In vitro and in vivo comparisons of constant resistance AC iontophoresis and DC iontophoresis.
Li, S Kevin; Higuchi, William I; Zhu, Honggang; Kern, Steven E; Miller, David J; Hastings, Matthew S
2003-09-04
A previous in vitro constant electrical resistance alternating current (AC) iontophoresis study with human epidermal membrane (HEM) and a model neutral permeant has shown less inter- and intra-sample variability in iontophoretic transport relative to conventional constant direct current (DC) iontophoresis. The objectives of the present study were to address the following questions. (1) Can the skin electrical resistance be maintained at a constant level by AC in humans in vivo? (2) Are the in vitro data with HEM representative of those in vivo? (3) Does constant skin resistance AC iontophoresis have less inter- and intra-sample variability than conventional constant current DC iontophoresis in vivo? (4) What are the electrical and the barrier properties of skin during iontophoresis in vivo? In the present study, in vitro HEM experiments were carried out with the constant resistance AC and the conventional constant current DC methods using mannitol and glucose as the neutral model permeants. In vivo human experiments were performed using glucose as the permeant with a constant skin resistance AC only protocol and two conventional constant current DC methods (continuous constant current DC and constant current DC with its polarity alternated every 10 min with a 3:7 on:off duty cycle). Constant current DC iontophoresis was conducted with commercial constant current DC devices, and constant resistance AC iontophoresis was carried out by reducing and maintaining the skin resistance at a constant target value with AC supplied from a function generator. This study shows that (1) skin electrical resistance can be maintained at a constant level during AC iontophoresis in vivo; (2) HEM in vitro and human skin in vivo demonstrate similar electrical and barrier properties, and these properties are consistent with our previous findings; (3) there is general qualitative and semi-quantitative agreement between the HEM data in vitro and human skin data in vivo; and (4) constant skin resistance AC iontophoresis generally provides less inter- and intra-subject variability than conventional constant current DC.
NASA Astrophysics Data System (ADS)
Ebisawa, Yoshihito; Yamada, Shin; Mori, Shigekazu; Ikeda, Masami
This paper describes breakdown characteristics of an oil-pressboard insulation system to a superposition voltage of AC and DC voltages. Although AC electric field is decided by the ratio of the relative permittivity of a pressboard and insulating oil, DC electric field is decided by ratio α of volume resistivities. From the measurement in this study, 13—78 and 1.8—5.7 are obtained as the volume resistivity ratios α at temperature of 30°C and 80°C, respectively. The breakdown voltages against AC, DC, and those superposition voltages are surveyed to insulation models. In normal temperature, the breakdown voltage to the superposition voltage of AC and DC is determined by AC electric field applied to the oil duct. Since the α becomes as low as 2-3 at temperature of 80°C, AC and DC voltages almost equally contribute to the electric field of the oil duct as a result. That is, it became clear that superposed DC voltage boosts the electric field across oil ducts at operating high temperature.
NASA Astrophysics Data System (ADS)
Tan, Ting; Yan, Zhimiao; Lei, Hong
2017-07-01
Galloping-based piezoelectric energy harvesters scavenge small-scale wind energy and convert it into electrical energy. For piezoelectric energy harvesting with the same vibrational source (galloping) but different (alternating-current (AC) and direct-current (DC)) interfaces, general analytical solutions of the electromechanical coupled distributed parameter model are proposed. Galloping is theoretically proven to appear when the linear aerodynamic negative damping overcomes the electrical damping and mechanical damping. The harvested power is demonstrated as being done by the electrical damping force. Via tuning the load resistance to its optimal value for optimal or maximal electrical damping, the harvested power of the given structure with the AC/DC interface is maximized. The optimal load resistances and the corresponding performances of such two systems are compared. The optimal electrical damping are the same but with different optimal load resistances for the systems with the AC and DC interfaces. At small wind speeds where the optimal electrical damping can be realized by only tuning the load resistance, the performances of such two energy harvesting systems, including the minimal onset speeds to galloping, maximal harvested powers and corresponding tip displacements are almost the same. Smaller maximal electrical damping with larger optimal load resistance is found for the harvester with the DC interface when compared to those for the harvester with the AC interface. At large wind speeds when the maximal electrical damping rather than the optimal electrical damping can be reached by tuning the load resistance alone, the harvester with the AC interface circuit is recommended for a higher maximal harvested power with a smaller tip displacement. This study provides a method using the general electrical damping to connect and compare the performances of piezoelectric energy harvesters with same excitation source but different interfaces.
Results of Electrical Resistivity Data Collected near the Town of Guernsey, Platte County, Wyoming
McDougal, Robert R.; Abraham, Jared D.; Bisdorf, Robert J.
2004-01-01
As part of a study to investigate subsurface geologic conditions as they relate to ground-water flow in an abandoned landfill near the town of Guernsey, Wyoming, geophysical direct current (DC) resistivity data were collected. Eight vertical resistivity soundings and eight horizontal resistivity profiles were made using single channel and multi-channel DC instruments. Data collected in the field were converted from apparent resistivity to inverted resistivity with depth using a numerical inversion of the data. Results of the inverted resistivity data are presented as horizontal profiles and as profiles derived from the combined horizontal profile and vertical sounding data. The data sets collected using the single-channel and multi-channel DC systems provided for the resistivity investigation to extend to greater depth. Similarity of the electrical properties of the bedrock formations made interpretation of the resistivity profiles more difficult. High resistivity anomalies seen in the profiles are interpreted as quartzite lenses and as limestone or metadolomite structures in the eastern part of the study area. Terrace gravels were mapped as resistive where dry and less resistive in the saturated zone. The DC resistivity methods used in this study illustrate that multi-electrode DC resistivity surveying and more traditional methodologies can be merged and used to efficiently map anomalies of hydrologic interest in geologically complex terrain.
NASA Astrophysics Data System (ADS)
Aly, Said A.; Farag, Karam S. I.; Atya, Magdy A.; Badr, Mohamed A. M.
2018-06-01
A joint multi-spacing electromagnetic-terrain conductivity meter and DC-resistivity horizontal profiling survey was conducted at the anticipated eastern extensional area of the 15th-of-May City, southeastern Cairo, Egypt. The main objective of the survey was to highlight the applicability, efficiency, and reliability of utilizing such non-invasive surface techniques in a field like geologic mapping, and hence to image both the vertical and lateral electrical resistivity structures of the subsurface bedrock. Consequently, a total of reliable 6 multi-spacing electromagnetic-terrain conductivity meter and 7 DC-resistivity horizontal profiles were carried out between August 2016 and February 2017. All data sets were transformed-inverted extensively and consistently in terms of two-dimensional (2D) electrical resistivity smoothed-earth models. They could be used effectively and inexpensively to interpret the area's bedrock geologic sequence using the encountered consecutive electrically resistive and conductive anomalies. Notably, the encountered subsurface electrical resistivity structures, below all surveying profiles, are correlated well with the mapped geological faults in the field. They even could provide a useful understanding of their faulting fashion. Absolute resistivity values were not necessarily diagnostic, but their vertical and lateral variations could provide more diagnostic information about the layer lateral extensions and thicknesses, and hence suggested reliable geo-electric earth models. The study demonstrated that a detailed multi-spacing electromagnetic-terrain conductivity meter and DC-resistivity horizontal profiling survey can help design an optimal geotechnical investigative program, not only for the whole eastern extensional area of the 15th-of-May City, but also for the other new urban communities within the Egyptian desert.
Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite
NASA Astrophysics Data System (ADS)
Agami, W. R.
2018-04-01
Ferrite samples of Mn0.5Ni0.1Zn0.4NdxFe2-xO4 (x = 0.0, 0.01, 0.02, 0.05, 0.075 and 0.1) have been prepared by usual ceramic method. The temperature and composition dependences of the dc electric resistivity (ρdc) were studied. The frequency and composition dependences of the ac electric resistivity (ρac) and dielectric parameters (dielectric constant ε' and dielectric loss ε'') have been investigated. ρdc was found to decrease with temperature for all samples while it increases with increasing Nd3+ concentration. On the other hand, ρac and the dielectric properties were found to decrease with increasing the frequency while ρac increases and both ε' and ε'' decrease with increasing Nd3+ concentration. These results were explained by the Maxwell-Wagner two-layer model and Koops's theory. The improvement in dc and ac electric resistivities shows that these prepared materials are valid for decreasing the eddy current losses at high frequencies, so they can be used in the fabrication of multilayer chip inductor (MLCI) devices.
NASA Astrophysics Data System (ADS)
Farag, Karam S. I.; Abd El-Aal, Mohamed H.; Garamoon, Hassan K. F.
2018-07-01
A joint azimuthal very low frequency-electromagnetic (VLF-EM) and DC-resistivity sounding survey was conducted at the new Ain Shams university campus in Al-Obour city, northwest of Cairo, Egypt. The main objective of the survey was to highlight the applicability and reliability of such non-invasive surface techniques in mapping and monitoring both the vertical and lateral electrical conductivity structures of waterlogged areas, by subterraneous water accumulations, at the campus site. Consequently, a total of 743 azimuthal VLF-EM and 4 DC-resistivity soundings were carried out in June, 2011, 2012 and 2013. The data were interpreted extensively and consistently in terms of two-dimensional (2D) transformed EM equivalent current-density and stitched inverted electrical resistivity models, without using any geological a-priori information. They could be used effectively to image the local anomalous lower electrical resistivity (higher EM equivalent current-density) structures and their near-surface spreading with time, due to the excessive accumulations of subterraneous water at the campus site. The study demonstrated that a regional azimuthal VLF-EM and DC-resistivity sounding survey could help design an optimal dewatering program for the whole city, at greatly reduced execution time.
ERIC Educational Resources Information Center
Leniz, Ane; Zuza, Kristina; Guiasola, Jenaro
2017-01-01
This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge…
Chun, Sung-Yong
2013-03-01
Titanium nitride films used as an important electrode material for the design of alkali metal thermal-to-electric conversion (AMTEC) system have been prepared using dc (direct current) and asymmetric-bipolar pulsed dc magnetron sputtering. The pulse frequency and the duty cycle were varied from 5 to 50 kHz and 50 to 95%, respectively. The deposition rate, grain size and resistivity of pulsed dc sputtered films were decreased when the pulse frequency increased, while the nano hardness of titanium nitride films increased. We present in detail coatings (e.g., deposition rate, grain size, prefer-orientation, resistivity and hardness). Our studies show that titanium nitride coatings with superior properties can be prepared using asymmetric-bipolar pulsed dc sputtering.
NASA Astrophysics Data System (ADS)
Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim
2017-12-01
A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.
Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.
2017-02-08
Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells installed onsite for monitoring flow in the channel deposits. Estimates of the cross-sectional area of channel deposits from DC resistivity pseudosections can provide critical input for groundwater-flow models designed to simulate river seepage and evaluate seepage-management alternatives.
Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7
NASA Astrophysics Data System (ADS)
Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim
2016-12-01
We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.
Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.
Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon
2016-05-01
Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.
Grain Boundary Resistivity of Yttria-Stabilized Zirconia at 1400°C
Wang, J.; Du, A.; Yang, Di; ...
2013-01-01
Tmore » he grain size dependence of the bulk resistivity of 3 mol% yttria-stabilized zirconia at 1400°C was determined from the effect of a dc electric field E a = 18.1 V/cm on grain growth and the corresponding electric current during isothermal annealing tests. Employing the brick layer model, the present annealing test results were in accordance with extrapolations of the values obtained at lower temperature employing impedance spectroscopy and 4-point-probe dc. he combined values give that the magnitude of the grain boundary resistivity ρ b = 133 ohm-cm. he electric field across the grain boundary width was 28–43 times the applied field for the grain size and current ranges in the present annealing test.« less
Viarbitskaya, S; Arocas, J; Heintz, O; Colas-Des-Francs, G; Rusakov, D; Koch, U; Leuthold, J; Markey, L; Dereux, A; Weeber, J-C
2018-04-16
Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ellipsometry experiments. By probing a parametric space of realistic values for parameters of the Drude model, we obtain a nearly univocal dependence of the surface plasmon damping distance on the dc resistivity demonstrating the relevance of dc resistivity for the evaluation of the plasmonic performances of TiN at telecom frequencies. Finally, we show that better plasmonic performances are obtained for TiN films featuring a low content of oxygen. For low oxygen content and corresponding low resistivity, we attribute the increase of the surface plasmon damping distances to a lower confinement of the plasmon field into the metal and not to a decrease of the absorption of TiN.
Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields
Coronado, Lorena M.; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A.; Gittens, Rolando A.
2016-01-01
The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497
Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.
Coronado, Lorena M; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A; Gittens, Rolando A; Spadafora, Carmenza
2016-01-01
The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways.
NASA Astrophysics Data System (ADS)
Ali, M. A.; Uddin, M. M.; Khan, M. N. I.; Chowdhury, F.-U.-Z.; Haque, S. M.
2017-02-01
The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant.
Multiple electrical phase transitions in Al substituted barium hexaferrite
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2017-12-01
Barium hexaferrite is known to be a very good ferromagnetic material. However, it shows very good dielectric properties, i.e., the dielectric constant is comparable to that of the ferroelectric material. However, its crystal symmetry does not allow it to be a ferroelectric material. Hence, the electrical properties have revived the considerable research interest on these materials, not only for academic interest, but also for technological applications. There are a few reports on temperature dependent dielectric behavior of these materials. However, the exact cause of dielectric as well as electrical conductivity is yet to be established. Hence, Al (very good conducting material) substituted barium hexaferrite (BaFe12-xAlxO19, x = 0.0-4.0) has been prepared by following the modified sol-gel method to understand the ac and DC electrical properties of these materials. The crystal structure and parameters have been studied by employing the XRD and FTIR techniques. There are two transition temperatures, which have been observed in the temperature dependent ac dielectric and DC resistivity measurement. The response of dielectric behaviors to temperature is similar to that of the ferroelectric material; however, the dielectric polarization is due to the polaron hopping, which is evident from the DC resistivity analysis. Hence, the present observations lead to understand the electrical properties of barium hexaferrite. The frequency dependent dielectric dispersion can be understood by the modified Debye model. More interestingly, the dielectric constant decreases and DC resistivity increases with the increase in the Al concentration, which has the correlation between bond length modifications in the crystal due to substitution.
NASA Astrophysics Data System (ADS)
Aguirre, E. E.; Karchewski, B.
2017-12-01
DC resistivity surveying is a geophysical method that quantifies the electrical properties of the subsurface of the earth by applying a source current between two electrodes and measuring potential differences between electrodes at known distances from the source. Analytical solutions for a homogeneous half-space and simple subsurface models are well known, as the former is used to define the concept of apparent resistivity. However, in situ properties are heterogeneous meaning that simple analytical models are only an approximation, and ignoring such heterogeneity can lead to misinterpretation of survey results costing time and money. The present study examines the extent to which random variations in electrical properties (i.e. electrical conductivity) affect potential difference readings and therefore apparent resistivities, relative to an assumed homogeneous subsurface model. We simulate the DC resistivity survey using a Finite Difference (FD) approximation of an appropriate simplification of Maxwell's equations implemented in Matlab. Electrical resistivity values at each node in the simulation were defined as random variables with a given mean and variance, and are assumed to follow a log-normal distribution. The Monte Carlo analysis for a given variance of electrical resistivity was performed until the mean and variance in potential difference measured at the surface converged. Finally, we used the simulation results to examine the relationship between variance in resistivity and variation in surface potential difference (or apparent resistivity) relative to a homogeneous half-space model. For relatively low values of standard deviation in the material properties (<10% of mean), we observed a linear correlation between variance of resistivity and variance in apparent resistivity.
The Effect of Valinomycin on the Electrical Properties of Solutions of Red Cell Lipids in n-Decane
Andreoli, Thomas E.; Tosteson, Daniel C.
1971-01-01
This paper reports the electrical properties of thick lipid membranes in the absence and presence of valinomycin. The thick lipid membranes were formed by placing a solution of sheep red cell lipids in decane between two cellophane partitions which formed the interfaces between the membrane and the two aqueous bathing solutions. The DC electrical resistance of these structures was found to be directly proportional to the reciprocal of the concentration of lipids in the decane (CL). The limiting resistance, as (CL -1) approached zero, was 3 x 108 ohm-cm2. Resistance was also found to be linearly related to membrane thickness. The limiting resistance at zero thickness was again 1–3 x 108 ohm-cm2. These data are interpreted to indicate that the DC resistance of thick lipid membranes comprises two surface resistances (RS) at each interface with the aqueous bathing solutions, and a bulk resistance (RB) of the lipid-decane solution, arranged in series. Measurements of the effect of variations of area on resistance were consistent with this interpretation. Valinomycin reduced RS but had no effect on RB. Under certain conditions, thick lipid membranes containing valinomycin behaved like highly selective K+ electrodes. PMID:5553100
Thermal and electrical contact conductance studies
NASA Technical Reports Server (NTRS)
Vansciver, S. W.; Nilles, M.
1985-01-01
Prediction of electrical and thermal contact resistance for pressed, nominally flat contacts is complicated by the large number of variables which influence contact formation. This is reflected in experimental results as a wide variation in contact resistances, spanning up to six orders of magnitude. A series of experiments were performed to observe the effects of oxidation and surface roughness on contact resistance. Electrical contact resistance and thermal contact conductance from 4 to 290 K on OFHC Cu contacts are reported. Electrical contact resistance was measured with a 4-wire DC technique. Thermal contact conductance was determined by steady-state longitudinal heat flow. Corrections for the bulk contribution ot the overall measured resistance were made, with the remaining resistance due solely to the presence of the contact.
Multiple piezo-patch energy harvesters on a thin plate with respective AC-DC conversion
NASA Astrophysics Data System (ADS)
Aghakhani, Amirreza; Basdogan, Ipek
2018-03-01
Piezoelectric patch energy harvesters can be directly integrated to plate-like structures which are widely used in automotive, marine and aerospace applications, to convert vibrational energy to electrical energy. This paper presents two different AC-DC conversion techniques for multiple patch harvesters, namely single rectifier and respective rectifiers. The first case considers all the piezo-patches are connected in parallel to a single rectifier, whereas in the second case, each harvester is respectively rectified and then connected in parallel to a smoothing capacitor and a resistive load. The latter configuration of AC-DC conversion helps to avoid the electrical charge cancellation which is a problem with the multiple harvesters attached to different locations of the host plate surface. Equivalent circuit model of the multiple piezo-patch harvesters is developed in the SPICE software to simulate the electrical response. The system parameters are obtained from the modal analysis solution of the plate. Simulations of the voltage frequency response functions (FRFs) for the standard AC input - AC output case are conducted and validated by experimental data. Finally, for the AC input - DC output case, numerical simulation and experimental results of the power outputs of multiple piezo-patch harvesters with multiple AC-DC converters are obtained for a wide range of resistive loads and compared with the same array of harvesters connected to a single AC-DC converter.
Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering
NASA Astrophysics Data System (ADS)
Soetedjo, Hariyadi; Siswanto, Bambang; Aziz, Ihwanul; Sudjatmoko
2018-03-01
Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm-3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1) and (2 0 0) occurs during deposition.
Electric field modulated ferromagnetism in ZnO films deposited at room temperature
NASA Astrophysics Data System (ADS)
Bu, Jianpei; Liu, Xinran; Hao, Yanming; Zhou, Guangjun; Cheng, Bin; Huang, Wei; Xie, Jihao; Zhang, Heng; Qin, Hongwei; Hu, Jifan
2018-04-01
The ZnO film deposited at room temperature, which is composed of the amorphous-phase background plus a few nanograins or nanoclusters (about 1-2 nm), exhibits room temperature ferromagnetism (FM). Such FM is found to be connected with oxygen vacancies. For the Ta/ZnO/Pt device based on the medium layer ZnO deposited at room temperature, the saturation magnetization not only is modulated between high and low resistive states by electric voltage with DC loop electric current but also increases/decreases through adjusting the magnitudes of positive/negative DC sweeping voltage. Meanwhile, the voltage-controlled conductance quantization is observed in Ta/ZnO/Pt, accompanying the voltage-controlled magnetization. However, the saturation magnetization of the Ta/ZnO/Pt device becomes smaller under positive electric voltage and returns in some extent under negative electric voltage, when the DC loop electric current is not applied.
King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson
1998-01-01
A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.
King, R.D.; DeDoncker, R.W.A.A.
1998-01-20
A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.
NASA Astrophysics Data System (ADS)
Lee, J.; Gao, W.; Li, Z.; Hodgson, M.; Metson, J.; Gong, H.; Pal, U.
2005-05-01
Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made.
Five years of full-scale utility demonstration of pulsed energization of electric precipitators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, S.A.; Jacobus, P.L.; Casey, P.J.
1996-11-01
In a conventional electrostatic precipitator (ESP) the applied dc voltage fulfills three functions: (1) generation of negative ions, (2) charging of particles, and (3) transport of the charged particles to the collecting plates. In the case of high resistivity fly-ash (often associated with the burning of low sulfur coal) the dc voltage is limited by repeated electrical discharges and in extreme cases by back-corona. Lowering the applied dc voltage reduces sparking and back-corona, but also reduces the field on the discharge wires and leads to poorly distributed ion generation as well as reduced charging and particle transport forces. Pulsed energization,more » which consists of superimposing high voltage pulses of short duration onto the existing base dc voltage, offers an attractive way to improve the collection efficiency of ESPs suffering from poor energization. The superimposed pulses become responsible for uniform ion generation while the underlying dc field continues to fulfill the function of particle charging and transport. This paper describes the five-year test of the ESP at Madison Gas and Electric`s Blount Station.« less
Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering
NASA Astrophysics Data System (ADS)
Birkett, Martin; Penlington, Roger
2016-07-01
We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10-1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10-25 nm the electrical resistivity is found to be a function of the film surface roughness and is well described by Namba’s model. For thicknesses of 25-40 nm the experimental data was most accurately fitted using the Mayadas and Shatkes model which accounts for grain boundary scattering of the conduction electrons. Beyond 40 nm, the thickness of the film was found to be the controlling factor and the Fuchs-Sonheimer (FS) model was used to fit the experimental data, with diffuse scattering of the conduction electrons at the two film surfaces. By combining the Fuchs and Namba (FN) models a suitable correlation between theoretical and experimental resistivity can be achieved across the full CuAlMo film thickness range of 10-1000 nm. The irreversibility of resistance for films of thickness >200 nm, which demonstrated bulk conductivity, was measured to be less than 0.03% following subjection to temperature cycles of -55 and +125 °C and the temperature co-efficient of resistance was less than ±15 ppm °C-1.
NASA Astrophysics Data System (ADS)
Pervaiz, Erum; Gul, I. H.
2013-10-01
Aluminum and chromium substituted Co-Ni spinel nanoferrites were prepared by sol-gel auto combustion method. Structural parameters along with electrical and magnetic properties have been investigated in the present work. Crystallite sizes of nano ferrite estimated from the peak (311) lies in the range of 13-21 nm ±2 nm and compared with crystallite sizes calculated from Williamsons-Hall plots. DC electrical resistivity variations due to the concentration of aluminum and chromium in the host ferrite have been measured from 368 K to 573 K. Increase in the room temperature DC electrical resistivity was observed up to a concentration x=0.2 and then decreases for x >0.2. Dielectric parameters (real and imaginary part of complex permittivity, dielectric loss tangent) were studied as a function of frequency (20 Hz-5 MHz) and a decrease in the dielectric parameters was observed due to substitution of nickel, aluminum and chromium ions in cobalt nanoferrites. AC conductivity, complex impedance and complex electrical modulus were studied as a function of frequency for the conduction and relaxation mechanisms in the present ferrite system. Saturation magnetization, coercivity, canting angles and magneto crystalline anisotropy variations with composition were observed and presented for the present ferrites under an applied magnetic field of 10 kOe at room temperature. It was found that both magnetization and coercivity decreases with increase in the concentration of aluminum and chromium along with a decrease in the anisotropy parameters. High DC resistivity with low dielectric parameters of the present nanoferrites make them suitable for high frequency and electromagnetic wave absorbing devices. High purity mixed Co-Ni-Al-Cr nanoferrites have been prepared by sol-gel auto combustion method. DC electrical resistivity increases due to substitution of Al3+ and Cr3+. Complex permittivity decrease for Co-Ni-Al-Cr nanoferrites. Detailed AC response analysis has been presented for mixed Co-Ni-Al-Cr nanoferrites. Magnetization and coercively reduces for Al3+ and Cr3+ doped Co-Ni ferrite nanoparticles showing that material is becoming soft magnetic.
NASA Astrophysics Data System (ADS)
Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Jeong, Jin-Young; Hong, Dongpyo; Park, Seunghyuk; Park, Gun-Sik
2017-01-01
Non-thermal irreversible electroporation (NTIRE) to avoid thermal damage to cells during intense DC ns pulsed electric fields (nsPEFs) is a recent modality for medical applications. This mechanism, related to bioelectrical dynamics of the cell, is linked to the effect of a DC electric field and a threshold effect with an electrically stimulated membrane for the charge distribution in the cell. To create the NTIRE condition, the pulse width of the nsPEF should be shorter than the charging time constant of the membrane related to the cell radius, membrane capacitance, cytoplasm resistivity, and medium resistivity. It is necessary to design and fabricate a very intense nanosecond DC electric field pulser that is capable of producing voltages up to the level of 100 kV/cm with an artificial pulse width (˜ns) with controllable repetition rates. Many devices to generate intense DC nsPEF using various pulse-forming line technologies have been introduced thus far. However, the previous Blumlein pulse-generating devices are clearly inefficient due to the energy loss between the input voltage and the output voltage. An improved two-stage stacked Blumlein pulse-forming line can overcome this limitation and decrease the energy loss from a DC power supply. A metal oxide silicon field-effect transistor switch with a fast rise and fall time would enable a high repetition rate (max. 100 kHz) and good endurance against very high voltages (DC ˜ 30 kV). The load is designed to match the sample for exposure to cell suspensions consisting of a 200 Ω resistor matched with a Blumlein circuit and two electrodes without the characteristic RC time effect of the circuit (capacitance =0.174 pF).
dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality
NASA Astrophysics Data System (ADS)
Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele
2018-04-01
In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.
dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.
Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele
2018-04-27
In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.
Chang, Kuo-Tsai
2007-01-01
This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.
Resistance switching in polyvinylidene fluoride (PVDF) thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramod, K.; Sahu, Binaya Kumar; Gangineni, R. B., E-mail: rameshg.phy@pondiuni.edu.in
2015-06-24
Polyvinylidene fluoride (PDVF), one of the best electrically active polymer material & an interesting candidate to address the electrical control of its functional properties like ferroelectricity, piezoelectricity, pyroelectricity etc. In the current work, with the help of spin coater and DC magnetron sputtering techniques, semi-crystallized PVDF thin films prominent in alpha phase is prepared in capacitor like structure and their electrical characterization is emphasized. In current-voltage (I-V) and resistance-voltage (R-V) measurements, clear nonlinearity and resistance switching has been observed for films prepared using 7 wt% 2-butanone and 7 wt% Dimethyl Sulfoxide (DMSO) solvents.
NASA Astrophysics Data System (ADS)
Tomita, Masaru
The development of a superconducting cable for railways has commenced, assuming that a DC transmission cable will be used for electric trains. The cable has been fabricated based on the results of current testing of a superconducting wire, and various evaluation tests have been performed to determine the characteristics of the cable. A superconducting transmission cable having zero electrical resistance and suitable for railway use is expected to enhance regeneration efficiency, reduce power losses, achieve load leveling and integration of sub-stations, and reduce rail potential.
DC transport in two-dimensional electron systems under strong microwave illumination
NASA Astrophysics Data System (ADS)
Chakraborty, Shantanu
At low temperature (T) and weak magnetic field ( B), two dimensional electron systems (2DES) can exhibit strong 1/ B-periodic resistance oscillations on application of sufficiently strong microwave radiation. These oscillations are known as microwave induced resistance oscillations (MIROs), MIROs appearing near cyclotron resonance (CR) and its harmonics involve single photon processes and are called integer MIROs while the oscillations near CR subharmonics require multiphoton processes and are called fractional MIROs. Similar strong 1/B periodic resistance oscillations can occur due to strong dc current, and are known as Hall-field resistance oscillations (HIROs). Oscillations also occur for a combination of microwave radiation and strong dc current. In one prominent theory of MIROs, known as the displacement model, electrons make impurity-assisted transitions into higher or lower Landau levels by absorbing or emitting one or more (N) photons. In the presence of combined strong dc current and microwave radiation, electrons make transitions between Landau levels by absorbing or emitting photons followed by a space transition along the applied dc bias. The object of the dissertation is to explore how the different resistance oscillations area affected by strong microwave radiation when multiphoton processes are relevant. We used a coplanar waveguide (CPW) structure deposited on the sample, as opposed to simply placing the sample near the termination of a waveguide as is more the usual practice in this field. The CPW allows us to estimate the AC electric field (EAC) at the sample. In much of the work presented in this thesis we find that higher Nprocesses supersede the competing lower N processes as microwave power is increased. We show this in the presence and in the absence of a strong dc electric field. Finally, we look at the temperature evolution of fractional MIROs to compare the origin of the fractional MIROs with that of integer MIROs.
NASA Astrophysics Data System (ADS)
Basantani, H. A.; Kozlowski, S.; Lee, Myung-Yoon; Li, J.; Dickey, E. C.; Jackson, T. N.; Bharadwaja, S. S. N.; Horn, M.
2012-06-01
Thin films of VOx (1.3 ≤ x ≤ 2) were deposited by reactive pulsed-dc magnetron sputtering of a vanadium metal target while RF-biasing the substrate. Rutherford back scattering, glancing angle x-ray, and cross-sectional transmission electron microscopy measurements revealed the formation of nanocolumns with nanotwins within VOx samples. The resistivity of nanotwinned VOx films ranged from 4 mΩ.cm to 0.6 Ω.cm and corresponding temperature coefficient of resistance between -0.1% and -2.6% per K, respectively. The 1/f electrical noise was analyzed in these VOx samples using the Hooge-Vandamme relation. These VOx films are comparable or surpass commercial VOx films deposited by ion beam sputtering.
Rietveld refinement and electrical properties of Ni-Zn spinel ferrites
NASA Astrophysics Data System (ADS)
Hooda, Ashima; Sanghi, Sujata; Agarwal, Ashish; Khasa, Satish; Hooda, Bhawana
2017-05-01
NiFe2O4, ZnFe2O4, Ni0.5Zn0.5Fe2O4 spinel samples have been synthesized by conventional solid state reaction technique. Powder X-ray diffraction and Rietveld refinement revealed that the samples were single Spinel phase with space group fd3m. The average crystalline size (D), lattice constant (a), X-ray density (ρx), measured density (ρm) and Porosity (P) of prepared samples were determined from XRD data. The dc electrical resistivity (p) was measured as a function of temperature. The variations of ρ were explained on the basis of Verwey and de Bohr mechanism. The value of DC resistivity found to increase with increase Zn concentration.
NASA Astrophysics Data System (ADS)
Pan, Zihe; Wang, Tianchang; Zhou, Yikang; Zhao, Boxin
2016-12-01
Electrically conductive and superoleophobic micropillars have been developed through the construction of biomimetic micropillars using Ag-filled epoxy composites and the incorporation of FDTS on the micropillar surface. These micropillars are found to be superoleophobic with an oil contact angle of 140°, demonstrating excellent self-cleaning properties. The conductivity of micropillars allows for the Joule-heating effect to actively reduce the adhesion and even unfreeze the frozen oil droplets by passing electrical current. Electrical resistance of the composite micropillars was modulated by two orders of magnitudes by varying the contents of Ag flakes from 45 wt% to 65 wt%. The effectiveness of conductive micropillars for surface un-freezing was investigated by applying DC current to decrease the adhesion strength of frozen oil droplets on surfaces. The results showed a pronounced reduction of frozen oil adhesion force by 60% when the resistance increased from 7.5 Ω to 877 Ω after applying DC current for 2 min. By continuously applying DC current for 3 min, the frozen oil adhesion decreased to 0.05 N, reaching zero when the surface was heated up to -10 °C after applying DC current for 5 min. In contrast, when the droplet was heated up to -5 °C by hot air, there is still a substantial force of adhesion. The research findings demonstrate the use of constructing conductive-superoleophobic composite micropillars at surface for eliminating the frozen oil from surfaces at low temperatures.
Reconnaissance electrical surveys in the Coso Range, California
NASA Astrophysics Data System (ADS)
Jackson, Dallas B.; O'Donnell, James E.
1980-05-01
Telluric current, audiomagnetotelluric (AMT), and direct current (dc) methods were used to study the electrical structure of the Coso Range and Coso geothermal area. Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs-Devil's Kitchen geothermal area. The secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5-30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a heat flow anomaly where all values are greater than 10 heat flow units.
Electrical resistivity well-logging system with solid-state electronic circuitry
Scott, James Henry; Farstad, Arnold J.
1977-01-01
An improved 4-channel electrical resistivity well-logging system for use with a passive probe with electrodes arranged in the 'normal' configuration has been designed and fabricated by Westinghouse Electric Corporation to meet technical specifications developed by the U.S. Geological Survey. Salient features of the system include solid-state switching and current regulation in the transmitter circuit to produce a constant-current source square wave, and synchronous solid-state switching and sampling of the potential waveform in the receiver circuit to provide an analog dc voltage proportions to the measured resistivity. Technical specifications and design details are included in this report.
2012-07-01
units made from the various sensors. This was because the different types of ME laminates have different electrical properties ( resistance and...DC resistance of a sensor (Rdc) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 338 19a. NAME OF...3.3.6. Electric -field tuning effect ..................................................................70 A.3.4. Dielectric loss noise reduction
Shah, Sachin D.; Smith, Bruce D.; Clark, Allan K.; Payne, Jason
2008-01-01
In August 2007, the U.S. Geological Survey, in cooperation with the San Antonio Water System, did a hydrogeologic and geophysical investigation to characterize the hydrostratigraphy (hydrostratigraphic zones) and also the hydrogeologic features (karst features such as sinkholes and caves) of the Edwards aquifer in a 16-square-kilometer area of northeastern Bexar County, Texas, undergoing urban development. Existing hydrostratigraphic information, enhanced by local-scale geologic mapping in the area, and surface geophysics were used to associate ranges of electrical resistivities obtained from capacitively coupled (CC) resistivity surveys, frequency-domain electromagnetic (FDEM) surveys, time-domain electromagnetic (TDEM) soundings, and two-dimensional direct-current (2D-DC) resistivity surveys with each of seven hydrostratigraphic zones (equivalent to members of the Kainer and Person Formations) of the Edwards aquifer. The principal finding of this investigation is the relation between electrical resistivity and the contacts between the hydrostratigraphic zones of the Edwards aquifer and the underlying Trinity aquifer in the area. In general, the TDEM data indicate a two-layer model in which an electrical conductor underlies an electrical resistor, which is consistent with the Trinity aquifer (conductor) underlying the Edwards aquifer (resistor). TDEM data also show the plane of Bat Cave fault, a well-known fault in the area, to be associated with a local, nearly vertical zone of low resistivity that provides evidence, although not definitive, for Bat Cave fault functioning as a flow barrier, at least locally. In general, the CC resistivity, FDEM survey, and 2D-DC resistivity survey data show a sharp electrical contrast from north to south, changing from high resistivity to low resistivity across Bat Cave fault as well as possible karst features in the study area. Interpreted karst features that show relatively low resistivity within a relatively high-resistivity area likely are attributable to clay or soil filling a sinkhole. In general, faults are inferred where lithologic incongruity indicates possible displacement. Along most inferred faults, displacement was not sufficient to place different members of the Kainer or Person Formations (hydrostratigraphic zones) adjacent across the inferred fault plane. In general, the Kainer Formation (hydrostratigraphic zones V through VIII) has a higher resistivity than the Person Formation (hydrostratigraphic zones II through IV). Although resistivity variations from the CC resistivity, FDEM, and 2D-DC resistivity surveys, with mapping information, were sufficient to allow surface mapping of the lateral extent of hydrostratigraphic zones in places, resistivity variations from TDEM data were not sufficient to allow vertical delineation of hydrostratigraphic zones; however, the Edwards aquifer-Trinity aquifer contact could be identified from the TDEM data.
Anisotropy of electrical resistivity in PVT grown WSe2-x crystals
NASA Astrophysics Data System (ADS)
Solanki, G. K.; Patel, Y. A.; Agarwal, M. K.
2018-05-01
Single crystals of p-type WSe2 and WSe1.9 were grown by a physical vapour transport technique. The anisotropy in d.c. electrical resistivity was investigated in these grown crystals. The off-stoichiometric WSe1.9 exhibited a higher anisotropy ratio as compared to WSe2 crystals. The electron microscopic examination revealed the presence of a large number of stacking faults in these crystals. The resistivity enhancement along the c-axis and anisotropic effective mass ratio explained on the basis of structural disorder introduced due to off-stoichiometry.
Backus, Elaine A; Cervantes, Felix A; Godfrey, Larry; Akbar, Waseem; Clark, Thomas L; Rojas, Maria G
This study is the first to fully evaluate whether electrical signals applied to large insects during electropenetrography (EPG; also called electrical penetration graph) negatively affect insect behavior. During EPG, electrical signals are applied to plants, and thus to the gold-wire-tethered insects feeding on them. The insect completes an electrical circuit whose changes in voltage reflect the insect's stylet probing/penetration behaviors, recorded as waveform output. For nearly 50 years of EPG science, evidence has supported that there are no or negligible effects on tiny insects from applied electricity during EPG. Recently however, EPG studies of large-bodied hemipterans such as heteropterans and sharpshooter leafhoppers have been published. The wider stylet diameters of such large insects cause them to have lower inherent resistances to applied signals compared with smaller insects, conveying more electrical current. The present study asked whether such increased currents would affect insect stylet probing, by comparing Lygus lineolaris behaviors on pin-head cotton squares using an AC-DC electropenetrograph. Effects of AC or DC applied signals were separately examined in two factorial studies, each comparing four input resistor (Ri) levels (10 6 , 10 7 , 10 8 and 10 9 Ω) and four applied voltage levels (2, 60, 150 and 250 mV). Results showed that changes in both probing and non-probing behaviors were indeed caused by changing signal type, Ri level, or applied voltage. Negative effects on feeding were numerically greater overall for DC than AC applied signals, perhaps due to muscular tetany from DC; however, AC versus DC could not be statistically tested. Results strongly support the need for flexible Ri and applied voltage levels and types, to tailor instrument settings to the size and special needs of each insect subject. Our findings will facilitate further EPG studies of Lygus spp., such as host plant resistance or insecticidal assays/bioassays to assess mode of action and appropriate dosage. It is hoped that this study will also inform EPG studies of similar, large heteropterans in the future. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gao, Lingxiang; Zhao, Xiaopeng
The aqueous ER elastomers, containing crude organic starch particles which dispersed in gelatin/glycerin/water matrix, were prepared with or without the applied DC electric field. The responses of the composite systems to the electric field were tested by the compression modulus and resistance of the elastomers. The result shows that they are enhanced and controlled evidently under an applied DC electric field. The strongest responses appear at 25% weight fraction of starch. In addition, the increment modulus of the elastomer increases with the strength of the applied field within 0.5~1.5 kV/mm, while after the field is stronger than 1.5 kV/mm it doesn't increase with field, appearing "saturation".
Mental Models of Elementary and Middle School Students in Analyzing Simple Battery and Bulb Circuits
ERIC Educational Resources Information Center
Jabot, Michael; Henry, David
2007-01-01
Written assessment items were developed to probe students' understanding of a variety of direct current (DC) resistive electric circuit concepts. The items were used to explore the mental models that grade 3-8 students use in explaining the direction of electric current and how electric current is affected by different configurations of simple…
Subsurface Ice Detection via Low Frequency Surface Electromagnetic Method
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.; Mcginnis, R. N.
2014-12-01
The geophysical detection of ice in the Cryosphere is typically conducted by measuring the absence of water. These interpretations can become non-unique in dry soils or in clay- and silt-rich soils that contain significant quantities of unfrozen water. Extensive laboratory measurements of electrical properties were made on permafrost samples as a function of frequency, temperature, and water content. These laboratory measurements show that the amount of ice can be uniquely obtained by measuring a frequency dependence of the electrical properties over a large frequency range (20 kHz - 10 Hz). In addition, the electrical properties of permafrost are temperature dependent, which can allow for an estimate of subsurface temperature. In order to test this approach in the field, we performed field surveys at four locations in Alaska. We used three low frequency electromagnetic methods: Spectral Induced Polarization (SIP: 20 kHz - 10 Hz), Capacively Coupled Resistivity (CCR: OhmMapper - 16.5 kHz), and DC Resistivity (Syscal ~ 8 Hz). At the Cold Regions Research and Engineering Laboratory permafrost tunnel near Fox, AK, we used SIP to measure the average ice concentration of 80 v% and determined the temperature to be -3±1°C by matching survey results to lab data. SIP data acquisition is very slow; therefore, at three sites near Tok, AK, we used CCR to perform reconnaissance of the area. Then SIP and DC resistivity were performed at anomalous areas. The three survey types give very similar absolute resistivity values. We found that while SIP gives the most quantitative results, the frequency dependence from the CCR and DC resistivity surveys is all that are needed to determine ice content in permafrost.
Jeffery, A.; Elmquist, R. E.; Cage, M. E.
1995-01-01
Precision tests verify the dc equivalent circuit used by Ricketts and Kemeny to describe a quantum Hall effect device in terms of electrical circuit elements. The tests employ the use of cryogenic current comparators and the double-series and triple-series connection techniques of Delahaye. Verification of the dc equivalent circuit in double-series and triple-series connections is a necessary step in developing the ac quantum Hall effect as an intrinsic standard of resistance. PMID:29151768
A study of some features of ac and dc electric power systems for a space station
NASA Technical Reports Server (NTRS)
Hanania, J. I.
1983-01-01
This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.
Electrical geophysical study over the Norman Landfill, near Norman, Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisdorf, R.J.
In 1995 and 1996 the US Geological Survey made 40 Schlumberger dc electrical resistivity soundings at the Norman Landfill, near Norman, Oklahoma. Interpretation of the resistivity data indicates that high resistivities (>300 ohm-m) are related to dry sand, intermediate resistivities (45-300 ohm-m) are related to freshwater saturated sand, and low resistivities (<45 ohm-m) are related to fine-grained materials or materials saturated with the conductive fluids. Interpreted resistivity maps show a low resistivity anomaly that extends from under the landfill to just past a nearby slough. This anomaly corresponds to known areas of ground water contamination. A resistivity cross section, constructedmore » from interpreted Schlumberger soundings, shows that this low resistivity anomaly is about 5 m deep and up to 9 m thick.« less
NASA Astrophysics Data System (ADS)
Ansari, Mohd Mohsin Nizam; Khan, Shakeel; Bhargava, Richa; Ahmad, Naseem
2018-05-01
Manganese substituted cobalt ferrites, Co1-xMnxFe2O4 (0.0, 0.1, 0.2, 0.3 and 0.4) were successfully synthesized by sol-gel method. XRD analysis confirmed the formation of a single-phase cubic spinel structures having Fd-3m space group and crystallite size is found to be in the range of 12.9 - 15.5 nm. The lattice parameter increased from 8.4109 Å to 8.4531 Å with increasing Mn2+ ion doping. Dielectric constant (ɛ'), dielectric loss (tanδ) and ac conductivity (σac) were analyzed at room temperature as a function of frequency (42 Hz to 5 MHz) and the behavior is explained on the basis of Maxwell-Wagner interfacial polarization. DC electrical resistivity measurements were carried out by two-probe method. DC electrical resistivity decreases with increase in temperature confirms the semiconducting nature of the samples. Impedance spectroscopy method has been used to understand the conduction mechanism and the effect of grains and grain boundary on the electrical properties of the materials.
NASA Astrophysics Data System (ADS)
Cheng, Xuemei; Gotoh, Kazuhiro; Nakagawa, Yoshihiko; Usami, Noritaka
2018-06-01
Electrical and structural properties of TiO2 thin films deposited at room temperature by reactive DC sputtering have been investigated on three different substrates: high resistivity (>1000 Ω cm) float zone Si(1 1 1), float zone Si(1 0 0) and alkali free glass. As-deposited TiO2 films on glass substrate showed extremely high resistivity of (∼5.5 × 103 Ω cm). In contrast, lower resistivities of ∼2 Ω cm and ∼5 Ω cm were obtained for films on Si(1 1 1) and Si(1 0 0), respectively. The as-deposited films were found to be oxygen-rich amorphous TiO2 for all the substrates as evidenced by X-ray photoemission spectroscopy and X-ray diffraction. Subsequent annealing led to appearance of anatase TiO2 on Si but not on glass. The surface of as-deposited TiO2 on Si was found to be rougher than that on glass. These results suggest that the big difference of electrical resistivity of TiO2 would be related with existence of more anatase nuclei forming on crystalline substrates, which is consistent with the theory of charged clusters that smaller clusters tend to adopt the substrate structure.
Giant Permittivity in Epitaxial Ferroelectric Heterostructures
NASA Astrophysics Data System (ADS)
Erbil, A.; Kim, Y.; Gerhardt, R. A.
1996-08-01
A giant permittivity associated with the motion of domain walls is reported in epitaxial hetero- structures having alternating layers of ferroelectric and nonferroelectric oxides. At low frequencies, permittivities as high as 420 000 are found. Real and imaginary parts of the dielectric constant show large dispersion at high frequencies. In dc measurements, a nonlinear resistance is observed with a well-defined threshold field correlated with the dc bias-field dependence of ac permittivities. We interpret the observations as a result of the motion of a pinned domain wall lattice at low electric fields and sliding-mode motion at high electric fields.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, R.K.
1993-05-11
An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, Robert K.
1993-01-01
An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
ELECTRICAL CIRCUITS USING COLD-CATHODE TRIODE VALVES
Goulding, F.S.
1957-11-26
An electrical circuit which may be utilized as a pulse generator or voltage stabilizer is presented. The circuit employs a cold-cathode triode valve arranged to oscillate between its on and off stages by the use of selected resistance-capacitance time constant components in the plate and trigger grid circuits. The magnitude of the d-c voltage applied to the trigger grid circuit effectively controls the repetition rate of the output pulses. In the voltage stabilizer arrangement the d-c control voltage is a portion of the supply voltage and the rectified output voltage is substantially constant.
NASA Astrophysics Data System (ADS)
Kumar, A. Guru Sampath; Obulapathi, L.; Sarmash, T. Sofi; Rani, D. Jhansi; Maddaiah, M.; Rao, T. Subba; Asokan, K.
2015-04-01
Thin films of cadmium (Cd) (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%) doped zinc oxide (ZnO) have been deposited on a glass substrate by reactive DC magnetron sputtering. The synthesized films are characterized by glancing angle x-ray diffraction (GAXRD), UV-Vis-NIR spectroscopy, four probe resistivity measurement, Hall measurement system, field emission-scanning electron microscopy and energy dispersive analysis by x-rays. A systematic study has been made on the structure, electrical and optical properties of Cd doped ZnO thin films as a function of Cd concentration (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%). All these films have a hexagonal wurtzite ZnO structure with (0 0 2) orientation without any Cd related phase from the GAXRD patterns. The grain size was increased and maximum appears at 4 wt.% Cd concentration. The electrical resistivity of the films decreased with the Cd doping and minimum resistivity was observed at 4 wt.% Cd concentration. UV-Vis-NIR studies showed that the optical band gap of ZnO (3.37 eV) was reduced to 3.10 eV which is at 4 wt.% Cd concentration.
Watts, R.D.
1982-01-01
A Schlumberger dc resistivity survey of the Gibson Dome-Lockhart Basin area, San Juan County, Utah, has revealed the following electrical characteristics of the area: (1) the area between the northern part of Davis Canyon and Gibson Dome is electrically quite uniform and resistive at the depth of the Pennsylvanian evaporite deposits, (2) there is a deep conductive anomaly at Horsehead Rock, and (3) there are several shallow and deep electrical anomalies in the vicinity of the Lockhart fault system. No adverse indicators were found for nuclear waste repository siting south of Indian Creek, but additional soundings should be made to increase data density and to extend the survey area southward. The Lockhart fault system appears to have triggered salt dissolution or flow outside the limits of Lockhart Basin; further geophysical work and drilling will be required to understand the origin of the Lockhart Basin structure and its present state of activity. This problem is important because geologic processes that lead to enlargement of the Lockhart Basin structure or to development of similar structures would threaten the integrity of a repository in the Gibson Dome area.
Nonlinear transport behavior of low dimensional electron systems
NASA Astrophysics Data System (ADS)
Zhang, Jingqiao
The nonlinear behavior of low-dimensional electron systems attracts a great deal of attention for its fundamental interest as well as for potentially important applications in nanoelectronics. In response to microwave radiation and dc bias, strongly nonlinear electron transport that gives rise to unusual electron states has been reported in two-dimensional systems of electrons in high magnetic fields. There has also been great interest in the nonlinear response of quantum ballistic constrictions, where the effects of quantum interference, spatial dispersion and electron-electron interactions play crucial roles. In this thesis, experimental results of the research of low dimensional electron gas systems are presented. The first nonlinear phenomena were observed in samples of highly mobile two dimensional electrons in GaAs heavily doped quantum wells at different magnitudes of DC and AC (10 KHz to 20 GHz) excitations. We found that in the DC excitation regime the differential resistance oscillates with the DC current and external magnetic field, similar behavior was observed earlier in AlGaAs/GaAs heterostructures [C.L. Yang et al. ]. At external AC excitations the resistance is found to be also oscillating as a function of the magnetic field. However the form of the oscillations is considerably different from the DC case. We show that at frequencies below 100 KHz the difference is a result of a specific average of the DC differential resistance during the period of the external AC excitations. Secondly, in similar samples, strong suppression of the resistance by the electric field is observed in magnetic fields at which the Landau quantization of electron motion occurs. The phenomenon survives at high temperatures at which the Shubnikov de Haas oscillations are absent. The scale of the electric fields essential for the effect, is found to be proportional to temperature in the low temperature limit. We suggest that the strong reduction of the longitudinal resistance is a result of a nontrivial distribution function of the electrons induced by the DC electric field. We compare our results with a theory proposed recently. The comparison allows us to find the quantum scattering time of 2D electron gas at high temperatures, in a regime, where previous methods were not successful. In addition, we observed a zero differential resistance state (ZDRS) in response to a direct current above a threshold value I > Ith applied to a two-dimensional system of electrons at low temperatures in a strong magnetic field. Entry into the ZDRS, which is not observable above several Kelvins, is accompanied by a sharp dip in the differential resistance. Additional analysis reveals instability of the electrons for I > Ith and an inhomogeneous, non-stationary pattern of the electric current. We suggest that the dominant mechanism leading to the new electron state is the redistribution of electrons in energy space induced by the direct current. Finally, we present the results of rectification of microwave radiation generated by an asymmetric, ballistic dot at different frequencies (1-40GHz), temperatures (0.3K-6K) and magnetic fields. A strong reduction of the microwave rectification is found in magnetic fields at which the cyclotron radius of electron orbits at the Fermi level is smaller than the size of the dot. With respect to the magnetic field, both symmetric and anti-symmetric contributions to the directed transport are presented in this thesis. The symmetric part of the rectified voltage changes significantly with microwave frequency o at otauf ≥ 1, where tau f is the time of a ballistic electron flight across the dot. The results lead consistently toward the ballistic origin of the effect, and can be explained by the strong nonlocal electron response to the microwave electric field, which affects both the speed and the direction of the electron motion inside the dot.
Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007
Haines, Seth S.; Burton, Bethany L.; Sweetkind, Donald S.; Asch, Theodore H.
2008-01-01
In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we inverted, yielding a velocity model that shows lateral heterogeneity similar to the 2006 DC resistivity models. Finally, we collected P-wave data along a second transect in Area 2, located north of the first line and in an area of a very minor fault that was targeted by another 2006 DC resistivity survey. The P-wave refraction velocity model shows generally high velocities, with a zone of somewhat lower velocities in the central part of the transect. The position of the low velocity zone corresponds with the location of a minor fault, though it is unclear whether the two are related. Together, these results demonstrate the value of geophysical data for mapping the subsurface extent of faults. The 2007 DC resistivity data complement the 2006 data and provide important new detail of the overlapping fault splays. The seismic data demonstrate the ability of P-wave refraction methods to identify the damage zones at faults, and they show the difficulties associated with S-wave methods in areas with caliche. Combining all of the geophysical data from the Area 7 studies, we are able to develop a coherent interpretation of the relation between the site geology, the fault, and the observations.
NASA Astrophysics Data System (ADS)
Ali, Rajjab; Gilani, Zaheer Abbas; Shahzad Shifa, Muhammad; Asghar, H. M. Noor Ul Huda Khan; Azhar Khan, Muhammad; Naeem Anjum, Muhammad; Nauman Usmani, Muhammad; Farooq Warsi, Muhammad; Khawaja, Imtiaz U.
2017-11-01
Four series nanocrystalline ferrites with nominal composition, NiZr x Co x Fe2-2x O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8) Ni0.5Sn0.5Co x Mn x Fe2-2x O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8), Mg1-x Ca x Ni y Fe2-y O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8; y = 0, 04, 0.8, 1.2, 1.6) and Mg1-x Ni x Co y Fe2-y O4 (x,y = 0.0, 0.2, 0.4, 0.6, 0.8) have been fabricated using the microemulsion synthesis route. The synthesized materials are investigated for dc electrical resistivity measurements. The variation of dc electrical resistivity of these materials has been explainedon the basis of hopping mechanism of both holes and electrons.
Mountain Plains Learning Experience Guide: Radio and T.V. Repair. Course: D.C. Circuits.
ERIC Educational Resources Information Center
Hoggatt, P.; And Others
One of four individualized courses included in a radio and television repair curriculum, this course deals with the basic electrical properties of current, voltage, resistance, magnetism, mutual induction, and capacitance. The course is comprised of ten units: (1) Current, (2) Voltage, (3) Resistance, (4) Measuring Voltage and Current in Series…
NASA Astrophysics Data System (ADS)
Yaney, Perry P.; Ouchen, Fahima; Grote, James G.
2009-08-01
DC resistivity studies were carried out on biopolymer films of DNA-CTMA and silk fibroin, and on selected traditional polymer films, including PMMA and APC. Films of DNA-CTMA versus molecular weight and with conductive dopants PCBM, BAYTRON P and ammonium tetrachloroplatinate are reported. The films were spin coated on glass slides configured for measurements of volume dc resistance. The measurements used the alternating polarity method to record the applied voltage-dependent current independent of charging and background currents. The Arrhenius equation plus a constant was fitted to the conductivity versus temperature data of the polymers and the non-doped DNA-based biopolymers with activation energies ranging from 0.8 to 1.4 eV.
In situ electric properties of Ag films deposited on rough substrates
NASA Astrophysics Data System (ADS)
Zhou, Hong; Yu, Sen-Jiang; Zhang, Yong-Ju; Chen, Miao-Gen; Jiao, Zhi-Wei; Si, Ping-Zhan
2013-01-01
Silver (Ag) films have been deposited on rough substrates (including frosted glass and silicone grease), and for comparison on flat glass, by DC-magnetron sputtering, and their sheet resistances measured in situ during deposition. It is found that the growth of Ag films proceeds through three distinct stages: discontinuous, semi-continuous, and continuous regimes. The sheet resistance on rough substrates jumps in the vicinity of the percolation threshold, whereas the resistance on flat substrates decreases monotonically during deposition. The abnormal in situ electric properties on rough substrates are well explained based on the differences of the growth mechanism and microstructure of Ag films on different substrates.
NASA Astrophysics Data System (ADS)
Demirbaş, Şevki; Fidanboy, Hikmet; Kurt, Erol
2016-08-01
In this paper, detailed analyses of the chaotic behavior observed in a buck-boost converter are presented. Although this basic converter system is already known world-wide for the purpose of dc-dc conversion of the output of renewable energy systems, it indicates certain chaotic regimes where both the output amplitude and frequency change randomly. This chaotic regime can yield an unstable output over the resistive or resistive/inductive electrical loads. This study presents a detailed map for the regular and chaotic regions in terms of material parameters, such as converter capacitance C, resistive load R, and inductive load L. Thus, the stable area of operation for efficient and renewable electricity production will be ascertained for the studied converter system. We emphasize that the material parameters C, R, and L play important roles in generating energy from the solar cell; indeed, the stability increases with higher values of the converter capacitor and load inductance, whereas it decreases according to the resistive load. A number of periodic windows have been observed and the output frequency gives a broad-band spectrum of up to 50 kHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barone, C., E-mail: cbarone@unisa.it; Mauro, C.; Pagano, S.
Carbon nanotubes added to polymer and epoxy matrices are compounds of interest for applications in electronics and aerospace. The realization of high-performance devices based on these materials can profit from the investigation of their electric noise properties, as this gives a more detailed insight of the basic charge carriers transport mechanisms at work. The dc and electrical noise characteristics of different polymer/carbon nanotubes composites have been analyzed from 10 to 300 K. The results suggest that all these systems can be regarded as random resistive networks of tunnel junctions formed by adjacent carbon nanotubes. However, in the high-temperature regime, contributions derivingmore » from other possible mechanisms cannot be separated using dc information alone. A transition from a fluctuation-induced tunneling process to a thermally activated regime is instead revealed by electric noise spectroscopy. In particular, a crossover is found from a two-level tunneling mechanism, operating at low temperatures, to resistance fluctuations of a percolative network, in the high-temperature region. The observed behavior of 1/f noise seems to be a general feature for highly conductive samples, independent on the type of polymer matrix and on the nanotube density.« less
Magnetic and transport properties of Pr2Pt3Si5
NASA Astrophysics Data System (ADS)
Anand, V. K.; Anupam; Hossain, Z.; Ramakrishnan, S.; Thamizhavel, A.; Adroja, D. T.
2012-08-01
We have investigated the magnetic and transport properties of a polycrystalline Pr2Pt3Si5 sample through the dc and ac magnetic susceptibilities, electrical resistivity, and specific heat measurements. The Rietveld refinement of the powder X-ray diffraction data reveals that Pr2Pt3Si5 crystallizes in the U2Co3Si5-type orthorhombic structure (space group Ibam). Both the dc and ac magnetic susceptibility data measured at low fields exhibit sharp anomaly near 15 K. In contrast, the specific heat data exhibit only a broad anomaly implying no long range magnetic order down to 2 K. The broad Schottky-type anomaly in low temperature specific heat data is interpreted in terms of crystal electric field (CEF) effect, and a CEF-split singlet ground state is inferred. The absence of the long range order is attributed to the presence of nonmagnetic singlet ground state of the Pr3+ ion. The electrical resistivity data exhibit metallic behavior and are well described by the Bloch-Grüniesen-Mott relation.
Enhanced Electrical Resistivity after Rapid Cool of the Specimen in Layered Oxide LixCoO2
NASA Astrophysics Data System (ADS)
Miyoshi, K.; Manami, K.; Takeuchi, J.; Sasai, R.; Nishigori, S.
Measurements of electrical resistivity and DC magnetization for LixCoO2 (x=0.71 and 0.64) have been performed using single crystal specimens. It has been found that electrical resistivity measured after rapid cool of the specimen becomes larger compared with that after slow cool below the temperature TS∽155 K at which charge ordering of Co3+/Co4+(=2:1) occurs. The behavior can be understood considering that the charge ordering can be destroyed by Li ions which are in an amorphous state after rapid cool via the interlayer Coulomb interactions, and also that the disordered Co3+/Co4+ state becomes insulating, while the charge ordered state has a metallic electronic structure, as recently revealed by the scanning tunneling microscopy.
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall
2017-06-01
Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real-time utilization of self-sensing materials in structural health monitoring.
NASA Astrophysics Data System (ADS)
Dupas-Bruzek, C.; Dréan, P.; Derozier, D.
2009-10-01
Chronic nerve recording and stimulation became possible through the use of implanted electrodes cuffs. In particular, self-sizing spiral electrode cuffs limit mechanical damage to the tissue: these have been shown to be suitable for long term implantation in animal and in man. However, up to now, such electrode cuffs were handmade and were hardly reproducible. They possessed a small number of electrodes (dot contacts), each being linked to its own wire. In order to improve the selectivity of nerve recording and/or stimulation (functional electrical stimulation), the numbers of electrodes and tracks have to be increased within the same electrode cuff surface. To fulfill this requirement, we have developed a fabrication process that uses an UV laser to induce surface modification, which activates the silicone rubber and is used with a mask to give high definition tracks and electrodes. After this primary step, silicone rubber is immersed in a Pt autocatalytic bath leading to a selective Pt metallization of the laser activated tracks and electrodes. We report our process as well as the results on the Pt metallization, including its morphology, how the DC resistance of Pt tracks depends on the laser used and the irradiation conditions, and also the electrical resistance of Pt tracks submitted to Scotch tape tests or to imposed strains. We show that (i) the type of laser and the irradiation conditions have a strong influence on the nucleation and growth rate of platinum and thus on the DC resistance of the tracks, (ii) the tracks of width 400 μm and thickness 10 μm have a sheet resistivity of 0.2 Ω/sq, (iii) DC resistance does not change much during a 6 month soak in saline, (iv) strains above 2% breaks the track continuity, and (v) when strains below 53% are relaxed, the DC resistance returns to a low value. This recovery from large tensile strains means that nerve cuffs with such metallization could be handled by the surgeon without great care before and during implantation.
NASA Astrophysics Data System (ADS)
Kabbur, S. M.; Waghmare, S. D.; Ghodake, U. R.; Suryavanshi, S. S.
2018-04-01
Co2+ is a fast relaxing ion which can enhance microwave properties. This work focuses on the synthesis and analysis of Ni0.25-xCoxCu0.30Zn0.45Fe2O4 (x = 0.00, 0.05, 0.01, 0.15, 0.20 and 0.25) ferrites by auto combustion method using glycine as the chelating agent. From X-ray Diffraction (XRD) spectra, the structural parameters are analysed. The lattice parameter (a) decreases due to smaller ionic radius of Co2+ (0.072 nm) which replaces Ni2+ (0.078 nm). Bulk density and porosity measurements show that there are pores and lattice imperfections. The cation distribution of the ferrites based on Neel's two sublattice model is proposed. Transmission Electron Micrographs (TEM) indicate narrow size distribution of spherical shaped nanoparticles. DC electrical resistivity (ρD.C.) is very important factor of low temperature sintered ferrites for MLCI applications. Electroplating of the devices is much affected by electrical resistivity. Maximum DC resistivity (2.89 × 106 Ω-cm) is observed for the sample with x=0.20. The dielectric parameters (ɛ', ɛ″ and tan δ) decrease as the alternating field increases which is due to space charge distribution and hopping mechanism. AC resistivity (ρAC) decreases with frequency, increased concentration of Fe2+ ions induces electron hopping: Fe3+ ↔ Fe2+ at B sites thereby reducing the resistivity. The low dielectric loss factor of 0.07 for x=0.20 ferrite indicates that the sample can be potential candidate for MLCI applications.
DC conductivity and magnetic properties of piezoelectric-piezomagnetic composite system
NASA Astrophysics Data System (ADS)
Hemeda, O. M.; Tawfik, A.; A-Al-Sharif; Amer, M. A.; Kamal, B. M.; El Refaay, D. E.; Bououdina, M.
2012-11-01
A series of composites (1-x) (Ni0.8Zn0.2Fe2O4)+x (BaTiO3), where x=0%, 20%, 40%, 60%, 80% and 100% BT content, have been prepared by the standard ceramic technique, then sintered at 1200 °C for 8 h. X-ray diffraction analysis shows that the prepared composites consist of two phases, ferrimagnetic and ferroelectric. DC electrical resistivity, thermoelectric power, charge carriers concentration and charge carrier mobility have been studied at different temperatures. It was found that the DC electrical conductivity increases with increasing BT content. The values of the thermoelectric power were positive and negative for the composites indicating that there are two conduction mechanisms, hopping and band conduction, respectively. Using the values of DC electrical conductivity and thermoelectric power, the values of charge carrier mobility and the charge carrier concentration were calculated. Magnetic measurements (hysteresis loop and magnetic permeability) show that the magnetization decreases by increasing BT content. M-H loop of pure Ni0.6 Zn0.4 Fe2O4 composite indicates that it is paramagnetic at room temperature and that the magnetization is diluted by increasing the BT content in the composite system. The value of magnetoelectric coefficient for the composites decreases by increasing BT content for all the compositions except for 40% BT content, which may be due to the low resistivity of magnetic phase compared with the BT phase that causes a leakage of induced charges on the piezoelectric phase. Since both ferroelectric and magnetic phases preserve their basic properties in the bulk composite, the present BT-NZF composite are potential candidates for applications as pollution sensors and electromagnetic waves.
Analysis and Countermeasure Study on DC Bias of Main Transformer in a City
NASA Astrophysics Data System (ADS)
Wang, PengChao; Wang, Hongtao; Song, Xinpu; Gu, Jun; Liu, yong; Wu, weili
2017-07-01
According to the December 2015 Guohua Beijing thermal power transformer DC magnetic bias phenomenon, the monitoring data of 24 hours of direct current is analyzed. We find that the maximum DC current is up to 25 and is about 30s for the trend cycle, on this basis, then, of the geomagnetic storm HVDC and subway operation causes comparison of the mechanism, and make a comprehensive analysis of the thermal power plant’s geographical location, surrounding environment and electrical contact etc.. The results show that the main reason for the DC bias of Guohua thermal power transformer is the operation of the subway, and the change of the DC bias current is periodic. Finally, of Guohua thermal power transformer DC magnetic bias control method is studied, the simulation results show that the method of using neutral point with small resistance or capacitance can effectively inhibit the main transformer neutral point current.
de Campos, Vânia Emerich Bucco; Teixeira, Cesar Augusto Antunes; da Veiga, Venicio Feo; Júnior, Eduardo Ricci; Holandino, Carla
2010-01-01
Inhibition of tumor growth induced by treatment with direct electric current (DC) has been reported in several models. One of the mechanisms responsible for the antitumoral activity of DC is the generation of oxidative species, known as chloramines. With the aim of increasing chloramine production in the electrolytic medium and optimizing the antitumoral effects of DC, poly(ɛ-caprolactone) (PCL) nanoparticles (NPs) loaded with the amino acid tyrosine were obtained. The physical–chemical characterization showed that the NPs presented size in nanometric range and monomodal distribution. A slightly negative electrokinetic potential was also found in both blank NPs and l-tyrosine-loaded PCL NPs. The yield of the loading process was approximately 50%. Within 3 h of dissolution assay, a burst release of about 80% l-tyrosine was obtained. The in vitro cytotoxicity of DC was significantly increased when associated with l-tyrosine-loaded NPs, using a murine multidrug-resistant melanoma cell line model. This study showed that the use of the combination of nanotechnology and DC has a promising antineoplastic potential and opens a new perspective in cancer therapy. PMID:21187948
Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink
NASA Astrophysics Data System (ADS)
Xiong, Liuyang; Tang, Lihua; Liu, Kefu; Mace, Brian R.
2018-05-01
A piezoelectric vibration energy harvester (PVEH) is capable of converting waste or undesirable ambient vibration energy into useful electric energy. However, conventional PVEHs typically work in a narrow frequency range, leading to low efficiency in practical application. This work proposes a PVEH based on the principle of the nonlinear energy sink (NES) to achieve broadband energy harvesting. An alternating current circuit with a resistive load is first considered in the analysis of the dynamic properties and electric performance of the NES-based PEVH. Then, a standard rectifying direct current (DC) interface circuit is developed to evaluate the DC power from the PVEH. To gain insight into the NES mechanism involved, approximate analysis of the proposed PVEH systems under harmonic excitation is sought using the mixed multi-scale and harmonic balance method and the Newton–Raphson harmonic balance method. In addition, an equivalent circuit model (ECM) of the electromechanical system is derived and circuit simulations are conducted to explore and validate the energy harvesting and vibration absorption performance of the proposed NES-based PVEH. The response is also compared with that obtained by direct numerical integration of the equations of motion. Finally, the optimal resistance to obtain the maximum DC power is determined based on the Newton–Raphson harmonic balance method and validated by the ECM. In general, the NES-based PVEH can absorb the vibration from the primary structure and collect electric energy within a broad frequency range effectively.
NASA Astrophysics Data System (ADS)
Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook
2013-11-01
High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.
Intrinsic electrical properties of LuFe2O4
NASA Astrophysics Data System (ADS)
Lafuerza, Sara; García, Joaquín; Subías, Gloria; Blasco, Javier; Conder, Kazimierz; Pomjakushina, Ekaterina
2013-08-01
We here revisit the electrical properties of LuFe2O4, compound candidate for exhibiting multiferroicity. Measurements of dc electrical resistivity as a function of temperature, electric-field polarization measurements at low temperatures with and without magnetic field, and complex impedance as a function of both frequency and temperature were carried out in a LuFe2O4 single crystal, perpendicular and parallel to the hexagonal c axis, and in several ceramic polycrystalline samples. Resistivity measurements reveal that this material is a highly anisotropic semiconductor, being about two orders of magnitude more resistive along the c axis. The temperature dependence of the resistivity indicates a change in the conduction mechanism at TCO ≈ 320 K from thermal activation above TCO to variable range hopping below TCO. The resistivity values at room temperature are relatively small and are below 5000 Ω cm for all samples but we carried out polarization measurements at sufficiently low temperatures, showing that electric-field polarization curves are a straight line as expected for a paraelectric or antiferroelectric material. Furthermore, no differences are found in the polarization curves when a magnetic field is applied either parallel or perpendicular to the electric field. The analysis of the complex impedance data corroborates that the claimed colossal dielectric constant is a spurious effect mainly derived from the capacitance of the electrical contacts. Therefore, our data unequivocally evidence that LuFe2O4 is not ferroelectric.
Veal, B. W.; Eastman, J. A.
2017-03-01
Thin film In 2O 3/YSZ heterostructures exhibit significant increases in electrical conductance with time when small in-plane electric fields are applied. Contact resistances between the current electrodes and film, and between current electrodes and substrate are responsible for the behavior. With an in-plane electric field, different field profiles are established in the two materials, with the result that oxygen ions can be driven across the heterointerface, altering the doping of the n-type In 2O 3. Furthermore, a low frequency inductive feature observed in AC impedance spectroscopy measurements under DC bias conditions was found to be due to frequency-dependent changes inmore » the contact resistance.« less
NASA Astrophysics Data System (ADS)
Finizola, Anthony; Ricci, Tullio; Antoine, Raphael; Delcher, Eric; Peltier, Aline; Bernard, Julien; Brothelande, Elodie; Fargier, Yannick; Fauchard, Cyrille; Foucart, Brice; Gailler, Lydie; Gusset, Rachel; Lazarte, Ivonne; Martin, Erwan; Mézon, Cécile; Portal, Angélie; Poret, Matthieu; Rossi, Matteo
2016-04-01
In the framework of the EC FP7 project "MEDiterranean SUpersite Volcanoes", one profile coupling DC electrical resistivity tomography (Pole-Dipole configuration with a remote electrode located between 8-10 km from the middle of the different acquisitions, 64 electrodes and 40 m spacing between the electrodes), self-potential, soil CO2 degassing, Radon measurements and sub-surface (30cm depth) temperature have been performed between June 25th and July 13th 2015. This profile, NE-SW direction, crossed the summit part of Mount Etna. A total 5720m of profile was performed, with a roll along protocol of 1/4 of the dispositive, for each new acquisitions. A total of 6 acquisitions was made to complete the entire profile. For the first time in the world, a multi-electrodes DC ERT profile, of high resolution (40 m of spacing between the electrodes) reached, thanks to a pole-dipole configuration, 900m for the depth of investigation. The ERT profile clearly evidences the hydrothermal system of Mount Etna: the lowest resistivity values are associated with a large scale positive self-potential anomaly, and smaller wavelength anomalies for temperature, CO2 concentration and Radon, in the area where the electrical conductor reach the surface. Structural discontinuities such as the Elliptic crater, was clearly evidenced by a sharp decrease of the self-potential values in the inner part of this crater. The striking result of this profile is the presence of a resistive body located just below the NE crater. This structure displays the highest degassing values of the entire profile. We interpret this resistive body as a consequence of the thermic over-heated plume rising from the top of the shallow feeding system. Indeed, above several hundred of degrees Celsuis, it is impossible to consider rain water infiltration and the presence of a wet hydrothermal system. The consequence would be therefore to obtain this resistive body, centred on the area of main heat transfer. Above this resistive body, we clearly note a preferential hydrothermal fluid flow, associated with maximum of self-potential anomaly, temperature and radon, and reaching the surface on the highest elevation area along the profile.
NASA Astrophysics Data System (ADS)
Awan, M. S.; Maqsood, M.; Mirza, S. A.; Yousaf, M.; Maqsood, A.
1995-02-01
(Bi1-xPbx:)2Sr2Ca2Cu3Oy ( x = 0.3) high critical transition temperature ( T c) superconductors are synthesized by the solid-state reaction method in polycrystalline form. X-ray diffraction (XRD) studies, direct current (dc) electrical resistivity measurements, scanning electron microscopic (SEM) studies, critical current density measurements, and zero-field alternating current (ac) susceptibility measurements are performed to investigate the physical changes, structural changes, and magnetic behavior of the superconducting samples. X-ray diffraction studies show that a high T c phase exists with orthorhombic symmetry in the specimen. According to the XRD data, the lattice parameters of the high T c phase were determined as a = 0.537(1) nm, b = 0.539(1) nm, and c = 3.70(1) nm. The compound exhibits a superconducting transition at 106 ±1 K for zero resistance. The ac susceptibility measurements in zero field confirm the dc electrical resistivity results; hence both support the XRD results. The particle size and structural changes as a function of the cold-pressing and aging effect are also reported.
On the use of doped polyethylene as an insulating material for HVDC cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, M.S.
1996-12-31
The merits of HVDC cables with polymeric insulation are well recognized. However, the development of such cables is still hampered due to the problems resulting from the complicated dependence of the electrical conductivity of the polymer on the temperature and the dc electric field and the effects of space charge accumulation in this material. Different methods have been suggested to solve these problems yet none of these methods seem to give a conclusive solution. The present report provides, firstly a critical review of the previous works reported in the literature concerning the development of HVDC cables with polymeric insulation. Differentmore » aspects of those works are examined and discussed. Secondly, an account is given on an investigation using low density polyethylene (LDPE) doped with an inorganic additive as a candidate insulating material for HVDC cables. Preliminary results from measurements of dc breakdown strength and insulation resistivity of both the undoped and the doped materials are presented. It is shown that the incorporation of an inorganic additive into LDPE has improved the performance of the doped material under polarity reversal dc conditions at room temperature. Moreover, the dependency of the insulation resistivity on temperature for the doped material appears to be beneficially modified.« less
Tierney, Brian D.; Choi, Sukwon; DasGupta, Sandeepan; ...
2017-08-16
A distributed impedance “field cage” structure is proposed and evaluated for electric field control in GaN-based, lateral high electron mobility transistors (HEMTs) operating as kilovolt-range power devices. In this structure, a resistive voltage divider is used to control the electric field throughout the active region. The structure complements earlier proposals utilizing floating field plates that did not employ resistively connected elements. Transient results, not previously reported for field plate schemes using either floating or resistively connected field plates, are presented for ramps of dV ds /dt = 100 V/ns. For both DC and transient results, the voltage between the gatemore » and drain is laterally distributed, ensuring the electric field profile between the gate and drain remains below the critical breakdown field as the source-to-drain voltage is increased. Our scheme indicates promise for achieving breakdown voltage scalability to a few kV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tierney, Brian D.; Choi, Sukwon; DasGupta, Sandeepan
A distributed impedance “field cage” structure is proposed and evaluated for electric field control in GaN-based, lateral high electron mobility transistors (HEMTs) operating as kilovolt-range power devices. In this structure, a resistive voltage divider is used to control the electric field throughout the active region. The structure complements earlier proposals utilizing floating field plates that did not employ resistively connected elements. Transient results, not previously reported for field plate schemes using either floating or resistively connected field plates, are presented for ramps of dV ds /dt = 100 V/ns. For both DC and transient results, the voltage between the gatemore » and drain is laterally distributed, ensuring the electric field profile between the gate and drain remains below the critical breakdown field as the source-to-drain voltage is increased. Our scheme indicates promise for achieving breakdown voltage scalability to a few kV.« less
High-resolution, cryogenic, side-entry type specimen stage
King, Wayne E.; Merkle, Karl L.
1979-01-01
A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.
Strus, Mark C; Chiaramonti, Ann N; Kim, Young Lae; Jung, Yung Joon; Keller, Robert R
2011-07-01
We investigate the electrical reliability of nanoscale lines of highly aligned, networked, metallic/semiconducting single-walled carbon nanotubes (SWCNTs) fabricated through a template-based fluidic assembly process. We find that these SWCNT networks can withstand DC current densities larger than 10 MA cm(-2) for several hours and, in some cases, several days. We develop test methods that show that the degradation rate, failure predictability and total device lifetime can be linked to the initial resistance. Scanning electron and transmission electron microscopy suggest that fabrication variability plays a critical role in the rate of degradation, and we offer an empirical method of quickly determining the long-term performance of a network. We find that well-fabricated lines subject to constant electrical stress show a linear accumulation of damage reminiscent of electromigration in metallic interconnects, and we explore the underlying physical mechanisms that could cause such behavior.
Sialons as high temperature insulators
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Kuo, Y. S.
1978-01-01
Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.
NASA Astrophysics Data System (ADS)
Eddy-Miller, C.; Caldwell, R.; Wheeler, J.; McCarthy, P.; Binley, A. M.; Constantz, J. E.; Stonestrom, D. A.
2009-12-01
Anthropogenically impacted landscapes constitute rising proportions of the Earth’s surface that are characterized by generally elevated nutrient and sediment loadings concurrent with increased consumptive water withdrawals. In recent years a growing number of hydraulically engineered riparian habitat restoration projects have attempted to ameliorate negative impacts of land use on groundwater-surface water systems resulting, e.g., from agricultural practices and urban development. Often the nature of groundwater-surface water interactions in pre- and minimally altered systems is poorly known, making it difficult to assess the impacts of land use and restoration projects on groundwater sustainability. Traditional assessments of surface water parameters (flow, temperature, dissolved oxygen, biotic composition, etc.) can be complemented by hydraulic and thermal measurements to better understand the important role played by groundwater-surface water interactions. Hydraulic and thermal measurements are usually limited to point samples, however, making non-invasive and spatially extensive geophysical characterizations an attractive additional tool. Groundwater-surface water interactions along the Smith River, a tributary to the Missouri River in Montana, and Fish Creek and Flat Creek, tributaries to the Snake River in Wyoming, are being examined using a combination of hydraulic measurements, thermal tracing, and electrical-property imaging. Ninety-two direct-current (DC) resistivity and induced polarization cross sections were obtained at stream transects covering a wide variety of hydrogeologic settings ranging from shallow bedrock to thick alluvial sequences, nature of groundwater-surface water interactions (always gaining, always losing, or seasonally varying) and anthropogenic impacts (minimal low-intensity agriculture to major landscape engineering, including channel reconstruction). DC resistivity and induced polarization delineated mutually distinct features related to hydraulic architecture. For example, induced polarization imaging resolved channel-edge muck deposits that are presumed to be sites of low hydraulic conductivity, chemical reduction, and metal accumulation. DC resistivity delineated bedrock-alluvium contacts and showed potential for tracking changes in salinization. While electrical properties cannot substitute for hydraulic and thermal data, the addition of relatively rapidly acquired, spatially extensive resistivity and induced polarization imaging offers synergistic opportunities for interpretive hydrologic investigations.
Better Modeling of Electrostatic Discharge in an Insulator
NASA Technical Reports Server (NTRS)
Pekov, Mihail
2010-01-01
An improved mathematical model has been developed of the time dependence of buildup or decay of electric charge in a high-resistivity (nominally insulating) material. The model is intended primarily for use in extracting the DC electrical resistivity of such a material from voltage -vs.- current measurements performed repeatedly on a sample of the material over a time comparable to the longest characteristic times (typically of the order of months) that govern the evolution of relevant properties of the material. This model is an alternative to a prior simplistic macroscopic model that yields results differing from the results of the time-dependent measurements by two to three orders of magnitude.
Narrowband noise study of sliding charge density waves in NbSe3 nanoribbons
NASA Astrophysics Data System (ADS)
Onishi, Seita; Jamei, Mehdi; Zettl, Alex
2017-02-01
Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n c , reflective of the CDW order parameter Δ. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Δ decreases dramatically with decreasing sample thickness.
Designing, Constructing, and Using an Inexpensive Electronic Buret
ERIC Educational Resources Information Center
Cao, Tingting; Zhang, Qing; Thompson, Jonathan E.
2015-01-01
A syringe-based, electronic fluid dispenser is described. The device mechanically connects a syringe plunger to a linear slide potentiometer. As the syringe plunger moves, the electrical resistance between terminals of the potentiometer varies. Application and subsequent measurement of a DC voltage between the potentiometer pins is used to track…
Electrical Tomography for seismic hazard monitoring: state-of-the-art and future challenges.
NASA Astrophysics Data System (ADS)
Lapenna, Vincenzo; Piscitelli, Sabatino
2010-05-01
The Self-Potential (passive) and DC resistivity (active) methods have been considered for a long period as ancillary and/or secondary tools in geophysical exploration, simplified procedures for data processing and purely qualitative techniques for data inversion were the main drawbacks. Recently, innovative algorithms for tomographic data inversion, new models for describing the electrokinetic phenomena associated to the subsurface fluid migration and modern technologies for the field surveying have rapidly transformed these geoelectrical methods in powerful tools for geo-hazard monitoring. These technological and methodological improvements disclose the way for a wide spectra of interesting and challenging applications: mapping of the water content in landslide bodies; identification of fluid and gas emissions in volcanic areas; search of earthquake precursors. In this work we briefly resume the current start-of-the-art and analyse the new applications of the Electrical Tomography in the seismic hazard monitoring. An overview of the more interesting results obtained in different worldwide areas (i.e. Mediterranean Basin, California, Japan) is presented and discussed. To-date, combining novel techniques for data inversion and new strategies for the field data acquisition is possible to obtain high-resolution electrical images of complex geological structures. One of the key challenges for the near-future will be the integration of active (DC resistivity) and passive (Self-Potential) measurements for obtaining 2D, 3D and 4D electrical tomographies able to follow the spatial and temporal dynamics of electrical parameters (i.e. resistivity, self-potential). This approach could reduce the ambiguities related to the interpretation of anomalous SP signals in seismic active areas and their applicability for short-term earthquake prediction. The resistivity imaging can be applied for illuminating the fault geometry, while the SP imaging is the key instrument for capturing the fingerprints of the electrokinetic phenomena potentially generated in focal regions.
NASA Astrophysics Data System (ADS)
Rady, K. E.; Shams, M. S.
2017-03-01
Ferrite samples with general chemical formula Mn0.9Zn0.1Ni0.05Ti0.05GdtFe1.9-tO4; (0.0≤ t≤0.05; step 0.01) were prepared using solid state reaction technique and the effect of Gd3+ ions incorporation on its physical properties has been studied. From the obtained results, XRD analysis reveals that the samples have a cubic spinel single phase structure for 0.0≤ t≤0.02; while for t≥0.03 a small peak of secondary phase (Gd3Fe5O12) appears and becomes more noticeable with increasing Gd content. The lattice parameter (a) of the prepared samples was found to be initially increases and then decreases with increasing Gd content which may be attributed to the difference in the ionic radii of the cations involved and the solubility limit of Gd3+ ions. The crystallite size of the samples was estimated using Scherrer's equation and ranged from 96 nm to 107 nm. A vibrating sample magnetometer (VSM) was used at room temperature in order to study the effect of Gd content on the magnetic hysteresis parameters of the prepared ferrites such as saturation magnetization and coercivity. DC molar magnetic susceptibility (χM) for the prepared samples was measured using Faraday's method as a function of temperature and the Curie temperature was calculated from the magnetic susceptibility measurements. Also the DC resistivity of the samples was measured at room temperature. The obtained results show that, the substitution by Gd3+ ions improves the electrical properties of the samples by increasing it DC electrical resistivity by 118% and consequently decreases it eddy current loss while the saturation magnetization slightly decreased by 14% only. The sample of t=0.01 shows a high dc magnetic susceptibility, high saturation magnetization (43.1 emu/g), high electric resistivity 12×103 Ω.m and high Curie temperature (496 K), which is useful in some technological applications such as transformer and inductor cores.
Laboratory measurements of electrical resistivity versus water content on small soil cores
NASA Astrophysics Data System (ADS)
Robain, H.; Camerlynck, C.; Bellier, G.; Tabbagh, A.
2003-04-01
The assessment of soil water content variations more and more leans on geophysical methods that are non invasive and that allow a high spatial sampling. Among the different methods, DC electrical imaging is moving forward. DC Electrical resistivity shows indeed strong seasonal variations that principally depend on soil water content variations. Nevertheless, the widely used Archie's empirical law [1], that links resistivity with voids saturation and water conductivity is not well suited to soil materials with high clay content. Furthermore, the shrinking and swelling properties of soil materials have to be considered. Hence, it is relevant to develop new laboratory experiments in order to establish a relation between electrical resistivity and water content taking into account the rheological and granulometrical specificities of soil materials. The experimental device developed in IRD laboratory allows to monitor simultaneously (i) the water content, (ii) the electrical resistivity and (iii) the volume of a small cylindrical soil core (100cm3) put in a temperature controlled incubator (30°C). It provides both the shrinkage curve of the soil core (voids volume versus water content) and the electrical resistivity versus water content curve The modelisation of the shrinkage curve gives for each moisture state the water respectively contained in macro and micro voids [2], and then allows to propose a generalized Archie's like law as following : 1/Rs = 1/Fma.Rma + 1/Fmi.Rmi and Fi = Ai/(Vi^Mi.Si^Ni) with Rs : the soil resistivity. Fma and Fmi : the so called "formation factor" for macro and micro voids, respectively. Rma and Rmi : the resistivity of the water contained in macro and micro voids, respectively. Vi : the volume of macro and micro voids, respectively. Si : the saturation of macro and micro voids, respectively. Ai, Mi and Ni : adjustment coefficients. The variations of Rmi are calculated, assuming that Rma is a constant. Indeed, the rise of ionic concentration in water may be neglected during the sewage of macro voids as it corresponds to a small quantity of water for the studied samples. Soil solid components are generally electrical insulators, the conduction of electrical current only lies on two phenomenon occurring in water : (i) volume conduction controlled by the electrolyte concentration in water and the geometrical characteristics of macro voids network ; (ii) surface conduction controlled by the double diffuse layer that depends on the solid-liquid interactions, the specific surface of clay minerals and the geometry of particles contacts. For the water contained in macro voids the preeminent phenomenon seems to be volume conduction while for the water contained in micro voids, it seems to be surface conduction. This hypothesis satisfyingly explains the shape of the electrical resistivity versus water content curves obtained for three different oxisols with clayey, clayey-sandy and sandy-clayey texture. [1] Archie G.E. 1942. The electrical resistivity log as an aid in determining some reservoirs characteristics. Trans. AIME, 146, 54-67. [2] Braudeau E. et al. 1999. New device and method for soil shrinkage curve measurement and characterization. S.S.S.A.J., 63(3), 525-535.
Inversion of quasi-3D DC resistivity imaging data using artificial neural networks
NASA Astrophysics Data System (ADS)
Neyamadpour, Ahmad; Wan Abdullah, W. A. T.; Taib, Samsudin
2010-02-01
The objective of this paper is to investigate the applicability of artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of an inversion using an artificial neural network technique. The model used to produce synthetic data to train the artificial neural network was a homogeneous medium of 100Ωm resistivity with an embedded anomalous body of 1000Ωm resistivity. The network was trained using 21 datasets (comprising 12159 data points) and tested on another 11 synthetic datasets (comprising 6369 data points) and on real field data. Another 24 test datasets (comprising 13896 data points) consisting of different resistivities for the background and the anomalous bodies were used in order to test the interpolation and extrapolation of network properties. Different learning paradigms were tried in the training process of the neural network, with the resilient propagation paradigm being the most efficient. The number of nodes, hidden layers, and efficient values for learning rate and momentum coefficient have been studied. Although a significant correlation between results of the neural network and the conventional robust inversion technique was found, the ANN results show more details of the subsurface structure, and the RMS misfits for the results of the neural network are less than seen with conventional methods. The interpreted results show that the trained network was able to invert quasi-3D electrical resistivity imaging data obtained by dipole-dipole configuration both rapidly and accurately.
Low-temperature DC-contact piezoelectric switch operable in high magnetic fields
NASA Astrophysics Data System (ADS)
Kaltenbacher, Thomas; Caspers, Fritz; Doser, Michael; Kellerbauer, Alban; Pribyl, Wolfgang
2013-11-01
A piezoelectric single-pole single-throw (SPST) switch has been developed, since there is no satisfying commercial low-resistance, high current DC-contact RF switch available which is operable at 4.2 K and in a high magnetic field of at least 0.5 T. This piezoelectric switch shows very low insertion loss of less than -0.1 dB within a bandwidth of 100 MHz when operated at 4.2 K. The switch could also be used to mechanically disconnect and connect electrodes or electrical circuits from one another.
Tuned-circuit dual-mode Johnson noise thermometers
NASA Astrophysics Data System (ADS)
Shepard, R. L.; Carroll, R. M.; Falter, D. D.; Blalock, T. V.; Roberts, M. J.
1992-02-01
Dual-mode Johnson noise and direct current (DC) resistance thermometers can be used in control systems where prompt indications of temperature changes and long-term accuracy are needed. Such a thermometer is being developed for the SP-100 space nuclear electric power system that requires temperature measurement at 1400 K in space for 10 years, of which 7 are expected to be at full reactor power. Several direct coupled and transformer coupled, tuned resistance inductance capacitance (RLC) circuits that produce a single, continuous voltage signal were evaluated for noise temperature measurement. The simple direct coupled RLC circuit selected provides a mean squared noise voltage that depends only on the capacitance used and the temperature of the sensor, and it is independent of the value of or changes in the sensor resistance. These circuits provide a noise signal with long term accuracy but require integrating noise signals for a finite length of time. The four wire resistor for the noise temperature sensor allows simultaneous DC resistance measurements to be made that provide a prompt, continuous temperature indication signal. The DC current mode is employed continuously, and a noise voltage measurement is made periodically to correct the temperature indication. The differential noise voltage preamplifier used substantially reduces electromagnetic interference (EMI) in the system. A sensor has been tested that should provide good performance (+/- 1 percent accuracy) and long-term (10 year) reliability in space environments. Accurate noise temperature measurements were made at temperatures above 1300 K, where significant insulator shunting occurs, even though shunting does affect the dc resistance measurements and makes the system more susceptible to EMI.
Electrical transport in AZO nanorods
NASA Astrophysics Data System (ADS)
Yildiz, A.; Cansizoglu, H.; Karabacak, T.
2015-10-01
Al-doped ZnO (AZO) nanorods (NRs) with different lengths were deposited by utilizing glancing angle deposition (GLAD) technique in a DC sputter system at room temperature. The structural and optical characteristics of the NRs were investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis-NIR spectroscopy measurements. A band gap of about 3.5 eV was observed for the NRs. A novel capping process utilizing varying deposition angles was used to introduce a blanket metal top contact for the electrical characterization of NRs. Current-voltage (I-V) measurements were used to properly evaluate the approximate resistivity of a single NR. The electrical conduction was found to be governed by the thermally activated transport mechanism. Activation energy was determined as 0.14 eV from temperature dependent resistivity data.
NASA Astrophysics Data System (ADS)
Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim
2018-04-01
In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.
NASA Astrophysics Data System (ADS)
Liu, Jianxing; Laghrouche, Salah; Wack, Maxime
2014-06-01
In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.
Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini
2015-01-01
The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.
Synthesis and Characterization of Molybdenum (Mo) Thin Films Using DC-Magnetron Sputtering
NASA Astrophysics Data System (ADS)
Pandharkar, Subhash M.; Rondiya, Sachin R.; Rokade, Avinash V.; Gabhale, Bharat B.; Pathan, Habib M.; Jadkar, Sandesh R.
2018-03-01
In present work, we report synthesis of Mo thin films by DC-magnetron sputtering method. The structural, optical, morphological and electrical properties were investigated as a function of target-to-substrate distance. From the results, it is evident that with increase in target-to-substrate distance the thickness of films decreases while its sheet resistance and electrical resistivity increases, which is confirmed by van der Pauw method. Low angle XRD analysis revealed that with increase in target-to-substrate distance preferred orientation of Mo crystallites changes from (211) to (110) and its size decreases. The FE-SEM analysis revealed a significant change in surface morphology with increase in target-to-substrate distance. UV-Visible spectroscopy analysis showed that Mo films deposited at high target-to-substrate distance have more reflection than those deposited at lower target-to-substrate. Finally, adhesion test was performed using scotch hatch tape adhesion test which show all Mo films have excellent adhesion over the entire range of target-to-substrate distance studied. The employment of such Mo films as back contact can be useful to improve efficiency of CZTS solar cells.
DC Magnetron Sputtered IZTO Thin Films for Organic Photovoltaic Application.
Lee, Hye Ji; Noviyana, Imas; Putri, Maryane; Koo, Chang Young; Lee, Jung-A; Kim, Jeong-Joo; Jeong, Youngjun; Lee, Youngu; Lee, Hee Young
2018-02-01
IZTO20 (In0.6Zn0.2Sn0.2O1.5) ceramic target was prepared from oxide mixture of In2O3, ZnO, and SnO2 powders. IZTO20 thin films were then deposited onto glass substrate at 400 °C by DC magnetron sputtering. The average optical transmittance determined by ultraviolet-visible spectroscopy was higher than 85% for all films. The minimum resistivity of the annealed IZTO20 thin film was approximately 6.1×10-4 Ω·cm, which tended to increase with decreasing indium content. Substrate heating and annealing were found to be important parameters affecting the electrical and optical properties. An organic photovoltaic (OPV) cell was fabricated using the IZTO20 film deposited under the optimized condition as an anode electrode and the efficiency of up to 80% compared to that of a similar OPV cell using ITO film was observed. Reduction of surface roughness and electrical resistivity through annealing treatment was found to contribute to the improved efficiency of the OPV cell.
The constant current loop: A new paradigm for resistance signal conditioning
NASA Astrophysics Data System (ADS)
Anderson, Karl F.
1994-02-01
A practical single constant current loop circuit for the signal conditioning of variable-resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature detector are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) dc response; (2) the electrical output is unaffected by extremely large variation in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation wires can serve multiple independent gages. An adaptation of current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications.
The constant current loop: A new paradigm for resistance signal conditioning
NASA Astrophysics Data System (ADS)
Anderson, Karl F.
1992-10-01
A practical single constant current loop circuit for the signal conditioning of variable resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable resistance sensors. Lead wires connect variable resistance sensors to remotely located signal conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) dc response; (2) the electrical output is unaffected by extremely large variations in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation wires can serve multiple independent gages. An adaptation of current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications.
The constant current loop: A new paradigm for resistance signal conditioning
NASA Astrophysics Data System (ADS)
Anderson, Karl F.
A practical, single, constant-current loop circuit for the signal conditioning of variable-resistance transducers was synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) the dc response; (2) the electrical output is unaffected by extremely large variations in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation and sense wires can serve multiple independent gages. An adaptation of the current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications.
The constant current loop: A new paradigm for resistance signal conditioning
NASA Technical Reports Server (NTRS)
Anderson, Karl F.
1994-01-01
A practical single constant current loop circuit for the signal conditioning of variable-resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature detector are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) dc response; (2) the electrical output is unaffected by extremely large variation in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation wires can serve multiple independent gages. An adaptation of current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications.
The constant current loop: A new paradigm for resistance signal conditioning
NASA Technical Reports Server (NTRS)
Anderson, Karl F.
1993-01-01
A practical, single, constant-current loop circuit for the signal conditioning of variable-resistance transducers was synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) the dc response; (2) the electrical output is unaffected by extremely large variations in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation and sense wires can serve multiple independent gages. An adaptation of the current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications.
Advanced Cell-Level Control for Extending Electric Vehicle Battery Pack Lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, M. Muneeb Ur; Zhang, Fan; Evzelman, Michael
A cell-level control approach for electric vehicle battery packs is presented that enhances traditional battery balancing goals to not only provide cell balancing but also achieve significant pack lifetime extension. These goals are achieved by applying a new life-prognostic based control algorithm that biases individual cells differently based on their state of charge, capacity and internal resistance. The proposed life control approach reduces growth in capacity mismatch typically seen in large battery packs over life while optimizing usable energy of the pack. The result is a longer lifetime of the overall pack and a more homogeneous distribution of cell capacitiesmore » at the end of the first life for vehicle applications. Active cell balancing circuits and associated algorithms are used to accomplish the cell-level life extension objectives. This paper presents details of the cell-level control approach, selection and design of the active balancing system, and low-complexity state-of-charge, capacity, and series-resistance estimation algorithms. A laboratory prototype is used to demonstrate the proposed control approach. The prototype consists of twenty-one 25 Ah Panasonic lithium-Ion NMC battery cells from a commercial electric vehicle and an integrated BMS/DC-DC system that provides 750 W to the vehicle low voltage auxiliary loads.« less
Advanced Cell-Level Control for Extending Electric Vehicle Battery Pack Lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, M. Muneeb Ur; Zhang, Fan; Evzelman, Michael
2017-02-16
A cell-level control approach for electric vehicle battery packs is presented that enhances traditional battery balancing goals to not only provide cell balancing but also achieve significant pack lifetime extension. These goals are achieved by applying a new life-prognostic based control algorithm that biases individual cells differently based on their state of charge, capacity and internal resistance. The proposed life control approach reduces growth in capacity mismatch typically seen in large battery packs over life while optimizing usable energy of the pack. The result is a longer lifetime of the overall pack and a more homogeneous distribution of cell capacitiesmore » at the end of the first life for vehicle applications. Active cell balancing circuits and associated algorithms are used to accomplish the cell-level life extension objectives. This paper presents details of the cell-level control approach, selection and design of the active balancing system, and low-complexity state-of-charge, capacity, and series-resistance estimation algorithms. A laboratory prototype is used to demonstrate the proposed control approach. The prototype consists of twenty-one 25 Ah Panasonic lithium-Ion NMC battery cells from a commercial electric vehicle and an integrated BMS/DC-DC system that provides 750 W to the vehicle low voltage auxiliary loads.« less
Narrowband noise study of sliding charge density waves in NbSe 3 nanoribbons
Onishi, Seita; Jamei, Mehdi; Zettl, Alex
2017-01-12
Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe 3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n c , reflective of the CDW order parameter Δ. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Δ decreases dramatically with decreasingmore » sample thickness.« less
Hybrid electric vehicle power management system
Bissontz, Jay E.
2015-08-25
Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.
Tiong, Leong U; Finnie, John W; Field, John B; Maddern, Guy J
2012-07-01
In bimodal electric tissue ablation (BETA), the cathode of the DC circuit is attached to the radiofrequency (RF) electrode to increase the surrounding tissue hydration. This will delay tissue desiccation and allowing the ablation process to continue for a longer period of time before "roll-off" occurs, resulting in larger ablations compared with standard radiofrequency ablation (RFA). Previous research showed that attaching the anode to the skin using electrosurgical grounding pads would reduce the efficacy of BETA because of the high electrical resistivity of the skin. This study investigated the ablation size produced when the anode was attached to the peritoneum (BETA-peritoneum) and the liver (BETA-liver) respectively. The anode of the DC circuit in BETA was attached to the peritoneum and the liver in a pig model using ECG dots. In BETA, 9 V of DC was provided for 10 min, after which the radiofrequency generator were switched on and both electrical circuits allowed to run concurrently until "roll-off." The size of ablations produced was compared to when the anode attached to the skin (BETA-skin) and standard RFA, respectively. The sites of anode placement were examined for local tissue injury. The transverse diameters in BETA-peritoneum and BETA-liver were significantly larger compared with BETA-skin and standard RFA, respectively (P < 0.001). The axial diameter in the BETA-peritoneum and BETA-liver groups were also larger compared with the BETA-skin and RFA groups, although the differences did not reach statistical significance (P = 0.09). Hematoxylin and eosin (H and E) examination of the peritoneum and the liver where the anode was attached showed coagulation necrosis involving the superficial epithelium and the liver capsule, respectively. BETA can be used to treat larger liver tumors more effectively and may reduce the tumor recurrence rates compared with standard RFA. The efficacy of BETA depends on ensuring good electrical conductivity between the cathode and the anode of the DC circuit. Research so far has shown that BETA works best when the anode is placed deep to the skin as the stratum corneum consisted of a layer of a-nucleated cells, which have high electrical resistivity. The liver could be the ideal location to place the anode as it has excellent electrical conductivity, therefore ensuring maximum tissue hydration around the cathode to produce the largest ablations possible. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tardío, M.; Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J. E.; Alves, E.
2016-07-01
The electrical conductivity in α-Al2O3 single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 1015, 5 × 1015 and 5 × 1016 ions/cm2. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I-V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).
Comparative performance evaluation of advanced AC and DC EV propulsion systems
NASA Astrophysics Data System (ADS)
MacDowall, R. D.; Crumley, R. L.
Idaho National Engineering Laboratory (INEL) evaluates EV propulsion systems and components for the U.S. Department of Energy (DOE) Electric and Hybrid Vehicle (EHV) Program. In this study, experimental data were used to evaluate the relative performances of the benchmark Chrysler/GE ETV-1 DC and the Ford/GE First Generation Single-Shaft AC (ETX-I) propulsion systems. Tests were conducted on the INEL's chassis dynamometer using identical aerodynamic and rolling resistance road-load coefficients and vehicle test weights. The results allowed a direct comparison of selected efficiency and performance characteristics for the two propulsion system technologies. The ETX-I AC system exhibited slightly lower system efficiency during constant speed testing than the ETV-1 DC propulsion system.
NASA Astrophysics Data System (ADS)
Zhang, M. F.; Wang, Y.; Wang, K. F.; Zhu, J. S.; Liu, J.-M.
2009-03-01
We investigate in detail the migration kinetics of oxygen vacancies (OVs) in Ba-doped Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectrics by complex impedance spectroscopy. The temperature dependent dc-electrical conductivity σdc suggests that Ba doping into PZT can lower significantly the density of OVs, leading to the distinctly decreased σdc and slightly enhanced activation energy U for the migration of OVs, thus benefiting the polarization fatigue resistance. Furthermore, the polarization fluctuation induced by the relaxation of OVs is reduced by the Ba doping. The Cole-Cole fitting to the dielectric loss manifests strong correlation among OVs, and the migration of OVs appears to be a collective behavior.
Campbell, Jeremy B; Newson, Steve
2013-02-26
Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.
High-throughput resistivity apparatus for thin-film combinatorial libraries
NASA Astrophysics Data System (ADS)
Hewitt, K. C.; Casey, P. A.; Sanderson, R. J.; White, M. A.; Sun, R.
2005-09-01
An apparatus, capable of measuring the dc resistance versus temperature of a 49-member library prepared by thin-film deposition techniques was designed and tested. The library is deposited by dc magnetron sputtering onto 10.16cm×10.16cm alumina substrates on which are placed aluminum masks consisting of 8mm diam holes cut on a 7×7 grid, the center-to-center spacing being 10.15mm. Electrical contact to the library is made in a standard van der Pauw geometry using 196 spring-loaded, gold-coated pins, four pins for each member of the library. The temperature is controlled using a helium refrigerator in combination with a liquid-nitrogen radiation shield that greatly reduces radiative heating of the sample stage. With the radiation shield, the cold finger is able to sustain a minimum temperature of 7K and the sample stage a minimum temperature of 27K. The temperature (27-291K) dependent dc resistivity of a thin-film silver library of varying thickness (48-639nm) is presented to highlight the capabilities of the apparatus. The thickness dependence of both the resistivity and the temperature coefficient of resistivity are quantitatively consistent with the literature. For thicknesses greater than about 100nm, the room-temperature resistivity (3.4μΩcm) are consistent with Matthiessen's rule for 1%-2% impurity content, and the temperature coefficient of resistivity is consistent with the bulk value. For thicknesses less than 100nm, an increase in resistivity by a factor of 8 is found, which may be due to surface and boundary scattering effects; a corresponding increase in the temperature coefficient of resistivity is consistent with a concomitant decrease in the magnitude of the elastic constants and surface scattering effects.
NASA Astrophysics Data System (ADS)
Turkoglu, F.; Koseoglu, H.; Zeybek, S.; Ozdemir, M.; Aygun, G.; Ozyuzer, L.
2018-04-01
In this study, aluminum-doped zinc oxide (AZO) thin films were deposited by DC magnetron sputtering at room temperature. The distance between the substrate and target axis, and substrate rotation speed were varied to get high quality AZO thin films. The influences of these deposition parameters on the structural, optical, and electrical properties of the fabricated films were investigated by X-ray diffraction (XRD), Raman spectroscopy, spectrophotometry, and four-point probe techniques. The overall analysis revealed that both sample position and substrate rotation speed are effective in changing the optical, structural, and electrical properties of the AZO thin films. We further observed that stress in the films can be significantly reduced by off-center deposition and rotating the sample holder during the deposition. An average transmittance above 85% in the visible range and a resistivity of 2.02 × 10-3 Ω cm were obtained for the AZO films.
An Integration of Geophysical Methods to Explore Buried Structures on the Bench and in the Field
NASA Astrophysics Data System (ADS)
Booterbaugh, A. P.; Lachhab, A.
2011-12-01
In the following study, an integration of geophysical methods and devices were implemented on the bench and in the field to accurately identify buried structures. Electrical resistivity and ground penetrating radar methods, including both a fabricated electrical resistivity apparatus and an electrical resistivity device were all used in this study. The primary goal of the study was to test the accuracy and reliability of the apparatus which costs a fraction of the price of a commercially sold resistivity instrument. The apparatus consists of four electrodes, two multimeters, a 12-volt battery, a DC to AC inverter and wires. Using this apparatus, an electrical current, is injected into earth material through the outer electrodes and the potential voltage is measured across the inner electrodes using a multimeter. The recorded potential and the intensity of the current can then be used to calculate the apparent resistivity of a given material. In this study the Wenner array, which consists of four equally spaced electrodes, was used due to its higher accuracy and greater resolution when investigating lateral variations of resistivity in shallow depths. In addition, the apparatus was used with an electrical resistivity device and a ground penetrating radar unit to explore the buried building foundation of Gustavus Adolphus Hall located on Susquehanna University Campus, Selinsgrove, PA. The apparatus successfully produced consistent results on the bench level revealing the location of small bricks buried under a soil material. In the summer of 2010, seventeen electrical resistivity transects were conducted on the Gustavus Adolphus site where and revealed remnants of the foundation. In the summer of 2011, a ground penetrating radar survey and an electrical resistivity tomography survey were conducted to further explore the site. Together these methods identified the location of the foundation and proved that the apparatus was a reliable tool for regular use on the bench and in the field.
Dynamical properties of epitaxial ferroelectric superlattices
NASA Astrophysics Data System (ADS)
Kim, Y.; Gerhardt, R. A.; Erbil, A.
1997-04-01
The dynamical properties of epitaxial ferroelectric heterostructures have been investigated by studying the dielectric behavior under external electric field. A phenomenon with a giant permittivity was observed. At low frequencies, real permittivities as high as 420 000 have been measured. Real and imaginary parts of the dielectric constant show large dispersion at high frequencies. In dc measurements, a nonlinear resistance is observed with a well-defined threshold field, correlating with the dc bias-field dependence of ac permittivities. We model these observations as a result of the motion of pinned domain-wall lattices, having sliding-mode motion at high electric fields. The good agreement between the experimental and theoretical results suggests that the deposited interdigitated electrode pattern plays a crucial role in controlling domain-wall dynamics. The pinning of the domain wall comes from a nucleation barrier to the creation of new domain walls.
Bidirectional DC-DC conversion device use at system of urban electric transport
NASA Astrophysics Data System (ADS)
Vilberger, M. E.; Vislogusov, D. P.; Kotin, D. A.; Kulekina, A. V.
2017-10-01
The paper considers questions of energy storage devices used in electric transport, especially in the electric traction drive of a trolley bus, in order to provide an autonomous motion, overhead system’s load leveling and energy recovering. For efficiency of the proposed system, a bidirectional DC-DC converter is used. During the simulation, regulation characteristics of the bidirectional DC-DC converters were obtained.
Marine Seismic System (MSS). Development, Deployment and Recovery
1983-04-01
HYTREL SHEA TH, 0.040 IN. WALL OD 0.692 IN. ELECTRICAL. NOM CONDUCTOR DC RESISTANCE *@ 20 0 C: @10 AWG: 1.08 OHMS/K PT COAX RETURN BRAID-. 1.40 OHMS/KFT...Juice. Follow vith one of the following: white- or-egg, olive oil, starch water, mineral oil,.or melted butter . Obtain medical attention at once. . - S
Isolated and soft-switched power converter
Peng, Fang Zheng; Adams, Donald Joe
2002-01-01
An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.
NASA Astrophysics Data System (ADS)
Aghakhani, Amirreza; Basdogan, Ipek; Erturk, Alper
2016-04-01
Plate-like components are widely used in numerous automotive, marine, and aerospace applications where they can be employed as host structures for vibration based energy harvesting. Piezoelectric patch harvesters can be easily attached to these structures to convert the vibrational energy to the electrical energy. Power output investigations of these harvesters require accurate models for energy harvesting performance evaluation and optimization. Equivalent circuit modeling of the cantilever-based vibration energy harvesters for estimation of electrical response has been proposed in recent years. However, equivalent circuit formulation and analytical modeling of multiple piezo-patch energy harvesters integrated to thin plates including nonlinear circuits has not been studied. In this study, equivalent circuit model of multiple parallel piezoelectric patch harvesters together with a resistive load is built in electronic circuit simulation software SPICE and voltage frequency response functions (FRFs) are validated using the analytical distributedparameter model. Analytical formulation of the piezoelectric patches in parallel configuration for the DC voltage output is derived while the patches are connected to a standard AC-DC circuit. The analytic model is based on the equivalent load impedance approach for piezoelectric capacitance and AC-DC circuit elements. The analytic results are validated numerically via SPICE simulations. Finally, DC power outputs of the harvesters are computed and compared with the peak power amplitudes in the AC output case.
Deposition and characterization of molybdenum thin films using dc-plasma magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Majid, E-mail: majids@hotmail.com; Islam, Mohammad, E-mail: mohammad.islam@gmail.com
2013-12-15
Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thinmore » films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ∼550 nm and electrical resistivity value of 0.57 × 10{sup −4} Ω cm.« less
Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network
NASA Astrophysics Data System (ADS)
Singh, U. K.; Tiwari, R. K.; Singh, S. B.
2010-02-01
The backpropagation (BP) artificial neural network (ANN) technique of optimization based on steepest descent algorithm is known to be inept for its poor performance and does not ensure global convergence. Nonlinear and complex DC resistivity data require efficient ANN model and more intensive optimization procedures for better results and interpretations. Improvements in the computational ANN modeling process are described with the goals of enhancing the optimization process and reducing ANN model complexity. Well-established optimization methods, such as Radial basis algorithm (RBA) and Levenberg-Marquardt algorithms (LMA) have frequently been used to deal with complexity and nonlinearity in such complex geophysical records. We examined here the efficiency of trained LMA and RB networks by using 2-D synthetic resistivity data and then finally applied to the actual field vertical electrical resistivity sounding (VES) data collected from the Puga Valley, Jammu and Kashmir, India. The resulting ANN reconstruction resistivity results are compared with the result of existing inversion approaches, which are in good agreement. The depths and resistivity structures obtained by the ANN methods also correlate well with the known drilling results and geologic boundaries. The application of the above ANN algorithms proves to be robust and could be used for fast estimation of resistive structures for other complex earth model also.
NASA Astrophysics Data System (ADS)
Smith, D.; Smith, B. D.; Blome, C. D.; Osborn, N.
2008-12-01
Airborne and ground electrical surveys have been conducted to map the subsurface hydrogeologic character of the Arbuckle-Simpson aquifer in south central Oklahoma. An understanding of the geologic framework and hydrogeologic characteristics is necessary to evaluate groundwater flow through the highly faulted, structurally complex, carbonate aquifer. Results from this research will further understanding of the aquifer and will assist in managing the water resources of the region. The major issues include water quality, the allocation of water rights, and the potential impacts of pumping on springs and stream. Four areas in the Hunton anticline area, with distinctly different geology, were flown with a frequency domain helicopter electromagnetic system (HEM) in March, 2007. Ground electrical studies include dc resistivity imaging and natural field audiomagnetotelluric (AMT), and magnetotelluric (MT) surveys. The HEM resistivity and total field magnetic survey was flown in four blocks, A through D, mostly with a line spacing of 400 m. Block A extends from the Chickasaw National Recreational Area (CHIC) to Mill Creek on the west side of the anticline. The surface geology of this block is mostly dolomitic limestone of the Arbuckle Group that is in fault contact with younger Paleozoic clastic rocks. The flight line spacing was 800 meters in the western half of the block and 400 meters in the eastern part. Airborne magnetic data indicate that the Sulphur fault bends south to merge with the Mill Creek fault which substantiates an earlier hypothesis first made from interpretation of gravity data. Block B, located on the north side of the anticline consists of mostly of Arbuckle and Simpson Group rocks. Block C, covering most of the Clarita horst on the east side of the anticline, consists of the Upper Ordovician to the Lower Pennsylvanian shales. Block D, which was flown to include a deep test well site at Spears ranch, consisted of eight lines spaced at 400 meters. The HEM data are being used to more precisely locate faults, refine the lithostratigraphic units, and to map the depth and extent of shallow epikarst. The MT and AMT data revealed deep structural contacts and a transition between fresh and highly mineralized ground water between springs in the CHIC. The dc resistivity survey has greatly helped in mapping major faults both within dolomitic limestone and clastic units. Ground resistivity surveys also suggest that, in places, the faults within limestone are zones of lower resistivity and map low resistivity surficial epikarst a several meters thick. Ground penetrometer data also has been used to define the depth extent of epikarst in selected areas and the data correlate well with the dc resistivity and HEM resistivity depth sections.
NASA Astrophysics Data System (ADS)
Yavuz, Hande; Bai, Jinbo
2018-06-01
This paper deals with the dielectric barrier discharge assisted continuous plasma polypyrrole deposition on CNT-grafted carbon fibers for conductive composite applications. The simultaneous effects of three controllable factors have been studied on the electrical resistivity (ER) of these two material systems based on multivariate experimental design methodology. A posterior probability referring to Benjamini-Hochberg (BH) false discovery rate was explored as multiple testing corrections of the t-test p values. BH significance threshold of 0.05 was produced truly statistically significant coefficients to describe ER of two material systems. A group of plasma modified samples was chosen to be used for composite manufacturing to drive an assessment of interlaminar shear properties under static loading. Transversal and longitudinal electrical resistivity (DC, ω =0) of composite samples were studied to compare both the effects of CNT grafting and plasma modification on ER of resultant composites.
NASA Astrophysics Data System (ADS)
Yavuz, Hande; Bai, Jinbo
2017-09-01
This paper deals with the dielectric barrier discharge assisted continuous plasma polypyrrole deposition on CNT-grafted carbon fibers for conductive composite applications. The simultaneous effects of three controllable factors have been studied on the electrical resistivity (ER) of these two material systems based on multivariate experimental design methodology. A posterior probability referring to Benjamini-Hochberg (BH) false discovery rate was explored as multiple testing corrections of the t-test p values. BH significance threshold of 0.05 was produced truly statistically significant coefficients to describe ER of two material systems. A group of plasma modified samples was chosen to be used for composite manufacturing to drive an assessment of interlaminar shear properties under static loading. Transversal and longitudinal electrical resistivity (DC, ω =0) of composite samples were studied to compare both the effects of CNT grafting and plasma modification on ER of resultant composites.
Barbosa, Gleyce Moreno; Dos Santos, Eldio Gonçalves; Capella, Francielle Neves Carvalho; Homsani, Fortune; de Pointis Marçal, Carina; Dos Santos Valle, Roberta; de Araújo Abi-Chacra, Érika; Braga-Silva, Lys Adriana; de Oliveira Sales, Marcelo Henrique; da Silva Neto, Inácio Domingos; da Veiga, Venicio Feo; Dos Santos, André Luis Souza; Holandino, Carla
2017-02-01
Available treatments against human fungal pathogens present high levels of resistance, motivating the development of new antifungal therapies. In this context, the present work aimed to analyze direct electric current (DC) antifungal action, using an in vitro apparatus equipped with platinum electrodes. Candida albicans yeast cells were submitted to three distinct conditions of DC treatment (anodic flow-AF; electroionic flow-EIF; and cathodic flow-CF), as well as different charges, ranging from 0.03 to 2.40 C. Our results indicated C. albicans presented distinct sensibility depending on the DC intensity and polarity applied. Both the colony-forming unit assay and the cytometry flow with propidium iodide indicated a drastic reduction on cellular viability after AF treatment with 0.15 C, while CF- and EIF-treated cells stayed alive when DC doses were increased up to 2.40 C. Additionally, transmission electron microscopy revealed important ultrastructural alterations in AF-treated yeasts, including cell structure disorganization, ruptures in plasmatic membrane, and cytoplasmic rarefaction. This work emphasizes the importance of physical parameters (polarity and doses) in cellular damage, and brings new evidence for using electrotherapy to treat C. albicans pathology process. Bioelectromagnetics. 38:95-108, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... determine if a certain fuel pump housing electrical connector is installed. The existing AD also requires a... procedures for disabling certain fuel pump electrical circuits following failure of a fuel pump housing electrical connector if applicable. The existing AD also requires the deactivation of certain fuel tanks or...
Multi Bus DC-DC Converter in Electric Hybrid Vehicles
NASA Astrophysics Data System (ADS)
Krithika, V.; Subramaniam, C.; Sridharan, R.; Geetha, A.
2018-04-01
This paper is cotncerned with the design, simulation and fabrication of the prototype of a Multi bus DC- DC converter operating from 42V DC and delivering 14V DC and 260V DC. As a result, three DC buses are interconnected through a single power electronic circuitry. Such a requirement is energized in the development of a hybrid electric automobile which uses the technology of fuel cell. This is implemented by using a Bidirectional DC-DC converter configuration which is ideally suitable for multiple outputs with mutual electrical isolation. For the sake of reduced size and cost of step-up transformer, selection of a high frequency switching cycle at 10 KHz was done.
Characteristics of DC electric fields in transient plasma sheet events
NASA Astrophysics Data System (ADS)
Laakso, H. E.; Escoubet, C. P.; Masson, A.
2015-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
Effect of Co doping on the magnetic and DC electrical properties of Mn-Zn nanoferrites
NASA Astrophysics Data System (ADS)
Khandan Fadafan, H.; Lotfi Orimi, R.; Nezhadeini, S.
2018-06-01
In this study, Cobalt-Manganese-Zinc nanoferrites with the formula CoxMn0.5-xZn0.5Fe2O4 with x = 0.0, 0.1, 0.3, and 0.5 prepared by chemical Co-precipitation method. Then the structure and morphology of the synthesized nanoparticles were characterized by X-ray diffraction (XRD) and transmitting electron microscopy (TEM), respectively. The XRD patterns indicated the formation of single-phased cubic structure of spinel ferrite in nanometer size with no minor phase. The TEM image showed the formation of nanoparticles with average size of about 40 nm and normal size distribution. The magnetic measurements of the nanoparticles were done at room temperature using a vibrating sample magnetometer (VSM). Results exhibited a super-paramagnetic like behavior for some of the samples. DC electrical resistivity measurements were carried out by two-probe technique from 25 to 250 °C and showed decreasing of the resistivity with temperature meanwhile passing a transition to form of a peak. The peaks values observed near the Curie temperatures of samples suggest that anomaly behavior can attributed to spin canting associated with the phase transition from para to ferromagnetic state at TC.
Bottom-up realization and electrical characterization of a graphene-based device.
Maffucci, A; Micciulla, F; Cataldo, A; Miano, G; Bellucci, S
2016-03-04
We propose a bottom-up procedure to fabricate an easy-to-engineer graphene-based device, consisting of a microstrip-like circuit where few-layer graphene nanoplatelets are used to contact two copper electrodes. The graphene nanoplatelets are obtained by the microwave irradiation of intercalated graphite, i.e., an environmentally friendly, fast and low-cost procedure. The contact is created by a bottom-up process, driven by the application of a DC electrical field in the gap between the electrodes, yielding the formation of a graphene carpet. The electrical resistance of the device has been measured as a function of the gap length and device temperature. The possible use of this device as a gas sensor is demonstrated by measuring the sensitivity of its electrical resistance to the presence of gas. The measured results demonstrate a good degree of reproducibility in the fabrication process, and the competitive performance of devices, thus making the proposed technique potentially attractive for industrial applications.
NASA Astrophysics Data System (ADS)
Ahmad, Bashir; Raissat, Rabia; Mumtaz, Saleem; Ahmad, Zahoor; Sadiq, Imran; Ashiq, Muhammad Naeem; Najam-ul-Haq, Muhammad
2017-07-01
The aluminium substituted bismuth based manganates with nominal composition BiMn1-xAlxO3 (x = 0.0, 0.2, 0.4, 0.6 and 0.8) were prepared by the simple microemulsion method. The alteration in their structural, electrical and dielectric parameters due to Al substitution has been investigated. The X-ray diffraction analysis (XRD) confirms the formation of single phase orthorhombic with crystallite size ranges from 32 to 52 nm. The morphological features and particle size were determined by using scanning electron microscopy (SEM). The dc electrical resistivity increased from 6 × 108 to 8 × 109 Ω cm with the increase in substituent concentration. The dielectric constant, dielectric loss tangent and dielectric loss factor decreased with the increase in frequency. The increase in electrical resistivity makes the synthesized materials paramount over other materials and can be useful for technological applications in microwave devices.
Some properties of low-vapor-pressure braze alloys for thermionic converters
NASA Technical Reports Server (NTRS)
Bair, V. L.
1978-01-01
Property measurements were made for arc-melted, rod-shaped specimens. Density and dc electrical resistivity at 296 K were measured for various binary eutectic alloys. Thermal conductivity was inferred from the electrical conductivity using the Wiedemann, Franz, Lorenz relation. Linear thermal expansion from 293 K to two-thirds melting point, under a helium atmosphere, was measured for Zr, 21.7-wt percent Ru; Zr, 13-wt percent W; Zr, 22.3-wt percent Nb; Nb, 66.9-wt percent Ru; and Zr, 25.7-wt percent Ta.
Onboard power line conditioning system for an electric or hybrid vehicle
Kajouke, Lateef A.; Perisic, Milun
2016-06-14
A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.
NASA Astrophysics Data System (ADS)
Todorov, Evgueni Iordanov
2017-04-01
The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.
A Lemon Cell Battery for High-Power Applications
NASA Astrophysics Data System (ADS)
Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.
2007-04-01
This article discusses the development of a lemon cell battery for high-power applications. The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. The battery is composed of a series of lemon juice cells made from UV vis cuvets that use a magnesium anode and copper cathode. Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. Although our specific interest is the use of this lemon cell battery to run an electric dc motor, high-power applications such as radios, portable cassette or CD players, and other battery-powered toys are equally appropriate for demonstration and laboratory purposes using this battery.
AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam
NASA Astrophysics Data System (ADS)
Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu
2018-04-01
Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.
Characteristics of DC electric fields at dipolarization fronts
NASA Astrophysics Data System (ADS)
Laakso, Harri; Escoubet, Philippe; Masson, Arnaud
2016-04-01
We investigate the characteristics of DC electric field at dipolarization fronts and BBF's using multi-point Cluster observations. There are plenty of important issues that are considered, such as what kind of DC electric fields exist in such events and what are their spatial scales. One can also recognize if electrons and ions perform ExB drift motions in these events. To investigate this, we take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer. The calibrated observations of the three spectrometers are used to determine the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. This investigation also helps understand how well different measurements are calibrated.
Numerical modelling of dynamic resistance in high-temperature superconducting coated-conductor wires
NASA Astrophysics Data System (ADS)
Ainslie, Mark D.; Bumby, Chris W.; Jiang, Zhenan; Toyomoto, Ryuki; Amemiya, Naoyuki
2018-07-01
The use of superconducting wire within AC power systems is complicated by the dissipative interactions that occur when a superconductor is exposed to an alternating current and/or magnetic field, giving rise to a superconducting AC loss caused by the motion of vortices within the superconducting material. When a superconductor is exposed to an alternating field whilst carrying a constant DC transport current, a DC electrical resistance can be observed, commonly referred to as ‘dynamic resistance.’ Dynamic resistance is relevant to many potential high-temperature superconducting (HTS) applications and has been identified as critical to understanding the operating mechanism of HTS flux pump devices. In this paper, a 2D numerical model based on the finite-element method and implementing the H -formulation is used to calculate the dynamic resistance and total AC loss in a coated-conductor HTS wire carrying an arbitrary DC transport current and exposed to background AC magnetic fields up to 100 mT. The measured angular dependence of the superconducting properties of the wire are used as input data, and the model is validated using experimental data for magnetic fields perpendicular to the plane of the wire, as well as at angles of 30° and 60° to this axis. The model is used to obtain insights into the characteristics of such dynamic resistance, including its relationship with the applied current and field, the wire’s superconducting properties, the threshold field above which dynamic resistance is generated and the flux-flow resistance that arises when the total driven transport current exceeds the field-dependent critical current, I c( B ), of the wire. It is shown that the dynamic resistance can be mostly determined by the perpendicular field component with subtle differences determined by the angular dependence of the superconducting properties of the wire. The dynamic resistance in parallel fields is essentially negligible until J c is exceeded and flux-flow resistance occurs.
NASA Astrophysics Data System (ADS)
Lachhab, A.; Stepanik, N.; Booterbaugh, A.
2010-12-01
In the following study, an electrical resistivity device was built and used in both a laboratory setup and in the field to accurately identify the location of a septic tank and the foundation of Gustavus Adolphus (GA); a building that was burned at Susquehanna University in 1964. The entire apparatus, which costs a fraction of the price of a typical electrical resistivity device, was tested for accuracy in the laboratory prior to its use in the field. The electrical resistivity apparatus consists of a deep-cycle twelve volt battery, an AC to DC inverter and two multimeters to measure the potential and the current intensity from four linear electrodes via a wireless data transmission system. This apparatus was constructed by using basic inexpensive electrical and electronic equipments. The recorded potential and current values were used to calculate the apparent resistivity of different materials adopting the Wenner array for both investigations. Several tests were performed on the tabletop bench, producing consistent results when applied to find small bricks structures with different geometrical arrangement buried under a mixed sand-soil formation. The apparatus was also used to investigate a subsurface salty water plume in the same formation. The horizontal resistivity profile obtained over the vertical small brick wall matched the theoretical apparent resistivity of resistivity versus displacement on a vertical dike in a homogeneous material. In addition, the two-dimensional resistivity profile replicate the salty plume size conformably. Following the success on the small-scale laboratory tabletop bench, the electrical resistivity apparatus was implemented in the field to explore the foundation of GA in one location and the septic tank in another. An array of transects were performed, analyzed and plotted using MATLAB. The three dimensional contours of apparent resistivity depicted exactly the locations of the buried foundation walls, the septic tank and the leaking plume.
Study of indium tin oxide films exposed to atomic axygen
NASA Technical Reports Server (NTRS)
Snyder, Paul G.; De, Bhola N.; Woollam, John A.; Coutts, T. J.; Li, X.
1989-01-01
A qualitative simulation of the effects of atomic oxygen has been conducted on indium tin oxide (ITO) films prepared by dc sputtering onto room-temperature substrates, by exposing them to an RF-excited oxygen plasma and characterizing the resulting changes in optical, electrical, and structural properties as functions of exposure time with ellipsometry, spectrophotometry, resistivity, and X-ray measurements. While the films thus exposed exhibit reduced resistivity and optical transmission; both of these effects, as well as partial crystallization of the films, may be due to sample heating by the plasma. Film resistivity is found to stabilize after a period of exposure.
Using resistive readout to probe ultrafast dynamics of a plasmonic sensor
NASA Astrophysics Data System (ADS)
Cheney, Alec; Chen, Borui; Cartwright, Alexander; Thomay, Tim
2018-02-01
Surface plasmons in a DC current lead to an increase in scattering processes, resulting in a measurable increase in electrical resistance of a plasmonic nano-grating. This enables a purely electronic readout of plasmonically mediated optical absorption. We show that there is a time-dependence in these resistance changes on the order of 100ps that we attribute to electron-phonon and phonon-phonon scattering processes in the metal of the nano-gratings. Since plasmonic responses are strongly structurally dependent, an appropriately designed plasmoelectronic detector could potentially offer an extremely fast response at communication wavelengths in a fully CMOS compatible system.
NASA Astrophysics Data System (ADS)
Choudhry, Qurshia; Azhar Khan, Muhammad; Nasar, Gulfam; Mahmood, Azhar; Shahid, Muhammad; Shakir, Imran; Farooq Warsi, Muhammad
2015-11-01
Dy3+ and Fe3+ co-doped LaCoO3 perovskite nanoparticles were prepared by chemical co-precipitation route. Structural elucidation was carried out by thermo gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The data of all these characterization techniques confirmed the orthorhombic phase with particles size in the range of 20-60 nm. The magnetic parameters, DC-resistivity and dielectric properties were measured for La1-xDyxCo1-yFeyO3 nanoparticles. The purpose of all these application studies was to evaluate the prepared materials for practical applications. The substitution of Dy3+ and Fe3+ with La3+ and Co3+ respectively greatly influenced the magnetic, DC-resistivity and dielectric parameters.
NASA Astrophysics Data System (ADS)
Ghosh, P.; Bhowmik, R. N.; Das, M. R.; Mitra, P.
2017-04-01
We have studied the grain size dependent electrical conductivity, dielectric relaxation and magnetic field dependent current voltage (I - V) characteristics of nickel ferrite (NiFe2O4) . The material has been synthesized by sol-gel self-combustion technique, followed by ball milling at room temperature in air environment to control the grain size. The material has been characterized using X-ray diffraction (refined with MAUD software analysis) and Transmission electron microscopy. Impedance spectroscopy and I - V characteristics in the presence of variable magnetic fields have confirmed the increase of resistivity for the fine powdered samples (grain size 5.17±0.6 nm), resulted from ball milling of the chemical routed sample. Activation energy of the material for electrical charge hopping process has increased with the decrease of grain size by mechanical milling of chemical routed sample. The I - V curves showed many highly non-linear and irreversible electrical features, e.g., I - V loop and bi-stable electronic states (low resistance state-LRS and high resistance state-HRS) on cycling the electrical bias voltage direction during I-V curve measurement. The electrical dc resistance for the chemically routed (without milled) sample in HRS (∼3.4876×104 Ω) at 20 V in presence of magnetic field 10 kOe has enhanced to ∼3.4152×105 Ω for the 10 h milled sample. The samples exhibited an unusual negative differential resistance (NDR) effect that gradually decreased on decreasing the grain size of the material. The magneto-resistance of the samples at room temperature has been found substantially large (∼25-65%). The control of electrical charge transport properties under magnetic field, as observed in the present ferrimagnetic material, indicate the magneto-electric coupling in the materials and the results could be useful in spintronics applications.
NASA Astrophysics Data System (ADS)
Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.
2015-03-01
Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.
Simultaneous measurement of skin potential and conductance in electrodermal response monitoring
NASA Astrophysics Data System (ADS)
Jabbari, A.; Johnsen, B.; Grimnes, S.; Martinsen, Ø. G.
2010-04-01
Measurement of electrodermal activity (EDA) has been an important tool in psychophysiological research. The emotional sweat activity is very sensitive to psychological stimuli or conditions. The changes are easily detected by means of electrical measurements and since the sweat ducts are predominantly resistive, a low-frequency conductance measurement is appropriate for measurement of skin conductance in electrodermal response. The main purpose of this study was to develop a measuring system where DC current was replaced by a small AC current in a system so the DC potential and AC conductance could be measured simultaneously at the same skin site. A small, battery operated, PDA based instrument has been developed. The preliminary results of this ongoing study show that there is additional information in the DC potential channel and that different stimuli seem to produce slightly different response patterns.
Singh, Harmohan N.
2012-06-05
A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.
Multi-point Measurements of Relativistic Electrons in the Magnetosphere
NASA Astrophysics Data System (ADS)
Li, X.; Selesnick, R.; Baker, D. N.; Blake, J. B.; Schiller, Q.; Blum, L. W.; Zhao, H.; Jaynes, A. N.; Kanekal, S.
2014-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Haoliang; CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026; Luo, Zhenlin, E-mail: zlluo@ustc.edu.cn
2014-05-15
The metal-insulator transition (MIT) in strong correlated electron materials can be induced by external perturbation in forms of thermal, electrical, optical, or magnetic fields. We report on the DC current induced MIT in epitaxial Sm{sub 0.6}Nd{sub 0.4}NiO{sub 3} (SNNO) thin film deposited by pulsed laser deposition on (001)-LaAlO{sub 3} substrate. It was found that the MIT in SNNO film not only can be triggered by thermal, but also can be induced by DC current. The T{sub MI} of SNNO film decreases from 282 K to 200 K with the DC current density increasing from 0.003 × 10{sup 9} A•m{sup −2}more » to 4.9 × 10{sup 9} A•m{sup −2}. Based on the resistivity curves measured at different temperatures, the MIT phase diagram has been successfully constructed.« less
Electrical Behavior of Copper Mine Tailings During EKR with Modified Electric Fields.
Rojo, Adrian; Hansen, Henrik K; Monárdez, Omara; Jorquera, Carlos; Santis, Paulina; Inostroza, Paula
2017-03-01
Electro-kinetic remediation (EKR) with sinusoidal electric field obtained simultaneously with DC/AC voltage reduce the polarization of the EKR with DC voltage. The DC voltage value defines the presence of a periodic polarity reversal of the cell and the electrical charge for electro-kinetic transport. In this case, the AC frequency favors the breaking of polarization conditions resulting from the EKR with DC voltage. However, with high frequencies a negative effect occurs where the tailings behave as a filter circuit, discriminating frequencies of an electric signal. The goal of this work is to analyse the electrical behaviour of tailings in EKR experiments. The conditions selected were: DC/AC voltages: 10/15 and 20/25 V (peak values), and AC voltage frequencies 50-2000 Hz. When the AC frequency reaches 2000 Hz, the copper removal tends to zero, indicating that the tailing behaves as a high-pass filter in which the DC voltage was filtered out.
Mild degradation processes in ZnO-based varistors: the role of Zn vacancies
NASA Astrophysics Data System (ADS)
Ponce, M. A.; Macchi, C.; Schipani, F.; Aldao, C. M.; Somoza, A.
2015-03-01
The effects of a degradation process on the structural and electrical properties of ZnO-based varistors induced by the application of dc bias voltage were analysed. Capacitance and resistance measurements were carried out to electrically characterize the polycrystalline semiconductor before and after different degrees of mild degradation. Vacancies' changes in the varistors were studied with positron annihilation lifetime spectroscopy. Variations on the potential barrier height and effective doping concentration were determined by fitting the experimental data from impedance spectroscopy measurements. These results indicate two different stages in the degradation process consistent with vacancy-like concentration changes.
NASA Astrophysics Data System (ADS)
Tang, Chien-Jen; Wang, Chun-Yuan; Jaing, Cheng-Chung
2011-10-01
Alumina-doped zinc oxide (AZO) films have wide range of applications in optical and optoelectronic devices. AZO films have advantage in high transparency, high stability to hydrogen plasma and low cost to alternative ITO film. AZO film was prepared by direct-current (DC) magnetron sputtering from ceramic ZnO:Al2O3 target. The AZO films were compared in two different conditions. The first is substrate heating process, in which AZO film was deposited by different substrate temperature, room temperature, 150 °C and 250 °C. The second is vacuum annealing process, in which AZO film with deposited at room temperature have been annealed at 250 °C and 450 °C in vacuum. The optical properties, electrical properties, grain size and surface structure properties of the films were studied by UV-VIS-NIR spectrophotometer, Hall effect measurement equipment, x-ray diffraction, and scanning electron microscopy. The resistivity, carrier mobility, carrier concentration, and grain size of AZO films were 1.92×10-3 Ω-cm, 6.38 cm2/Vs, 5.08×1020 #/cm3, and 31.48 nm respectively, in vacuum annealing of 450 °C. The resistivity, carrier mobility, carrier concentration, and grain size of AZO films were 8.72×10-4 Ω-cm, 6.32 cm2/Vs, 1.13×1021 #/cm3, and 31.56 nm, respectively, when substrate temperature was at 250 °C. Substrate heating process is better than vacuum annealed process for AZO film deposited by DC Magnetron Sputtering.
NASA Astrophysics Data System (ADS)
Aiempanakit, K.; Rakkwamsuk, P.; Dumrongrattana, S.
Indium tin oxide (ITO) films were deposited on glass substrate without external heating by DC magnetron sputtering with continuous deposition of 800 s (S1) and discontinuous depositions of 400 s × 2 times (S2), 200 s × 4 times (S3) and 100 s × 8 times (S4). The structural, surface morphology, optical transmittance and electrical resistivity of ITO films were measured by X-ray diffraction, atomic force microscope, spectrophotometer and four-point probe, respectively. The deposition process of the S1 condition shows the highest target voltage due to more target poisoning occurrence. The substrate temperature of the S1 condition increases with the saturation curve of the RC charging circuit while other conditions increase and decrease due to deposition steps as DC power turns on and off. Target voltage and substrate temperature of ITO films decrease when changing the deposition conditions from S1 to S2, S3 and S4, respectively. The preferential orientation of ITO films were changed from dominate (222) plane to (400) plane with the increasing number of deposition steps. The ITO film for the S4 condition shows the lowest electrical resistivity of 1.44 × 10-3 Ω·cm with the highest energy gap of 4.09 eV and the highest surface roughness of 3.43 nm. These results were discussed from the point of different oxygen occurring on the surface ITO target between the sputtering processes which affected the properties of ITO films.
Thompson, Hank T; Barroso-Bujans, Fabienne; Herrero, Julio Gomez; Reifenberger, Ron; Raman, Arvind
2013-04-05
The characterization of dispersion and connectivity of carbon nanotube (CNT) networks inside polymers is of great interest in polymer nanocomposites in new material systems, organic photovoltaics, and in electrodes for batteries and supercapacitors. We focus on a technique using amplitude modulation atomic force microscopy (AM-AFM) in the attractive regime of operation, using both single and dual mode excitation, which upon the application of a DC tip bias voltage allows, via the phase channel, the in situ, nanoscale, subsurface imaging of CNT networks dispersed in a polymer matrix at depths of 10-100 nm. We present an in-depth study of the origins of phase contrast in this technique and demonstrate that an electrical energy dissipation mechanism in the Coulomb attractive regime is key to the formation of the phase contrast which maps the spatial variations in the local capacitance and resistance due to the CNT network. We also note that dual frequency excitation can, under some conditions, improve the contrast for such samples. These methods open up the possibility for DC-biased amplitude modulation AFM to be used for mapping the variations in local capacitance and resistance in nanocomposites with conducting networks.
Analysis of Electric Vehicle DC High Current Conversion Technology
NASA Astrophysics Data System (ADS)
Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da
2017-05-01
Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.
2012-10-15
0.45 .015 .0005 Si = 0.08, Cr = 0.04, Zr = 0.03, Nb , Ta, W, V < 0.01, Bi, Pb, Ag, Sn< 0.0005 wt pet Page | 7 Table 2. Mechanical Properties...analysis and contribute to dcPD increase due to plasticity-based resistivity increase. Additionally, crack surface electrical contact which changes during...STTR-II sponsored). Task 2-3 Produce laboratory measurements of HEAC resistance (KIH, da/dtn, and da/dt vs. stress intensity factor) for a single
Reynolds, Glyn J; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert
2012-04-13
Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8-210 μA/cm²) and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm -2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8-15 μC/cm². When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10 -2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10 -3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.
Reynolds, Glyn J.; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert
2012-01-01
Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2) and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities. PMID:28817001
Thermal properties of alkali-activated aluminosilicates with CNT admixture
NASA Astrophysics Data System (ADS)
Zmeskal, Oldrich; Trhlikova, Lucie; Fiala, Lukas; Florian, Pavel; Cerny, Robert
2017-07-01
Material properties of electrically conductive cement-based materials with increased attention paid on electric and thermal properties were often studied in the last years. Both electric and thermal properties play an important role thanks to their possible utilization in various practical applications (e.g. snow-melting systems or building structures monitoring systems without the need of an external monitoring system). The DC/AC characteristics depend significantly on the electrical resistivity and the electrical capacity of bulk materials. With respect to the DC/AC characteristics of cement-based materials, such materials can be basically classified as electric insulators. In order to enhance them, various conductive admixtures such as those based on different forms of carbon, can be used. Typical representatives of carbon-based admixtures are carbon nanotubes (CNT), carbon fibers (CF), graphite powder (GP) and carbon black (CB). With an adequate amount of such admixtures, electric properties significantly change and new materials with higher added value can be prepared. However, other types of materials can be enhanced in the same way. Alkali-activated aluminosilicates (AAA) based on blast furnace slag are materials with high compressive strength comparable with cement-based materials. Moreover, the price of slag is lower than of Portland cement. Therefore, this paper deals with the study of thermal properties of this promising material with different concentrations of CNT. Within the paper a simple method of basic thermal parameters determination based on the thermal transient response to a heat power step is presented.
Observing non-equilibrium state of transport through graphene channel at the nano-second time-scale
NASA Astrophysics Data System (ADS)
Mishra, Abhishek; Meersha, Adil; Raghavan, Srinivasan; Shrivastava, Mayank
2017-12-01
Electrical performance of a graphene FET is drastically affected by electron-phonon inelastic scattering. At high electric fields, the out-of-equilibrium population of optical phonons equilibrates by emitting acoustic phonons, which dissipate the energy to heat sinks. The equilibration time of the process is governed by thermal diffusion time, which is few nano-seconds for a typical graphene FET. The nano-second time-scale of the process keeps it elusive to conventional steady-state or DC measurement systems. Here, we employ a time-domain reflectometry-based technique to electrically probe the device for few nano-seconds and investigate the non-equilibrium state. For the first time, the transient nature of electrical transport through graphene FET is revealed. A maximum change of 35% in current and 50% in contact resistance is recorded over a time span of 8 ns, while operating graphene FET at a current density of 1 mA/μm. The study highlights the role of intrinsic heating (scattering) in deciding metal-graphene contact resistance and transport through the graphene channel.
Efficient Design in a DC to DC Converter Unit
NASA Technical Reports Server (NTRS)
Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.
2002-01-01
Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.
Losses in chopper-controlled DC series motors
NASA Technical Reports Server (NTRS)
Hamilton, H. B.
1982-01-01
Motors for electric vehicle (EV) applications must have different features than dc motors designed for industrial applications. The EV motor application is characterized by the following requirements: (1) the need for highest possible efficiency from light load to overload, for maximum EV range, (2) large short time overload capability (The ratio of peak to average power varies from 5/1 in heavy city traffic to 3/1 in suburban driving situations) and (3) operation from power supply voltage levels of 84 to 144 volts (probably 120 volts maximum). A test facility utilizing a dc generator as a substitute for a battery pack was designed and utilized. Criteria for the design of such a facility are presented. Two motors, differing in design detail, commercially available for EV use were tested. Losses measured are discussed, as are waves forms and their harmonic content, the measurements of resistance and inductance, EV motor/chopper application criteria, and motor design considerations.
Isolated step-down DC -DC converter for electric vehicles
NASA Astrophysics Data System (ADS)
Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.
2018-02-01
Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.
Sail GTS ground system analysis: Avionics system engineering
NASA Technical Reports Server (NTRS)
Lawton, R. M.
1977-01-01
A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.
NASA Astrophysics Data System (ADS)
Zubizarreta, C.; Berasategui, E. G.; Bayón, R.; Escobar Galindo, R.; Barros, R.; Gaspar, D.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E.; Barriga, J.
2014-12-01
The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al2O3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54 × 10-4 Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 107 Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation.
NASA Astrophysics Data System (ADS)
Krawczak, Ewelina; Gułkowski, Sławomir
2017-10-01
The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS) devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC) magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.
Thermal and Electrical Investigation of Conductive Polylactic Acid Based Filaments
NASA Astrophysics Data System (ADS)
Dobre, R. A.; Marcu, A. E.; Drumea, A.; Vlădescu, M.
2018-06-01
Printed electronics gain momentum as the involved technologies become affordable. The ability to shape electrostatic dissipative materials in almost any form is useful. The idea to use a general-purpose 3D printer to manufacture the electrical interconnections for a circuit is very attractive. The advantage of using a 3D printed structure over other technologies are mainly the lower price, less requirements concerning storage and use conditions, and the capability to build thicker traces while maintaining flexibility. The main element allowing this to happen is a printing filament with conductive properties. The paper shows the experiments that were performed to determine the thermal and electrical properties of polylactic acid (PLA) based ESD dissipative filament. Quantitative results regarding the thermal behavior of the DC resistance and the variation of the equivalent parallel impedance model parameters (losses resistance, capacitance, impedance magnitude and phase angle) with frequency are shown.. Using these results, new applications like printed temperature sensors can be imagined.
NASA Astrophysics Data System (ADS)
Cretcher, C. K.; Rountredd, R. C.
1980-11-01
Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.
Multipactor susceptibility on a dielectric with a bias dc electric field and a background gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Peng; Lau, Y. Y.; Franzi, Matthew
2011-05-15
We use Monte Carlo simulations and analytical calculations to derive the condition for the onset of multipactor discharge on a dielectric surface at various combinations of the bias dc electric field, rf electric field, and background pressures of noble gases, such as Argon. It is found that the presence of a tangential bias dc electric field on the dielectric surface lowers the magnitude of rf electric field threshold to initiate multipactor, therefore plausibly offering robust protection against high power microwaves. The presence of low pressure gases may lead to a lower multipactor saturation level, however. The combined effects of tangentialmore » dc electric field and external gases on multipactor susceptibility are presented.« less
NASA Astrophysics Data System (ADS)
Juda, Z.; Noga, M.
2016-09-01
The article describes results of an analysis of the impact of degradation level of battery made in lead-acid technology on selected traction parameters of an electric light duty vehicle. Lead-acid batteries are still used in these types of vehicles. They do not require complex systems of performance management and monitoring and are easy to maintaining. Despite the basic disadvantage, which is the low value of energy density, low price is a decisive factor for their use in low-speed electric vehicles. The process of aging of the battery related with an increase in internal resistance of the cells and the loss of electric capacity of the battery was considered. A simplified model of cooperation of the DC electric motor with the battery assuming increased internal resistance was presented. In the paper the results of comparative traction research of the light-duty vehicle equipped with a set of new batteries and set of batteries having a significant degradation level were showed. The analysis of obtained results showed that the correct exploitation of the battery can slow down the processes of degradation and, thus, extend battery life cycle.
Microwave a.c. conductivity of domain walls in ferroelectric thin films
Tselev, Alexander; Yu, Pu; Cao, Ye; ...
2016-05-31
Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphologicalmore » roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. Finally, this demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.« less
Microwave a.c. conductivity of domain walls in ferroelectric thin films
Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro
2016-01-01
Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997
NASA Astrophysics Data System (ADS)
Bayer, T. J. M.; Carter, J. J.; Wang, Jian-Jun; Klein, Andreas; Chen, Long-Qing; Randall, C. A.
2017-12-01
Under electrical bias, mixed ionic conductors such as SrTiO3 are characterized by oxygen vacancy migration which leads to resistance degradation. The defect chemistry to describe the relationship between conductivity and oxygen vacancies is usually obtained by high temperature conductivity data or quenching experiments. These techniques can investigate the equilibrated state only. Here, we introduce a new approach using in-situ impedance studies with applied dc voltage to analyze the temperature dependent electrical properties of degraded SrTiO3 single crystals. This procedure is most beneficial since it includes electric field driven effects. The benefits of the approach are highlighted by comparing acceptor doped and undoped SrTiO3. This approach allows the determination of the temperature activation of both anodic and cathodic conductivity of Fe-doped SrTiO3 in the degraded state. The anodic activation energy matches well with the published results, while the activation energy of the degraded cathode region reported here is not in agreement with earlier assumptions. The specific discrepancies of the experimental data and the published defect chemistry are discussed, and a defect chemistry model that includes the strong temperature dependence of the electron conductivity in the cathode region is proposed.
Deep electrical investigations in the Long Valley geothermal area, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, W.D.; Jackson, D.B.; Zohdy, A.A.R.
1976-02-10
Direct current resistivity and time domain electromagnetic techniques were used to study the electrical structure of the Long Valley geothermal area. A resistivity map was compiled from 375 total field resistivity measurements. Two significant zones of low resistivity were detected, one near Casa Diablo Hot Springs and one surrounding the Cashbaugh Ranch-Whitmore Hot Springs area. These anomalies and other parts of the caldera were investigated in detail with 49 Schlumberger dc soundings and 13 transient electromagnetic soundings. An extensive conductive zone of 1- to 10-..cap omega..m resistivity was found to be the cause of the total field resistivity lows. Drillmore » hole information indicates that the shallow parts of the conductive zone in the eastern part of the caldera contain water of only 73/sup 0/C and consist of highly zeolitized tuffs and ashes in the places that were tested. A deeper zone near Whitmore Hot Springs is somewhat more promising in potential for hot water, but owing to the extensive alteration prevalent in the caldera the presence of hot water cannot be definitely assumed. The resistivity results indicate that most of the past hydrothermal activity, and probably most of the present activity, is controlled by fracture systems related to regional Sierran faulting.« less
Burton, Bethany L.; Powers, Michael H.; Ball, Lyndsay B.
2014-01-01
In July 2011, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, completed a geophysical survey using electrical resistivity along an approximately 6-mile reach of the lower American River in Sacramento, California, to map near-surface lithological variations. This survey is a part of a manifold and comprehensive study of river-flow dynamics and geologic boundary-property knowledge necessary to estimate scour potential and levee erosion risk. Data were acquired on the left (south or west) bank between river mile 5 and 10.7 as well as a short section on the right bank from river mile 5.4 to 6. Thirteen direct-current resistivity profiles and approximately 8.3 miles of capacitively coupled resisistivity data were acquired along accessible areas of the floodplain between the levee and river bank. Capacitively coupled resistivity was used as a reconnaissance tool, because it allowed for greater spatial coverage of data but with lower resolution and depth of investigation than the DC resistivity method. The study area contains Pleistocene-age alluvial deposits, dominated by gravels, sands, silts, and clays, that vary in both lateral extent and depth. Several generations of lithologic logs were used to help interpret resistivity variations observed in the resistivity models.
Lucius, Jeffrey E.; Abraham, Jared D.; Burton, Bethany L.
2008-01-01
Gaseous contaminants, including CFC 113, chloroform, and tritiated compounds, move preferentially in unsaturated subsurface gravel layers away from disposal trenches at a closed low-level radioactive waste-disposal facility in the Amargosa Desert about 17 kilometers south of Beatty, Nevada. Two distinct gravel layers are involved in contaminant transport: a thin, shallow layer between about 0.5 and 2.2 meters below the surface and a layer of variable thickness between about 15 and 30 meters below land surface. From 2003 to 2005, the U.S. Geological Survey used multielectrode DC and AC resistivity surveys to map these gravel layers. Previous core sampling indicates the fine-grained sediments generally have higher water content than the gravel layers or the sediments near the surface. The relatively higher electrical resistivity of the dry gravel layers, compared to that of the surrounding finer sediments, makes the gravel readily mappable using electrical resistivity profiling. The upper gravel layer is not easily distinguished from the very dry, fine-grained deposits at the surface. Two-dimensional resistivity models, however, clearly identify the resistive lower gravel layer, which is continuous near the facility except to the southeast. Multielectrode resistivity surveys provide a practical noninvasive method to image hydrogeologic features in the arid environment of the Amargosa Desert.
Clark, Catherine; Smith, Kathy; Ednie, Lois; Bogdanovich, Tatiana; Dewasse, Bonifacio; McGhee, Pamela; Appelbaum, Peter C.
2008-01-01
DC-159a yielded MICs of ≤1 μg/ml against 316 strains of both quinolone-susceptible and -resistant pneumococci (resistance was defined as a levofloxacin MIC ≥4 μg/ml). Although the MICs for DC-159a against quinolone-susceptible pneumococci were a few dilutions higher than those of gemifloxacin, the MICs of these two compounds against 28 quinolone-resistant pneumococci were identical. The DC-159a MICs against quinolone-resistant strains did not appear to depend on the number or the type of mutations in the quinolone resistance-determining region. DC-159a, as well as the other quinolones tested, was bactericidal after 24 h at 2× MIC against 11 of 12 strains tested. Two of the strains were additionally tested at 1 and 2 h, and DC-159a at 4× MIC showed significant killing as early as 2 h. Multistep resistance selection studies showed that even after 50 consecutive subcultures of 10 strains in the presence of sub-MICs, DC-159a produced only two mutants with maximum MICs of 1 μg/ml. PMID:17938189
Chen, C.; Liu, J.; Xu, S.; Xia, J.; ,
2004-01-01
Geophysical technologies are very effective in environmental, engineering and groundwater applications. Parameters of delineating nature of near-surface materials such as compressional-wave velocity, shear-wave velocity can be obtained using shallow seismic methods. Electric methods are primary approaches for investigating groundwater and detecting leakage. Both of methods are applied to detect embankment in hope of obtaining evidences of the strength and moisture inside the body. A technological experiment has done for detecting and discovering the hidden troubles in the embankment of Yangtze River, Songzi, Hubei, China in 2003. Surface-wave and DC multi-channel array resistivity sounding techniques were used to detect hidden trouble inside and under dike like pipe-seeps. This paper discusses the exploration strategy and the effect of geological characteristics. A practical approach of combining seismic and electric resistivity measurements was applied to locate potential pipe-seeps in embankment in the experiment. The method presents a potential leak factor based on the shear-wave velocity and the resistivity of the medium to evaluate anomalies. An anomaly found in a segment of embankment detected was verified, where occurred a pipe-seep during the 98' flooding.
Optical and electrical properties of TiOPc doped Alq3 thin films
NASA Astrophysics Data System (ADS)
Ramar, M.; Suman, C. K.; Tyagi, Priyanka; Srivastava, R.
2015-06-01
The Titanyl phthalocyanine (TiOPc) was doped in Tris (8-hydroxyquinolinato) aluminum (Alq3) with different concentration. The thin film of optimized doping concentration was studied extensively for optical and electrical properties. The optical properties, studied using ellipsometry, absorption and photoluminescence. The absorption peak of Alq3 and TiOPc was observed at 387 nm and 707 nm and the photo-luminescence intensity (PL) peak of doped thin film was observed at 517 nm. The DC and AC electrical properties of the thin film were studied by current density-voltage (J-V) characteristics and impedance over a frequency range of 100 Hz - 1 MHz. The electron mobility calculated from trap-free space-charge limited region (SCLC) is 0.17×10-5 cm2/Vs. The Cole-Cole plots shows that the TiOPc doped Alq3 thin film can be represented by a single parallel resistance RP and capacitance CP network with a series resistance RS (10 Ω). The value of RP and CP at zero bias was 1587 Ω and 2.568 nF respectively. The resistance RP decreases with applied bias whereas the capacitance CP remains almost constant.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Daniels, Taumi S.
1990-01-01
The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.
Indium oxide-based transparent conductive films deposited by reactive sputtering using alloy targets
NASA Astrophysics Data System (ADS)
Miyazaki, Yusuke; Maruyama, Eri; Jia, Junjun; Machinaga, Hironobu; Shigesato, Yuzo
2017-04-01
High-quality transparent conductive oxide (TCO) films, Sn-doped In2O3 (ITO) and In2O3-ZnO (IZO), were successfully deposited on either synthetic silica or polyethylene terephthalate (PET) substrates in the “transition region” by reactive dc magnetron sputtering using In-Zn and In-Sn alloy targets, respectively, with a specially designed plasma emission feedback system. The composition, crystallinity, surface morphology, and electrical and optical properties of the films were analyzed. All of the IZO films were amorphous, whereas the ITO films were polycrystalline over a wide range of deposition conditions. The minimum resistivities of the IZO and ITO films deposited on the heated PET substrates at 150 °C were 3.3 × 10-4 and 5.4 × 10-4 Ω·cm, respectively. By applying rf bias to unheated PET substrates, ITO films with a resistivity of 4.4 × 10-4 Ω·cm were deposited at a dc self-bias voltage of -60 V.
A solid-state controllable power supply for a magnetic suspension wind tunnel
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Tripp, John S.
1991-01-01
The NASA Langley 6-inch Magnetic Suspension and Balance System (6-in. MSBS) requires an independently controlled bidirectional dc power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance-coupled thyratron-controlled rectifiers as well as ac to dc motor-generator converters, is obsolete, inefficient, and unreliable. A replacement six-phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full-load efficiency is 80 percent compared with 25 percent for the resistance-coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20-kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, B.J.; Bird, M.D.; Eyssa, Y.M.
1994-07-01
The new National High Magnetic Field Laboratory (NHMFL), equipped with a 40 MW DC power supply, will design and construct the next generation of high field resistive magnets and hybrid inserts generating DC fields up to 50 T. The authors present a study on the required materials and the necessary cooling characteristics, these magnets need. The configuration selected for this study consists of a combination of thin poly-Bitter and thick Bitter coils optimized in dimensions and power under constraint of maximum design stress and heat removal to obtain maximum field. The study shows that each design requires a different optimummore » ratio of conductor strength to electrical conductivity and that efficient cooling is only advantageous if strong copper alloys are used. For efficient use of the available power the development of new high strength, high conductivity materials will be necessary. Equally important are improvements in the heat transfer characteristics of these high power density magnets.« less
NASA Astrophysics Data System (ADS)
Ramakrishna, A.; Murali, N.; Mammo, Tulu Wegayehu; Samatha, K.; Veeraiah, V.
2018-04-01
Inverse spinel structured nanoparticles of cobalt ferrite partially substituted by divalent cations of Ni, Zn, and Mg have been synthesized through sol-gel auto combustion route. Structural parameters are studied by powder X-ray diffraction at the diffraction angle range of 10-80°; and FT-IR spectroscopy in the wavenumber range of 1600-400 cm-1. Lattice parameters were calculated from the (hkl) values of the diffraction planes and interplanar spacing and found to be in the range of 8.3659-8.4197 Å. The surface morphology and crystalline nature are studied using scanning electron microscopy and also using HRTEM. The magnetic properties are analyzed through vibrating sample magnetometer. High saturation magnetization of 90.12 emu/g has been achieved from Co-Zn sample whereas high coercive force of 883.45 Oe is achieved in Co-Ni sample. A two-probe DC resistivity was measured in temperature ranges of 300-450 K.
Space Charge Modulated Electrical Breakdown
Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George
2016-01-01
Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577
DC breakdown characteristics of silicone polymer composites for HVDC insulator applications
NASA Astrophysics Data System (ADS)
Han, Byung-Jo; Seo, In-Jin; Seong, Jae-Kyu; Hwang, Young-Ho; Yang, Hai-Won
2015-11-01
Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.
Converter topologies for common mode voltage reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Fernando
An inverter includes a three-winding transformer, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, and an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adaptedmore » to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid. At least two of the DC-AC inverter, the cycloconverter, or the active filter are electrically coupled via a common reference electrical interconnect.« less
NASA Astrophysics Data System (ADS)
Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju; Son, Myoungwoo; Ham, Moon-Ho; Lee, Woong; Myoung, Jae-Min
2012-10-01
A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 °C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 × 10-4 Ω cm with the carrier concentration of 1.65 × 1021 cm-3 and Hall mobility of 11.3 cm2/V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.
Connection technology of HPTO type WECs and DC nano grid in island
NASA Astrophysics Data System (ADS)
Wang, Kun-lin; Tian, Lian-fang; You, Ya-ge; Wang, Xiao-hong; Sheng, Song-wei; Zhang, Ya-qun; Ye, Yin
2016-07-01
Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters (WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system (HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system (HESS) and a hydraulic power generation system (HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.
Haddad, Peter A; Mah, Thien-Fah; Mussivand, Tofy
2016-08-01
Biofilms are communities of bacteria that can cause infections which are resistant to the immune system and antimicrobial treatments, posing a significant threat for patients with implantable and indwelling medical devices. The purpose of our research was to determine if utilizing specific parameters for electric currents in conjunction with antibiotics could effectively treat a highly resistant biofilm. Our study evaluated the impact of 16 μg/mL of vancomycin with or without 22 or 333 μA of direct electric current (DC) generated by stainless steel electrodes against 24-, 48-, and 72-h-old Staphylococcus epidermidis biofilms formed on titanium coupons. An increase in effectiveness of vancomycin was observed with the combination of 333 μA of electric current against 48-h-old biofilms (P value = 0.01) as well as in combination with 22 μA of electric current against 72-h-old biofilms (P value = 0.04); 333 μA of electric current showed the most significant impact on the effectiveness of vancomycin against S. epidermidis biofilms demonstrating a bioelectric effect previously not observed against this strain of bacteria. © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Effect of thickness on electrical properties of SILAR deposited SnS thin films
NASA Astrophysics Data System (ADS)
Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba
2016-03-01
Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.
High voltage and high current density vertical GaN power diodes
Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; ...
2016-01-01
We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm 2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm 2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.
Structural and electrical properties of sputter deposited ZnO thin films
NASA Astrophysics Data System (ADS)
Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil
2018-05-01
The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.
Impedance spectroscopy of water soluble resin modified by zirconium sulphate
NASA Astrophysics Data System (ADS)
Joseph, Anandraj; Joshi, Girish M.
2018-04-01
We successfully modified water soluble resin polyvinyl alcohol (PVA) by loading zirconium sulphate (ZrSO4). We demonstrated the measurement of electrical properties by using impedance analyser across frequency range (10 Hz-1 MHz) and the temperature range of (30°C to 150°C). The impedance spectroscopy demonstrates decrease in bulk resistance as a function of temperature loading of zirconia 2.5 wt. %. Increase in AC (10-5 S/cm and DC conductivity (10- 2 S/m) observed due to ionic contribution of zirconia. However, the electrical properties of PVA/ZrSO4 composite useful to develop battery electrolyte applications.
Electrical and magnetic properties of nano-sized magnesium ferrite
NASA Astrophysics Data System (ADS)
T, Smitha; X, Sheena; J, Binu P.; Mohammed, E. M.
2015-02-01
Nano-sized magnesium ferrite was synthesized using sol-gel techniques. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. Vibration Sample Magnetometer was used to record the magnetic measurements. XRD analysis reveals the prepared sample is single phasic without any impurity. Particle size calculation shows the average crystallite size of the sample is 19nm. FTIR analysis confirmed spinel structure of the prepared samples. Magnetic measurement study shows that the sample is ferromagnetic with high degree of isotropy. Hysterisis loop was traced at temperatures 100K and 300K. DC electrical resistivity measurements show semiconducting nature of the sample.
Influence of bias electric field on elastic waves propagation in piezoelectric layered structures.
Burkov, S I; Zolotova, O P; Sorokin, B P
2013-08-01
Theoretical and computer investigations of acoustic wave propagation in piezoelectric layered structures, subjected to the dc electric field influence have been fulfilled. Analysis of the dispersive parameters of elastic waves propagation in the BGO/fused silica and fused silica/LiNbO3 piezoelectric layered structures for a number of variants of dc electric field application has been executed. Transformation of bulk acoustic wave into SAW type mode under the dc electric field influence has been found. Possibility to control the permission or prohibition of the wave propagation by the dc electric field application and the appropriate choice of the layer and substrate materials has been discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gifford, Kenneth Douglas
Ferroelectric thin film capacitor structures containing lead zirconate titanate (PZT) as the dielectric, with the chemical formula Pb(rm Zr_{x }Ti_{1-x})O_3, were synthesized in-situ with an automated ion beam sputter deposition system. Platinum (Pt), conductive ruthenium oxide (RuO_2), and two types of Pt-RuO_2 hybrid electrodes were used as the electrode materials. The capacitor structures are characterized in terms of microstructure and electrical characteristics. Reduction or elimination of non-ferroelectric phases, that nucleate during PZT processing on Pt/TiO _2/MgO and RuO_2/MgO substrates, is achieved by reducing the thickness of the individually deposited layers and by interposing a buffer layer (~100-200A) of PbTiO _3 (PT) between the bottom electrode and the PZT film. Capacitor structures containing a Pt electrode exhibit poor fatigue resistance, irregardless of the PZT microstructure or the use of a PT buffer layer. From these results, and results from similar capacitors synthesized with sol-gel and laser ablation, PZT-based capacitor structures containing Pt electrodes are considered to be unsuitable for use in memory devices. Using a PT buffer layer, in capacitor structures containing RuO_2 top and bottom electrodes and polycrystalline, highly (101) oriented PZT, reduces or eliminates the nucleation of zirconium-titanium oxide, non-ferroelectric species at the bottom electrode interface during processing. This results in good fatigue resistance up to ~2times10^ {10} switching cycles. DC leakage current density vs. time measurements follow the Curie-von Schweidler law, J(t) ~ t^ {rm -n}. Identification of the high electric field current conduction mechanism is inconclusive. The good fatigue resistance, low dc leakage current, and excellent retention, qualifies the use of these capacitor structures in non-volatile random access (NVRAM) and dynamic random access (DRAM) memory devices. Excellent fatigue resistance (10% loss in remanent polarization up to ~2times10^ {10} switching cycles), low dc leakage current, and excellent retention are observed in capacitor structures containing polycrystalline PZT (exhibiting dominant (001) and (100) XRD reflections), a Pt-RuO_2 hybrid bottom electrode (Type IA), and an RuO _2 top electrode. These results, and electrical characterization results on capacitors containing co-deposited Pt-RuO_2 hybrid electrodes (Type II), show potential for application of these capacitor structures in NVRAM and DRAM memory devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru; Kopaev, Yu. V.; Savinov, S. A.
2013-03-15
The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schroedinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In{sub 0.53}Ga{sub 0.47}As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V{sub dc} in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in suchmore » structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.« less
Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films
NASA Astrophysics Data System (ADS)
Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.
2017-03-01
Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+ y- x Fe2-2 y Sn y O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ ( y = 0.1)- and Sn4+ ( y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ ( y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is found to decrease with the increase in Ni2+ content up to x = 0.6. It increases thereafter for a further increase in Ni2+ content up to x = 1.0, and a similar trend is observed for the variations of activation energy with Ni2+ content.
Method and apparatus for controlling current in inductive loads such as large diameter coils
Riveros, Carlos A.
1981-01-01
A method and apparatus for controlling electric current in loads that are essentially inductive, such that sparking and "ringing" current problems are reduced or eliminated. The circuit apparatus employs a pair of solid state switches (each of which switch may be an array of connected or parallel solid state switching devices such as transistors) and means for controlling those switches such that a power supply supplying two d.c. voltages (e.g. positive 150 volts d.c. and negative 150 volts d.c.) at low resistance may be connected across an essentially inductive load (e.g. a 6 gauge wire loop one hundred meters in diameter) alternatively and such that the first solid state switch is turned off and the second is turned on such that both are not on at the same time but the first turned on and the other on in less time than the inductive time constant (L/R) so that the load is essentially always presented with a low resistance path across its input. In this manner a steady AC current may be delivered to the load at a frequency desired. Shut-off problems are avoided by gradually shortening the period of switching to less than the time constant so that the maximum energy contained in the inductive load is reduced to approximately zero and dissipated in the inherent resistance. The invention circuit may be employed by adjusting the timing of switching to deliver a desired waveform (such as sinusoidal) to the load.
Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte
NASA Astrophysics Data System (ADS)
Zhang, Xinge; Gazzarri, Javier; Robertson, Mark; Decès-Petit, Cyrille; Kesler, Olivera
Performance and stability of five cermet-supported button-type solid oxide fuel cells featuring a bi-layered electrolyte (SSZ/SDC), an SSC cathode, and a Ni-SSZ anode, were analyzed using polarization curves, impedance spectroscopy, and post-mortem SEM observation. The cell performance degradation at 650 °C in H 2/air both with and without DC bias conditions was manifested primarily as an increase in polarization resistance, approximately at a rate of 2.3 mΩ cm 2 h -1 at OCV, suggesting a decrease in electrochemical kinetics as the main phenomenon responsible for the performance decay. In addition, the initial series resistance was about ten times higher than the calculated resistance corresponding to the electrolyte, reflecting a possible inter-reaction between the electrolyte layers that occurred during the sintering stage. In situ and ex situ sintered cathodes showed no obvious difference in cell performance or decay rate. The stability of the cells with and without electrical load was also investigated and no significant influence of DC bias was recorded. Based on the experimental results presented, we preliminarily attribute the performance degradation to electrochemical and microstructural degradation of the cathode.
Integration of regenerative shock absorber into vehicle electric system
NASA Astrophysics Data System (ADS)
Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei
2014-03-01
Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com; Farooq, Saima
2011-05-15
Research highlights: {yields} Strontium-barium hexaferrites (Sr{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19}) in single magnetoplumbite phase solid structure are synthesized by the co-precipitation method. {yields} Structural and electrical properties of Nd-Ni substituted ferrites are investigated. {yields} These ferrite materials possess high electrical resistivity (108 {Omega} cm) that is essential to curb the eddy current loss, which is pre-requisite for surface mount devices. -- Abstract: Cationic substitution in M-type hexaferrites is considered to be an important tool for modification of their electrical properties. This work is part of our comprehensive study on the synthesis and characterization of Nd-Ni doped strontium-barium hexaferrite nanomaterials ofmore » nominal composition Sr{sub 0.5}Ba{sub 0.5-x}Nd{sub x}Fe{sub 12-y}Ni{sub y}O{sub 19} (x = 0.00-0.10; y = 0.00-1.00). Doping with this binary mixture modulates the physical and electrical properties of strontium-barium hexaferrite nanoparticles. Structural and electrical properties of the co-precipitated ferrites are investigated using state-of-the-art techniques. The results of X-ray diffraction analysis reveal that the lattice parameters and cell volume are inversely related to the dopant content. Temperature dependent DC-electrical resistivity measurements infer that resistivity of strontium-barium hexaferrites decreases from 1.8 x 10{sup 10} to 2.0 x 10{sup 8} {Omega} cm whereas the drift mobility, dielectric constant and dielectric loss tangent are directly related to the Nd-Ni content. The results of the study demonstrate a relationship between the modulation of electrical properties of substituted ferrites and nature of cations and their lattice site occupancy.« less
She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di
2017-08-29
A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Both straight and chopped dc motor performance data for a General Electric 5BY436A1 motor with a General Electric EV-1 controller is presented in tabular and graphical formats. Effects of motor temperature and operating voltage are also shown. The maximum motor efficiency is approximately 85% at low operating temperatures in the straight dc mode. Chopper efficiency can be assumed to be 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight mode.
Kress, Wade H.; Teeple, Andrew
2005-01-01
Forward modeling was used as an interpretative tool to relate the subsurface distribution of resistivity from four DC resistivity lines to known, assumed, and hypothetical information on subsurface lithologies. The final forward models were used as an estimate of the true resistivity structure for the field data. The forward models and the inversion results of the forward models show the depth, thickness, and extent of strata as well as the resistive anomalies occurring along the four lines and the displacement of strata resulting from the Pecore Fault along two of the four DC resistivity lines. Ten additional DC resistivity lines show similarly distributed shallow subsurface lithologies of silty sand and clay strata. Eight priority areas of resistive anomalies were identified for evaluation in future studies. The interpreted DC resistivity data allowed subsurface stratigraphy to be extrapolated between existing boreholes resulting in an improved understanding of lithologies that can influence contaminant migration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wicks, F.
1998-07-01
The need to produce electricity either more fuel efficiently or without need for consuming fuel is well recognized. Fuel cells are typically suggested for higher efficiency and photovoltaics can produce electricity directly from the sun. However, both of these devices produce direct current which is not compatible with the existing ac power system. The typical options of installing AC to DC inverters and the dedication of this DC generation to DC loads and storage are costly and inefficient. Thus, the author suggests it would be better in terms of energy conservation and public policy to convert end use service tomore » DC for direct compatibility with this DC generation, as a first step toward conversion to a new and better type of electric power system that can be described as a solid state power electronics based multiple voltage DC power system.« less
Spin accumulation in permalloy-ZnO heterostructures from both electrical injection and spin pumping
NASA Astrophysics Data System (ADS)
Wang, Xiaowei; Yang, Yumeng; Wang, Ying; Luo, Ziyan; Xie, Hang; Wu, Yihong
2017-11-01
We report the results of room temperature spin injection and detection studies in ZnO using both electrical injection and spin pumping. At ferromagnetic resonance, an interfacial voltage with a constant polarity upon magnetization reversal is observed in permalloy-ZnO heterostructures, which is attributed to spin accumulation after ruling out other origins. Simultaneous electrical injection during spin pumping is achieved in samples with large interface resistance or insertion of a thin MgO layer at the interface of permalloy and ZnO. From the pumping frequency dependence of detected voltage, a spin lifetime of 32 ps is extracted for ZnO at room temperature, despite the fact that there was no Hanle effect observed in the same device using the conventional three-terminal DC measurement.
NASA Astrophysics Data System (ADS)
Kim, Tae Kyoung; Yoon, Yeo Jin; Oh, Seung Kyu; Lee, Yu Lim; Cha, Yu-Jung; Kwak, Joon Seop
2018-02-01
The dependence of the electrical and optical properties of radio frequency (RF) superimposed direct current (DC) sputtered-indium tin oxide (ITO) on the tin oxide (Sn2O3) content of the ITO is investigated, in order to elucidate an ohmic contact mechanism for the sputtered-ITO transparent electrodes on p-type gallium nitride (p-GaN). Contact resistivity of the RF superimposed DC sputtered-ITO on p-GaN in LEDs decreased when Sn2O3 content was increased from 3 wt% to 7 wt% because of the reduced sheet resistance of the sputtered-ITO with the increasing Sn2O3 content. Further increases in Sn2O3 content from 7 wt% to 15 wt% resulted in deterioration of the contact resistivity, which can be attributed to reduction of the work function of the ITO with increasing Sn2O3 content, followed by increasing Schottky barrier height at the sputtered ITO/p-GaN interface. Temperature-dependent contact resistivity of the sputtered-ITO on p-GaN also revealed that the ITO contacts with 7 wt% Sn2O3 yielded the lowest effective barrier height of 0.039 eV. Based on these results, we devised sputtered-ITO transparent p-electrodes having dual compositions of Sn2O3 content (7/10 wt%). The radiant intensity of LEDs having sputtered-ITO transparent p-electrodes with the dual compositions (7/10 wt%) was enhanced by 13% compared to LEDs having ITO with Sn2O3 content of 7 wt% only.
Cruickshank, Sheena M; Deschoolmeester, Matthew L; Svensson, Marcus; Howell, Gareth; Bazakou, Aikaterini; Logunova, Larisa; Little, Matthew C; English, Nicholas; Mack, Matthias; Grencis, Richard K; Else, Kathryn J; Carding, Simon R
2009-03-01
The large intestine is a major site of infection and disease, yet little is known about how immunity is initiated within this site and the role of dendritic cells (DCs) in this process. We used the well-established model of Trichuris muris infection to investigate the innate response of colonic DCs in mice that are inherently resistant or susceptible to infection. One day postinfection, there was a significant increase in the number of immature colonic DCs in resistant but not susceptible mice. This increase was sustained at day 7 postinfection in resistant mice when the majority of the DCs were mature. There was no increase in DC numbers in susceptible mice until day 13 postinfection. In resistant mice, most colonic DCs were located in or adjacent to the epithelium postinfection. There were also marked differences in the expression of colonic epithelial chemokines in resistant mice and susceptible mice. Resistant mice had significantly increased levels of epithelium-derived CCL2, CCL3, CCL5, and CCL20 compared with susceptible mice. Furthermore, administering neutralizing CCL5 and CCL20 Abs to resistant mice prevented DC recruitment. This study provides clear evidence of differences in the kinetics of DC responses in hosts inherently resistant and susceptible to infection. DC responses in the colon correlate with resistance to infection. Differences in the production of DC chemotactic chemokines by colonic epithelial cells in response to infection in resistant vs susceptible mice may explain the different kinetics of the DC response.
Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators.
Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine
2016-06-13
Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs.
Photovoltaic system with improved DC connections and method of making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott
A micro-inverter assembly includes a housing having an opening formed in a bottom surface thereof, and a direct current (DC)-to-alternating current (AC) micro-inverter disposed within the housing at a position adjacent to the opening. The micro-inverter assembly further includes a micro-inverter DC connector electrically coupled to the DC-to-AC micro-inverter and positioned within the opening of the housing, the micro-inverter DC connector having a plurality of exposed electrical contacts.
NASA Astrophysics Data System (ADS)
Cristea, D.; Crisan, A.; Cretu, N.; Borges, J.; Lopes, C.; Cunha, L.; Ion, V.; Dinescu, M.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Munteanu, D.
2015-11-01
The main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOz thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N2 and O2, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, -50 V or -100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance TaxNyOz films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric TaxNyOz films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.
NASA Astrophysics Data System (ADS)
Morais, A. P.; Pino, A. V.; Souza, M. N.
2016-08-01
This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C and α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
.../diminished. There are no design changes associated with this TS amendment. The DC power system/batteries will... changes restructure the Technical Specifications (TS) for the direct current (DC) electrical power system... battery and battery charger operability requirements. The DC electrical power system, including associated...
NASA Astrophysics Data System (ADS)
Pandey, Rabichandra; Panda, Chandrakanta; Kumar, Pawan; Pradhan, Lagen Kumar; Kar, Manoranjan
2017-05-01
Role of grain and grain boundary on electrical and thermal conductivity of Bi0.9Y0.1Fe0.9Mn0.1O3 ceramic was investigated systematically. Tartaric acid modified sol gel method was used to synthesize the compound. X-ray diffraction technique was used to confirm the formation of single phase orthorhombic (Pbnm) structure. Electrical properties of the sample were measured with a wide frequency range from 100Hz to 10MHz at different temperature from 40°C to 250°C. AC impedance studies indicate the presence of grain and grain boundary effect. The negative temperature coefficient of resistance (NTCR) behaviour of the compound has been confirmed by the cole-cole plot. DC electrical and thermal conductivities of the compound were explained on the basis of grain and grain boundaries.
NASA Astrophysics Data System (ADS)
Brock, Jeffrey; Khan, Mahmud
2018-05-01
The phase transitions and associated magnetocaloric properties of the Ni2Mn0.55CoxCr0.45-xGa (0 ≤ x ≤ 0.25) Heusler alloy system have been investigated. All samples exhibit a first-order martensitic phase transition, evidenced by a sharp drop in the resistivity versus temperature data and a thermomagnetic irreversibility in the dc magnetization data of the respective samples. Large magnetic entropy changes have also been observed near the phase transitions. The martensitic transformation temperature increases as Cr is partially replaced with Co. Additionally, this substitution leads to a partial decoupling of the magnetic and structural phase transitions, dramatically suppressing any magnetic hysteresis losses. Furthermore, the change in electrical resistivity during the phase transition remains relatively constant across the system, despite major changes in the degree of structural disorder and magnetostructural phase transition coupling. Detailed experimental results and conjectures as to the origin of these behaviors have been provided.
NASA Astrophysics Data System (ADS)
Ahmad, Bashir; Ashiq, Muhammad Naeem; Mumtaz, Saleem; Ali, Irshad; Najam-Ul-Haq, Muhmmad; Sadiq, Imran
2018-04-01
This article reports the fabrication of Ni-Ti doped derivatives of Sr2Co2Fe12-2xO22 by economical Sol-gel method. At room temperature X-ray diffraction (XRD) pattern of powder was obtained after sintering at 1050 °C. The XRD analysis revealed the formation of pure Sr-Y hexaferrite phase. It was found that the observed values of dielectric parameters decreased with increasing Ni-Ti substitution. The higher values of dielectric constants and dielectric loss factor at lower frequency were owing to surface charge polarization. In all the samples the resonance peaks were also observed. The observed room temperature DC electrical resistivity found to increase from 1.8x106 to 4.9x109 ohm cm. The observed activation energies values of the fabricated materials are found in 0.52-0.82 eV range. The decrease in dielectric parameters and increase in resistivity of the fabricated samples with substituents suggest these materials have worth application in micro-wave devices as such devices required highly resistive materials.
Degnan, James R.; Brayton, Michael J.
2010-01-01
The U.S. Geological Survey (USGS), in cooperation with Region III of the U.S. Environmental Protection Agency (USEPA) and the State of Delaware, is conducting an ongoing study of the water-quality and hydrogeologic properties of the Columbia and Potomac aquifers and the extent of cross-aquifer contamination with benzene; chlorobenzene; 1,2-dichlorobenzene; 1,4-dichlorobenzene; and hydrogen chloride (hydrochloric acid when dissolved in water) in the vicinity of the Standard Chlorine of Delaware, Inc. (SCD), Superfund Site, Delaware City, Delaware. Surface geophysical surveys and well data were used to identify and correlate low-permeability units (clays) across the site and to search for sand and gravel filled paleochannels that are potential conduits and receptors of contaminated groundwater and (or) Dense Non-Aqueous Phase Liquid (DNAPL) contaminants. The combined surveys and well data were also used to characterize areas of the site that have groundwater with elevated (greater than 1,000 microsiemens per centimeter) specific conductance (SC) as a result of contamination. The most electrically conductive features measured with direct-current (DC) resistivity at the SCD site are relatively impermeable clays and permeable sediment that are associated with elevated SC in groundwater. Many of the resistive features include paleochannel deposits consisting of coarse-grained sediments that are unsaturated, have low (less than 200 microsiemens per centimeter) SC pore water, or are cemented. Groundwater in uncontaminated parts of the Columbia aquifer and of the Potomac aquifer has a low SC. Specific-conductance data from monitoring wells at the site were used to corroborate the DC-resistivity survey results. For comparison with DC-resistivity surveys, multi-channel analysis of surface wave (MASW) surveys were used and were able to penetrate deep enough to measure the Columbia aquifer, which is known to have elevated SC in some places. MASW survey results respond to solid material stiffness; clays and cemented sediments will have a higher velocity than silts, sands, and gravels (in order of increasing hydraulic conductivity). Geophysical surveys detected elevated SC associated with contamination of the surficial Columbia aquifer. Groundwater with elevated SC over ambient (by an order of magnitude) produced a decrease in measured resistivity at the SCD site. Where SC data are not available from wells, it is not known if a low resistivity value measured with DC resistivity alone results from the geologic material (clay) or elevated SC in groundwater (in sand or gravel). Seismic surface waves used as part of the MASW technique are not affected by water content or quality and are used herein to distinguish between sand and clay when SC is high. Through concurrent interpretation of MASW and DC-resistivity surveys, information was gained about water quality and lithology over large areas at the SCD site.
Hobza, Christopher M.; Burton, Bethany L.; Lucius, Jeffrey E.; Tompkins, Ryan E.
2014-01-01
Understanding the spatial characteristics of leakage from canals is critical to effectively managing and utilizing water resources for irrigation and hydroelectric purposes. Canal leakage in some parts of Nebraska is the primary source of water for groundwater recharge and helps maintain the base flow of streams. Because surface-water supplies depend on the streamflow of the Platte River and the available water stored in upstream reservoirs, water managers seek to minimize conveyance losses, which can include canal leakage. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District and Nebraska Public Power District, used capacitively coupled (CC) and direct-current (DC) resistivity techniques for continuous resistivity profiling to map near-surface lithologies near and underlying the Cozad, Thirty-Mile, Orchard-Alfalfa, Kearney, and Outlet Canals. Approximately 84 kilometers (km) of CC-resistivity data were collected along the five canals. The CC-resistivity data were compared with results from continuous sediment cores and electrical conductivity logs. Generally, the highest resistivities were recorded at the upstream reaches of the Cozad, Thirty-Mile, and Orchard-Alfalfa canals where flood-plain deposits of silt and clay mantle coarser channel deposits of sand and gravel. The finer grained deposits gradually thicken with increasing distance away from the Platte River. Consequently, for many surveyed reaches the thickness of fine-grained deposits exceeded the 8-meter depth of investigation. A detailed geophysical investigation along a 5-km reach of the Outlet Canal southwest of North Platte, Nebraska, used CC and DC resistivity to examine the condition of a compacted-core bank structure and characterized other potential controls on areas of focused seepage. CC-resistivity data, collected along the 5-km study reach, were compared with continuous sediment cores and DC-resistivity data collected near a selected seep near Outlet Canal mile post 15.55 along 5 separate profiles. DC-resistivity results were compared to a schematic cross section of the Outlet Canal north embankment that include the original surfaces and modifications to the compacted-core bank structure. Along the canal road south line, there is a transition from high resistivity at land surface to much lower resistivity near the estimated depth of the northern slope of the original compacted-core bank; however, the surveyed elevation of the water surface in the canal also is at this elevation. Along the canal road north line, there is a transition from high resistivity near land surface to lower resistivity at depth. Although the transition is rapid near the estimated depth of the first-modified bank slope, it also is coincident with the groundwater level measured in piezometer PZ-4. Currently (2013), it is unknown if the indicated changes in resistivity at these elevations was the effect of saturation of the underlying sediments or caused by the compacted-core bank.
SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques
NASA Astrophysics Data System (ADS)
Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.
2016-05-01
The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.
NASA Astrophysics Data System (ADS)
Alsaqqa, Ali; Kilcoyne, Colin; Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.
Vanadium dioxide (VO2) is a strongly correlated material that exhibits a sharp thermally driven metal-insulator transition at Tc ~ 340 K. The transition can also be triggered by a DC voltage in the insulating phase with a threshold (Vth) behavior. The mechanisms behind these transitions are hotly discussed and resistance noise spectroscopy is a suitable tool to delineate different transport mechanisms in correlated systems. We present results from a systematic study of the low frequency (1 mHz < f < 10 Hz) noise behavior in VO2 nanobeams across the thermally and electrically driven transitions. In the thermal transition, the power spectral density (PSD) of the resistance noise is unchanged as we approach Tc from 300 K and an abrupt drop in the magnitude is seen above Tc and it remains unchanged till 400 K. However, the noise behavior in the electrically driven case is distinctly different: as the voltage is ramped from zero, the PSD gradually increases by an order of magnitude before reaching Vth and an abrupt increase is seen at Vth. The noise magnitude decreases above Vth, approaching the V = 0 value. The individual roles of percolation, Joule heating and signatures of correlated behavior will be discussed. This work is supported by NSF DMR 0847324.
NASA Technical Reports Server (NTRS)
Pfaff, R.; Rowland, D.; Klenzing, J.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Roddy, P.; Hunton, D.
2009-01-01
DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Li, Dechun; Zhao, Xin
Resistance to Fas Ligand (FasL) mediated apoptosis plays an important role in tumorigenesis. Decoy receptor 3 (DcR3) is reported to interact with FasL and is overexpressed in some malignant tumors. We sought to investigate the role of DcR3 in resistance to FasL in pancreatic cancer. We compared expression of apoptosis related genes between FasL-resistant SW1990 and FasL-sensitive Patu8988 pancreatic cell lines by microarray analysis. We explored the impact of siRNA knockdown of, or exogenous supplementation with, DcR3 on FasL-induced cell growth inhibition in pancreatic cancer cell lines and expression of proteins involved in apoptotic signaling. We assessed the level ofmore » DcR3 protein and ERK1/2 phosphorylation in tumor and non-tumor tissue samples of 66 patients with pancreatic carcinoma. RNAi knockdown of DcR3 expression in SW1990 cells reduced resistance to FasL-induced apoptosis, and supplementation of Patu8988 with rDcR3 had the opposite effect. RNAi knockdown of DcR3 in SW1990 cells elevated expression of caspase 3, 8 and 9, and reduced ERK1/2 phosphorylation (P < 0.05), but did not alter phosphorylated-Akt expression. 47 tumor tissue specimens, but only 15 matched non-tumor specimens stained for DcR3 (χ{sup 2} = 31.1447, P < 0.001). The proliferation index of DcR3 positive specimens (14.26 ± 2.67%) was significantly higher than that of DcR3 negative specimens (43.58 ± 7.88%, P < 0.01). DcR3 expression positively correlated with p-ERK1/2 expression in pancreatic cancer tissues (r = 0.607, P < 0.001). DcR3 enhances ERK1/2 phosphorylation and opposes FasL signaling in pancreatic cancer cells. - Highlights: • We investigated the role of DcR3 in FasL resistance in pancreatic cancer. • Knockdown of DcR3 in SW1990 cells reduced resistance to FasL-induced apoptosis. • DcR3 knockdown also elevated caspase expression, and reduced ERK1/2 phosphorylation. • Tumor and non-tumor tissues were collected from 66 pancreatic carcinoma patients. • 47 tumor tissue specimens, but only 15 matched non-tumor specimens contained DcR3.« less
Cruickshank, Sheena M; Deschoolmeester, Matthew L; Svensson, Marcus; Howell, Gareth; Bazakou, Aikaterini; Logunova, Larisa; Little, Matthew C; English, Nicholas; Mack, Matthias; Grencis, Richard K; Else, Kathryn J; Carding, Simon R
2009-01-01
The large intestine is a major site of infection and disease yet little is known about how immunity is initiated within this site and the role of dendritic cells (DCs) in this process. We used the well-established model of Trichuris muris infection to investigate the innate response of colonic DCs in mice that are inherently resistant or susceptible to infection. One day post-infection, there was a significant increase in the number of immature colonic DCs in resistant but not susceptible mice. This increase was sustained at day 7 post-infection in resistant mice when the majority of the DCs were mature. There was no increase in DC numbers in susceptible mice until day 13 post-infection. In resistant mice, most colonic DCs were located in or adjacent to the epithelium post-infection. There were also marked differences in the expression of colonic epithelial chemokines in resistant mice and susceptible mice. Resistant mice had significantly increased levels of epithelium-derived CCL2, CCL3, CCL5 and CCL20 compared with susceptible mice. Furthermore, administering neutralizing CCL5 and CCL20 antibodies to resistant mice prevented DC recruitment. This study provides clear evidence of differences in the kinetics of DC responses in hosts inherently resistant and susceptible to infection. DC responses in the colon correlate with resistance to infection. Differences in the production of DC chemotactic chemokines by colonic epithelial cells in response to infection in resistant versus susceptible mice may explain the different kinetics of the DC response. PMID:19234202
Measuring Multiple Resistances Using Single-Point Excitation
NASA Technical Reports Server (NTRS)
Hall, Dan; Davies, Frank
2009-01-01
In a proposed method of determining the resistances of individual DC electrical devices connected in a series or parallel string, no attempt would be made to perform direct measurements on individual devices. Instead, (1) the devices would be instrumented by connecting reactive circuit components in parallel and/or in series with the devices, as appropriate; (2) a pulse or AC voltage excitation would be applied at a single point on the string; and (3) the transient or AC steady-state current response of the string would be measured at that point only. Each reactive component(s) associated with each device would be distinct in order to associate a unique time-dependent response with that device.
Pupils' Representations of Electric Current before, during and after Instruction on DC Circuits.
ERIC Educational Resources Information Center
Psillos, D.; And Others
1987-01-01
Reported are compulsory education pupils' representations of electric current in a constructivist approach to introducing direct current (DC) circuits. Suggests that the pupils views can be modelled after an energy framework. Makes suggestions about the content, the apparatus and the experiments used in teaching DC circuits. (CW)
Research on resistance characteristics of YBCO tape under short-time DC large current impact
NASA Astrophysics Data System (ADS)
Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen
2017-06-01
Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.
Solar Photovoltaic DC Systems: Basics and Safety: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary
Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less
Removal of virus and toxin using heatable multi-walled carbon nanotube web filters
NASA Astrophysics Data System (ADS)
Jang, Hoon-Sik; Jeon, Sang Koo; Ryu, Kwon-Sang; Nahm, Seung Hoon
2016-02-01
Many studies have used a carbon nanotube (CNT) filter for pathogen removal and/or inactivation by means of electrochemical or electrochlorination. The large surface area, fine pore size and high electrical and thermal conductivity of CNTs make them suitable and distinct to use for the filtering and removal of pathogens. Here, we grew spin-capable multi-walled CNTs (MWCNTs) and manufactured a web filter using the spun MWCNTs. Botulinum toxin type E light chain (BoT/E-LC) and vaccinia virus (VV) were filtered using the MWCNT web filters and were evaporated and removed by applying direct current (DC) voltage to both sides of the MWCNT webs, excluding electrochemical or electrochlorination. The filtering and removal of BoT/E-LC and VV were performed after seven layers of the MWCNT sheets were coated onto a silicon oxide porous plate. The electrical resistance of the webs in the seven layer sheet was 293 Ω. The temperature of MWCNTs webs was linearly increased to ˜300 °C at 210 V of DC voltage. This temperature was enough to remove BoT/E-LC and VV. From the SEM and XPS results, we confirmed that BoT/E-LC and VV on the MWCNT webs were almost removed by applying a DC voltage and that some element (N, Na, Cl, etc.) as residues on the MWCNT webs remained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimura, K.; Miyajima, Y.; Sonehara, M.
2016-05-15
This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO{sub 2}) was successfully deposited on the CIP-surface by using hydrolysismore » of TEOS (Si(OC{sub 2}H{sub 5}){sub 4}). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.« less
NASA Astrophysics Data System (ADS)
Sugimura, K.; Miyajima, Y.; Sonehara, M.; Sato, T.; Hayashi, F.; Zettsu, N.; Teshima, K.; Mizusaki, H.
2016-05-01
This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO2) was successfully deposited on the CIP-surface by using hydrolysis of TEOS (Si(OC2H5)4). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.
The Effect of Electrical Treatment on Cyclic Fatigue of NiTi Instruments
Saghiri, Mohammad Ali; Asatourian, Armen; Garcia-Godoy, Franklin; Gutmann, James L.; Lotfi, Mehrdad; Sheibani, Nader
2016-01-01
Summary Dentists desire to use NiTi rotary instruments, which do not break inside the root canals of teeth, since the pieces from broken files are difficult to remove. The NiTi rotary instrument breakage is because of cyclic and torsional fatigue. Here the low-voltage (12 V) and high voltage (24 V) electrical treatments were used to enhance the cyclic fatigue of NiTi rotary instruments and increase their durability. In excremental groups, following electrical treatment samples of the NiTi instruments were rotated inside artificial root canals until they broke. Our results showed that electrical treatment with 12-V DC was effective in restoring NiTi instrument’s resistance to cyclic fatigue. The scanning electron microscopy images and fractograph of samples exposed to 12-V electrical treatment showed a more regular texture over the surface with less dimpling on fractured site. These patterns can improve the super elasticity of tested devices during rotational movement, and delay the NiTi instruments separation in root canal preparations. PMID:24798116
Zozulya, Alla L.; Reinke, Emily; Baiu, Dana C.; Karman, Jozsef; Sandor, Matyas; Fabry, Zsuzsanna
2007-01-01
Dendritic cells (DCs) accumulate in the CNS during inflammatory diseases, but the exact mechanism regulating their traffic into the CNS remains to be defined. We now report that MIP-1α increases the transmigration of bone marrow-derived, GFP-labeled DCs across brain microvessel endothelial cell monolayers. Furthermore, occludin, an important element of endothelial tight junctions, is reorganized when DCs migrate across brain capillary endothelial cell monolayers without causing significant changes in the barrier integrity as measured by transendothelial electrical resistance. We show that DCs produce matrix metalloproteinases (MMP) -2 and -9 and GM6001, an MMP inhibitor, decreases both baseline and MIP-1α -induced DC transmigration. These observations suggest that DC transmigration across brain endothelial cell monolayers is partly MMP dependent. The migrated DCs express higher levels of CD40, CD80, and CD86 costimulatory molecules and induce T cell proliferation, indicating that the transmigration of DCs across brain endothelial cell monolayers contributes to the maintenance of DC Ag-presenting function. The MMP dependence of DC migration across brain endothelial cell monolayers raises the possibility that MMP blockers may decrease the initiation of T cell recruitment and neuroinflammation in the CNS. PMID:17182592
Standardized Curriculum for Electricity/Electronics.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized vocational education course titles and core contents are provided for two courses in Mississippi: electricity/electronics I and II. The first course contains the following units: (1) orientation, safety, and leadership; (2) basic principles of electricity/electronics; (3) direct current (DC) theory; (4) magnetism and DC motors; (5)…
NASA Technical Reports Server (NTRS)
Schjelderup, H. C.; Cook, C. Q.; Snyder, E.; Henning, B.; Hosford, J.; Gilles, D. L.; Swanstrom, C. W.
1980-01-01
The potential hazard to electrical and electronic devices should there be a release of free carbon fibers due to an aircraft crash and fire was assessed. Exposure and equipment sensitivity data were compiled for a risk analysis. Results are presented in the following areas: DC-9/DC-10 electrical/electronic component characterization; DC-9 and DC-10 fiber transfer functions; potential for transport aircraft equipment exposure to carbon fibers; and equipment vulnerability assessment. Results reflect only a negligible increase in risk for the DC-9 and DC-10 fleets either now or projected to 1993.
NASA Astrophysics Data System (ADS)
Bauer, Rita A.; Kelemen, Lóránd; Nakano, Masami; Totsuka, Atsushi; Zrínyi, Miklós
2015-10-01
We have presented the first direct observation of electric field induced rotation of epoxy based polymer rotors. Polymer disks, hollow cylinders and gears were prepared in few micrometer dimensions as rotors. Electrorotation of these sub-millimeter sized tools was studied under uniform dc electric field. The effects of shape, size and thickness were investigated. The novel epoxy based micro devices show intensive spinning in a uniform dc electric field. The rotational speed of micron-sized polymer rotors can be conveniently tuned in a wide range (between 300 and 3000 rpm) by the electric field intensity, opening new perspectives for their use in several MEMS applications.
Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G
2018-05-18
We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.
NASA Astrophysics Data System (ADS)
Ahmad, Iqbal; Shah, Syed Mujtaba; Ashiq, Muhammad Naeem; Nawaz, Faisal; Shah, Afzal; Siddiq, Muhammad; Fahim, Iqra; Khan, Samiullah
2016-10-01
Microemulsion method has been used for the synthesis of high resistive spinal nanoferrites with nominal composition Sr1- x Nd x Fe2- y Mn y O4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0) for high frequency device applications. It has been confirmed by x-ray diffraction (XRD) results that these ferrites have a cubic spinal structure with a mean crystallite size ranging from 34 mm to 47 nm. The co-substitution of Nd3+ and Mn2+ ions was performed, and its effect on electrical, dielectric and impedance properties was analyzed employing direct current (DC) resistivity measurements, dielectric measurements and electrochemical impedance spectroscopy (EIS). The DC resistivity ( ρ) value was the highest for the composition Sr0.90Nd0.1FeMnO4, but for the same composition, dielectric parameters and alternating current (AC) conductivity showed their minimum values. In the lower frequency range, the magnitudes of dielectric parameters decrease with increasing frequency and show an almost independent frequency response at higher frequencies. Dielectric polarization has been employed to explain these results. It was inferred from the results of EIS that the conduction process in the studied ferrite materials is predominantly governed by grain boundary volume.
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Mata, Carlos; Cox, Robert
2005-01-01
An electronic instrument has been developed as a prototype of a portable crane-load contact sensor. Such a sensor could be helpful in an application in which the load rests on a base in a horizontal position determined by vertical alignment pins (see Figure 1). If the crane is not positioned to lift the load precisely vertically, then the load can be expected to swing once it has been lifted clear of the pins. If the load is especially heavy, large, and/or fragile, it could hurt workers and/or damage itself and nearby objects. By indicating whether the load remains in contact with the pins when it has been lifted a fraction of the length of the pins, the crane-load contact sensor helps the crane operator determine whether it is safe to lift the load clear of the pins: If there is contact, then the load is resting against the sides of the pins and, hence, it may not be safe to lift; if contact is occasionally broken, then the load is probably not resting against the pins, so it should be safe to lift. It is assumed that the load and base, or at least the pins and the surfaces of the alignment holes in the load, are electrically conductive, so the instrument can use electrical contact to indicate mechanical contact. However, DC resistance cannot be used as an indicator of contact for the following reasons: The load and the base are both electrically grounded through cables (the load is grounded through the lifting cable of the crane) to prevent discharge of static electricity. In other words, the DC resistance between the load and the pins is always low, as though they were always in direct contact. Therefore, instead of DC resistance, the instrument utilizes the AC electrical impedance between the pins and the load. The signal frequency used in the measurement is high enough (.1 MHz) that the impedance contributed by the cables and the electrical ground network of the building in which the crane and the base are situated is significantly greater than the contact impedance between the pins and the load. The instrument includes a signal generator and voltage-measuring circuitry, and is connected to the load and the base as shown in Figure 2. The output of the signal generator (typically having amplitude of the order of a volt) is applied to the load via a 50-resistor, and the voltage between the load and the pins is measured. When the load and the pins are not in contact, the impedance between them is relatively high, causing the measured voltage to exceed a threshold value. When the load and the pins are in contact, the impedance between them falls to a much lower value, causing the voltage to fall below the threshold value. The voltage-measuring circuitry turns on a red light-emitting diode (LED) to indicate the lower-voltage/ contact condition. Whenever the contact has been broken and the non-contact/higher-voltage condition has lasted for more than 2 ms, the voltage-measuring circuitry indicates this condition by blinking a green LED.
NASA Astrophysics Data System (ADS)
Rahman, K. R.; Chowdhury, F.-U.-Z.; Khan, M. N. I.
2017-12-01
In this paper, the effect of Al3+ substitution on the electrical and dielectric properties of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites with x = 0.0, 0.05. 0.10, 0.15 and 0.20, synthesized by solid state reaction has been reported. Using two probe method, the DC resistivity has been investigated in the temperature range from 30 °C to 300 °C. Activation energy was calculated from the Arrhenius plot. The electrical conduction is explained on the basis of the hopping mechanism. The frequency dependent dielectric properties of these spinel ferrites have been studied at room temperature by measuring AC resistivity, conductivity (σac), dielectric constant and dielectric loss tangent (tan δ) in the frequency range between 1 kHz and 120 MHz. The study of dielectric properties showed that the dielectric constant and dielectric loss increased with increasing non-magnetic Al ions. The dependence of dielectric constant with frequency has been explained by Maxwell-Wagner interfacial polarization. Cole-Cole plots show semicircular arc(s) for the samples, and equivalent RC circuits have been proposed to clarify the phenomena involved therein. The analysis of complex impedance spectroscopy has been used to distinguish between the grain and grain boundary contribution to the total resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farid, Muhammad Asim; Asghar, Muhammad Adnan; Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com
2014-11-15
Graphical abstract: Variation of dielectric constant with frequency for all the synthesized materials. - Highlights: • Hydrothermal method has been successfully employed to synthesize the zirconates. • XRD confirmed the formation of required phase. • Increased electrical resistivity makes these materials useful for microwave devices. • Dielectric parameters of zirconates decrease with increasing frequency. • Dielectric constant decreases with increasing substituents concentration. - Abstract: A hydrothermal method was successfully employed for the synthesis of a series of vanadium and germanium co-doped pyrochlore lanthanum zirconates with composition La{sub 2−x}V{sub x}Zr{sub 2−y}Ge{sub y}O{sub 7} (where x, y = 0.0, 0.25, 0.50, 0.75more » and 1.0). The XRD and FTIR analyses confirmed the formation of single phase except vanadium and germanium substituted samples and the crystallite sizes are in the range of 7–31 nm for V{sup 3+}–Ge{sup 4+} substituted samples. The theoretical compositions are confirmed by the ED-XRF studies. The room temperature electrical resistivity increase with the substituents concentration which suggests that the synthesized materials can be used for microwave devices as such devices required highly resistive materials. Dielectric properties were measured in the frequency range of 6 kHz to 1 MHz. The dielectric parameters decrease with increase in frequency. The DC resistivity data is in good agreement with the dielectric data.« less
EMTP based stability analysis of space station electric power system in a test bed environment
NASA Technical Reports Server (NTRS)
Dravid, Narayan V.; Kacpura, Thomas J.; Oconnor, Andrew M.
1992-01-01
The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD DC test bed. Wherever possible, data from the test bed is compared with the modeling results.
EMTP based stability analysis of Space Station Electric Power System in a test bed environment
NASA Technical Reports Server (NTRS)
Dravid, Narayan V.; Kacpura, Thomas J.; O'Connor, Andrew M.
1992-01-01
The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD dc test bed. Wherever possible, data from the test bed is compared with the modeling results.
Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W
2012-06-01
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.
Direct current uninterruptible power supply method and system
Sinha, Gautam
2003-12-02
A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.
An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Gui-Jia; Tang, Lixin
2013-01-01
Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype
Conductivity of molten sodium chloride in an arbitrarily weak dc electric field.
Delhommelle, Jerome; Cummings, Peter T; Petravic, Janka
2005-09-15
We use nonequilibrium molecular-dynamics (NEMD) simulations to characterize the response of a fluid subjected to an electric field. We focus on the response for very weak fields. Fields accessible by conventional NEMD methods are typically of the order of 10(9) V m(-1), i.e., several orders of magnitude larger than those typically used in experiments. Using the transient time-correlation function, we show how NEMD simulations can be extended to study systems subjected to a realistic dc electric field. We then apply this approach to study the response of molten sodium chloride for a wide range of dc electric fields.
NASA Astrophysics Data System (ADS)
Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser
2018-03-01
This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.
NASA Astrophysics Data System (ADS)
Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.
2014-05-01
The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.
NASA Astrophysics Data System (ADS)
Qi, F.; Leng, Y. X.; Huang, N.; Bai, B.; Zhang, P. Ch.
2007-04-01
17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film.
NASA Astrophysics Data System (ADS)
Jarvis, S. K.; Harmon, R. E.; Barnard, H. R.; Randall, J.; Singha, K.
2017-12-01
The critical zone (CZ)—an open system extending from canopy top to the base of groundwater—is a highly dynamic and heterogeneous environment. In forested terrain, trees make up a large component of the CZ. This work aims to quantify the connection between vegetation and subsurface water storage at a hillslope scale within a forested watershed in the H.J. Andrews Experimental Forest, Oregon. To identify the mechanism(s) controlling the connection at the hillslope scale, we observe patterns in electrical conductivity using 2D-time lapse-DC resistivity. To compare inversions through time a representative error model was determined using L-curve criterion. Inverted data show high spatial variability in ground electrical conductivity and variation at both diel and seasonal timescales. These changes are most pronounced in areas corresponding to dense vegetation. The diel pattern in electrical conductivity is also observed in monitored sap flow sensors, water-level gauges, tensiometers, and sediment thermal probes. To quantify the temporal connection between these data over the course of the growing season a cross correlation analysis was conducted. Preliminary data show that over the course of the growing season transpiration becomes decoupled from both groundwater and soil moisture. Further decomposition of the inverted time lapse data will highlight spatial variability in electrical conductivity providing insight into the where, when, and how(s) of tree-modified subsurface storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morais, A. P.; Salgado de Oliveira University, Marechal Deodoro Street, 217 – Centro, Niterói, Rio de Janeiro; Pino, A. V.
This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C andmore » α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites.« less
NASA Astrophysics Data System (ADS)
Elangovan, D.; Archana, R.; Jayadeep, V. J.; Nithin, M.; Arunkumar, G.
2017-11-01
More than fifty percent Indian population do not have access to electricity in daily lives. The distance between the power generating stations and the distribution centers forms one of the main reasons for lack of electrification in rural and remote areas. Here lies the importance of decentralization of power generation through renewable energy resources. In the present world, electricity is predominantly powered by alternating current, but most day to day devices like LED lamps, computers and electrical vehicles, all run on DC power. By directly supplying DC to these loads, the number of power conversion stages was reduced, and overall system efficiency increases. Replacing existing AC network with DC is a humongous task, but with power electronic techniques, this project intends to implement DC grid at a household level in remote and rural areas. Proposed work was designed and simulated successfully for various loads amounting to 250 W through appropriate power electronic convertors. Maximum utilization of the renewable sources for domestic and commercial application was achieved with the proposed DC topology.
Optimization of direct current-enhanced radiofrequency ablation: an ex vivo study.
Tanaka, Toshihiro; Isfort, Peter; Bruners, Philipp; Penzkofer, Tobias; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H
2010-10-01
The purpose of this study was to investigate the optimal setting for radiofrequency (RF) ablation combined with direct electrical current (DC) ablation in ex vivo bovine liver. An electrical circuit combining a commercially available RF ablation system with DC was developed. The negative electrode of a rectifier that provides DC was connected to a 3-cm multitined expandable RF probe. A 100-mH inductor was used to prevent electrical leakage from the RF generator. DC was applied for 15 min and followed by RF ablation in freshly excised bovine livers. Electric current was measured by an ammeter. Coagulation volume, ablation duration, and mean amperage were assessed for various DC voltages (no DC, 2.2, 4.5, and 9.0 V) and different RF ablation protocols (stepwise increase from 40 to 80 W, 40 W fixed, and 80 W fixed). Results were compared using Kruskal-Wallis and Mann-Whitney U test. Applying DC with 4.5 or 9.0 V, in combination with 40 W fixed or a stepwise increase of RF energy, resulted in significantly increased zone of ablation size compared with 2.2 V or no DC (P = 0.009). At 4.5 V DC, the stepwise increase of RF energy resulted in the same necrosis size as a 40 W fixed protocol (26.6 +/- 3.9 vs. 26.5 +/- 4.0 ml), but ablation duration was significantly decreased (296 +/- 85 s vs. 423 +/- 104 s; P = 0.028). Mean amperage was significantly lower at 4.5 V compared with 9.0 V (P = 0.028). Combining a stepwise increase of RF energy with a DC voltage of 4.5 V is most appropriate to increase coagulation volume and to minimize procedure time.
Optimization of Direct Current-Enhanced Radiofrequency Ablation: An Ex Vivo Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Isfort, Peter; Bruners, Philipp
2010-10-15
The purpose of this study was to investigate the optimal setting for radiofrequency (RF) ablation combined with direct electrical current (DC) ablation in ex vivo bovine liver. An electrical circuit combining a commercially available RF ablation system with DC was developed. The negative electrode of a rectifier that provides DC was connected to a 3-cm multitined expandable RF probe. A 100-mH inductor was used to prevent electrical leakage from the RF generator. DC was applied for 15 min and followed by RF ablation in freshly excised bovine livers. Electric current was measured by an ammeter. Coagulation volume, ablation duration, andmore » mean amperage were assessed for various DC voltages (no DC, 2.2, 4.5, and 9.0 V) and different RF ablation protocols (stepwise increase from 40 to 80 W, 40 W fixed, and 80 W fixed). Results were compared using Kruskal-Wallis and Mann-Whitney U test. Applying DC with 4.5 or 9.0 V, in combination with 40 W fixed or a stepwise increase of RF energy, resulted in significantly increased zone of ablation size compared with 2.2 V or no DC (P = 0.009). At 4.5 V DC, the stepwise increase of RF energy resulted in the same necrosis size as a 40 W fixed protocol (26.6 {+-} 3.9 vs. 26.5 {+-} 4.0 ml), but ablation duration was significantly decreased (296 {+-} 85 s vs. 423 {+-} 104 s; P = 0.028). Mean amperage was significantly lower at 4.5 V compared with 9.0 V (P = 0.028). Combining a stepwise increase of RF energy with a DC voltage of 4.5 V is most appropriate to increase coagulation volume and to minimize procedure time.« less
Novel laboratory methods for determining the fine scale electrical resistivity structure of core
NASA Astrophysics Data System (ADS)
Haslam, E. P.; Gunn, D. A.; Jackson, P. D.; Lovell, M. A.; Aydin, A.; Prance, R. J.; Watson, P.
2014-12-01
High-resolution electrical resistivity measurements are made on saturated rocks using novel laboratory instrumentation and multiple electrical voltage measurements involving in principle a four-point electrode measurement but with a single, moving electrode. Flat, rectangular core samples are scanned by varying the electrode position over a range of hundreds of millimetres with an accuracy of a tenth of a millimetre. Two approaches are tested involving a contact electrode and a non-contact electrode arrangement. The first galvanic method uses balanced cycle switching of a floating direct current (DC) source to minimise charge polarisation effects masking the resistivity distribution related to fine scale structure. These contacting electrode measurements are made with high common mode noise rejection via differential amplification with respect to a reference point within the current flow path. A computer based multifunction data acquisition system logs the current through the sample and voltages along equipotentials from which the resistivity measurements are derived. Multiple measurements are combined to create images of the surface resistivity structure, with variable spatial resolution controlled by the electrode spacing. Fine scale sedimentary features and open fractures in saturated rocks are interpreted from the measurements with reference to established relationships between electrical resistivity and porosity. Our results successfully characterise grainfall lamination and sandflow cross-stratification in a brine saturated, dune bedded core sample representative of a southern North Sea reservoir sandstone, studied using the system in constant current, variable voltage mode. In contrast, in a low porosity marble, identification of open fracture porosity against a background very low matrix porosity is achieved using the constant voltage, variable current mode. This new system is limited by the diameter of the electrode that for practical reasons can only be reduced to between 0.5 and 0.75 mm. Improvements to this resolution may be achieved by further reducing the electrode footprint to 0.1 mm × 0.1 mm using a novel high-impedance, non-contact potential probe. Initial results with this non-contact electric potential sensor indicate the possibility for generating images with grain-scale resolution.
Du, Jian-Hua; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng
2017-01-01
The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc. PMID:28797055
Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng
2017-01-01
The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.
Free-standing nanocomposites with high conductivity and extensibility.
Chun, Kyoung-Yong; Kim, Shi Hyeong; Shin, Min Kyoon; Kim, Youn Tae; Spinks, Geoffrey M; Aliev, Ali E; Baughman, Ray H; Kim, Seon Jeong
2013-04-26
The prospect of electronic circuits that are stretchable and bendable promises tantalizing applications such as skin-like electronics, roll-up displays, conformable sensors and actuators, and lightweight solar cells. The preparation of highly conductive and highly extensible materials remains a challenge for mass production applications, such as free-standing films or printable composite inks. Here we present a nanocomposite material consisting of carbon nanotubes, ionic liquid, silver nanoparticles, and polystyrene-polyisoprene-polystyrene having a high electrical conductivity of 3700 S cm(-1) that can be stretched to 288% without permanent damage. The material is prepared as a concentrated dispersion suitable for simple processing into free-standing films. For the unstrained state, the measured thermal conductivity for the electronically conducting elastomeric nanoparticle film is relatively high and shows a non-metallic temperature dependence consistent with phonon transport, while the temperature dependence of electrical resistivity is metallic. We connect an electric fan to a DC power supply using the films to demonstrate their utility as an elastomeric electronic interconnect. The huge strain sensitivity and the very low temperature coefficient of resistivity suggest their applicability as strain sensors, including those that operate directly to control motors and other devices.
Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films
NASA Astrophysics Data System (ADS)
Zhu, Huiqun; Li, Lekang; Li, Chunbo
2016-03-01
VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.
Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx
NASA Astrophysics Data System (ADS)
Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak
2018-01-01
Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.
Optical and electrical properties of TiOPc doped Alq{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramar, M.; Suman, C. K., E-mail: sumanck@nplindia.org; Tyagi, Priyanka
2015-06-24
The Titanyl phthalocyanine (TiOPc) was doped in Tris (8-hydroxyquinolinato) aluminum (Alq3) with different concentration. The thin film of optimized doping concentration was studied extensively for optical and electrical properties. The optical properties, studied using ellipsometry, absorption and photoluminescence. The absorption peak of Alq{sub 3} and TiOPc was observed at 387 nm and 707 nm and the photo-luminescence intensity (PL) peak of doped thin film was observed at 517 nm. The DC and AC electrical properties of the thin film were studied by current density-voltage (J-V) characteristics and impedance over a frequency range of 100 Hz - 1 MHz. The electron mobility calculated from trap-free space-chargemore » limited region (SCLC) is 0.17×10{sup −5} cm{sup 2}/Vs. The Cole-Cole plots shows that the TiOPc doped Alq{sub 3} thin film can be represented by a single parallel resistance R{sub P} and capacitance C{sub P} network with a series resistance R{sub S} (10 Ω). The value of R{sub P} and C{sub P} at zero bias was 1587 Ω and 2.568 nF respectively. The resistance R{sub P} decreases with applied bias whereas the capacitance C{sub P} remains almost constant.« less
Mechanical Integrity of Flexible In-Zn-Sn-O Film for Flexible Transparent Electrode
NASA Astrophysics Data System (ADS)
Kim, Young Sung; Oh, Se-In; Choa, Sung-Hoon
2013-05-01
The mechanical integrity of transparent In-Zn-Sn-O (IZTO) films is investigated using outer/inner bending, stretching, and twisting tests. Amorphous IZTO films are grown using a pulsed DC magnetron sputtering system with an IZTO target on a polyimide substrate at room temperature. Changes in the optical and electrical properties of IZTO films depend on the oxygen partial pressure applied during the film deposition process. In the case of 3% oxygen partial pressure, the IZTO films exhibit s resistivity of 8.3×10-4 Ω cm and an optical transmittance of 86%. The outer bending test shows that the critical bending radius decreases from 10 to 7.5 mm when the oxygen partial pressure is increased from 1 to 3%. The inner bending test reveals that the critical bending radius of all IZTO films is 3.5 mm regardless of oxygen partial pressure. The IZTO films also show excellent mechanical reliability in the bending fatigue tests of more than 10,000 cycles. In the uniaxial stretching tests, the electrical resistance of the IZTO film does not change until a strain of 2.4% is reached. The twisting tests demonstrate that the electrical resistance of IZTO films remains unchanged up to 25°. These results suggest that IZTO films have excellent mechanical durability and flexibility in comparison with already reported crystallized indium tin oxide (ITO) films.
Evidence for Jahn-Teller distortions at the antiferromagnetic transition in LaTiO3.
Hemberger, J; Krug von Nidda, H-A; Fritsch, V; Deisenhofer, J; Lobina, S; Rudolf, T; Lunkenheimer, P; Lichtenberg, F; Loidl, A; Bruns, D; Büchner, B
2003-08-08
LaTiO3 is known as a Mott insulator which orders antiferromagnetically at T(N)=146 K. We report on results of thermal expansion and temperature dependent x-ray diffraction together with measurements of the heat capacity, electrical transport measurements, and optical spectroscopy in untwinned single crystals. At T(N) significant structural changes appear, which are volume conserving. Concomitant anomalies are also observed in the dc resistivity, in bulk modulus, and optical reflectivity spectra. We interpret these experimental observations as evidence of orbital order.
GSDO Program Hexavalent Chrome Alternatives: Final Pretreatments Test Report
NASA Technical Reports Server (NTRS)
Kessel, Kurt
2013-01-01
Hexavalent chrome free pretreatments should be considered for use on Ground Support Equipment (OSE) and Electrical Ground Support Equipment (EOSE). Both of the hexavalent chrome free pretreatments (Metalast TCP HF and SurTec 650C) evaluated by this project met, and in some instances exceeded, the requirements ofMIL-DTL-5541 "Chemical Conversion Coatings on Aluminum and Aluminum Alloys". For DC resistance measurements, both Metalast TCP HF and SurTec (!50C met initial requirements following assembly and in many cases continued to maintain passing readings for the duration of testing.
Evaluation Method for Fieldlike-Torque Efficiency by Modulation of the Resonance Field
NASA Astrophysics Data System (ADS)
Kim, Changsoo; Kim, Dongseuk; Chun, Byong Sun; Moon, Kyoung-Woong; Hwang, Chanyong
2018-05-01
The spin Hall effect has attracted a lot of interest in spintronics because it offers the possibility of a faster switching route with an electric current than with a spin-transfer-torque device. Recently, fieldlike spin-orbit torque has been shown to play an important role in the magnetization switching mechanism. However, there is no simple method for observing the fieldlike spin-orbit torque efficiency. We suggest a method for measuring fieldlike spin-orbit torque using a linear change in the resonance field in spectra of direct-current (dc)-tuned spin-torque ferromagnetic resonance. The fieldlike spin-orbit torque efficiency can be obtained in both a macrospin simulation and in experiments by simply subtracting the Oersted field from the shifted amount of resonance field. This method analyzes the effect of fieldlike torque using dc in a normal metal; therefore, only the dc resistivity and the dimensions of each layer are considered in estimating the fieldlike spin-torque efficiency. The evaluation of fieldlike-torque efficiency of a newly emerging material by modulation of the resonance field provides a shortcut in the development of an alternative magnetization switching device.
NASA Astrophysics Data System (ADS)
Novaković, M.; Traverse, A.; Popović, M.; Lieb, K. P.; Zhang, K.; Bibić, N.
2012-07-01
We report on modifications of 280-nm thin polycrystalline CrN layers caused by vanadium ion implantation. The CrN layers were deposited at 150°C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 80-keV V+ ions to fluences of 1×1017 and 2×1017 ions/cm2. Rutherford backscattering spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction were used to characterize changes in the structural properties of the films. Their optical and electrical properties were analyzed by infrared spectroscopy in reflection mode and electrical resistivity measurements. CrN was found to keep its cubic structure under the conditions of vanadium ion implantation used here. The initially partially non-metallic CrN layer displays metallic character under implantation, which may be related to the possible formation of Cr1-x V x N.
Nonequilibrium fluctuations as a distinctive feature of weak localization
Barone, C.; Romeo, F.; Pagano, S.; Attanasio, C.; Carapella, G.; Cirillo, C.; Galdi, A.; Grimaldi, G.; Guarino, A.; Leo, A.; Nigro, A.; Sabatino, P.
2015-01-01
Two-dimensional materials, such as graphene, topological insulators, and two-dimensional electron gases, represent a technological playground to develop coherent electronics. In these systems, quantum interference effects, and in particular weak localization, are likely to occur. These coherence effects are usually characterized by well-defined features in dc electrical transport, such as a resistivity increase and negative magnetoresistance below a crossover temperature. Recently, it has been shown that in magnetic and superconducting compounds, undergoing a weak-localization transition, a specific low-frequency 1/f noise occurs. An interpretation in terms of nonequilibrium universal conductance fluctuations has been given. The universality of this unusual electric noise mechanism has been here verified by detailed voltage-spectral density investigations on ultrathin copper films. The reported experimental results validate the proposed theoretical framework, and also provide an alternative methodology to detect weak-localization effects by using electric noise spectroscopy. PMID:26024506
Lymphocyte Electrotaxis in vitro and in vivo
Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D.; Santiago, Juan G.; Butcher, Eugene C.
2008-01-01
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e. electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified transwell assay and a simple microfluidic device, we show that human peripheral blood lymphocytes migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well. PMID:18684937
Lymphocyte electrotaxis in vitro and in vivo.
Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D; Santiago, Juan G; Butcher, Eugene C
2008-08-15
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e., electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified Transwell assay and a simple microfluidic device, we show that human PBLs migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well.
Electrical and Biological Effects of Transmission Lines: A Review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jack M.
1989-06-01
This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz, J.M.; Fita, I.C., E-mail: infifer@fis.upv.es; Soriano, L.
2013-08-15
In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration andmore » allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.« less
Electrostatically frequency tunable micro-beam-based piezoelectric fluid flow energy harvester
NASA Astrophysics Data System (ADS)
Rezaee, Mousa; Sharafkhani, Naser
2017-07-01
This research investigates the dynamic behavior of a sandwich micro-beam based piezoelectric energy harvester with electrostatically adjustable resonance frequency. The system consists of a cantilever micro-beam immersed in a fluid domain and is subjected to the simultaneous action of cross fluid flow and nonlinear electrostatic force. Two parallel piezoelectric laminates are extended along the length of the micro-beam and connected to an external electric circuit which generates an output power as a result of the micro-beam oscillations. The fluid-coupled structure is modeled using Euler-Bernoulli beam theory and the equivalent force terms for the fluid flow. Fluid induced forces comprise the added inertia force which is evaluated using equivalent added mass and the drag and lift forces which are evaluated using relative velocity and Van der Pol equation. In addition to flow velocity and fluid density, the influence of several design parameters such as external electrical resistance, piezo layer position, and dc voltage on the generated power are investigated by using Galerkin and step by step linearization method. It is shown that for given flowing fluid parameters, i.e., density and velocity, one can adjust the applied dc voltage to tune resonance frequency so that the lock-in phenomenon with steady large amplitude oscillations happens, also by adjusting the harvester parameters including the mechanical and electrical ones, the maximal output power of the harvester becomes possible.
Electric vehicle system for charging and supplying electrical power
Su, Gui Jia
2010-06-08
A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.
Some properties of low-vapor-pressure braze alloys for thermionic converters
NASA Technical Reports Server (NTRS)
Bair, V. L.
1978-01-01
Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.
Detection of γ-radiation and heavy metals using electrochemical bacterial-based sensor
NASA Astrophysics Data System (ADS)
Al-Shanawa, M.; Nabok, A.; Hashim, A.; Smith, T.; Forder, S.
2013-06-01
The main aim of this work is to develop a simple electrochemical sensor for detection of γ-radiation and heavy metals using bacteria. A series of DC and AC electrical measurements were carried out on samples of two types of bacteria, namely Escherichia coli and Deinococcus radiodurans. As a first step, a correlation between DC and AC electrical conductivity and bacteria concentration in solution was established. The study of the effect of γ-radiation and heavy metal ions (Cd2+) on DC and AC electrical characteristics of bacteria revealed a possibility of pattern recognition of the above inhibition factors.
Tunable terahertz optical properties of graphene in dc electric fields
NASA Astrophysics Data System (ADS)
Dong, H. M.; Huang, F.; Xu, W.
2018-03-01
We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.
Nondestructive evaluation of composite materials by electrical resistance measurement
NASA Astrophysics Data System (ADS)
Mei, Zhen
This dissertation investigates electrical resistance measurement for nondestructive evaluation of carbon fiber (CF) reinforced polymer matrix composites. The method involves measuring the DC electrical resistance in either the longitudinal or through thickness direction. The thermal history and thermal properties of thermoplastic/CF composites were studied by longitudinal and through-thickness resistance measurements. The resistance results were consistent with differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) results. The resistance measurements gave more information on the melting of the polymer matrix than TMA. They were more sensitive to the glass transition of the polymer matrix than DSC. The through-thickness resistance decreased as autohesion progressed. The activation energy of autohesion was 21.2 kJ/mol for both nylon-6 and polyphenylene sulfide (PPS)/CF composites. Adhesive bonding and debonding were monitored in real-time by measurement of the through-thickness resistance between the adherends in an adhesive joint during heating and subsequent cooling. Debonding occurred during cooling when the pressure or temperature during prior bonding was not sufficiently high. A long heating time below the melting temperature (T m) was found to be detrimental to subsequent PPS adhesive joint development above Tm, due to curing reactions below Tm and consequent reduced mass flow response above Tm. A high heating rate (small heating time) enhanced the bonding more than a high pressure. The longitudinal resistance measurement was used to investigate the effects of temperature and stress on the interface between a concrete substrate and its epoxy/CF composite retrofit. The resistance of the retrofit was increased by bond degradation, whether the degradation was due to heat or stress. The degradation was reversible. Irreversible disturbance in the fiber arrangement occurred slightly as thermal or load cycling occurred, as indicated by the resistance decreasing cycle by cycle. This dissertation also addresses the use of the electrical resistance method to observe thermal and mechanical damage in real time. A temperature increase caused the interlaminar contact resistance to decrease reversibly within each thermal cycle, while thermal damage caused the resistance to decrease abruptly and irreversibly, due to matrix molecular movement and the consequent increase in the chance of fibers of one lamina touching those of an adjacent lamina. The through-thickness volume resistivity irreversibly and gradually decreased upon mechanical damage, which was probably fiber-matrix debonding. Moreover, it reversibly and abruptly increased upon matrix micro-structural change, which occurred reversibly near the peak stress of a stress cycle.
NASA Astrophysics Data System (ADS)
Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon
2014-08-01
It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.
ERIC Educational Resources Information Center
Deal, Walter F., III
2004-01-01
This article discusses electric motors and the many ways in which they are used. Selecting the most appropriate miniature DC electric motor wisely will contribute toward success and satisfaction in designing and building motorized projects and activities. Typical parts suppliers stock a variety of miniature DC motors and provide sufficient…
NASA Astrophysics Data System (ADS)
Basaula, Dharma Raj; Brock, Jeffrey; Khan, Mahmud
2018-05-01
We have explored the structural and superconducting properties of ZrNi2-xTMxGa (TM = Cu, Co) Heusler compounds via x-ray diffraction, scanning electron mi croscopy, electrical resistivity, dc magnetization and ac susceptibility measurements. All samples crystallized in the cubic L21 structure at room temperature. For x ≤ 0.25, all the ZrNi2-xCuxGa compounds showed superconducting properties and a decrease in TC with increasing Cu concentration. The dc magnetization data suggested type-II superconductivity for all the Cu-doped compounds. Contrary to the ZrNi2-xCuxGa compounds, no superconductivity was observed in the ZrNi2-xCoxGa compounds. Substitution of Ni by a small concentration of Co destroyed superconductivity in the Co-doped compounds. The experimental results are discussed and possible explanations are provided.
Electrical conductivity and molten salt corrosion behavior of spinel nickel ferrite
NASA Astrophysics Data System (ADS)
Liu, Baogang; Zhang, Lei; Zhou, Kechao; Li, Zhiyou; Wang, Hao
2011-08-01
Nickel ferrite was prepared by solid-state reaction at 1300 °C as inert anode for aluminum electrolysis. DC conductivities and molten salt corrosion behavior of the samples were investigated in detail regarding the effects of different sintering atmospheres. X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis were used to analyse the phase compositions and microstructures. The DC conductivities of the samples sintered in nitrogen showed a drastic increase compared to those sintered in air, and at 960 °C they increased from 1.94 S/cm to 22.65 S/cm. The samples sintered in nitrogen showed much better corrosion resistance than those sintered in air, attributing to the formation of the dense protective layers in the anode surfaces during the electrolysis at 960 °C. The conductive mechanism and molten salt corrosion behavior were also discussed.
NASA Astrophysics Data System (ADS)
Serbetci, Ilter; Nagamatsu, H. T.
1990-02-01
Steady-state low-current air arcs in a dual-flow nozzle system are studied experimentally. The cold flow field with no arc is investigated using a 12.7-mm diameter dual-flow nozzle in a steady-flow facility. Mach number and mass flux distributions are determined for various nozzle-pressure ratios and nozzle-gap spacing. It is found that the shock waves in the converging-diverging nozzles result in a decrease in overal resistance by about 15 percent. Also, Schlieren and differential interferometry techniques are used to visualize the density gradients within the arc plasma and thermal mantle. Both optical techniques reveal a laminar arc structure for a reservoir pressure of 1 atm at various current levels. Experimentally determined axial static pressure and cold-flow mass flux rate distributions and a channel-flow model with constant arc temperatre are used to solve the energy integral for the arc radius as a function of axial distance. The arc electric field strength, voltage, resistance, and power are determined with Ohm's law and the total heat transfer is related to arc power.
Converter topologies and control
Rodriguez, Fernando; Qin, Hengsi; Chapman, Patrick
2018-05-01
An inverter includes a transformer that includes a first winding, a second winding, and a third winding, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adapted to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid.
Aquifer Characterization from Surface Geo-electrical Method, western coast of Maharashtra, India
NASA Astrophysics Data System (ADS)
DAS, A.; Maiti, D. S.
2017-12-01
Knowledge of aquifer parameters are necessary for managing groundwater amenity. These parameters are evaluated through pumping tests bring off from bore wells. But it is quite expensive as well as time consuming to carry out pumping tests at various sites and sometimes it is difficult to find bore hole at every required site. Therefore, an alternate method is put forward in which the aquifer parameters are evaluated from surface geophysical method. In this method, vertical electrical sounding (VES) with Schlumberger configuration were accomplished in 85 stations over Sindhudurg district. Sindhudurg district is located in the Konkan region of Maharashtra state, India. The district is located between north latitude 15°37' and 16° 40' and east longitude 73° 19' and 74° 13'. The area is having hard rock and acute groundwater problem. In this configuration, we have taken the maximum current electrode spacing of 200 m for every vertical electrical sounding (VES). Geo-electrical sounding data (true resistivity and thickness) is interpreted through resistivity inversion approach. The required parameters are achieved through resistivity inversion technique from which the aquifer variables (D-Z parameters, mean resistivity, hydraulic conductivity, transmissivity, and coefficient of anisotropy) are calculated by using some empirical formulae. Cross-correlation investigation has been done between these parameters, which eventually used to characterize the aquifer over the study area. At the end, the contour plot for these aquifer parameters has been raised which reveals the detailed distribution of aquifer parameters throughout the study area. From contour plot, high values of longitudinal conductance, hydraulic conductivity and transmissivity are demarcate over Kelus, Vengurle, Mochemar and Shiroda villages. This may be due to intrusion of saline water from Arabian sea. From contour trends, the aquifers are characterized from which the groundwater resources could be assess and manage properly in western Maharashtra. The current method which include DC resistivity inversion could be applicable further in hydrological characterization in tangled coastal parts of India.
NASA Astrophysics Data System (ADS)
Ghimire, H.; Bhusal, U. C.; Khatiwada, B.; Pandey, D.
2017-12-01
Geophysical investigation using two dimensional electrical resistivity tomography (2D-ERT) method plays a significant role in determining the subsurface resistivity distribution by making measurement on the ground surface. This method was carried out at Dudhkoshi-II (230 MW) Hydroelectric Project, lies on Lesser Himalayan region of the Eastern Nepal to delineate the nature of the subsurface geology to assess its suitability for the construction of dam, desanding basin and powerhouse. The main objective of the proposed study consists of mapping vertical as well as horizontal variations of electrical resistivity to enable detection of the boundaries between unconsolidated materials and rocks of the different resistivity, possible geologic structures, such as possible presence of faults, fractures, and voids in intake and powerhouse area. For this purpose, the (WDJD-4 Multi-function Digital DC Resistivity/IP) equipment was used with Wenner array (60 electrodes). To fulfill these objectives of the study, the site area was mapped by Nine ERT profiles with different profile length and space between electrodes was 5 m. The depth of the investigation was 50 m. The acquired data were inverted to tomogram sections using tomographic inversion with RES2DINV commercial software. The Tomography sections show that the subsurface is classified into distinct geo-electric layers of dry unconsolidated overburden, saturated overburden, fractured rock and fresh bedrock of phyllites with quartzite and gneiss with different resistivity values. There were no voids and faults in the study area. Thickness of overburden at different region found to be different. Most of the survey area has bedrock of phyllites with quartzite; gneiss is also present in some location at intake area. Bedrock is found at the varies depth of 5-8 m at dam axis, 20-32 m at desanding basin and 3-10 m at powerhouse area. These results are confirmed and verified by using several boreholes data were drilled on the survey area. The results obtained from the study showed that the site is suitable for the construction of the proposed dam, desanding basin and powerhouse.
Power processing and control requirements of dispersed solar thermal electric generation systems
NASA Technical Reports Server (NTRS)
Das, R. L.
1980-01-01
Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.
NASA Astrophysics Data System (ADS)
Mammo, Tulu Wegayehu; Murali, N.; Sileshi, Yonatan Mulushoa; Arunamani, T.
2018-02-01
Partially substituted spinel structured CoFe2-xCexO4 (x = 0, 0.03, 0.06, and 0.09) samples have been synthesized using the sol-gel autocombustion route. Stoichiometric amounts of metal nitrates and citric acid were mixed in double distilled water to get homogeneously mixed solutions which were then heated to burn and result in samples for the next two-step annealing procedures. Structural and phase characterization using powder X-ray diffraction (XRD) has been carried out; and a pure spinel structured samples with lattice parameters increasing with the increase of Ce concentration levels have been obtained. The lattice parameters were calculated to be in the range of 8.42774-8.4744 Å. Field emission scanning electron microscopy (FESEM) microstructure characterizations revealed clear grain structures of the so synthesized samples with grain sizes decreasing with Ce. Fourier transform Infrared (FT-IR) characterization measured in the wave number ranges of 400-4000 cm-1 showed the cation vibrations and stretching at characteristic frequency of 668-418 cm-1. The DC resistivity measurements confirmed a decrease in the resistivity of the samples with the increase of Ce concentration and with the increase of temperature in all of the samples synthesized. Room temperature vibrating sample magnetometer measurement revealed the magnetic properties of the samples with decreasing magnetic parameters as Ce concentration increases.
Gomes, Ana L.; Kinchesh, Paul; Kersemans, Veerle; Allen, Philip D.; Smart, Sean C.
2016-01-01
Purpose To develop an MRI-compatible resistive heater, using high frequency alternating current (AC), for temperature maintenance of anaesthetised animals. Materials and Methods An MRI-compatible resistive electrical heater was formed from narrow gauge wire connected to a high frequency (10–100 kHz) AC power source. Multiple gradient echo images covering a range of echo times, and pulse-acquire spectra were acquired with the wire heater powered using high frequency AC or DC power sources and without any current flowing in order to assess the sensitivity of the MRI acquisitions to the presence of current flow through the heater wire. The efficacy of temperature maintenance using the AC heater was assessed by measuring rectal temperature immediately following induction of general anaesthesia for a period of 30 minutes in three different mice. Results Images and spectra acquired in the presence and absence of 50–100 kHz AC through the wire heater were indistinguishable, whereas DC power created field shifts and lineshape distortions. Temperature lost during induction of anaesthesia was recovered within approximately 20 minutes and a stable temperature was reached as the mouse’s temperature approached the set target. Conclusion The AC-powered wire heater maintains adequate heat input to the animal to maintain body temperature, and does not compromise image quality. PMID:27806062
NASA Astrophysics Data System (ADS)
Sultan, Sultan Awad; Essa, Khalid Sayed Ahmed Tawfik; Khalil, Mohamed Hassan; El-Nahry, Alaa Eldin Hassan; Galal, Alaa Nayef Hasan
2017-06-01
The integration between advanced techniques for groundwater exploration is necessary to manage and protect the vital resources. Direct current (DC) resistivity geoelectrical technique, Enhanced Thematic Mapper Landsat (ETM+) images and a geographic information system (GIS) are integrated to identify the groundwater potentiality in the study area. The interpretation of the one-dimensional (1-D) inversion of the acquired resistivity data are implemented for mapping the fresh to slightly brackish water aquifer. This number of vertical electric sounding is quite enough for different geologic mapping. The depth to the top of the ground water table (obtained from the existing Water well) and subsurface lithological information are used to calibrate the results of the resistivity data inversion. This research discussed how the integration between the geoelectrical parameters and hydrological data, could be used to determine the appropriate locations of dams construction and recommend the appropriate methods for management and rehabilitation of the aquifer.
Synthesis of zirconium oxynitride in air under DC electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morisaki, Nobuhiro; Tokunaga, Tomoharu; Sasaki, Katsuhiro
We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electronmore » microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.« less
A comparative study of electric power distribution systems for spacecraft
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.; King, Roger J.
1990-01-01
The electric power distribution systems for spacecraft are compared concentrating on two interrelated issues: the choice between dc and high frequency ac, and the converter/inverter topology to be used at the power source. The relative merits of dc and ac distribution are discussed. Specific converter and inverter topologies are identified and analyzed in detail for the purpose of detailed comparison. Finally, specific topologies are recommended for use in dc and ac systems.
Electrical properties of PMMA ion-implanted with low-energy Si+ beam
NASA Astrophysics Data System (ADS)
Hadjichristov, G. B.; Gueorguiev, V. K.; Ivanov, Tz E.; Marinov, Y. G.; Ivanov, V. G.; Faulques, E.
2010-01-01
The electrical properties of polymethylmethacrylate (PMMA) after implantation with silicon ions accelerated to an energy of 50 keV are studied under DC electric bias field. The electrical response of the formed material is examined as a function of Si+ fluence in the range 1014 - 1017 cm-2. The carbonaceous subsurface region of the Si+-implanted PMMA displays a significant DC conductivity and a sizable field effect that can be used for electronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamble, Ramesh B., E-mail: rbk.physics@coep.ac.in; Department of Physics, College of Engineering, Pune 411005, Maharashtra; Tanty, Narendra
2016-08-22
We report the potential field emission of highly conducting metallic perovskite lanthanum nickelate (LaNiO{sub 3}) from the nanostructured pyramidal and whisker shaped tips as electron emitters. Nano particles of lanthanum nickelate (LNO) were prepared by sol-gel route. Structural and morphological studies have been carried out. Field emission of LNO exhibited high emission current density, J = 3.37 mA/cm{sup 2} at a low threshold electric field, E{sub th} = 16.91 V/μm, obeying Fowler–Nordheim tunneling. The DC electrical resistivity exhibited upturn at 11.6 K indicating localization of electron at low temperature. Magnetoresistance measurement at different temperatures confirmed strong localization in nanostructured LNO obeying Anderson localization effect at low temperature.
NASA Astrophysics Data System (ADS)
Veena, G.; Lobo, Blaise
2018-04-01
Potassium permanganate (KMnO4) doped polyvinyl alcohol (PVA) - polyvinyl pyrrolidone (PVP) blend films were prepared by solution casting technique, in the doping range varying from 0.01 wt % up to 4.70 wt %. The microstructural changes caused by doping, and the modified properties of these films were studied using Atomic Force Microscope (AFM) and temperature dependent direct current (DC) electrical measurements. Temperature variation of electrical resistivity was found to obey Arrhenius relation, from which activation energy was determined. The study was supported by AFM scans, which showed an increase in surface roughness and the presence of spike-like structures, due to interaction of dopant with the polymeric blend. Differential Scanning Calorimetry (DSC) scans revealed two stages of degradation in KMnO4 doped PVA - PVP blend films.
Murik, S E; Shapkin, A G
2004-08-01
It has been proposed to assess functional and metabolic state of the brain nervous tissue in terms of bioelectrical parameters. Simultaneous recording of the DC potential level and total slow electrical activity of the nervous tissue was performed in the object of study by nonpolarizable Ag/AgCl electrodes with a DC amplifier. The functional and metabolic state of the brain was determined in terms of enhancement or reduction in the total slow electrical activity and positive or negative shifts in the DC potential level.
NASA Astrophysics Data System (ADS)
Grainger, Brandon Michael
The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is proposed and evaluated as the DC microgrid is disturbed through various mode transitions. Finally, two communication protocols are described for the microgrid---one to minimize communication overhead inside the microgrid and another to provide robust and scalable intra-grid communication. The work presented is supported by Asea Brown Boveri (ABB) Corporate Research Center within the Active Grid Infrastructure program, the Advanced Research Project Agency - Energy (ARPA-E) through the Solar ADEPT program, and Mitsubishi Electric Corporation (MELCO).
Decoy receptor 3 suppresses FasL-induced apoptosis via ERK1/2 activation in pancreatic cancer cells.
Zhang, Yi; Li, Dechun; Zhao, Xin; Song, Shiduo; Zhang, Lifeng; Zhu, Dongming; Wang, Zhenxin; Chen, Xiaochen; Zhou, Jian
2015-08-07
Resistance to Fas Ligand (FasL) mediated apoptosis plays an important role in tumorigenesis. Decoy receptor 3 (DcR3) is reported to interact with FasL and is overexpressed in some malignant tumors. We sought to investigate the role of DcR3 in resistance to FasL in pancreatic cancer. We compared expression of apoptosis related genes between FasL-resistant SW1990 and FasL-sensitive Patu8988 pancreatic cell lines by microarray analysis. We explored the impact of siRNA knockdown of, or exogenous supplementation with, DcR3 on FasL-induced cell growth inhibition in pancreatic cancer cell lines and expression of proteins involved in apoptotic signaling. We assessed the level of DcR3 protein and ERK1/2 phosphorylation in tumor and non-tumor tissue samples of 66 patients with pancreatic carcinoma. RNAi knockdown of DcR3 expression in SW1990 cells reduced resistance to FasL-induced apoptosis, and supplementation of Patu8988 with rDcR3 had the opposite effect. RNAi knockdown of DcR3 in SW1990 cells elevated expression of caspase 3, 8 and 9, and reduced ERK1/2 phosphorylation (P < 0.05), but did not alter phosphorylated-Akt expression. 47 tumor tissue specimens, but only 15 matched non-tumor specimens stained for DcR3 (χ(2) = 31.1447, P < 0.001). The proliferation index of DcR3 positive specimens (14.26 ± 2.67%) was significantly higher than that of DcR3 negative specimens (43.58 ± 7.88%, P < 0.01). DcR3 expression positively correlated with p-ERK1/2 expression in pancreatic cancer tissues (r = 0.607, P < 0.001). DcR3 enhances ERK1/2 phosphorylation and opposes FasL signaling in pancreatic cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films
NASA Astrophysics Data System (ADS)
Hassanien, A. S.; Akl, Alaa A.
2016-01-01
Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.
REPORT OF THE QUALIFICATION TESTING OF SNAP 10A FUSISTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holtwick, J.S. III; Nowell, V.P.
1963-07-31
Qualification testing of SNAP 10A fusistors was performed. Test operations included: visual inspection, insulation resistance, dielectric strength, and d-c resistance testing prior to subjecting the fusisters to environmental testing; opening-time testing prior to, during, and following vacuum and temperature testing; and insulation resistance, dielectric strength, and d-c resistance testing following environmental applications of temperature, vacuum, and sinusoidal vibration. (auth)
Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae
2016-09-06
Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications.
Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae
2016-01-01
Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications. PMID:27608028
Thermal annealing induced multiple phase in V/V2O5 alternating multilayer structure
NASA Astrophysics Data System (ADS)
Ilahi, B.; Abdel-Rahman, M.; Zaaboub, Z.; Zia, M. F.; Alduraibi, M.; Maaref, H.
2016-09-01
In this paper, we report on microstructural, optical and electrical properties of alternating multilayer of vanadium pentoxide (V2O5), 25 nm, and vanadium (V), 5 nm, thin films deposited at room temperature by radio frequency (RF) and DC magnetron sputtering, respectively. Raman and photoluminescence (PL) spectroscopy have been employed to investigate the effects of thermal annealing for 20, 30 and 40 min at 400∘C in Nitrogen (N2) atmosphere on the multiple phase formation and its impact on the film resistance and temperature coefficient of resistance (TCR). We demonstrate that the oxygen free annealing environment allows the formation of multiple phases including V2O5, V6O13 and VO2 through oxygen diffusion and consequent deficiency in V2O5 layer.
Anomalous magnetotransport behavior in Fe-doped MnNiGe alloys
NASA Astrophysics Data System (ADS)
Dutta, P.; Pramanick, S.; Singh, Vijay; Major, Dan Thomas; Das, D.; Chatterjee, S.
2016-04-01
The electrical dc transport properties of hexagonal magnetic equiatomic alloys of nominal composition Mn1 -xFexNiGe (x =0.2 and0.25 ) have been investigated experimentally as well as theoretically using first-principles electronic structure calculations. Thermal hysteresis in the magnetization data indicates that the alloys undergo a first-order martensitic transition. Both the alloys show unusual nonmetallic resistivity behavior and a noticeable amount of training effect in resistivity when thermally cycled through the first-order martensitic transition. We observe moderate negative magnetoresistance (˜-11.5 % for 150 kOe) at 5 K (well below the martensitic transition temperature) associated with clear virgin line effect for both the alloys. We have adapted different flavors of density functional theory approach to understand the experimentally observed nonmetallic transport behavior.
Fabrication and investigation of photosensitive MoOx/n-CdTe heterojunctions
NASA Astrophysics Data System (ADS)
Solovan, M. M.; Gavaleshko, N. M.; Brus, V. V.; Mostovyi, A. I.; Maryanchuk, P. D.; Tresso, E.
2016-10-01
MoOx/n-CdTe photosensitive heterostructures were prepared by the deposition of molybdenum oxide thin films onto n-type single-crystal CdTe substrates by DC reactive magnetron sputtering. The obtained heterojunctions possessed sharply defined rectifying properties with the rectification ration RR ˜ 106. The temperature dependences of the height of the potential barrier and series resistance of the MoOx/CdTe heterojunctions were investigated. The dominating current transport mechanisms through the heterojunctions were determined at forward and reverse biases. The analysis of capacitance-voltage (C-V) characteristics, measured at different frequencies of the small amplitude AC signal and corrected by the effect of the series resistance, provided evidence of the presence of electrically charged interface states, which significantly affect the measured capacitance.
Superconducting and magnetic properties of RBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaheen, S.A.; Jisrawi, N.; Lee, Y.H.
Superconducting properties of RBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ compounds (R = Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Yb) have been studied by dc electrical resistivity and ac magnetic susceptibility techniques. Except for R = La, which is superconducting below 50 K, RBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ compounds exhibit sharp resistive and inductive transitions in the 90-K range. The nearly constant value of T/sub c/ for magnetic R ions indicates a very weak interaction between R ions, as anticipated from the known crystal structure of these materials. The effects of annealing in oxygen and argon, andmore » air quenching, on the superconducting properties are also discussed.« less
Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Sophie Gu, Xiaowen
2018-03-01
Direct and alternating current electric fields with various voltages were used to improve the decontamination efficiency of chelator assisted phytoremediation for multi-metal polluted soil. The alleviation effect of electric field on leaching risk caused by chelator application during phytoremediation process was also evaluated. Biomass yield, pollutant uptake and metal leaching retardation under alternating current (AC) and direct current (DC) electric fields were compared. The biomass yield of Eucalyptus globulus under AC fields with various voltages (2, 4 and 10 V) were 3.91, 4.16 and 3.67kg, respectively, significantly higher than the chelator treatment without electric field (2.71kg). Besides growth stimulation, AC fields increased the metal concentrations of plant tissues especially in aerial parts manifested by the raised translocation factor of different metals. Direct current electric fields with low and moderate voltages increased the biomass production of the species to 3.45 and 3.12kg, respectively, while high voltage on the contrary suppressed the growth of the plants (2.66kg). Under DC fields, metal concentrations elevated obviously with increasing voltages and the metal translocation factors were similar under all voltages. Metal extraction per plant achieved the maximum value under moderate voltage due to the greatest biomass production. DC field with high voltage (10V) decreased the volume of leachate from the chelator treatment without electric field from 1224 to 56mL, while the leachate gathered from AC field treatments raised from 512 to 670mL. DC field can retard the downward movement of metals caused by chelator application more effectively relative to AC field due to the constant water flow and electroosmosis direction. Alternating current field had more promotive effect on chelator assisted phytoremediation efficiency than DC field illustrated by more metal accumulation in the species. However, with the consideration of leaching risk, DC field with moderate voltage was the optimal supplementary technique for phytoremediation. Copyright © 2017 Elsevier Inc. All rights reserved.
A Lemon Cell Battery for High-Power Applications
ERIC Educational Resources Information Center
Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.
2007-01-01
The use of lemon cell battery to run an electric DC motor is demonstrated for chemistry students. This demonstration aids the students in understanding principles behind the design and construction of the lemon cell battery and principles governing the electric DC motor and other basic principles.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.
1991-01-01
Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.
Integrated Inverter For Driving Multiple Electric Machines
Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN
2006-04-04
An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.
Electric-field-induced flow-aligning state in a nematic liquid crystal.
Fatriansyah, Jaka Fajar; Orihara, Hiroshi
2015-04-01
The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.
NASA Astrophysics Data System (ADS)
Jiang, Zhenan; Zhou, Wei; Li, Quan; Yao, Min; Fang, Jin; Amemiya, Naoyuki; Bumby, Chris W.
2018-07-01
Dynamic resistance, which occurs when a HTS coated conductor carries a DC current under an AC magnetic field, can have critical implications for the design of HTS machines. Here, we report measurements of dynamic resistance in a commercially available SuperPower 4 mm-wide YBCO coated conductor, carrying a DC current under an applied AC magnetic field of arbitrary orientation. The reduced DC current, I t/I c0, ranged from 0.01 to 0.9, where I t is the DC current level and I c0 is the self-field critical current of the conductor. The field angle (the angle between the magnetic field and the normal vector of the conductor wide-face) was varied between 0° and 90° at intervals of 10°. We show that the effective width of the conductor under study is ˜12% less than the physical wire width, and we attribute this difference to edge damage of the wire during or after manufacture. We then examine the measured dynamic resistance of this wire under perpendicular applied fields at very low DC current levels. In this regime we find that the threshold field, B th, of the conductor is well described by the nonlinear equation of Mikitik and Brandt. However, this model consistently underestimates the threshold field at higher current levels. As such, the dynamic resistance in a coated conductor under perpendicular magnetic fields is best described using two different equations for each of the low and high DC current regimes, respectively. At low DC currents where I t/I c0 ≤ 0.1, the nonlinear relationship of Mikitik and Brandt provides the closest agreement with experimental data. However, in the higher current regime where I t/I c0 ≥ 0.2, closer agreement is obtained using a simple linear expression which assumes a current-independent penetration field. We further show that for the conductor studied here, the measured dynamic resistance at different field angles is dominated by the perpendicular magnetic field component, with negligible contribution from the parallel component. Our findings now enable the dynamic resistance of a single conductor to be analytically determined for a very wide range of DC currents and at all applied field angles.
Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates
NASA Astrophysics Data System (ADS)
Tseng, Kun-San; Lo, Yu-Lung
2013-11-01
The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target-substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target-substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target-substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target-substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target-substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.
NASA Astrophysics Data System (ADS)
Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.
2018-03-01
Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.
NASA Astrophysics Data System (ADS)
Debnath, Rajesh; Mandal, S. K.; Dey, P.; Nath, A.
2018-04-01
We have investigated strain mediated magnetoelectric coupling and ac electrical properties of 0.5La0.7Sr0.3MnO3-0.5 Polyvinylidene Fluoride nanocomposites at room temperature. The sample has been prepared through low temperature pyrophoric chemical process. The detailed study of X-ray diffraction pattern shows simultaneous co-existence of two phases of nanometric grains. Field emission scanning electron micrograph shows the absence of any phase segregation and good chemical homogeneity in composites. The magnetoelectric voltage is measured in both longitudinal and transverse direction at a frequency of 73 Hz. The magnetoelectric coefficient in transverse direction is found to ˜0.17 mV/cmOe and in longitudinal direction it is found to ˜0.08 mV/cmOe. With the application of dc magnetic field the real and imaginary part of impedance are increased where the dielectric constant has been decreased. Nyquist plots have been fitted using two parallel combinations of resistances - constant phase element circuits considering dominant role of grains and grain boundaries resistance in the conduction process of the sample.
Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications
NASA Astrophysics Data System (ADS)
Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.
2013-05-01
Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 < x < 2.0 were prepared by pulsed direct-current (DC) sputtering using substrate bias in a controlled oxygen and argon environment. These films were systematically alloyed with Ti, Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.
In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.
Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta
2008-10-01
Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.
Wang, Fei-Xiang; Yuan, Ling; Huang, Jian-Guo
2013-06-01
In order to detect toxicants sensitively in water by phototaxity of Daphnia, we studied the influence of DC electric field on phototaxity of self-bred Daphnia carinata, a mono-clone with high phototaxity, and the changes of their phototaxity in response to Cr6+ and Hg2+ after the treatment of DC electric field. The result indicated that the treatment of DC electric field changed their phototaxical indexes from positive to negative as the electric density increased and the time prolonged. The criteria values that showed no sign of changes in the phototaxical index of Daphnia carinata were 0.01 mA for 5 min. However, the limit for detecting Cr6+ and Hg2+ by their phototaxical index decreased significantly after treatment with 0.01 mA/5 min. The detection limits were only 32 microg x L(-1) for Cr6+ and 4.2 microg x L(-1) for Hg2+ after this treatment, much lower than those without pretreatment (56 microg x L(-1) for Cr6+ and 5.6 microg x L(-1) for Hg2+, respectively). Therefore, appropriate DC electric field to pre-treat Daphnia could decrease the detection limit, widen the concentration range of detection, and increased the sensibilities in water monitoring.
TOPICAL REVIEW: Physics of thermoelectric cooling
NASA Astrophysics Data System (ADS)
Gurevich, Yu G.; Logvinov, G. N.
2005-12-01
A new approach is suggested to explain the Peltier effect. It assumes that the Peltier effect is not an isothermal effect. The approach is based on the occurrences of induced thermal fluxes in a structure which consists of two conducting media, through which a dc electric current flows. These induced thermal diffusion fluxes arise to compensate for the change in the thermal flux caused by the electric current (the drift thermal flux) flowing through the junction, in accordance with the general Le Châtelier-Braun principle. The occurrence of these thermal diffusion fluxes leads to temperature heterogeneity in the structure and, as a result, to a cooling or heating of the junction. Within the framework of this concept, the thermoelectric cooling is analysed. It is shown that in the general case the Peltier effect always occurs together with another thermoelectric effect. This thermoelectric effect is predicted for the first time, and we have called it the barrierless thermoelectric effect. Both these effects essentially depend on the junction surface thermal resistance. The Peltier effect disappears in the limiting case of a very large surface thermal resistance, while the barrierless effect disappears in the limiting case of a very small surface thermal resistance. The dependence of thermoelectric cooling on the geometrical dimensions of the structure is noted, and the corresponding interpretation of this fact is discussed. It is shown that the thermoelectric cooling (heating) is a thermodynamically reversible process in the linear approximation of the electric current applied.
NASA Astrophysics Data System (ADS)
Elyana, E.; Mohamed, Z.; Kamil, S. A.; Supardan, S. N.; Chen, S. K.; Yahya, A. K.
2018-02-01
Ru doping in charge-ordered Pr0.75Na0.25Mn1-xRuxO3 (x = 0-0.1) manganites was studied to investigate its effect on structure, electrical transport, magnetic properties, and magnetotransport properties. DC electrical resistivity (ρ), magnetic susceptibility, and χ' measurements showed that sample x = 0 exhibits insulating behavior within the entire temperature range and antiferromagnetic (AFM) behavior below the charge-ordering (CO) transition temperature TCO of 221 K. Ru4+ substitution (x>0.01) suppressed the CO state, which resulted in the revival of paramagnetic to ferromagnetic (FM) transition at the Curie temperature Tc, increasing from 120 K (x = 0.01) to 193 K (x = 0.1). Deviation from the Curie-Weiss law above Tc in the 1/χ' versus T plot for x = 0.01 doped samples indicated the existence of Griffiths phase with Griffith temperature at 169 K. Electrical resistivity measurements showed that Ru4+ substitution increased the metallic-to-insulating transition temperature TMI from 144 K (x = 0.01) to 192 K (x = 0.05) due to enhanced double-exchange mechanism, but TMI decreased to 176 K (x = 0.1) probably due to the existence of AFM clusters within the FM domain. The present work also discussed the possible theoretical models at the resistivity curve of Pr0.75Na0.25Mn1-xRuxO3 (x = 0-0.1) for the entire temperature range.
Electroosmotic Flow Driven by DC and AC Electric Fields in Curved Microchannels
NASA Astrophysics Data System (ADS)
Chen, Jia-Kun; Luo, Win-Jet; Yang, Ruey-Jen
2006-10-01
The purpose of this study is to investigate electroosmotic flows driven by externally applied DC and AC electric fields in curved microchannels. For the DC electric driving field, the velocity distribution and secondary flow patterns are investigated in microchannels with various curvature ratios. We use the Dean number to describe the curvature effect of the flow field in DC electric field. The result implies that the effect of curvatures and the strength of the secondary flows become get stronger when the curvature ratio of C/A (where C is the radius of curvature of the microchannel and A is the half-height of rectangular curved tube.) is smaller. For the AC electric field, the velocity distribution and secondary flow patterns are investigated for driving frequencies in the range of 2.0 kHz (\\mathit{Wo}=0.71) to 11 kHz (\\mathit{Wo}=1.66). The numerical results reveal that the velocity at the center of the microchannel becomes lower at higher frequencies of the AC electric field and the strength of the secondary flow decreases. When the applied frequency exceeds 3.0 kHz (\\mathit{Wo}=0.87), vortices are no longer observed at the corners of the microchannel. Therefore, it can be concluded that the secondary flow induced at higher AC electric field frequencies has virtually no effect on the axial flow field in the microchannel.
NASA Technical Reports Server (NTRS)
Holzworth, R. H.; Kelley, M. C.; Siefring, C. L.; Hale, L. C.; Mitchell, J. D.
1985-01-01
On August 9, 1981, a series of three rockets was launched over an air mass thunderstorm off the eastern seaboard of Virginia while simultaneous stratospheric and ground-based electric field measurements were made. The conductivity was substantially lower at most altitudes than the conductivity profiles used by theoretical models. Direct current electric fields over 80 mV/m were measured as far away as 96 km from the storm in the stratosphere at 23 km altitude. No dc electric fields above 75 km altitude could be identified with the thunderstorm, in agreement with theory. However, vertical current densities over 120 pA/sq m were seen well above the classical 'electrosphere' (at 50 or 60 km). Frequent dc shifts in the electric field following lightning transients were seen by both balloon and rocket payloads. These dc shifts are clearly identifiable with either cloud-to-ground (increases) or intercloud (decreases) lightning flashes.
Electrical safety for high voltage arrays
NASA Technical Reports Server (NTRS)
Marshall, N. A.
1983-01-01
A number of key electrical safety requirements for the high voltage arrays of central station photovoltaic power systems are explored. The suitability of representative industrial DC power switchgear for control and fault protection was evaluated. Included were AC/DC circuit breakers, electromechanical contactors and relays, load interruptors, cold disconnect devices, sectionalizing switches, and high voltage DC fuses. As appropriate, steady state and transient characteristics were analyzed. Failure modes impacting upon operation and maintenance safety were also identified, as were the voltage withstand and current interruption levels.
Sowa, Maciej
2018-01-01
Tantalum has recently become an actively researched biomaterial for the bone reconstruction applications because of its excellent corrosion resistance and successful clinical records. However, a bare Ta surface is not capable of directly bonding to the bone upon implantation and requires some method of bioactivation. In this study, this was realized by direct current (DC) plasma electrolytic oxidation (PEO). Susceptibility to corrosion is a major factor determining the service-life of an implant. Therefore, herein, the corrosion resistance of the PEO coatings on Ta was investigated in Ringer’s solution. The coatings were formed by galvanostatic anodization up to 200, 300 and 400 V, after which the treatment was conducted potentiostatically until the total process time amounted to 5 min. Three solutions containing Ca(H2PO2)2, Ca(HCOO)2 and Mg(CH3COO)2 were used in the treatment. For the corrosion characterization, electrochemical impedance spectroscopy and potentiodynamic polarization techniques were chosen. The coatings showed the best corrosion resistance at voltages low enough so that the intensive sparking was absent, which resulted in the formation of thin films. The impedance data were fitted to the equivalent electrical circuits with two time constants, namely R(Q[R(QR)]) and R(Q[R(Q[RW])]). The inclusion of W in the circuit helped to fit the low-frequency part of the samples PEO-ed at 400 V, hinting at the important role of diffusion in the corrosion resistance of the PEO coatings described in the research. PMID:29614014
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.
2017-01-01
The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.
Electrical quantum standards and their role in the SI
NASA Astrophysics Data System (ADS)
Robinson, Ian; Georgakopoulos, Dimitrios
2012-12-01
The International System of Units, SI, is poised to make a quantum change and become a measurement system based entirely on the fundamental properties of the natural world. In the next version of the SI, the Planck constant h, the elementary charge e, the Avogadro constant NA and the Boltzmann constant k will be fixed, in addition to the already fixed values of the speed of light c and the ground state hyperfine splitting in caesium-133. As a result, six out of the seven base units of the SI will be based directly on true invariants of nature. A major part of this change has been enabled by the ready availability of electrical quantum standards of exquisite precision and mechanisms for using them to make measurements outside the electrical arena. The overall effect will be to eliminate the remaining imprecise definitions of physical units associated with the use of artefact standards and aid direct SI measurements without problems of scaling. Fixing the Planck constant and the elementary charge will have the effect of incorporating the best physical realizations of electrical quantities into the SI, providing a system of units fit for the 21st century. The purpose of this special feature is to review the status of electrical quantum standards and report the latest developments in those areas and their applications to other areas of metrology. The special feature coincides with the 50th anniversary of the seminal paper of Josephson, 'Possible new effects in superconductive tunnelling' [1], which established the basic physical principle upon which the quantum voltage standards are based. Josephson voltage standards are based on the inverse Josephson effect. When a junction of two superconducting electrodes, weakly linked through a thin insulator or a normal metal, is irradiated with a radiofrequency electromagnetic field of frequency f and is biased by a dc current, then the voltage across the junction is quantized (i.e. small changes in either the dc current or the power of the rf irradiation, or both, do not change the voltage). The value of this quantized Josephson voltage is equal to nfh/2e, where n is the quantum step of the current-voltage characteristic curve. In this special feature there are three papers on dc Josephson voltage standards. Solve and Stock review the programme conducted by the Bureau International des Poids et Mesures (BIPM) to perform on-site comparisons of Josephson voltage standards, and give a comprehensive analysis of the possible sources of errors of such comparisons. Behr et al summarize the developments of Josephson voltage standards at Physikalisch-Technische Bundesanstalt (PTB) and their applications in dc voltage and other areas of metrology. Finally, Georgakopoulos et al report a reduction, by a factor of a thousand, in the smallest voltage that can be generated by dc Josephson voltage standards. Although dc voltage standards are well established, significant challenges exist when extending this extremely precise technology to ac. There are two approaches to producing accurate ac voltages using the inverse Josephson effect: the programmable Josephson voltage standard (PJVS) and the pulse-driven ac voltage standard. The PJVS contains an array of Josephson junctions, organized into independently biased segments. By biasing chosen, binary-related, segments on the first quantum step (positive or negative) or zero, the array can be made to behave as a quantum digital to analogue converter. The PJVS approach can produce stepwise approximated sine waves with rms values of some volts, but it suffers from parasitic capacitances and inductances distributed in the different parts of the system and, more importantly, the voltage is not quantized during the finite transition time between successive voltage levels. Hence the output frequency of PJVS-based systems is limited to a few kilohertz. In this special feature, Jeanneret et al review the Josephson locked synthesizer, a PJVS-based system where the effect of transients between successive steps on the output voltage is reduced. This special feature also presents two applications of PJVS-based quantum voltage standards: the evaluation of conventional ac voltage standards based on thermal converters (Budovsky et al) and the measurement of the settling time of a high resolution digital voltmeter (Henderson et al). In the pulse-driven ac voltage standard, arbitrary voltages can be produced by modulating the rf irradiation of an array of Josephson junctions by a series of high frequency pulses, usually by means of Δ-Σ modulation. The output voltage of the array of junctions is a series of quantized voltage pulses that correspond to the desired waveform after the high frequency components are removed. The pulse-driven standard can operate at much higher frequencies than the PJVS. Eliminating the effects of parasitic impedances of the, necessarily long, connecting leads therefore becomes a significant challenge. In this special feature, van den Brom and Houtzager report a voltage lead correction technique. Quantum resistance standards are based on the quantum Hall effect in which the resistance of a two-dimensional electron gas in a strong magnetic field is quantized. The value of the quantized Hall resistance is h/ie2, where i is the number of the quantum step in the resistance-magnetic field curve. Quantum Hall resistance devices can be combined in series to form a resistive voltage divider with low uncertainty in the ratio. In this special feature, Domae et al report the realization of such a resistive voltage divider on a chip. Quantum Hall resistance standards have been routinely used at dc for over two decades. However, the operation of quantum Hall devices at ac is complicated by the flow of current in capacitances around the device, which can compromise measurement of its resistance. Schurr et al review the status of ac quantum Hall resistance standards and their role in the SI. Ohm's law can be applied to quantum realizations of voltage, resistance and current to test their consistency. Active research into this 'metrological triangle' is underway and, at present, there is no evidence to indicate a discrepancy at any level. However, work is continuing on current sources which utilize a countable flow of electrons (the electric current produced is proportional to ef, f being the operating frequency of the device), but the work has some way to go before the question of consistency can be resolved at levels approaching 1 part in 109. In this special feature, Scherer and Camarota review the state-of-the-art of metrological triangle experiments and Devoille et al report on the status of the metrological triangle experiment at the Laboratoire National de Métrologie et d'Essais (LNE), France. The availability of precise representations of the volt and the ohm based on quantum mechanics has enabled the watt balance, an apparatus which relates electrical and mechanical power, to link the kilogram to the Planck constant. This has paved the way for the proposed redefinition of the kilogram, the last artefact standard in the SI, in terms of a fixed value of the Planck constant. In the past few years a number of papers, e.g. [2, 3], have been published describing the working principles of the watt balance and the characteristics of the existing implementations of the experiment. The measurements of the principal quantities—mass, velocity, gravitational acceleration, resistance and voltage—are reasonably well documented but the ultimate precision of the apparatus depends on a number of techniques that are required to eliminate second-order effects. In this special feature, Robinson provides details of these general alignment techniques with special reference to the NPL Mark II watt balance. Acknowledgments We would like to thank the authors for supporting the special feature with their excellent contributions; the guardians of the quality of a scientific paper, the referees, for their valuable comments and suggestions; Professor Wuqiang Yang and the members of the editorial board of Measurement Science and Technology for their support. Finally, we would like to thank Dr Sharon D'Souza, James Dimond and all the editorial and publication staff at Measurement Science and Technology, for their help in making the special feature a reality. References [1] Josephson B D 1962 Possible new effects in superconductive tunnelling Phys. Lett. 1 251-3 [2] Li S, Han B, Li Z and Lan J 2012 Precisely measuring the Planck constant by electromechanical balances Measurement 45 1-13 [3] Stock M 2011 The watt balance: determination of the Planck constant and redefinition of the kilogram Phil. Trans. R. Soc. A 369 3936-53
Blondin, J P; Nguyen, D H; Sbeghen, J; Goulet, D; Cardinal, C; Maruvada, P S; Plante, M; Bailey, W H
1996-01-01
The objective of this study was to assess the ability of humans to detect the presence of DC electric field and ion currents. An exposure chamber simulating conditions present in the vicinity of high-voltage DC (HVDC) lines was designed and built for this purpose. In these experiments, the facility was used to expose observers to DC electric fields up to 50 kV/m and ion current densities up to 120 nA/m2. Forty-eight volunteers (25 women and 23 men) between the ages of 18 and 57 years served as observers. Perception of DC fields was examined by using two psychophysical methods: an adaptive staircase procedure and a rating method derived from signal-detection theory. Subjects completed three different series of observations by using each of these methods; one was conducted without ion currents, and the other two involved various combinations of electric fields and ion currents. Overall, subjects were significantly more likely to detect DC fields as the intensity increased. Observers were able to detect the presence of DC fields alone, but only at high intensities; the average threshold was 45 kV/m. Except in the most sensitive individuals, ion current densities up to 60 nA/m2 did not significantly facilitate the detection of DC fields. However, higher ion current densities were associated with a substantial lowering of sensory thresholds in a large majority of observers. Data analysis also revealed large variations in perceptual thresholds among observers. Normative data indicating DC field and ion current intensities that can be detected by 50% of all observers are provided. In addition, for the most sensitive observers, several other detection proportions were derived from the distribution of individual detection capabilities. These data can form the basis for environmental guidelines relating to the design of HVDC lines.
Hy-wire and fast electric field change measurements near an isolated thunderstorm, appendix C
NASA Technical Reports Server (NTRS)
Holzworth, R. H.; Levine, D. M.
1983-01-01
Electric field measurements near an isolated thunderstorm at 6.4 km distance are presented from both a tethered balloon experiment called Hy-wire and also from ground based fast and slow electric field change systems. Simultaneous measurements were made of the electric fields during several lightning flashes at the beginning of the storm which the data clearly indicate were cloud-to-ground flashes. In addition to providing a comparison between the Hy-wire technique for measuring electric fields and more traditional methods, these data are interesting because the lightning flashes occurred prior to changes in the dc electric field, although Hy-wire measured changes in the dc field of up to 750 V/m in the direction opposite to the fair weather field a short time later. Also, the dc electric field was observed to decay back to its preflash value after each flash. The data suggest that Hy-wire was at the field reversal distance from this storm and suggest the charge realignment was taking place in the cloud with a time constant on the order of 20 seconds.
Morse, Michael S.; Lu, Ning; Godt, Jonathan W.; Revil, André; Coe, Jeffrey A.
2012-01-01
Accurate estimation of the soil thickness distribution in steepland drainage basins is essential for understanding ecosystem and subsurface response to infiltration. One important aspect of this characterization is assessing the heavy and antecedent rainfall conditions that lead to shallow landsliding. In this paper, we investigate the direct current (DC) resistivity method as a tool for quickly estimating soil thickness over a steep (33–40°) zero-order basin in the Oregon Coast Range, a landslide prone region. Point measurements throughout the basin showed bedrock depths between 0.55 and 3.2 m. Resistivity of soil and bedrock samples collected from the site was measured for degrees of saturation between 40 and 92%. Resistivity of the soil was typically higher than that of the bedrock for degrees of saturation lower than 70%. Results from the laboratory measurements and point-depth measurements were used in a numerical model to evaluate the resistivity contrast at the soil-bedrock interface. A decreasing-with-depth resistivity contrast was apparent at the interface in the modeling results. At the field site, three transects were surveyed where coincident ground truth measurements of bedrock depth were available, to test the accuracy of the method. The same decreasing-with-depth resistivity trend that was apparent in the model was also present in the survey data. The resistivity contour of between 1,000 and 2,000 Ωm that marked the top of the contrast was our interpreted bedrock depth in the survey data. Kriged depth-to-bedrock maps were created from both the field-measured ground truth obtained with a soil probe and interpreted depths from the resistivity tomography, and these were compared for accuracy graphically. Depths were interpolated as far as 16.5 m laterally from the resistivity survey lines with root mean squared error (RMSE) = 27 cm between the measured and interpreted depth at those locations. Using several transects and analysis of the subsurface material properties, the direct current (DC) resistivity method is shown to be able to delineate bedrock depth trends within the drainage basin.
Electrorotation of novel electroactive polymer composites in uniform DC and AC electric fields
NASA Astrophysics Data System (ADS)
Zrinyi, Miklós; Nakano, Masami; Tsujita, Teppei
2012-06-01
Novel electroactive polymer composites have been developed that could spin in uniform DC and AC electric fields. The angular displacement as well as rotation of polymer disks around an axis that is perpendicular to the direction of the applied electric field was studied. It was found that the dynamics of the polymer rotor is very complex. Depending on the strength of the static DC field, three regimes have been observed: no rotation occurs below a critical threshold field intensity, oscillatory motion takes place just above this value and continuous rotation can be observed above the critical threshold field intensity. It was also found that low frequency AC fields could also induce angular deformation.
Power quality analysis of DC arc furnace operation using the Bowman model for electric arc
NASA Astrophysics Data System (ADS)
Gherman, P. L.
2018-01-01
This work is about a relatively new domain. The DC electric arc is superior to the AC electric arc and it’s not used in Romania. This is why we analyzed the work functions of these furnaces by simulation and model checking of the simulation results.The conclusions are favorable, to be carried is to develop a real-time control system of steel elaboration process.
Rigorous theory of molecular orientational nonlinear optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Chong Hoon, E-mail: chkwak@ynu.ac.kr; Kim, Gun Yeup
2015-01-15
Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecularmore » hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.« less
Mathematical model for the dc-ac inverter for the Space Shuttle
NASA Technical Reports Server (NTRS)
Berry, Frederick C.
1987-01-01
The reader is informed of what was done for the mathematical modeling of the dc-ac inverter for the Space Shuttle. The mathematical modeling of the dc-ac inverter is an essential element in the modeling of the electrical power distribution system of the Space Shuttle. The electrical power distribution system which is present on the Space Shuttle is made up to 3 strings each having a fuel cell which provides dc to those systems which require dc, and the inverters which convert the dc to ac for those elements which require ac. The inverters are units which are 2 wire structures for the main dc inputs and 2 wire structures for the ac output. When 3 are connected together a 4 wire wye connection results on the ac side. The method of modeling is performed by using a Least Squares curve fitting method. A computer program is presented for implementation of the model along with graphs and tables to demonstrate the accuracy of the model.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.
1991-01-01
Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.; Yang, Z.; Dong, P.
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H{sup -}) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H{sup -} beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H{sup -} beam current of aboutmore » 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.« less
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.
1989-01-01
A spatially two-dimensional electrostatic PIC simulation code was used to study the stability of a plasma equilibrium characterized by a localized transverse dc electric field and a field-aligned drift for L is much less than Lx, where Lx is the simulation length in the x direction and L is the scale length associated with the dc electric field. It is found that the dc electric field and the field-aligned current can together play a synergistic role to enable the excitation of electrostatic waves even when the threshold values of the field aligned drift and the E x B drift are individually subcritical. The simulation results show that the growing ion waves are associated with small vortices in the linear stage, which evolve to the nonlinear stage dominated by larger vortices with lower frequencies.
Zhuang, An-Xiang; Zhang, Yi-Xi; Zhang, Hui; Liu, Ze-Wen
2016-10-01
Neonicotinoids, such as imidacloprid, are key insecticides extensively used for control of Nilaparvata lugens. However, imidacloprid resistance has been reported in many Asian countries in recent years. To understand the roles of the chlorine atom of pyridyl group on insecticidal activity and resistance, the atom was removed to generate an imidacloprid analogue DC-Imi (DesChlorine Imidacloprid). DC-Imi showed significantly higher toxicity than imidacloprid in the susceptible strain of N. lugens, but had medium level cross-resistance in an imidacloprid-resistant strain. In Xenopus oocyte expressed nicotinic acetylcholine receptors (nAChRs) Nlα1/rβ2, the inward currents evoked by DC-Imi were detected and could be blocked by typical nAChRs antagonist dihydro-β-erythroidine (DHβE), which demonstrated that DC-Imi acted as an agonist on insect nAChRs. The efficacy of DC-Imi on Nlα1/rβ2 was 1.8-fold higher than that of imidacloprid. In addition, the influence of an imidacloprid resistance associated mutation (Y151S) on agonist potencies was evaluated. Compared with the wild-type receptor, the mutation reduced maximal inward current of DC-Imi to 55.6% and increased half maximal effective concentration (EC50 ) to 3.53-fold. Compared with imidacloprid (increasing EC50 to 2.38-fold of wild-type receptor), Y151S mutation decreased DC-Imi potency more significantly. The results indicated that the selective and possibly high toxicities could be achieved through the modification of 6-chloro-3-pyridyl group in imidacloprid and other neonicotinoids. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... Adoption of Technical Specifications Task Force Traveler TSTF-500, Revision 2, ``DC Electrical Rewrite... Technical Specifications Task Force (TSTF) Traveler TSTF-500, Revision 2, ``DC Electrical Rewrite--Update to... Reactor Systems Engineer, Technical Specifications Branch, Mail Stop: O-7 C2A, Division of Inspection and...
Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.
This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2010-01-01
Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…
NASA Astrophysics Data System (ADS)
Tian, Liang
This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.
Sub-micrometer particles produced by a low-powered AC electric arc in liquids.
Jaworski, Jacek A; Fleury, Eric
2012-01-01
The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence.
NASA Astrophysics Data System (ADS)
Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.
2017-10-01
Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.
Structural, electrical, and photoelectric properties of p-NiO/n-CdTe heterojunctions
NASA Astrophysics Data System (ADS)
Parkhomenko, Hryhorii; Solovan, Mykhaylo; Brus, Viktor; Maystruk, Eduard; Maryanchuk, Pavlo
2018-01-01
p-NiO/n-CdTe-photosensitive heterojunctions were prepared by the deposition of nickel oxide thin films onto n-type single-crystal CdTe substrates by DC reactive magnetron sputtering. The analysis of capacitance-voltage (C-V) characteristics, measured at different frequencies of the small amplitude AC signal and corrected by the effect of the series resistance, provided evidence of the presence of electrically charged interface states, which significantly affect the measured capacitance. The dominant current transport mechanisms in the heterojunctions were determined at forward and reverse biases. Using "light" I-V characteristics, we determined the open-circuit voltage Voc=0.42 V, the short-circuit current Isc=57.5 μA/cm2, and the fill factor FF=0.24 under white light illumination with the intensity of 80 mW.
Post, Richard F.
2010-11-16
A sub-module consists of a set of two outer sets of stationary fan-blade-shaped sectors. These outer sectors include conductive material and are maintained at ground potential in several examples. Located midway between them is a set of stationary sector plates with each plate being electrically insulated from the others. An example provides that the inner sector plates are connected together alternately, forming two groups of parallel-connected condensers that are then separately connected, through high charging circuit resistances, to a source of DC potential with respect to ground, with an additional connecting lead being provided for each group to connect their output as an AC output to a load. These same leads can he used, when connected to a driver circuit, to produce motor action.
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki
Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.
Electrical overstress in AlGaN/GaN HEMTs: study of degradation processes
NASA Astrophysics Data System (ADS)
Kuzmík, J.; Pogany, D.; Gornik, E.; Javorka, P.; Kordoš, P.
2004-02-01
We study degradation mechanisms in 50 μm gate width/0.45 μm length AlGaN/GaN HEMTs after electrical overstresses. One hundred nanosecond long rectangular current pulses are applied on the drain contact keeping either both of the source and gate grounded or the source grounded and gate floating. Source-drain pulsed I- V characteristics show similar shape for both connections. After the HEMT undergoes the source-drain breakdown, a negative differential resistance region transits into a low voltage/high current region. Changes in the Schottky contact dc I- V characteristics and in the source and drain ohmic contacts are investigated as a function of the current stress level and are related to the HEMT dc performance. Catastrophic HEMT degradation was observed after Istress=1.65 A in case of the 'gate floating' connection due to ohmic contacts burnout. In case of the 'gate grounded' connection, Istress=0.45 A was sufficient for the gate failure showing a high gate susceptibility to overstress. Backside transient interferometric mapping technique experiment reveals a current filament formation under both HEMT stress connections. Infrared camera observations lead to conclusion that the filament formation together with a consequent high-density electron flow is responsible for a dark spot formation and gradual ohmic contact degradation.
NASA Astrophysics Data System (ADS)
Liu, Hong-Tao; Yang, Bao-He; Lv, Hang-Bing; Xu, Xiao-Xin; Luo, Qing; Wang, Guo-Ming; Zhang, Mei-Yun; Long, Shi-Bing; Liu, Qi; Liu, Ming
2015-02-01
We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1T1R) resistance random access memory (RRAM) device. All the devices are operated under the same test conditions, except for the initial formation process with different modes. Based on the statistical results, the high resistance state (HRS) under the dc forming mode shows a lower value with better distribution compared with that under the pulse mode. One of the possible reasons for such a phenomenon originates from different properties of conductive filament (CF) formed in the resistive switching layer under two different modes. For the dc forming mode, the formed filament is thought to be continuous, which is hard to be ruptured, resulting in a lower HRS. However, in the case of pulse forming, the filament is discontinuous where the transport mechanism is governed by hopping. The low resistance state (LRS) can be easily changed by removing a few trapping states from the conducting path. Hence, a higher HRS is thus observed. However, the HRS resistance is highly dependent on the length of the gap opened. A slight variation of the gap length will cause wide dispersion of resistance.
Electromagnetic studies in the Fennoscandian Shield—electrical conductivity of Precambrian crust
NASA Astrophysics Data System (ADS)
Korja, T.; Hjelt, S.-E.
1993-12-01
Electromagnetic (EM) investigations of the 1980s in the Fennoscandian (Baltic) Shield produced an unique and unified EM data set. Studies include regional investigations by the magnetovariational (MV) method with large lateral sampling distance, investigations of anomalous conductivity structures by magnetotelluric (MT) soundings and other (EM) and electrical methods (audio MT soundings, d.c. dipole-dipole and VLF resistivity profilings) with shorter sampling distance, and studies of the near-surface conductivity by airborne EM surveys. The variety of methods provide an ability to map efficiently crustal conductivity structures from a regional scale of hundreds of kilometres down to local details of some metres in the anomalous structures. The Precambrian of the Fennoscandian Shield is characterized by roughly NW-SE-directed elongated belts of conductors which separate more resistive crustal blocks. The latter serve as transparent windows through which to probe deep electrical structure and belts of conductors as tectonic markers of ancient orogenic zones including (1) the Kittilä-Vetrenny Poyas conductor, (2) the Lapland Granulite Belt and Inari-Pechenga-Imandra-Varzuga conductors, (3) the Archaean-Proterozoic boundary conductor and (4) the Southern Finland Conductor. The conductive belts—orogenic conductors—indicate places where crustal masses collided and were finally sealed together. Enhanced conductivity in the orogenic conductors is caused primarily by an electronic conducting mechanism in graphite- and sulphide-bearing metasedimentary rocks. Estimations of the lower-crustal conductivity indicate a laterally heterogeneous lower crust in the Fennoscandian Shield. Archaean lower crust seems to be in general more resistive than the Early Proterozoic lower crust of the Karelian and Svecofennian Domains. The lower crust in the southwestern part of the Svecofennian Domain and in the Sveconorwegian Domain seems to be more resistive than in the central part of the Svecofennian Domain.
Smart bricks for strain sensing and crack detection in masonry structures
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo
2018-01-01
The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.
Lewpiriyawong, Nuttawut; Xu, Guolin; Yang, Chun
2018-03-01
This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... energy from the United States to Canada as a power marketer for a five-year term. The current export... DC Energy. The application also indicates that DC Energy is a power marketer authorized by the...
NASA Astrophysics Data System (ADS)
Dutta, Papia; Mandal, S. K.; Nath, A.
2018-05-01
Nanocrystalline BaFe2O4 has been prepared through low temperature pyrophoric reaction method. The structural, dielectric and electrical transport properties of BaFe2O4 are investigated in detail. AC electrical properties have been studied over the wide range of frequencies with applied dc magnetic fields and temperatures. The value of impedance is found to increase with increase in magnetic field attributing the magnetostriction property of the sample. The observed value of magneto-impedance and magnetodielectric is found to ∼32% and ∼33% at room temperature. Nyquist plots have been fitted using resistance-capacitor circuits at different magnetic fields and temperatures showing the dominant role of grain and grain boundaries of the sample. Metal-semiconductor transition ∼403 K has been discussed in terms of delocalized and localized charge carrier.We have estimated activation energy using Arrhenius relation indicating temperature dependent electrical relaxation process in the system. Ac conductivity follow a Jonscher’s single power law indicating the large and small polaronic hopping conduction mechanism in the system.
NASA Astrophysics Data System (ADS)
Ali, H. M.; Abd El-Ghanny, H. A.
2008-04-01
Thin films of (CdSe)90(In2O3)10, (CdSe)90(SnO2)10 and (CdSe)90(ZnO)10 have been grown on glass substrates by the electron beam evaporation technique. It has been found that undoped and Sn or In doped CdSe films have two direct transitions corresponding to the energy gaps Eg and Eg+Δ due to spin-orbit splitting of the valence band. The electrical resistivity for n-doped CdSe thin films as a function of light exposure time has been studied. The influence of doping on the structural, optical and electrical characteristics of In doped CdSe films has been investigated in detail. The lattice parameters, grain size and dislocation were determined from x-ray diffraction patterns. The optical transmittance and band gap of these films were determined using a double beam spectrophotometer. The DC conductivity of the films was measured in vacuum using a two-probe technique.
NASA Astrophysics Data System (ADS)
Majeed, Abdul; Khan, Muhammad Azhar; ur Raheem, Faseeh; Ahmad, Iftikhar; Akhtar, Majid Niaz; Warsi, Muhammad Farooq
2016-12-01
The influence of rare-earth metals (La, Nd, Gd, Tb, Dy) on morphology, Raman, electrical and dielectric properties of Ba2NiCoRExFe28-xO46 ferrites were studied. The scanning electron microscopy (SEM) exhibited the platelet like structure of these hexagonal ferrites. The surface morphology indicated the formation of ferrite grains in the nano-regime scale. The bands obtained at lower wave number may be attributed to the metal-oxygen vibration at octahedral site which confirm the development of hexagonal phase of these ferrites. The resonance peaks were observed in dielectric constant, dielectric loss factor and quality factor versus frequency graphs. These dielectric parameters indicate that these ferrites nano-materials are potential candidates in the high frequency applications. The enhancement in DC electric resistivity from 2.48×108 to 1.20×109 Ω cm indicates that the prepared materials are beneficial for decreasing the eddy current losses at high frequencies and for the fabrication of multilayer chip inductor (MLCI) devices.
Effect of annealing over optoelectronic properties of graphene based transparent electrodes
NASA Astrophysics Data System (ADS)
Yadav, Shriniwas; Kaur, Inderpreet
2016-04-01
Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.
NASA Astrophysics Data System (ADS)
Maisnam, Mamata; Phanjoubam, Sumitra
2013-07-01
Effect of microwave sintering on the structural and electrical properties of Li+0.51Zn2+0.2Ti4+0.2V5+0.01Fe3+2.08O2-4 is studied in comparison with that of conventionally sintered one. The technique is advantageous in terms of significantly reduced size of microwave kilns and rapid heating compared to the cumbersome and slow heating of conventional sintering technology. Microwave sintering produced enhanced densification and much finer microstructures. The DC resistivity is markedly increased. Microwave sintering reduces chances of evaporation of lithium and oxygen during sintering of lithium based ferrites resulting in formation of lesser ferrous ions. This has profound effect on the electrical properties of microwave sintered ferrites. The dielectric constant is significantly reduced possibly due to reduced space charge polarization and the temperature dependence of the dielectric properties are also studied.
NASA Astrophysics Data System (ADS)
Kevorkyants, S. S.
2018-03-01
For theoretically studying the intensity of the influence exerted by the polarization of the rocks on the results of direct current (DC) well logging, a solution is suggested for the direct inner problem of the DC electric logging in the polarizable model of plane-layered medium containing a heterogeneity by the example of the three-layer model of the hosting medium. Initially, the solution is presented in the form of a traditional vector volume-integral equation of the second kind (IE2) for the electric current density vector. The vector IE2 is solved by the modified iteration-dissipation method. By the transformations, the initial IE2 is reduced to the equation with the contraction integral operator for an axisymmetric model of electrical well-logging of the three-layer polarizable medium intersected by an infinitely long circular cylinder. The latter simulates the borehole with a zone of penetration where the sought vector consists of the radial J r and J z axial (relative to the cylinder's axis) components. The decomposition of the obtained vector IE2 into scalar components and the discretization in the coordinates r and z lead to a heterogeneous system of linear algebraic equations with a block matrix of the coefficients representing 2x2 matrices whose elements are the triple integrals of the mixed derivatives of the second-order Green's function with respect to the parameters r, z, r', and z'. With the use of the analytical transformations and standard integrals, the integrals over the areas of the partition cells and azimuthal coordinate are reduced to single integrals (with respect to the variable t = cos ϕ on the interval [-1, 1]) calculated by the Gauss method for numerical integration. For estimating the effective coefficient of polarization of the complex medium, it is suggested to use the Siegel-Komarov formula.
Multiferroic properties of Indian natural ilmenite
NASA Astrophysics Data System (ADS)
Acharya, Truptimayee; Choudhary, R. N. P.
2017-03-01
In this communication, the main results and analysis of extensive studies of electric and magnetic characteristics (relative dielectric constant, tangent loss, electric polarization, electric transport, impedance, magnetic polarization and magneto-electric coupling coefficient) of Indian natural ilmenite (NI) have been presented. Preliminary structural analysis was studied by Rietveld refinement of room temperature XRD data, which suggests the rhombohedral crystal system of NI. Maxwell-Wagner mechanism was used to explain the nature of the frequency dependence of the relative dielectric constant. The impedance analysis reveals that below 270 °C, only the bulk contributes, whereas at higher temperature, both grain boundary and the bulk contribute to the resistive characteristics of the material. The magnitude of the depression angles of the semicircles in the Nyquist plot has been estimated. The correlated barrier hopping model has been used to explain the frequency dependence of ac conductivity of the material. The activation energy of the compound has been estimated using the temperature dependence of dc conductivity plot. The obtained polarization hysteresis loops manifest improper ferroelectric behavior of NI. The existence M-H hysteresis loop supports anti-ferromagnetism in the studied material. The magneto-electric voltage coupling coefficient is found to be 0.7 mV/cm Oe. Hence, other than dielectric constant, electric polarization, magnetization and magneto-electric studies support the existence of multiferroic properties in NI.
Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft
NASA Astrophysics Data System (ADS)
Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae
2017-06-01
In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.
Wang, Lixia; Jiang, Yaoping; Lin, Youhui; Pang, Jie; Liu, Xiang Yang
2016-05-20
Konjac glucomannan-tungsten (KGM-T) hydrogel of electrochemical reversibility was successfully produced under DC electric fields in the presence of sodium tungstate. The structure and the effects of sodium tungstate concentration, KGM concentration, voltage and electric processing time on the rheological properties of the gels were investigated. pH experiments showed that KGM sol containing Na2WO4·2H2O in the vicinity of the positive electrode became acidic and the negative electrode basic after the application of DC electric fields. Under acid conditions, WO4(2-) ions transformed into isopoly-tungstic acid ions. FTIR and Raman studies indicated that isopoly-tungstic acid ions absorbed on KGM molecular chain and cross-linked with -OH groups at C-6 position on sugar units of KGM. Frequency sweep data showed with increasing sodium tungstate concentration, voltage, and electric processing time, the viscoelastic moduli, i.e., the storage and the loss moduli of the gel increased, whereas an increase in KGM concentration led to a decrease in gel viscoelastic moduli. The temperature sweep measurements indicated the obtained gel exhibited high thermal stability. Finally, the mechanism of gel formation was proposed. Our work may pave the way to use DC electric fields for the design and development of KGM gels as well as polysaccharide gels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
NASA Astrophysics Data System (ADS)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-01
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.
Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites
NASA Astrophysics Data System (ADS)
Farid, Hafiz Muhammad Tahir; Ahmad, Ishtiaq; Ali, Irshad; Ramay, Shahid M.; Mahmood, Asif; Murtaza, G.
2017-07-01
Spinel ferrites with nominal composition MgPryFe2-yO4 (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz-3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole-Cole plots were used to separate the grain and grain boundary's effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary's resistance as compared to the grain's resistance. As both AC conductivity and Cole-Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe2O4 exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.
Navy/ASEE (American Society for Engineering Education) Summer Faculty Research Program, 1985.
1986-05-15
MECHANICAL ENGINEERING ASTRONOMY MECHANICAL ENGINEERING DEPT. 07 PHYSICS/ASTR. BETHLEHEM ,PA 18015 EAU CLAIR2 ,WI 54701 ROBERT HARTFORD TIMOTHY LANCEY...GA 30910 KLAMATH FALLS ,OR 97601 RICHARD MESSNER HORACE REYNOLDS UN:V OF NEW HAMPSHIRE GALLAUDET ELECTRICAL ENGINEERING PSYCHOLOGY E.C.E. DEPARTMENT...HOWARD’ U:V:ERSICY 4 DC CATHOLU. UNIVERSIT 4 DC HOWARD NVESC 4 DC HOWARD U NIVERSITYf 4 DC CATHOLIT’ UNIVERSITY DC GALLAUDET 4 DC AINERICA:; :;VRIY4 DE
NASA Astrophysics Data System (ADS)
Mareeswaran, S.; Asaithambi, T.
2016-10-01
Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.
Grys, Maciej; Madeja, Zbigniew; Korohoda, Włodzimierz
2017-01-01
The harmful side effects of electroporation to cells due to local changes in pH, the appearance of toxic electrode products, temperature increase, and the heterogeneity of the electric field acting on cells in the cuvettes used for electroporation were observed and discussed in several laboratories. If cells are subjected to weak electric fields for prolonged periods, for example in experiments on cell electrophoresis or galvanotaxis the same effects are seen. In these experiments investigators managed to reduce or eliminate the harmful side effects of electric current application. For the experiments, disposable 20 μl cuvettes with two walls made of dialysis membranes were constructed and placed in a locally focused electric field at a considerable distance from the electrodes. Cuvettes were mounted into an apparatus for horizontal electrophoresis and the cells were subjected to direct current electric field (dcEF) pulses from a commercial pulse generator of exponentially declining pulses and from a custom-made generator of double and single rectangular pulses. More than 80% of the electroporated cells survived the dcEF pulses in both systems. Side effects related to electrodes were eliminated in both the flow through the dcEF and in the disposable cuvettes placed in the focused dcEFs. With a disposable cuvette system, we also confirmed the sensitization of cells to a dcEF using procaine by observing the loading of AT2 cells with calceine and using a square pulse generator, applying 50 ms single rectangular pulses. We suggest that the same methods of avoiding the side effects of electric current pulse application as in cell electrophoresis and galvanotaxis should also be used for electroporation. This conclusion was confirmed in our electroporation experiments performed in conditions assuring survival of over 80% of the electroporated cells. If the amplitude, duration, and shape of the dcEF pulse are known, then electroporation does not depend on the type of pulse generator. This knowledge of the characteristics of the pulse assures reproducibility of electroporation experiments using different equipment.
NASA Astrophysics Data System (ADS)
Power, Christopher; Tsourlos, Panagiotis; Ramasamy, Murugan; Nivorlis, Aristeidis; Mkandawire, Martin
2018-03-01
Mine waste rock piles (WRPs) can contain sulfidic minerals whose interaction with oxygen and water can generate acid mine drainage (AMD). Thus, WRPs can be a long-term source of environmental pollution. Since the generation of AMD and its release into the environment is dependent on the net volume and bulk composition of waste rock, effective characterization of WRPs is necessary for successful remedial design and monitoring. In this study, a combined DC resistivity and induced polarization (DC-IP) approach was employed to characterize an AMD-generating WRP in the Sydney Coalfield, Nova Scotia, Canada. Two-dimensional (2D) DC-IP imaging with 6 survey lines was performed to capture the full WRP landform. 2D DC results indicated a highly heterogeneous and moderately conductive waste rock underlain by a resistive bedrock containing numerous fractures. 2D IP (chargeability) results identified several highly-chargeable regions within the waste, with normalized chargeability delineating regions specific to waste mineralogy only. Three-dimensional (3D) DC-IP imaging, using 17 parallel lines on the plateau of the pile, was then used to focus on the composition of the waste rock. The full 3D inverted DC-IP distributions were used to identify coincident and continuous zones (isosurfaces) of low resistivity (<30 Ω-m) and high normalized chargeability (>0.4 mS/m) that were inferred as generated AMD (leachate) and stored AMD (sulfides), respectively. Integrated geological, hydrogeological and geochemical data increased confidence in the geoelectrical interpretations. Knowledge on the location of potentially more reactive waste material is extremely valuable for improved long-term AMD monitoring at the WRP.
Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen
2011-04-01
The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. Copyright © 2010 Elsevier Ltd. All rights reserved.
DC-to-DC power supply for light aircraft flight testing
NASA Technical Reports Server (NTRS)
Yost, S. R.
1980-01-01
The power supply unit was developed to serve as the power source for a loran-C receiver. The power supply can be connected directly to the aircraft's electrical system, and is compatible with either 14 or 28 volt electrical systems. Design specifications are presented for the unit along with a description of the circuit design.
Peña, Adrián F; Doronin, Alexander; Tuchin, Valery V; Meglinski, Igor
2014-08-01
The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.
ERIC Educational Resources Information Center
Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.
2012-01-01
We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…
Power converter for raindrop energy harvesting application: Half-wave rectifier
NASA Astrophysics Data System (ADS)
Izrin, Izhab Muhammad; Dahari, Zuraini
2017-10-01
Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.
Dual-mode self-validating resistance/Johnson noise thermometer system
Shepard, Robert L.; Blalock, Theron V.; Roberts, Michael J.
1993-01-01
A dual-mode Johnson noise and DC resistance thermometer capable of use in control systems where prompt indications of temperature changes and long term accuracy are needed. A resistance-inductance-capacitance (RLC) tuned circuit produces a continuous voltage signal for Johnson noise temperature measurement. The RLC circuit provides a mean-squared noise voltage that depends only on the capacitance used and the temperature of the sensor. The sensor has four leads for simultaneous coupling to a noise signal processor and to a DC resistance signal processor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan
An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative ofmore » the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.« less
Direct current electrical potential measurement of the growth of small cracks
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Slavik, Donald C.; Piascik, Robert S.; Van Stone, Robert H.
1992-01-01
The analytical and experimental aspects of the direct-current electrical potential difference (dcEPD) method for continuous monitoring of the growth kinetics of short (50 to 500 microns) fatigue cracks are reviewed, and successful applications of the deEPD method to study fatigue crack propagation in a variety of metallic alloys exposed to various environments are described. Particular attention is given to the principle of the dcEPD method, the analytical electrical potential calibration relationships, and the experimental procedures and equipment.
NASA Technical Reports Server (NTRS)
Bifano, W. J.; Ratajczak, A. F.; Ice, W. J.
1978-01-01
A stand alone photovoltaic power system for installation in the Papago Indian village of Schuchuli is being designed and fabricated to provide electricity for village water pumping and basic domestic needs. The system will consist of a 3.5 kW (peak) photovoltaic array; controls, instrumentations, and storage batteries located in an electrical equipment building and a 120 volt dc village distribution network. The system will power a 2 HP dc electric motor.
Research study on multi-KW-DC distribution system
NASA Technical Reports Server (NTRS)
Berkery, E. A.; Krausz, A.
1975-01-01
A detailed definition of the HVDC test facility and the equipment required to implement the test program are provided. The basic elements of the test facility are illustrated, and consist of: the power source, conventional and digital supervision and control equipment, power distribution harness and simulated loads. The regulated dc power supplies provide steady-state power up to 36 KW at 120 VDC. Power for simulated line faults will be obtained from two banks of 90 ampere-hour lead-acid batteries. The relative merits of conventional and multiplexed power control will be demonstrated by the Supervision and Monitor Unit (SMU) and the Automatically Controlled Electrical Systems (ACES) hardware. The distribution harness is supported by a metal duct which is bonded to all component structures and functions as the system ground plane. The load banks contain passive resistance and reactance loads, solid state power controllers and active pulse width modulated loads. The HVDC test facility is designed to simulate a power distribution system for large aerospace vehicles.
NASA Astrophysics Data System (ADS)
Mandolesi, E.; Moorkamp, M.; Jones, A. G.
2014-12-01
Most electromagnetic (EM) geophysical methods focus on the electrical conductivity of rocks and sediments to determine the geological structure of the subsurface. Electric conductivity itself is measured in the laboratory with a wide range of instruments and techniques. These measurements seldom return a compatible result. The presence of partially-interconnected random pathways of electrically conductive materials in resistive hosts has been studied for decades, and recently with increasing interest. To comprehend which conductive mechanism scales from the microstructures up to field electrical conductivity measurements, two main branch of studies have been undertaken: statistical probability of having a conductive pathways and mixing laws. Several numerical approaches have been tested to understand the effects of interconnected pathways of conductors at field scale. Usually these studies were restricted in two ways: the sources are considered constant in time (i.e., DC) and the domain is, with few exception, two-dimensional. We simulated the effects of time-varying EM sources on the conductivity measured on the surface of a three-dimensional randomly generated body embedded in an uniform host by using electromagnetic induction equations. We modelled a two-phase mixture of resistive and conductive elements with the goal of comparing the conductivity measured on field scale with the one proper of the elements constituting the random rock, and to test how the internal structures influence the directionality of the responses. Moreover, we modelled data from randomly generated bodies characterized by coherent internal structures, to check the effect of the named structures on the anisotropy of the effective conductivity. We compared these values with the electrical conductivity limits predicted by Hashin-Shtrikman bounds and the effective conductivity predicted by the Archie's law, both cast in its classic form and in an updated that allow to take in account two materials. The same analysis was done for both the resistive and the conductive conductivity values for the anisotropic case.
NASA Astrophysics Data System (ADS)
Kollmeyer, Phillip J.
This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the prototype electric truck with a different battery pack, the prototype electric truck with a higher power drivetrain and higher towing capability, and an electric city transit bus. Performance advantages provided by the HESS are demonstrated and verified for these vehicles in several areas including: longer vehicle range, improved low-temperature operation with lithium-ion batteries, and reduced battery losses and cycling stresses.
EVA Metro Sedan electric-propulsion system: test and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimers, E.
1979-09-01
The procedure and results of the performance evaluation of the EVA Metro Sedan (car No. 1) variable speed dc chopper motor drive and its three speed automatic transmission are presented. The propulsion system for a battery powered vehicle manufactured by Electric Vehicle Associates, Valley View, Ohio, was removed from the vehicle, mounted on the programmable electric dynamometer test facility and evaluated with the aid of a hp 3052A Data Acquisition System. Performance data for the automatic transmission, the solid state dc motor speed controller, and the dc motor in the continuous and pulsating dc power mode, as derived on themore » dynamometer test facility, as well as the entire propulsion system are given. This concept and the system's components were evaluated in terms of commercial applicability, maintainability, and energy utility to establish a design base for the further development of this system or similar propulsion drives. The propulsion system of the EVA Metro Sedan is powered by sixteen 6-volt traction batteries, Type EV 106 (Exide Battery Mfg. Co.). A thyristor controlled cable form Pulsomatic Mark 10 controller, actuated by a foot throttle, controls the voltage applied to a dc series field motor, rated at 10 hp at 3800 rpm (Baldor Electric Co.). Gear speed reduction to the wheel is accomplished by the original equipment three speed automatic transmission with torque converter (Renault 12 Sedan). The brake consists of a power-assisted, hydraulic braking system with front wheel disk and rear drum. An ability to recuperate electric energy with subsequent storage in the battery power supply is not provided.« less
NASA Astrophysics Data System (ADS)
Wei, Y. W.; Liu, G. T.; Xiong, S. N.; Cheng, J. Z.; Huang, Y. H.
2017-01-01
In the near future, electric vehicle is entirely possible to replace traditional cars due to its zero pollution, small power consumption and low noise. Lithium-ion battery, which owns lots of advantages such as lighter and larger capacity and longer life, has been widely equipped in different electric cars all over the world. One disadvantage of this energy storage device is state of charge (SOC) difference among these cells in each series branch. If equalization circuit is not allocated for series-connected batteries, its safety and lifetime are declined due to over-charge or over-discharge happened, unavoidably. In this paper, a novel modularized equalization circuit, based on DC-DC chopper, is proposed to supply zero loss in theory. The proposed circuit works as an equalizer when Lithium-ion battery pack is charging or discharging or standing idle. Theoretical analysis and control method have been finished, respectively. Simulation and small scale experiments are applied to verify its real effect.
NASA Astrophysics Data System (ADS)
Jacquot, Jonathan; Tierens, Wouter; Zhang, Wei; Bobkov, Volodymyr; Colas, Laurent; Noterdaeme, Jean-Marie
2017-10-01
A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing). Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.
Power processing units for high power solar electric propulsion
NASA Astrophysics Data System (ADS)
Frisbee, Robert H.; Das, Radhe S.; Krauthamer, Stanley
An evaluation of high-power processing units (PPUs) for multimegawatt solar electric propulsion (SEP) vehicles using advanced ion thrusters is presented. Significant savings of scale are possible for PPUs used to supply power to ion thrusters operating at 0.1 to 1.5 MWe per thruster. The PPU specific mass is found to be strongly sensitive to variations in the ion thruster's power per thruster and moderately sensitive to variations in the thruster's screen voltage due to varying the I(sp) of the thruster. Each PPU consists of a dc-to-dc converter to increase the voltage from the 500 V dc of the photovoltaic power system to the 5 to 13 kV dc required by the ion thrusters.
Electrical properties of binary mixtures of amino silicone oil and methyl iso butyl ketone
NASA Astrophysics Data System (ADS)
Shah, K. N.; Rana, V. A.; Vankar, H. P.
2018-05-01
The real and imaginary parts of the dielectric function of the binary mixtures of the methyl iso butyl ketone and amino silicone oil in the frequency range 100 Hz to 2 MHz were measured using precision LCR meter at 305.15 K. The electrical properties such as electrical modulus M*(ω), electrical conductivity σ*(ω) and complex impedance Z*(ω) were calculated using the dielectric function ɛ*(ω). The ionic polarization relaxation time (Τσ) and D.C. conductivity (σdc) were also calculated using electrical properties. The ionic behavior of methyl iso butyl ketone and non-ionic behavior of amino silicone oil are also explained. The electrical parameters are used to gain information about the effect of concentration variation of components of the mixtures on the electrical properties.
Experimental study of a fuel cell power train for road transport application
NASA Astrophysics Data System (ADS)
Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.
The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.
Electrical transport properties of epitaxial titanium nitride nanowire
NASA Astrophysics Data System (ADS)
Makise, K.; Shinozaki, B.
2018-03-01
We have measured the transport properties of epitaxial titanium nitride (TiN) nanowires. Epitaxial TiN layer, deposited by dc magnetron sputtering on MgO(100) substrates at growth temperature T = 1073 K. Samples of nanowire were fabricated by e-beam lithography and reactive ion etching. Although TiN films with 100 nm-thickness have superconducting transition temperature T C ∼ 5 K, nanowires does not appear resistive transition until 0.15 K. The magnetoresistance (MR) are always negative. Furthermore for MR experimental results, we attempt to fit the data using one-dimensional weak localization theory. In addition we observed oscillations of magnetoresistance below 5 K.
Wilson, P W; Haymet, A D J
2010-10-07
Workman-Reynolds freezing potentials have been measured across the interface between ice and dilute NaCl solutions as a function of ice growth rate for three salt concentrations. Growth rates of up to 40 μm·s(-1) are used, and it is found that the measured voltage peaks at rates of ∼25 μm·s(-1). Our initial results indicate that the freezing potential can be used as a probe into various aspects of the DC electrical resistance of ice as a function of variables such as salt concentration.
Plasma & reactive ion etching to prepare ohmic contacts
Gessert, Timothy A.
2002-01-01
A method of making a low-resistance electrical contact between a metal and a layer of p-type CdTe surface by plasma etching and reactive ion etching comprising: a) placing a CdS/CdTe layer into a chamber and evacuating said chamber; b) backfilling the chamber with Argon or a reactive gas to a pressure sufficient for plasma ignition; and c) generating plasma ignition by energizing a cathode which is connected to a power supply to enable the plasma to interact argon ions alone or in the presence of a radio-frequency DC self-bias voltage with the p-CdTe surface.
Laser Trimming of CuAlMo Thin-Film Resistors: Effect of Laser Processing Parameters
NASA Astrophysics Data System (ADS)
Birkett, Martin; Penlington, Roger
2012-08-01
This paper reports the effect of varying laser trimming process parameters on the electrical performance of a novel CuAlMo thin-film resistor material. The films were prepared on Al2O3 substrates by direct-current (DC) magnetron sputtering, before being laser trimmed to target resistance value. The effect of varying key laser parameters of power, Q-rate, and bite size on the resistor stability and tolerance accuracy were systematically investigated. By reducing laser power and bite size and balancing this with Q-rate setting, significant improvements in resistor stability and resistor tolerance accuracies of less than ±0.5% were achieved.
Effect of aluminium substitution on the electrical properties of Ni-Zn nanoferrites
NASA Astrophysics Data System (ADS)
Paramesh, D.; Vijaya Kumar, K.; Venkat Reddy, P.
2017-12-01
Nanoferrites of general formula Ni0.5 Zn0.5 Alx Fe2-x O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0) synthesized by sol-gel auto combustion technique can be characterized by dielectric behaviour and AC conductivity studies with the help of LCR impedance meter. This paper gives an insight on variations in dielectric constant, dielectric loss with reference to frequency, temperature and Al3+ ion substitution and also the determination of DC resistivity, activation energy and Curie temperature by two probe experimental set-up.
NASA Astrophysics Data System (ADS)
Das, Nilanjan
Among the various candidates for non-volatile random access memory (RAM), interfacial resistive switch in Ag/Pr0.7Ca0.3 MnO3 (PCMO) configuration has drawn major attention in recent years due to its potential as a high storage density (˜ terabyte) device. However, the diverse nature of the resistive switch in different systems makes the development of a unifying model for its underlying physics very difficult. This dissertation will address both issues, namely, characterization of switches for device applications and development of a system-independent generic model, in detail. In our work, we have studied the properties electric pulse induced interfacial switch in electrode/PCMO system. A very fast speed ("write speed") of 100 ns, threshold ("programming voltage") as low as 2 V (for micro electrodes), and non-volatility ("data retention") of switched states have been achieved. A clear distinction between fast switch and sub-threshold slow quasistatic-dc switch has been made. Results obtained from time-dependence studies and impedance spectroscopy suggest that defect creation/annihilation, such as broken bonds (under very high field at interface, 107V/cm), is likely the mechanism for the sub-micros fast switching. On the other hand, slow accumulative process, such as electromigration of point defects, are responsible for the subthreshold quasi-dc switch. Scanning probe imaging has revealed the nanoscale inhomogeneity of the switched surfaces, essential for observing a resistive switch. Evolution of such structures has been observed under surface pre-training. Device scalability has been tested by creating reversible modification of surface conductivities with atomic force microscopy, thus creating the "nano-switch" (limited to a region of 10--100 nm).
van der Borden, Arnout J; Maathuis, Patrick G M; Engels, Eefje; Rakhorst, Gerhard; van der Mei, Henny C; Busscher, Henk J; Sharma, Prashant Kumar
2007-04-01
Pin tract infections of external fixators used in orthopaedic reconstructive bone surgery are serious complications that can eventually lead to periostitis and osteomyelitis. In vitro experiments have demonstrated that bacteria adhering to stainless steel in a biofilm mode of growth detach under the influence of small electric currents, while remaining bacteria become less viable upon current application. Therefore, we have investigated whether a 100microA electric current can prevent signs of clinical infection around percutaneous pins, implanted in the tibia of goats. Three pins were inserted into the lateral right tibia of nine goats, of which one served for additional frame support. Two pins were infected with a Staphylococcus epidermidis strain of which one pin was subjected to electric current, while the other pin was used as control. Pin sites were examined daily. The wound electrical resistance decreased with worsening of the infection from a dry condition to a purulent stage. After 21 days, animals were sacrificed and the pins taken out. Infection developed in 89% of the control pin sites, whereas only 11% of the pin sites in the current group showed infection. These results show that infection of percutaneous pin sites of external fixators in reconstructive bone surgery can be prevented by the application of a small DC electric current.
NASA Astrophysics Data System (ADS)
Zhao, Pengcheng; Guo, Lixin; Shu, Panpan
2016-08-01
The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.
High Voltage Design Concepts for Launch Vehicles and Orbital Spacecraft Applications
NASA Technical Reports Server (NTRS)
Hall, David K.; Kirkici, Hulya; Hillard, G. Barry; Schweickart, Daniel; Dunbar, Bill
2000-01-01
With the advent of design concepts such as, electromechanical actuation and "more electric" initiatives, has come the need for electrical power buses and electronic equipment to operate at higher than normal dc voltages to meet power requirements while keeping current levels to manageable levels. This new bus voltage has been typically 270 Volts dc nominal for launch vehicles, and 120 Volt dc for the International Space Station. This paper will discuss the new design applications for high voltage dc power in existing and future launch vehicles and spacecraft and the potential problems associated therewith. These new applications must be operational from lift-off, ascent, on orbit and descent in all of the pressure and temperature conditions for each, i.e. through the "Paschen region" twice. This paper will also attempt to stimulate an interest in the academic and professional communities to support and conduct research needed for design data applicable to high voltage dc usage.
A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Gui-Jia; Tang, Lixin
2014-01-01
In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmentedmore » inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.« less
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul
2015-05-01
Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kanai, Shun; Gajek, Martin; Worledge, D. C.; Matsukura, Fumihiro; Ohno, Hideo
2014-12-01
We measure homodyne-detected ferromagnetic resonance (FMR) induced by the electric-field effect in a CoFeB/MgO/CoFeB magnetic tunnel junction (MTJ) with perpendicular magnetic easy axis under dc bias voltages up to 0.1 V. From the bias dependence of the resonant frequency, we find that the first order perpendicular magnetic anisotropy is modulated by the applied electric field, whereas the second order component is virtually independent of the electric field. The lineshapes of the FMR spectra are bias dependent, which are explained by the combination of electric-field effect and reflection of the bias voltage from the MTJ.
NASA Astrophysics Data System (ADS)
Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.
2016-01-01
Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.
Experimental Study of a Pack of Supercapacitors Used in Electric Vehicles.
Mansour, Amari; Mohamed Hedi, Chabchoub; Faouzi, Bacha
2017-01-01
Electric vehicles have recently attracted research interest. An electric vehicle is composed of two energy sources, such as fuel cells and ultracapacitors, which are employed to provide, respectively, the steady-state and transient power demanded by the vehicle. A bidirectional DC-DC converter is needed to interface the ultracapacitor to a DC bus. The pack of ultracapacitor consists of many cells in series and possibly also in parallel. In this regard, this paper introduces a comparative study between two packs of supercapacitors. The first supercapacitor pack is composed of ten cells in series but the second supercapacitor pack is composed of five cells in series and two parallel circuits. Each cell is characterized by 2.5 V and 100 F. A number of practical tests are presented.
Experimental Study of a Pack of Supercapacitors Used in Electric Vehicles
Mohamed Hedi, Chabchoub
2017-01-01
Electric vehicles have recently attracted research interest. An electric vehicle is composed of two energy sources, such as fuel cells and ultracapacitors, which are employed to provide, respectively, the steady-state and transient power demanded by the vehicle. A bidirectional DC-DC converter is needed to interface the ultracapacitor to a DC bus. The pack of ultracapacitor consists of many cells in series and possibly also in parallel. In this regard, this paper introduces a comparative study between two packs of supercapacitors. The first supercapacitor pack is composed of ten cells in series but the second supercapacitor pack is composed of five cells in series and two parallel circuits. Each cell is characterized by 2.5 V and 100 F. A number of practical tests are presented. PMID:28894785
The nuclear electric quadrupole moment of antimony from the molecular method.
Haiduke, Roberto L A; da Silva, Albérico B F; Visscher, Lucas
2006-08-14
Relativistic Dirac-Coulomb (DC) Hartree-Fock calculations are employed to obtain the analytic electric field gradient (EFG) on the antimony nucleus in the SbN, SbP, SbF, and SbCl molecules. The electronic correlation contribution to the EFGs is included with the DC-CCSD(T) and DC-CCSD-T approaches, also in the four-component framework, using a finite-difference method. The total EFG results, along with the experimental nuclear quadrupole coupling constants from microwave spectroscopy, allow to derive the nuclear quadrupole moments of (121)Sb and (123)Sb, respectively, as -543(11) and -692(14) mb.
Investigation of structural, optical and electrical properties of Co3O4 nanoparticles
NASA Astrophysics Data System (ADS)
Bhargava, Richa; Khan, Shakeel; Ahmad, Naseem; Ansari, Mohd Mohsin Nizam
2018-05-01
In the current work, we report the synthesis of Cobalt oxide (Co3O4) NPs (NPs) by co-precipitation method. The structural analysis was confirmed by using X-ray diffractometer (XRD) which shows that the Co3O4 NPs have cubic phase. The average crystallite size and the lattice parameter were calculated for Co3O4 NPs. The functional groups of the as-synthesized sample were examined by Fourier transform infrared spectroscopy (FTIR). The optical band gap of Co3O4 NPs was estimated by using UV diffuse reflectance spectroscopy and the Band gap was evaluated by using Tauc relation. The temperature dependence of dielectric constant and dielectric loss were studied over a range of temperature 50-300 °C. The DC electrical resistivity of Co3O4 NPs shows a semiconducting behaviour and the value of activation energy was calculated by using Arrhenius equation.
Electrical and thermoluminescence properties of γ-irradiated La2CuO4 crystals
NASA Astrophysics Data System (ADS)
El-Kolaly, M. A.; Abd El-Kader, H. I.; Kassem, M. E.
1994-12-01
Measurements of the electrical properties of unirradiated as well as ?-irradiated La2CuO4 crystals were carried out at different temperatures in the frequency range of 0.1-100 kHz. Thermoluminescence (TL) studies were also performed on such crystals in the temperature range of 300-600K. The conductivity of the unirradiated La2CuO4 crystals were found to obey the power law frequency dependence at each measured temperature below the transition temperature (Tc = 450K). The activation energies for conduction and dielectric relaxation time have been calculated. The TL response and the dc resistance were found to increase with ?-irradiation dose up to 9-10 kGy. The results showed that the ferroelastic domain walls of La2CuO4 crystal as well as its TL traps are sensitive to ?-raditaion. This material can be used in radiation measurements in the range 225 Gy-10 kGy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Shifeng; Wang, Shuyu; Lu, Ming
In this paper, vanadium thin films were deposited on sapphire substrates by DC magnetron sputtering and then oxidized in a tube furnace filled with oxygen under different temperatures and oxygen flow rates. The significant influence of the oxygen flow rate and oxidation temperature on the electrical and structural properties of the vanadium oxide thin films were investigated systematically. It shows the pure vanadium dioxide (VO 2) state can only be obtained in a very narrow temperature and oxygen flow rate range. The resistivity change during the metal-insulator transition varies from 0.2 to 4 orders of magnitude depending on the oxidationmore » condition. Large thermal hysteresis during the metal-insulator phase transition was observed during the transition compared to the results in literature. Proper oxidation conditions can significantly reduce the thermal hysteresis. Finally, the fabricated VO 2 thin films showed the potential to be applied in the development of electrical sensors and other smart devices.« less
In Vitro and In Vivo Antibacterial Activities of DC-159a, a New Fluoroquinolone▿
Hoshino, Kazuki; Inoue, Kazue; Murakami, Yoichi; Kurosaka, Yuichi; Namba, Kenji; Kashimoto, Yoshinori; Uoyama, Saori; Okumura, Ryo; Higuchi, Saito; Otani, Tsuyoshi
2008-01-01
DC-159a is a new 8-methoxy fluoroquinolone that possesses a broad spectrum of antibacterial activity, with extended activity against gram-positive pathogens, especially streptococci and staphylococci from patients with community-acquired infections. DC-159a showed activity against Streptococcus spp. (MIC90, 0.12 μg/ml) and inhibited the growth of 90% of levofloxacin-intermediate and -resistant strains at 1 μg/ml. The MIC90s of DC-159a against Staphylococcus spp. were 0.5 μg/ml or less. Against quinolone- and methicillin-resistant Staphylococcus aureus strains, however, the MIC90 of DC-159a was 8 μg/ml. DC-159a was the most active against Enterococcus spp. (MIC90, 4 to 8 μg/ml) and was more active than the marketed fluoroquinolones, such as levofloxacin, ciprofloxacin, and moxifloxacin. The MIC90s of DC-159a against Haemophilus influenzae, Moraxella catarrhalis, and Klebsiella pneumoniae were 0.015, 0.06, and 0.25 μg/ml, respectively. The activity of DC-159a against Mycoplasma pneumoniae was eightfold more potent than that of levofloxacin. The MICs of DC-159a against Chlamydophila pneumoniae were comparable to those of moxifloxacin, and DC-159a was more potent than levofloxacin. The MIC90s of DC-159a against Peptostreptococcus spp., Clostridium difficile, and Bacteroides fragilis were 0.5, 4, and 2 μg/ml, respectively; and among the quinolones tested it showed the highest level of activity against anaerobic organisms. DC-159a demonstrated rapid bactericidal activity against quinolone-resistant Streptococcus pneumoniae strains both in vitro and in vivo. In vitro, DC-159a showed faster killing than moxifloxacin and garenoxacin. The bactericidal activity of DC-159a in a murine muscle infection model was revealed to be superior to that of moxifloxacin. These activities carried over to the in vivo efficacy in the murine pneumonia model, in which treatment with DC-159a led to bactericidal activity superior to those of the other agents tested. PMID:17938194
Generator and Setup for Emulating Exposures of Biological Samples to Lightning Strokes.
Rebersek, Matej; Marjanovic, Igor; Begus, Samo; Pillet, Flavien; Rols, Marie-Pierre; Miklavcic, Damijan; Kotnik, Tadej
2015-10-01
We aimed to develop a system for controlled exposure of biological samples to conditions they experience when lightning strikes their habitats. We based the generator on a capacitor charged via a bridge rectifier and a dc-dc converter, and discharged via a relay, delivering arcs similar to natural lightning strokes in electric current waveform and similarly accompanied by acoustic shock waves. We coupled the generator to our exposure chamber described previously, measured electrical and acoustic properties of arc discharges delivered, and assessed their ability to inactivate bacterial spores. Submicrosecond discharges descended vertically from the conical emitting electrode across the air gap, entering the sample centrally and dissipating radially toward the ring-shaped receiving electrode. In contrast, longer discharges tended to short-circuit the electrodes. Recording at 341 000 FPS with Vision Research Phantom v2010 camera revealed that initial arc descent was still vertical, but became accompanied by arcs leaning increasingly sideways; after 8-12 μs, as the first of these arcs formed direct contact with the receiving electrode, it evolved into a channel of plasmified air and short-circuited the electrodes. We eliminated this artefact by incorporating an insulating cylinder concentrically between the electrodes, precluding short-circuiting between them. While bacterial spores are highly resistant to electric pulses delivered through direct contact, we showed that with arc discharges accompanied by an acoustic shock wave, spore inactivation is readily obtained. The presented system allows scientific investigation of effects of arc discharges on biological samples. This system will allow realistic experimental studies of lightning-triggered horizontal gene transfer and assessment of its role in evolution.
Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.; ...
2016-05-01
Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.
Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less
NASA Astrophysics Data System (ADS)
Zuo, Xiao; Chen, Rende; Liu, Jingzhou; Ke, Peiling; Wang, Aiying
2018-01-01
The electrical characteristics and spectroscopic properties have been comprehensively investigated in a DC superimposed high power impulse magnetron sputtering (DC-HiPIMS) deposition system in this paper. The influence of superimposed DC current on the variation of target and substrate current waveforms, active species and electron temperatures with pulse voltages are focused. The peak target currents in DC-HiPIMS are lower than in HiPIMS. The time scales of the two main discharge processes like ionization and gas rarefaction in DC-HiPIMS are analyzed. When the pulse voltage is higher than 600 V, the gas rarefaction effect becomes apparent. Overall, the ionization process is found to be dominant in the initial ˜100 μs during each pulse. The active species of Ar and Cr in DC-HiPIMS are higher than in HiPIMS unless that the pulse voltage reaches 900 V. However, the ionization degree in HiPIMS exceeds that in DC-HiPIMS at around 600 V. The electron temperature calculated by modified Boltzmann plot method based on corona model has a precipitous increase from 0.87 to 25.0 eV in HiPIMS, but varies mildly after the introduction of the superimposed DC current. Additionally, the current from plasma flowing to the substrate is improved when a DC current is superimposed with HiPIMS.
Bikson, Marom; Inoue, Masashi; Akiyama, Hiroki; Deans, Jackie K; Fox, John E; Miyakawa, Hiroyoshi; Jefferys, John G R
2004-05-15
The effects of uniform steady state (DC) extracellular electric fields on neuronal excitability were characterized in rat hippocampal slices using field, intracellular and voltage-sensitive dye recordings. Small electric fields (40/ mV mm(-1)), applied parallel to the somato-dendritic axis, induced polarization of CA1 pyramidal cells; the relationship between applied field and induced polarization was linear (0.12 +/- 0.05 mV per mV mm(-1) average sensitivity at the soma). The peak amplitude and time constant (15-70 ms) of membrane polarization varied along the axis of neurons with the maximal polarization observed at the tips of basal and apical dendrites. The polarization was biphasic in the mid-apical dendrites; there was a time-dependent shift in the polarity reversal site. DC fields altered the thresholds of action potentials evoked by orthodromic stimulation, and shifted their initiation site along the apical dendrites. Large electric fields could trigger neuronal firing and epileptiform activity, and induce long-term (>1 s) changes in neuronal excitability. Electric fields perpendicular to the apical-dendritic axis did not induce somatic polarization, but did modulate orthodromic responses, indicating an effect on afferents. These results demonstrate that DC fields can modulate neuronal excitability in a time-dependent manner, with no clear threshold, as a result of interactions between neuronal compartments, the non-linear properties of the cell membrane, and effects on afferents.
Recovery of consciousness in broilers following combined dc and ac stunning
USDA-ARS?s Scientific Manuscript database
Broilers in the United States are typically electrically stunned using low voltage-high frequency pulsed DC water bath stunners and in the European Union broilers are electrocuted using high voltage-low frequency AC. DC stunned broilers regain consciousness in the absence of exsanguination and AC st...
Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer.
Bowling, Jerry C; Zheng, Chunmiao; Rodriguez, Antonio B; Harry, Dennis L
2006-05-05
Approximately 3000 measurements of hydraulic conductivity in over 50 flowmeter boreholes were available at the Macro-Dispersion Experiment (MADE) site in Columbus, Mississippi, USA to quantify the heterogeneity in hydraulic conductivity at the site scale. This high-density measurement approach is perhaps infeasible for time and expense in typical groundwater remediation sites. A natural-gradient tracer experiment from the MADE site was simulated by a groundwater flow and solute transport model incorporating direct-current (DC) resistivity data collected over the observed plume location. Hydraulic conductivity from one borehole collected during the original site characterization was used to calibrate the electrical resistivity data to hydraulic conductivity using a previously derived log-log relationship. Application of this relationship, using site-specific empirical constants determined from the data, transforms the 3D electrical resistivity data into a 3D description of hydraulic conductivity that can be used in groundwater models. The validity of this approach was tested by using the geophysically derived hydraulic conductivity representation in numerical simulations of the natural-gradient tracer experiment. The agreement between the simulated and observed tracer plumes was quantified to gauge the effectiveness of geophysically derived and flowmeter based representations of the hydraulic conductivity field. This study demonstrates that a highly heterogeneous aquifer can be modeled with minimal hydrological data supplemented with geophysical data at least as well as previous models of the site using purely hydrologic data.
Modeling, hybridization, and optimal charging of electrical energy storage systems
NASA Astrophysics Data System (ADS)
Parvini, Yasha
The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems analytically. Efficiency analysis for constant power (CP) and optimal charging strategies under different charging times (slow and fast) was performed. In case of the lithium ion battery, the model included the electronic as well as polarization resistance. Furthermore, in order to investigate the influence of temperature on the internal resistance of the lithium ion battery, the optimal charging problem for a three state electro-thermal model was solved using dynamic programming (DP). The ability to charge electric vehicles is a pace equivalent to fueling a gasoline car will be a game changer in the widespread acceptability and feasibility of the electric vehicles. Motivated by the knowledge gained from the optimal charging study, the challenges facing the fast charging of lithium ion batteries are investigated. In this context, the suitable models for the study of fast charging, high rate anode materials, and different charging strategies are studied. The side effects of fast charging such as lithium plating and mechanical failure are also discussed. This dissertation has targeted some of the most challenging questions in the field of electrical energy storage systems and the reported results are applicable to a wide range of applications such as in electronic gadgets, medical devices, electricity grid, and electric vehicles.
Document for 270 Voltage Direct Current (270 V dc) System
NASA Astrophysics Data System (ADS)
1992-09-01
The paper presents the technical design and application information established by the SAE Aerospace Recommended Practice concerning the generation, distribution, control, and utilization of aircraft 270 V dc electrical power systems and support equipment. Also presented are references and definitions making it possible to compare various electrical systems and components. A diagram of the generic 270 V Direct Current High-Voltage Direct System is included.
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-10
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Enhancing Piezoelectric Performance of CaBi2Nb2O9 Ceramics Through Microstructure Control
NASA Astrophysics Data System (ADS)
Chen, Huanbei; Zhai, Jiwei
2012-08-01
Calcium bismuth niobate (CaBi2Nb2O9, CBN) is a high-Curie-temperature ( T C) piezoelectric material with relatively poor piezoelectric performance. Attempts were made to enhance the piezoelectric and direct-current (DC) resistive properties of CBN ceramics by increasing their density and controlling their microstructural texture, which were achieved by combining the templated grain growth and hot pressing methods. The modified CBN ceramics with 97.5% relative density and 90.5% Lotgering factor had much higher piezoelectric constant ( d 33 = 20 pC/N) than those prepared by the normal sintering process ( d 33 = 6 pC/N). High-temperature alternating-current (AC) impedance spectroscopy of the CBN ceramics was measured by using an impedance/gain-phase analyzer. Their electrical resistivity was approximately 6.5 × 104 Ω cm at 600°C. Therefore, CBN ceramics can be used for high-temperature piezoelectric applications.
Development of strain gages for use to 1311 K (1900 F)
NASA Technical Reports Server (NTRS)
Lemcoe, M. M.
1974-01-01
A high temperature electric resistance strain gage system was developed and evaluated to 1366 K (2000 F) for periods of at least one hour. Wire fabricated from a special high temperature strain gage alloy (BCL-3), was used to fabricate the gages. Various joining techniques (NASA butt welding, pulse arc, plasma needle arc, and dc parallel gap welding) were investigated for joining gage filaments to each other, gage filaments to lead-tab ribbons, and lead-tab ribbons to lead wires. The effectiveness of a clad-wire concept as a means of minimizing apparent strain of BCL-3 strain gages was investigated by sputtering platinum coatings of varying thicknesses on wire samples and establishing the optimum coating thickness--in terms of minimum resistivity changes with temperature. Finally, the moisture-proofing effectiveness of barrier coatings subjected to elevated temperatures was studied, and one commercial barrier coating (BLH Barrier H Waterproofing) was evaluated.
NASA Astrophysics Data System (ADS)
Ishisaka, K.; Yamamoto, M.; Yokoyama, T.; Watanabe, S.; Okada, T.; Abe, T.; Kumamoto, A.
2014-12-01
S-520-23 sounding rocket experiments are carried out at Uchinoura Space Center (USC) in Japan at 19:20 LT on 2 September, 2007. The purpose of this experiment is the investigation of the process of momentum transportation between the atmospheres and the plasma in the thermosphere during the summer evening time at mid latitudes. The S-520-23 payload was equipped with a two set of orthogonal double probes to measure both DC and AC less than 40Hz electric fields in the spin plane of the payload. One of the double probe is the inflatable structure antenna, called the SPINAR, with a length of 5m tip-to-tip. The SPINAR was the first successful use of an inflatable structure as a flight antenna. It extended and worked without any problems. Another one is the NEI type antenna with a length of 2m tip-to-tip. The electrodes of two double probe antennas were used to gather the potentials which were detected with high impedance pre-amplifiers using the floating (unbiased) double probe technique. The potential differences on the two main orthogonal axes were digitized on-board using 16-bit analog-digital converters, sampled at 400 samples/sec with low pass filters at cut-off frequency of 40Hz. We have investigated the DC electric field during the rocket ascent. And it was able to obtain the electric field vector in a geographic-coordinates system. The direction of DC electric field vector at altitude from 140km to 170km is seems to be dependent on the direction of a neutral wind in the ionosphere. And intensity of DC electric field is increasing at altitude more than 260km. Its direction is east. It is thought that the polarization electric field was observed in the region where the difference of the electron density was large after sunset. In this presentation, we will describe the result of investigation of the relationship between an electric field and ionospheric plasma in detail. Especially the dependence of the direction of electric field and the direction of the neutral wind is investigated. Then we will show the irradiated region during the sounding rocket flight, and examine a possibility that a polarization electric field is generated in this region.
NASA Technical Reports Server (NTRS)
Angel, Paul W.; Hann, Raiford E.; Cooper, Alfred R.
1993-01-01
Electrical response measurements from 10 Hz to 100 kHz between 120 and 540 C were made on potassium-silicate glasses with alkali oxide contents of 2, 3, 5 and 10 mol percent. Low alkali content glasses were chosen in order to try to reduce the Coulombic interactions between alkali ions to the point that frozen structural effects from the glass could be observed. Conductivity and electrical relaxation responses for both annealed and quenched glasses of the same composition were compared. Lower DC conductivity (sigma(sub DC)) activation energies were measured for the quenched compared to the annealed glasses. The two glasses with the lowest alkali contents exhibited a non-Arrhenius concave up curvature in the log(sigma(sub DC)) against 1/T plots, which decreased upon quenching. A sharp decrease in sigma(sub DC) was observed for glasses containing K2O concentrations of 5 mol percent or less. The log modulus loss peak (M'') maximum frequency plots against 1/T all showed Arrhenius behavior for both annealed and quenched samples. The activation energies for these plots closely agreed with the sigma(sub DC) activation energies. A sharp increase in activation energy was observed for both series as the potassium oxide concentration decreased. Changes in the electrical response are attributed to structural effects due to different alkali concentrations. Differences between the annealed and quenched response are linked to a change in the distribution of activation energies (DAE).
Yang, Fei; Zhang, Tong; Tiwari, Vinod; Shu, Bin; Zhang, Chen; Wang, Yun; Vera-Portocarrero, Louis P.; Raja, Srinivasa N.; Guan, Yun
2015-01-01
Objectives Electrical stimulation at the dorsal column (DC) and dorsal root (DR) may inhibit spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. The objective of this study was to determine if applying electrical conditioning stimulation (CS) at both sites provides additive or synergistic benefits. Materials and Methods By conducting in vivo extracellular recordings of WDR neurons in rats that had undergone L5 spinal nerve ligation, we tested whether combining 50 Hz CS at the two sites in either a concurrent (2.5 minutes) or alternate (5 minutes) pattern inhibits WDR neuronal activity better than CS at DC alone (5 minutes). The intensities of CS were determined by recording antidromic compound action potentials to graded stimulation at the DC and DR. We measured the current thresholds that resulted in the first detectable Aα/β waveform (Ab0) and the peak Aα/β waveform (Ab1) to select CS intensity at each site. The same number of electrical pulses and amount of current were delivered in different patterns to allow comparison. Results At a moderate intensity of 50%(Ab0+Ab1), different patterns of CS all attenuated the C-component of WDR neurons in response to graded intracutaneous electrical stimuli (0.1-10 mA, 2 ms), and inhibited windup in response to repetitive noxious stimuli (0.5 Hz). However, the inhibitory effects did not differ significantly between different patterns. At the lower intensity (Ab0), no CS inhibited WDR neurons. Conclusions These findings suggest that combined stimulation of DC and DR may not be superior to DC stimulation alone for inhibition of WDR neurons. PMID:26307526
Schottky-type grain boundaries in CCTO ceramics
NASA Astrophysics Data System (ADS)
Felix, A. A.; Orlandi, M. O.; Varela, J. A.
2011-10-01
In this work we studied electrical barriers existing at CaCu 3Ti 4O 12 (CCTO) ceramics using dc electrical measurements. CCTO pellets were produced by solid state reaction method and X-ray diffractograms showed which single phase polycrystalline samples were obtained. The samples were electrically characterized by dc and ac measurements as a function of temperature, and semiconductor theory was applied to analyze the barrier at grain boundaries. The ac results showed the sample's permittivity is almost constant ( 104) as function of temperature at low frequencies and it changes from 100 to 104 as the temperature increases at high frequencies. Using dc measurements as a function of temperature, the behavior of barriers was studied in detail. Comparison between Schottky and Poole-Frenkel models was performed, and results prove that CCTO barriers are more influenced by temperature than by electric field (Schottky barriers). Besides, the behavior of barrier width as function of temperature was also studied and experimental results confirm the theoretical assumptions.
NASA Astrophysics Data System (ADS)
Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru
2016-12-01
A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharathi, M. N.; Vinayakprasanna, N. H.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in
The total dose effects of 80 MeV C{sup 6+} ions on the DC electrical characteristics of Silicon NPN rf power transistors have been studied in the dose range of 100 krad to 100 Mrad. The SRIM simulation was used to understand the energy loss and range of the ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (ΔI{sub B} = I{sub Bpost} - I{sub Bpre}), dc forward current gain (h{sub FE}), transconductance (g{sub m}), displacement damage factor (K) and output characteristics (V{sub CE}-I{sub C}) were studied systematically before and after irradiation. The significantmore » degradation in base current (I{sub B}) and h{sub FE} was observed after irradiation. Isochronal annealing study was conducted on the irradiated transistors to analyze the recovery in different electrical parameters. These results were compared with {sup 60}C0 gamma irradiation results in the same dose range.« less
Electrical conductivity of Gd doped BiFeO3-PbZrO3 composite
NASA Astrophysics Data System (ADS)
Satpathy, Santosh Kumar; Mohanty, Nilaya Kumar; Behera, Ajay Kumar; Behera, Banarji; Nayak, Pratibindhya
2013-09-01
The composite, 0.5(BiGd0.15Fe0.85O3)-0.5(PbZrO3), was synthesized using the solid-state reaction technique. The formation of the compound was confirmed by XRD with an orthorhombic structure at room temperature. The impedance parameters were studied using an impedance analyzer in a wide range of frequency (102-106 Hz) at different temperatures. The Nyquist plot suggests the contribution of bulk effect and a slight indication of grain boundary effect and the bulk resistance decreases with a rise in temperature. The presence of temperature-dependent relaxation process occurs in the material. Electrical modulus reveals the presence of the hopping mechanism in the materials. The value of exponent n, pre-factor A and σ dc were obtained by fitting ac conductivity data with Jonscher's universal power law. The activation energies calculated from the ac conductivity were found to be 0.50, 0.46, 0.44, 0.43, 0.42 and 0.38 eV at 1, 10, 50, 100, 500 kHz and 1 MHz respectively in the temperature region of 110°C-350°C. The dc conductivity was found to increase with the rise in temperature. The activation energy calculated from complex impedance plot and from the fitted Jonscher's power law are very close, which results similar type of charge carrier exist in conduction mechanism of the material.
Shah, Sachin D.; Kress, Wade H.; Legchenko, Anatoly
2007-01-01
The U.S. Geological Survey, in cooperation with the Texas Water Development Board, used surface geophysical methods at the Texas A&M University Brazos River Hydrologic Field Research Site near College Station, Texas, in a pilot study, to characterize the hydrostratigraphic properties of the Brazos River alluvium aquifer and determine the effectiveness of the methods to aid in generating an improved ground-water availability model. Three non-invasive surface geophysical methods were used to characterize the electrical stratigraphy and hydraulic properties and to interpret the hydrostratigraphy of the Brazos River alluvium aquifer. Two methods, time-domain electromagnetic (TDEM) soundings and two-dimensional direct-current (2D-DC) resistivity imaging, were used to define the lateral and vertical extent of the Ships clay, the alluvium of the Brazos River alluvium aquifer, and the underlying Yegua Formation. Magnetic resonance sounding (MRS), a recently developed geophysical method, was used to derive estimates of the hydrologic properties including percentage water content and hydraulic conductivity. Results from the geophysics study demonstrated the usefulness of combined TDEM, 2D-DC resistivity, and MRS methods to reduce the need for additional boreholes in areas with data gaps and to provide more accurate information for ground-water availability models. Stratigraphically, the principal finding of this study is the relation between electrical resistivity and the depth and thickness of the subsurface hydrostratigraphic units at the site. TDEM data defined a three-layer electrical stratigraphy corresponding to a conductor-resistor-conductor that represents the hydrostratigraphic units - the Ships clay, the alluvium of the Brazos River alluvium aquifer, and the Yegua Formation. Sharp electrical boundaries occur at about 4 to 6 and 20 to 22 meters below land surface based on the TDEM data and define the geometry of the more resistive Brazos River alluvium aquifer. Variations in resistivity in the alluvium aquifer range from 10 to more than 175 ohm-meters possibly are caused by lateral changes in grain size. Resistivity increases from east to west along a profile away from the Brazos River, which signifies an increase in grain size within the alluvium aquifer and therefore a more productive zone with more abundant water in the aquifer. MRS data can help delineate the subsurface hydrostratigraphy and identify the geometric boundaries of the hydrostratigraphic units by identifying changes in the free water content, transmissivity, and hydraulic conductivity. MRS data indicate that most productive zones of the alluvium aquifer occur between 12 and 25 meters below land surface in the western part of the study area where the hydraulic conductivity can be as high as 250 meters per day. Hydrostratigraphically, individual hydraulic conductivity values derived from MRS were consistent with those from aquifer tests conducted in 1996 in the study area. Average hydraulic conductivity values from the aquifer tests range from about 61 to 80 meters per day, whereas the MRS-derived hydraulic conductivity values range from about 27 to 97 meters per day. Interpreting an interpolated profile of the hydraulic conductivity values and individual values derived from MRS can help describe the hydrostratigraphic framework of an area and constrain ground-water models for better accuracy.
NASA Technical Reports Server (NTRS)
Hall, J.; Chen, T. M.
1991-01-01
Virtually every device that makes use of the new ceramic superconductors will need normal conductor to superconductor contacts. The current-voltage and electrical noise characteristics of these contacts could become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quantity often used to characterize electrical noise, very closely followed an empirical relationship given by S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density.
NASA Technical Reports Server (NTRS)
Hall, J.; Chen, T. M.
1990-01-01
Virtually every device that makes use of the new ceramic superconductors will need normal conductor to supercondutor contacts. The current-voltage and electrical noise characteristics of these contacts could be become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quanity often used to characterize electrical noise, very closely followed an empirical relationship given by, S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density.
2009-09-10
Howard University 2300 6th Street NW, Room 1016 Washington, D.C. 20059 Air Force Office of Scientific Research 875 North Randolph Street Room 3112...Department of Electrical Engineering, Howard University , Washington, DC 20059 Room temperature quantum efficiencies of Ag/n-Si composite...at the Howard University CREST Center for Nanomaterials Characterization Science and Processing Technology were used in this investigation. The
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-09-10
A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.
The decolouration of methyl orange using aluminum foam, ultrasound and direct electric current
NASA Astrophysics Data System (ADS)
Liu, C. M.; Huang, X. Y.; Zhang, H. Y.; Dai, J. D.; Ning, C. C.
2018-01-01
The decolouration of methyl orange (MO) using aluminum (Al) foam, ultrasound and direct electric current (DC) is investigated. The decolouration rate (DR) of MO using only Al foam is low because there is a passivation oxide layer on the Al foam surface. Due to the low utilization of ultrasound in MO water solution medium, the DR of MO using only ultrasonic irradiation is also poor. The DR of MO is greatly increased when Al foam, ultrasonic irradiation and DC are used together. There is good synergistic effect between Al foam, ultrasound and DC in decolouration of MO. This enhancement of DR may be related to the cavitation, cleaning of Al foam surface and water electrolysis. Due to the surface charge on wire carrying stationary current, Al foam with DC acts like a serious anodes and cathodes and makes water electrolysis giving hydrogen gas to cleavage azo bond. The DC applied on Al foam is beneficial for reductive decolouration of MO. Our results show that DC is a new way for the reductive decolouration MO in water.
NASA Astrophysics Data System (ADS)
Jung, S.; Lee, J. H.; Yoon, M.; Lee, H.; Jang, G.
The study of the application process of the relatively small size 'Superconducting Flywheel Energy Storage (SFES)' system is conducted to regulate voltage fluctuation of the DC On-Line Electric Vehicle (OLEV) system, which is designed by using DC power system network. It is recommended to construct the power conversion system nearby the substation because the charging system is under the low voltage. But as the system is usually built around urban area and it makes hard to construct the subsystems at every station, voltage drop can occur in power supply inverter that is some distance from the substation. As the alternative of this issue, DC distribution system is recently introduced and has possibility to solve the above issue. In this paper, SFES is introduced to solve the voltage drop under the low voltage distribution system by using the concept of the proposed DC OLEV which results in building the longer distance power supply system. The simulation to design the SFES by using DC power flow analysis is carried out and it is verified in this paper.
Prototype Combined Heater/Thermoelectric Power Generator for Remote Applications
NASA Astrophysics Data System (ADS)
Champier, D.; Favarel, C.; Bédécarrats, J. P.; Kousksou, T.; Rozis, J. F.
2013-07-01
This study presents a prototype thermoelectric generator (TEG) developed for remote applications in villages that are not connected to the electrical power grid. For ecological and economic reasons, there is growing interest in harvesting waste heat from biomass stoves to produce some electricity. Because regular maintenance is not required, TEGs are an attractive choice for small-scale power generation in inaccessible areas. The prototype developed in our laboratory is especially designed to be implemented in stoves that are also used for domestic hot water heating. The aim of this system is to provide a few watts to householders, so they have the ability to charge cellular phones and radios, and to get some light at night. A complete prototype TEG using commercial (bismuth telluride) thermoelectric modules has been built, including system integration with an electric DC/DC converter. The DC/DC converter has a maximum power point tracker (MPPT) driven by an MC9SO8 microcontroller, which optimizes the electrical energy stored in a valve-regulated lead-acid battery. Physical models were used to study the behavior of the thermoelectric system and to optimize the performance of the MPPT. Experiments using a hot gas generator to simulate the exhaust of the combustion chamber of a stove are used to evaluate the system. Additionally, potential uses of such generators are presented.
Research on Control System of Three - phase Brushless DC Motor for Electric Vehicle
NASA Astrophysics Data System (ADS)
Wang, Zhiwei; Jin, Hai; Guo, Jie; Su, Jie; Wang, Miao
2017-12-01
In order to study the three-phase brushless motor control system of electric vehicle, Freescale9S12XS128 chip is used as the control core, and the power MOSFET is used as the inverter device. The software is compiled by Codewarrior software. The speed control link adopts open-loop control, and the control chip collects the external sensor signal voltage Change control PWM signal output control three-phase brushless DC motor speed. The whole system consists of Hall position detection module, current detection module, power drive module and voltage detection module. The basic functions of three-phase brushless DC motor drive control are realized.
The Development and Demonstration of a 360m/10 kA HTS DC Power Cable
NASA Astrophysics Data System (ADS)
Xiao, Liye
With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.
Modeling AC ripple currents in HTS coated conductors by integral equations
NASA Astrophysics Data System (ADS)
Grilli, Francesco; Xu, Zhihan
2016-12-01
In several HTS applications, the superconducting tapes experience the simultaneous presence of DC and AC excitations. For example in high-current DC cables, where the transport current is not perfectly constant, but it exhibits some ripples at different frequencies introduced by the rectification process (AC-DC conversion). These ripples give rise to dissipation, whose magnitude and possible influence on the device's cooling requirements need to be evaluated. Here we report a study of the AC losses in a HTS coated conductor subjected to DC currents and AC ripples simultaneously. The modeling approach is based on an integral equation method for thin superconductors: the superconducting tape is modeled as a 1-D object with a non-linear resistivity, which includes the dependence of the critical current density Jc on the magnetic field. The model, implemented in a commercial finite-element program, runs very fast (the simulation of one AC cycle typically takes a few seconds on standard desktop workstation): this allows simulating a large number of cycles and estimating when the AC ripple losses stabilize to a constant value. The model is used to study the influence of the flux creep power index n on the stabilization speed and on the AC loss values, as well as the effect of using a field-dependent Jc instead of a constant one. The simulations confirm that the dissipation level should not be a practical concern in HTS DC cables. At the same time, however, they reveal a strong dependence of the results upon the power index n and the form of Jc , which spurs the question whether the power-law is the most suitable description of the superconductor's electrical behavior for this kind of analysis.
NASA Astrophysics Data System (ADS)
Castellví, Quim; Mercadal, Borja; Moll, Xavier; Fondevila, Dolors; Andaluz, Anna; Ivorra, Antoni
2018-02-01
Electroporation-based treatments typically consist of the application of high-voltage dc pulses. As an undesired side effect, these dc pulses cause electrical stimulation of excitable tissues such as motor nerves. The present in vivo study explores the use of bursts of sinusoidal voltage in a frequency range from 50 kHz to 2 MHz, to induce irreversible electroporation (IRE) whilst avoiding neuromuscular stimulation. A series of 100 dc pulses or sinusoidal bursts, both with an individual duration of 100 µs, were delivered to rabbit liver through thin needles in a monopolar electrode configuration, and thoracic movements were recorded with an accelerometer. Tissue samples were harvested three hours after treatment and later post-processed to determine the dimensions of the IRE lesions. Thermal damage due to Joule heating was ruled out via computer simulations. Sinusoidal bursts with a frequency equal to or above 100 kHz did not cause thoracic movements and induced lesions equivalent to those obtained with conventional dc pulses when the applied voltage amplitude was sufficiently high. IRE efficacy dropped with increasing frequency. For 100 kHz bursts, it was estimated that the electric field threshold for IRE is about 1.4 kV cm-1 whereas that of dc pulses is about 0.5 kV cm-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmood, Azhar; Warsi, Muhammad Farooq, E-mail: Farooq.warsi@iub.edu.pk; Ashiq, Muhammad Naeem
2012-12-15
Graphical abstract: Display Omitted Highlights: ► Simultaneous double ion substitutions philosophy is introduced in LaMnO{sub 3}. ► La{sub 1−x}Gd{sub x}Mn{sub 1−y}Cr{sub y}O{sub 3} nanoparticles are not reported previously. ► La{sub 1−x}Gd{sub x}Mn{sub 1−y}Cr{sub y}O{sub 3} nanoparticles are synthesized by co-precipitation method. ► The 12 fold increase in resistivity of LaMnO{sub 3} nanostructures is observed. -- Abstract: A series of La{sub 1−x}Gd{sub x}Mn{sub 1−y}Cr{sub y}O{sub 3} nanoparticles (where x, y = 0, 0.25, 0.50, 0.75 and 1.0) has been synthesized by the chemical co-precipitation method, involving double ion substitution philosophy. The nanoparticles were characterized by thermo gravimetric analysis (TGA), X-ray fluorescencemore » spectrometry (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometer (VSM), DC electrical resistivity and dielectric measurements. The XRD and FTIR analysis confirmed the single orthorhombic phase and the crystallite size were found in the range of 16–34 nm. DC resistivity exhibited very interesting behavior which increased from 1.41 × 10{sup 8} to 16.35 ± 0.2 × 10{sup 8} Ω cm upon complete double ions replacement of La and Mn with Gd and Cr, respectively. This very high resistivity variation upon substitution definitely would open new avenues for applications of these materials in microwave devices and other related areas. The dielectric properties of these nanoparticles were also studied at room temperature in the range of 6 kHz to 5 MHz and the maximum dielectric behavior (ε′ = 2.86 × 10{sup 3}, tan δ = 5.41, ε″ = 15.5 × 10{sup 3}) was exhibited by La{sub 0.75}Gd{sub 0.25}Mn{sub 0.75}Cr{sub 0.25}O{sub 3} at 6 kHz. Hysteresis loops measurements showed that the synthesized nanomaterials are paramagnetic in nature at room temperature.« less
NASA Astrophysics Data System (ADS)
Geetha, A.; Subramani, C.; Thamizh Thentral, T. M.; Krithika, V.; Usha, S.
2018-04-01
Non isolated Bidirectional DC-DC Converter (NIBDDC) is a good interface between DC source and inverter Fed induction motor drive. This paper deals with comparison between open loop and PI controlled Bidirectional DC to DC Converter Inverter System (BDDCIS). The modelling and control of BDDC is becomes an important issue. Open loop BDDCIS and closed loop PI controlled BDDCIS are designed, modelled and simulated using Matlab- simulink and their results are presented. The investigations indicate superior performance of PI controlled BDDCIS. The proposed BDDCIS has advantages like bidirectional power transfer ability, reduced hardware count and improved dynamic response.
Li, Kan; Zhang, Hongbo; Tang, Tiantian; Xu, Yunlan; Ying, Diwen; Wang, Yalin; Jia, Jinping
2014-10-01
A TiO2/Ti-Pt photo fuel cell (PFC) was established to generate electricity and degrade organic pollutants simultaneously. The electricity generation was optimized through investigation the influences of photoanode calcination temperature and dissolve oxygen on the resistances existing in PFC. TiO2 light quantum yield was also improved in PFC which resulted in a higher PC degradation efficiency. Two kinds of real textile wastewaters were also employed in this PFC system, 62.4% and 50.0% Coulombic efficiency were obtained for 8 h treatment. These refractory wastewaters with high salinity may become good fuels in PFC because a) TiO2 has no selectivity and can degrade nearly any organic substance, b) no more electrolyte is needed due to the high salinity, c) the energy in wastes can be recovered to generate electricity. The electricity generated by the PFC was further applied on a TiO2/Ti rotating disk photoelectrocatalytic reactor. A bias voltage between 0.6 and 0.75 V could be applied and the PC degradation efficiency was significantly improved. This result was similar with that obtained by a 0.7 V DC power. Copyright © 2014 Elsevier Ltd. All rights reserved.
Electrical transport and optical band gap of NiFe2Ox thin films
NASA Astrophysics Data System (ADS)
Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter
2017-12-01
We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.
Structural, electrical and magnetic study of Nd-Ni substituted W-type Hexaferrite
NASA Astrophysics Data System (ADS)
Khan, Imran; Sadiq, Imran; Ali, Irshad; Rana, Mazhar-Ud-Din; Najam-Ul-Haq, Muhammad; Shah, Afzal; Shakir, Imran; Naeem Ashiq, Muhammad
2016-01-01
A series of Nd-Ni substituted W-type hexaferrites with composition Sr1-xNdxCo2NiyFe16-yO27 (where x=0.0, 0.025, 0.050, 0.075, 0.1 and y=0.0, 0.25, 0.50, 0.75, 1) has been prepared by the chemical co-precipitation method. The effect of rare earth Nd substitution at strontium site while Ni at iron site on microstructure, electrical and magnetic properties has been investigated. All the XRD patterns of the synthesized materials show single W-type hexagonal phase without any other intermediate phases. SEM images show that the particles are homogeneous and hexagonal platelet-like shape. DC electrical resistivity measurements were carried out in temperature range of 298-673 K showing metal-to-semiconductor transition when doped with Nd-Ni. The magnetic properties such as saturation magnetization, remanence, squareness ratio and coercivity were calculated from hysteresis loops and were observed to increase with the increase in Nd-Ni concentration up to a certain substitution level which is beneficial for high density recording media.
Study of temperature dependent electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses
NASA Astrophysics Data System (ADS)
Deepika, Singh, Hukum
2018-05-01
This paper reports the variation in electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses studied at different temperatures. The amorphous samples were prepared using the melt quenching method and the electrical measurements were performed on Keithley Electrometer in the temperature ranging from 298-373 K. The I-V characteristics were noted at different temperatures and the data obtained was analysed to get dc electrical conductivity and activation energy of electrical conduction. Further, Mott's 3D VRH model has been applied to obtain density of states, hopping range and hopping energy at different temperatures. The obtained results show that dc electrical conductivity increases with increase in Bi composition in Se-Te system. These compositions also show close agreement to Mott's VRH model.
Multiport power router and its impact on future smart grids
NASA Astrophysics Data System (ADS)
Kado, Yuichi; Shichijo, Daiki; Wada, Keiji; Iwatsuki, Katsumi
2016-07-01
We propose a Y configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y configuration power router controls the direction and magnitude of power flows between three ports regardless of DC or AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y configuration power router. The electrical insulation between three ports assures safety and reliability for power network systems. We then tested the operation of power flow control. The experimental results revealed that our methodology based on a governing equation was appropriate to control the power flow of the three-way DC/DC converter. In addition, a distribution network composed of power routers had the ability to easily enable interchanges of electrical power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flows in a coordinated manner and their impact on resilient power grid systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui
A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of themore » one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.« less
2012-01-01
Background Overcoming platinum resistance is a major obstacle in the treatment of Epithelial Ovarian Cancer (EOC). In our previous work Decoy Receptor 3 (DcR3) was found to be related to platinum resistance. The major objective of this work was to define the cellular interaction of DcR3 with EOC and to explore its effects on platinum responsiveness. Methods We studied cell lines and primary cultures for the expression of and the cells ability to bind DcR3. Cells were cultured with DcR3 and then exposed to platinum. Cell viability was determined by MTT assay. Finally, the cells molecular response to DcR3 was studied using real time RT-PCR based differential expression arrays, standard RT-PCR, and Western blot. Results High DcR3 in the peritoneal cavity of women with EOC is associated with significantly shorter time to first recurrence after platinum based therapy (p = 0.02). None-malignant cells contribute DcR3 in the peritoneal cavity. The cell lines studied do not secrete DcR3; however they all bind exogenous DcR3 to their surface implying that they can be effected by DcR3 from other sources. DcR3s protein binding partners are minimally expressed or negative, however, all cells expressed the DcR3 binding Heparan Sulfate Proteoglycans (HSPGs) Syndecans-2, and CD44v3. DcR3 binding was inhibited by heparin and heparinase. After DcR3 exposure both SKOV-3 and OVCAR-3 became more resistant to platinum with 15% more cells surviving at high doses. On the contrary CaOV3 became more sensitive to platinum with 20–25% more cell death. PCR array analysis showed increase expression of BRCA1 mRNA in SKOV-3 and OVCAR-3 and decreased BRCA1 expression in CaOV-3 after exposure to DcR3. This was confirmed by gene specific real time PCR and Western blot analysis. Conclusions Non-malignant cells contribute to the high levels of DcR3 in ovarian cancer. DcR3 binds readily to EOC cells via HSPGs and alter their responsiveness to platinum chemotherapy. The paradoxical responses seen were related to the expression pattern of HSPGs available on the cells surface to interact with. Although the mechanism behind this is not completely known alterations in DNA repair pathways including the expression of BRCA1 appear to be involved. PMID:22583667
Ahn, Il-Pyung; Lee, Sang-Woo; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul
2011-01-01
A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H2O2 production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H2O2 production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H2O2 production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H2O2 is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt. PMID:21710203
Development of Short Gate FET’s.
1983-12-01
Electrical Engineering AREA OK UIT NUMBERS S School of Engineering, Howard University 61102F 2300 Sixth St. N.W. Washington D.C. 20059 2305/Cl CITROLLING... Howard University Washington# D.C. 20059 64 04 24 021 RESEARCH OBJECTIVES The principal objective of this research is to try to under- stand the... Howard University Washington, D.C. 20059 (202)636-6684 James Comas Naval Research Laboratory, Code 6823 Washington, D.C. 20375 (202)767-3097
Direct current stimulation of titanium interbody fusion devices in primates.
Cook, Stephen D; Patron, Laura P; Christakis, Petros M; Bailey, Kirk J; Banta, Charles; Glazer, Paul A
2004-01-01
The fusion rate for anterior lumbar interbody fusion (ALIF) varies widely with the use of different interbody devices and bone graft options. Adjunctive techniques such as electrical stimulation may improve the rate of bony fusion. To determine if direct current (DC) electrical stimulation of a metallic interbody fusion device enhanced the incidence or extent of anterior bony fusion. ALIF was performed using titanium alloy interbody fusion devices with and without adjunctive DC electrical stimulation in nonhuman primates. ALIF was performed through an anterolateral approach in 35 macaques with autogenous bone graft and either a titanium alloy (Ti-6Al-4V) fusion device or femoral allograft ring. The fusion devices of 19 animals received high (current density 19.6 microA/cm2) or low (current density 5.4 microA/cm2) DC electrical stimulation using an implanted generator for a 12- or 26-week evaluation period. Fusion sites were studied using serial radiographs, computed tomography imaging, nondestructive mechanical testing and qualitative and semiquantitative histology. Fusion was achieved with the titanium fusion device and autogenous bone graft. At 12 weeks, the graft was consolidating and early to moderate bridging callus was observed in and around the device. By 26 weeks, the anterior callus formation was more advanced with increased evidence of bridging trabeculations and early bone remodeling. The callus formation was not as advanced or abundant for the allograft ring group. Histology revealed the spinal fusion device had an 86% incidence of bony fusion at 26 weeks compared with a 50% fusion rate for the allograft rings. DC electrical stimulation of the fusion device had a positive effect on anterior interbody fusion by increasing both the presence and extent of bony fusion in a current density-dependent manner. Adjunctive DC electrical stimulation of the fusion device improved the rate and extent of bony fusion compared with a nonstimulated device. The fusion device was equivalent to or better than the femoral allograft ring in all evaluations. The use of adjunctive direct current electrical stimulation may provide a means of improving anterior interbody fusion.
Experimental insight into the magnetic and electrical properties of amorphous Ge1-xMnx
NASA Astrophysics Data System (ADS)
Conta, Gianluca; Amato, Giampiero; Coïsson, Marco; Tiberto, Paola
2017-12-01
We present a study of the electrical and magnetic properties of the amorphous Ge1-xMnx.DMS, with 2% ≤ x ≤ 17%, by means of SQUID magnetometry and low temperature DC measurements. The thin films were grown by physical vapour deposition at 50°C in ultrahigh vacuum. The DC electrical characterizations show that variable range hopping is the main mechanism of charge transport below room temperature. Magnetic characterization reveals that a unique and smooth magnetic transition is present in our samples, which can be attributed to ferromagnetic percolation of bound magnetic polarons.
Pressure induced superconductivity in very lightly doped LaFeAsO0.975F0.025
NASA Astrophysics Data System (ADS)
Miyoshi, K.; Otsuka, K.; Shiota, A.; Shimojo, Y.; Motoyama, G.; Fujiwara, K.; Kitagawa, H.; Nishigori, S.
2018-05-01
We have investigated whether or not superconductivity is induced by the application of pressure in very lightly F-doped LaFeAsO1-xFx , which shows spin density wave (SDW) state at ambient pressure, through the measurements of DC magnetization and electrical resistivity under pressure using pulse current sintered (PCS) high density polycrystalline specimens. It has been confirmed that the specimens with x = 0.025 shows superconductivity with Tcdia ∼ 15 K under pressure above ∼ 1.3 GPa. The pressure induced superconductivity can be explained by the lattice compression along c-axis, which enhances the electron doping from LaO layers to FeAs layers.
Oscillatory bistability of real-space transfer in semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Do˙ttling, R.; Scho˙ll, E.
1992-01-01
Charge transport parallel to the layers of a modulation-doped GaAs/AlxGa1-xAs heterostructure is studied theoretically. The heating of electrons by the applied electric field leads to real-space transfer of electrons from the GaAs into the adjacent AlxGa1-xAs layer. For sufficiently large dc bias, spontaneous periodic 100-GHz current oscillations, and bistability and hysteretic switching transitions between oscillatory and stationary states are predicted. We present a detailed investigation of complex bifurcation scenarios as a function of the bias voltage U0 and the load resistance RL. For large RL subcritical Hopf bifurcations and global bifurcations of limit cycles are displayed.
Producing fluid flow using 3D carbon electrodes
NASA Astrophysics Data System (ADS)
Rouabah, H. A.; Park, B. Y.; Zaouk, R. B.; Madou, M. J.; Green, Nicolas G.
2008-12-01
Moving and manipulating bio-particles and fluids on the microscale is central to many lab-on-a-chip applications. Techniques for pumping fluids which use electric fields have shown promise using both DC and AC voltages. AC techniques, however, require the use of integrated metal electrodes which have a low resistance but can suffer from unwanted chemical reactions even at low potentials. In this paper we introduce the use of carbon MEMS technology (C-MEMS), a fabrication method which produces 3D conductive polymeric structures. Results are presented of the fabrication of an innovative design of 3D AC-electroosmotic micropump and preliminary experimental measurements which demonstrate the potential of both the technology and the design.
Investigation of percolation thickness of sputter coated thin NiCr films on clear float glass
NASA Astrophysics Data System (ADS)
Erkan, Selen; Arpat, Erdem; Peters, Sven
2017-11-01
Percolation thickness of reactively sputtered nickel chromium (NiCr) thin films is reported in this study. Nickel-chromium films with the thicknesses in between 1 and 10 nm were deposited on 4 mm clear glass substrate by dc magnetron sputtering. Optical properties such as refractive index, extinction coefficient and also sheet resistance, carrier concentration and mobility of NiCr films were determined by a combination of variable-angle spectroscopic ellipsometry and four point probe measurements. We show both the percolation phenomena in atmosphere and critical percolation thickness for thin NiCr films by both electrical and optical techniques. The two techniques gave consistent results with each other.
Superconductivity of ternary silicide with the AlB(2)-type structure Sr(Ga(0.37),Si(0.63))(2).
Imai, M; Abe, E; Ye, J; Nishida, K; Kimura, T; Honma, K; Abe, H; Kitazawa, H
2001-08-13
A ternary silicide Sr(Ga(0.37),Si(0.63))(2) was synthesized by a floating zone method. Electron diffraction and powder x-ray diffraction measurements indicate that the silicide has the AlB(2)-type structure with the lattice constants of a = 4.1427(6) A and c = 4.7998(9) A, where Si and Ga atoms are arranged in a chemically disordered honeycomb lattice and Sr atoms are inercalated between them. The silicide is isostructural with the high-temperature superconductor MgB(2) reported recently. Electrical resistivity and dc magnetization measurements revealed that it is a type-II superconductor with onset temperature of 3.5 K.
Development of photovoltaic array and module safety requirements
NASA Technical Reports Server (NTRS)
1982-01-01
Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.
NASA Astrophysics Data System (ADS)
Yao, Mengliang
Thermoelectric (TE) materials are of great interest to contemporary scientists because of their ability to directly convert temperature differences into electricity, and are regarded as a promising mode of alternative energy. The TE conversion efficiency is determined by the Carnot efficiency, eta C and is relevant to a commonly used figure of merit ZT of a material. Improving the value of ZT is presently a core mission within the TE field. In order to advance our understanding of thermoelectric materials and improve their efficiency, this dissertation investigates the low-temperature behavior of the p-type thermoelectric Cu 2Se through chemical doping and nanostructuring. It demonstrates a method to separate the electronic and lattice thermal conductivities in single crystal Bi2Te3, Cu, Al, Zn, and probes the electrical transport of quasi 2D bismuth textured thin films. Cu2Se is a good high temperature TE material due to its phonon-liquid electron-crystal (PLEC) properties. It shows a discontinuity in transport coefficients and ZT around a structural transition. The present work on Cu2Se at low temperatures shows that it is a promising p-type TE material in the low temperature regime and investigates the Peierls transition and charge-density wave (CDW) response to doping [1]. After entering the CDW ground state, an oscillation (wave-like fluctuation) was observed in the dc I-V curve near 50 K; this exhibits a periodic negative differential resistivity in an applied electric field due to the current. An investigation into the doping effect of Zn, Ni, and Te on the CDW ground state shows that Zn and Ni-doped Cu2Se produces an increased semiconducting energy gap and electron-phonon coupling constant, while the Te doping suppresses the Peierls transition. A similar fluctuating wave-like dc I-V curve was observed in Cu1.98Zn 0.02Se near 40 K. This oscillatory behavior in the dc I-V curve was found to be insensitive to magnetic field but temperature dependent [2]. Understanding reducing thermal conductivity in TE materials is an important facet of increasing TE efficiency and potential applications. In this dissertation, a magnetothermal (MTR) resistance method is used to measure the lattice thermal conductivity, kappaph of single crystal Bi2Te 3 from 5 to 60 K. A large transverse magnetic field is applied to suppress the electronic thermal conduction while measuring thermal conductivity and electrical resistivity. The lattice thermal conductivity is then calculated by extrapolating the thermal conductivity versus electrical conductivity curve to a zero electrical conductivity value. The results show that the measured phonon thermal conductivity follows the eDeltamin/T temperature dependence and the Lorenz ratio corresponds to the modified Sommerfeld value in the intermediate temperature range. These low-temperature experimental data and analysis on Bi2Te3 are important compliments to previous measurements and theoretical calculations at higher temperatures, 100 - 300 K. The MTR method on Bi2Te3 provides data necessary for first-principles calculations [4]. A parallel study on single crystal Cu, Al and Zn shows the applicability of the MTR method for separating kappae and kappaph in metals and indicates a significant deviation of the Lorenz ratio between 5 K and 60 K [3]. Elemental bismuth is a component of many TE compounds and in this dissertation magnetoresistance measurements are used investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Textured and non-textured bismuth thin films are examined by measuring their angle-dependent magnetoresistance at different temperatures (3 - 300 K) and applied magnetic fields (0 - 90 kOe). Experimental evidence shows that the anisotropic conduction is due to the large mass anisotropy of bismuth and is confirmed by a parallel study on an antimony thin film [5].
DC conductivity of a suspension of insulating particles with internal rotation
NASA Astrophysics Data System (ADS)
Pannacci, N.; Lemaire, E.; Lobry, L.
2009-04-01
We analyse the consequences of Quincke rotation on the conductivity of a suspension. Quincke rotation refers to the spontaneous rotation of insulating particles dispersed in a slightly conducting liquid and subject to a high DC electric field: above a critical field, each particle rotates continuously around itself with an axis pointing in any direction perpendicular to the DC field. When the suspension is subject to an electric field lower than the threshold one, the presence of insulating particles in the host liquid decreases the bulk conductivity since the particles form obstacles to ion migration. But for electric fields higher than the critical one, the particles rotate and facilitate ion migration: the effective conductivity of the suspension is increased. We provide a theoretical analysis of the impact of Quincke rotation on the apparent conductivity of a suspension and we present experimental results obtained with a suspension of PMMA particles dispersed in weakly conducting liquids.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Performance data on the Prestolite MTC-4001 series wound dc motor and General Electric EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing show the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 76% and 82%, regardless of temperature or mode of operation.
Structure dependent electrical properties of Ni-Mg-Cu nano ferrites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhari, Nagabhushan J., E-mail: nagabhushanchoudhari@gmail.com; Kakati, Sushanth S.; Hiremath, Chidanandayya S.
2016-05-06
Nano ferrites with the general chemical formula Ni{sub 0.5}Mg{sub x}Cu{sub 1-x} Fe{sub 2}O{sub 4} were synthesized by chemical route. They were characterized by x-ray diffraction by powder method. The diffraction patterns confirm the formation of single phase ferrites. The particle size is calculated by Scherrer formula which varies between 20nm to 60nm. DC resistivity was measured as a function of composition from room temperature to 700{sup o} C by two probe method. These ferrites show higher resistivity than those synthesized by ceramic method, due to control over composition and morphology. This leads to the elimination of domain wall resonance somore » that the materials can work at higher frequencies. AC resistivity was measured as a function of frequency at room temperature. Dielectric dispersion obeys Maxwell - Wagner model, in accordance with Koop’s phenomenological theory. The variation of loss angle follows the variation of ac resistivity with frequency and composition. The change in ac conductivity with frequency obeys the power law σ{sub a} = B.ω{sup n}. Such a behavior suggests that conductivity is due to polarons in all the samples.« less
Nyquist, Jonathan E.; Toran, Laura; Fang, Allison C.; Ryan, Robert J.; Rosenberry, Donald O.
2010-01-01
Characterization of the hyporheic zone is of critical importance for understanding stream ecology, contaminant transport, and groundwater‐surface water interaction. A salt water tracer test was used to probe the hyporheic zone of a recently re‐engineered portion of Crabby Creek, a stream located near Philadelphia, PA. The tracer solution was tracked through a 13.5 meter segment of the stream using both a network of 25 wells sampled every 5–15 minutes and time‐lapse electrical resistivity tomographs collected every 11 minutes for six hours, with additional tomographs collected every 100 minutes for an additional 16 hours. The comparison of tracer monitoring methods is of keen interest because tracer tests are one of the few techniques available for characterizing this dynamic zone, and logistically it is far easier to collect resistivity tomographs than to install and monitor a dense network of wells. Our results show that resistivity monitoring captured the essential shape of the breakthrough curve and may indicate portions of the stream where the tracer lingered in the hyporheic zone. Time‐lapse resistivity measurements, however, represent time averages over the period required to collect a tomographic data set, and spatial averages over a volume larger than captured by a well sample. Smoothing by the resistivity data inversion algorithm further blurs the resulting tomograph; consequently resistivity monitoring underestimates the degree of fine‐scale heterogeneity in the hyporheic zone.
Romero, Luz; Binions, Russell
2013-11-05
Titanium dioxide thin films were deposited on fluorine doped tin oxide glass substrate from the electric field assisted aerosol chemical vapor deposition (EACVD) reaction of titanium isopropoxide (TTIP, Ti(OC3H7)4) in toluene on glass substrates at a temperature of 450 °C. DC electric fields were generated by applying a potential difference between the electrodes of the transparent coated oxide coated glass substrates during the deposition. The deposited films were characterized using scanning electron microscopy, X-ray diffraction, atomic force microscopy, Raman spectroscopy, and UV-vis spectroscopy. The photoactivity and hydrophilicity of the deposited films were also analyzed using a dye-ink test and water-contact angle measurements. The characterization work revealed that the incorporation of DC electric fields produced significant reproducible changes in the film microstructure, preferred crystallographic orientation, roughness, and film thickness. Photocatalytic activity was calculated from the half-time (t1/2) or time taken to degrade 50% of the initial resazurin dye concentration. A large improvement in photocatalytic activity was observed for films deposited using an electric field with a strong orientation in the (004) direction (t1/2 17 min) as compared to a film deposited with no electric field (t1/2 40 min).
The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows
NASA Technical Reports Server (NTRS)
Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)
2002-01-01
A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.
NASA Astrophysics Data System (ADS)
Yang, Jun; Wang, Ze-Xin; Lu, Sheng; Lv, Wei-gang; Jiang, Xi-zhi; Sun, Lei
2017-03-01
The micro-arc oxidation process was conducted on ZK60 Mg alloy under two and three steps voltage-increasing modes by DC pulse electrical source. The effect of each mode on current-time responses during MAO process and the coating characteristic were analysed and discussed systematically. The microstructure, thickness and corrosion resistance of MAO coatings were evaluated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), microscope with super-depth of field and electrochemical impedance spectroscopy (EIS). The results indicate that two and three steps voltage-increasing modes can improve weak spark discharges with insufficient breakdown strength in later period during the MAO process. Due to higher value of voltage and voltage increment, the coating with maximum thickness of about 20.20μm formed under two steps voltage-increasing mode shows the best corrosion resistance. In addition, the coating fabricated under three steps voltage-increasing mode shows a smoother coating with better corrosion resistance due to the lower amplitude of voltage-increasing.
NASA Astrophysics Data System (ADS)
Ishisaka, K.; Yamamoto, M.; Yokoyama, T.; Tanaka, M.; Abe, T.; Kumamoto, A.
2015-12-01
In the middle latitude ionospheric F region, mainly in summer, wave structures of electron density that have wave length of 100-200 km and period of one hour are observed. This phenomena is called Medium Scale Traveling Ionosphiric Disturbance; MSTID. MSTID has been observed by GPS receiving network, and its characteristic were studied. In the past, MSTID was thought to be generated by the Perkins instability, but its growth ratio was too small to be effective so far smaller than the real. Recently coupling process between ionospheric E and F regions are studied by using two radars and by computer simulations. Through these studies, we now have hypothesis that MSTID is generated by the combination of E-F region coupling and Perkins instability. The S-520-27 sounding rocket experiment on E-layer and F-layer was planned in order to verify this hypothesis. S-520-27 sounding rocket was launched at 23:57 JST on 20th July, 2013 from JAXA Uchinoura Space Center. S-520-27 sounding rocket reached 316km height. The S-520-27 payload was equipped with Electric Field Detector (EFD) with a two set of orthogonal double probes to measure DC electric field in the spin plane of the payload. The electrodes of two double probe antennas were used to gather the potentials which were detected with high impedance pre-amplifier using the floating (unbiased) double probe technique. As a results of measurements of DC electric fields by the EFD, the natural electric field was about +/-5mV/m, and varied the direction from southeast to east. Then the electric field was mapped to the horizontal plane at 280km height along the geomagnetic field line. In this presentation, we show the detail result of DC electric field measurement by S-520-27 sounding rocket and then we discuss about the correlation between the natural electric field and TEC variation by using the GPS-TEC.
Eiring, A M; Khorashad, J S; Anderson, D J; Yu, F; Redwine, H M; Mason, C C; Reynolds, K R; Clair, P M; Gantz, K C; Zhang, T Y; Pomicter, A D; Kraft, I L; Bowler, A D; Johnson, K; Partlin, M Mac; O'Hare, T; Deininger, M W
2015-12-01
Activation of nuclear β-catenin and expression of its transcriptional targets promotes chronic myeloid leukemia (CML) progression, tyrosine kinase inhibitor (TKI) resistance, and leukemic stem cell self-renewal. We report that nuclear β-catenin has a role in leukemia cell-intrinsic but not -extrinsic BCR-ABL1 kinase-independent TKI resistance. Upon imatinib inhibition of BCR-ABL1 kinase activity, β-catenin expression was maintained in intrinsically resistant cells grown in suspension culture and sensitive cells cultured in direct contact (DC) with bone marrow (BM) stromal cells. Thus, TKI resistance uncouples β-catenin expression from BCR-ABL1 kinase activity. In β-catenin reporter assays, intrinsically resistant cells showed increased transcriptional activity versus parental TKI-sensitive controls, and this was associated with restored expression of β-catenin target genes. In contrast, DC with BM stromal cells promoted TKI resistance, but had little effects on Lef/Tcf reporter activity and no consistent effects on cytoplasmic β-catenin levels, arguing against a role for β-catenin in extrinsic TKI resistance. N-cadherin or H-cadherin blocking antibodies abrogated DC-based resistance despite increasing Lef/Tcf reporter activity, suggesting that factors other than β-catenin contribute to extrinsic, BM-derived TKI resistance. Our data indicate that, while nuclear β-catenin enhances survival of intrinsically TKI-resistant CML progenitors, it is not required for extrinsic resistance mediated by the BM microenvironment.
Stanton, Gregory P.; Kress, Wade H.; Teeple, Andrew; Greenslate, Michael L.; Clark, Allan K.
2007-01-01
Since 1992, numerous sinkholes have developed northwest of the Amistad Reservoir dam on the Rio Grande. Increases in the discharge of springs south of the dam, on the western side of the Rio Grande, in Coahuila, Mexico, have been documented. In 1995 the Mexico Section of the International Boundary and Water Commission (IBWC) completed a study of the western embankment (Coahuila, Mexico) of the dam that included surface geophysics, borehole geophysics, and installation of piezometers to learn more about subsurface conditions. As part of a 5-year safety inspection in 2005, technical advisors recommended that one line of similarly constructed piezometers be installed on the eastern embankment (Val Verde County, Texas) of the dam for comparison of water levels (potentiometric head) on both the western and eastern embankments of Amistad Reservoir dam. To provide technical assistance for the horizontal and vertical placement of piezometers on the eastern embankment of Amistad Reservoir dam, the U.S. Geological Survey, in cooperation with the U.S. Section of the IBWC, conducted a study along both the western and eastern embankments of Amistad Reservoir dam. The study involved an integrated approach using surface and borehole geophysical methods. In the western embankment investigation, geological and geophysical characteristics that indicate relatively large water-yielding properties of the Salmon Peak Formation were identified. The direct-current (DC) resistivity method was selected as the surface geophysical reconnaissance technique to correlate relatively large water-yielding properties of the Salmon Peak Formation, identified from analysis of borehole geophysical logs, with variations in subsurface resistivity. The dipole-dipole array and the reciprocal Schlumberger array were selected as the most applicable DC resistivity arrays. Two resistivity units were identified in both the dipole-dipole array data and the reciprocal Schlumberger array data along DC resistivity profiles on both embankments. Resistivity unit 1 generally is of relatively low resistivity, ranging from 45 to 150 ohm-meters compared with resistivity unit 2, which ranges from 120 to 345 ohm-meters (depending on the DC array type). The presence of mapped sinkholes in the reservoir north of the western embankment study area and the zone of increased water content (as indicated by zones of low neutron log count rates in nearby piezometers) leads to the conclusion that resistivity unit 1 is a preferential flow path where surface water from Amistad Reservoir is forced into the ground-water system (because of increased head from the reservoir). In the eastern embankment investigation, trends in the spatial distribution of sinkholes and the occurrence of weathered zones were identified from geologic descriptions of cores. The correlation of surface geophysical DC resistivity, historical lithologic data, and general trend of documented sinkholes along the eastern end of the eastern embankment profile were used to justify further exploration (drilling of piezometers) in the eastern expression of resistivity unit 1. The spatial location of the piezometers and the screened intervals were selected to best match the locations of the screened intervals of the western embankment piezometers. Six piezometers were installed on the eastern embankment and logged using borehole geophysical techniques. Surface DC resistivity sections superimposed on the resistivity logs for two piezometers indicate three discernible resistivity units that correlate with resistivity units 2, 1, and 2, respectively, identified in the western embankment study area. Resistivity units 1 and 2 in the DC resistivity profiles generally correspond with low and high resistivity zones, respectively, on the normal and lateral resistivity logs collected in the nearby piezometers at the time of installation.
Ground geophysical study of the Buckeye mine tailings, Boulder watershed, Montana
McDougal, Robert R.; Smith, Bruce D.
2000-01-01
The Buckeye mine site is located in the Boulder River watershed along Basin Creek, in northern Jefferson County, Montana. This project is part of the Boulder River watershed Abandoned Mine Lands Initiative, and is a collaborative effort between the U.S. Geological Survey and Bureau of Land Management in the U.S. Department of the Interior, and the U.S. Forest Service in the U.S. Department of Agriculture. The site includes a large flotation milltailing deposit, which extends to the stream and meadows below the mine. These tailings contain elevated levels of metals, such as silver, cadmium, copper, lead, and zinc. Metal-rich fluvial tailings containing these metals, are possible sources of ground and surface water contamination. Geophysical methods were used to characterize the sediments at the Buckeye mine site. Ground geophysical surveys, including electromagnetics, DC resistivity, and total field magnetic methods, were used to delineate anomalies that probably correlate with subsurface metal contamination. Subsurface conductivity was mapped using EM-31 and EM-34 terrain conductivity measuring systems. The conductivity maps represent variation of concentration of dissolved solids in the subsurface from a few meters, to an approximate depth of 30 meters. Conductive sulfides several centimeters thick were encountered in a shallow trench, dug in an area of very high conductivity, at a depth of approximately 1 to1.5 meters. Laboratory measurements of samples of the sulfide layers show the conductivity is on the order of 1000 millisiemens. DC resistivity soundings were used to quantify subsurface conductivity variations and to estimate the depth to bedrock. Total field magnetic measurements were used to identify magnetic metals in the subsurface. The EM surveys identified several areas of relatively high conductivity and detected a conductive plume extending to the southwest, toward the stream. This plume correlates well with the potentiometric surface and direction of ground water flow, and with water quality data from monitoring wells in and around the tailings. The electrical geophysical data suggests there has been vertical migration of high dissolved solids. A DC sounding made on a nearby granite outcrop to the north of the mine showed that the shallow conductivity is on the order of 5 millisiemens/m. Granite underlying the mine tailings, with similar electrical properties as the outcropping area, may be more than 30 meters deep.
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Knight, R.
2009-05-01
One of the key factors in the sensible inference of subsurface geologic properties from both field and laboratory experiments is the ability to quantify the linkages between the inherently fine-scale structures, such as bedding planes and fracture sets, and their macroscopic expression through geophysical interrogation. Central to this idea is the concept of a "minimal sampling volume" over which a given geophysical method responds to an effective medium property whose value is dictated by the geometry and distribution of sub- volume heterogeneities as well as the experiment design. In this contribution we explore the concept of effective resistivity volumes for the canonical depth-to-bedrock problem subject to industry-standard DC resistivity survey designs. Four models representing a sedimentary overburden and flat bedrock interface were analyzed through numerical experiments of six different resistivity arrays. In each of the four models, the sedimentary overburden consists of a thinly interbedded resistive and conductive laminations, with equivalent volume-averaged resistivity but differing lamination thickness, geometry, and layering sequence. The numerical experiments show striking differences in the apparent resistivity pseudo-sections which belie the volume-averaged equivalence of the models. These models constitute the synthetic data set offered for inversion in this Back to Basics Resistivity Modeling session and offer the promise to further our understanding of how the sampling volume, as affected by survey design, can be constrained by joint-array inversion of resistivity data.
Suzuki, T; Sadakata, Y; Kashiwagi, K; Hoshino, K; Kakinuma, Y; Shirahata, A; Igarashi, K
1993-07-15
A variant cell line, termed SAM-1, which overproduced S-adenosylmethionine decarboxylase (AdoMetDC), was isolated by treatment of mouse FM3A cells with N-methyl-N'-nitro-N-nitrosoguanidine and subsequent incubation with ethylglyoxal bis(guanylhydrazone), an inhibitor of the enzyme. The cells were resistant to ethylglyoxal bis(guanylhydrazone), and showed AdoMetDC activity approximately five-times higher than control cells. The rate of AdoMetDC synthesis and the amount of AdoMetDC existing in SAM-1 cells were about five-times those in control cells. The amount of AdoMetDC mRNA existing in SAM-1 cells was five-times more than that in control cells. The amount of 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine, an irreversible inhibitor of AdoMetDC, necessary to inhibit cell growth was also five-times more in SAM-1 cells than in control cells. However, the following were the same in both SAM-1 and control cells; the amount of genomic DNA for AdoMetDC, the size and nucleotide sequence of 5' untranslated region of AdoMetDC mRNA, the deduced amino acid sequence (334 residues) from the nucleotide sequence of AdoMetDC cDNA and the degradation rate (t1/2 = about 4 h) of AdoMetDC. In addition, AdoMetDC mRNA in control cells was slightly more stable than that in SAM-1 cells. The results indicate that the overproduction of AdoMetDC in SAM-1 cells was caused by the increase of AdoMetDC mRNA. The variant cell line is convenient for studying the regulation of AdoMetDC and the physiological function of polyamines.
Oddy, M H; Santiago, J G
2004-01-01
We have developed a method for measuring the electrophoretic mobility of submicrometer, fluorescently labeled particles and the electroosmotic mobility of a microchannel. We derive explicit expressions for the unknown electrophoretic and the electroosmotic mobilities as a function of particle displacements resulting from alternating current (AC) and direct current (DC) applied electric fields. Images of particle displacements are captured using an epifluorescent microscope and a CCD camera. A custom image-processing code was developed to determine image streak lengths associated with AC measurements, and a custom particle tracking velocimetry (PTV) code was devised to determine DC particle displacements. Statistical analysis was applied to relate mobility estimates to measured particle displacement distributions.
Characteristics of a-IGZO/ITO hybrid layer deposited by magnetron sputtering.
Bang, Joon-Ho; Park, Hee-Woo; Cho, Sang-Hyun; Song, Pung-Keun
2012-04-01
Transparent a-IGZO (In-Ga-Zn-O) films have been actively studied for use in the fabrication of high-quality TFTs. In this study, a-IGZO films and a-IGZO/ITO double layers were deposited by DC magnetron sputtering under various oxygen flow rates. The a-IGZO films showed an amorphous structure up to 500 degrees C. The deposition rate of these films decreased with an increase in the amount of oxygen gas. The amount of indium atoms in the film was confirmed to be 11.4% higher than the target. The resistivity of double layer follows the rules for parallel DC circuits The maximum Hall mobility of the a-IGZO/ITO double layers was found to be 37.42 cm2/V x N s. The electrical properties of the double layers were strongly dependent on their thickness ratio. The IGZO/ITO double layer was subjected to compressive stress, while the ITO/IGZO double layer was subjected to tensile stress. The bending tolerance was found to depend on the a-IGZO thickness.
Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator.
Gupta, Manoj Kumar; Lee, Ju-Hyuck; Lee, Keun Young; Kim, Sang-Woo
2013-10-22
Here, we report the synthesis of lead-free single-crystalline two-dimensional (2D) vanadium(V)-doped ZnO nanosheets (NSs) and their application for high-performance flexible direct current (DC) power piezoelectric nanogenerators (NGs). The vertically aligned ZnO nanorods (NRs) converted to NS networks by V doping. Piezoresponse force microscopy studies reveal that vertical V-doped ZnO NS exhibit typical ferroelectricity with clear phase loops, butterfly, and well-defined hysteresis loops with a piezoelectric charge coefficient of up to 4 pm/V, even in 2D nanostructures. From pristine ZnO NR-based NGs, alternating current (AC)-type output current was observed, while from V-doped ZnO NS-based NGs, a DC-type output current density of up to 1.0 μAcm(-2) was surprisingly obtained under the same vertical compressive force. The growth mechanism, ferroelectric behavior, charge inverted phenomena, and high piezoelectric output performance observed from the V-doped ZnO NS are discussed in terms of the formation of an ionic layer of [V(OH)4(-)], permanent electric dipole, and the doping-induced resistive behavior of ZnO NS.
Design of a -1 MV dc UHV power supply for ITER NBI
NASA Astrophysics Data System (ADS)
Watanabe, K.; Yamamoto, M.; Takemoto, J.; Yamashita, Y.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Umeda, N.; Sakamoto, K.; Inoue, T.
2009-05-01
Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.
Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Shirk; Jeffrey Wishart
2015-04-01
As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, andmore » at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...
Rural Electric Youth Tour Packet.
ERIC Educational Resources Information Center
National Rural Electric Cooperative Association, Washington, DC.
This packet of materials provides information about tours for rural secondary students in Washington, D.C., sponsored jointly by the National Rural Electric Cooperative Association (NRECA), state rural electric cooperatives, and statewide associations of rural electric systems. Since 1958 this program has selected high school students to visit…
NASA Astrophysics Data System (ADS)
Al-Daraghmeh, Tariq M.; Saleh, Mahmoud H.; Ahmad, Mais Jamil A.; Bulos, Basim N.; Shehadeh, Khawla M.; Jafar, Mousa M. Abdul-Gader
2018-03-01
The flash-evaporation technique was utilized to fabricate undoped 1.35-μm and 1.2-μm thick lead iodide films at substrate temperatures T_{{s}} = 150 °C and 200°C, respectively. The films were deposited onto a coplanar comb-like copper (Cu-) electrode pattern, previously coated on glass substrates to form lateral metal-semiconductor-metal (MSM-) structures. The as-measured constant- temperature direct-current (dc)-voltage ( I( {V;T} ) - V ) curves of the obtained lateral coplanar Cu-PbI2-Cu samples (film plus electrode) displayed remarkable ohmic behavior at all temperatures ( T = 18 - 90°C). Their dc electrical resistance R_{{dc}} (T ) revealed a single thermally-activated conduction mechanism over the temperature range with activation energy E_{{act}} ≈ 0.90 - 0.98 {eV} , slightly less than half of room-temperature bandgap energy E_{{g}} ( ≈ 2.3 {eV} ) of undoped 2H-polytype PbI2 single crystals. The undoped flash-evaporated {PbI}_{{x}} thin films were homogeneous and almost stoichiometric ( x ≈ 1.87 ), in contrast to findings on lead iodide films prepared by other methods, and were highly crystalline hexagonal 2H-polytypic structure with c-axis perpendicular to the surface of substrates maintained at T_{s} ≳ 150°C. Photoconductivity measurements made on these lateral Cu-PbI2-Cu-structures under on-off visible-light illumination reveal a feeble photoresponse for long wavelengths ( λ > 570 {nm} ), but a strong response to blue light of photon energy E_{{ph}} ≈ 2.73 {eV} ( > E_{{g}} ), due to photogenerated electron-hole (e-h) pairs via direct band-to-band electronic transitions. The constant-temperature/dc voltage current-time I( {T,V} ) - t curves of the studied lateral PbI2 MSM-structures at low ambient temperatures ( T < 50°C), after cutting off the blue-light illumination, exhibit two trapping mechanisms with different relaxation times. These strongly depend on V and T , with thermally generated charge carriers in the PbI2 mask photogenerated (e-h) pairs at higher temperatures.
Experimental grid connected PV system power analysis
NASA Astrophysics Data System (ADS)
Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine
2018-05-01
Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.
Novel non-equilibrium modelling of a DC electric arc in argon
NASA Astrophysics Data System (ADS)
Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.
2016-06-01
A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
NASA Astrophysics Data System (ADS)
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf, Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning.
Wang, Tengxing; Jiang, Wei; Divan, Ralu; ...
2017-08-03
A Permalloy (Py) thin film enabled tunable 3-D solenoid inductor is designed and fabricated. The special configuration of magnetic core is discussed and by selectively patterning Py thin film, the proposed tunable inductor can work at frequency up to several GHz range. The inductance of the solenoid inductor can be electrically tuned by dc current and the tunability is above 10%. Utilizing the implemented Py enabled tunable solenoid inductor and Lead Zirconate Titanate (PZT) thin film enabled metal-insulator-metal (MIM) capacitor, a compact fully electrically tunable lumped elements phase shifter is achieved. The tunable phase shifter has both inductive and capacitivemore » tunability and the dual tunability significantly improves the tuning range and design flexibility. Moreover, the dual tunability is able to retain the equivalent characteristic impedance of the device in the process of the phase being tuned. Here, the phase of the device can be tuned by fully electrical methods and when dc current and dc voltage are provided, the length normalized phase tunability is up to 210°/cm« less
Sant, Himanshu J; Chakravarty, Siddharth; Merugu, Srinivas; Ferguson, Colin G; Gale, Bruce K
2012-10-02
Characterization of polymerized liposomes (PolyPIPosomes) was carried out using a combination of normal dc electrical field-flow fractionation and cyclical electrical field-flow fractionation (CyElFFF) as an analytical technique. The constant nature of the carrier fluid and channel configuration for this technique eliminates many variables associated with multidimensional analysis. CyElFFF uses an oscillating field to induce separation and is performed in the same channel as standard dc electrical field-flow fractionation separation. Theory and experimental methods to characterize nanoparticles in terms of their sizes and electrophoretic mobilities are discussed in this paper. Polystyrene nanoparticles are used for system calibration and characterization of the separation performance, whereas polymerized liposomes are used to demonstrate the applicability of the system to biomedical samples. This paper is also the first to report separation and a higher effective field when CyElFFF is operated at very low applied voltages. The technique is shown to have the ability to quantify both particle size and electrophoretic mobility distributions for colloidal polystyrene nanoparticles and PolyPIPosomes.
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf , Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning. PMID:28053312
PV source based high voltage gain current fed converter
NASA Astrophysics Data System (ADS)
Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.
2017-11-01
This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.
Electrical transport in lead-free (Na0.5Bi0.5)1-xSrxTiO3 ceramics (x = 0, 0.01 and 0.02)
NASA Astrophysics Data System (ADS)
Dutkiewicz, E. M.; Suchanicz, J.; Konieczny, K.; Czaja, P.; Kluczewska, K.; Czternastek, H.; Antonova, M.; Sternberg, A.
2017-09-01
Lead-free (Na0.5Bi0.5)1xSrxTiO3 (x = 0, 0.01 and 0.02) ceramics were manufactured through a solid-state mixed oxide method and their ac (σac) and dc (σdc) electric conductivity were studied. It is shown that the low-frequency (100 Hz-1 MHz) ac conductivity obeys a power law σac ∼ ωs characteristic for disordered materials. Both the dc and ac conductivities have thermally activated character and possess linear parts with different activation energies. The calculated activation energies are attributed to different mechanism of conductivity. Frequency dependence of σdc and exponent s is reasonably interpreted by a correlated barrier hopping model. The NBT-ST system is expected to be a new promising candidate for lead-free electronic materials.
Godbout, Charles; Frenette, Jérôme
2006-01-01
A prevailing paradigm is that electrical fields can promote cell migration and tissue healing. To further validate this paradigm, we tested the hypothesis that periodic direct current (DC) can enhance wound closure using an in vitro dynamic model of cell migration. Layers of primary fibroblasts were wounded and treated with DC under various voltages. Repair area, cell velocity, and directionality as well as lamellipodium area were evaluated at different times. Direct current had no beneficial effect on cell migration. Moreover, prolonged stimulation under the highest voltage led to significant reduction in wound closure and cell velocity. The reduction of membrane protusions in stimulated cells may be associated with the deleterious effect of DC. Contrary to the authors' expectations, they found that periodic DC did not promote wound closure, a finding that emphasizes the need to clarify the complex effects of electrical fields on migrating cells.
NASA Astrophysics Data System (ADS)
Mahmoud, S. A.; Madi, N. K.; Kassem, M. E.; El-Khatib, A.
A study has been made of the temperature dependence of the d.c. conductivity of pure and borated low density polyethylene LDPE (4% and 8% borax). The above calculations were carried out before and after X-ray irradiation. The irradiation dose was varied from 0 to 1000 rad. The d.c. electrical conductivity of Polyvinyl chloride (PVC) and perspex was measured as a function of temperature ranging from 20°C to 100°C. These samples were irradiated with X-rays of dose 200 rad. The variation of the d.c. conductivity of the treated samples versus temperature was investigated. The results reveal that the d.c. conductivity of LDPE is highly affected by radiation and/or dopant. In addition, the sensitivity of the explored polymers to X-ray irradiation is strongly dependent on its chemical nature.