculated as weight in kilograms divided by height in meters squared) was 39.9 (8.3). Headache was the most common symptom (84%). Transient visual obscurations occurred in 68% of patients, back pain in 53%, and pulse synchronous tinnitus in 52%. Only 32% reported visual loss. The average (SD) perimetric mean deviation in the worst eye was -3.5 (1.1) dB, (range, -2.0 to -6.4 dB) and in the best eye was -2.3 (1.1) dB (range, -5.2 to 0.8 dB). A partial arcuate visual field defect with an enlarged blind spot was the most common perimetric finding. Visual acuity was 85 letters or better (20/20) in 71% of the worst eyes and 77% of the best eyes. Quality of life measures, including the National Eye Institute Visual Function Questionnaire-25 and the Short Form-36 physical and mental health summary scales, were lower compared with population norms. The Idiopathic Intracranial Hypertension Treatment Trial represents the largest prospectively analyzed cohort of untreated patients with IIH. Our data show that IIH is almost exclusively a disease of obese young women. Patients with IIH with mild visual loss have typical symptoms, may have mild acuity loss, and have visual field defects, with predominantly arcuate loss and enlarged blind spots that require formal perimetry for detection. clinicaltrials.gov Identifier: NCT01003639.
Chiral spiral waveguides based on MMI crossings: theory and experiments
NASA Astrophysics Data System (ADS)
Cherchi, Matteo; Ylinen, Sami; Harjanne, Mikko; Kapulainen, Markku; Vehmas, Tapani; Aalto, Timo
2016-03-01
We introduce a novel type of chiral spiral waveguide where the usual waveguide crossings are replaced by 100:0 Multimode Interferometers (MMIs), i.e. 2x2 splitters that couple all the input light in the cross output port. Despite the topological equivalence with the standard configuration, we show how resorting to long MMIs has non-trivial advantages in terms of footprint and propagation length. An accurate analytic model is also introduced to show the impact of nonidealities on the spiral performances, including propagation loss and cross-talk. We have designed and fabricated three chiral spirals on our platform, based on 3 μm thick silicon strip waveguides with 0.13 dB/cm propagation loss, and 1.58 mm long MMIs. The fabricated spirals have 7, 13 and 49 loops respectively, corresponding to the effective lengths 6.6 cm, 12.5 cm and 47.9 cm. The proposed model is successfully applied to the experimental results, highlighting MMI extinction ratio of about 16.5 dB and MMI loss of about 0.08 dB, that are much worse compared to the simulated 50 dB extinction and 0.01 dB loss. This imposes an upper limit to the number of rounds, because light takes shortcuts through the bar MMI ports. Nevertheless, the novel chiral spiral waveguides outperform what is achievable in mainstream silicon photonics platforms based on submicron waveguides in terms of length and propagation losses, and they are promising candidates for the realization of integrated gyroscopes. They can be significantly further improved by replacing the MMIs with adiabatic 100:0 splitters, ensuring lower cross-talk and broader bandwidth.
Development and modification of a Gaussian and non-Gaussian noise exposure system
NASA Astrophysics Data System (ADS)
Schlag, Adam W.
Millions of people across the world currently have noise induced hearing loss, and many are working in conditions with both continuous Gaussian and non-Gaussian noises that could affect their hearing. It was hypothesized that the energy of the noise was the cause of the hearing loss and did not depend on temporal pattern of a noise. This was referred to as the equal energy hypothesis. This hypothesis has been shown to have limitations though. This means that there is a difference in the types of noise a person receives to induce hearing loss and it is necessary to build a system that can easily mimic various conditions to conduct research. This study builds a system that can produce both non-Gaussian impulse/impact noises and continuous Gaussian noise. It was found that the peak sound pressure level of the system could reach well above the needed 120 dB level to represent acoustic trauma and could replicate well above the 85 dB A-weighted sound pressure level to produce conditions of gradual developing hearing loss. The system reached a maximum of 150 dB sound peak pressure level and a maximum of 133 dB A-weighted sound pressure level. Various parameters could easily be adjusted to control the sound, such as the high and low cutoff frequency to center the sound at 4 kHz. The system build can easily be adjusted to create numerous sound conditions and will hopefully be modified and improved in hopes of eventually being used for animal studies to lead to the creation of a method to treat or prevent noise induced hearing loss.
Backplane photonic interconnect modules with optical jumpers
NASA Astrophysics Data System (ADS)
Glebov, Alexei L.; Lee, Michael G.; Yokouchi, Kishio
2005-03-01
Prototypes of optical interconnect (OI) modules for backplane applications are presented. The transceivers attached to the linecards E/O convert the signals that are passed to and from the backplane by optical jumpers terminated with MTP-type connectors. The connectors plug into adaptors attached to the backplane and the microlens arrays mounted in the adaptors couple the light between the fibers and waveguides. Planar polymer channel waveguides with 30-50 μm cross-sections route the optical signals across the board with propagation losses as low as 0.05 dB/cm @ 850 nm. The 45¦-tapered integrated micromirrors reflect the light in and out of the waveguide plane with the loss of 0.8 dB per mirror. The connector displacement measurements indicate that the adaptor lateral assembly accuracy can be at least +/-10 μm for the excess loss not exceeding 1 dB. Insertion losses of the test modules with integrated waveguides, 45¦ mirrors, and pluggable optical jumper connectors are about 5 dB. Eye diagrams at 10.7 Gb/s have typical width and height of 70 ps and 400 mV, respectively, and jitter of about 20 ps.
The Application of Coconut Fiber as Dissipative Silencer
NASA Astrophysics Data System (ADS)
Madlan, M. A.; Ghazali, M. I.; Zaman, I.; Kasron, M. Z.; Ying, T. C.
2017-01-01
Heat ventilation air conditioning system (HVAC) is one of the ducting systems that broadly applied in the building. There are HVAC silencers in the market, however the sound absorptive material commonly used is mineral wool. In this research study, a sound absorptive material made of coconut fiber was tested to identify its performance as a potential replacement of green material for ducting silencer. The experiment was carried out in a testing apparatus that follows the BS EN ISO 11691:2009 standard. Different configurations of sound absorptive material and contents of coconut fiber were investigated in the study. The trend of insertion loss at 1/3 octave frequency was identified where at frequency below 3000Hz, the insertion loss of dissipative silencer is observed high at certain frequency with a very narrow range. At 3000Hz, the insertion loss of 4dB to 6dB is constant until 4000Hz and drops until 5000Hz before it increases again steadily up to 13dB at 10000Hz. A similar trend was observed for different configuration of sound absorptive material. Despite the configuration different, the outcome shows that the insertion loss is increasing with higher content of coconut fiber.
InP Devices For Millimeter-Wave Monolithic Circuits
NASA Astrophysics Data System (ADS)
Binari, S. C.; Neidert, R. E.; Dietrich, H. B.
1989-11-01
High efficiency, mm-wave operation has been obtained from lateral transferred-electron devices (TEDs) designed with a high resistivity region located near the cathode contact. At 29.9 GHz, a CW power output of 29.1 mW with a conversion efficiency of 6.7% has been achieved with cavity-tuned discrete devices. This result represents the highest power output and efficiency of a lateral TED in this frequency range. The lateral devices also had a CW power output of 0.4 mW at 98.5 GHz and 0.9 mW at 75.2 GHz. In addition, a monolithic oscillator incorporating the lateral TED has been demonstrated at 79.9 GHz. InP Schottky-barrier diodes have been fabricated using selective MeV ion implantation into semi-insulating InP substrates. Using Si implantation with energies of up to 6.0 MeV, n+ layers as deep as 3 μm with peak carrier concentrations of 2 x 1018 cm-3 have been obtained. These devices have been evaluated as mixers and detectors at 94 GHz and have demonstrated a conversion loss of 7.6 dB and a zero-bias detector sensitivity as high as 400 mV/mW.
Design and Measurements of Dual-Polarized Wideband Constant-Beamwidth Quadruple-Ridged Flared Horn
NASA Technical Reports Server (NTRS)
Akgiray, Ahmed; Weinreb, Sander; Imbriale, William
2011-01-01
A quad-ridged, flared horn achieving nearly constant beamwidth and excellent return loss over a 6:1 frequency bandwidth is presented. Radiation pattern measurements show excellent beamwidth stability from 2 to 12 GHz. Measured return loss is > 10 dB over the entire band and > 15 dB from 2.5 to 11 GHz. Using a custom physical optics code, system performance of a radio telescope is computed and predicted performance is average 70% aperture efficiency and 10 Kelvin of antenna noise temperature.
Linearized Optically Phase-Modulated Fiber Optic Links for Microwave Signal Transport
2009-03-03
detectors (with internal 50- Ohm resistors) capable of 40-mA dc current per detector. With this link, the linearized SFDR would improve to 133 dB/Hz4/5...the IF) limitation on the signal. All calculations consider the 3dB power loss from the hybrid combiner and 6dB loss from parallel 50- Ohm resistors...283. [25] M. Nazarathy, J. Berger, A. Ley , I. Levi, and Y. Kagan, “Externally Modulated 80 Channel Am Catv Fiber-to-feeder Distribution System Over
TM-pass polarizer based on multilayer graphene polymer waveguide
NASA Astrophysics Data System (ADS)
Cai, Ke-su; Li, Yue-e.; Wei, Wen-jing; Mu, Xi-jiao; Ma, A.-ning; Wang, Zhong; Song, Dan-ming
2018-05-01
A TM-pass polarizer based on multilayer graphene polymer waveguide is proposed and theoretically analyzed. The mode properties, the extinction ratio, the insertion loss and the bandwidth are also discussed. The results show that a TM-pass polarizer, which only guides the TM mode, can be achieved by multilayer graphene polymer waveguide. With length of 150 μm, the proposed polarizer can achieve extinction ratio of 33 dB and insertion loss of 0.5 dB at optical wavelength of 1.55 μm. This device has an excellent performance, including large extinction ratio and low insertion loss within the spectral range from 1.45 μm to 1.6 μm.
Otitis Media with ANCA-associated Vasculitis: A New Concept and the Associated Criteria
Kobari, Yusuke; Nagasawa, Tasuku
2017-01-01
A previously healthy 77-year-old Japanese man presented with a 2-week history of daily fevers peaking at 38°C, chills, hearing loss, and almost 10 kg of unintentional weight loss over 2 months. Pure tone audiometry showed mixed conductive-sensorineural hearing loss: right, 63.6 dB, left, 80.0 dB. Blood tests after admission showed a high myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA) level (>300 U/mL), so we suspected ANCA-related vasculitis. The Japanese Otorhinolaryngology Society has recently been advocating the concept of otitis media with ANCA-associated vasculitis (OMAAV). Our case met the criteria proposed, leading to our diagnosis. PMID:29021451
Otitis Media with ANCA-associated Vasculitis: A New Concept and the Associated Criteria.
Kobari, Yusuke; Nagasawa, Tasuku
2017-12-15
A previously healthy 77-year-old Japanese man presented with a 2-week history of daily fevers peaking at 38°C, chills, hearing loss, and almost 10 kg of unintentional weight loss over 2 months. Pure tone audiometry showed mixed conductive-sensorineural hearing loss: right, 63.6 dB, left, 80.0 dB. Blood tests after admission showed a high myeloperoxidase-antineutrophil cytoplasmic antibody (MPO-ANCA) level (>300 U/mL), so we suspected ANCA-related vasculitis. The Japanese Otorhinolaryngology Society has recently been advocating the concept of otitis media with ANCA-associated vasculitis (OMAAV). Our case met the criteria proposed, leading to our diagnosis.
Zhou, Guangyu; Wang, Yanqiu; He, Ping; Li, Detian
2013-01-01
The present study was conducted to investigate the effects of probucol on the progression of diabetic nephropathy and the underlying mechanism in type 2 diabetic db/db mice. Eight weeks db/db mice were treated with regular diet or probucol-containing diet (1%) for 12 weeks. Non-diabetic db/m mice were used as controls. We examined body weight, blood glucose, and urinary albumin. At 20 weeks, experimental mice were sacrificed and their blood and kidneys were extracted for the analysis of blood chemistry, kidney histology, oxidative stress marker, and podocyte marker. As a result, 24 h urinary albumin excretions were reduced after probucol treatment. There were improvements of extracellular matrix accumulation and fibronectin and collagen IV deposition in glomeruli in the probucol-treated db/db mice. The reduction of nephrin and the loss of podocytes were effectively prevented by probucol in db/db mice. Furthermore, probucol significantly decreased the production of thiobarbituric acid-reactive substances (TBARS), an index of reactive oxygen species (ROS) generation and down-regulated the expression of Nox2. Taken together, our findings support that probucol may have the potential to protect against type 2 diabetic nephropathy via amelioration of podocyte injury and reduction of oxidative stress.
Saito, Takayuki; Hasegawa-Moriyama, Maiko; Kurimoto, Tae; Yamada, Tomotsugu; Inada, Eichi; Kanmura, Yuichi
2015-12-01
The wound healing process following acute inflammation after surgery is impaired in diabetes. Altered macrophage functions are linked to delayed tissue repair and pain development in diabetes. Although peroxisome proliferator-activated receptor (PPAR)-γ agonists are used to treat diabetes, their postoperative analgesic effects in diabetes have not been evaluated. The PPARγ agonist rosiglitazone (rosi) was injected at the incision site of diabetic (db/db) mice with resolvin (Rv) D1, a lipid mediator involved in resolution of inflammation. Pain-related behavior, neutrophil infiltration, phagocytosis, and macrophage polarity were assessed for 7 days postoperatively. Rosiglitazone and RvD1 alleviated mechanical hyperalgesia in db/db (db) mice, whereas rosiglitazone alone did not alter mechanical thresholds on days 4 (db rosi + RvD1 vs. db rosi: 0.506 ± 0.106 vs. 0.068 ± 0.12) and 7 (0.529 ± 0.184 vs. 0.153 ± 0.183) after incision (n = 10 per group). In control m/m mice, the rosiglitazone-induced analgesic effects were reversed by knockdown with arachidonate 5-lipoxygenase small interfering RNA, but these were restored by addition of RvD1. In db/db mice treated with rosiglitazone and RvD1, local infiltration of neutrophils was markedly reduced, with an associated decrease in total TdT-mediated dUTP nick-end labeling cells. Acceleration of rosiglitazone-induced phenotype conversion of infiltrated macrophages from M1 to M2 was impaired in db/db mice, but it was effectively restored by RvD1 in db/db wounds. In diabetes, exogenous administration of RvD1 is essential for PPARγ-mediated analgesia during development of postincisional pain. Resolution of inflammation accelerated by RvD1 might promote PPARγ-mediated macrophage polarization to the M2 phenotype.
On-chip WDM mode-division multiplexing interconnection with optional demodulation function.
Ye, Mengyuan; Yu, Yu; Chen, Guanyu; Luo, Yuchan; Zhang, Xinliang
2015-12-14
We propose and fabricate a wavelength-division-multiplexing (WDM) compatible and multi-functional mode-division-multiplexing (MDM) integrated circuit, which can perform the mode conversion and multiplexing for the incoming multipath WDM signals, avoiding the wavelength conflict. An phase-to-intensity demodulation function can be optionally applied within the circuit while performing the mode multiplexing. For demonstration, 4 × 10 Gb/s non-return-to-zero differential phase shift keying (NRZ-DPSK) signals are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show less than 1 dB receive sensitivity variation for three modes and four wavelengths with demodulation. In the case without demodulation, the average power penalties at 4 wavelengths are -1.5, -3 and -3.5 dB for TE₀-TE₀, TE₀-TE₁ and TE₀-TE₂ mode conversions, respectively. The proposed flexible scheme can be used at the interface of long-haul and on-chip communication systems.
Simple Detection-Performance Analysis of Multistatic Sonar for Anti-Submarine Warfare
2011-06-01
Following Urick [29], we take n = 8 dB. Since transmission loss contributes linearly (in dB units) to signal excess, allowance for absorption...sonobuoy fields for area search’, technical report DSTO-TR-2563 of the Defence Science and Technology Organisation. [29] R.J. Urick (1983) Principles of
Fabry-Perot resonators with transverse coupling on SOI using loop mirrors
NASA Astrophysics Data System (ADS)
Saber, Md Ghulam; Abadía, Nicolás; Wang, Yun; Plant, David V.
2018-05-01
A novel integrated transversely coupled Fabry-Perot resonator using loop mirrors as the end reflectors are demonstrated via simulations and experiments on the silicon-on-insulator (SOI) platform. The resonator is formed by connecting two loop mirrors to the two output ports of a directional coupler to form the resonant cavity and utilizing the other two ports as the input and the output. Depending on which two ports of the directional coupler are mirrored, two configurations of the resonator can be achieved. The impacts of varying the cavity length and the coupling coefficient of the directional coupler on the output characteristics of the resonators are analyzed. A Q-factor of 28086 and an extinction ratio of 10.04 dB with an insertion loss of 1.9 dB is achieved experimentally for a 1038 μm cavity length and an extinction ratio of 18.14 dB and a Q-factor of 5120 with an insertion loss of 2.12 dB is obtained for a cavity length of 376 μm. The reported resonator offers additional freedom to tune the spectral characteristics.
NASA Astrophysics Data System (ADS)
Tellers, M. C.; Pulskamp, J. S.; Bedair, S. S.; Rudy, R. Q.; Kierzewski, I. M.; Polcawich, R. G.; Bergbreiter, S. E.
2018-03-01
As an alternative to highly constrained hard-wired reconfigurable RF circuits, a motion-enabled reconfigurable circuit (MERC) offers freedom from transmission line losses and homogeneous materials selection. The creation of a successful MERC requires a precise mechanical mechanism for relocating components. In this work, a piezoelectric MEMS actuator array is modeled and experimentally characterized to assess its viability as a solution to the MERC concept. Actuation and design parameters are evaluated, and the repeatability of high quality on-axis motion at greater than 1 mm s-1 is demonstrated with little positional error. Finally, an initial proof-of-concept circuit reconfiguration has been demonstrated using off-the-shelf RF filter components. Although initial feasibility tests show filter performance degradation with an additional insertion loss of 0.3 dB per contact, out-of-band rejection degradation as high as 10 dB, and ripple performance reduction from 0.25 dB to 1.5 dB, MERC is proven here as an alternative to traditional approaches used in reconfigurable RF circuit applications.
A High Isolation Series-Shunt RF MEMS Switch
Yu, Yuan-Wei; Zhu, Jian; Jia, Shi-Xing; Shi, Yi
2009-01-01
This paper presents a wide band compact high isolation microelectromechanical systems (MEMS) switch implemented on a coplanar waveguide (CPW) with three ohmic switch cells, which is based on the series-shunt switch design. The ohmic switch shows a low intrinsic loss of 0.1 dB and an isolation of 24.8 dB at 6 GHz. The measured average pull-in voltage is 28 V and switching time is 47 μs. In order to shorten design period of the high isolation switch, a structure-based small-signal model for the 3-port ohmic MEMS switch is developed and parameters are extracted from the measured results. Then a high isolation switch has been developed where each 3-port ohmic MEMS switch is closely located. The agreement of the measured and modeled radio frequency (RF) performance demonstrates the validity of the electrical equivalent model. Measurements of the series-shunt switch indicate an outstanding isolation of more than 40 dB and a low insertion loss of 0.35 dB from DC to 12 GHz with total chip size of 1 mm × 1.2 mm. PMID:22408535
Mostafapour, S P; Lahargoue, K; Gates, G A
1998-12-01
No consensus exists regarding the magnitude of the risk of noise-induced hearing loss (NIHL) associated with leisure noise, in particular, personal listening devices in young adults. Examine the magnitude of hearing loss associated with personal listening devices and other sources of leisure noise in causing NIHL in young adults. Prospective auditory testing of college student volunteers with retrospective history exposure to home stereos, personal listening devices, firearms, and other sources of recreational noise. Subjects underwent audiologic examination consisting of estimation of pure-tone thresholds, speech reception thresholds, and word recognition at 45 dB HL. Fifty subjects aged 18 to 30 years were tested. All hearing thresholds of all subjects (save one-a unilateral 30 dB HL threshold at 6 kHz) were normal, (i.e., 25 dB HL or better). A 10 dB threshold elevation (notch) in either ear at 3 to 6 kHz as compared with neighboring frequencies was noted in 11 (22%) subjects and an unequivocal notch (15 dB or greater) in either ear was noted in 14 (28%) of subjects. The presence or absence of any notch (small or large) did not correlate with any single or cumulative source of noise exposure. No difference in pure-tone threshold, speech reception threshold, or speech discrimination was found among subjects when segregated by noise exposure level. The majority of young users of personal listening devices are at low risk for substantive NIHL. Interpretation of the significance of these findings in relation to noise exposure must be made with caution. NIHL is an additive process and even subtle deficits may contribute to unequivocal hearing loss with continued exposure. The low prevalence of measurable deficits in this study group may not exclude more substantive deficits in other populations with greater exposures. Continued education of young people about the risk to hearing from recreational noise exposure is warranted.
Non-reciprocal optical mirrors based on spatio-temporal acousto-optic modulation
NASA Astrophysics Data System (ADS)
Fleury, R.; Sounas, D. L.; Alù, A.
2018-03-01
Here, we investigate a scheme to realize free-space isolators and highly non-reciprocal mirrors with weak modulation imparted by an acoustic wave. We propose a strategy to dramatically break time-reversal symmetry by exploiting resonant interactions between a travelling acoustic wave and highly resonant Fabry-Pérot modes, inducing total reflection of an optical beam at a given angle, and no reflection at the negative angle. Different from conventional acousto-optic isolators, which are based on non-resonant frequency conversion and filtering, our proposal operates at the frequency of the optical signal by tailoring the resonant properties of the structure as well as the acoustic wave frequency and intensity, enabling 50 dB isolation with modest modulation requirements. Operation in the reflection mode allows for close-to-zero insertion loss, enabling disruptive opportunities in our ability to control and manipulate photons.
NASA Astrophysics Data System (ADS)
Limeng, Zhang; Dan, Lu; Zhaosong, Li; Biwei, Pan; Lingjuan, Zhao
2016-12-01
The design, fabrication and characterization of a fundamental/first-order mode converter based on multimode interference coupler on InP substrate were reported. Detailed optimization of the device parameters were investigated using 3D beam propagation method. In the experiments, the fabricated mode converter realized mode conversion from the fundamental mode to the first-order mode in the wavelength range of 1530-1565 nm with excess loss less than 3 dB. Moreover, LP01 and LP11 fiber modes were successfully excited from a few-mode fiber by using the device. This InP-based mode converter can be a possible candidate for integrated transceivers for future mode-division multiplexing system. Project supported by the National Basic Research Program of China (No. 2014CB340102) and in part by the National Natural Science Foundation of China (Nos. 61274045, 61335009).
Development of theoretical models of integrated millimeter wave antennas
NASA Technical Reports Server (NTRS)
Yngvesson, K. Sigfrid; Schaubert, Daniel H.
1991-01-01
Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.
YBCO High-Temperature Superconducting Filters on M-Plane Sapphire Substrates
NASA Technical Reports Server (NTRS)
Sabataitis, J. C.; Mueller, C. H.; Miranda, F. A.; Warner, J.; Bhasin, K. B.
1996-01-01
Since the discovery of High Temperature Superconductors (HTS) in 1986, microwave circuits have been demonstrated using HTS films on various substrates. These HTS-based circuits have proven to operate with less power loss than their metallic film counterparts at 77 K. This translates into smaller and lighter microwave circuits for space communication systems such as multiplexer filter banks. High quality HTS films have conventionally been deposited on lanthanum aluminate (LaAlO3) substrates. However, LaAlO3 has a relative dielectric constant (epsilon(sub r)) of 24. With a epsilon(sub r) approx. 9.4-11.6, sapphire (Al2O3) would be a preferable substrate for the fabrication of HTS-based components since the lower dielectric constant would permit wider microstrip lines to be used in filter design, since the lower dielectric constant would permit wider microstrip lines to be used for a given characteristic impedance (Z(sub 0)), thus lowering the insertion losses and increasing the power handling capabilities of the devices. We report on the fabrication and characterization of YBa2Cu3O(7-delta) (YBCO) on M-plane sapphire bandpass filters at 4.0 GHz. For a YBCO 'hairpin' filter, a minimum insertion loss of 0.5 dB was measured at 77 K as compared with 1.4 dB for its gold counterpart. In an 'edge-coupled' configuration, the insertion loss went down from 0.9 dB for the gold film to 0.8 dB for the YBCO film at the same temperature.
Contralateral Occlusion Test: The effect of external ear canal occlusion on hearing thresholds.
Reis, Luis Roque; Fernandes, Paulo; Escada, Pedro
Bedside testing with tuning forks may decrease turnaround time and improve decision making for a quick qualitative assessment of hearing loss. The purpose of this study was to quantify the effects of ear canal occlusion on hearing, in order to decide which tuning fork frequency is more appropriate to use for quantifying hearing loss with the Contralateral Occlusion Test. Twenty normal-hearing adults (forty ears) underwent sound field pure tone audiometry with and without ear canal occlusion. Each ear was tested with the standard frequencies. The contralateral ear was suppressed with by masking. Ear occlusion was performed by two examiners. Participants aged between 21 and 30 years (25.6±3.03 years) showed an increase in hearing thresholds with increasing frequencies from 19.94dB (250Hz) to 39.25dB (2000Hz). The threshold difference between occluded and unoccluded conditions was statistically significant and increased from 10.69dB (250Hz) to 32.12dB (2000Hz). There were no statistically significant differences according to gender or between the examiners. The occlusion effect increased the hearing thresholds and became more evident with higher frequencies. The occlusion method as performed demonstrated reproducibility. In the Contralateral Occlusion Test, 256Hz or 512Hz tuning forks should be used for diagnosis of mild hearing loss, and a 2048Hz tuning fork should be used for moderate hearing loss. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
A low insertion loss GaAs pHEMT switch utilizing dual n +-doping AlAs etching stop layers design
NASA Astrophysics Data System (ADS)
Chien, Feng-Tso; Lin, Da-Wei; Yang, Chih-Wei; Fu, Jeffrey S.; Chiu, Hsien-Chin
2010-03-01
A low insertion loss single-pole-single-throw (SPST) pseudomorphic high electron mobility transistor (pHEMT) switch utilizing the n +-type doping in AlAs etching stop layer was fabricated and investigated. This novel design reduces device sheet resistance resulting in an improvement of dc and rf power performance. In addition, the gate recess selectivity for GaAs/AlAs interface was not sacrificed after highly n +-type doping in AlAs etching stop layer. The pHEMT with n +-AlAs etching stop layer, also named Modified pHEMT (M-pHEMT), demonstrated a lower sheet resistance ( Rsh) of 65.9 Ω/γ, a higher maximum drain-to-source current ( Idmax) of 317.8 mA/mm and a higher peak transconductance ( gm) of 259.3 mS/mm which are superior to standard pHEMT performance with values of 71.9 Ω/γ, 290.3 mA/mm and 252.1 mS/mm, respectively. Due to a significant sheet resistance improvement from this novel epitaxial design, an SPST pHEMT switch was realized to manifest its industrial application potential. The results achieved an on-state insertion loss of 1.42 dB, an off-state isolation of 13.02 dB at 0.9 GHz, which were superior to traditional pHEMT switch under same condition of operation with values of 1.68 dB and 11.42 dB, respectively. It is proved that dual n +-doping AlAs etching stop layers scheme is beneficial for low loss microwave switches applications.
Mostaguir, Khaled; Hoogland, Christine; Binz, Pierre-Alain; Appel, Ron D
2003-08-01
The Make 2D-DB tool has been previously developed to help build federated two-dimensional gel electrophoresis (2-DE) databases on one's own web site. The purpose of our work is to extend the strength of the first package and to build a more efficient environment. Such an environment should be able to fulfill the different needs and requirements arising from both the growing use of 2-DE techniques and the increasing amount of distributed experimental data.
Murphy, William J.; Fackler, Cameron J.; Berger, Elliott H.; Shaw, Peter B.; Stergar, Mike
2015-01-01
Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL. PMID:26356380
Implantable ferrite antenna for biomedical applications
NASA Astrophysics Data System (ADS)
Fazeli, Maxwell L.
We have developed an implantable microstrip patch antenna with dimensions of 10x10x1.28 mm, operating around the Industrial, Scientific and Medical (ISM) band (2.4-2.5 GHz). The antenna is characterized in skin-mimicking gels and compared with simulation results. The experimental measurements are in good agreement with simulations, having a -16 dB reflection coefficient and -18 dBi realized gain at resonance, with a 185 MHz -10 dB bandwidth. The simulated effects of ferrite film loading on antenna performance are investigated, with comparisons made for 5 and 10 microm thick films, as well as for 10 microm thick films with varying magnetic loss (tan delta micro = 0.05, 0.1 and 0.3). Our simulations reveal that the addition of 10 microm thick magnetic layers has effectively lowered the resonant frequency by 70 MHz, while improving return loss and -10 dB bandwidth by 3 dB and 40 MHz, respectively, over the uncoated antenna. Ferrite film coating also improved realized gain within the ISM band, with largest gain increases at resonance found for films having lower magnetic loss. Additionally, the gain (G) variance at ISM band limits, Delta Gf(2.5GHz)-f (2.4GHz), decreased from 1.97 to 0.44 dBi for the antenna with 10 microm films over the non-ferrite antenna. The measured dip-coated NiCo ferrite films effectively reduces the antenna resonance by 110 MHz, with a 4.2 dB reflection coefficient improvement as compared to an antenna without ferrite. The measured ferrite antenna also reveals a 6 dBi and 35 MHz improvement in realized gain and -10 dB bandwidth, respectively, at resonance. Additionally, the ferrite-coated antenna shows improved directivity, with wave propagation attenuated at the direction facing the body internal. These results indicate that implantable antenna miniaturization and reliable wireless communication in the operating frequency band can be realized with ferrite loading.
Splicing Efficiently Couples Optical Fibers
NASA Technical Reports Server (NTRS)
Lutes, G. F.
1985-01-01
Method of splicing single-mode optical fibers results in very low transmission losses through joined fiber ends. Coupling losses between joined optical-fiber ends only 0.1 dB. Method needs no special operator training.
NASA Astrophysics Data System (ADS)
Calabretta, N.; Cooman, I. A.; Stabile, R.
2018-04-01
We propose for the first time a coupling device concept for passive low-loss optical coupling, which is compatible with the ‘generic’ indium phosphide (InP) multi-project-wafer manufacturing. A low-to-high vertical refractive index contrast transition InP waveguide is designed and tapered down to adiabatically couple light into a top polymer waveguide. The on-chip embedded polymer waveguide is engineered at the chip facets for offering refractive-index and spot-size-matching to silica fiber-arrays. Numerical analysis shows that coupling losses lower than 1.5 dB can be achieved for a TE-polarized light between the InP waveguide and the on-chip embedded polymer waveguide at 1550 nm wavelength. The performance is mainly limited by the difficulty to control single-mode operation. However, coupling losses lower than 1.9 dB can be achieved for a bandwidth as large as 200 nm. Moreover, the foreseen fabrication process steps are indicated, which are compatible with the ‘generic’ InP multi-project-wafer manufacturing. A fabrication error tolerance study is performed, indicating that fabrication errors occur only in 0.25 dB worst case excess losses, as long as high precision lithography is used. The obtained results are promising and may open the route to large port counts and cheap packaging of InP-based photonic integrated chips.
Talent Developed: Conversations with Masters in the Arts and Sciences. Hugo Fiorato.
ERIC Educational Resources Information Center
Subotnik, Rena F.
2001-01-01
An interview with Hugo Fiorato, the conductor of the New York City Ballet, recounts his musical education, special problems of conducting for a ballet company, the training of orchestra members and conductors, and mentorship. (DB)
Methodology of splicing large air filling factor suspended core photonic crystal fibres
NASA Astrophysics Data System (ADS)
Jaroszewicz, L. R.; Murawski, M.; Nasilowski, T.; Stasiewicz, K.; Marć, P.; Szymański, M.; Mergo, P.
2011-06-01
We report the methodology of effective low-loss fusion splicing a photonic crystal fibre (PCF) to itself as well as to a standard single mode fibre (SMF). Distinctly from other papers in this area, we report on the results for splicing suspended core (SC) PCF having tiny core and non-Gaussian shape of guided beam. We show that studied splices exhibit transmission losses strongly dispersive and non-reciprocal in view of light propagation direction. Achieved splicing losses, defined as larger decrease in transmitted optical power comparing both propagation directions, are equal to 2.71 ±0.25 dB, 1.55 ±0.25 dB at 1550 nm for fibre SC PCF spliced to itself and to SMF, respectively.
Preparation and electromagnetic wave absorption of RGO/Cu nanocomposite
NASA Astrophysics Data System (ADS)
Zhang, Hui; Tian, Xingyou; Zhang, Xian; Li, Shikuo; Shen, Yuhua; Xie, Anjian
2017-09-01
We use a facile pyrolysis method to prepare reduced graphene oxide and copper nanocomposite (RGO/Cu) based on it. The product shows an outstanding wave absorption properties. The maximum reflection loss is up to-50.7 dB at 3.8 GHz. The reflection loss of-10 dB (90% power absorption) corresponds to a bandwidth of 11.2 GHz (3.4-14.6 GHz range) for the layer thickness of 2-5 mm. Therefore, it is suggested that the RGO/Cu nanocomposite is also a new kind of lightweight and high-performance EM wave absorbing material.
High-contrast grating hollow-core waveguide splitter applied to optical phased array
NASA Astrophysics Data System (ADS)
Zhao, Che; Xue, Ping; Zhang, Hanxing; Chen, Te; Peng, Chao; Hu, Weiwei
2014-11-01
A novel hollow-core (HW) Y-branch waveguide splitter based on high-contrast grating (HCG) is presented. We calculated and designed the HCG-HW splitter using Rigorous Coupled Wave Analysis (RCWA). Finite-different timedomain (FDTD) simulation shows that the splitter has a broad bandwidth and the branching loss is as low as 0.23 dB. Fabrication is accomplished with standard Silicon-On-Insulator (SOI) process. The experimental measurement results indicate its good performance on beam splitting near the central wavelength λ = 1550 nm with a total insertion loss of 7.0 dB.
Fiber-optic coupling based on nonimaging expanded-beam optics.
Moslehi, B; Ng, J; Kasimoff, I; Jannson, T
1989-12-01
We have fabricated and experimentally tested low-cost and mass-producible multimode fiber-optic couplers and connectors based on nonimaging beam-expanding optics and Liouville's theorem. Analysis indicates that a pair coupling loss of -0.25 dB can be achieved. Experimentally, we measured insertion losses as low as -0.38 dB. The beam expanders can be mass produced owing to the use of plastic injection-molding fabrication techniques and packaged in standard connector housings. This design is compatible with the fiber geometry and can yield highly stable coupling owing to its high tolerance for misalignments.
16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers.
Lu, Liangjun; Zhao, Shuoyi; Zhou, Linjie; Li, Dong; Li, Zuxiang; Wang, Minjuan; Li, Xinwan; Chen, Jianping
2016-05-02
We experimentally demonstrate a 16 × 16 non-blocking optical switch fabric with a footprint of 10.7 × 4.4 mm2. The switch fabric is composed of 56 2 × 2 silicon Mach-Zehnder interferometers (MZIs), with each integrated with a pair of TiN resistive micro-heaters and a p-i-n diode. The average on-chip insertion loss at 1560 nm wavelength is ~6.7 dB and ~14 dB for the "all-cross" and "all-bar" states, respectively, with a loss variation of ± 1 dB over all routing paths. The measured rise/fall time of the switch upon electrical tuning is 3.2/2.5 ns. The switching functionality is verified by transmission of 20 Gb/s on-off keying (OOK) and 50 Gb/s quadrature phase-shift keying (QPSK) optical signals.
Surface, Interface, and Bulk Properties of High Tc Superconductors
1989-06-30
Superconductors Phys. Rev. B 39, 823, (1989) Z.-X. Shen, P.A.P. Lindberg, B.O. Wells, D.B. Mitzi , I. Lindau, W.E. Spicer and A. Kapitulnik Valence Band...Lindau, W.E. Spicer, P. Soukiassian, D.B. Mitzi , C.B. Eom, A. Kapitulnik and T.H. Geballe Surface and Electronic Structure of Bi-Ca-Sr-Cu-O...P.A.P. Lindberg, D.S. Dessau, I. Lindau, W.E. Spicer, D.B. Mitzi , I. Bozvic and A. Kapitulnik Photoelectron energy loss study of the Bi 2CaSr 2Cu20 8
ERIC Educational Resources Information Center
National Information Clearinghouse on Children Who Are Deaf-Blind, Monmouth, OR.
This resource guide, consisting of pages downloaded from the DB-LINK Web site, is designed to assist parents, professionals, and others in identifying services that hold the potential for supporting and improving the lives of children and youth who experience combined vision and hearing loss. Information is provided on: (1) the American…
An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing
NASA Astrophysics Data System (ADS)
Wang, Zifei; Glesk, Ivan; Chen, Lawrence R.
2018-02-01
The nonlinear optical loop mirror (NOLM) has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK) signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ)-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.
NASA Astrophysics Data System (ADS)
Choi, J. W.; Sohn, B.-U.; Chen, G. F. R.; Ng, D. K. T.; Tan, D. T. H.
2018-04-01
The generation of broadband light within the telecommunication band has been instrumental to the design and characterization of advanced optical devices and systems. In this paper, stimulated degenerate four-wave mixing of an ultra-silicon rich nitride waveguide is investigated using a pulsed pump at 1.555 μm and incoherent broadband sources emitting in the 1.65 μm wavelength region as a signal. The waveguide possesses a large nonlinear parameter of 330 W-1/m as well as anomalous dispersion, required for phase matched parametric processes. The broadband idler ranging from 1.43 μm to 1.52 μm is generated using a coupled peak power of 4.6 W, spanning ˜100 nm at the -20 dB level, which is sufficient to cover parts of the E- and S-bands. The spectral span of the generated idler also agrees well with the calculation based on the phase-matching condition governing degenerate four-wave mixing. Cascaded incoherent four-wave mixing is also observed. Using a supercontinuum pump spanning from 1.1 to 1.7 μm with a coupled peak power of 26 W, an idler spanning from 1.2 to 1.4 μm is generated, equivalent to an idler on/off conversion efficiency of 27 dB.
NASA Astrophysics Data System (ADS)
She, Xuan; Li, Bei; Chen, Kan; Li, Ke; Shu, Xiaowu; Liu, Cheng
2017-02-01
We present a design of a laterally tapered optical waveguide mode-size converter from super luminescent diode (SLD) to silica-based planar lightwave circuit (PLC). The mode-size converter is based on silica-based PLC. By using three dimensional semi-vectorial beam propagation methods, laterally tapered waveguides with different boundaries are simulated and compared with each other, where the factors of polarization-dependent loss and coupling loss are mainly focused on. The results show that the most influential factor for polarization-dependent loss is the ratio of the divergence angle of SLD in the horizontal direction and the vertical direction. The refractive index difference Δ between core layer and cladding layer, core width of endface and taper length influence coupling loss mostly, while the effect of all side boundaries is within 0.05 dB. We also investigate the SLD misalignment tolerance and wavelength bandwidth's impact on coupling loss. Furthermore, we examine the performance of the mode-size converter based on a particular SLD which has a divergence angle of 30°×45°. By optimizing the parameters of the tapered waveguide, the coupling efficiency is increased to 62.4% and the polarization-dependent loss is reduced to 0.035 dB. Meanwhile, it eΔnables us to reduce the coupling loss variation to 0.05dB with core width of endface fabrication tolerance of ±0.5 μm and taper length tolerance of ±0.5 mm. The proposed mode-size converter has been demonstrated to be well performed, implying its application in the optical transceiver module using SLD as light source and hybrid integration of III-V semiconductor waveguiding devices and PLCs.
Artifactual responses when recording auditory steady-state responses.
Small, Susan A; Stapells, David R
2004-12-01
The goal of this study was to investigate, in hearing-impaired participants who could not hear the stimuli, the possibility of artifactual auditory steady-state responses (ASSRs) when stimuli are presented at high intensities. ASSRs to single (60 dB HL) and multiple (20 to 50 dB HL; 500 to 4000 Hz) bone-conduction stimuli as well as single 114 to 120 dB HL air-conduction stimuli, were obtained using the Rotman MASTER system, using analog-to-digital (A/D) conversion rates of 500, 1000, and 1250 Hz. Responses (p < 0.05) were considered artifactual when their numbers exceeded that expected by chance. In some conditions, we also obtained ASSRs to "alternated" stimuli (stimuli inverted and ASSRs to the two polarities averaged). A total of 17 subjects were tested. Bone conduction results: 500 Hz A/D rate: Large-amplitude (43 to 1558 nV) artifactual ASSRs were seen at 40 and 50 dB HL for the 500 Hz carrier frequency. Smaller responses (28 to 53 nV) were also recorded at 20 dB HL for the 500 Hz carrier frequency. Artifactual ASSRs (17 to 62 nV) were seen at 40 dB HL and above for the 1000 Hz carrier frequency and at 50 dB HL for the 2000 Hz carrier frequency. Alternating the stimulus polarity decreased the amplitude and occurrence of these artifactual responses but did not eliminate responses for the 500 Hz carrier frequency at 40 dB HL and above. No artifactual responses were recorded for 4000 Hz stimuli for any condition. 1000 Hz A/D rate: Artifactual ASSRs (15 to 523 nV) were seen at 50 dB HL and above for the 500 Hz carrier frequency and 40 dB HL and above for the 1000 Hz carrier frequency. Artifactual responses were also obtained at 50 dB HL for a 2000 Hz carrier frequency but not at lower levels. Artifactual responses were not seen for the 4000 Hz carrier frequency. Alternating the stimulus polarity removed the responses for the 1000 and 2000 Hz carrier frequencies but did not change the results for the 500 Hz carrier frequency. 1250 Hz A/D rate: Artifactual ASSRs (16 to 220 nV) were seen at 50 dB HL and above for the 500 Hz carrier frequency and 60 dB HL and above for the 1000 Hz carrier frequency. Alternating the stimulus polarity removed the responses for the 1000 Hz carrier frequency but did not change the results for the 500 Hz carrier frequency. There were no artifactual responses at 2000 and 4000 Hz. Air conduction results: 500 Hz A/D rate: Artifactual ASSRs (49 to 153 nV) were seen for 114 to 120 dB HL stimuli for 500 and 1000 Hz carrier frequencies. Alternating the stimulus polarity removed these responses. There were no artifactual responses at 2000 and 4000 Hz. 1000 and 1250 Hz A/D rates: Artifactual ASSRs (19 to 55 nV) were seen for a 120 dB HL stimulus for a 1000 Hz carrier. Alternating the stimulus polarity removed these responses. High-intensity air- or bone-conduction stimuli can produce spurious ASSRs, especially for 500 and 1000 Hz carrier frequencies. High-amplitude stimulus artifact can result in energy that is aliased to exactly the modulation frequency. Choice of signal conditioning (electroencephalogram filter slope and low-pass cutoff) and processing (A/D rate) can avoid spurious responses due to aliasing. However, artifactual responses due to other causes may still occur for bone-conduction stimuli 50 dB HL and higher (and possibly for high-level air conduction). Because the phases of these spurious responses do not invert with inversion of stimulus, the possibility of nonauditory physiologic responses cannot be ruled out. The clinical implications of these results are that artifactual responses may occur for any patient for bone-conduction stimuli at levels greater than 40 dB HL and for high-intensity air-conduction stimuli used to assess patients with profound hearing loss.
Development of digital sideband separating down-conversion for Yuan-Tseh Lee Array
NASA Astrophysics Data System (ADS)
Li, Chao-Te; Kubo, Derek; Cheng, Jen-Chieh; Kuroda, John; Srinivasan, Ranjani; Ho, Solomon; Guzzino, Kim; Chen, Ming-Tang
2016-07-01
This report presents a down-conversion method involving digital sideband separation for the Yuan-Tseh Lee Array (YTLA) to double the processing bandwidth. The receiver consists of a MMIC HEMT LNA front end operating at a wavelength of 3 mm, and sub-harmonic mixers that output signals at intermediate frequencies (IFs) of 2-18 GHz. The sideband separation scheme involves an analog 90° hybrid followed by two mixers that provide down-conversion of the IF signal to a pair of in-phase (I) and quadrature (Q) signals in baseband. The I and Q baseband signals are digitized using 5 Giga sample per second (Gsps) analog-to-digital converters (ADCs). A second hybrid is digitally implemented using field-programmable gate arrays (FPGAs) to produce two sidebands, each with a bandwidth of 1.6 GHz. The 2 x 1.6 GHz band can be tuned to cover any 3.6 GHz window within the aforementioned IF range of the array. Sideband rejection ratios (SRRs) above 20 dB can be obtained across the 3.6 GHz bandwidth by equalizing the power and delay between the I and Q baseband signals. Furthermore, SRRs above 30 dB can be achieved when calibration is applied.
The Idiopathic Intracranial Hypertension Treatment Trial
Wall, Michael; Kupersmith, Mark J.; Kieburtz, Karl D.; Corbett, James J.; Feldon, Steven E.; Friedman, Deborah I.; Katz, David M.; Keltner, John L.; Schron, Eleanor B.; McDermott, Michael P.
2015-01-01
IMPORTANCE To our knowledge, there are no large prospective cohorts of untreated patients with idiopathic intracranial hypertension (IIH) to characterize the disease. OBJECTIVE To report the baseline clinical and laboratory features of patients enrolled in the Idiopathic Intracranial Hypertension Treatment Trial. DESIGN, SETTING, AND PARTICIPANTS We collected data at baseline from questionnaires, examinations, automated perimetry, and fundus photography grading. Patients (n = 165) were enrolled from March 17, 2010, to November 27, 2012, at 38 academic and private practice sites in North America. All participants met the modified Dandy criteria for IIH and had a perimetric mean deviation between −2 dB and −7 dB. All but 4 participants were women. MAIN OUTCOMES AND MEASURES Baseline and laboratory characteristics. RESULTS The mean (SD) age of our patients was 29.0 (7.4) years and 4 (2.4%) were men. The average (SD) body mass index (calculated as weight in kilograms divided by height in meters squared) was 39.9 (8.3). Headache was the most common symptom (84%). Transient visual obscurations occurred in 68% of patients, back pain in 53%, and pulse synchronous tinnitus in 52%. Only 32% reported visual loss. The average (SD) perimetric mean deviation in the worst eye was −3.5 (1.1) dB, (range, −2.0 to −6.4 dB) and in the best eye was −2.3 (1.1) dB (range, −5.2 to 0.8 dB). A partial arcuate visual field defect with an enlarged blind spot was the most common perimetric finding. Visual acuity was 85 letters or better (20/20) in 71% of the worst eyes and 77% of the best eyes. Quality of life measures, including the National Eye Institute Visual Function Questionnaire–25 and the Short Form–36 physical and mental health summary scales, were lower compared with population norms. CONCLUSIONS AND RELEVANCE The Idiopathic Intracranial Hypertension Treatment Trial represents the largest prospectively analyzed cohort of untreated patients with IIH. Our data show that IIH is almost exclusively a disease of obese young women. Patients with IIH with mild visual loss have typical symptoms, may have mild acuity loss, and have visual field defects, with predominantly arcuate loss and enlarged blind spots that require formal perimetry for detection. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01003639 PMID:24756302
Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement
NASA Astrophysics Data System (ADS)
Selvaraja, Shankar Kumar; Bogaerts, Wim; Van Thourhout, Dries
2011-04-01
Single mode silicon photonic wire waveguides allow low-loss sharp micro-bends, which enables compact photonic devices and circuits. The circuit compactness is achieved at the cost of loss induced by micro-bends, which can seriously affect the device performance. The bend loss strongly depends on the bend radius, polarization, waveguide dimension and profile. In this paper, we present the effect of waveguide profile on the bend loss. We present waveguide profile improvement with optimized etch chemistry and the role of etch chemistry in adapting the etch profile of silicon is investigated. We experimentally demonstrate that by making the waveguide sidewalls vertical, the bend loss can be reduced up to 25% without affecting the propagation loss of the photonic wires. The bend loss of a 2 μm bend has been reduced from 0.039dB/90° bend to 0.028dB/90° bend by changing the sidewall angle from 81° to 90°, respectively. The propagation loss of 2.7 ± 0.1dB/cm and 3 ± 0.09dB/cm was observed for sloped and vertical photonic wires respectively was obtained.
Optimized mode-field adapter for low-loss fused fiber bundle signal and pump combiners
NASA Astrophysics Data System (ADS)
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Písařík, Michael; Bohata, Jan
2015-03-01
In our contribution we report novel mode field adapter incorporated inside bundled tapered pump and signal combiner. Pump and signal combiners are crucial component of contemporary double clad high power fiber lasers. Proposed combiner allows simultaneous matching to single mode core on input and output. We used advanced optimization techniques to match the combiner to a single mode core simultaneously on input and output and to minimalize losses of the combiner signal branch. We designed two arrangements of combiners' mode field adapters. Our numerical simulations estimates losses in signal branches of optimized combiners of 0.23 dB for the first design and 0.16 dB for the second design for SMF-28 input fiber and SMF-28 matched output double clad fiber for the wavelength of 2000 nm. The splice losses of the actual combiner are expected to be even lower thanks to dopant diffusion during the splicing process.
NASA Astrophysics Data System (ADS)
Fard, Erfan; Norwood, Robert A.; Peyghambarian, Nasser N.; Koch, Thomas L.
2017-02-01
Widespread deployment of silicon photonics will benefit strongly from improved high-port-density interconnect solutions between chips, interposers, and other waveguide fabrics. We present an adiabatic silicon waveguide to polymer waveguide coupler design incorporating strong vertical asymmetries offering high efficiency, small footprint, and improved tolerance to lateral misalignment. The design incorporates a standard 450nm-wide silicon waveguide tapered down to 50nm over a distance of 200μm with a 1.6μm-thick polymer waveguide having a 4μm-wide core atop the taper. The coupler exhibits <0.1dB loss for both TE and TM modes based on 3-dimensional finite element modeling. Moreover, the modeled device exhibits less than 0.1dB excess loss with lateral misalignment of +/-2μm between polymer and silicon waveguide for TE mode, and 0.2dB excess loss with +/-1.6μm offset for the TM mode, and 1dB excess loss for both TE and TM modes with +/-2.7μm misalignment. This taper design should enable reduction in manufacturing costs due to a reduced on-chip footprint and the potential for lower-precision, higher-throughput assembly tools. The authors would like to acknowledge the support of AIM Photonics. This material is based on research sponsored by Air Force Research Laboratory under agreement number FA8650-15-2-5220. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.
Moreno-Aguirre, Alma Janeth; Santiago-Rodríguez, Efraín; Harmony, Thalía; Fernández-Bouzas, Antonio
2012-01-01
Approximately 2-4% of newborns with perinatal risk factors present with hearing loss. Our aim was to analyze the effect of hearing aid use on auditory function evaluated based on otoacoustic emissions (OAEs), auditory brain responses (ABRs) and auditory steady state responses (ASSRs) in infants with perinatal brain injury and profound hearing loss. A prospective, longitudinal study of auditory function in infants with profound hearing loss. Right side hearing before and after hearing aid use was compared with left side hearing (not stimulated and used as control). All infants were subjected to OAE, ABR and ASSR evaluations before and after hearing aid use. The average ABR threshold decreased from 90.0 to 80.0 dB (p = 0.003) after six months of hearing aid use. In the left ear, which was used as a control, the ABR threshold decreased from 94.6 to 87.6 dB, which was not significant (p>0.05). In addition, the ASSR threshold in the 4000-Hz frequency decreased from 89 dB to 72 dB (p = 0.013) after six months of right ear hearing aid use; the other frequencies in the right ear and all frequencies in the left ear did not show significant differences in any of the measured parameters (p>0.05). OAEs were absent in the baseline test and showed no changes after hearing aid use in the right ear (p>0.05). This study provides evidence that early hearing aid use decreases the hearing threshold in ABR and ASSR assessments with no functional modifications in the auditory receptor, as evaluated by OAEs.
Moreno-Aguirre, Alma Janeth; Santiago-Rodríguez, Efraín; Harmony, Thalía; Fernández-Bouzas, Antonio
2012-01-01
Background Approximately 2–4% of newborns with perinatal risk factors present with hearing loss. Our aim was to analyze the effect of hearing aid use on auditory function evaluated based on otoacoustic emissions (OAEs), auditory brain responses (ABRs) and auditory steady state responses (ASSRs) in infants with perinatal brain injury and profound hearing loss. Methodology/Principal Findings A prospective, longitudinal study of auditory function in infants with profound hearing loss. Right side hearing before and after hearing aid use was compared with left side hearing (not stimulated and used as control). All infants were subjected to OAE, ABR and ASSR evaluations before and after hearing aid use. The average ABR threshold decreased from 90.0 to 80.0 dB (p = 0.003) after six months of hearing aid use. In the left ear, which was used as a control, the ABR threshold decreased from 94.6 to 87.6 dB, which was not significant (p>0.05). In addition, the ASSR threshold in the 4000-Hz frequency decreased from 89 dB to 72 dB (p = 0.013) after six months of right ear hearing aid use; the other frequencies in the right ear and all frequencies in the left ear did not show significant differences in any of the measured parameters (p>0.05). OAEs were absent in the baseline test and showed no changes after hearing aid use in the right ear (p>0.05). Conclusions/Significance This study provides evidence that early hearing aid use decreases the hearing threshold in ABR and ASSR assessments with no functional modifications in the auditory receptor, as evaluated by OAEs. PMID:22808289
Xiang, Tian-Xiang; Anderson, Bradley D
2002-08-01
A method for obtaining clear supersaturated aqueous solutions for parenteral administration of the poorly soluble experimental anti-cancer drug silatecan 7-t-butyldimethylsilyl-10-hydroxycamptothecin (DB-67) has been developed. Equilibrium solubilities of DB-67 were determined in various solvents and pH values, and in the presence of chemically modified water-soluble beta-cyclodextrins. The stoichiometry and binding constants for complexes of the lactone form of DB-67 and its ring-opened carboxylate with sulfobutyl ether and 2-hydroxypropyl substituted beta-cyclodextrins (SBE-CD and HP-CD) were obtained by solubility and circular dichroism spectroscopy, respectively. Kinetics for the reversible ring-opening of DB-67 in aqueous solution and for lactone precipitation were determined by HPLC with UV detection. Solubilities of DB-67 lactone in various injectable solvent systems were found to be at least one order of magnitude below the target concentration (2 mg/ml). DB-67 forms inclusion complexes with SBE-CD and HP-CD but the solubilization attainable is substantially less than the target concentration. Slow addition of DB-67/ DMSO into 22.2% (w/v) SBE-CD failed to yield stable supersaturated solutions due to precipitation. Stable supersatured solutions were obtained, however, by mixing a concentrated alkaline aqueous solution of DB-67 carboxylate with an acidified 22.2% (w/v) SBE-CD solution. Ring-closure yielded supersaturated solutions that could be lyophilized and reconstituted to clear, stable, supersaturated solutions. The method developed provides an alternative to colloidal dispersions (e.g., liposomal suspensions, emulsions, etc.) for parenteral administration of lipophilic camptothecin analogs.
Threshold temperature optical fibre sensors
NASA Astrophysics Data System (ADS)
Stasiewicz, K. A.; Musial, J. E.
2016-12-01
This paper presents a new approach to manufacture a threshold temperature sensor based on a biconical optical fibre taper. The presented sensor employs the influence of variable state of concentration of some isotropic materials like wax or paraffin. Application of the above- mentioned materials is an attempt to prove that there is a possibility to obtain a low-cost, repeatable and smart sensor working as an in-line element. Optical fibre taper was obtained from a standard single mode fibre (SMF28®) by using a low pressure gas burner technique. The diameter of the manufactured tapers was 6.0 ± 0.5 μm with the length of elongation equal to 30.50 ± 0.16 mm. The applied technology allowed to produce tapers with the losses of 0.183 ± 0.015 dB. Application of materials with different temperature transition points made it possible to obtain the threshold work at the temperatures connected directly with their conversion temperature. External materials at the temperatures above their melting points do not influence the propagation losses. For each of them two types of the protection area and position of the optical fibre taper were applied.
Wang, Huiling; Liu, Dajun; Cao, Peirang; Lecker, Stewart; Hu, Zhaoyong
2010-08-01
Defects in insulin/IGF-1 signaling stimulate muscle protein loss by suppressing protein synthesis and increasing protein degradation. Since an herbal compound, berberine, lowers blood levels of glucose and lipids, we proposed that it would improve insulin/IGF-1 signaling, blocking muscle protein losses. We evaluated whether berberine ameliorates muscle atrophy in db/db mice, a model of type 2 diabetes, by measuring protein synthesis and degradation in muscles of normal and db/db mice treated with or without berberine. We also examined mechanisms for berberine-induced changes in muscle protein metabolism. Berberine administration decreased protein synthesis and increased degradation in muscles of normal and db/db mice. The protein catabolic mechanism depended on berberine-stimulated expression of the E3 ubiquitin ligase, atrogin-1. Atrogin-1 not only increased proteolysis but also reduced protein synthesis by mechanisms that were independent of decreased phosphorylation of Akt or forkhead transcription factors. Impaired protein synthesis was dependent on a reduction in eIF3-f, an essential regulator of protein synthesis. Berberine impaired energy metabolism, activating AMP-activated protein kinase and providing an alternative mechanism for the stimulation of atrogin-1 expression. When we increased mitochondrial biogenesis by expressing peroxisome proliferator-activated receptor gamma coactivator-1alpha, berberine-induced changes in muscle protein metabolism were prevented. Berberine impairs muscle metabolism by two novel mechanisms. It impairs mitochonidrial function stimulating the expression of atrogin-1 without affecting phosphorylation of forkhead transcription factors. The increase in atrogin-1 not only stimulated protein degradation but also suppressed protein synthesis, causing muscle atrophy.
Low-loss curved subwavelength grating waveguide based on index engineering
NASA Astrophysics Data System (ADS)
Wang, Zheng; Xu, Xiaochuan; Fan, D. L.; Wang, Yaoguo; Chen, Ray T.
2016-03-01
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to its freedom to tune a few important waveguide properties such as dispersion and refractive index. Devices based on SWG waveguide have demonstrated impressive performances compared to those of conventional waveguides. However, the large loss of SWG waveguide bends jeopardizes their applications in integrated photonics circuits. In this work, we propose that a predistorted refractive index distribution in SWG waveguide bends can effectively decrease the mode mismatch noise and radiation loss simultaneously, and thus significantly reduce the bend loss. Here, we achieved the pre-distortion refractive index distribution by using trapezoidal silicon pillars. This geometry tuning approach is numerically optimized and experimentally demonstrated. The average insertion loss of a 5 μm SWG waveguide bend can be reduced drastically from 5.58 dB to 1.37 dB per 90° bend for quasi-TE polarization. In the future, the proposed approach can be readily adopted to enhance performance of an array of SWG waveguide-based photonics devices.
High linearity current communicating passive mixer employing a simple resistor bias
NASA Astrophysics Data System (ADS)
Rongjiang, Liu; Guiliang, Guo; Yuepeng, Yan
2013-03-01
A high linearity current communicating passive mixer including the mixing cell and transimpedance amplifier (TIA) is introduced. It employs the resistor in the TIA to reduce the source voltage and the gate voltage of the mixing cell. The optimum linearity and the maximum symmetric switching operation are obtained at the same time. The mixer is implemented in a 0.25 μm CMOS process. The test shows that it achieves an input third-order intercept point of 13.32 dBm, conversion gain of 5.52 dB, and a single sideband noise figure of 20 dB.
Rectangular Microstrip Antenna with Slot Embedded Geometry
NASA Astrophysics Data System (ADS)
Ambresh, P. A.; Hadalgi, P. M.; Hunagund, P. V.; Sujata, A. A.
2014-09-01
In this paper, a novel design that improves the performance of conventional rectangular microstrip antenna is discussed. Design adopts basic techniques such as probe feeding technique with rectangular inverted patch structure as superstrate, air filled dielectric medium as substrate and slot embedded patch. Prototype of the proposed antenna has been fabricated and various antenna performance parameters such as impedance bandwidth, return loss, radiation pattern and antenna gain are considered for Electromagnetic-study. The antennas are designed for the wireless application operating in the frequency range of 3.3 GHz to 3.6 GHz, and UK based fixed satellite service application (3 GHz to 4 GHz), and are named as single inverted patch conventional rectangular microstrip antenna (SIP-CRMSA) and slots embedded inverted patch rectangular microstrip antenna (SEIP-RMSA), respectively. Measurement outcomes for SEIP-RMSA1 and SEIP-RMSA2 showed the satisfactory performance with an achievable impedance bandwidth of 260 MHz (7 %) and 250 MHz (6.72 %), with return loss (RL) of -11.06 dB and -17.98 dB, achieved gain of 8.17 dB and 5.17 dB with 10% and 8% size reduction in comparison with the conventional patch antenna.
Experimental study of noise transmission into a general aviation aircraft
NASA Technical Reports Server (NTRS)
Vaicaitis, R.; Bofilios, D. A.; Eisler, R.
1984-01-01
The effect of add-on treatments on noise transmission into a cabin of a light aircraft was studied under laboratory conditions for diffuse and localized noise inputs. Results indicate that stiffening skin panels with honeycomb would provide on the average 3dB to 7 dB insertion loss over the most of selected frequency range H1 to 1000 Hz. Addition of damping tape on top of the honeycomb treatment increases insertion loss by 2dB to 3dB. Porous acoustic blankets show no attenuation of transmitted noise for frequencies below 300 Hz. Insertion of impervious vinyl septa between the layers of porous acoustic blankets do not provide additional noise reduction for frequencies up to about 500 Hz. Similar behavior was observed for noise barriers composed of urethane elastomer, decoupler foam and acoustic foam. A treatment composed from several layers of acoustic foams does not increase noise attenuation for the entire frequency range studied. An acoustic treatment composed of honeycomb panels, constrained layer damping tape, 2 to 3 inches of porous acoustic blankets, and limptrim which is isolated from the vibrations of the main fuselage structure seems to provide the best option for noise control.
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Zhou, Weidong; Ma, Zhenqiang
2009-12-01
This paper reports the realization of flexible RF/microwave PIN diodes and switches using transferrable single-crystal Si nanomembranes (SiNM) that are monolithically integrated on low-cost, flexible plastic substrates. High frequency response is obtained through the realization of low parasitic resistance achieved with heavy ion implantation before nanomembrane release and transfer. The flexible lateral SiNM PIN diodes exhibit typical rectifying characteristics with insertion loss and isolation better than 0.9 dB and 19.6 dB, respectively, from DC to 5 GHz, as well as power handling up to 22.5 dBm without gain compression. A single-pole single-throw (SPST) flexible RF switch employing shunt-series PIN diode configuration has achieved insertion loss and isolation better than 0.6 dB and 22.9 dB, respectively, from DC to 5 GHz. Furthermore, the SPST microwave switch shows performance improvement and robustness under mechanical deformation conditions. The study demonstrates the considerable potential of using properly processed transferrable SiNM for microwave passive components. Future investigations on transferrable SiNMs will lead to eventual realization of monolithic microwave integrated systems on low-cost flexible substrates.
Results of Outdoor to Indoor Propagation Measurements from 5-32GHz
NASA Technical Reports Server (NTRS)
Houts, Jacquelynne R.; McDonough, Ryan S.
2016-01-01
The demand for wireless services has increased exponentially in the last few years and shows no signs of slowing in the near future. In order for the next generation wireless to provide seamless access, whether the user is indoors or out, a thorough understanding and validation of models describing the impact of building entry loss (BEL) is required. This information is currently lacking and presents a challenge for most system designers. For this reason empirical data is needed to assess the impact of BEL at frequencies that are being explored for future mobile broadband applications This paper present the results of measurements of outdoor-to-indoor propagation from 5-32 GHz in three different buildings. The first is a newer building that is similar in construction to modern residential home. The second is an older commercial office building. The last building is a very new commercial office building built using modern green building techniques. These three buildings allow for the measurement of propagation losses through both modern and older materials; such as glass windows and exterior block and siding. Initial results found that at particular spatial locations the BEL could be less than 1dB or more than 70dB with free space losses discounted (this is likely influenced by multipath). Additionally, it was observed that the PDF distributions of a majority of the measurements trended toward log-normal with means and standard deviations ranging from 8-38dB and 6-14dB, respectively.
Misalignment tolerant efficient inverse taper coupler for silicon waveguide
NASA Astrophysics Data System (ADS)
Wang, Peng; Michael, Aron; Kwok, Chee Yee; Chen, Ssu-Han
2015-12-01
This paper describes an efficient fiber to submicron silicon waveguide coupling based on an inversely tapered silicon waveguide embedded in a SiO2 waveguide that is suspended in air. The inverse taper waveguide consist of a 50um long and 240nm thick silicon that linearly taper in width from 500nm to 120nm, which is embedded in SiO2. The SiO2 waveguide is 6um wide and 10um long. The simulation results show that the coupling loss of this new approach is 2.7dB including the interface loss at the input and output. The tolerance to fiber misalignment at the input of the coupler is 2um in both horizontal and vertical directions for only 1.5dB additional loss.
NASA Astrophysics Data System (ADS)
Jaroszewicz, Leszek R.; Murawski, Michal; Stasiewicz, Karol; Marc, Pawel
2009-10-01
The optimization of the fused splice between two identical PCFs as well as SMF•28 with different MFD PCFs made using the filament fusion with continuum laser illumination is reported. For identical PCFs splice loss of 0.15+/-0.04 dB @ 1.55 μm has been obtained. The SMF with PCF (MFD = 6.0 μm) splice losses are lower than 0.40 dB in comparison with the reported dependences in spectral range 1.51-1.63μm. Moreover, the splice SMF with extremely small core PCF is also presented. The discussed data has shown that such SMF-PCF splice is suitable for construction of a patch cord for measurement devices.
Attyé, Arnaud; Eliezer, Michael; Medici, Maud; Tropres, Irène; Dumas, Georges; Krainik, Alexandre; Schmerber, Sébastien
2018-07-01
A case-controlled imaging study demonstrated that saccular hydrops was specific to Meniere's disease (MD), but only present in a subset of patients. Here, we compared patients with definite MD, vertigo and sensorineural hearing loss (SNHL) to elucidate the relationship between saccular hydrops and extent of SNHL. In this prospective study, we performed 3D-FLAIR sequences between 4.5 and 5.5 h after contrast media injection in patients with MD (n=20), SNHL (n=20), vertigo (n=20) and 30 healthy subjects. Two radiologists independently graded saccular hydrops. ROC analysis was performed to determine the hearing loss threshold to differentiate patients with saccular hydrops. Saccular hydrops was found in 11 of 20 MD patients, 10 of 20 SNHL patients and in none of the vertigo patients and healthy subjects. In SNHL patients, 45 dB was the threshold above which there was a significant association with saccular hydrops, with sensitivity of 100 % and specificity of 90 %. In MD patients, 40 dB was the threshold above which there was a significant association with saccular hydrops, with sensitivity of 100 % and specificity of 44 %. Our results indicate saccular hydrops as a feature of worse than moderate SNHL rather than MD itself. • MRI helps clinicians to assess patients with isolated low-tone sensorineural hearing loss. • Saccular hydrops correlates with sensorineural hearing loss at levels above 40 dB. • Vertigo patients without sensorineural hearing loss do not have saccular hydrops. • Saccular hydrops is described in patients without clinical diagnosis of Meniere's disease.
Measurements of propeller noise in a light turboprop airplane
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Wilby, E. G.
1987-01-01
In-flight acoustic measurements have been made on the exterior and interior of a twin-engined turboprop airplane under controlled conditions to study data repeatability. It is found that the variability of the harmonic sound pressure levels in the cabin is greater than that for the exterior sound pressure levels, typical values for the standard deviation being +2.0 dB and -4.2 dB for the interior, versus +1.4 dB and -2.3 dB for the exterior. When insertion losses are determined for acoustic treatments in the cabin, the standard deviations of the data are typically + or - 6.5 dB. It is concluded that additional factors, such as accurate and repeatable selection of relative phase between propellers, controlled cabin-air-temperatures, installation of baseline acoustic absorption, and measurement of aircraft attitude, should be considered in order to reduce uncertainty in the measured data.
Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage.
Gardiner, Stuart K; Swanson, William H; Goren, Deborah; Mansberger, Steven L; Demirel, Shaban
2014-07-01
Visual field testing uses high-contrast stimuli in areas of severe visual field loss. However, retinal ganglion cells saturate with high-contrast stimuli, suggesting that the probability of detecting perimetric stimuli may not increase indefinitely as contrast increases. Driven by this concept, this study examines the lower limit of perimetric sensitivity for reliable testing by standard automated perimetry. Evaluation of a diagnostic test. A total of 34 participants with moderate to severe glaucoma; mean deviation at their last clinic visit averaged -10.90 dB (range, -20.94 to -3.38 dB). A total of 75 of the 136 locations tested had a perimetric sensitivity of ≤ 19 dB. Frequency-of-seeing curves were constructed at 4 nonadjacent visual field locations by the Method of Constant Stimuli (MOCS), using 35 stimulus presentations at each of 7 contrasts. Locations were chosen a priori and included at least 2 with glaucomatous damage but a sensitivity of ≥ 6 dB. Cumulative Gaussian curves were fit to the data, first assuming a 5% false-negative rate and subsequently allowing the asymptotic maximum response probability to be a free parameter. The strength of the relation (R(2)) between perimetric sensitivity (mean of last 2 clinic visits) and MOCS sensitivity (from the experiment) for all locations with perimetric sensitivity within ± 4 dB of each selected value, at 0.5 dB intervals. Bins centered at sensitivities ≥ 19 dB always had R(2) >0.1. All bins centered at sensitivities ≤ 15 dB had R(2) <0.1, an indication that sensitivities are unreliable. No consistent conclusions could be drawn between 15 and 19 dB. At 57 of the 81 locations with perimetric sensitivity <19 dB, including 49 of the 63 locations ≤ 15 dB, the fitted asymptotic maximum response probability was <80%, consistent with the hypothesis of response saturation. At 29 of these locations the asymptotic maximum was <50%, and so contrast sensitivity (50% response rate) is undefined. Clinical visual field testing may be unreliable when visual field locations have sensitivity below approximately 15 to 19 dB because of a reduction in the asymptotic maximum response probability. Researchers and clinicians may have difficulty detecting worsening sensitivity in these visual field locations, and this difficulty may occur commonly in patients with glaucoma with moderate to severe glaucomatous visual field loss. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Konrad-Martin, Dawn; Neely, Stephen T.; Keefe, Douglas H.; Dorn, Patricia A.; Cyr, Emily; Gorga, Michael P.
2002-04-01
DPOAE sources are modeled by intermodulation distortion generated near the f2 place and a reflection of this distortion near the DP place. In a previous paper, inverse fast Fourier transforms (IFFTs) of DPOAE filter functions in normal ears were consistent with this model [Konrad-Martin et al., J. Acoust. Soc. Am. 109, 2862-2879 (2001)]. In the present article, similar measurements were made in ears with specific hearing-loss configurations. It was hypothesized that hearing loss at f2 or DP frequencies would influence the relative contributions to the DPOAE from the corresponding basilar membrane places, and would affect the relative magnitudes of SFOAEs at frequencies equal to f2 and fDP. DPOAEs were measured with f2=4 kHz, f1 varied, and a suppressor near fDP. L2 was 25-55 dB SPL (L1=L2+10 dB). SFOAEs were measured at f2 and at 2.7 kHz (the average fDP produced by the f1 sweep) for stimulus levels of 20-60 dB SPL. SFOAE results supported predictions of the pattern of amplitude differences between SFOAEs at 4 and 2.7 kHz for sloping losses, but did not support predictions for the rising- and flat-loss categories. Unsuppressed IFFTs for rising losses typically had one peak. IFFTs for flat or sloping losses typically have two or more peaks; later peaks were more prominent in ears with sloping losses compared to normal ears. Specific predictions were unambiguously supported by the results for only four of ten cases, and were generally supported in two additional cases. Therefore, the relative contributions of the two DPOAE sources often were abnormal in impaired ears, but not always in the predicted manner.
Stimulated Raman scattering in AsSe2-As2S5 microstructured optical fiber
NASA Astrophysics Data System (ADS)
Gao, Weiqing; Ni, Chenquan; Xu, Qiang; Li, Xue; Chen, Xiangcai; Chen, Li; Wen, Zhenqiang; Cheng, Tonglei; Xue, Xiaojie; Suzuki, Takenobu; Ohishi, Yasutake
2017-02-01
We demonstrate the effects of stimulated Raman scattering (SRS) in the all-solid-core chalcogenide microstructured optical fibers (MOFs) with AsSe2 core and As2S5 cladding, which are fabricated by the rod-in-tube drawing technique. The core diameters of the MOFs are 6.3 (Fiber I), 3.0 (Fiber II), 2.6 (Fiber III) and 2.2 (Fiber IV) μm, respectively. The chromatic dispersion of the fundamental mode in Fibers I-IV is simulated by the full-vectorial mode solver technique. The first-order Stokes wave is investigated in the fibers with different core diameters pumped by the picosecond pulses at 1958 nm. In Fiber I, no obvious Raman peak is observed with the pump power increasing, because the effective nonlinearity is not high. In Fiber II, a Raman Stokes peak at 2065 nm begins to emerge at the pump power of 110 mW. The conversion efficiency is as weak as -36.6 dB at 150 mW pumping. In Fiber III, the first-order Raman peak at 2060 nm begins to emerge at 40 mW pumping. The conversion efficiency is -15.0 dB, which is 21.6 dB higher than that in Fiber II. In Fiber IV, the Stokes peak at 2070 nm begins to appear at 56 mW pumping. The maximum conversion efficiency of the first-order Stokes wave is obtained in the MOF with the core diameter of 2.6 μm. The evolution of the first-order Stokes wave with pump power and fiber length is investigated. This is the first demonstration of Raman effects in the AsSe2-As2S5 MOF, to the best of our knowledge.
Occupational injury and illness recording and reporting requirements. Final rule.
2002-07-01
The Occupational Safety and Health Administration (OSHA) is revising the hearing loss recording provisions of the Occupational Injury and Illness Recording and Reporting Requirements rule published January 19, 2001 (66 FR 5916-6135), scheduled to take effect on January 1, 2003 (66 FR 52031-52034). This final rule revises the criteria for recording hearing loss cases in several ways, including requiring the recording of Standard Threshold Shifts (10 dB shifts in hearing acuity) that have resulted in a total 25 dB level of hearing above audiometric zero, averaged over the frequencies at 2000, 3000, and 4000 Hz, beginning in year 2003.
Slotted Polyimide-Aerogel-Filled-Waveguide Arrays
NASA Technical Reports Server (NTRS)
Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.
2013-01-01
Polyimide aerogels were considered to serve as a filling for millimeter-wave waveguides. While these waveguides present a slightly higher loss than hollow waveguides, they have less losses than Duroid substrate integrated waveguides (less than 0.15 dB at Ka-band, in a 20 mm section), and exhibit an order of magnitude of mass reduction when compared to commercial waveguides. A Ka-band slotted aerogel-filled-waveguide array was designed, which provided the same gain (9 dBi) as its standard waveguide counterpart, and a slotted aerogel-filled-waveguide array using folded-slots was designed for comparison, obtaining a gain of 9 dB and a bandwidth of 590 MHz.
NASA Astrophysics Data System (ADS)
Zhou, Xuanfeng; Chen, Zilun; Chen, Haihuan; Hou, Jing
2012-11-01
A method based on controlled air hole collapse for low-loss fusion splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) was demonstrated. A taper rig was used to control air hole collapse accurately to enlarge the MFDs of PCFs which was then spliced with SMFs using a fusion splicer. An optimum mode field match at the interface of PCF-SMF was achieved and a low-loss with 0.64 dB was obtained from 3.57 dB for a PCF with 4 μm MFD and a SMF with 10.4 μm MFD experimentally.
Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure.
Dai, Sisi; Quan, Bin; Liang, Xiaohui; Lv, Jing; Yang, Zhihong; Ji, Guangbin; Du, Youwei
2018-05-11
Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO 2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO 2 @AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO 2 , were designed and synthesized. It is found that the RL value of the MC is almost lower than -10 dB. Furthermore, the RL value was able to achieve -18.9 dB with an effective bandwidth (-10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.
Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure
NASA Astrophysics Data System (ADS)
Dai, Sisi; Quan, Bin; Liang, Xiaohui; Lv, Jing; Yang, Zhihong; Ji, Guangbin; Du, Youwei
2018-05-01
Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO2@AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO2, were designed and synthesized. It is found that the RL value of the MC is almost lower than -10 dB. Furthermore, the RL value was able to achieve -18.9 dB with an effective bandwidth (-10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.
A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive
NASA Astrophysics Data System (ADS)
Kang, S.; Kim, H. C.; Chun, K.
2009-03-01
Our goal was to develop a single-pole four-throw (SP4T) radio frequency microelectromechanical system (RF MEMS) switch for band selection in a multi-band, multi-mode, front-end module of a wireless transceiver system. The SP4T RF MEMS switch was based on an arrangement of four single-pole single-throw (SPST) RF MEMS switches. The SP4T RF MEMS switch was driven by a double stop (DS) comb drive, with a lateral resistive contact, and composed of single crystalline silicon (SCS) on glass. A large contact force at a low-drive voltage was achieved by electrostatic actuation of the DS comb drive. Good RF characteristics were achieved by the large contact force and the lateral resistive Au-to-Au contact. Mechanical reliability was achieved by using SCS which has no residual stress as a structure material. The developed SP4T RF MEMS switch has a drive voltage of 15 V, an insertion loss below 0.31 dB at 6 GHz after more than one million cycles under a 10 mW signal, a return loss above 20 dB and an isolation value above 36 dB.
Brown, Jeremy; Sharma, Srikanta; Leadbetter, Jeff; Cochran, Sandy; Adamson, Rob
2014-11-01
We have developed a technique of applying multiple matching layers to high-frequency (>30 MHz) imaging transducers, by using carefully controlled vacuum deposition alone. This technique uses a thin mass-spring matching layer approach that was previously described in a low-frequency (1 to 10 MHz) transducer design with epoxied layers. This mass- spring approach is more suitable to vacuum deposition in highfrequency transducers over the conventional quarter-wavelength resonant cavity approach, because thinner layers and more versatile material selection can be used, the difficulty in precisely lapping quarter-wavelength matching layers is avoided, the layers are less attenuating, and the layers can be applied to a curved surface. Two different 3-mm-diameter 45-MHz planar lithium niobate transducers and one geometrically curved 3-mm lithium niobate transducer were designed and fabricated using this matching layer approach with copper as the mass layer and parylene as the spring layer. The first planar lithium niobate transducer used a single mass-spring matching network, and the second planar lithium niobate transducer used a single mass-spring network to approximate the first layer in a dual quarter-wavelength matching layer system in addition to a conventional quarter-wavelength layer as the second matching layer. The curved lithium niobate transducer was press focused and used a similar mass-spring plus quarter-wavelength matching layer network. These transducers were then compared with identical transducers with no matching layers and the performance improvement was quantified. The bandwidth of the lithium niobate transducer with the single mass-spring layer was measured to be 46% and the insertion loss was measured to be -21.9 dB. The bandwidth and insertion loss of the lithium niobate transducer with the mass-spring network plus quarter-wavelength matching were measured to be 59% and -18.2 dB, respectively. These values were compared with the unmatched transducer, which had a bandwidth of 28% and insertion loss of -34.1 dB. The bandwidth and insertion loss of the curved lithium niobate transducer with the mass-spring plus quarter-wavelength matching layer combination were measured to be 68% and -26 dB, respectively; this compared with the measured unmatched bandwidth and insertion loss of 35% and -37 dB. All experimentally measured values were in excellent agreement with theoretical Krimholtz-Leedom-Matthaei (KLM) model predictions.
New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.
Zhu, Benpeng; Chan, Ngai Yui; Dai, Jiyan; Shung, K Kirk; Takeuchi, Shinichi; Zhou, Qifa
2013-04-01
The paper describes the design, fabrication, and measurements of a high-frequency ultrasound kerfless linear array prepared from hydrothermal lead zirconate titanate (PZT) thick film. The 15-μm hydrothermal PZT thick film with an area of 1 × 1 cm, obtained through a self-separation process from Ti substrate, was used to fabricate a 32-element 100-MHz kerfless linear array with photolithography. The bandwidth at -6 dB without matching layer, insertion loss around center frequency, and crosstalk between adjacent elements were measured to be 39%, -30 dB, and -15 dB, respectively.
Mild and Unilateral Hearing Loss: Implications for Early Intervention
ERIC Educational Resources Information Center
Holstrum, W. June; Biernath, Krista; McKay, Sarah; Ross, Danielle S.
2009-01-01
Newborn hearing screening has become a standard practice in most birthing hospitals in the United States. Historically, the primary target for the identification of hearing loss has been infants with permanent bilateral loss of moderate degree or greater (i.e., greater than 40 dB). However, research indicates that without early identification and…
Moien-Afshari, Farzad; Ghosh, Sanjoy; Elmi, Shahrzad; Khazaei, Majid; Rahman, Mohammad M; Sallam, Nada; Laher, Ismail
2008-10-01
Regulation of coronary function in diabetic hearts is an important component in preventing ischemic cardiac events but remains poorly studied. Exercise is recommended in the management of diabetes, but its effects on diabetic coronary function are relatively unknown. We investigated coronary artery myogenic tone and endothelial function, essential elements in maintaining vascular fluid dynamics in the myocardium. We hypothesized that exercise reduces pressure-induced myogenic constriction of coronary arteries while improving endothelial function in db/db mice, a model of type 2 diabetes. We used pressurized mouse coronary arteries isolated from hearts of control and db/db mice that were sedentary or exercised for 1 h/day on a motorized exercise-wheel system (set at 5.2 m/day, 5 days/wk). Exercise caused a approximately 10% weight loss in db/db mice and decreased whole body oxidative stress, as measured by plasma 8-isoprostane levels, but failed to improve hyperglycemia or plasma insulin levels. Exercise did not alter myogenic regulation of arterial diameter stimulated by increased transmural pressure, nor did it alter smooth muscle responses to U-46619 (a thromboxane agonist) or sodium nitroprusside (an endothelium-independent dilator). Moderate levels of exercise restored ACh-simulated, endothelium-dependent coronary artery vasodilation in db/db mice and increased expression of Mn SOD and decreased nitrotyrosine levels in hearts of db/db mice. We conclude that the vascular benefits of moderate levels of exercise were independent of changes in myogenic tone or hyperglycemic status and primarily involved increased nitric oxide bioavailability in the coronary microcirculation.
Hybrid bilayer plasmonic metasurface efficiently manipulates visible light.
Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei
2016-01-01
Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.'s study), although the metal's ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell's law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process.
Hybrid bilayer plasmonic metasurface efficiently manipulates visible light
Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei
2016-01-01
Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195
Mertens, Griet; Kleine Punte, Andrea; De Bodt, Marc; Van de Heyning, Paul
2015-01-01
The value of cochlear implants (CI) in patients with profound unilateral hearing loss (UHL) and tinnitus has recently been investigated. The authors previously demonstrated the feasibility of CI in a 12- month outcome study in a prospective UHL cohort. The aim of this study was to investigate the binaural auditory outcomes in this cohort 36 months after CI surgery. The 36-month outcome was evaluated in 22 CI users with postlingual UHL and severe tinnitus. Twelve subjects had contralateral normal hearing (single-sided deafness - SSD group) and 10 subjects had a contralateral, mild to moderate hearing loss and used a hearing aid (asymmetric hearing loss - AHL group). Speech perception in noise was assessed in two listening conditions: the CIoff and the CIon condition. The binaural summation effect (S0N0), binaural squelch effect (S0NCI) and the combined head shadow effect (SCIN0) were investigated. Subjective benefit in daily life was assessed by means of the Speech, Spatial and Qualities of Hearing Scale (SSQ). At 36 months, a significant binaural summation effect was observed for the study cohort (2.00, SD 3.82 dB; p < 0.01) and for the AHL subgroup (3.34, SD 5.31 dB; p < 0.05). This binaural effect was not significant 12 months after CI surgery. A binaural squelch effect was significant for the AHL subgroup at 12 months (2.00, SD 4.38 dB; p < 0.05). A significant combined head shadow and squelch effect was also noted in the spatial configuration SCIN0 for the study cohort (4.00, SD 5.89 dB; p < 0.01) and for the AHL subgroup (5.67, SD 6.66 dB; p < 0.05). The SSQ data show that the perceived benefit in daily life after CI surgery remains stable up to 36 months at CIon. CI can significantly improve speech perception in noise in patients with UHL. The positive effects of CIon speech perception in noise increase over time up to 36 months after CI surgery. Improved subjective benefit in daily life was also shown to be sustained in these patients. © 2015 S. Karger AG, Basel.
Li, Da; Liao, Haoyan; Kikuchi, Hiroaki; Liu, Tong
2017-12-27
Excellent magnetic features make Co-based materials promising candidates as high-performance microwave absorbers. However, it is still a significant challenge for Co-based absorbers to possess high-intensity and broadband absorption simultaneously, owing to the lack of dielectric loss and impedance matching. Herein, microporous Co@C nanoparticles (NPs) with carbon shell thicknesses ranging from 1.8-4.9 nm have been successfully synthesized by dealloying CoAl@C precursors. All of the samples exhibit high microwave absorption performance. The microporous Co@C sample possessing a carbon shell of 1.8 nm exhibits the highest absorption intensity among these samples with a minimum reflection loss (RL) of -141.1 dB, whose absorption bandwidth for RL ≤ -10 dB is 7.3 GHz. As the thickness of the carbon shell increases, the absorption bandwidth of the NPs becomes wider. For the sample with the carbon shell thickness of 4.9 nm, the absorption bandwidth for RL ≤ -10 dB reaches a record high of 13.2 GHz. The outstanding microwave attenuation properties are attributed to the dielectric loss of the carbon shell, the magnetic loss of the Co core, and the cooperation of the core-shell structure and microporous morphology. The strong wideband microwave absorption of the carbon-coated microporous Co NPs highlights their potential applications in microwave absorbing systems.
Wang, Danshi; Zhang, Min; Qin, Jun; Lu, Guo-Wei; Wang, Hongxiang; Huang, Shanguo
2014-09-08
We propose a multifunctional optical switching unit based on the bidirectional liquid crystal on silicon (LCoS) and semiconductor optical amplifier (SOA) architecture. Add/drop, wavelength conversion, format conversion, and WDM multicast are experimentally demonstrated. Due to the bidirectional characteristic, the LCoS device cannot only multiplex the input signals, but also de-multiplex the converted signals. Dual-channel wavelength conversion and format conversion from 2 × 25Gbps differential quadrature phase-shift-keying (DQPSK) to 2 × 12.5Gbps differential phase-shift-keying (DPSK) based on four-wave mixing (FWM) in SOA is obtained with only one pump. One-to-six WDM multicast of 25Gbps DQPSK signals with two pumps is also achieved. All of the multicast channels are with a power penalty less than 1.1 dB at FEC threshold of 3.8 × 10⁻³.
Compact and low cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide.
Feng, Junbo; Li, Qunqing; Fan, Shoushan
2010-12-01
We propose and experimentally demonstrate a compact, highly efficient, and negligible cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide. The crossing occupies a footprint of less than 4 μm × 4 μm. Around 0.7 dB insertion loss and lower than -40 dB, cross talk was achieved experimentally over a broad wavelength range.
Structural and functional polymer-matrix composites for electromagnetic applications
NASA Astrophysics Data System (ADS)
Wu, Junhua
This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES) bulk composites. At 13 vol.%, it gives 90 dB of shielding at 1.0 GHz, compared to 46 dB for nickel powder (20-40 mum) and the prior value of 87 dB reported by Shui and Chung for nickel filament (0.4 mum diameter). The minimum filler content for high shielding is 7-13 vol.% for both nickel powders, compared to 3-7 vol.% for nickel filament. Due to the skin effect, a small filler unit size helps the shielding, which is dominated by reflection. Carbon filament (0.1 mum, >100 mum long, >1000 in aspect ratio) is effective for enhancing the shielding effectiveness of a coating made from a water-based colloid that contains graphite particle (0.7-0.8 mum, 22 wt.%) and a starch-type binder. The filament addition increases the shielding from 11 to 20 dB at 1.0 GHz. This increase in shielding is associated with increase in reflectivity and decrease in electrical resistivity. Graphite flake (5 mum) at the same volume proportion is even more effective; its addition increases the shielding from 11 to 28 dB. The combined use of the graphite flake and a low proportion of stainless steel fiber (11 mum diameter, 2 mm long, 180 in aspect ratio) is yet more effective; it increases the shielding from 11 to 34 dB. Alumina particle (5 mum size, 15 vol.%) is effective for increasing the impedance of a coating made from the graphite colloid by 290%, though the shielding effectiveness is reduced from 18 to 11 dB at 1.0 GHz. The high impedance is attractive for MRIcompatible pacemaker leads. The interface between filler and matrix also affects the shielding. Silane treatment of the surface of graphite flake (5 mum) used in the graphite colloid decreases the viscosity (e.g., from 1750 to 1460 CP), but it also decreases the shielding effectiveness (e.g., from 20 to 16 dB at 1 GHz). Ozone treatment gives a similar effect. The decrease of the shielding effectiveness is attributed to the increase in resistivity due to the surface treatment. Measured and calculated values of the reflection loss are comparable, with the measured value lower than the corresponding calculated value, when the resistivity is sufficiently low (e.g., resistivity below 10 O.cm in case of PES-matrix composites) and a strongly magnetic filler such as mumetal is absent. The agreement is better when the skin depth approaches the specimen thickness. The agreement is worse for the latex paint-based composites than the PES-matrix composites, probably due to superior electrical connectivity in the latter.
MARSELLA, P.; DALMASSO, G.; PACIFICO, C.
2015-01-01
SUMMARY Since 2011, transcutaneous bone-anchored auditory implants have been an alternative to the classic percutaneous implant (Baha) for bilateral conductive/mixed hearing loss that cannot be corrected by surgery. Recently, a new transcutaneous device has been approved for clinical use. Its internal component is made of the classic titanium Baha fixture, coupled to a 27 mm diameter subcutaneous circular magnet. The external component includes a second circular magnet 29 mm in diameter and a digital sound processor. To date, there are no reports describing the results of the application of this device. The aim of the present study is to report on the anatomical and functional results of transcutaneous Baha implantation in three patients: two adults, one with syndromic aural atresia and one with bilateral conductive hearing loss due to bilateral tympanomastoidectomy, and an 8-year-old child with non-syndromic aural atresia. No major intraoperative or postoperative complications were observed. The three patients tolerated the external magnet, with no signs of skin irritation. Functional results were good: median unaided free-field PTA (0.5-3 kHz) was 50 dB HL (range = 41-66 dB HL); with the transcutaneous Baha median PTA (0.5-3 kHz) was 27 dB HL (range = 25-30 dB HL) and median gain was 25 dB HL (range = 11-39 dB HL). Preliminary results encourage use of the device as a valuable alternative to other implantable devices in these patients. To ensure the success of treatment, several precautions are suggested including gradually increasing use during the first post-operative months to favour skin adaptation to magnet pressure. In addition to skin reactions, in a paediatric age most concerns are related to the curvature of the skull, which may induce tenting of the skin over the internal magnet. PMID:26015648
Avnstorp, Magnus Balslev; Homøe, Preben; Bjerregaard, Peter; Jensen, Ramon Gordon
2016-04-01
Otitis media (OM) has been observed at elevated prevalence rates in Greenlandic children. OM associated hearing loss (HL) may compromise the children's linguistic skills, social development and educational achievements. We investigated the prevalence of chronic suppurative otitis media (CSOM), otitis media with effusion (OME) and tympanic membrane sequelae of OM, and compared the corresponding hearing thresholds. In 2010 we examined a cohort of 223 Greenlandic children aged 4-10 years by video otoscopy, tympanometry and tested hearing thresholds for the low-frequencies: 500, 1000 and 2000Hz and the high-frequencies: 4000 and 6000Hz. HL was categorized according to the worst hearing ear and was compared within the groups: CSOM, OME, tympanic membrane sequelae of OM and normal. Of 207 children, 5.8% had CSOM, 13.9% had OME and 55.6% had tympanic membrane sequelae of OM. The median pure tone average in low-frequencies/high-frequencies were: CSOM: 34.2/31.3dB, OME: 23.3/22.5dB, Sequelae of OM: 13.3/15dB and normal ears: 11.7/12.5dB. We found a significant difference (p<0.05) between the four groups. In 56.5% of all children a HL>15dB in any frequency was found, while 6.5% suffered from a bilateral low-frequency HL>25dB. The severity of OM significantly corresponded to increased HL. The burden of CSOM and HL remains high in young Greenlandic children. Aggressive treatment with antibiotics, improved hearing rehabilitation, sound field amplification in classrooms and otosurgical capacity should be further promoted in Greenland. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Broadband superior electromagnetic absorption of a discrete-structure microwave coating
NASA Astrophysics Data System (ADS)
Duan, Yuping; Xi, Qun; Liu, Wei; Wang, Tongmin
2016-10-01
A method of improving the electromagnetic (EM) absorption property of conventional microwave absorber (CMA) is proposed here. The structural design process was mainly concerned with systematic analysis and research into the impedance matching characteristic and induced current. By processing a CMA-carbonyl-iron powder (CIP) coating into many isolated regions, the discrete-structure microwave absorber (DMA) had a much better absorption property than the corresponding CMA. When the thickness was only 2.0 mm and the component content was 33 wt%, the loss of reflection was less than -10 dB shifted from 6-7 GHz to 7-13 GHz and the loss of minimum reflection decreased from 12.5 dB lost to 32 dB lost through a discrete-structure process. The microwave absorption properties of coatings with different component contents and thicknesses were investigated. The minimum reflection peaks tended to shift towards the lower frequency region as CIP content or coating thickness increased. By adjusting these three factors, a high-performance broadband absorber was produced.
Electro-optical full-adder/full-subtractor based on graphene-silicon switches
NASA Astrophysics Data System (ADS)
Zivarian, Hossein; Zarifkar, Abbas; Miri, Mehdi
2018-01-01
A compact footprint, low-power consumption, and high-speed operation electro-optical full-adder/full-subtractor based on graphene-silicon electro-optical switches is demonstrated. Each switch consists of a Mach-Zehnder interferometer in which few-layer graphene is embedded in a silicon slot waveguide to construct phase shifters. The presented structure can be used as full-adder and full-subtractor simultaneously. The analysis of various factors such as extinction ratio, power consumption, and operation speed has been presented. As will be shown, the proposed electro-optical switch has a minimum extinction ratio of 36.21 dB, maximum insertion loss about 0.18 dB, high operation speed of 180 GHz, and is able to work with a low applied voltage about 1.4 V. Also, the extinction ratio and insertion loss of the full-adder/full-subtractor are about 30 and 1.5 dB, respectively, for transfer electric modes at telecommunication wavelength of 1.55 μm.
NASA Astrophysics Data System (ADS)
Wang, Zhaolu; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng
2014-01-01
Raman amplification based on stimulated Stokes Raman scattering (SSRS) and wavelength conversion based on coherent anti-Stokes Raman scattering (CARS) are theoretically investigated in silicon-on-sapphire (SOS) waveguides in the mid-infrared (IR) region. When the linear phase mismatch Δk is close to zero, the Stokes gain and conversion efficiency drop down quickly due to the effect of parametric gain suppression when the Stokes-pump input ratio is sufficiently large. The Stokes gain increases with the increase of Δk, whereas efficient wavelength conversion needs appropriate Δk under different pump intensities. The conversion efficiency at exact linear phase matching (Δk = 0) is smaller than that at optimal linear phase mismatch by a factor of about 28 dB when the pump intensity is 2 GW cm-2.
Integrated optical refractometer based on bend waveguide with air trench structure
NASA Astrophysics Data System (ADS)
Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha
2015-07-01
This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.
Audiometric asymmetry and tinnitus laterality.
Tsai, Betty S; Sweetow, Robert W; Cheung, Steven W
2012-05-01
To identify an optimal audiometric asymmetry index for predicting tinnitus laterality. Retrospective medical record review. Data from adult tinnitus patients (80 men and 44 women) were extracted for demographic, audiometric, tinnitus laterality, and related information. The main measures were sensitivity, specificity, positive predictive value (PPV), and receiver operating characteristic (ROC) curves. Three audiometric asymmetry indices were constructed using one, two, or three frequency elements to compute the average interaural threshold difference (aITD). Tinnitus laterality predictive performance of a particular index was assessed by increasing the cutoff or minimum magnitude of the aITD from 10 to 35 dB in 5-dB steps to determine its ROC curve. Single frequency index performance was inferior to the other two (P < .05). Double and triple frequency indices were indistinguishable (P > .05). Two adjoining frequency elements with aITD ≥ 15 dB performed optimally for predicting tinnitus laterality (sensitivity = 0.59, specificity = 0.71, and PPV = 0.76). Absolute and relative magnitudes of hearing loss in the poorer ear were uncorrelated with tinnitus distress. An optimal audiometric asymmetry index to predict tinnitus laterality is one whereby 15 dB is the minimum aITD of two adjoining frequencies, inclusive of the maximal ITD. Tinnitus laterality dependency on magnitude of interaural asymmetry may inform design and interpretation of neuroimaging studies. Monaural acoustic tinnitus therapy may be an initial consideration for asymmetric hearing loss meeting the criterion of aITD ≥ 15 dB. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Sound levels and their effects on children in a German primary school.
Eysel-Gosepath, Katrin; Daut, Tobias; Pinger, Andreas; Lehmacher, Walter; Erren, Thomas
2012-12-01
Considerable sound levels are produced in primary schools by voices of children and resonance effects. As a consequence, hearing loss and mental impairment may occur. In a Cologne primary school, sound levels were measured in three different classrooms, each with 24 children, 8-10 years old, and one teacher. Sound dosimeters were positioned in the room and near the teacher's ear. Additional measurements were done in one classroom fully equipped with sound-absorbing materials. A questionnaire containing 12 questions about noise at school was distributed to 100 children, 8-10 years old. Measurements were repeated after children had been taught about noise damage and while "noise lights" were used. Mean sound levels of 5-h per day measuring period were 78 dB (A) near the teacher's ear and 70 dB (A) in the room. The average of all measured maximal sound levels for 1 s was 105 dB (A) for teachers, and 100 dB (A) for rooms. In the soundproofed classroom, Leq was 66 dB (A). The questionnaire revealed certain judgment of the children concerning situations with high sound levels and their ability to develop ideas for noise reduction. However, no clear sound level reduction was identified after noise education and using "noise lights" during lessons. Children and their teachers are equally exposed to high sound levels at school. Early sensitization to noise and the possible installation of sound-absorbing materials can be important means to prevent noise-associated hearing loss and mental impairment.
An Evaluation of PC-Based Optical Character Recognition Systems.
ERIC Educational Resources Information Center
Schreier, E. M.; Uslan, M. M.
1991-01-01
The review examines six personal computer-based optical character recognition (OCR) systems designed for use by blind and visually impaired people. Considered are OCR components and terms, documentation, scanning and reading, command structure, conversion, unique features, accuracy of recognition, scanning time, speed, and cost. (DB)
Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.
ERIC Educational Resources Information Center
Gunnarson, Adele D.; And Others
1990-01-01
This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)
Optical fiber sources and transmission controls for multi-Tb/s systems
NASA Astrophysics Data System (ADS)
Nowak, George Adelbert
The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for <5psec soliton transmission systems. A theoretical and experimental study of the DS-NOLM as a transmission control element in a periodically amplified soliton transmission system is presented. We show that DS-NOLMs enable 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber wavelength conversion employing induced modulational instability. We obtain wavelength conversion over 40nm with a peak conversion efficiency of 28dB using 600mW pump pulses in 720m of high-nonlinearity optical fiber. We show that the high- nonlinearity fiber enhances the phase-matching bandwidth as well as reducing the required fiber lengths and pump powers.
7 CFR 1755.403 - Copper cable telecommunications plant measurements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... operating instructions shall be followed. (ii) There should be no measurable transmission loss when testing.... Testing shall also be conducted to verify that the loss is approximately a straight line function with no... including the resistance of the load coils. The value of 0.9 dB per 100 ohms for the round trip loss remains...
7 CFR 1755.403 - Copper cable telecommunications plant measurements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... operating instructions shall be followed. (ii) There should be no measurable transmission loss when testing.... Testing shall also be conducted to verify that the loss is approximately a straight line function with no... including the resistance of the load coils. The value of 0.9 dB per 100 ohms for the round trip loss remains...
7 CFR 1755.403 - Copper cable telecommunications plant measurements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operating instructions shall be followed. (ii) There should be no measurable transmission loss when testing.... Testing shall also be conducted to verify that the loss is approximately a straight line function with no... including the resistance of the load coils. The value of 0.9 dB per 100 ohms for the round trip loss remains...
7 CFR 1755.403 - Copper cable telecommunications plant measurements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... operating instructions shall be followed. (ii) There should be no measurable transmission loss when testing.... Testing shall also be conducted to verify that the loss is approximately a straight line function with no... including the resistance of the load coils. The value of 0.9 dB per 100 ohms for the round trip loss remains...
7 CFR 1755.403 - Copper cable telecommunications plant measurements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... operating instructions shall be followed. (ii) There should be no measurable transmission loss when testing.... Testing shall also be conducted to verify that the loss is approximately a straight line function with no... including the resistance of the load coils. The value of 0.9 dB per 100 ohms for the round trip loss remains...
Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong
2015-12-26
This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.
Ramos-Rodriguez, Juan Jose; Spires-Jones, Tara; Pooler, Amy M; Lechuga-Sancho, Alfonso Maria; Bacskai, Brian J; Garcia-Alloza, Monica
2017-07-01
Age remains the main risk factor for developing Alzheimer's disease (AD) although certain metabolic alterations, including prediabetes and type 2 diabetes (T2D), may also increase this risk. In order to understand this relationship, we have studied an AD-prediabetes mouse model (APP/PS1) with severe hyperinsulinemia induced by long-term high fat diet (HFD), and an AD-T2D model, generated by crossing APP/PS1 and db/db mice (APP/PS1xdb/db). In both, prediabetic and diabetic AD mice, we have analyzed underlying neuronal pathology and synaptic loss. At 26 weeks of age, when both pathologies were clearly established, we observed severe brain atrophy in APP/PS1xdb/db animals as well as cortical thinning, accompanied by increased caspase activity. Reduced senile plaque burden and elevated soluble Aβ40 and 42 levels were observed in AD-T2D mice. Further assessment revealed a significant increase of neurite curvature in prediabetic-AD mice, and this effect was worsened in AD-T2D animals. Synaptic density loss, analyzed by array tomography, revealed a synergistic effect between T2D and AD, whereas an intermediate state was observed, once more, in prediabetic-AD mice. Altogether, our data suggest that early prediabetic hyperinsulinemia may exacerbate AD pathology, and that fully established T2D clearly worsens these effects. Therefore, it is feasible that early detection of prediabetic state and strict metabolic control could slow or delay progression of AD-associated neuropathological features.
NASA Astrophysics Data System (ADS)
Park, Jae-Hyoung; Lee, Hee-Chul; Park, Yong-Hee; Kim, Yong-Dae; Ji, Chang-Hyeon; Bu, Jonguk; Nam, Hyo-Jin
2006-11-01
In this paper, a fully wafer-level packaged RF MEMS switch has been demonstrated, which has low operation voltage, using a piezoelectric actuator. The piezoelectric actuator was designed to operate at low actuation voltage for application to advanced mobile handsets. The dc contact type RF switch was packaged using the wafer-level bonding process. The CPW transmission lines and piezoelectric actuators have been fabricated on separate wafers and assembled together by the wafer-level eutectic bonding process. A gold and tin composite was used for eutectic bonding at a low temperature of 300 °C. Via holes interconnecting the electrical contact pads through the wafer were filled completely with electroplated copper. The fully wafer-level packaged RF MEMS switch showed an insertion loss of 0.63 dB and an isolation of 26.4 dB at 5 GHz. The actuation voltage of the switch was 5 V. The resonant frequency of the piezoelectric actuator was 38.4 kHz and the spring constant of the actuator was calculated to be 9.6 N m-1. The size of the packaged SPST (single-pole single-through) switch was 1.2 mm × 1.2 mm including the packaging sealing rim. The effect of the proposed package structure on the RF performance was characterized with a device having CPW through lines and vertical feed lines excluding the RF switches. The measured packaging loss was 0.2 dB and the return loss was 33.6 dB at 5 GHz.
NASA Astrophysics Data System (ADS)
Ono, Shigeru; Yoshimura, Tetsuzo; Sato, Tetsuo; Oshima, Juro
2009-02-01
Recently, Nissan Chemical Industries, LTD, developed the photo-induced refractive index variation sol-gel materials, in which the refractive index increases from 1.65 to 1.85 by ultra-violet (UV) light exposure and baking. The materials enable us to fabricate high-index-contract waveguides without developing/etching processes and strong-lightconfinement self-organized lightwave network (SOLNET). Therefore, the materials are expected promising for nanoscale optical circuits with self-alignment capability. Nano-scale optical circuits with core thickness of ~230 nm and core width of ~1 μm were fabricated. Propagation loss was 1.86 dB/cm for TE mode and 1.89 dB/cm for TM mode at 633 nm in wavelength, indicating that there were small polarization dependences. Spot sizes of guided beams along core width direction and along core thickness direction were respectively 0.6 μm and 0.3 μm for both TE and TM mode. Bending loss of S-bending waveguides was reduced from 0.44 dB to 0.24 dB for TE mode with increasing the bending curvature radius from 5 μm to 60 μm. Difference in bending loss between TM and TE mode was less than 10%. Branching loss of Y-branching waveguides was reduced from 1.33 dB to 0.08 dB for TE mode, and from 1.34 dB to 0.12 dB for TM mode with decreasing the branching angle from 80° to 20°. These results indicate that the photoinduced refractive index variation sol-gel materials can realize miniaturized optical circuits with sizes of several tens μm and guided beam confinement within a cross-section area less than 1.0 μm2 with small polarization dependences, suggesting potential applications to intra-chip optical interconnects. In addtion, we fabricated self-organized lightwave network (SOLNET) using the photo-induced refractive index variation sol-gel materials. When write beams of 405 nm in wavelength were introduced into the sol-gel thin film under baking at 200°C, self-focusing was induced, and SOLNET was formed. SOLNET fabricated by low write beam intensity exhibited strong light confinement. Furthermore, SOLNET was found to be drawn automatically to reflective portion such as a defect and a silver paste droplet in the sol-gel thin film during SOLNET formation, indicating that reflective SOLNET is formed. The results suggest that the photo-induced refractive index variation sol-gel materials can provide self-alignment capability to the nano-scale optical circuits.
NASA Technical Reports Server (NTRS)
Clevenson, S. A.; Roussos, L. A.
1984-01-01
A small cylindrical tank was used to study the effect on the noise environment within a tank of conditions of atmospheric (sea level) pressure or vacuum environments on the exterior. Experimentally determined absorption coefficients were used to calculate transmission loss, transmissibility coefficients and the sound pressure (noise) level differences in the interior. The noise level differences were also measured directly for the two exterior environments and compared to various analytical approximations with limited agreement. Trend study curves indicated that if the tank transmission loss is above 25 dB, the difference in interior noise level between the vacuum and ambient pressure conditions are less than 2 dB.
Long distance measurement-device-independent quantum key distribution with entangled photon sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Feihu; Qi, Bing; Liao, Zhongfa
2013-08-05
We present a feasible method that can make quantum key distribution (QKD), both ultra-long-distance and immune, to all attacks in the detection system. This method is called measurement-device-independent QKD (MDI-QKD) with entangled photon sources in the middle. By proposing a model and simulating a QKD experiment, we find that MDI-QKD with one entangled photon source can tolerate 77 dB loss (367 km standard fiber) in the asymptotic limit and 60 dB loss (286 km standard fiber) in the finite-key case with state-of-the-art detectors. Our general model can also be applied to other non-QKD experiments involving entanglement and Bell state measurements.
A wideband superconducting filter at Ku-band based on interdigital coupling
NASA Astrophysics Data System (ADS)
Jiang, Ying; Wei, Bin; Cao, Bisong; Li, Qirong; Guo, Xubo; Jiang, Linan; Song, Xiaoke; Wang, Xiang
2018-04-01
In this paper, an interdigital-type resonator with strong electric coupling is proposed for the wideband high-frequency (>10 GHz) filter design. The proposed microstrip resonator consists of an H-shaped main line part with its both ends installed with interdigital finger parts. Strong electric coupling is achieved between adjacent resonators. A six-pole high-temperature superconducting filter at Ku-band using this resonator is designed and fabricated. The filter has a center frequency of 15.11 GHz with a fractional bandwidth of 30%. The insertion loss of the passband is less than 0.3 dB, and the return loss is greater than 14 dB without any tuning.
Occupational Noise Reduction in CNC Striping Process
NASA Astrophysics Data System (ADS)
Mahmad Khairai, Kamarulzaman; Shamime Salleh, Nurul; Razlan Yusoff, Ahmad
2018-03-01
Occupational noise hearing loss with high level exposure is common occupational hazards. In CNC striping process, employee that exposed to high noise level for a long time as 8-hour contributes to hearing loss, create physical and psychological stress that reduce productivity. In this paper, CNC stripping process with high level noises are measured and reduced to the permissible noise exposure. First condition is all machines shutting down and second condition when all CNC machine under operations. For both conditions, noise exposures were measured to evaluate the noise problems and sources. After improvement made, the noise exposures were measured to evaluate the effectiveness of reduction. The initial average noise level at the first condition is 95.797 dB (A). After the pneumatic system with leakage was solved, the noise reduced to 55.517 dB (A). The average noise level at the second condition is 109.340 dB (A). After six machines were gathered at one area and cover that area with plastic curtain, the noise reduced to 95.209 dB (A). In conclusion, the noise level exposure in CNC striping machine is high and exceed the permissible noise exposure can be reduced to acceptable levels. The reduction of noise level in CNC striping processes enhanced productivity in the industry.
NASA Astrophysics Data System (ADS)
Li, Jinsong; Duan, Yan; Lu, Weibang; Chou, Tsu-Wei
2018-04-01
A multi-layered composite with exceptionally high electromagnetic wave-absorbing capacity and performance stability was fabricated via the facile electrophoresis of a reduced graphene oxide network on carbon nanotube (CNT)-Fe3O4-polyaniline (PANI) film. Minimum reflection loss (RL) of -53.2 dB and absorbing bandwidth of 5.87 GHz (< -10 dB) are achieved, surpassing most recently reported CNT- and graphene-based absorbers. In particular, comparing to the original composites, the minimum RL and bandwidth (< -10 dB) maintains 82.5% and 99.7%, respectively, after 20 h charge/discharge cycling, demonstrating high environmental suitability.
Implications of Delay in Detection and Management of Deafness.
ERIC Educational Resources Information Center
Ross, Mark
1990-01-01
This article explores the rationale for early detection and management of children with significant hearing loss. Topics covered include attitudes toward hearing loss, monaural and binaural auditory sensory deprivation, auditory self-monitoring, and value of early intervention on linguistic and psychosocial development. (Author/DB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, C. L.; Lian, Y. H.; Cheng, N. H.
2012-11-15
The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages.more » Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.« less
Multistage Polymeric Lens Structures Integrated into Silica Waveguides
NASA Astrophysics Data System (ADS)
Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki
2006-08-01
A waveguide lens, composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and a low-loss structure has been designed. A waveguide lens in a silica slab waveguide has been fabricated using reactive ion etching (RIE) and formed by filling with polymer. Both an imagding optical system and a Fourier-transform optical system can be configured in a PLC using a waveguide lens. It renders the PLC functional and its design flexible. To obtain a shorter focal length with a low insertion loss, it is more effective to use a multistage lens structure. An imaging optical system and a Fourier-transform optical system with a focal length of less than 1000 μm were fabricated in silica waveguides using a multistage lens structure. The lens imaging waveguides incorporate a 16-24-stage lens, with insertion losses of 4-7 dB. A 4 × 4 optical coupler, using a Fourier-transform optical system, utilizes a 6-stage lens with losses of 2-4 dB.
Data Rights for Science and Technology Projects
2014-04-01
disclose the data. Conversely, the data may be withheld from delivery or specified via form, fit, and function information only ( Bozeman , 2000). These...Processes, 163(9), 41–43. Retrieved from http:// search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=18215906& site=ehost-live Bozeman , B. (2000
The Influence of Play Material on Discourse during Play.
ERIC Educational Resources Information Center
Burroughs, Elizabeth I.; Murray, Sharon E.
1992-01-01
Evaluation of the conversational behavior of 36 children (ages 48-59 months) playing in dyads with 3 different materials (modeling dough, a farm set, and animal puppets) found that each toy elicited the same amount of talking, though there were differences in discourse structure attributable to play materials. (DB)
Talent Developed: Conversations with Masters of the Arts and Sciences.
ERIC Educational Resources Information Center
Subotnik, Rena F.
1993-01-01
This interview with Sunil Weeramantry, a World Chess Federation Master, examines his initial involvement in the world of chess, changes in the field of chess, the role of mentors, the qualifications and role of the chess coach, and the development of chess talent in young children. (DB)
Influence of the Social Context on Pragmatic Skills of Adults with Mental Retardation.
ERIC Educational Resources Information Center
Oetting, Janna B.; Rice, Mabel L.
1991-01-01
The influence of social context on pragmatic skills of 16 adults with mild to moderate mental retardation was examined using videotaped conversations. Data analysis revealed that the subjects were proficient in judging topic maintenance presentations in a simplified but not a complex context. (DB)
NASA Astrophysics Data System (ADS)
Jebali, M. A.; Basso, E. T.
2018-02-01
Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.
Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime
NASA Astrophysics Data System (ADS)
Carpenter, Lewis G.; Rogers, Helen L.; Cooper, Peter A.; Holmes, Christopher; Gates, James C.; Smith, Peter G. R.
2013-11-01
The efficient production of high-quality facets for low-loss coupling is a significant production issue in integrated optics, usually requiring time consuming and manually intensive lapping and polishing steps, which add considerably to device fabrication costs. The development of precision dicing saws with diamond impregnated blades has allowed optical grade surfaces to be machined in crystalline materials such as lithium niobate and garnets. In this report we investigate the optimization of dicing machine parameters to obtain optical quality surfaces in a silica-on-silicon planar device demonstrating high optical quality in a commercially important glassy material. We achieve a surface roughness of 4.9 nm (Sa) using the optimized dicing conditions. By machining a groove across a waveguide, using the optimized dicing parameters, a grating based loss measurement technique is used to measure precisely the average free space interface loss per facet caused by scattering as a consequence of surface roughness. The average interface loss per facet was calculated to be: -0.63 dB and -0.76 dB for the TE and TM polarizations, respectively.
Kil, Jonathan; Lobarinas, Edward; Spankovich, Christopher; Griffiths, Scott K; Antonelli, Patrick J; Lynch, Eric D; Le Prell, Colleen G
2017-09-02
Noise-induced hearing loss is a leading cause of occupational and recreational injury and disease, and a major determinant of age-related hearing loss. No therapeutic agent has been approved for the prevention or treatment of this disorder. In animal models, glutathione peroxidase 1 (GPx1) activity is reduced after acute noise exposure. Ebselen, a novel GPx1 mimic, has been shown to reduce both temporary and permanent noise-induced hearing loss in preclinical studies. We assessed the safety and efficacy of ebselen for the prevention of noise-induced hearing loss in young adults in a phase 2 clinical trial. In this single-centre, randomised, double-blind, placebo-controlled phase 2 trial, healthy adults aged 18-31 years were randomly assigned (1:1:1:1) at the University of Florida (Gainsville, FL, USA) to receive ebselen 200 mg, 400 mg, or 600 mg, or placebo orally twice daily for 4 days, beginning 2 days before a calibrated sound challenge (4 h of pre-recorded music delivered by insert earphones). Randomisation was done with an allocation sequence generated by an independent third party. The primary outcome was mean temporary threshold shift (TTS) at 4 kHz measured 15 min after the calibrated sound challenge by pure tone audiometry; a reduction of 50% in an ebselen dose group compared with the placebo group was judged to be clinically relevant. All participants who received the calibrated sound challenge and at least one dose of study drug were included in the efficacy analysis. All randomly assigned patients were included in the safety analysis. This trial is registered with ClinicalTrials.gov, number NCT01444846. Between Jan 11, 2013, and March 24, 2014, 83 participants were enrolled and randomly assigned to receive ebselen 200 mg (n=22), 400 mg (n=20), or 600 mg (n=21), or placebo (n=20). Two participants in the 200 mg ebselen group were discontinued from the study before the calibrated sound challenge because they no longer met the inclusion criteria; these participants were excluded from the efficacy analysis. Mean TTS at 4 kHz was 1·32 dB (SE 0·91) in the 400 mg ebselen group compared with 4·07 dB (0·90) in the placebo group, representing a significant reduction of 68% (difference -2·75 dB, 95% CI -4·54 to -0·97; p=0·0025). Compared with placebo, TTS at 4 kHz was non-significantly reduced by 21% in the 200 mg ebselen group (3·23 dB [SE 0·91] vs 4·07 dB [0·90] in the placebo group; difference -0·84 dB, 95% CI -2·63 to 0·94; p=0·3542) and by 7% in the 600 mg ebselen group (3·81 dB [0·90] vs 4·07 dB [0·90] in the placebo group; difference -0·27, 95% CI -2·03 to 1·50; p=0·7659). Ebselen treatment was well tolerated across all doses and no significant differences were seen in any haematological, serum chemistry, or radiological assessments between the ebselen groups and the placebo group. Treatment with ebselen was safe and effective at a dose of 400 mg twice daily in preventing a noise-induced TTS. These data lend support to a role of GPx1 activity in acute noise-induced hearing loss. Sound Pharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.
PN-type carrier-induced filter with modulatable extinction ratio.
Fang, Qing; Tu, Xiaoguang; Song, Junfeng; Jia, Lianxi; Luo, Xianshu; Yang, Yan; Yu, Mingbin; Lo, Guoqiang
2014-12-01
We demonstrate the first PN-type carrier-induced silicon waveguide Bragg grating filter on a SOI wafer. The optical extinction ratio of this kind of filter can be efficiently modulated under both reverse and forward biases. The carrier-induced Bragg grating based on a PN junction is fabricated on the silicon waveguide using litho compensation technology. The measured optical bandwidth and the extinction ratio of the filter are 0.45 nm and 19 dB, respectively. The optical extinction ratio modulation under the reverse bias is more than 11.5 dB and it is more than 10 dB under the forward bias. Only 1-dB optical transmission loss is realized in this Bragg grating under a reverse bias. The shifting rates of the central wavelength under forward and reverse biases are ~-1.25 nm/V and 0.01 nm/V, respectively. The 3-dB modulation bandwidth of this filter is 5.1 GHz at a bias of -10 V.
NASA Astrophysics Data System (ADS)
Gu, Xisheng; Tan, Guoguo; Chen, Shuwen; Man, Qikui; Chang, Chuntao; Wang, Xinmin; Li, Run-Wei; Che, Shenglei; Jiang, Liqiang
2017-02-01
The soft-magnetic properties of planar-anisotropy Ce2Fe17N3-δ powders were reported, and reflection loss (RL) of the powders/Silicone composites with various volume concentrations have been studied in 0.1-18 GHz frequency range. It was found that the optimal RL of this composite absorber with a thickness of 1.72 mm is -60.5 dB at 9.97 GHz and the RL is less than -10 dB in the whole X-band (8-12 GHz). The bandwidth with RL exceeding -10 dB and -20 dB are 5.24 GHz and 1.32 GHz, respectively. Furthermore, all the optimal RL value of the composite with the thickness less than 2.13 mm can reach -20 dB in the range of 8-17 GHz, which indicates that the Ce2Fe17N3-δ/Silicone composite absorber will be a promising candidate in higher gigahertz frequency especially in X-band.
NASA Astrophysics Data System (ADS)
Tong, Xiaodong; Li, Qian; An, Ning; Wang, Wenjie; Deng, Xiaodong; Zhang, Liang; Liu, Haitao; Zeng, Jianping; Li, Zhiqiang; Tang, Hailing; Xiong, Yong-Zhong
2015-11-01
A planar Schottky barrier diode with the designed Schottky contact area of approximately 3 μm2 is developed on gallium arsenide (GaAs) material. The measurements of the developed planar Schottky barrier diode indicate that the zero-biased junction capacitance Cj0 is 11.0 fF, the parasitic series resistance RS is 3.0 Ω, and the cut off frequency fT is 4.8 THz. A monolithically integrated fourth subharmonic mixer with this diode operating at the radio frequency (RF) signal frequency of 0.34 THz with the chip area of 0.6 mm2 is implemented. The intermediate frequency (IF) bandwidth is from DC to 40 GHz. The local oscillator (LO) bandwidth is 37 GHz from 60 to 97 GHz. The RF bandwidth is determined by the bandwidth of the on chip antenna, which is 28 GHz from 322 to 350 GHz. The measurements of the mixer demonstrated a conversion loss of approximately 51 dB.
Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube
NASA Astrophysics Data System (ADS)
Guan, Xiaotong; Fu, Wenjie; Yan, Yang
2018-02-01
A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.
Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits
NASA Astrophysics Data System (ADS)
Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.
2017-12-01
In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.
A chip-scale, telecommunications-band frequency conversion interface for quantum emitters.
Agha, Imad; Ates, Serkan; Davanço, Marcelo; Srinivasan, Kartik
2013-09-09
We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ -60 dB at low continuous wave input pump powers (< 50 mW). Finite element simulations and the split-step Fourier method indicate that increased input powers of ≈ 10 W (produced by amplified nanosecond pulses, for example) will result in a conversion efficiency > 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.
Kubota, Masaya; Shimizu, Masahito; Sakai, Hiroyasu; Yasuda, Yoichi; Terakura, Daishi; Baba, Atsushi; Ohno, Tomohiko; Tsurumi, Hisashi; Tanaka, Takuji; Moriwaki, Hisataka
2012-01-01
Obesity-related metabolic abnormalities include a state of chronic inflammation and adipocytokine imbalance, which increase the risk of colon cancer. Curcumin, a component of turmeric, exerts both cancer preventive and antiinflammatory properties. Curcumin is also expected to have the ability to reverse obesity-related metabolic derangements. The present study examined the effects of curcumin on the development of azoxymethane (AOM)-induced colonic premalignant lesions in C57BL/KsJ-db/db (db/db) obese mice. Feeding with a diet containing 0.2% and 2.0% curcumin caused a significant reduction in the total number of colonic premalignant lesions compared with basal diet-fed mice. The expression levels of tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2 (COX-2) mRNAs on the colonic mucosa of AOM-treated mice were significantly decreased by curcumin administration. Dietary feeding with curcumin markedly activated AMP-activated kinase, decreased the expression of COX-2 protein, and inhibited nuclear factor-κB activity on the colonic mucosa of AOM-treated mice. Curcumin also increased the serum levels of adiponectin while conversely decreasing the serum levels of leptin and the weights of fat. In conclusion, curcumin inhibits the development of colonic premalignant lesions in an obesity-related colorectal carcinogenesis model, at least in part, by attenuating chronic inflammation and improving adipocytokine imbalance. Curcumin may be useful in the chemoprevention of colorectal carcinogenesis in obese individuals.
Uncoupled iron homeostasis in type 2 diabetes mellitus.
Altamura, Sandro; Kopf, Stefan; Schmidt, Julia; Müdder, Katja; da Silva, Ana Rita; Nawroth, Peter; Muckenthaler, Martina U
2017-12-01
Diabetes mellitus is frequently associated with iron overload conditions, such as primary and secondary hemochromatosis. Conversely, patients affected by type 2 diabetes mellitus (T2DM) show elevated ferritin levels, a biomarker for increased body iron stores. Despite these documented associations between dysregulated iron metabolism and T2DM, the underlying mechanisms are poorly understood. Here, we show that T2DM patients have reduced serum levels of hepcidin, the iron-regulated hormone that maintains systemic iron homeostasis. Consistent with this finding, we also observed an increase in circulating iron and ferritin levels. Our analysis of db/db mice demonstrates that this model recapitulates the systemic alterations observed in patients. Interestingly, db/db mice show an overall hepatic iron deficiency despite unaltered expression of ferritin and the iron importer TfR1. In addition, the liver correctly senses increased circulating iron levels by activating the BMP/SMAD signaling pathway even though hepcidin expression is decreased. We show that increased AKT phosphorylation may override active BMP/SMAD signaling and decrease hepcidin expression in 10-week old db/db mice. We conclude that the metabolic alterations occurring in T2DM impact on the regulation of iron homeostasis on multiple levels. As a result, metabolic perturbations induce an "iron resistance" phenotype, whereby signals that translate increased circulating iron levels into hepcidin production, are dysregulated. T2DM patients show increased circulating iron levels. T2DM is associated with inappropriately low hepcidin levels. Metabolic alterations in T2DM induce an "iron resistance" phenotype.
A wideband UHF high-temperature superconducting filter system with a fractional bandwidth over 108%
NASA Astrophysics Data System (ADS)
Huang, Haibo; Wu, Yun; Wang, Jia; Bian, Yongbo; Wang, Xu; Li, Guoqiang; Zhang, Xueqiang; Li, Chunguang; Sun, Liang; He, Yusheng
2018-07-01
A High-temperature superconducting (HTS) bandpass filter system containing a lowpass filter, a highpass filter and an LNA has been fabricated to meet the demands of wideband wireless signal receiving system. The filter system has an ultimate fractional bandwidth over 108% with the passband from 820 MHz to 2750 MHz. Besides, the filter system showed good frequency selectivity and out-of-band rejection. The 40 dB to 3 dB rectangle coefficient of our filter system is 1.4, which is better than that of an 8-pole Chebyshev filter, and the out-of-band rejection is better than 40 dB. Through systematical optimization, a return loss of better than 9.8 dB was received in the filter system. This system also showed advantages in design and fabrication precision.
NASA Astrophysics Data System (ADS)
Li, Haiqin; Wang, Pengjun; Yang, Tianjun; Dai, Tingge; Wang, Gencheng; Li, Shiqi; Chen, Weiwei; Yang, Jianyi
2018-03-01
A broadband two-mode multi/demultiplexer using asymmetric Y-junctions is designed and experimentally demonstrated on a silicon-on-insulator platform for on-chip mode-division multiplexing applications. Within a bandwidth from 1513 to 1619 nm, the fabricated device, which consists of a two-mode multiplexer, a multimode straight waveguide, and a two-mode demultiplexer, exhibits demultiplexing crosstalk of less than -9.1 dB. The demultiplexing crosstalk as low as -42.1 dB, lower than -12.8 dB over the C band can be obtained. The measured insertion loss varies from 0.40 to 0.56 dB at a wavelength of 1550 nm. A transmission experiment of 10 Gbit/s electrical signals carried on TE0 and TE1 modes is successfully achieved with open and clear eye diagrams.
Zhou, Ting; Jia, Hao; Ding, Jianfeng; Zhang, Lei; Fu, Xin; Yang, Lin
2018-04-02
We present a silicon thermo-optic 2☓2 four-mode optical switch optimized for optical space switching plus local optical mode switching. Four asymmetric directional couplers are utilized for mode multiplexing and de-multiplexing. Sixteen 2☓2 single-mode optical switches based on balanced thermally tunable Mach-Zehnder interferometers are exploited for switching function. The measured insertion losses are 8.0~12.2 dB and the optical signal-to-noise ratios are larger than 11.2 dB in the wavelength range of 1525~1565 nm. The optical links in "all-bar" and "all-cross" states exhibit less than 2.0 dB and 1.4 dB power penalties respectively below 10 -9 bit error rates for 40 Gbps data transmission.
A compact thermo-optical multimode-interference silicon-based 1 × 4 nano-photonic switch.
Zhou, Haifeng; Song, Junfeng; Chee, Edward K S; Li, Chao; Zhang, Huijuan; Lo, Guoqiang
2013-09-09
An ultra-compact multimode-interference (MMI)-based 1 × 4 nano-photonic switch is demonstrated by employing silicon thermo-optical effect on SOI platform. The device performance is systematically characterized by comprehensively investigating the constituent building blocks, including 1 × 4 power splitter, 4 × 4 MMI coupler and groove-isolated thermo-optical heaters. An instructive model is established to statistically estimate the required power consumption and investigate the influence of the power imbalance of the 4 × 4 MMI coupler on the switching performance. At the designed wavelength of 1550 nm, the average insertion loss of different switching states is 1.7 dB, and the transmission imbalance is 1.05 dB. The worst extinction ratio and crosstalk of all the output ports reach 11.48 dB and -11.38 dB, respectively.
Quasi-Optical Network Analyzers and High-Reliability RF MEMS Switched Capacitors
NASA Astrophysics Data System (ADS)
Grichener, Alexander
The thesis first presents a 2-port quasi-optical scalar network analyzer consisting of a transmitter and receiver both built in planar technology. The network analyzer is based on a Schottky-diode mixer integrated inside a planar antenna and fed differentially by a CPW transmission line. The antenna is placed on an extended hemispherical high-resistivity silicon substrate lens. The LO signal is swept from 3-5 GHz and high-order harmonic mixing in both up- and down- conversion mode is used to realize the 15-50 GHz RF bandwidth. The network analyzer resulted in a dynamic range of greater than 40 dB and was successfully used to measure a frequency selective surface with a second-order bandpass response. Furthermore, the system was built with circuits and components for easy scaling to millimeter-wave frequencies which is the primary motivation for this work. The application areas for a millimeter and submillimeter-wave network analyzer include material characterization and art diagnostics. The second project presents several RF MEMS switched capacitors designed for high-reliability operation and suitable for tunable filters and reconfigurable networks. The first switched-capacitor resulted in a digital capacitance ratio of 5 and an analog capacitance ratio of 5-9. The analog tuning of the down-state capacitance is enhanced by a positive vertical stress gradient in the the beam, making it ideal for applications that require precision tuning. A thick electroplated beam resulted in Q greater than 100 at C to X-band frequencies, and power handling of 0.6-1.1 W. The design also minimized charging in the dielectric, resulting in excellent reliability performance even under hot-switched and high power (1 W) conditions. The second switched-capacitor was designed without any dielectric to minimize charging. The device was hot-switched at 1 W of RF power for greater than 11 billion cycles with virtually no change in the C-V curve. The final project presents a 7-channel channelizer based on the mammalian cochlea. The cochlea is an amazing channelizing filter, covering three decades of bandwidth with over 3,000 channels in a very small physical space. Using a simplified mechanical cochlear model and its electrical analogue, a design method is demonstrated for RF and microwave channelizers that retains the desirable features of the cochlea including the ability to cascade a large number of channels (for multiple-octave frequency coverage), and a high-order stop-band rejection. A 6-pole response is synthesized in each channel using the top-C coupled topology. A constant absolute 3 dB bandwidth of around 4.3 MHz and an insertion loss of around 3.9 dB is measured in each channel. A high isolation (greater than 35 dB) is achieved between adjacent channels. A reflection loss of greater than 15 dB is measured at the input port over the entire channelizer bandwidth. Application areas for the demonstrated channelizer include wideband, contiguous-channel receivers for signal intelligence or spectral analysis.
Effective Identification of Functional Hearing Loss Using Behavioral Threshold Measures
ERIC Educational Resources Information Center
Schlauch, Robert S.; Koerner, Tess K.; Marshall, Lynne
2015-01-01
Purpose: Four functional hearing loss protocols were evaluated. Method: For each protocol, 30 participants feigned a hearing loss first on an audiogram and then for a screening test that began a threshold search from extreme levels (-10 or 90 dB HL). Two-tone and 3-tone protocols compared thresholds for ascending and descending tones for 2 (0.5…
Characterization of a 4-inch Portable Shock Tube
2014-12-01
This page is intentionally left blank. 1 Introduction Tinnitus and hearing loss have been reported as the two most prevalent service-connected...propelled grenades (RPGs), and/or land mines are known to cause both tinnitus and hearing loss (Sayer, 2008). Intensity levels exceeding 120 decibels (dB
Liberman, M C; Tartaglini, E; Fleming, J C; Neufeld, E J
2006-09-01
Mutations in the gene coding for the high-affinity thiamine transporter Slc19a2 underlie the clinical syndrome known as thiamine-responsive megaloblastic anemia (TRMA) characterized by anemia, diabetes, and sensorineural hearing loss. To create a mouse model of this disease, a mutant line was created with targeted disruption of the gene. Cochlear function is normal in these mutants when maintained on a high-thiamine diet. When challenged with a low-thiamine diet, Slc19a2-null mice showed 40-60 dB threshold elevations by auditory brainstem response (ABR), but only 10-20 dB elevation by otoacoustic emission (OAE) measures. Wild-type mice retain normal hearing on either diet. Cochlear histological analysis showed a pattern uncommon for sensorineural hearing loss: selective loss of inner hair cells after 1-2 weeks on low thiamine and significantly greater inner than outer hair cell loss after longer low-thiamine challenges. Such a pattern is consistent with the observed discrepancy between ABR and OAE threshold shifts. The possible role of thiamine transport in other reported cases of selective inner hair cell loss is considered.
Quantifying Blood Loss and Transfusion Risk After Primary vs Conversion Total Hip Arthroplasty.
Newman, Jared M; Webb, Matthew R; Klika, Alison K; Murray, Trevor G; Barsoum, Wael K; Higuera, Carlos A
2017-06-01
Primary total hip arthroplasty (THA) and conversion THA may result in substantial blood loss, sometimes necessitating transfusion. Despite the complexities of the latter, both are grouped in the same category for quality assessment and reimbursement. This study's purpose was to compare both blood loss and transfusion risk in primary and conversion THA and identify their associated predictors. A total of 1616 patients who underwent primary and conversion THA at a single hospital from 2009-2013 were reviewed (primary THA = 1575; conversion THA = 41). Demographics, comorbidities, and perioperative data were collected from electronic records. Blood loss was calculated using a validated method. Transfusion triggers were based on standardized criteria. Separate multivariable regression models for blood loss and transfusion were performed. Conversion THA patients were younger (P = .002), had lower age-adjusted Charlson scores (P = .006), longer surgeries (P < .001), higher blood loss (P < .001), and more transfusions (P < .001). Primary and conversion THA groups were different in terms of surgical approach (P < .001), anesthesia type (P = .002), and venous thromboembolism prophylaxis (P = .01). Compared to primary THA, conversion THA had an average 478.9 mL higher blood loss (P = .003) and increased adjusted odds ratio of 3.2 (P = .019) for transfusion. Conversion THA leads to higher blood loss and transfusion compared with primary THA. These differences were quantified in the present study and showed consistent results between the 2 metrics. The differences between these procedures should be addressed during quality assurance because conversion THA is associated with higher resource utilization, which is important in the allocation of resources and tiered reimbursement strategies. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Jun; He, Wang; Liao, Bo; Yang, Jingyue
2015-07-31
This study evaluated the association between free fatty acid (FFA), ROS generation, mitochondrial dysfunction and bone mineral density (BMD) in type 2 diabetic patients and investigated the molecular mechanism. db/db and high fat (HF)-fed mice were treated by Etomoxir, an inhibitor of CPT1, MitoQ, and PFT-α, an inhibitor of P53. Bone metabolic factors were assessed and BMSCs were isolated and induced to osteogenic differentiation. FFA, lipid peroxidation and mtDNA copy number were correlated with BMD in T2DM patients. Etomoxir, MitoQ and PFT-α significantly inhibited the decrease of BMD and bone breaking strength in db/db and HF-fed mice and suppressed the reduction of BMSCs-differentiated osteoblasts. Etomoxir and MitoQ, but not PFT-α, inhibited the increase of mitochondrial ROS generation in db/db and HF-fed mice and osteoblasts. In addition, Etomoxir, MitoQ and PFT-α significantly inhibited mitochondrial dysfunction in osteoblasts. Moreover, mitochondrial apoptosis was activated in osteoblasts derived from db/db and HF-fed mice, which was inhibited by Etomoxir, MitoQ and PFT-α. Furthermore, mitochondrial accumulation of P53 recruited Bax and initiated molecular events of apoptotic events. These results demonstrated that fatty acid oxidation resulted in ROS generation, activating P53/Bax-mediated mitochondrial apoptosis, leading to reduction of osteogenic differentiation and bone loss in T2DM.
Jupiter, Tina
2009-12-01
To determine whether distortion product otoacoustic emissions (DPOAEs) could be used as a hearing screening tool with elderly individuals living independently, and to compare the utility of different screening protocols: (a) 3 pure-tone screening protocols consisting of 30 dB HL at 1, 2, and 3 kHz; 40 dB HL at 1, 2, and 3 kHz; or 40 dB HL at 1 and 2 kHz; (b) the Hearing Handicap Inventory for the Elderly-Screening version (HHIE-S); (c) pure tones at 40 dB HL at 1 and 2 kHz plus the HHIE-S; and (d) DPOAEs. A total of 106 elderly individuals age 65-91 years were screened using the above protocols. Pass/fail results showed that most individuals failed at 30 dB HL, followed by DPOAEs, the 40-dB HL protocols, the HHIE-S alone, and the combined pure-tone/HHIE-S protocol. All screening results were associated except the HHIE-S and 30 dB HL and the HHIE-S and DPOAEs. A McNemar analysis revealed that the differences between the correlated pass/fail results were significant except for the HHIE-S and 40 dB at 1 and 2 kHz. DPOAEs can be used to screen the elderly, with the advantage that individuals do not have to voluntarily respond to the test.
NASA Astrophysics Data System (ADS)
Zhang, Zheshen; Chen, Changchen; Zhuang, Quntao; Wong, Franco N. C.; Shapiro, Jeffrey H.
2018-04-01
Quantum key distribution (QKD) enables unconditionally secure communication ensured by the laws of physics, opening a promising route to security infrastructure for the coming age of quantum computers. QKD’s demonstrated secret-key rates (SKRs), however, fall far short of the gigabit-per-second rates of classical communication, hindering QKD’s widespread deployment. QKD’s low SKRs are largely due to existing single-photon-based protocols’ vulnerability to channel loss. Floodlight QKD (FL-QKD) boosts SKR by transmitting many photons per encoding, while offering security against collective attacks. Here, we report an FL-QKD experiment operating at a 1.3 Gbit s‑1 SKR over a 10 dB loss channel. To the best of our knowledge, this is the first QKD demonstration that achieves a gigabit-per-second-class SKR, representing a critical advance toward high-rate QKD at metropolitan-area distances.
Direct laser written polymer waveguides with out of plane couplers for optical chips
NASA Astrophysics Data System (ADS)
Landowski, Alexander; Zepp, Dominik; Wingerter, Sebastian; von Freymann, Georg; Widera, Artur
2017-10-01
Optical technologies call for waveguide networks featuring high integration densities, low losses, and simple operation. Here, we present polymer waveguides fabricated from a negative tone photoresist via two-photon-lithography in direct laser writing, and show a detailed parameter study of their performance. Specifically, we produce waveguides featuring bend radii down to 40 μ m, insertion losses of the order of 10 dB, and loss coefficients smaller than 0.81 dB mm-1, facilitating high integration densities in writing fields of 300 μ m×300 μ m. A novel three-dimensional coupler design allows for coupling control as well as direct observation of outputs in a single field of view through a microscope objective. Finally, we present beam-splitting devices to construct larger optical networks, and we show that the waveguide material is compatible with the integration of quantum emitters.
Ishii, E K; Talbott, E O
1998-08-01
The National Institute of Occupational Safety and Health rates noise-induced hearing loss as one of the top 10 work-related problems, involving at least 11 million workers. This retrospective study examines the differences between pure-tone hearing loss and race/ethnicity in 216 white and 70 non-white male metal fabricating workers. Significant variables upon univariate analysis found to be associated with race/ethnicity were mean years of employment and proportion of time worked without hearing protection. Among whites, the permanent threshold average for 1, 2, 3 and 5 kHz was 25.99 dB, compared with 17.71 dB in non-whites (P < 0.01). Backwards stepwise regression indicated that race/ethnicity, after being adjusted for years of employment, was the major-effect variable. The results of this study suggest that occupational noise exposure alone does not alone account for the racial hearing differences.
Low loss millimeter-wave switches based on the Vanadium Dioxide Metal - Insulator - Transition
NASA Astrophysics Data System (ADS)
Field, Mark; Hillman, Christopher; Stupar, Philip; Griffith, Zachary; Rodwell, Mark
2014-03-01
A new ultra-low-loss and broad band millimeter wave switch technology based on the reversible metal / insulator phase transition of vanadium dioxide has been developed. We report having fabricated series configured, single-pole single-throw (SPST) switches having measured S-parameters from DC to 110 GHz. The on-state insertion loss is 0.2 dB and off-state isolation is 21 dB at 50 GHz. The resulting impedance contrast ratio, ZOFF / ZON, is greater than 500:1 at 50 GHz (i.e. cut-off frequency fc ~ 40 THz). As a demonstration of the technology's utility, we also present the results of a 2-bit real time delay phase shifter incorporating a pair of VO2 SP4T switches. This switch technology's high impedance contrast ratio combined with its compactness, ease of integration, and low voltage operation make it an enabler of previously unachievable high-performance millimeter wave FPGAs.
A 30-MHz piezo-composite ultrasound array for medical imaging applications.
Ritter, Timothy A; Shrout, Thomas R; Tutwiler, Rick; Shung, K Kirk
2002-02-01
Ultrasound imaging at frequencies above 20 MHz is capable of achieving improved resolution in clinical applications requiring limited penetration depth. High frequency arrays that allow real-time imaging are desired for these applications but are not yet currently available. In this work, a method for fabricating fine-scale 2-2 composites suitable for 30-MHz linear array transducers was successfully demonstrated. High thickness coupling, low mechanical loss, and moderate electrical loss were achieved. This piezo-composite was incorporated into a 30-MHz array that included acoustic matching, an elevation focusing lens, electrical matching, and an air-filled kerf between elements. Bandwidths near 60%, 15-dB insertion loss, and crosstalk less than -30 dB were measured. Images of both a phantom and an ex vivo human eye were acquired using a synthetic aperture reconstruction method, resulting in measured lateral and axial resolutions of approximately 100 microm.
Design and analysis of a high Q MEMS passive RF filter
NASA Astrophysics Data System (ADS)
Rathee, Vishal; Pande, Rajesh
2016-04-01
Over the past few years, significant growth has been observed in using MEMS based passive components in the RF microelectronics domain, especially in transceiver system. This is due to some excellent properties of the MEMS devices like low loss, low cost and excellent isolation. This paper presents a design of high performance MEMS passive band pass filter, consisting of L and C with improved quality factor and insertion loss less than the reported filters. In this paper we have presented a design of 2nd order band pass filter with 2.4GHz centre frequency and 83MHz bandwidth for Bluetooth application. The simulation results showed improved Q-factor of 34 and Insertion loss of 1.7dB to 1.9dB. The simulation results needs to be validated by fabricating the device, fabrication flow of which is also presented in the paper.
Lu, Zhaolin; Prather, Dennis W
2004-08-01
We present a method for parallel coupling from a single-mode fiber, or fiber ribbon, into a silicon-on-insulator waveguide for integration with silicon optoelectronic circuits. The coupler incorporates the advantages of the vertically tapered waveguides and prism couplers, yet offers the flexibility of planar integration. The coupler can be fabricated by use of either wafer polishing technology or gray-scale photolithography. When optimal coupling is achieved in our experimental setup, the coupler can be packaged by epoxy bonding to form a fiber-waveguide parallel coupler or connector. Two-dimensional electromagnetic calculation predicts a coupling efficiency of 77% (- 1.14-dB insertion loss) for a silicon-to-silicon coupler with a uniform tunnel layer. The coupling efficiency is experimentally achieved to be 46% (-3.4-dB insertion loss), excluding the loss in silicon and the reflections from the input surface and the output facet.
NASA Astrophysics Data System (ADS)
Robinson, Donald Arthur
1984-06-01
A method is presented to predict airborne and barrier transmission loss of an audible signal as it travels from a corridor based octave band sound source to a room based receiver location. Flanking pathways are not considered in the prediction model. Although the central focus of the research is on the propagation of the signal, a comprehensive review of the source, path and receiver are presented as related to emergency audible signal propagation. Linear attenuation of the signal and end wall reflection is applied along the corridor path incorporating research conducted by T. L. Redmore of Essex, England. Classical room acoustics are applied to establish the onset of linear attenuation beyond the near field. The "coincidence effect" is applied to the transmission loss through the room door barrier. A constant barrier door transmission loss from corridor-to-room is applied throughout the 250 - 8000 Hertz octave bands. In situ measurements were conducted in two separate dormitories on the University of Massachusetts Amherst campus to verify the validity of the approach. All of the experimental data points follow the corresponding points predicted by the model with all correlations exceeding 0.9. The 95 percent confidence intervals for the absolute difference between predicted and measured values ranged from 0.76 dB to 4.5 dB based on five Leq dB levels taken at each octave band along the length of the corridor. For the corridor to room attenuation in the six test rooms, with the door closed and edge sealed, the predicted minus measured levels ranged from an interval of 0.54 to 2.90 dB Leq at octave bands from 250 to 8000 Hertz. Given the inherent difficulty of in situ tests compared to laboratory or modeling approaches the confidence intervals obtained confirm the usefulness of the prediction model presented.
Sudden sensorineural hearing loss: results of intratympanic steroids as salvage treatment.
Dispenza, Francesco; De Stefano, Alessandro; Costantino, Claudio; Marchese, Donatella; Riggio, Francesco
2013-01-01
The aim of the present study was to verify the efficacy and the safety of intratympanic dexamethasone to treat sudden sensorineural hearing loss as salvage therapy. A prospective study was conducted on patients affected by idiopathic sudden hearing loss who were treated before with some systemic therapy, but without recovery of the hearing The patients able to undergo the study, but who refused salvage treatment were considered as control group. A solution of Dexamethasone 4 mg/ml was then injected through the posterior-inferior quadrant filling completely the middle ear. The follow-up in the following 6 months included an audiogram every month. The number of patients treated with salvage therapy was 36. The patients who refused treatment were further 10. The salvage treatment was done with a mean delay of 24.3 days from the onset of symptoms. Mean hearing threshold after the onset of sudden hearing loss at PTA was 66.5 dB. After the failed treatment the mean PTA was 59.6 dB. The mean PTA after the intratympanic steroid administration was 46.8 dB, with a mean improvement of 12.8 dB. No hearing change was noted in the 10 patients who refused salvage therapy. The patients that assumed systemic steroid as first therapy showed a better PTA threshold after the salvage intratympanic treatment (p<0.01). A significant difference (p<0.05) of hearing recovery was evidenced between non-smoker patients and those with smoking habit. Our data showed that a salvage treatment with intratympanic dexamethasone should be suggested to all patients who failed the first systemic treatment. The systemic steroid therapy done before the salvage treatment seems to exert a protective role for the inner ear, as shown by our series. On the contrary the smoke habit is a negative prognostic factor in the hearing recovery. Copyright © 2013 Elsevier Inc. All rights reserved.
Design and Evaluation of a Personal Diffusion Battery.
Vosburgh, Donna J H; Klein, Timothy; Sheehan, Maura; Anthony, T Renee; Peters, Thomas M
A four-stage personal diffusion battery (pDB) was designed and constructed to measure submicron particle size distributions. The pDB consisted of a screen-type diffusion battery, solenoid valve system, and electronic controller. A data inversion spreadsheet was created to solve for the number median diameter (NMD), geometric standard deviation (GSD), and particle number concentration of unimodal aerosols using stage number concentrations from the pDB combined with a handheld condensation particle counter (pDB+CPC). The inversion spreadsheet included particle entry losses, theoretical penetrations across screens, the detection efficiency of the CPC, and constraints so the spreadsheet solved to values within the pDB range. Size distribution parameters (NMD, GSD, and number concentration) measured with the pDB+CPC with inversion spreadsheet were within 25% of those measured with a scanning mobility particle sizer (SMPS) for 5 of 12 polydisperse combustion aerosols. For three tests conducted with propylene torch exhaust, the pDB+CPC with inversion spreadsheet successfully identified that the NMD was smaller than the constraint value of 16 nm. The ratio of the nanoparticle portion of the aerosol compared to the reference ( R nano ) was calculated to determine the ability of pDB+CPC with inversion spreadsheet to measure the nanoparticle portion of the aerosols. The R nano ranged from 0.87 to 1.01 when the inversion solved and from 0.06 to 2.01 when the inversion solved to a constraint. The pDB combined with CPC has limited use as a personal monitor but combining the pDB with a different detector would allow for the pDB to be used as a personal monitor.
Design and Evaluation of a Personal Diffusion Battery
Vosburgh, Donna J. H.; Klein, Timothy; Sheehan, Maura; Anthony, T. Renee; Peters, Thomas M.
2016-01-01
A four-stage personal diffusion battery (pDB) was designed and constructed to measure submicron particle size distributions. The pDB consisted of a screen-type diffusion battery, solenoid valve system, and electronic controller. A data inversion spreadsheet was created to solve for the number median diameter (NMD), geometric standard deviation (GSD), and particle number concentration of unimodal aerosols using stage number concentrations from the pDB combined with a handheld condensation particle counter (pDB+CPC). The inversion spreadsheet included particle entry losses, theoretical penetrations across screens, the detection efficiency of the CPC, and constraints so the spreadsheet solved to values within the pDB range. Size distribution parameters (NMD, GSD, and number concentration) measured with the pDB+CPC with inversion spreadsheet were within 25% of those measured with a scanning mobility particle sizer (SMPS) for 5 of 12 polydisperse combustion aerosols. For three tests conducted with propylene torch exhaust, the pDB+CPC with inversion spreadsheet successfully identified that the NMD was smaller than the constraint value of 16 nm. The ratio of the nanoparticle portion of the aerosol compared to the reference (R nano) was calculated to determine the ability of pDB+CPC with inversion spreadsheet to measure the nanoparticle portion of the aerosols. The R nano ranged from 0.87 to 1.01 when the inversion solved and from 0.06 to 2.01 when the inversion solved to a constraint. The pDB combined with CPC has limited use as a personal monitor but combining the pDB with a different detector would allow for the pDB to be used as a personal monitor. PMID:26900207
Swanepoel, De Wet; Eikelboom, Robert H; Hunter, Michael L; Friedland, Peter L; Atlas, Marcus D
2013-06-01
The baby boomer population will become high users of the health-care system in coming years. Self-report of hearing loss at a primary health-care visit may offer timely referrals to audiological services, but there has been no population-based study of self-reported hearing loss in the baby boomer generation. To determine the clinical value and audiometric correspondence of self-reported hearing loss as a screening tool for the baby boomer population. A population-based study, Busselton Healthy Ageing Study (BHAS), surveying baby boomers born between 1946 and 1964 from the shire of Busselton, Western Australia. A randomized sample of noninstitutionalized baby-boomers listed on the electoral roll (n = 6690) and resident in the shire are eligible to participate. This study reports on data from the first 1004 attendees (53.5% female) with a mean age of 56.23 (SD = 5.43). Data from a self-report question on hearing loss and diagnostic pure tone audiometry was utilized for this study. Analysis included screening performance measures of self-report compared to audiometric cut-offs, receiver operator curve (ROC) to determine optimal level, analysis of variance to compare hearing status to self-report, and binary logistic regression to determine best audiometric predictors. Of the sample, 16% self-reported hearing loss (72.1% males). Logistic regression indicated 4000 Hz as the most important individual frequency related to self-report while the four-frequency average (500, 1000, 2000, and 4000 Hz) >25 dB in the worse ear was the most significant averaged cutoff with 68% sensitivity and 87% specificity. Of those who self-reported a hearing loss, 80% had either a four-frequency average hearing loss >25 dB in the worse ear or a high-frequency average (4000 and 8000 Hz) hearing loss greater than 35 dB in the worse ear. Baby boomer adults who self-report hearing impairment on direct inquiry are most likely to have a hearing loss. A simple question at a primary health care visit may facilitate a timely referral for audiological services in a baby boomer adult, who may be more amenable to rehabilitation. American Academy of Audiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman
Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-opticmore » techniques by minimal coupling to higher-order modes. Only the TE{sub 10} mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in millimeter-wave EPR bridges.« less
Tagra, Sunita; Talwar, Amrita Kaur; Walia, Rattan Lal Singh; Sidhu, Puneet
2006-01-01
Waardenburg syndrome is a rare inherited and genetically heterogenous disorder of neural crest cell development. Four distinct subtypes showing marked interfamilial and intrafamilial variability have been described. We report a girl showing constellation of congenital hearing impairment with 110 dB and 105 dB loss in right and left ear respectively, hypoplastic blue iridis, white forelock, dystopia canthorum and broad nasal root. Other affected relatives of the family, with variable features of the syndrome, have been depicted in the pedigree.
Visible optical isolator using ZnSe
NASA Technical Reports Server (NTRS)
Wunderlich, J. A.; Deshazer, L. G.
1977-01-01
A compact Faraday effect optical isolator was constructed for visible wavelengths and tested at 5145 A. The nonreciprocal element of the isolator was polycrystalline zinc selenide placed in the magnetic field of a permanent magnet. For 5145 A the isolator had a 2.06-dB insertion loss and a 25.5-dB isolation. Indices of refraction and Verdet constants were measured for zinc selenide in the wavelength region from 4700 to 6300 A.
Polymer waveguide based hybrid opto-electric integration technology
NASA Astrophysics Data System (ADS)
Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin
2014-10-01
While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.
New coplanar waveguide to rectangular waveguide end launcher
NASA Technical Reports Server (NTRS)
Simons, R. N.; Taub, S. R.
1992-01-01
A new coplanar waveguide to rectangular waveguide end launcher is experimentally demonstrated. The end launcher operates over the Ka-band frequencies that are designated for the NASA Advanced Communication Technology Satellite uplink. The measured insertion loss and return loss are better than 0.5 and -10 dB, respectively.
NASA Astrophysics Data System (ADS)
Shen, Guozhu; Fang, Xumin; Wu, Hongyan; Wei, Hongyu; Li, Jingfa; Li, Kaipeng; Mei, Buqing; Xu, Yewen
2017-04-01
A facile method has been developed to fabricate magnetic core/shell SiO2/C/Co sub-microspheres via the pyrolysis of SiO2/PANI (polyaniline) and electroless plating method. The electromagnetic parameters of these SiO2/C and SiO2/C/Co composites were measured and the microwave reflection loss properties were evaluated in the frequency range of 2-18 GHz. The results show that the dielectric loss of SiO2/C composite increases with the increase of carbonization temperature and the magnetic loss enhances due to the deposition of cobalt on the SiO2/C sub-microspheres. The reflection loss results exhibit that the microwave absorption properties of the SiO2/C/Co composites are more excellent than those of SiO2/C composites for each thickness. The maximum effective absorption bandwidth (reflection loss ≤ -10 dB) arrives at 5.0 GHz (13.0-18 GHz) for SiO2/C/Co composite with 1.5 mm of thickness and the minimum reflection loss value is -24.0 dB at 5.0 GHz with 4.0 mm of thickness. The microwave loss mechanism of the SiO2/C/Co composites was also discussed in this paper.
2009-10-09
trains the coefficients c of a finite impulse response (FIR) filter by gradient descent. The coefficients at iteration k + 1 are computed with the update... absorption . Figure 9 shows the reflection loss as a function of grazing angle for this bottom model. Note that below 30◦ this bottom model predicts...less than 1 dB loss per ray bounce. 11 Figure 9: Jackson bottom reflection loss for sand at 15 kHz Absorption Loss The absorption loss in the medium was
Azathioprine reduces the risk of audiometric relapse in immune-mediated hearing loss.
Mata-Castro, Nieves; Gavilanes-Plasencia, Javier; Ramírez-Camacho, Rafael; García-Fernández, Alfredo; García-Berrocal, José Ramón
2018-03-01
Current schemes for treatment of immune-mediated hearing loss with sporadic short-course, low-dose corticosteroids, are insufficient. To determine the role of azathioprine in the control of auditory impairment, a longitudinal, observational, descriptive study was performed with 20 patients treated with azathioprine (1.5-2.5mg/kg/day into two doses) for 1year. The loss of 10dB on two consecutive frequencies or 15dB on an isolated frequency was considered as relapse. The mean age of the patients was 52.50years (95%CI: 46.91-58.17), half were women. Bilateral affectation was 65%. 75% had organ specific disease and 25% had systemic autoimmune disease. The difference between baseline PTA (46.49dB; DS18.90) and PTA at 12months (45.47dB; DS18.88) did not reach statistical significance (P=.799). There was a moderate positive correlation between female sex and the presence of systemic disease (R=.577). By applying Student's t for paired data, a significant difference (P=.042) was obtained between the PTA in frequencies up to 1000 Hz (PTA125-1000Hz). The relative incidence rate of relapse per year was .52 relapses/year (95%CI: .19-1.14]). The median time to audiometric relapse-free was 9.70months (DS1.03). Azathioprine maintains the hearing threshold, decreases the risk of relapse, and slows down the rate at which patients relapse, altering the course of immune-mediated inner ear disease. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
Analysis of in-flight acoustic data for a twin-engined turboprop airplane
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Wilby, E. G.
1988-01-01
Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.
Zhao, Xingchen; Chen, Yuanhan; Tan, Xiaofan; Zhang, Li; Zhang, Hong; Li, Zhilian; Liu, Shuangxin; Li, Ruizhao; Lin, Ting; Liao, Ruyi; Zhang, Qianmei; Dong, Wei; Shi, Wei; Liang, Xinling
2018-06-01
Insufficient autophagy in podocytes is related to podocyte injury in diabetic nephropathy (DN). Advanced glycation end-products (AGEs) are major factors of podocyte injury in DN. However, the role and mechanism of AGEs in autophagic dysfunction remain unknown. We investigated autophagic flux in AGE-stimulated cultured podocytes using multiple assays: western blotting, reverse transcription-quantitative PCR, immunofluorescence staining, and electron microscopy. We also utilized chloroquine and a fluorescent probe to monitor the formation and turnover of autophagosomes. Mice of the db/db strain were used to model diabetes mellitus (DM) with high levels of AGEs. To mimic DM with normal levels of AGEs as a control, we treated db/db mice with pyridoxamine to block AGE formation. AGEs impaired autophagic flux in the cultured podocytes. Compared with db/db mice with normal AGEs but high glucose levels, db/db mice with high AGEs and high glucose levels exhibited lower autophagic activity. Aberrant autophagic flux was related to hyperactive mammalian target of rapamycin (mTOR), a major suppressor of autophagy. Pharmacologic inhibition of mTOR activity restored impaired autophagy. AGEs inhibited the nuclear translocation and activity of the pro-autophagic transcription factor EB (TFEB) and thus suppressed transcription of its several autophagic target genes. Conversely, TFEB overexpression prevented AGE-induced autophagy insufficiency. Attenuating mTOR activity recovered TFEB nuclear translocation under AGE stimulation. Co-immunoprecipitation assays further demonstrated the interaction between mTOR and TFEB in AGE-stimulated podocytes and in glomeruli from db/db mice. In conclusion, AGEs play a crucial part in suppressing podocyte autophagy under DM conditions. AGEs inhibited the formation and turnover of autophagosomes in podocytes by activating mTOR and inhibiting the nuclear translocation of TFEB. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Automatic Dialogue Scoring for a Second Language Learning System
ERIC Educational Resources Information Center
Huang, Jin-Xia; Lee, Kyung-Soon; Kwon, Oh-Woog; Kim, Young-Kil
2016-01-01
This paper presents an automatic dialogue scoring approach for a Dialogue-Based Computer-Assisted Language Learning (DB-CALL) system, which helps users learn language via interactive conversations. The system produces overall feedback according to dialogue scoring to help the learner know which parts should be more focused on. The scoring measures…
Metropolitan Quantum Key Distribution with Silicon Photonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunandar, Darius; Lentine, Anthony; Lee, Catherine
Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalablemore » resource for future formation of metropolitan quantum-secure communications networks.« less
Metropolitan Quantum Key Distribution with Silicon Photonics
Bunandar, Darius; Lentine, Anthony; Lee, Catherine; ...
2018-04-06
Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalablemore » resource for future formation of metropolitan quantum-secure communications networks.« less
Yu, Hui; Pantouvaki, Marianna; Van Campenhout, Joris; Korn, Dietmar; Komorowska, Katarzyna; Dumon, Pieter; Li, Yanlu; Verheyen, Peter; Absil, Philippe; Alloatti, Luca; Hillerkuss, David; Leuthold, Juerg; Baets, Roel; Bogaerts, Wim
2012-06-04
Carrier-depletion based silicon modulators with lateral and interdigitated PN junctions are compared systematically on the same fabrication platform. The interdigitated diode is shown to outperform the lateral diode in achieving a low VπLπ of 0.62 V∙cm with comparable propagation loss at the expense of a higher depletion capacitance. The low VπLπ of the interdigitated PN junction is employed to demonstrate 10 Gbit/s modulation with 7.5 dB extinction ration from a 500 µm long device whose static insertion loss is 2.8 dB. In addition, up to 40 Gbit/s modulation is demonstrated for a 3 mm long device comprising a lateral diode and a co-designed traveling wave electrode.
Analysis and Optimization of Thin Film Ferroelectric Phase Shifters
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; VanKeuls, Fred W.; Warner, Joseph D.; Mueller, Carl H.; Alterovitz, Samuel A.; Miranda, Felix A.; Qureshi, A. Haq; Romanofsky, Robert R. (Technical Monitor)
2000-01-01
Microwave phase shifters have been fabricated from (YBa2Cu3O(7-delta) or Au)/SrTiO3 and Au/Ba(x)Sr(1-x)TiO3 films on LaAlO3 and MgO substrates. These coupled microstrip devices rival the performance of their semiconductor counter-parts parts at Ku- and K-band frequencies. Typical insertion loss for room temperature ferroelectric phase shifters at K-band is approximately equal 5 dB. An experimental and theoretical investigation of these novel devices explains the role of the ferroelectric film in overall device performance. A roadmap to the development of a 3 dB insertion loss phase shifter that would enable a new type of phased array antenna is discussed.
Ultracompact splitter for submicrometer silicon-on-insulator rib waveguides.
Koster, Alain; Cassan, Eric; Laval, Suzanne; Vivien, Laurent; Pascal, Daniel
2004-11-01
An ultracompact and efficient 1 x 2 splitter for submicrometer silicon-on-insulator rib waveguides using a star coupler is reported. The structure proposed here is decidedly smaller than the usual splitters such as multi-mode interference or Y-branch devices and much less sensitive to technological fluctuations. Design of the compact splitter is optimized at lambda = 1.31 microm with the effective-index method and a two-dimensional beam-propagation method. The excess losses are lower than 0.15 dB, and the dependence of the losses on wavelength between 1.23 and 1.63 microm is almost flat (variation less than 0.04 dB), which makes the device very interesting for coarse wavelength-division multiplexing applications within the silicon photonic technology.
Kim, Myoung Jin; Jung, Yong Min; Kim, Bok Hyeon; Han, Won-Taek; Lee, Byeong Ha
2007-08-20
We demonstrate a fiber-based bandpass filter with an ultra-wide spectral bandwidth. The ultra-wide band feature is achieved by inscribing a long-period fiber grating (LPG) in a specially-designed low index core single mode fiber. To get the bandpass function, the evanescent field coupling between two attached fibers is utilized. By applying strain, the spectral shape of the pass-band is adjusted to flat-top and Gaussian shapes. For the flat-top case, the bandwidth is obtained ~ 160 nm with an insertion loss of ~ 2 dB. With strain, the spectral shape is switched into a Gaussian one, which has ~ 120 nm FWHM and ~ 4.18 dB insertion loss at the peak.
W-Band Circularly Polarized TE11 Mode Transducer
NASA Astrophysics Data System (ADS)
Zhan, Mingzhou; He, Wangdong; Wang, Lei
2018-06-01
This paper presents a balanced sidewall exciting approach to realize the circularly polarized TE11 mode transducer. We used a voltage vector transfer matrix to establish the relationship between input and output vectors, then we analyzed amplitude and phase errors to estimate the isolation of degenerate mode. A mode transducer with a sidewall exciter was designed based on the results. In the 88-100 GHz frequency range, the simulated axial ratio is less than 1.05 and the isolation of linearly polarization TE11 mode is higher than 30 dBc. In back-to-back measurements, the return loss is generally greater than 20 dB with a typical insertion loss of 1.2 dB. Back-to-back transmission measurements are in excellent agreement with simulations.
2 GHz clock quantum key distribution over 260 km of standard telecom fiber.
Wang, Shuang; Chen, Wei; Guo, Jun-Fu; Yin, Zhen-Qiang; Li, Hong-Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu
2012-03-15
We report a demonstration of quantum key distribution (QKD) over a standard telecom fiber exceeding 50 dB in loss and 250 km in length. The differential phase shift QKD protocol was chosen and implemented with a 2 GHz system clock rate. By careful optimization of the 1 bit delayed Faraday-Michelson interferometer and the use of the superconducting single photon detector (SSPD), we achieved a quantum bit error rate below 2% when the fiber length was no more than 205 km, and of 3.45% for a 260 km fiber with 52.9 dB loss. We also improved the quantum efficiency of SSPD to obtain a high key rate for 50 km length.
Optical modulation in silicon-vanadium dioxide photonic structures
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Hallman, Kent A.; Haglund, Richard F.; Weiss, Sharon M.
2017-08-01
All-optical modulators are likely to play an important role in future chip-scale information processing systems. In this work, through simulations, we investigate the potential of a recently reported vanadium dioxide (VO2) embedded silicon waveguide structure for ultrafast all-optical signal modulation. With a VO2 length of only 200 nm, finite-differencetime- domain simulations suggest broadband (200 nm) operation with a modulation greater than 12 dB and an insertion loss of less than 3 dB. Predicted performance metrics, including modulation speed, modulation depth, optical bandwidth, insertion loss, device footprint, and energy consumption of the proposed Si-VO2 all-optical modulator are benchmarked against those of current state-of-the-art all-optical modulators with in-plane optical excitation.
Metropolitan Quantum Key Distribution with Silicon Photonics
NASA Astrophysics Data System (ADS)
Bunandar, Darius; Lentine, Anthony; Lee, Catherine; Cai, Hong; Long, Christopher M.; Boynton, Nicholas; Martinez, Nicholas; DeRose, Christopher; Chen, Changchen; Grein, Matthew; Trotter, Douglas; Starbuck, Andrew; Pomerene, Andrew; Hamilton, Scott; Wong, Franco N. C.; Camacho, Ryan; Davids, Paul; Urayama, Junji; Englund, Dirk
2018-04-01
Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.
W-Band Circularly Polarized TE11 Mode Transducer
NASA Astrophysics Data System (ADS)
Zhan, Mingzhou; He, Wangdong; Wang, Lei
2018-04-01
This paper presents a balanced sidewall exciting approach to realize the circularly polarized TE11 mode transducer. We used a voltage vector transfer matrix to establish the relationship between input and output vectors, then we analyzed amplitude and phase errors to estimate the isolation of degenerate mode. A mode transducer with a sidewall exciter was designed based on the results. In the 88-100 GHz frequency range, the simulated axial ratio is less than 1.05 and the isolation of linearly polarization TE11 mode is higher than 30 dBc. In back-to-back measurements, the return loss is generally greater than 20 dB with a typical insertion loss of 1.2 dB. Back-to-back transmission measurements are in excellent agreement with simulations.
An inductorless active mixer using stacked nMOS/pMOS configuration and LO shaping technique
NASA Astrophysics Data System (ADS)
Guo, Benqing; Chen, Jun; Wang, Xuebing; Chen, Hongpeng
2018-04-01
In this paper, a CMOS active down-conversion mixer is presented for wideband applications. Specifically, a LO generation chain is suggested to convert AC LO signal to shaped trapezoid burst, which reduces the sinusoidal LO power level requirement by the mixer. The current-reuse technique by stacked nMOS/pMOS architecture is used to save the power consumption of the circuit. Moreover, this complementary configuration is also employed to compensate second-order nonlinearity of the circuit. Implemented in a 0.18-μm CMOS process, post-simulations show that, driven by only ‑10 dBm sinusoidal LO signal, the proposed inductorless mixer provides a maximal conversion gain of 15.7 dB and a noise figure (NF) of 9.1-12 dB across RF input frequency range 0.5-1.6 GHz. The IIP3 and IP1dB of 3.5 dBm and ‑4.8 dBm are obtained, respectively. The mixer core only consumes 3.6 mW from a 1.8-V supply.
NASA Astrophysics Data System (ADS)
Zhu, Danfeng; Zhang, Jinqiannan; Ye, Han; Yu, Zhongyuan; Liu, Yumin
2018-07-01
We propose a design of reciprocal optical diode based on asymmetric spatial mode conversion in multimode silicon waveguide on the silicon-on-insulator platform. The design possesses large bandwidth, high contrast ratio and high fabrication tolerance. The forward even-to-odd mode conversion and backward blockade of even mode are achieved by partial depth etching in the functional region. Simulated by three-dimension finite-difference time-domain method, the forward transmission efficiency is about -2.05 dB while the backward transmission efficiency is only -22.68 dB, reaching a highest contrast ratio of 0.983 at the wavelength of 1550 nm. The operational bandwidth is up to 200 nm (from 1450 nm to 1650 nm) with contrast ratio higher than 0.911. The numerical analysis also demonstrates that the proposed optical diode possesses high tolerance for geometry parameter errors which may be introduced in fabrication. The design based on partial depth etching is compatible with CMOS process and is expected to contribute to the silicon-based all-optical circuits.
Saliba, Joe; Al-Reefi, Mahmoud; Carriere, Junie S; Verma, Neil; Provencal, Christiane; Rappaport, Jamie M
2017-04-01
Objectives (1) To compare the accuracy of 2 previously validated mobile-based hearing tests in determining pure tone thresholds and screening for hearing loss. (2) To determine the accuracy of mobile audiometry in noisy environments through noise reduction strategies. Study Design Prospective clinical study. Setting Tertiary hospital. Subjects and Methods Thirty-three adults with or without hearing loss were tested (mean age, 49.7 years; women, 42.4%). Air conduction thresholds measured as pure tone average and at individual frequencies were assessed by conventional audiogram and by 2 audiometric applications (consumer and professional) on a tablet device. Mobile audiometry was performed in a quiet sound booth and in a noisy sound booth (50 dB of background noise) through active and passive noise reduction strategies. Results On average, 91.1% (95% confidence interval [95% CI], 89.1%-93.2%) and 95.8% (95% CI, 93.5%-97.1%) of the threshold values obtained in a quiet sound booth with the consumer and professional applications, respectively, were within 10 dB of the corresponding audiogram thresholds, as compared with 86.5% (95% CI, 82.6%-88.5%) and 91.3% (95% CI, 88.5%-92.8%) in a noisy sound booth through noise cancellation. When screening for at least moderate hearing loss (pure tone average >40 dB HL), the consumer application showed a sensitivity and specificity of 87.5% and 95.9%, respectively, and the professional application, 100% and 95.9%. Overall, patients preferred mobile audiometry over conventional audiograms. Conclusion Mobile audiometry can correctly estimate pure tone thresholds and screen for moderate hearing loss. Noise reduction strategies in mobile audiometry provide a portable effective solution for hearing assessments outside clinical settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuur, Charlotte L.; Simis, Yvonne J.; Lamers, Emmy A.
2009-06-01
Purpose: Radiotherapy (RT) is a common treatment of head-and-neck carcinoma. The objective of this study was to perform a prospective multivariate assessment of the dose-effect relationship between intensity-modulated RT and hearing loss. Methods and Materials: Pure tone audiometry at 0.250-16 kHz was obtained before and after treatment in 101 patients (202 ears). All patients received full-course intensity-modulated RT (range, 56-70 Gy), with a median cochlear dose of 11.4 Gy (range, 0.2-69.7). Results: Audiometry was performed 1 week before and a median of 9 weeks (range, 1-112) after treatment. The mean hearing deterioration at pure tone average air-conduction 1-2-4 kHz wasmore » small (from 28.6 dB HL to 30.1 dB HL). However, individual patients showed clinically significant hearing loss, with 10-dB threshold shift incidences of 13% and 18% at pure tone averages air-conduction 1-2-4 kHz and 8-10-12.5 kHz, respectively. Post-treatment hearing capability was unfavorable in the case of greater inner ear radiation doses (p <0.0001), unfavorable baseline hearing capability (p <0.0001), green-eyed patients (p <0.0001), and older age (p <0.0001). Using multivariate analysis, a prediction of individual hearing capabiltity after treatment was made. Conclusion: RT-induced hearing loss in the mean population is modest. However, clinically significant hearing loss was observed in older patients with green eyes and unfavorable pretreatment hearing. In these patients, the intended radiation dose may be adjusted according to the proposed predictive model, aiming to decrease the risk of ototoxicity.« less
NASA Astrophysics Data System (ADS)
Siyuan, He; Changhong, Zhang; Liang, Tao; Weifeng, Zhang; Longyue, Zeng; Wei, Lü; Haijun, Wu
2013-03-01
A CMOS long-term evolution (LTE) direct convert receiver that eliminates the interstage SAW filter is presented. The receiver consists of a low noise variable gain transconductance amplifier (TCA), a quadrature passive current commutating mixer with a 25% duty-cycle LO, a trans-impedance amplifier (TIA), a 7th-order Chebyshev filter and programmable gain amplifiers (PGAs). A wide dynamic gain range is allocated in the RF and analog parts. A current commutating passive mixer with a 25% duty-cycle LO improves gain, noise, and linearity. An LPF based on a Tow-Thomas biquad suppresses out-of-band interference. Fabricated in a 0.13 μm CMOS process, the receiver chain achieves a 107 dB maximum voltage gain, 2.7 dB DSB NF (from PAD port), -11 dBm IIP3, and > +65 dBm IIP2 after calibration, 96 dB dynamic control range with 1 dB steps, less than 2% error vector magnitude (EVM) from 2.3 to 2.7 GHz. The total receiver (total I Q path) draws 89 mA from a 1.2-V LDO on chip supply.
Maternal Distancing Strategies toward Twin Sons, One with Mild Hearing Loss: A Case Study
ERIC Educational Resources Information Center
Munoz-Silva, Alicia; Sanchez-Garcia, Manuel
2004-01-01
The authors apply descriptive and sequential analyses to a mother's distancing strategies toward her 3-year-old twin sons in puzzle assembly and book reading tasks. One boy had normal hearing and the other a mild hearing loss (threshold: 30 dB). The results show that the mother used more distancing behaviors with the son with a hearing loss, and…
Terahertz isolator based on nonreciprocal magneto-metasurface.
Chen, Sai; Fan, Fei; Wang, Xianghui; Wu, Pengfei; Zhang, Hui; Chang, Shengjiang
2015-01-26
A magneto-metasurface with nonreciprocal terahertz (THz) transmission has been proposed to form a THz isolator. Importantly, we have discussed the two necessary conditions for THz nonreciprocal transmission in the metasurface: (1) There should be magneto-optical responses for THz waves in the metasurface; (2) The transmission system of the metasurface needs to be asymmetric for forward and backward waves. These two conditions lead to the time reversal symmetry breaking of system, and the magnetoplasmon mode splitting and nonreciprocal resonance enhancement can be observed in the asymmetry magneto-metasurface. Moreover, the isolation dependences and tunability on the external magnetic field and temperature have also been investigated, which shows that the best operating state with a high isolation can be designed. The numerical simulations show a maximum isolation of 43 dB and a 10 dB operating bandwidth of 20 GHz under an external magnetic field of 0.3 T, and the insertion loss is smaller than 1.79 dB. This low-loss, high isolation, easy coupling THz isolator has broadly potentials for THz application systems.
NASA Astrophysics Data System (ADS)
Umeshkumar, Dubey Suhmita; Kumar, Manish
2018-04-01
This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.
Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems
NASA Astrophysics Data System (ADS)
Nguyen, Victor; Montalbo, Trisha; Manolatou, Christina; Agarwal, Anu; Hong, Ching-yin; Yasaitis, John; Kimerling, L. C.; Michel, Jurgen
2006-02-01
A coupler to efficiently transfer broadband light from a single-mode optical fiber to a single-mode high-index contrast waveguide has been fabricated on a silicon substrate. We utilized a novel coupling scheme, with a vertically asymmetric design consisting of a stepwise parabolic graded index profile combined with a horizontal taper, to simultaneously confine light in both directions. Coupling efficiency has been measured as a function of the device dimensions. The optimal coupling efficiency is achieved for structures whose length equals the focal distance of the graded index and whose input width is close to the mode field diameter of the fiber. The fabricated structure is compact, robust and highly efficient, with an insertion loss of 2.2dB at 1550nm. The coupler exhibits less than 1dB variation in coupling efficiency in the measured spectral range from 1520nmto1620nm. The lowest insertion loss of 1.9dB is measured at 1540nm. The coupler design offers highly efficient coupling for single mode waveguides of core indices up to 2.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepkowski, Stefan Mark
2015-05-01
The work here presents a review of beam forming architectures. As an example, the author presents an 8x8 Butler Matrix passive beam forming network including the schematic, design/modeling, operation, and simulated results. The limiting factor in traditional beam formers has been the large size dictated by transmission line based couplers. By replacing these couplers with transformer-based couplers, the matrix size is reduced substantially allowing for on chip compact integration. In the example presented, the core area, including the antenna crossover, measures 0.82mm×0.39mm (0.48% the size of a branch line coupler at the same frequency). The simulated beam forming achieves amore » peak PNR of 17.1 dB and 15dB from 57 to 63GHz. At the 60GHz center frequency the average insertion loss is simulated to be 3.26dB. The 8x8 Butler Matrix feeds into an 8-element antenna array to show the array patterns with single beam and adjacent beam isolation.« less
Millimeter-wave pseudomorphic HEMT MMIC phased array components for space communications
NASA Technical Reports Server (NTRS)
Lan, G. L.; Pao, C. K.; Wu, C. S.; Mandolia, G.; Hu, M.; Yuan, S.; Leonard, Regis
1991-01-01
Recent advances in pseudomorphic HEMT MMIC (PMHEMT/MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. This paper describes the development of PMHEMT/MMIC components at Ka-band and V-band. Specifically, the following PMHEMT/MMIC components will be described: power amplifiers at Ka-band; power amplifiers at V-band; and four-bit phase shifters at V-band. For the Ka-band amplifier, 125 mW output power with 5.5 dB gain and 21 percent power added efficiency at 2 dB compression point has been achieved. For the V-band amplifier, 112 mW output power with 6 dB gain and 26 percent power added efficiency has been achieved. And, for the V-band phase shifter, four-bit (45 deg steps) phase shifters with less than 8 dB insertion loss from 61 GHz to 63 GHz will be described.
General multimode polarization splitter design in uniaxial media
NASA Astrophysics Data System (ADS)
Teixeira, Poliane A.; Silva, Daniely G.; Gabrielli, Lucas H.; Spadoti, Danilo H.; Junqueira, Mateus A. F. C.
2018-03-01
Quasiconformal transformation optics is used to design two-dimensional polarization beam splitters. The resulting media present inhomogeneous uniaxial permittivity and nonmagnetic response. The compact devices are theoretically designed and investigated for symmetrical and asymmetrical geometries, with footprint of 64 and 110 μm2, respectively. The polarization splitter performance is evaluated for the fundamental mode and third mode, exhibiting an insertion loss closer to 0 dB and extinction ratio above 40 dB over a broad wavelength range.
Compact wavelength-insensitive fabrication-tolerant silicon-on-insulator beam splitter.
Rasigade, Gilles; Le Roux, Xavier; Marris-Morini, Delphine; Cassan, Eric; Vivien, Laurent
2010-11-01
A star coupler-based beam splitter for rib waveguides is reported. A design method is presented and applied in the case of silicon-on-insulator rib waveguides. Experimental results are in good agreement with simulations. Excess loss lower than 1 dB is experimentally obtained for star coupler lengths from 0.5 to 1 μm. Output balance is better than 1 dB, which is the measurement accuracy, and broadband transmission is obtained over 90 nm.
Jones, Adam M; DeRose, Christopher T; Lentine, Anthony L; Trotter, Douglas C; Starbuck, Andrew L; Norwood, Robert A
2013-05-20
We explore the design space for optimizing CMOS compatible waveguide crossings on a silicon photonics platform. This paper presents simulated and experimental excess loss and crosstalk suppression data for vertically integrated silicon nitride over silicon-on-insulator waveguide crossings. Experimental results show crosstalk suppression exceeding -49/-44 dB with simulation results as low as -65/-60 dB for the TE/TM mode in a waveguide crossing with a 410 nm vertical gap.
A 10-GHz amplifier using an epitaxial lift-off pseudomorphic HEMT device
NASA Technical Reports Server (NTRS)
Young, Paul G.; Romanofsky, Robert R.; Alterovitz, Samuel A.; Mena, Rafael A.; Smith, Edwyn D.
1993-01-01
A process to integrate epitaxial lift-off devices and microstrip circuits has been demonstrated using a pseudomorphic HEMT on an alumina substrate. The circuit was a 10 GHz amplifier with the interconnection between the device and the microstrip circuit being made with photolithographically patterned metal. The measured and modeled response correlated extremely well with a maximum gain of 6.8 dB and a return loss of -14 dB at 10.4 GHz.
2006-10-01
jusqu’à 160 dB) ou d’une sonde profilée (au-dessus de 190 dB) et d’un appareil d’essai acoustique (ATF). L’ATF est constitué d’une tête artificielle ...in terms of insertion loss (alone and in combination with other headgear), speech intelligibility and sound localization. However, when using human
Reliability enhancement of Ohmic RF MEMS switches
NASA Astrophysics Data System (ADS)
Kurth, Steffen; Leidich, Stefan; Bertz, Andreas; Nowack, Markus; Frömel, Jörg; Kaufmann, Christian; Faust, Wolfgang; Gessner, Thomas; Akiba, Akira; Ikeda, Koichi
2011-02-01
This contribution deals with capacitively actuated Ohmic switches in series single pole single throw (SPST) configuration for DC up to 4 GHz signal frequency (<0.5 dB insertion loss, 35 dB isolation) and in shunt switch SPST configuration for a frequency range from DC up to 80 GHz (<1.2 dB insertion loss, 18 dB isolation at 60 GHz). A novel high aspect ratio MEMS fabrication sequence in combination with wafer level packaging is applied for fabrication of the samples and allows for a relatively large actuation electrode area, and for high actuation force resulting in fast onresponse time of 10 μs and off-response time of 6 μs at less than 5 V actuation voltage. Large actuation electrode area and a particular design feature for electrode over travel and dynamic contact separation lead to high contact force in the closed state and to high force for contact separation to overcome sticking. The switch contacts, which are consisting of noble metal, are made in one of the latest process steps. This minimizes contamination of the contact surfaces by fabrication sequence residuals. A life time of 1 Billion switch cycles has been achieved. This paper covers design for reliability issues and reliability test methods using accelerated life time test. Different test methods are combined to examine electric and mechanical motion parameters as well as RF performance.
Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong
2015-01-01
This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765
How does glaucoma look?: patient perception of visual field loss.
Crabb, David P; Smith, Nicholas D; Glen, Fiona C; Burton, Robyn; Garway-Heath, David F
2013-06-01
To explore patient perception of vision loss in glaucoma and, specifically, to test the hypothesis that patients do not recognize their impairment as a black tunnel effect or as black patches in their field of view. Clinic-based cross-sectional study. Fifty patients (age range, 52-82 years) with visual acuity better than 20/30 and with a range of glaucomatous visual field (VF) defects in both eyes, excluding those with very advanced disease (perimetrically blind). Participants underwent monocular VF testing in both eyes using a Humphrey Field Analyzer (HFA; Carl Zeiss Meditec, Dublin, CA; 24-2 Swedish interactive threshold algorithm standard tests) and other tests of visual function. Participants took part in a recorded interview during which they were asked if they were aware of their VF loss; if so, there were encouraged to describe it in their own words. Participants were shown 6 images modified in a variety of ways on a computer monitor and were asked to select the image that most closely represented their perception of their VF loss. Forced choice of an image best representing glaucomatous vision impairment. Participants had a range of VF defect severity: average HFA mean deviation was -8.7 dB (standard deviation [SD], 5.8 dB) and -10.5 dB (SD, 7.1 dB) in the right and left eyes, respectively. Thirteen patients (26%; 95% confidence interval [CI], 15%-40%) reported being completely unaware of their vision loss. None of the patients chose the images with a distinct black tunnel effect or black patches. Only 2 patients (4%; 95% CI, 0%-14%) chose the image with a tunnel effect with blurred edges. An image depicting blurred patches and another with missing patches was chosen by 54% (95% CI, 39%-68%) and 16% (95% CI, 7%-29%) of the patients, respectively. Content analysis of the transcripts from the recorded interviews indicated a frequent use of descriptors of visual symptoms associated with reported blur and missing features. Patients with glaucoma do not perceive their vision loss as a black tunnel effect or as black patches masking their field of view. These findings are important in the context of depicting the effects of glaucomatous vision loss and raising awareness for glaucoma detection. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Tracking occupational hearing loss across global industries: A comparative analysis of metrics
Rabinowitz, Peter M.; Galusha, Deron; McTague, Michael F.; Slade, Martin D.; Wesdock, James C.; Dixon-Ernst, Christine
2013-01-01
Occupational hearing loss is one of the most prevalent occupational conditions; yet, there is no acknowledged international metric to allow comparisons of risk between different industries and regions. In order to make recommendations for an international standard of occupational hearing loss, members of an international industry group (the International Aluminium Association) submitted details of different hearing loss metrics currently in use by members. We compared the performance of these metrics using an audiometric data set for over 6000 individuals working in 10 locations of one member company. We calculated rates for each metric at each location from 2002 to 2006. For comparison, we calculated the difference of observed–expected (for age) binaural high frequency hearing loss (in dB/year) for each location over the same time period. We performed linear regression to determine the correlation between each metric and the observed–expected rate of hearing loss. The different metrics produced discrepant results, with annual rates ranging from 0.0% for a less-sensitive metric to more than 10% for a highly sensitive metric. At least two metrics, a 10 dB age-corrected threshold shift from baseline and a 15 dB nonage-corrected shift metric, correlated well with the difference of observed–expected high-frequency hearing loss. This study suggests that it is feasible to develop an international standard for tracking occupational hearing loss in industrial working populations. PMID:22387709
S-band low noise amplifier using 1 μm InGaAs/InAlAs/InP pHEMT
NASA Astrophysics Data System (ADS)
Hamaizia, Z.; Sengouga, N.; Yagoub, M. C. E.; Missous, M.
2012-02-01
This paper discusses the design of a wideband low noise amplifier (LNA) in which specific architecture decisions were made in consideration of system-on-chip implementation for radio-astronomy applications. The LNA design is based on a novel ultra-low noise InGaAs/InAlAs/InP pHEMT Linear and non-linear modelling of this pHEMT has been used to design an LNA operating from 2 to 4 GHz. A common-drain in cascade with a common source inductive degeneration, broadband LNA topology is proposed for wideband applications. The proposed configuration achieved a maximum gain of 27 dB and a noise figure of 0.3 dB with a good input and output return loss (S11 < -10 dB, S22 < -11 dB). This LNA exhibits an input 1-dB compression point of -18 dBm, a third order input intercept point of 0 dBm and consumes 85 mW of power from a 1.8 V supply.
NASA Astrophysics Data System (ADS)
Chang, So-Young; Lim, Sung Kyu; Lee, Min young; Chung, Phil-Sang; Jung, Jae-Yun; Rhee, Chung-Ku
2016-02-01
One of the most common factors that cause hearing disorders is noise trauma. Noise is an increasing hazard and it is pervasive, which makes it difficult to take precautions and prevent noise-induced hearing loss (NIHL). The prevalence of hearing loss among factory workers to be 42 %[1]. Ocupational noise induced hearing loss (ONIHL) continues to be a significant occupational hazard. ONIHL is permanent and may cause significant disability, for which there currently exists no cure, but is largely preventable. More than 30 million Americans are potentially exposed to hazardous noise levels in occupations such as transportation, construction, and coal mining, as well as recreationally. In the mainstream setting, exposure avoidance strategies aimed to reduce the incidence of ONIHL remain the focus of public health and occupational medicine approaches[2]. In military conditions this is most often caused by such things as explosions, blasts, or loud noises from vehicles ranging from 100 to 140 dB[3] and military weapons generating approximately 140-185 dB peak sound pressure levels[4].
Leupeptin reduces impulse noise induced hearing loss
2011-01-01
Background Exposure to continuous and impulse noise can induce a hearing loss. Leupeptin is an inhibitor of the calpains, a family of calcium-activated proteases which promote cell death. The objective of this study is to assess whether Leupeptin could reduce the hearing loss resulting from rifle impulse noise. Methods A polyethelene tube was implanted into middle ear cavities of eight fat sand rats (16 ears). Following determination of auditory nerve brainstem evoked response (ABR) threshold in each ear, the animals were exposed to the noise of 10 M16 rifle shots. Immediately after the exposure, saline was then applied to one (control) ear and non-toxic concentrations of leupeptin determined in the first phase of the study were applied to the other ear, for four consecutive days. Results Eight days after the exposure, the threshold shift (ABR) in the control ears was significantly greater (44 dB) than in the leupeptin ears (27 dB). Conclusion Leupeptin applied to the middle ear cavity can reduce the hearing loss resulting from exposure to impulse noise. PMID:22206578
Environmental assessment of an aircraft conversion, Montana Air National Guard, Great Falls, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, G.; Policastro, A.; Krummel, J.
1986-08-01
It is proposed that the 120th Fighter Interceptor Group of the Montana Air National Guard convert from 18 F-106 to 18 F-16 aircraft. Associated with this conversion are building modifications, land acquisition, and facility construction. The environmental assessment determined that the primary impacts of the conversion would be positive. Noise modeling using the NOISEMAP methodology showed that the maximum noise reduction, resulting from the conversion, at any ground receptor point is about 5 dB on the L/sub dn/ scale. The noise reductions vary with the distance of a receptor point from the runways - the greater the distance, the smallermore » the noise reduction. Conversion to the F-16 prior to completion of a ''hush house'' would result in a temporary increase in noise to the southeast of the airport over a commercial and industrial area. In addition, total air pollutant emissions from aircraft operations would be reduced as a consequence of the conversion. No significant adverse impacts are predicted as a result of the conversion from F-106s to F-16s.« less
Xie, Xiao Li; Wang, Wei; Tian, Wen Wen; Xie, Ke Jun
2017-11-06
Paddy soils have been widely recognized as important carbon sinks. However, paddy field abandonment is increasing in the hilly area in subtropical China. Soil waterlogging and weed burning are common practices in abandoned paddy fields, which could affect vegetation cover and carbon sequestration. An rice cultivation experiment was ceased in 2006, and four new treatments were applied as waterlogging (W), drainage (D), waterlogging combined with burning (WB), and drainage combined with burning (DB). Waterlogging altered the vegetation cover and caused an associated change in biomass. Paspalum paspaloides, Murdannia triquetra, and Bidens frondosa dominated W and WB plots, and Microstegium vimineum and Bidens frondosa dominated D and DB plots. Abandonment of paddy fields led to a rapid decrease in soil organic carbon (SOC), and waterlogging accelerates SOC loss which should be attributed mainly to alteration of the vegetation cover. Six years' rice cultivation increased SOC content by 13.5% (2.4 g kg -1 ) on average. In contrast, six years' abandonment reduced SOC content by 14.5% (3.0 g kg -1 ) on average. Decline rate of SOC was 0.38, 0.64, 0.30, and 0.65 g kg -1 a -1 for D, W, DB, and WB, respectively. Such results indicate a significant risk of SOC loss from abandoned paddy fields.
Mühlmeier, G; Maier, S; Maier, M; Maier, H
2015-10-01
High-dose corticosteroids are currently recommended for idiopathic sudden sensorineural hearing loss (ISSNHL) treatment. Intratympanic injections (ITI) are of growing importance, especially in cases of therapy resistance. The selection of patients for this procedure in SSNHL has not been adequately examined so far. A total of 77 patients with ISSNHL after ineffective systemic pretreatment underwent intratympanic administration of dexamethasone and hyaluronic acid. Improvement after treatment was determined by pure tone audiometry for both ears before and of the treated ear after ITI. In this study 34 female and 43 male patients with mean age of 57 years showed a pre-ITI hearing loss of 35 dB in the lower frequencies and 69 dB in the higher frequencies. The mean hearing gain was 10 dB and the response rate was 62%. Absolute hearing gain revealed significant improvements at 500 Hz, 1 kHz and 2 kHz. Under inclusion of contralateral thresholds there were hardly any differences up to 4 kHz. In a detailed analysis of responders moderate improvements could be observed even in higher frequencies. Overall, no relevant adverse events occurred. Treatment of ISSNHL resistant to systemic regimens by ITI of steroids provides an option that offers additional prospects of auditory improvement for affected patients. The presented results indicate that these modalities are also valid for patients with pancochlear ISSNHL.
Evaluating Thin Compression Paddles for Mammographically Compatible Ultrasound
Booi, Rebecca C.; Krücker, Jochen F.; Goodsitt, Mitchell M.; O’Donnell, Matthew; Kapur, Ajay; LeCarpentier, Gerald L.; Roubidoux, Marilyn A.; Fowlkes, J. Brian; Carson, Paul L.
2007-01-01
We are developing a combined digital mammography/3D ultrasound system to improve detection and/or characterization of breast lesions. Ultrasound scanning through a mammographic paddle could significantly reduce signal level, degrade beam focusing, and create reverberations. Thus, appropriate paddle choice is essential for accurate sonographic lesion detection and assessment with this system. In this study, we characterized ultrasound image quality through paddles of varying materials (lexan, polyurethane, TPX, mylar) and thicknesses (0.25–2.5 mm). Analytical experiments focused on lexan and TPX, which preliminary results demonstrated were most competitive. Spatial and contrast resolution, sidelobe and range lobe levels, contrast and signal strength were compared with no-paddle images. When the beamforming of the system was corrected to account for imaging through the paddle, the TPX 2.5 mm paddle performed the best. Test objects imaged through this paddle demonstrated ≤ 15% reduction in spatial resolution, ≤ 7.5 dB signal loss, ≤ 3 dB contrast loss, and range lobe levels ≥ 35 dB below signal maximum over 4 cm. TPX paddles < 2.5 mm could also be used with this system, depending on imaging goals. In 10 human subjects with cysts, small CNR losses were observed but were determined to be statistically insignificant. Radiologists concluded that 75% of cysts in through-paddle scans were at least as detectable as in their corresponding direct-contact scans. (Email: rbooi@umich.edu) PMID:17280765
NASA Astrophysics Data System (ADS)
Stevens, G.; Woodbridge, T.
2016-03-01
We present results from our recent efforts on developing single-mode fused couplers in ZBLAN fibre. We have developed a custom fusion workstation for working with lower melting temperature fibres, such as ZBLAN and chalcogenide fibres. Our workstation uses a precisely controlled electrical heater designed to operate at temperatures between 100 - 250°C as our heat source. The heated region of the fibers was also placed in an inert atmosphere to avoid the formation of microcrystal inclusions during fusion. We firstly developed a process for pulling adiabatic tapers in 6/125 μm ZBLAN fibre. The tapers were measured actively during manufacture using a 2000 nm source. The process was automated so that the heater temperature and motor speed automatically adjusted to pull the taper at constant tension. This process was then further developed so that we could fuse and draw two parallel 6/125 μm ZBLAN fibres, forming a single-mode coupler. Low ratio couplers (1-10%) that could be used as power monitors were manufactured that had an excess loss of 0.76 dB. We have also manufactured 50/50 splitters and wavelength division multiplexers (WDMs). However, the excess loss of these devices was typically 2 - 3 dB. The increased losses were due to localised necking and surface defects forming as the tapers were pulled further to achieve a greater coupling ratio. Initial experiments with chalcogenide fibre have shown that our process can be readily adapted for chalcogenide fibres. A 5% coupler with 1.5 dB insertion loss was manufactured using commercial of the shelf (COTS) fibres.
The Association of Glaucomatous Visual Field Loss and Balance
de Luna, Regina A.; Mihailovic, Aleksandra; Nguyen, Angeline M.; Friedman, David S.; Gitlin, Laura N.; Ramulu, Pradeep Y.
2017-01-01
Purpose To relate balance measures to visual field (VF) damage from glaucoma. Methods The OPAL kinematic system measured balance, as root mean square (RMS) sway, on 236 patients with suspect/diagnosed glaucoma. Balance was measured with feet shoulder width apart while standing on a firm/foam surface with eyes opened/closed (Instrumental Clinical Test of Sensory Integration and Balance [ICTSIB] conditions), and eyes open on a firm surface under feet together, semi-tandem, or tandem positions (standing balance conditions). Integrated VF (IVF) sensitivities were calculated by merging right and left eye 24-2 VF data. Results Mean age was 71 years (range, 57–93) and mean IVF sensitivity was 27.1 dB (normal = 31 dB). Lower IVF sensitivity was associated with greater RMS sway during eyes-open foam-surface testing (β = 0.23 z-score units/5 dB IVF sensitivity decrement, P = 0.001), but not during other ICTSIB conditions. Lower IVF sensitivity also was associated with greater RMS sway during feet together standing balance testing (0.10 z-score units/5 dB IVF sensitivity decrement, P = 0.049), but not during other standing balance conditions. Visual dependence of balance was lower in patients with worse IVF sensitivity (β = −21%/5 dB IVF sensitivity decrement, P < 0.001). Neither superior nor inferior IVF sensitivity consistently predicted balance measures better than measures of overall VF sensitivity. Conclusions Balance was worse in glaucoma patients with greater VF damage under foam surface testing (designed to inhibit proprioceptive contributions to balance) as well as feet-together firm-surface conditions when somatosensory inputs were available. Translational Relevance Good balance is essential to avoid unnecessary falls and patients with VF loss from glaucoma may be at higher risk of falls because of poor balance. PMID:28553562
Optimised process for fabricating tapered long period gratings
NASA Astrophysics Data System (ADS)
Mullaney, K.; Staines, S. E.; James, S. W.; Tatam, R. P.
2017-04-01
The process of fabricating tapered long period gratings (TLPGs) using a CO2 laser is described. TLPGs with a period spacing of 378 μm, were fabricated by optimization of the taper waist diameter and careful control of the duty-cycle and its uniformity along the length of the grating. The 6-period TLPGs exhibited a pass-band insertion loss of 0.6 dB, resonance band extinction values of 3 dB and had a physical length of 2.27 mm.
Project: Micromachined High-Frequency Circuits For Sub-mm-wave Sensors
NASA Technical Reports Server (NTRS)
Papapolymerou, Ioannis John
2004-01-01
A novel micromachined resonator at 45 GHz based on a defect in a periodic electromagnetic bandgap structure (EBG) and a two-pole Tchebysbev filter with 1.4% 0.15 dB equiripple bandwidth and 2.3 dB loss employing this resonator are presented in this letter. The periodic bandgap structure is realized on a 400 micron thick high-resistivity silicon wafer using deep reactive ion etching techniques. The resonator and filter can be accessed via coplanar waveguide feeds.
A two-in-one Faraday rotator mirror exempt of active optical alignment.
Wan, Qiong; Wan, Zhujun; Liu, Hai; Liu, Deming
2014-02-10
A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46 dB/0.50 dB for the two independent ports, respectively.
NASA Astrophysics Data System (ADS)
Sharma, Tarun Kumar; Ranganath, Praveen; Nambiar, Siddharth; Selvaraja, Shankar Kumar
2018-03-01
A horizontally asymmetric transverse magnetic (TM) pass polarizer is presented. The device passes only TM mode and rejects transverse electric (TE) mode. The proposed device has an asymmetricity in the horizontal direction comprising a direction coupler region with a silicon waveguide, silicon nitride waveguide, and an air gap, all residing on silica. Between three equal width Si waveguides, we have one region filled with air and the other with SiN with unequal optimized widths. The device with its optimal dimensions yields an extremely low insertion loss (IL) of 0.16 dB for TM→TM, while TE is rejected by an IL of >48 dB. The proposed polarizer is operated between C&L bands with a high extinction ratio and broadband width of about 110 nm.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.; Tanaka, K.
1985-01-01
Wear experiments and electron microscopy and diffraction studies were conducted to examine the wear and deformed layers in single-crystal Mn-Zn (ceramic) ferrite magnetic head material in contact with magnetic tape and the effects of that contact on magnetic properties. The crystalline state of the single-crystal magnetic head was changed drastically during the sliding process. A nearly amorphous structure was produced on its wear surface. Deformation in the surficial layer of the magnetic head was a critical factor in readback signal loss above 2.5 dB. The signal output level was reduced as applied normal load was increased. Considerable plastic flow occurred on the magnetic tape surface with sliding, and the signal loss due to the tape wear was approximately 1 dB.
Huang, Zhe; Parrott, Edward P J; Park, Hongkyu; Chan, Hau Ping; Pickwell-MacPherson, Emma
2014-02-15
A thin-film terahertz polarizer is proposed and realized via a tunable bilayer metal wire-grid structure to achieve high extinction ratios and good transmission. The polarizer is fabricated on top of a thin silica layer by standard micro-fabrication techniques to eliminate the multireflection effects. The tunable alignment of the bilayer aluminum-wire grid structure enables tailoring of the extinction ratio and transmission characteristics. Using terahertz time-domain spectroscopy (THz-TDS), a fabricated polarizer is characterized, with extinction ratios greater than 50 dB and transmission losses below 1 dB reported in the 0.2-1.1 THz frequency range. These characteristics can be improved by further tuning the polarizer parameters such as the pitch, metal film thickness, and lateral displacement.
Sun, Xiao; Aitchison, J Stewart; Mojahedi, Mo
2017-04-03
We have experimentally demonstrated a compact polarization beam splitter (PBS) based on the silicon nitride/silicon-on-insulator platform using the recently proposed augmented-low-index-guiding (ALIG) waveguide structure. The two orthogonal polarizations are split in an asymmetric multimode interference (MMI) section, which was 1.6 μm wide and 4.8 μm long. The device works well over the entire C-band wavelength range and has a measured low insertion loss of less than 1 dB. The polarization extinction ratio at the Bar Port is approximately 17 dB and at the Cross Port is approximately 25 dB. The design of the device is robust and has a good fabrication tolerance.
Switchable multi-wavelength fiber laser based on modal interference
NASA Astrophysics Data System (ADS)
Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng
2015-08-01
A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.
NASA Astrophysics Data System (ADS)
Satake, Toshiaki; Nagasawa, Shinji; Hughes, Mike; Lutz, Sharon
2011-01-01
The electrical communication laboratory of NTT started the research of MT (Mechanically Transferable) connector in early 1980s. The initial goal was to realize a multi-fiber connector which can repeat low loss, stable, reliable and low-cost connections of subscriber optical fiber cable networks for more than 20 years period in the field. We review the multi-fiber alignment design with two guide pins, and following several technical improvements toward the final MT connector used in the commercial telecommunication networks. And then, we review development histories to reach to the low-loss, high-return-loss and reliable APC-MPO (Angled Physical Contact Multi-fiber Push On) connectors introduced in NTT COs and in Verizon's FTTH (Fiber To The Home) networks. In the latter half, we propose the low-loss intermateability design for connectors made by different suppliers in order to enable mass introductions into large scale systems. In addition we also describe an accurate connector loss presumption method for different lots' ferrules based on the MT ferrule dimension data before assembling the connectors. We believe with a wide intermateability of APC-MPO connector will increase its use in the fields. The APC-MPO connector manufactured based on the proposed design had low insertion losses of less than 0.25 dB at the same level of simplex connectors and the higher level of return losses higher than 65 dB.
The Deposition of Electro-Optic Films on Semiconductors
1993-10-08
Electro - optic properties of KNbO3 films on MgO are found to be similar to bulk, although the scattering losses are very high for these films. In comparison KNbO3 films grown on KTaO3 exhibit low losses of less than 8 dB, while losses for films on spinel showed to be in between those two. The variety of substrates provide us with differences in lattice mismatch, refractive index mismatch, surface morphologies, and microstructure, all of which influence loss
NASA Astrophysics Data System (ADS)
Zuoming, Sun; Ningfang, Song; Jing, Jin; Jingming, Song; Pan, Ma
2012-12-01
An efficient and simple method of fusion splicing of a Polarization-Maintaining Photonic Crystal Fiber (PM-PCF) and a conventional Polarization-Maintaining Fiber (PMF) with a low loss of 0.65 dB in experiment is reported. The minimum bending diameter of the joint can reach 2 cm. Theoretical calculation of the splicing loss based on mode field diameters (MFDs) mismatch of the two kinds of fibers is given. All parameters affected the splicing loss were studied.
Hearing in Paget's disease of bone.
Amilibia Cabeza, Emilio; Holgado Pérez, Susana; Pérez Grau, Marta; Moragues Pastor, Carme; Roca-Ribas Serdà, Francesc; Quer Agustí, Miquel
2018-06-04
Paget's disease of bone (PDB) may lead to hearing loss. The present study was conducted with the aim of measuring, characterizing and determining the risk factors for hearing loss in a group of subjects with PDB. An observational, transversal, case-control study was conducted, a cohort of 76 subjects diagnosed with PDB in the case group and a control group of 134 subjects were included. Clinical, demographic and audiometric data were analysed. The comparative analysis between the subjects in the PDB group and the control group found that the case group showed higher hearing thresholds (39,51dB) compared with the control group (37.28dB) (P=.069) and presented a greater rate of conductive hearing loss (22.76%) than the control group (12.05%) (P=.0062). The study of risk factors for hearing loss found that skull involvement in bone scintigraphy, age and high blood pressure were risk factors for higher impairment in PDB. The subjects with PDB showed more profound and a higher proportion of conductive hearing loss than the control group. The patients with PDB and skull involvement presented a more severe hearing loss compared with the subjects without skull involvement. Skull involvement and age were found to be risk factors for hearing loss. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide.
Chang, Ken-Wei; Huang, Chia-Chien
2016-01-20
We propose an ultracompact broadband polarization beam splitter (PBS) based on a combined hybrid plasmonic waveguide (HPW). The proposed PBS separates transverse-electric (TE) and transverse-magnetic (TM) modes using a bent lower HPW with vertical nanoscale gaps and a straight upper HPW with a horizontal nanoscale gap, respectively, without relying on an additional coupling region. This design considerably reduces the length of the PBS to the submicron scale (920 nm, the shortest PBS reported to date) while offering polarization extinction ratios (PERs) of ~19 dB (~18 dB) and insertion losses (ILs) of ~0.6 dB (~0.3 dB) for the TE (TM) mode over an extremely broad band of 400 nm (from λ = 1300 nm to 1700 nm, covering entirely second and third telecom windows). The length of the designed PBS can be reduced further to 620 nm while still offering PERs of 15 dB, realizing a densely photonic integrated circuit. Considering the fabrication tolerance, the designed PBS allows for large geometrical deviations of ± 20 nm while restricting PER variations to within 1 dB, except for those in the nanoscale gaps smaller than 10nm. Additionally, we also address the input and ouput coupling efficiencies of the proposed PBS.
Hearing Loss in Stranded Odontocete Dolphins and Whales
Mann, David; Hill-Cook, Mandy; Manire, Charles; Greenhow, Danielle; Montie, Eric; Powell, Jessica; Wells, Randall; Bauer, Gordon; Cunningham-Smith, Petra; Lingenfelser, Robert; DiGiovanni, Robert; Stone, Abigale; Brodsky, Micah; Stevens, Robert; Kieffer, George; Hoetjes, Paul
2010-01-01
The causes of dolphin and whale stranding can often be difficult to determine. Because toothed whales rely on echolocation for orientation and feeding, hearing deficits could lead to stranding. We report on the results of auditory evoked potential measurements from eight species of odontocete cetaceans that were found stranded or severely entangled in fishing gear during the period 2004 through 2009. Approximately 57% of the bottlenose dolphins and 36% of the rough-toothed dolphins had significant hearing deficits with a reduction in sensitivity equivalent to severe (70–90 dB) or profound (>90 dB) hearing loss in humans. The only stranded short-finned pilot whale examined had profound hearing loss. No impairments were detected in seven Risso's dolphins from three different stranding events, two pygmy killer whales, one Atlantic spotted dolphin, one spinner dolphin, or a juvenile Gervais' beaked whale. Hearing impairment could play a significant role in some cetacean stranding events, and the hearing of all cetaceans in rehabilitation should be tested. PMID:21072206
NASA Astrophysics Data System (ADS)
Kumar, Sushil; Datt, Gopal; Santhosh Kumar, A.; Abhyankar, A. C.
2016-10-01
Flexible microwave absorber composite films of carbon black (CB)/barium hexaferrite nano-discs (BaF) in polyvinyl alcohol (PVA) matrix, fabricated by gel casting, exhibit ˜99.5% attenuation of electromagnetic waves in the entire 8-18 GHz (X and Ku-band) range. The X-ray diffraction and Raman spectroscopy studies confirm the formation of CB-BaF-PVA composite films. The electromagnetic absorption properties of composite films are found to be enhanced with CB content due to the synergetic effect of multiple dielectric and magnetic losses. The 25 wt. % CB grafted PVA-BaF flexible composite films with a thickness of ˜ 2 mm exhibit effective electromagnetic shielding of 23.6 dB with a dominant contribution from absorption mechanism (SEA ˜ 21 dB). The dielectric properties of composite films are further discussed by using the Debye model. The detailed analysis reveals that major contribution to dielectric losses is from dipolar and interfacial polarizations, whereas magnetic losses are predominantly from domain wall displacement.
Falls risk and hospitalization among retired workers with occupational noise-induced hearing loss.
Girard, Serge André; Leroux, Tony; Verreault, René; Courteau, Marilène; Picard, Michel; Turcotte, Fernand; Baril, Julie
2014-03-01
This study sought to ascertain whether occupational noise-induced hearing loss (NIHL) increased the risk of falls requiring hospitalization among retired workers. The study population consisted of males (age ≥ 65) with an average occupational noise exposure of 30.6 years and whose mean bilateral hearing loss was 42.2 dB HL at 3, 4, and 6 kHz. Seventy-two retired workers admitted to hospitals after a fall were matched with 216 controls from the same industrial sectors. Conditional logistic regression models were used to estimate the risk (odds ratio; [OR]) of falls leading to hospitalization by NIHL categories. Results showed a relationship between severe NIHL (≥ 52.5 dB HL) and the occurrence of a fall (OR: 1.97, CI95%: 1.001-3.876). Reducing falls among seniors fosters the maintenance of their autonomy. There is a definite need to acquire knowledge about harmful effects of occupational noise to support the prevention of NIHL and ensure healthier workplaces.
Pawlaczyk-Łuszczyńska, Małgorzata; Dudarewicz, Adam; Zamojska, Małgorzata; Sliwinska-Kowalska, Mariola
2012-01-01
Noise measurements and questionnaire inquiries were carried out for 124 workers of a rolling stock plant to develop a hearing conservation program. On the basis of that data, the risk of noise-induced hearing loss (NIHL) was evaluated. Additionally, the workers' hearing ability was assessed with the (modified) Amsterdam inventory for auditory disability and handicap, (m)AIADH. The workers had been exposed to noise at A-weighted daily noise exposure levels of 74-110 dB for 1-40 years. Almost one third of the workers complained of hearing impairment and the (m)AIADH results showed some hearing difficulties in over half of them. The estimated risk of hearing loss over 25 dB in the frequency range of 3-6 kHz was 41-50% when the standard method of predicting NIHL specified in Standard No. ISO 1999:1990 was used. This risk increased to 50-67% when noise impulsiveness, coexposure to organic solvents, elevated blood pressure and smoking were included in calculations.
Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides
Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing
2014-01-01
We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz. PMID:25415417
Hearing loss in stranded odontocete dolphins and whales.
Mann, David; Hill-Cook, Mandy; Manire, Charles; Greenhow, Danielle; Montie, Eric; Powell, Jessica; Wells, Randall; Bauer, Gordon; Cunningham-Smith, Petra; Lingenfelser, Robert; DiGiovanni, Robert; Stone, Abigale; Brodsky, Micah; Stevens, Robert; Kieffer, George; Hoetjes, Paul
2010-11-03
The causes of dolphin and whale stranding can often be difficult to determine. Because toothed whales rely on echolocation for orientation and feeding, hearing deficits could lead to stranding. We report on the results of auditory evoked potential measurements from eight species of odontocete cetaceans that were found stranded or severely entangled in fishing gear during the period 2004 through 2009. Approximately 57% of the bottlenose dolphins and 36% of the rough-toothed dolphins had significant hearing deficits with a reduction in sensitivity equivalent to severe (70-90 dB) or profound (>90 dB) hearing loss in humans. The only stranded short-finned pilot whale examined had profound hearing loss. No impairments were detected in seven Risso's dolphins from three different stranding events, two pygmy killer whales, one Atlantic spotted dolphin, one spinner dolphin, or a juvenile Gervais' beaked whale. Hearing impairment could play a significant role in some cetacean stranding events, and the hearing of all cetaceans in rehabilitation should be tested.
Highly compact circulators in square-lattice photonic crystal waveguides.
Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing
2014-01-01
We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz.
NASA Astrophysics Data System (ADS)
Shimizu, Hiromasa; Shimodaira, Takahiro
2018-04-01
We report on magnetoplasmonic Si waveguides with a ferromagnetic Fe/conductive metal Au multilayer for realizing a sizable magnetooptic effect with a low propagation loss for integrated optical isolators. By combining the ferromagnetic metal Fe with a highly conductive Au layer, the largest nonreciprocal differences in effective index were estimated for propagation lengths of 1-20 µm. Mode analysis with and without a Au layer clarified that the insertion of a Au layer on an Fe layer improves the optical confinement in the Fe layer with reduced propagation loss and is effective in enlarging the magnetooptic effect for the same propagation length. On the basis of the optimized Fe/Au multilayer structure, we designed waveguide optical isolators based on nonreciprocal coupling by the finite difference time domain (FDTD) method. We estimated an optical isolation of 10.8 dB with a forward insertion loss of 13.4 dB in a 34-µm-long nonreciprocal directional coupler.
Design and Analysis of a Micromachined LC Low Pass Filter For 2.4GHz Application
NASA Astrophysics Data System (ADS)
Saroj, Samruddhi R.; Rathee, Vishal R.; Pande, Rajesh S.
2018-02-01
This paper reports design and analysis of a passive low pass filter with cut-off frequency of 2.4 GHz using MEMS (Micro Electro-Mechanical Systems) technology. The passive components such as suspended spiral inductors and metal-insulator-metal (MIM) capacitor are arranged in T network form to implement LC low pass filter design. This design employs a simple approach of suspension thereby reducing parasitic losses to eliminate the performance degrading effects caused by integrating an off-chip inductor in the filter circuit proposed to be developed on a low cost silicon substrate using RF-MEMS components. The filter occupies only 2.1 mm x 0.66 mm die area and is designed using micro-strip transmission line placed on a silicon substrate. The design is implemented in High Frequency Structural Simulator (HFSS) software and fabrication flow is proposed for its implementation. The simulated results show that the design has an insertion loss of -4.98 dB and return loss of -2.60dB.
ERIC Educational Resources Information Center
Ferguson, Sarah Hargus
2012-01-01
Purpose: To establish the range of talker variability for vowel intelligibility in clear versus conversational speech for older adults with hearing loss and to determine whether talkers who produced a clear speech benefit for young listeners with normal hearing also did so for older adults with hearing loss. Method: Clear and conversational vowels…
Zhang, Yan; Li, Xiao-Li; Sha, Nan-Nan; Shu, Bing; Zhao, Yong-Jian; Wang, Xin-Luan; Xiao, Hui-Hui; Shi, Qi; Wong, Man-Sau; Wang, Yong-Jun
2017-04-01
The components of renin-angiotensin system (RAS) are expressed in the kidney and bone. Kidney disease and bone injury are common complications associated with diabetes. This study aimed to investigate the effects of an angiotensin-converting enzyme inhibitor, captopril, on the kidney and bone of db/db mice. The db/db mice were orally administered by gavage with captopril for 8weeks with db/+ mice as the non-diabetic control. Serum and urine biochemistries were determined by standard colorimetric methods or ELISA. Histological measurements were performed on the kidney by periodic acid-schiff staining and on the tibial proximal metaphysis by safranin O and masson-trichrome staining. Trabecular bone mass and bone quality were analyzed by microcomputed tomography. Quantitative polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. Captopril significantly improved albuminuria and glomerulosclerosis in db/db mice, and these effects might be attributed to the down-regulation of angiotensin II expression and the expression of its down-stream profibrotic factors in the kidney, like connective tissue growth factor and vascular endothelial growth factor. Urinary excretion of calcium and phosphorus markedly increased in db/db mice in response to captopril. Treatment with captopril induced a decrease in bone mineral density and deterioration of trabecular bone at proximal metaphysis of tibia in db/db mice, as shown in the histological and reconstructed 3-dimensional images. Even though captopril effectively reversed the diabetes-induced changes in calcium-binding protein 28-k and vitamin D receptor expression in the kidney as well as the expression of RAS components and bradykinin receptor-2 in bone tissue, treatment with captopril increased the osteoclast-covered bone surface, reduced the osteoblast-covered bone surface, down-regulated the expression of type 1 collagen and transcription factor runt-related transcription factor 2 (markers for osteoblastic functions), and up-regulated the expression of carbonic anhydrase II (marker for bone resorption). Captopril exerted therapeutic effects on renal injuries associated with type 2 diabetes but worsened the deteriorations of trabecular bone in db/db mice; the latter of which was at least in part due to the stimulation of osteoclastogenesis and the suppression of osteogenesis by captopril. Copyright © 2017 Elsevier Inc. All rights reserved.
Dailey, James M; Power, Mark J; Webb, Roderick P; Manning, Robert J
2011-12-19
We report on the novel all-optical generation of duobinary (DB) and alternate-mark-inversion (AMI) modulation formats at 42.6 Gb/s from an input on-off keyed signal. The modulation converter consists of two semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer gates. A detailed SOA model numerically confirms the operational principles and experimental data shows successful AMI and DB conversion at 42.6 Gb/s. We also predict that the operational bandwidth can be extended beyond 40 Gb/s by utilizing a new pattern-effect suppression scheme, and demonstrate dramatic reductions in patterning up to 160 Gb/s. We show an increasing trade-off between pattern-effect reduction and mean output power with increasing bitrate.
The 30 GHz communications satellite low noise receiver
NASA Technical Reports Server (NTRS)
Steffek, L. J.; Smith, D. W.
1983-01-01
A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh
2006-05-01
Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.
Otoacoustic Emissions in an Adult with Severe Hearing Loss.
ERIC Educational Resources Information Center
Prieve, Beth A.; And Others
1991-01-01
The paper describes the unexpected finding of evoked otoacoustic emissions from one ear of a subject with severe-to-profound bilateral sensorineural hearing loss. It is suggested that the subject may have a group of surviving outer hair cells in some regions of the left cochlea with corresponding inner hair cell or neural damage. (Author/DB)
Zhao, Hui; Matsuzaka, Takashi; Nakano, Yuta; Motomura, Kaori; Tang, Nie; Yokoo, Tomotaka; Okajima, Yuka; Han, Song-Iee; Takeuchi, Yoshinori; Aita, Yuichi; Iwasaki, Hitoshi; Yatoh, Shigeru; Suzuki, Hiroaki; Sekiya, Motohiro; Yahagi, Naoya; Nakagawa, Yoshimi; Sone, Hirohito; Yamada, Nobuhiro; Shimano, Hitoshi
2017-07-01
Dysfunctional fatty acid (FA) metabolism plays an important role in the pathogenesis of β-cell dysfunction and loss of β-cell mass in type 2 diabetes (T2D). Elovl6 is a microsomal enzyme that is responsible for converting C16 saturated and monounsaturated FAs into C18 species. We previously showed that Elovl6 played a critical role in the development of obesity-induced insulin resistance by modifying FA composition. To further define its role in T2D development, we assessed the effects of Elovl6 deletion in leptin receptor-deficient C57BL/KsJ db / db mice, a model of T2D. The db / db ; Elovl6 -/- mice had a markedly increased β-cell mass with increased proliferation and decreased apoptosis, an adaptive increase in insulin, and improved glycemic control. db / db islets were characterized by a prominent elevation of oleate (C18:1n-9), cell stress, and inflammation, which was completely suppressed by Elovl6 deletion. As a mechanistic ex vivo experiment, isolated islets from Elovl6 -/- mice exhibited reduced susceptibility to palmitate-induced inflammation, endoplasmic reticulum stress, and β-cell apoptosis. In contrast, oleate-treated islets resulted in impaired glucose-stimulated insulin secretion with suppressed related genes irrespective of the Elovl6 gene. Taken together, Elovl6 is a fundamental factor linking dysregulated lipid metabolism to β-cell dysfunction, islet inflammation, and β-cell apoptosis in T2D, highlighting oleate as the potential culprit of β-cell lipotoxicity. © 2017 by the American Diabetes Association.
Tanaka, Tagayasu; Inaba, Ryoichi; Aoyama, Atsuhito
2016-01-01
Objectives: This study investigated the actual situation of noise and low-frequency sounds in firework events and their impact on pyrotechnicians. Methods: Data on firework noise and low-frequency sounds were obtained at a point located approximately 100 m away from the launch site of a firework display held in "A" City in 2013. We obtained the data by continuously measuring and analyzing the equivalent continuous sound level (Leq) and the one-third octave band of the noise and low-frequency sounds emanating from the major firework detonations, and predicted sound levels at the original launch site. Results: Sound levels of 100-115 dB and low-frequency sounds of 100-125 dB were observed at night. The maximum and mean Leq values were 97 and 95 dB, respectively. The launching noise level predicted from the sounds (85 dB) at the noise measurement point was 133 dB. Occupational exposure to noise for pyrotechnicians at the remote operation point (located 20-30 m away from the launch site) was estimated to be below 100 dB. Conclusions: Pyrotechnicians are exposed to very loud noise (>100 dB) at the launch point. We believe that it is necessary to implement measures such as fixing earplugs or earmuffs, posting a warning at the workplace, and executing a remote launching operation to prevent hearing loss caused by occupational exposure of pyrotechnicians to noise. It is predicted that both sound levels and low-frequency sounds would be reduced by approximately 35 dB at the remote operation site. PMID:27725489
Tanaka, Tagayasu; Inaba, Ryoichi; Aoyama, Atsuhito
2016-11-29
This study investigated the actual situation of noise and low-frequency sounds in firework events and their impact on pyrotechnicians. Data on firework noise and low-frequency sounds were obtained at a point located approximately 100 m away from the launch site of a firework display held in "A" City in 2013. We obtained the data by continuously measuring and analyzing the equivalent continuous sound level (Leq) and the one-third octave band of the noise and low-frequency sounds emanating from the major firework detonations, and predicted sound levels at the original launch site. Sound levels of 100-115 dB and low-frequency sounds of 100-125 dB were observed at night. The maximum and mean Leq values were 97 and 95 dB, respectively. The launching noise level predicted from the sounds (85 dB) at the noise measurement point was 133 dB. Occupational exposure to noise for pyrotechnicians at the remote operation point (located 20-30 m away from the launch site) was estimated to be below 100 dB. Pyrotechnicians are exposed to very loud noise (>100 dB) at the launch point. We believe that it is necessary to implement measures such as fixing earplugs or earmuffs, posting a warning at the workplace, and executing a remote launching operation to prevent hearing loss caused by occupational exposure of pyrotechnicians to noise. It is predicted that both sound levels and low-frequency sounds would be reduced by approximately 35 dB at the remote operation site.
NASA Astrophysics Data System (ADS)
Chang, Daniel H.
The development of high speed polymer electro-optic modulators has seen steady and significant progress in recent years, enabling novel applications in RF-Photonics. Two of these are described in this Thesis: an Opto-Electronic Oscillator (OEO), which is a hybrid RF and optical oscillator capable of high spectral purity, and Photonic Time-Stretch, which is a signal processing technique for waveform spectral shifting with application to photonically-assisted A/D conversion. In both cases, the operating frequencies achieved have been the highest demonstrated to date. Application of this promising material to more complicated devices, however, is stymied by insertion loss performance. Current loss figures, while acceptable for single modulators, are too high for large arrays of modulators or intrinsically long devices such as AWGs or photonic-RF phase shifters. This is especially frustrating in light of a key virtue which polymers possess as a photonic material: its photolithographic process-ability makes patterning complex devices possible. Indeed, the current ascendancy of silica-based waveguide devices can be attributed largely to the same reason. In this Thesis, we also demonstrate the first hybrid device composed of silica planar lightwave circuits (PLCs) and polymer planar waveguides. Our approach utilizes grayscale lithography to enable vertical coupling between polymer and silica layers, minimizing entanglement of their respective fabrication processes. We have achieved coupling excess loss figures on the order of 1dB. We believe this is the natural next step in the development of electro-optic polymer devices. The two technologies are highly complementary. Silica PLCs, with excellent propagation loss and fiber coupling, are ideally suited for long passive waveguiding. By endowing them with the high-speed phase shifting capability offered by polymers, active wideband photonic devices of increasing complexity and array size can be contemplated.
A Method for Assessing Auditory Spatial Analysis in Reverberant Multitalker Environments.
Weller, Tobias; Best, Virginia; Buchholz, Jörg M; Young, Taegan
2016-07-01
Deficits in spatial hearing can have a negative impact on listeners' ability to orient in their environment and follow conversations in noisy backgrounds and may exacerbate the experience of hearing loss as a handicap. However, there are no good tools available for reliably capturing the spatial hearing abilities of listeners in complex acoustic environments containing multiple sounds of interest. The purpose of this study was to explore a new method to measure auditory spatial analysis in a reverberant multitalker scenario. This study was a descriptive case control study. Ten listeners with normal hearing (NH) aged 20-31 yr and 16 listeners with hearing impairment (HI) aged 52-85 yr participated in the study. The latter group had symmetrical sensorineural hearing losses with a four-frequency average hearing loss of 29.7 dB HL. A large reverberant room was simulated using a loudspeaker array in an anechoic chamber. In this simulated room, 96 scenes comprising between one and six concurrent talkers at different locations were generated. Listeners were presented with 45-sec samples of each scene, and were required to count, locate, and identify the gender of all talkers, using a graphical user interface on an iPad. Performance was evaluated in terms of correctly counting the sources and accuracy in localizing their direction. Listeners with NH were able to reliably analyze scenes with up to four simultaneous talkers, while most listeners with hearing loss demonstrated errors even with two talkers at a time. Localization performance decreased in both groups with increasing number of talkers and was significantly poorer in listeners with HI. Overall performance was significantly correlated with hearing loss. This new method appears to be useful for estimating spatial abilities in realistic multitalker scenes. The method is sensitive to the number of sources in the scene, and to effects of sensorineural hearing loss. Further work will be needed to compare this method to more traditional single-source localization tests. American Academy of Audiology.
Guri, Amir J; Hontecillas, Raquel; Ferrer, Gerardo; Casagran, Oriol; Wankhade, Umesh; Noble, Alexis M; Eizirik, Decio L; Ortis, Fernanda; Cnop, Miriam; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep
2008-04-01
Abscisic acid (ABA) is a natural phytohormone and peroxisome proliferator-activated receptor gamma (PPARgamma) agonist that significantly improves insulin sensitivity in db/db mice. Although it has become clear that obesity is associated with macrophage infiltration into white adipose tissue (WAT), the phenotype of adipose tissue macrophages (ATMs) and the mechanisms by which insulin-sensitizing compounds modulate their infiltration remain unknown. We used a loss-of-function approach to investigate whether ABA ameliorates insulin resistance through a mechanism dependent on immune cell PPARgamma. We characterized two phenotypically distinct ATM subsets in db/db mice based on their surface expression of F4/80. F4/80(hi) ATMs were more abundant and expressed greater concentrations of chemokine receptor (CCR) 2 and CCR5 when compared to F4/80(lo) ATMs. ABA significantly decreased CCR2(+) F4/80(hi) infiltration into WAT and suppressed monocyte chemoattractant protein-1 (MCP-1) expression in WAT and plasma. Furthermore, the deficiency of PPARgamma in immune cells, including macrophages, impaired the ability of ABA to suppress the infiltration of F4/80(hi) ATMs into WAT, to repress WAT MCP-1 expression and to improve glucose tolerance. We provide molecular evidence in vivo demonstrating that ABA improves insulin sensitivity and obesity-related inflammation by inhibiting MCP-1 expression and F4/80(hi) ATM infiltration through a PPARgamma-dependent mechanism.
Kikidis, Dimitrios; Nikolopoulos, Thomas P; Kampessis, Georgios; Stamatiou, Georgios; Chrysovergis, Aristeidis
2011-01-01
To explore in a prospective study the evidence of certain viral and toxoplasmosis infections in sudden sensorineural hearing loss (SSHL). 84 consecutive patients with SSHL meeting certain criteria. All patients were assessed for specific IgM antibodies against cytomegalovirus, herpes simplex virus, toxoplasma and Epstein-Barr virus. All were treated with intravenous steroids and assigned to two groups: 76 IgM negative (NV group) and 8 IgM positive (no history of acute infection - V group). The mean hearing level at presentation was 86.5 dB HL (median, 100) in the V group and 60.7 dB HL (median, 61) in the NV group. The difference was statistically significant (p = 0.003). The mean hearing level following treatment was 81.8 dB HL (median, 88) in the V group and 48.7 dB HL (median, 39) in the NV group. The difference was statistically significant (p = 0.004). There was a considerable improvement in hearing after treatment only in the NV group (p < 0.000001). Recent subclinical viral or toxoplasmosis infections may be involved in the pathogenesis of SSHL (in approx. 10% of cases), suggesting that SSHL is not a single disease. When certain viruses or toxoplasmoses are involved, the hearing is much worse in comparison to patients with no such indication of infection. An alteration in treatment dosage or method of steroid administration may be needed in such cases. Copyright © 2011 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Mun, Jae-Kyoung; Oh, Jung-Hun; Sung, Ho-Kun; Wang, Cong
2015-12-01
The effects of the doping concentration ratios between upper and lower silicon planar-doping layers on the DC and RF characteristics of the double planar doped pseudomorphic high electron mobility transistors (pHEMTs) are investigated. From the device simulation, an increase of maximum extrinsic transconductance and a decrease of total on- and off-state capacitances are observed, as well as an increase of the upper to lower planar-doping concentration ratios (UTLPDR), which give rise to an enhancement of the switching speed and isolation characteristics. On the basis of simulation results, two types of pHEMTs are fabricated with two different UTLPDRs of 4:1 and 1:2. After applying these two types' pHEMTs, single-pole-double-throw (SPDT) transmitter/receiver monolithic microwave integrated circuit (MMIC) switches are also designed and fabricated. The SPDT MMIC switch with a 4:1 UTLPDR shows an insertion loss of 0.58 dB, isolation of 40.2 dB, and switching speed of 100 ns, respectively, which correspondingly indicate a 0.23 dB lower insertion loss, 2.90 dB higher isolation and 2.5 times faster switching speed than those of 1:2 UTLPDR at frequency range of 2-6 GHz. From the simulation results and comparative studies, we propose that the UTLPDR must be greater than 4:1 for the best switching performance. With the abovementioned excellent performances, the proposed switch would be quite promising in the application of information and communications technology system.
[Magnetic resonance imaging study and cochlear implantation in post-meningitic deaf patients].
Liu, Xiuli; Yao, Yiwen; He, Guili; Zhai, Lijie
2004-07-01
To investigate the clinical application of magnetic resonance imaging (MRI) in post-meningitic patients and its impact on surgical decision. The pre-operative MRI data and auditory brainstem response (ABR) examination of five post-meningitic patients were studied. They were implanted with cochleas. The interval between the onset of bacterial meningitis and the hearing loss was (15.8 +/- 15.0)d and it was longer in children than adults. Five ears showed membranous cochlear labyrinth abnormality; 3 ears had vestibule vestibule abnormality; 8 ears demonstrated semicircular canal abnormality on MRI examinations in totally 10 ears. The mean hearing threshold of 10 ears was (102.0 +/- 7.1)dB HL,that of the operated ears was (98.0 +/- 5.7)dB HL and that of the un-operated ears was (106.0 +/- 6.5)dB HL. It was (15.8 +/- 15.0)d from the bacterial meningitis onset to hearing loss. The interval is longer in children than adults. There were 3 ears that electrodes could not be inserted completely. The bacterial meningitis may cause the abnormalities of inner ears and the MRI before surgery is essential for the pre-operative planning of cochlear implant.
Intra-body microwave communication through adipose tissue.
Asan, Noor Badariah; Noreland, Daniel; Hassan, Emadeldeen; Redzwan Mohd Shah, Syaiful; Rydberg, Anders; Blokhuis, Taco J; Carlsson, Per-Ola; Voigt, Thiemo; Augustine, Robin
2017-08-01
The human body can act as a medium for the transmission of electromagnetic waves in the wireless body sensor networks context. However, there are transmission losses in biological tissues due to the presence of water and salts. This Letter focuses on lateral intra-body microwave communication through different biological tissue layers and demonstrates the effect of the tissue thicknesses by comparing signal coupling in the channel. For this work, the authors utilise the R-band frequencies since it overlaps the industrial, scientific and medical radio (ISM) band. The channel model in human tissues is proposed based on electromagnetic simulations, validated using equivalent phantom and ex-vivo measurements. The phantom and ex-vivo measurements are compared with simulation modelling. The results show that electromagnetic communication is feasible in the adipose tissue layer with a low attenuation of ∼2 dB per 20 mm for phantom measurements and 4 dB per 20 mm for ex-vivo measurements at 2 GHz. Since the dielectric losses of human adipose tissues are almost half of ex-vivo tissue, an attenuation of around 3 dB per 20 mm is expected. The results show that human adipose tissue can be used as an intra-body communication channel.
Compact low crosstalk 1x2 wavelength selective switch architectures
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun; Chaitavon, Khunat
2005-02-01
Thin film filter (TF)-based 1x2 wavelength selective switch (WSS) architectures are introduced. Our key idea is to locate a movable mirror orientated at a desired angle close to the TF to switch the desired wavelength optical beams to the wanted switch ports. Our first proposed WSS is in the transmissive mode where the surfaces of the TF and the movable mirror are parallel to each other and it provides a moderate optical isolation. Another WSS structure is in reflective configuration in which the movable mirror is tilted with respect to the surface of the TF and when combined with the optical circulator leads to a very low optical coherent crosstalk. Our experiment using a commercially available TF and a movable mirror shows that our transmissive-mode WSS provides a -18.87 dB optical coherent crosstalk while a much improved < -53 dB optical coherent crosstalk can be obtained between the two switching ports in our reflective-mode WSS structure. Our reflective 1x2 WSS also gives a higher optical loss due to the use of an optical circulator. Low polarization dependent loss of < 0.1 dB is determined for both WSS structures.
Design of High Performance Microstrip LPF with Analytical Transfer Function
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mohammad Hadi; Raziani, Saeed; Falihi, Ali
2017-12-01
By exploiting butterfly and T-shaped resonators, a new design of microstrip lowpass filter (LPF) is proposed and analyzed. The LPF is investigated in four sections. Analyzing initial resonator and its equation in detail, providing a sharp skirt by using series configuration, suppressing in middle frequencies and suppressing in high frequencies are focused in each section, respectively. To present a theoretical design, LC equivalent circuit and transfer function are precisely calculated. The measured insertion loss of the LPF is less that 0.4 dB in frequency range from DC up to 1.25 GHz, and the return loss is better than 16 dB. A narrow transition band of 217 MHz and a roll-off rate of 170.5 dB /GHz are indicative of a sharp skirt. By utilizing T-shaped and modified T-shaped resonators in the third and fourth sections, respectively, a relative stopband bandwidth (RSB) of 166 % is obtained. Furthermore, the proposed LPF occupies a small circuit of 0.116{λ _g} × 0.141{λ _g}, where {λ _g} is the guided wavelength at cut-off frequency (1.495 GHz). Finally, the proposed LPF is fabricated and the measured results agree well with the simulated ones.
Micromachined 1-3 composites for ultrasonic air transducers
NASA Astrophysics Data System (ADS)
Haller, M. I.; Khuri-Yakub, B. T.
1994-06-01
Airborne ultrasound has many applications, such as robotic sensing, NDE, and gas flow measurements. Coupling of ultrasound into air from plane piston piezoelectric transducers is inefficient because of the large impedance mismatch between the piezoelectric and air, and the lack of appropriate matching materials. Standard design practice requires the use of a matching layer material with an acoustic impedance of approximately 0.02 MRayls and a thickness of a quarter-wavelength. Such materials are not readily available. A method to manufacture low impedance materials using micromachining techniques for matching piezoelectrics into air are presented here. These materials are capped 1-3 composites of air and Kapton(R). The acoustic effect of the cap is significant and necessitates a modified design technique. This technique involves the use of two matching layers with inverted acoustic impedances. Using the new fabrication technology and the new design technique, an 860-kHz transducer was fabricated with a one-way insertion loss of 17 dB and a fractional 3 dB bandwidth of 6%. It is believed that, using this technology, a transducer with a one-way insertion loss of 10 dB and a fractional bandwidth of 10% is possible.
High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection
NASA Astrophysics Data System (ADS)
Zhang, Jiameng; Yang, Lan; Li, Linpeng; Zhang, Tong; Li, Haihong; Wang, Qingmin; Hao, Yanan; Lei, Ming; Bi, Ke
2017-07-01
An ultra-wideband polarization conversion metasurface based on S-shaped metallic structure is designed and prepared. The simulation results show that the polarization conversion bandwidth is 14 GHz for linearly polarized normally incident electromagnetic waves and the cross-polarized reflectance is more than 99% in the range of 10.3 GHz-20.5 GHz. On the premise of high reflection efficiency, the reflective phase can be regulated by changing the geometrical parameter of the S-shaped metallic structure. A phase gradient metasurface composed of six periodically arrayed S-shaped unit cells is proposed and further demonstrated both numerically and experimentally. The specular cross-polarization reflection of the phase gradient metasurface is below -10 dB, which shows a good performance on manipulating the direction of the reflected electromagnetic waves.
ERIC Educational Resources Information Center
Hicks, Wanda M.; Hicks, Doin E.
1981-01-01
The article examines educational programing implications for adolescents with Usher's syndrome, a condition of congenital deafness accompanied by progressive loss of vision through retinitis pigmentosa. (DB)
Mertens, Griet; De Bodt, Marc; Van de Heyning, Paul
Cochlear implantation (CI) in subjects with unilateral profound sensorineural hearing loss was investigated. The authors of the present study demonstrated the binaural auditory outcomes in a 12- and 36-month prospective cohort outcome study. The present study aimed to do a long-term (LT) evaluation of the auditory outcomes in an analogous study group. LT evaluation was derived from 12 single-sided deaf (SSD) CI recipients and from 11 CI recipients with asymmetric hearing loss (AHL). A structured interview was conducted with each subjects. Speech perception in noise and sound localization were assessed in a CIOFF and in a CION condition. Four binaural effects were calculated: summation effect (S0N0), squelch effect (S0NCI), combined head shadow effect (SCIN0), and spatial release from masking (SRM). At the LT evaluation, the contribution of a CI or a bone conduction device on speech perception in noise was investigated in two challenging spatial configurations in the SSD group. All (23/23) subjects wore their CI 7 days a week at LT follow-up evaluation, which ranged from 3 to 10 years after implantation. In the SSD group, a significant combined head shadow effect of 3.17 dB and an SRM benefit of 4.33 dB were found. In the AHL group, on the other hand, the summation effect (2.00 dB), the squelch effect (2.67 dB), the combined head shadow effect (3.67 dB), and SRM benefit (2.00 dB) were significant at LT testing. In both the spatial challenging configurations, the speech in noise results was significantly worse in the condition with the bone conduction device compared with the unaided condition. No negative effect was found for the CION condition. A significant benefit in the CION condition was found for sound localization compared with the CIOFF condition in the SSD group and in the AHL group. All subjects wore their CI 7 days a week at LT follow-up evaluation. The presence of binaural effects has been demonstrated with speech in noise testing, sound localization, and subjective evaluation. In the AHL group, all investigated binaural effects were found to be significant. In the SSD group on the other hand, only SRM and the head shadow, the two most robust binaural effects, were significantly present. However, it took 12M before the SSD and the AHL subjects significantly benefit from the head shadow effect. These reported results could guide counseling of future CI candidates with SSD and AHL in general.
Hoch, Stephan; Vomhof, Thomas; Teymoortash, Afshin
2015-03-01
Rupture of the round window membrane with consecutive development of a perilymphatic fistula (PLF) is still a matter of controversial debate in the pathogenesis of idiopathic sudden sensorineural hearing loss (SSHL). Until now no consensus exists about whether these patients benefit from performing an exploratory tympanotomy with sealing of the round window. The aim of the present study was to analyze critically the effectiveness of sealing the round window membrane in patients with SSHL. The clinical data of 51 patients with SSHL and a mean hearing decline of at least 60 dB over 5 frequencies who were treated with tympanotomy and sealing of the round window membrane were retrospectively analyzed. The results have been compared to the current state of the literature. Intraoperatively a round window membrane rupture or fluid leak was observed in none of the patients. After performing tympanotomy the mean improvement of hearing level was 32.7 dB. Twenty of 51 examined patients (39.2%) showed a mean improvement of the hearing level of more than 30 dB and a complete remission could be detected in 12 patients (23.5%). Reviewing the literature revealed no standard guidelines for definition or treatment of SSHL as well as for evaluation of hearing loss and its recovery. The results of the present study and the literature should be discussed critically. It is unclear whether tympanotomy and sealing of the round window membrane may be a meaningful treatment for SSHL. Therefore this procedure should be discussed as a therapeutic option only in selected patients with sudden deafness or profound hearing loss in which PLF is strongly suspicious or conservative treatment failed.
Novel spot size converter for coupling standard single mode fibers to SOI waveguides
NASA Astrophysics Data System (ADS)
Sisto, Marco Michele; Fisette, Bruno; Paultre, Jacques-Edmond; Paquet, Alex; Desroches, Yan
2016-03-01
We have designed and numerically simulated a novel spot size converter for coupling standard single mode fibers with 10.4μm mode field diameter to 500nm × 220nm SOI waveguides. Simulations based on the eigenmode expansion method show a coupling loss of 0.4dB at 1550nm for the TE mode at perfect alignment. The alignment tolerance on the plane normal to the fiber axis is evaluated at +/-2.2μm for <=1dB excess loss, which is comparable to the alignment tolerance between two butt-coupled standard single mode fibers. The converter is based on a cross-like arrangement of SiOxNy waveguides immersed in a 12μm-thick SiO2 cladding region deposited on top of the SOI chip. The waveguides are designed to collectively support a single degenerate mode for TE and TM polarizations. This guided mode features a large overlap to the LP01 mode of standard telecom fibers. Along the spot size converter length (450μm), the mode is first gradually confined in a single SiOxNy waveguide by tapering its width. Then, the mode is adiabatically coupled to a SOI waveguide underneath the structure through a SOI inverted taper. The shapes of SiOxNy and SOI tapers are optimized to minimize coupling loss and structure length, and to ensure adiabatic mode evolution along the structure, thus improving the design robustness to fabrication process errors. A tolerance analysis based on conservative microfabrication capabilities suggests that coupling loss penalty from fabrication errors can be maintained below 0.3dB. The proposed spot size converter is fully compliant to industry standard microfabrication processes available at INO.
Davidson, Lisa S; Skinner, Margaret W; Holstad, Beth A; Fears, Beverly T; Richter, Marie K; Matusofsky, Margaret; Brenner, Christine; Holden, Timothy; Birath, Amy; Kettel, Jerrica L; Scollie, Susan
2009-06-01
The purpose of this study was to examine the effects of a wider instantaneous input dynamic range (IIDR) setting on speech perception and comfort in quiet and noise for children wearing the Nucleus 24 implant system and the Freedom speech processor. In addition, children's ability to understand soft and conversational level speech in relation to aided sound-field thresholds was examined. Thirty children (age, 7 to 17 years) with the Nucleus 24 cochlear implant system and the Freedom speech processor with two different IIDR settings (30 versus 40 dB) were tested on the Consonant Nucleus Consonant (CNC) word test at 50 and 60 dB SPL, the Bamford-Kowal-Bench Speech in Noise Test, and a loudness rating task for four-talker speech noise. Aided thresholds for frequency-modulated tones, narrowband noise, and recorded Ling sounds were obtained with the two IIDRs and examined in relation to CNC scores at 50 dB SPL. Speech Intelligibility Indices were calculated using the long-term average speech spectrum of the CNC words at 50 dB SPL measured at each test site and aided thresholds. Group mean CNC scores at 50 dB SPL with the 40 IIDR were significantly higher (p < 0.001) than with the 30 IIDR. Group mean CNC scores at 60 dB SPL, loudness ratings, and the signal to noise ratios-50 for Bamford-Kowal-Bench Speech in Noise Test were not significantly different for the two IIDRs. Significantly improved aided thresholds at 250 to 6000 Hz as well as higher Speech Intelligibility Indices afforded improved audibility for speech presented at soft levels (50 dB SPL). These results indicate that an increased IIDR provides improved word recognition for soft levels of speech without compromising comfort of higher levels of speech sounds or sentence recognition in noise.
Design and characterization of microstrip based E-field sensor for GSM and UMTS frequency bands
NASA Astrophysics Data System (ADS)
Narang, N.; Dubey, S. K.; Negi, P. S.; Ojha, V. N.
2016-12-01
An Electric (E-) field sensor based on coplanar waveguide-fed microstrip antenna to measure E-field strength for dual-band operation at 914 MHz and 2.1 GHz is proposed, designed, and characterized. The parametric optimization of the design has been performed to obtain resonance at global system for mobile communication and universal mobile telecommunication system frequency band. Low return loss (-17 dB and -19 dB), appropriate gain (0.50 dB and 1.55 dB), and isotropic behaviour (directivity ˜ 1 dB), respectively, at 914 MHz and 2.1 GHz, are obtained for probing application. Antenna factor (AF) is used as an important parameter to characterize the performance of the E-field sensor. The AF measurement is explained in detail and results are reported. Finally, using the designed E-field sensor, the E-field strength measurements are carried out in a transverse electromagnetic cell. The key sources of uncertainties in the measurement are identified, evaluated, and incorporated into the final results. The measurement results are compared with theoretical values, which are found in good agreement. For comparative validation, the results are evaluated with reference to an already calibrated commercially available isotropic probe.
Design and characterization of microstrip based E-field sensor for GSM and UMTS frequency bands.
Narang, N; Dubey, S K; Negi, P S; Ojha, V N
2016-12-01
An Electric (E-) field sensor based on coplanar waveguide-fed microstrip antenna to measure E-field strength for dual-band operation at 914 MHz and 2.1 GHz is proposed, designed, and characterized. The parametric optimization of the design has been performed to obtain resonance at global system for mobile communication and universal mobile telecommunication system frequency band. Low return loss (-17 dB and -19 dB), appropriate gain (0.50 dB and 1.55 dB), and isotropic behaviour (directivity ∼ 1 dB), respectively, at 914 MHz and 2.1 GHz, are obtained for probing application. Antenna factor (AF) is used as an important parameter to characterize the performance of the E-field sensor. The AF measurement is explained in detail and results are reported. Finally, using the designed E-field sensor, the E-field strength measurements are carried out in a transverse electromagnetic cell. The key sources of uncertainties in the measurement are identified, evaluated, and incorporated into the final results. The measurement results are compared with theoretical values, which are found in good agreement. For comparative validation, the results are evaluated with reference to an already calibrated commercially available isotropic probe.
An intervention for noise control of blast furnace in steel industry.
Golmohammadi, Rostam; Giahi, Omid; Aliabadi, Mohsen; Darvishi, Ebrahim
2014-01-01
Noise pollution is currently a major health risk factor for workers in industries. The aim of this study was to investigate noise pollution and implement a control intervention plan for blast furnace in a steel industry. The measurement of sound pressure level (SPL) along with frequency analysis was done with the sound-level-meter Cell-450. Personal noise exposure was performed using dosimeter TES-1345 calibrated with CEL-282. Before planning noise controls, acoustic insulation properties of the furnace control unit and workers' rest room were assessed. Control room and workers' rest room were redesigned in order to improve acoustical condition. The SPL before intervention around the Blast Furnace was 90.3 dB (L) and its dominant frequency was 4000 Hz. Besides, noise transmission loss of the control and rest rooms were 10.3 dB and 4.2 dB, respectively. After intervention, noise reduction rates in the control and rest rooms were 27.4 dB and 27.7 dB, respectively. The workers' noise dose before and after the intervention was 240% and less than 100%, respectively. Improvement the workroom acoustic conditions through noise insulation can be considered effective method for preventing workers exposure to harmful noise.
Terra, Aqua, and Aura Direct Broadcast - Providing Earth Science Data for Realtime Applications
NASA Technical Reports Server (NTRS)
Kelly, Angelita C.; Coronado, Patrick L.; Case, Warren F.; Franklin, Ameilia
2010-01-01
The need for realtime data to aid in disaster management and monitoring has been clearly demonstrated for the past several years, e.g., during the tsunami in Indonesia in 2004, the hurricane Katrina in 2005, fires, etc. Users want (and often require) the means to get earth observation data for operational regional use as soon as they are generated by satellites. This is especially true for events that can cause loss of human life and/or property. To meet this need, NASA's Earth Observing System (EOS) satellites, Terra and Aqua, provide realtime data useful to disaster management teams. This paper describes the satellites, their Direct Broadcast (DB) capabilities, the data uses, what it takes to deploy a DB ground station, and the future of the DB.
Terahertz polarizing beam splitter based on copper grating on polyimide substrate
NASA Astrophysics Data System (ADS)
Zhang, Mengen; Li, Xiangjun; Wang, Wentao; Liu, Jianjun; Hong, Zhi
2012-12-01
A terahertz polarizing beam splitter, based on a copper grating on polyimide (PI) substrate, was fabricated by the way of laser induced and non-electrolytic plating. The good polarization characteristics of the splitter in the range of 0°-180°polarization are verified experimentally using backward wave oscillator at fixed frequency of 300GHz, and the insertion losses of 0.13dB and 0.32dB are measured for the transmitted and reflected beams, respectively. The broadband transmission of TM wave of the splitter was also measured by terahertz time-domain spectroscopy, and the extinction ratio larger than 22dB is obtained in the frequency range of 0.2-1.5THz. The experiment results are in good agreement with finite element simulation results.
Micro-machined high-frequency (80 MHz) PZT thick film linear arrays.
Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K
2010-10-01
This paper presents the development of a micromachined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT sol-gel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (-6 dB) of 60%. An insertion loss of -41 dB and adjacent element crosstalk of -21 dB were found at the center frequency.
Mohammad, Ahmad W; Shams, Haymen; Balakier, Katarzyna; Graham, Chris; Natrella, Michele; Seeds, Alwyn J; Renaud, Cyril C
2018-02-05
We report the first demonstration of a uni-traveling carrier photodiode (UTC-PD) used as a 5 Gbps wireless receiver. In this experiment, a 35.1 GHz carrier was electrically modulated with 5 Gbps non-return with zero on-off keying (NRZ-OOK) data and transmitted wirelessly over a distance of 1.3 m. At the receiver, a UTC-PD was used as an optically pumped mixer (OPM) to down-convert the received radio frequency (RF) signal to an intermediate frequency (IF) of 11.7 GHz, before it was down-converted to the baseband using an electronic mixer. The recovered data show a clear eye diagram, and a bit error rate (BER) of less than 10 -8 was measured. The conversion loss of the UTC-PD optoelectronic mixer has been measured at 22 dB. The frequency of the local oscillator (LO) used for the UTC-PD is defined by the frequency spacing between the two optical tones, which can be broadly tuneable offering the frequency agility of this photodiode-based receiver.
Di Lucente, S; Luo, J; Centelles, R Pueyo; Rohit, A; Zou, S; Williams, K A; Dorren, H J S; Calabretta, N
2013-01-14
Data centers have to sustain the rapid growth of data traffic due to the increasing demand of bandwidth-hungry internet services. The current intra-data center fat tree topology causes communication bottlenecks in the server interaction process, power-hungry O-E-O conversions that limit the minimum latency and the power efficiency of these systems. In this paper we numerically and experimentally investigate an optical packet switch architecture with modular structure and highly distributed control that allow configuration times in the order of nanoseconds. Numerical results indicate that the candidate architecture scaled over 4000 ports, provides an overall throughput over 50 Tb/s and a packet loss rate below 10(-6) while assuring sub-microsecond latency. We present experimental results that demonstrate the feasibility of a 16x16 optical packet switch based on parallel 1x4 integrated optical cross-connect modules. Error-free operations can be achieved with 4 dB penalty while the overall energy consumption is of 66 pJ/b. Based on those results, we discuss feasibility to scale the architecture to a much larger port count.
Sub-wavelength grating mode transformers in silicon slab waveguides.
Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J
2009-10-12
We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.
Ultra-low-loss and broadband mode converters in Si3N4 technology
NASA Astrophysics Data System (ADS)
Mu, Jinfeng; Dijkstra, Meindert; de Goede, Michiel; Yong, Yean-Sheng; García-Blanco, Sonia M.
2017-02-01
Si3N4 grown by low pressure chemical vapor deposition (LPCVD) on thermally oxidized silicon wafers is largely utilized for creating integrated photonic devices due to its ultra-low propagation loss and large transparency window (400 nm to 2350 nm). In this paper, an ultra-low-loss and broadband mode converter for monolithic integration of different materials onto the passive Si3N4 photonic technology platform is presented. The mode size converter is constructed with a vertically tapered Si3N4 waveguide that is then buried by a polymer or an Al2O3 waveguide. The influence of the various design parameters on the converter characteristics are investigated. Optimal designs are proposed, in which the thickness of the Si3N4 waveguide is tapered from 200 nm to 40 nm. The calculated losses of the mode converters at 976 nm and 1550 nm wavelengths are well below 0.1 dB for the Si3N4-polymer coupler and below 0.3 dB for the Si3N4-Al2O3 coupler. The preliminary experimental results show good agreement with the design values, indicating that the mode converters can be utilized for the low-loss integration of different materials.
Miniaturized Wilkinson Power Dividers Utilizing Capacitive Loading
NASA Technical Reports Server (NTRS)
Scardelletti, Maximilian C.; Ponchak, George E.; Weller, Thomas M.
2001-01-01
This letter reports the miniaturization of a planar Wilkinson power divider by capacitive loading of the quarter wave transmission lines employed in conventional Wilkinson power dividers. Reduction of the transmission line segments from lambda/4 to between lambda/5 and lambda/12 are reported here. The input and output lines at the three ports and the lines comprising the divider itself are coplanar waveguide (CPW) and asymmetric coplanar stripline (ACPS), respectively. The 10 GHZ power dividers are fabricated on high resistivity silicon (HRS) and alumina wafers. These miniaturized dividers are 74% smaller than conventional Wilkinson power dividers, and have a return loss better than +30 dB and an insertion loss less than 0.55 dB. Design equations and a discussion about the effect of parasitic reactance on the isolation are presented for the first time.
Frequency response control of semiconductor laser by using hybrid modulation scheme.
Mieda, Shigeru; Yokota, Nobuhide; Isshiki, Ryuto; Kobayashi, Wataru; Yasaka, Hiroshi
2016-10-31
A hybrid modulation scheme that simultaneously applies the direct current modulation and intra-cavity loss modulation to a semiconductor laser is proposed. Both numerical calculations using rate equations and experiments using a fabricated laser show that the hybrid modulation scheme can control the frequency response of the laser by changing a modulation ratio and time delay between the two modulations. The modulation ratio and time delay provide the degree of signal mixing of the two modulations and an optimum condition is found when a non-flat frequency response for the intra-cavity loss modulation is compensated by that for the direct current modulation. We experimentally confirm a 8.64-dB improvement of the modulation sensitivity at 20 GHz compared with the pure direct current modulation with a 0.7-dB relaxation oscillation peak.
Mekada, N; Seino, M; Kubota, Y; Nakajima, H
1990-12-01
We propose and demonstrate new practical methods of waveguide end fabrication and fiber attachment for Ti:LiNbO(3) waveguides. We fabricated waveguide endfaces with a cutting machine, which simplifies the manufacture of waveguide devices and provides a low excess loss of 0.3 dB or less. Our proposed fiber attachment method features fibers that protrude slightly from the reinforcement. It provides easy alignment, low excess loss (<0.1 dB), high strength (>600 gf), and high thermal stability (-10 to 60 degrees C). We also developed an easy way to reduce the backreflection from the joint without using anti-reflection coating. Instead, a tapered hemispherical end fiber and an angled waveguide endface are used. Backreflection is easily reduced to less than -30.
NASA Astrophysics Data System (ADS)
Jatratkar, Aviraj A.; Yadav, Jyotiprakash B.; Deshmukh, R. R.; Barshilia, Harish C.; Puri, Vijaya; Puri, R. K.
2016-12-01
This study reports on polyaniline thin films deposited on a glass substrate using a low-pressure glow-discharge-pulsed plasma polymerization method. The polyaniline thin film obtained by pulsed plasma polymerization has been successfully demonstrated as an optical waveguide with a transmission loss of 3.93 dB cm-1, and has the potential to be employed in integrated optics. An attempt has been made to investigate the effect of plasma OFF-time on the structural, optical as well as surface properties of polyaniline thin film. The plasma ON-time has been kept constant and the plasma OFF-time has been varied throughout the work. The plasma OFF-time strongly influenced the properties of the polyaniline thin film, and a nanostructured and compact surface was revealed in the morphological studies. The plasma OFF-time was found to enhance film thickness, roughness, refractive index and optical transmission loss, whereas it reduced the optical band gap of the polyaniline thin films. Retention in the aromatic structure was confirmed by FTIR results. Optical studies revealed a π-π* electronic transition at about 317 nm as well as the formation of a branched structure. As compared with continuous wave plasma, pulsed plasma polymerization shows better properties. Pulsed plasma polymerization reduced the roughness of the film from 1.2 nm to 0.42 nm and the optical transmission loss from 6.56 dB cm-1 to 3.39 dB cm-1.
Speech recognition and communication outcomes with cochlear implantation in Usher syndrome type 3.
Pietola, Laura; Aarnisalo, Antti A; Abdel-Rahman, Akram; Västinsalo, Hanna; Isosomppi, Juha; Löppönen, Heikki; Kentala, Erna; Johansson, Reijo; Valtonen, Hannu; Vasama, Juha-Pekka; Sankila, Eeva-Marja; Jero, Jussi
2012-01-01
Usher syndrome Type 3 (USH3) is an autosomal recessive disorder characterized by variable type and degree of progressive sensorineural hearing loss and retinitis pigmentosa. Cochlear implants are widely used among these patients. To evaluate the results and benefits of cochlear implantation in patients with USH3. A nationwide multicenter retrospective review. During the years 1995-2005, in 5 Finnish university hospitals, 19 patients with USH3 received a cochlear implant. Saliva samples were collected to verify the USH3 genotype. Patients answered to 3 questionnaires: Glasgow Benefit Inventory, Glasgow Health Status Inventory, and a self-made questionnaire. Audiological data were collected from patient records. All the patients with USH3 in the study were homozygous for the Finnish major mutation (p.Y176X). Either they had severe sensorineural hearing loss or they were profoundly deaf. The mean preoperative hearing level (pure-tone average, 0.5-4 kHz) was 110 ± 8 dB hearing loss (HL) and the mean aided hearing level was 58 ± 11 dB HL. The postoperative hearing level (34 ± 9 dB HL) and word recognition scores were significantly better than before surgery. According to the Glasgow Benefit Inventory scores and Glasgow Health Status Inventory data related to hearing, the cochlear implantation was beneficial to patients with USH3. Cochlear implantation is beneficial to patients with USH3, and patients learn to use the implant without assistance.
Chlorhexidine Prevents Root Dentine Mineral Loss and Fracture Caused by Calcium Hydroxide over Time
Thomaz, Érika Bárbara Abreu Fonseca; Lima, Darlon Martins; Bauer, José
2017-01-01
Purpose. To evaluate the mineral ion loss of root dentine after treatment with 2% chlorhexidine solution (CHX) and to compare its yield and flexural strength (fs) after exposure to calcium hydroxide [Ca(OH)2]. Materials and Methods. Dentine bars (DB) were made from 90 roots of bovine incisors and randomized into three groups: GControl: distilled/deionized water (DDW), GNaOCl: 2.5% sodium hypochlorite + 17% EDTA, and GCHX: CHX + DDW. The release of phosphate (PO4) and calcium (Ca) ions was measured by spectrophotometry. The DB were exposed to Ca(OH)2 paste for 0, 30, 90, and 180 days. DB were subjected to the three-point bending test to obtain yield and fs values. The fracture patterns were evaluated (20x). Data were analyzed using Kruskal-Wallis and Dunn's post hoc tests or one- and two-way ANOVA followed by Tukey's post hoc test (α = 0.05). Results. GCHX showed lower PO43− and Ca2+ ionic release than GNaOCl (p < 0.001). For yield and fs, GCHX > GNaOCl in all periods (p < 0.001), except for yield strength values on 90 days (p = 0.791). A larger frequency of vertical fractures was observed in GNaOCl and that of oblique fractures in GCHX (p < 0.05). Conclusions. CHX prevented PO43− and Ca2+ loss and showed a tendency to preserve the yield and fs of root dentine over time following exposure to Ca(OH)2 paste. PMID:28539937
NASA Technical Reports Server (NTRS)
Mysoor, N. R.; Mueller, R. O.
1991-01-01
This article summarizes the design concepts, analyses, and development of an X-band (8145 MHz) transponder low-loss linear phase modulator for deep space spacecraft applications. A single-section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. A linear phase deviation of 92 deg with a linearity tolerance of +/- 8 percent was measured for this modulator from 8257 MHz to 8634 MHz over the temperature range -20 to 75 C. The measured insertion loss and the static delay variation with temperature were 2 +/- 0.3 dB and 0.16 psec/ C, respectively. Based on this design, cascaded sections have been modeled, and simulations were performed to provide an X-band deep space transponder (DST) phase modulator with +/- 2.5 radians (+/- 143 deg) of peak phase deviation to accommodate downlink signal modulation with composite telemetry data and ranging, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase-modulator requirements and show excellent agreement with the predicted results.
Measurements by a Vector Network Analyzer at 325 to 508 GHz
NASA Technical Reports Server (NTRS)
Fung, King Man; Samoska, Lorene; Chattopadhyay, Goutam; Gaier, Todd; Kangaslahti, Pekka; Pukala, David; Lau, Yuenie; Oleson, Charles; Denning, Anthony
2008-01-01
Recent experiments were performed in which return loss and insertion loss of waveguide test assemblies in the frequency range from 325 to 508 GHz were measured by use of a swept-frequency two-port vector network analyzer (VNA) test set. The experiments were part of a continuing effort to develop means of characterizing passive and active electronic components and systems operating at ever increasing frequencies. The waveguide test assemblies comprised WR-2.2 end sections collinear with WR-3.3 middle sections. The test set, assembled from commercially available components, included a 50-GHz VNA scattering- parameter test set and external signal synthesizers, augmented with recently developed frequency extenders, and further augmented with attenuators and amplifiers as needed to adjust radiofrequency and intermediate-frequency power levels between the aforementioned components. The tests included line-reflect-line calibration procedures, using WR-2.2 waveguide shims as the "line" standards and waveguide flange short circuits as the "reflect" standards. Calibrated dynamic ranges somewhat greater than about 20 dB for return loss and 35 dB for insertion loss were achieved. The measurement data of the test assemblies were found to substantially agree with results of computational simulations.
Evidence of hearing loss in a “normally-hearing” college-student population
Le Prell, C. G.; Hensley, B.N.; Campbell, K. C. M.; Hall, J. W.; Guire, K.
2011-01-01
We report pure-tone hearing threshold findings in 56 college students. All subjects reported normal hearing during telephone interviews, yet not all subjects had normal sensitivity as defined by well-accepted criteria. At one or more test frequencies (0.25–8 kHz), 7% of ears had thresholds ≥25 dB HL and 12% had thresholds ≥20 dB HL. The proportion of ears with abnormal findings decreased when three-frequency pure-tone-averages were used. Low-frequency PTA hearing loss was detected in 2.7% of ears and high-frequency PTA hearing loss was detected in 7.1% of ears; however, there was little evidence for “notched” audiograms. There was a statistically reliable relationship in which personal music player use was correlated with decreased hearing status in male subjects. Routine screening and education regarding hearing loss risk factors are critical as college students do not always self-identify early changes in hearing. Large-scale systematic investigations of college students’ hearing status appear to be warranted; the current sample size was not adequate to precisely measure potential contributions of different sound sources to the elevated thresholds measured in some subjects. PMID:21288064
Multi-wavelength transceiver integration on SOI for high-performance computing system applications
NASA Astrophysics Data System (ADS)
Aalto, Timo; Harjanne, Mikko; Ylinen, Sami; Kapulainen, Markku; Vehmas, Tapani; Cherchi, Matteo; Neumeyr, Christian; Ortsiefer, Markus; Malacarne, Antonio
2015-03-01
We present a vision for transceiver integration on a 3 μm SOI waveguide platform for systems scalable to Pb/s. We also present experimental results from the first building blocks developed in the EU-funded RAPIDO project. At 1.3 μm wavelength 80 Gb/s per wavelength is to be achieved using hybrid integration of III-V optoelectronics on SOI. Goals include athermal operation, low-loss I/O coupling, advanced modulation formats and packet switching. An example of the design results is an interposer chip that consists of 12 μm thick SOI waveguides locally tapered down to 3 μm to provide low-loss coupling between an optical single-mode fiber array and the 3 μm SOI chip. First example of experimental results is a 4x4 cyclic AWGs with 5 nm channel spacing, 0.4 dB/facet fiber coupling loss, 3.5 dB center-tocenter loss, and -23 dB adjacent channel crosstalk in 3.5x1.5 mm2 footprint. The second example result is a new VCSEL design that was demonstrated to have up to 40 Gb/s operation at 1.55 μm.
Effect of Human Movement on Galvanic Intra-Body Communication during Single Gait Cycle
NASA Astrophysics Data System (ADS)
Ibrahim, I. W.; Razak, A. H. A.; Ahmad, A.; Salleh, M. K. M.
2015-11-01
Intra-body communication (IBC) is a communication system that uses human body as a signal transmission medium. From previous research, two coupling methods of IBC were concluded which are capacitive coupling and galvanic coupling. This paper investigates the effect of human movement on IBC using the galvanic coupling method. Because the human movement is control by the limb joint, the knee flexion angle during gait cycle was used to examine the influence of human movement on galvanic coupling IBC. The gait cycle is a cycle of people walking that start from one foot touch the ground till that foot touch the ground again. Frequency range from 300 kHz to 200MHz was swept in order to investigate the signal transmission loss and the result was focused on operating frequency 70MHz to 90MHz. Results show that the transmission loss varies when the knee flexion angle increased. The highest loss of signal at frequency range between 70MHz to 90 MHz was 69dB when the knee flexion angle is 50° and the minimum loss was 51dB during the flexion angle is 5°.
The RetroX auditory implant for high-frequency hearing loss.
Garin, P; Genard, F; Galle, C; Jamart, J
2004-07-01
The objective of this study was to analyze the subjective satisfaction and measure the hearing gain provided by the RetroX (Auric GmbH, Rheine, Germany), an auditory implant of the external ear. We conducted a retrospective case review. We conducted this study at a tertiary referral center at a university hospital. We studied 10 adults with high-frequency sensori-neural hearing loss (ski-slope audiogram). The RetroX consists of an electronic unit sited in the postaural sulcus connected to a titanium tube implanted under the auricle between the sulcus and the entrance of the external auditory canal. Implanting requires only minor surgery under local anesthesia. Main outcome measures were a satisfaction questionnaire, pure-tone audiometry in quiet, speech audiometry in quiet, speech audiometry in noise, and azimuth audiometry (hearing threshold in function of sound source location within the horizontal plane at ear level). : Subjectively, all 10 patients are satisfied or even extremely satisfied with the hearing improvement provided by the RetroX. They wear the implant daily, from morning to evening. We observe a statistically significant improvement of pure-tone thresholds at 1, 2, and 4 kHz. In quiet, the speech reception threshold improves by 9 dB. Speech audiometry in noise shows that intelligibility improves by 26% for a signal-to-noise ratio of -5 dB, by 18% for a signal-to-noise ratio of 0 dB, and by 13% for a signal-to-noise ratio of +5 dB. Localization audiometry indicates that the skull masks sound contralateral to the implanted ear. Of the 10 patients, one had acoustic feedback and one presented with a granulomatous reaction to the foreign body that necessitated removing the implant. The RetroX auditory implant is a semi-implantable hearing aid without occlusion of the external auditory canal. It provides a new therapeutic alternative for managing high-frequency hearing loss.
Glaucomatous Visual Field Loss Associated with Less Travel from Home
Ramulu, Pradeep Y.; Hochberg, Chad; Maul, Eugenio A.; Chan, Emilie S.; Ferrucci, Luigi; Friedman, David S.
2014-01-01
Purpose To determine the association between glaucoma and travel away from home. Methods Fifty-nine glaucoma suspect controls with normal vision and 80 glaucoma subjects with bilateral visual field (VF) loss wore a cellular tracking device over 1 week of normal activity. Location data was used to evaluate the number of daily excursions away from home as well as daily time spent away from home. Results Control and glaucoma subjects were similar in age, race, gender, employment, driving support, cognitive ability, mood, and comorbid illness (p>0.1 for all). Better-eye VF mean deviation (MD) averaged 0.0 decibels (dB) in controls and –11.1 dB in glaucoma subjects. In multivariable models, glaucoma was associated with fewer daily excursions (β= -0.20; 95% CI=-0.38 to -0.02) and a greater likelihood of not leaving home on a given day (Odds ratio [OR]=1.82; 95% CI=1.05 to 3.06). Each 5 dB decrement in the better-eye VF MD was associated with fewer daily excursions (β= -0.06; 95% CI=-0.11 to -0.01) and a greater chance of not leaving home on a given day (OR=1.24; 95% CI=1.04 to 1.47). Time spent away from home did not significantly differ between the glaucoma subjects and suspects (p=0.18). However, each 5 dB decrement in the better-eye MD was associated with 6% less time away (95% CI=-12 to -1%). Conclusions Individuals with glaucoma, particularly those with greater VF loss, are more home-bound and travel away from home less than individuals with normal vision. Since being confined to the home environment may have detrimental effects on fitness and health, individuals with glaucoma should be considered for interventions such as orientation and mobility training to encourage safe travel away from home. PMID:24374635
NASA Astrophysics Data System (ADS)
Betty, Ian Brian
2006-12-01
The development of strongly-guided InP/In1-x GaxAsyP 1-y based Mach-Zehnder optical modulators for 10Gb/s telecommunications is detailed. The modulators have insertion losses including coupling as low as 4.5dB, due to the incorporation of monolithically integrated optical mode spot-size converters (SSC's). The modulators are optimized to produce system performance that is independent of optical coupling alignment and for wavelength operation between 1525nm and 1565nm. A negatively chirped Mach-Zehnder modulator design is demonstrated, giving optimal dispersion-limited reach for 10Gb/s ON/OFF-keying modulation. It is shown that the optical system performance for this design can be determined from purely DC based optical measurements. A Mach-Zehnder modulator design invoking nearly no transient frequency shifts under intensity modulation is also presented, for the first time, using phase-shifter implementations based on the Quantum-Confined-Stark-Effect (QCSE). The performance impact on the modulator from the higher-order vertical and lateral waveguide modes found in strongly-guided waveguides has been determined. The impact of these higher-order modes has been minimized using the design of the waveguide bends, MMI structures, and doping profiles. The fabrication process and optical design for the spot-size mode converters are also thoroughly explored. The SSC structures are based on butt-joined vertically tapered passive waveguide cores within laterally flared strongly-guided ridges, making them compatible with any strong-guiding waveguide structure. The flexibility of the SSC process is demonstrated by the superior performance it has also enabled in a 40Gb/s electro-absorption modulator. The presented electro-absorption modulator has 3.6dB fiber-to-fiber insertion loss, polarization dependent loss (PDL) of only 0.3dB over 15dB extinction, and low absolute chirp (|alpha H| < 0.6) over the full dynamic range.
Multichannel silicon WDM ring filters fabricated with DUV lithography
NASA Astrophysics Data System (ADS)
Lee, Jong-Moo; Park, Sahnggi; Kim, Gyungock
2008-09-01
We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about -30 dB, and the minimal drop loss is about 2 dB.
Fernandes, Luís A; Grenier, Jason R; Herman, Peter R; Aitchison, J Stewart; Marques, Paulo V S
2011-06-20
Integrated polarization beam splitters based on birefringent directional couplers are demonstrated. The devices are fabricated in bulk fused silica glass by femtosecond laser writing (300 fs, 150 nJ at 500 kHz, 522 nm). The birefringence was measured from the spectral splitting of the Bragg grating resonances associated with the vertically and horizontally polarized modes. Polarization splitting directional couplers were designed and demonstrated with 0.5 dB/cm propagation losses and -19 dB and -24 dB extinction ratios for the polarization splitting.
Monolithic control components for high power mm-waves
NASA Astrophysics Data System (ADS)
Armstrong, A.; Goodrich, J.; Moroney, W.; Wheeler, D.
1985-09-01
Monolithic PIN diode arrays are shown to provide significant advances in switching ratios, bandwidth, and high-power capability for millimeter control applications The PIN diodes are arranged in a series/parallel configuration and form an electronically controlled window for switching RF power by applying DC voltage. At Ka band, an SPST switch using the window array (WINAR) design typically has 0.6 dB insertion loss and 22 dB isolation over the 26.5 to 40.0 GHz band. The switch has over 500 W peak power and 25 W average power capability.
Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror
NASA Astrophysics Data System (ADS)
Feng, Xinhuan; Tam, Hwa-yaw; Liu, Heliang; Wai, P. K. A.
2006-12-01
A stable and broad bandwidth multiwavelength erbium-doped fiber laser is proposed and demonstrated successfully. A nonlinear optical loop mirror which induces wavelength-dependent cavity loss and behaves as an amplitude equalizer is employed to ensure stable room-temperature multiwavelength operation. Up to 50 wavelengths lasing oscillations with wavelength spacing of 0.8 nm within a 3-dB spectral range of 1562-1605 nm has been achieved. The measured power fluctuation of each wavelength is about 0.1 dB within a 2-h period.
Conversion and matched filter approximations for serial minimum-shift keyed modulation
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Ryan, C. R.; Stilwell, J. H.
1982-01-01
Serial minimum-shift keyed (MSK) modulation, a technique for generating and detecting MSK using series filtering, is ideally suited for high data rate applications provided the required conversion and matched filters can be closely approximated. Low-pass implementations of these filters as parallel inphase- and quadrature-mixer structures are characterized in this paper in terms of signal-to-noise ratio (SNR) degradation from ideal and envelope deviation. Several hardware implementation techniques utilizing microwave devices or lumped elements are presented. Optimization of parameter values results in realizations whose SNR degradation is less than 0.5 dB at error probabilities of .000001.
Acceptance Testing of a Satellite SCADA Photovoltaic-Diesel Hybrid System
NASA Technical Reports Server (NTRS)
Kalu, A.; Emrich, C.; Ventre, G.; Wilson, W.; Acosta, Roberto (Technical Monitor)
2000-01-01
Satellite Supervisory Control and Data Acquisition (SCADA) of a Photovoltaic (PV)/diesel hybrid system was tested using NASA's Advanced Communication Technology Satellite (ACTS) and Ultra Small Aperture Terminal (USAT) ground stations. The setup consisted of a custom-designed PV/diesel hybrid system, located at the Florida Solar Energy Center (FSEC), which was controlled and monitored at a "remote" hub via Ka-band satellite link connecting two 1/4 Watt USATs in a SCADA arrangement. The robustness of the communications link was tested for remote monitoring of the health and performance of a PV/diesel hybrid system, and for investigating load control and battery charging strategies to maximize battery capacity and lifetime, and minimize loss of critical load probability. Baseline hardware performance test results demonstrated that continuous two-second data transfers can be accomplished under clear sky conditions with an error rate of less than 1%. The delay introduced by the satellite (1/4 sec) was transparent to synchronization of satellite modem as well as to the PV/diesel-hybrid computer. End-to-end communications link recovery times were less than 36 seconds for loss of power and less than one second for loss of link. The system recovered by resuming operation without any manual intervention, which is important since the 4 dB margin is not sufficient to prevent loss of the satellite link during moderate to heavy rain. Hybrid operations during loss of communications link continued seamlessly but real-time monitoring was interrupted. For this sub-tropical region, the estimated amount of time that the signal fade will exceed the 4 dB margin is about 10%. These results suggest that data rates of 4800 bps and a link margin of 4 dB with a 1/4 Watt transmitter are sufficient for end-to-end operation in this SCADA application.
Monolithically Integrated Reconfigurable Filters for Microwave Photonic Links
NASA Astrophysics Data System (ADS)
Norberg, Erik J.
For the purposes of commercial communication and military electronic warfare and radar alike, there is an increasing interest in RF systems that can handle very wide instantaneous bandwidths at high center frequencies. Optical signal processing has the capability to reduce latency, improve size, weight and power (SwAP) performance, and overcome the inherent bandwidth limitations of electronic counterparts. By rapidly pre-filtering wide bandwidth microwave signals in the optical domain, the analog-to-digital conversion (ADC) and subsequent digital signal processing (DSP) can be significantly relieved. Compared to channelizing and add/drop filters for wavelength division multiplexing (WDM) applications, the microwave filter application is much more challenging as it requires a more versatile filter, ideally with tunability in both frequency and bandwidth. In this work such a filter was developed using integrated photonics. By integrating the filter on a single InP chip, the stability required for coherent filtering is met, while the active integration platform offers a flexible filter design and higher tolerance in the coupler and fabrication specifications. Using an entirely deep etched fabrication with a single blanket regrowth, a simple fabrication with high yield is achieved. The reconfigurable filter is designed as an array of uncoupled filter stages with each filter stage reconfigurable as a filter pole or zero with arbitrary magnitude and phase. This gives rise to a flexible ffilter synthesis, much like an optical version of DSP filters. Flat-topped bandpass filters are demonstrated with frequency tunability over 30 GHz, bandwidth adjustable between 1.9 and 5.4 GHz, and stopband rejection >32 dB. In order to meet the stringent spurious-free dynamic range (SFDR) requirements of the microwave application, a novel epitaxial layer integration platform is developed. Optimized for high optical saturation power and low propagation loss, it produces semiconductor optical amplifiers (SOAs) with low distortion and noise. Utilizing a novel characterization method of RF signal distortion for photonic devices, SOAs with state-of-the art SFDR in the range of 115 dB--Hz2/3 and a noise figure of 3.8 dB for 6 dB gain, is demonstrated. It is projected that this platform could ultimately provide integration for photonic microwave filter applications.
Design Investigation of a Laminated Waveguide Fed Multi-Band DRA for Military Applications
NASA Astrophysics Data System (ADS)
Kumar, Pramod; Dwari, Santanu; Singh, Shailendra; Agrawal, N. K.
2017-12-01
In this paper a laminated waveguide fed DR Antenna is investigated. It can use for moderate power military applications. Cylindrical DRA is excited by two closely spaced asymmetric longitudinal slots on the broad wall of the laminated cavity are responsible for producing three different frequency bands. Parametric study of slots has been done with the help of commercial software ANSOFT HFSS. All the bands have sharp rejection. The final model of the antenna is simulated, fabricated and experimentally measured. Measured results are in quite accordant with design results. SIW feeding structures have small losses, moderate power handling capacity, low costs, compact sizes and can be seamlessly integrated with planar circuits. At all the bands 9.76 GHz, 10.53 GHz and 11.8 GHz resonant frequency, the antenna shows 56 MHz, 160 MHz, and 250 MHz impedance bandwidth (for VSWR<2) with 6 dB,6.2 dB and 6.8 dB gain respectively. Simulated and measured results reveal outstanding performance with a cross-polar level of 29 dB lower than that of the co-polar level at 9.76 GHz, the cross-polar level of 32 dB lower than that of the co-polar level at 10.53, GHz, and similarly cross-polar level of 30 dB lower than that of the co-polar level at 11.8 GHz.
Chen, Xiaotong; Choudhari, Shyamal P.; Martinez-Becerra, Francisco J.; Kim, Jae Hyun; Dickenson, Nicholas E.; Toth, Ronald T.; Joshi, Sangeeta B.; Greenwood, Jamie C.; Clements, John D.; Picking, William D.; Middaugh, C. Russell
2014-01-01
Shigella spp. are causative agents of bacillary dysentery, a human illness with high global morbidity levels, particularly among elderly and infant populations. Shigella infects via the fecal-oral route, and its virulence is dependent upon a type III secretion system (T3SS). Two components of the exposed needle tip complex of the Shigella T3SS, invasion plasmid antigen D (IpaD) and IpaB, have been identified as broadly protective antigens in the mouse lethal pneumonia model. A recombinant fusion protein (DB fusion) was created by joining the coding sequences of IpaD and IpaB. The DB fusion is coexpressed with IpaB's cognate chaperone, IpgC, for proper recombinant expression. The chaperone can then be removed by using the mild detergents octyl oligooxyethelene (OPOE) or N,N-dimethyldodecylamine N-oxide (LDAO). The DB fusion in OPOE or LDAO was used for biophysical characterization and subsequent construction of an empirical phase diagram (EPD). The EPD showed that the DB fusion in OPOE is most stable at neutral pH below 55°C. In contrast, the DB fusion in LDAO exhibited remarkable thermal plasticity, since this detergent prevents the loss of secondary and tertiary structures after thermal unfolding at 90°C, as well as preventing thermally induced aggregation. Moreover, the DB fusion in LDAO induced higher interleukin-17 secretion and provided a higher protective efficacy in a mouse challenge model than did the DB fusion in OPOE. These data indicate that LDAO might introduce plasticity to the protein, promoting thermal resilience and enhanced protective efficacy, which may be important in its use as a subunit vaccine. PMID:25368115
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Force, Dale A.; Spitsen, Paul C.; Menninger, William L.; Robbins, Neal R.; Dibb, Daniel R.; Todd, Phillip
2010-01-01
The RF performance of a new K-Band helix conduction cooled traveling-wave tube amplifier (TWTA) is presented in this paper. A total of three such units were manufactured, tested and delivered. The first unit is currently flying onboard NASA s Lunar Reconnaissance Orbiter (LRO) spacecraft and has flawlessly completed over 2000 orbits around the Moon. The second unit is a proto-flight model. The third unit will fly onboard NASA s International Space Station (ISS) as a very compact and lightweight transmitter package for the Communications, Navigation and Networking Reconfigurable Testbed (CoNNeCT), which is scheduled for launch in 2011. These TWTAs were characterized over the frequencies 25.5 to 25.8 GHz. The saturated RF output power is >40 W and the saturated RF gain is >46 dB. The saturated AM-to- PM conversion is 3.5 /dB and the small signal gain ripple is 0.46 dB peak-to-peak. The overall efficiency of the TWTA, including that of the electronic power conditioner (EPC) is as high as 45 percent.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Force, Dale A.; Spitsen, Paul C.; Menninger, William L.; Robbins, Neal R.; Dibb, Daniel R.; Todd, Phillip C.
2010-01-01
The RF performance of a new K-Band helix conduction cooled traveling-wave tube amplifier (TWTA), is presented in this paper. A total of three such units were manufactured, tested and delivered. The first unit is currently flying onboard NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft and has flawlessly completed over 2000 orbits around the Moon. The second unit is a proto-flight model. The third unit will fly onboard NASA's International Space Station (ISS) as a very compact and lightweight transmitter package for the Communications, Navigation and Networking Reconfigurable Testbed (CoNNeCT), which is scheduled for launch in 2011. These TWTAs were characterized over the frequencies 25.5 to 25.8 GHz. The saturated RF output power is greater than 40 W and the saturated RF gain is greater than 46 dB. The saturated AM-to-PM conversion is 3.5 /dB and the small signal gain ripple is 0.46 dB peak-to-peak. The overall efficiency of the TWTA, including that of the electronic power conditioner (EPC) is as high as 45%.
Aarhus, Lisa; Tambs, Kristian; Engdahl, Bo
2015-12-01
This study examined the association between time of onset of hearing loss (childhood vs. adulthood) and self-reported hearing handicap in adults. This is a population-based cohort study of 2,024 adults (mean = 48 years) with hearing loss (binaural pure-tone average 0.5-4 kHz ≥ 20 dB HL) who completed a hearing handicap questionnaire. In childhood, the same persons (N = 2,024) underwent audiometry in a school investigation (at ages 7, 10, and 13 years), in which 129 were diagnosed with sensorineural hearing loss (binaural pure-tone average 0.5-4 kHz ≥ 20 dB HL), whereas 1,895 had normal hearing thresholds. Hearing handicap was measured in adulthood as the sum-score of various speech perception and social impairment items (15 items). The sum-score increased with adult hearing threshold level (p < .001). After adjustment for adult hearing threshold level, hearing aid use, adult age, sex, and socioeconomic status, there was no significant difference in hearing handicap sum-score between the group with childhood-onset hearing loss (n = 129) and the group with adult-onset hearing loss (n = 1,895; p = .882). Self-reported hearing handicap in adults increased with hearing threshold level. After adjustment for adult hearing threshold level, this cohort study revealed no significant association between time of onset of hearing loss (childhood vs. adulthood) and self-reported hearing handicap.