Science.gov

Sample records for dc fault current

  1. DC superconducting fault current limiter

    NASA Astrophysics Data System (ADS)

    Tixador, P.; Villard, C.; Cointe, Y.

    2006-03-01

    There is a lack of satisfying solutions for fault currents using conventional technologies, especially in DC networks, where a superconducting fault current limiter could play a very important part. DC networks bring a lot of advantages when compared to traditional AC ones, in particular within the context of the liberalization of the electric market. Under normal operation in a DC network, the losses in the superconducting element are nearly zero and only a small, i.e. a low cost, refrigeration system is then required. The absence of zero crossing of a DC fault current favourably accelerates the normal zone propagation. The very high current slope at the time of the short circuit in a DC grid is another favourable parameter. The material used for the experiments is YBCO deposited on Al2O3 as well as YBCO coated conductors. The DC limitation experiments are compared to AC ones at different frequencies (50-2000 Hz). Careful attention is paid to the quench homogenization, which is one of the key issues for an SC FCL. The University of Geneva has proposed constrictions. We have investigated an operating temperature higher than 77 K. As for YBCO bulk, an operation closer to the critical temperature brings a highly improved homogeneity in the electric field development. The material can then absorb large energies without degradation. We present tests at various temperatures. These promising results are to be confirmed over long lengths.

  2. FCL: A solution to fault current problems in DC networks

    NASA Astrophysics Data System (ADS)

    Cointe, Y.; Tixador, P.; Villard, C.

    2008-02-01

    Within the context of the electric power market liberalization, DC networks have many interests compared to AC ones. New energy landscapes open the way of a diversified production. Innovative interconnection diagrams, in particular using DC buses, are under development. In this case it is not possible to defer the fault current interruption in the AC side. DC fault current cutting remains a difficult problem. FCLs (Fault Current Limiters) enable to limit the current to a preset value, lower than the theoretical short-circuit current. For this application Coated Conductors (CC) offer an excellent opportunity. Due to these promising characteristics we build a test bench and work on the implementation of these materials. The test bench is composed by 10 power amplifiers, to reach 4 kVA in many configurations of current and voltage. We carried out limiting experiments on DyBaCuO CC from EHTS, samples are about five centimeters long and many potential measuring points are pasted on the shunt to estimate the quench homogeneity. Thermal phenomena in FCLs are essential, numerical models are important to calculate the maximum temperatures. To validate these models we measure the CC temperature by depositing thermal sensors (Cu resistance) above the shunt layer and the substrate. An electrical insulation with a low thermal resistivity between the CC and the sensors is necessary. We use a thin layer of Parylene because of its good mechanical and electrical insulation properties at low temperature. The better quench behaviour of CC for temperatures close to the critical temperature has been confirmed. The measurements are in good agreement with simulations, this validates the thermal models.

  3. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  4. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  5. DC-Compensated Current Transformer.

    PubMed

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-20

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.

  6. DC-Compensated Current Transformer.

    PubMed

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  7. Passive fault current limiting device

    DOEpatents

    Evans, D.J.; Cha, Y.S.

    1999-04-06

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  8. Passive fault current limiting device

    DOEpatents

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  9. Superconducting fault current limiter for railway transport

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  10. Superconducting fault current limiter for railway transport

    SciTech Connect

    Fisher, L. M. Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  11. Detection of High-impedance Arcing Faults in Radial Distribution DC Systems

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marcelo C.; Button, Robert M.

    2003-01-01

    High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults

  12. Superconducting fault current controller/current controller

    DOEpatents

    Cha, Yung S.

    2004-06-15

    A superconducting fault current controller/current controller employs a superconducting-shielded core reactor (SSCR) with a variable impedance in a secondary circuit to control current in a primary circuit such as an electrical distribution system. In a second embodiment, a variable current source is employed in a secondary circuit of an SSCR to control current in the primary circuit. In a third embodiment, both a variable impedance in one secondary circuit and a variable current source in a second circuit of an SSCR are employed for separate and independent control of current in the primary circuit.

  13. Large transient fault current test of an electrical roll ring

    NASA Technical Reports Server (NTRS)

    Yenni, Edward J.; Birchenough, Arthur G.

    1992-01-01

    The space station uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture, have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.

  14. Adjustable direct current and pulsed circuit fault current limiter

    DOEpatents

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  15. DC-Compensated Current Transformer †

    PubMed Central

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  16. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  17. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  18. Self-triggering superconducting fault current limiter

    DOEpatents

    Yuan, Xing; Tekletsadik, Kasegn

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  19. Technique for sensing inductor and dc output currents of PWM dc-dc converter

    SciTech Connect

    Ma, K.; Lee, Y. . Dept. of Electronic Engineering)

    1994-05-01

    The design, analysis and trade-offs of a novel method to sense the inductor and dc output currents of PWM converters are presented. By sensing and adding appropriately the currents in the transistor, rectifier and capacitors of a converter using current transformers, the waveforms of inductor and dc output currents can be reconstructed accurately while maintaining isolation. This method offers high bandwidth, clean waveform, practically zero power dissipation and simple circuit. The technique is applicable to all PWM converters in both continuous and discontinuous modes, and is most suitable for the implementation of current mode control schemes like hysteretic, PWM conductance control, and output current feedforward. This approach has been experimentally verified at a wide range of current levels, duty cycles, and switching frequencies up to 1.4 MHz.

  20. Current Sensor Fault Reconstruction for PMSM Drives.

    PubMed

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; He, Jing; Huang, Yi-Shan

    2016-01-01

    This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform. PMID:26840317

  1. Current Sensor Fault Reconstruction for PMSM Drives

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; He, Jing; Huang, Yi-Shan

    2016-01-01

    This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform. PMID:26840317

  2. An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters

    PubMed Central

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-01-01

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061

  3. An optimal current observer for predictive current controlled buck DC-DC converters.

    PubMed

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-01-01

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally.

  4. Novel 3-Phase Inductive Fault Current Limiter

    NASA Astrophysics Data System (ADS)

    Kosa, Janos

    The paper describes the inductive three-phase fault current limiter. In this work I examine the novel arrangements of the perfect closed superconducting loop made of HTS wire. I applied one iron core with 3 limbs and special loops for uniform temperature of the superconducting wire. In this work I present the results of my experiments with this device. I present the static and dynamic measured results of this solution. It has got several advantages e. g. fast switching and less fault power for high-power electric machines. The advantage of the equipment is that in the case of single-phase short circuit the current will decrease in all the three phases. This can be an appropriate solution for high power machines. For example, in the case of high-power electric motor if there is a single-phase breaking or a single phase short circuit, we can decrease the current in the three phases.

  5. Large transient fault current test of an electrical roll ring. [for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Yenni, Edward J.; Birchenough, Arthur G.

    1991-01-01

    The Space Station Freedom uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals, and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.

  6. Distribution vacuum-arc fault-current limiter. Final report

    SciTech Connect

    Burrage, L.M.; Pedrow, P.D.; Veverka, E.F.; Landergott, D.R.; Driear, J.M.; Owens, W.R.; Nurmepuu, K.

    1982-02-01

    The objective of this project was the demonstration of the feasibility of using a vacuum arc as the basis for a distribution class fault current limiter. The concept used was an electric discharge in vacuum between a hollow cylindrical anode and a short rod cathode located on the axis of the anode. The device has two modes of operation. One mode utilizes an externally applied axial magnetic field; the other uses the discharge's inherent magnetic field. A series of experiments yielded analytic models of the two modes of operation. It was found that for both cases, high arc voltages were generated by the conduction of current through an electron space charge region (sheath) near the anode. It was concluded that the vacuum arc with applied axial magnetic field was the most suitable mode for use as a commutating switch for a switched resistor fault current limiter. The test device used for the project could reliably commutate currents of 6.4 kA peak. The design of a 20 kA peak prototype commutating switch was completed but the prototype was not constructed. This vacuum arc device with applied axial magnetic field may be considered an alternative switching device for dc applications.

  7. Current Fed Step-up DC/DC Converter for Fuel Cell Inverter Applications

    NASA Astrophysics Data System (ADS)

    Andreičiks, Aleksandrs; Vitols, Kristaps; Krievs, Oskars; Steiks, Ingars

    2009-01-01

    In order to use hydrogen fuel cells in domestic applications either as main power supply or backup source, their low DC output voltage has to be matched to the level and frequency of the utility grid AC voltage. Such power converter systems usually consist of a DC-DC converter and a DC-AC inverter. Comparison of different current fed step-up DC/DC converters is done in this paper and a double inductor step-up push-pull converter investigated, presenting simulation and experimental results. The converter is elaborated for 1200 W power to match the rated power of the proton exchange membrane (PEM) fuel cell located in hydrogen fuel cell research laboratory of Riga Technical University.

  8. Fault current limiter and alternating current circuit breaker

    DOEpatents

    Boenig, H.J.

    1998-03-10

    A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.

  9. Fault current limiter and alternating current circuit breaker

    DOEpatents

    Boenig, Heinrich J.

    1998-01-01

    A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.

  10. Superconducting Fault Current Limiter optimized design

    NASA Astrophysics Data System (ADS)

    Tixador, Pascal; Badel, Arnaud

    2015-11-01

    The SuperConducting Fault Current Limiter (SCFCL) appears as one of the most promising SC applications for the electrical grids. Despite its advantages and many successful field experiences the market of SCFCL has difficulties to take off even if the first orders for permanent operation in grids are taken. The analytical design of resistive SCFCL will be discussed with the objective to reduce the quantity of SC conductor (length and section) to be more cost-effective. For that the SC conductor must have a high resistivity in normal state. It can be achieved by using high resistivity alloy for shunt, such as Hastelloy®. One of the most severe constraint is that the SCFCL should operate safely for any faults, especially those with low prospective short-circuit currents. This constraint requires to properly design the thickness of the SC tape in order to limit the hot spot temperature. An operation at 65 K appears as very interesting since it decreases the SC cost at least by a factor 2 with a simple LN2 cryogenics. Taking into account the cost reduction in a near future, the SC conductor cost could be rather low, half a dollar per kV A.

  11. Pipeline coating impedance effects on powerline fault current coupling

    SciTech Connect

    Dabkowski, J.

    1989-12-01

    Prior research leading to the development of predictive electromagnetic coupling computer codes has shown that the coating conductance is the principal factor in determining the response of a pipeline to magnetic induction from an overhead power transmission line. Under power line fault conditions, a high voltage may stress the coating causing a significant change in its conductance, and hence, the coupling response. Based upon laboratory experimentation and analysis, a model has been developed which allows prediction of the modified coating characteristics when subjected to high voltage during fault situations. Another program objective was the investigation of a method to determine the high voltage behavior of an existing coating from low voltage in situ field measurements. Such a method appeared conceptually feasible for non-porous coatings whose conductance is primarily a result of current leakage through existing holidays. However, limited testing has shown that difficulties in determining the steel-electrolyte capacitance limit the application of the method Methods for field measurement of the pipeline coating conductance were also studied for both dc ad ac signal excitation. Ac techniques offer the advantage that cathodic protection current interruption is not required, thus eliminating depolarization effects. However, ac field measurement techniques need additional refinement before these methods can be generally applied. 53 figs.

  12. Fault current limiter with shield and adjacent cores

    DOEpatents

    Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

    2013-10-22

    In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

  13. Enhancement of Current Density by dc Electric Concentrator

    PubMed Central

    Jiang, Wei Xiang; Luo, Chen Yang; Ma, Hui Feng; Mei, Zhong Lei; Cui, Tie Jun

    2012-01-01

    We investigate a dc electric concentrator for steady current fields theoretically and experimentally. Based on the transformation electrostatics, we show that the dc concentrator can focus electric currents into the central concentrated region and enhance the electric field and current density. Outside the concentrator, the current lines are distributed as the same as those in a homogeneous conducting material. Hence, such a dc electric concentrator has no impact on other external devices. Using the analogy between electrically conducting materials and resistor networks, we design, fabricate, and test a dc concentrator using the circuit theory. The measured results agree very well with the theoretical predictions and numerical simulations, demonstrating the perfect concentrating performance. PMID:23233875

  14. Integrated ZVS DC-DC converter with continuous input current and high voltage gain

    NASA Astrophysics Data System (ADS)

    Do, Hyun-Lark

    2011-09-01

    An integrated zero-voltage-switching (ZVS) DC-DC converter with continuous input current and high voltage gain is proposed. The proposed converter can operate with soft switching, a continuous inductor current and fixed switching frequency. The voltage stress of the power switches is relatively low compared to the output voltage. Moreover, soft-switching characteristic of the proposed converter reduces switching loss of active power switches and raise the conversion efficiency. The reverse-recovery problem of output rectifiers is also alleviated by controlling the current changing rates of diodes with the use of the leakage inductance of a coupled inductor. The operation and performance of the proposed DC-DC converter were verified on an 115 W experimental prototype operating at 100 kHz.

  15. Superconducting Fault Current Limiter for Transmission Voltage

    NASA Astrophysics Data System (ADS)

    Kraemer, Hans-Peter; Schmidt, Wolfgang; Cai, Hong; Gamble, Bruce; Madura, David; MacDonald, Tim; McNamara, Joe; Romanosky, Walther; Snitchler, Greg; Lallouet, Nicolas; Schmidt, Frank; Ahmed, Syed

    Within a collaboration of American Superconductor, Siemens, Nexans and Southern California Edison one electrical phase of a resistive superconducting fault current limiter for the 115 kV transmission voltage level has been designed and manufactured. The active part of the limiter consists of 63 bifilar coils made of 12 mm wide steel-stabilized YBCO conductor and is housed in a cryostat operated at 5 bar and 74 K. The first phase was completely assembled and successfully subjected to power switching tests and high voltage tests. The basic design of the system and the test results are reported. The work was funded in part by US-DOE under Contract Number DE-FC26-07NT43243.

  16. Self field triggered superconducting fault current limiter

    DOEpatents

    Tekletsadik, Kasegn D.

    2008-02-19

    A superconducting fault current limiter array with a plurality of superconductor elements arranged in a meanding array having an even number of supconductors parallel to each other and arranged in a plane that is parallel to an odd number of the plurality of superconductors, where the odd number of supconductors are parallel to each other and arranged in a plane that is parallel to the even number of the plurality of superconductors, when viewed from a top view. The even number of superconductors are coupled at the upper end to the upper end of the odd number of superconductors. A plurality of lower shunt coils each coupled to the lower end of each of the even number of superconductors and a plurality of upper shunt coils each coupled to the upper end of each of the odd number of superconductors so as to generate a generally orthoganal uniform magnetic field during quenching using only the magenetic field generated by the superconductors.

  17. Current patterns and orbital magnetism in mesoscopic dc transport.

    PubMed

    Walz, Michael; Wilhelm, Jan; Evers, Ferdinand

    2014-09-26

    We present ab initio calculations of the local current density j(r) as it arises in dc-transport measurements. We discover pronounced patterns in the local current density, ring currents ("eddies"), that go along with orbital magnetism. Importantly, the magnitude of the ring currents can exceed the (average) transport current by orders of magnitude. We find associated magnetic fields that exhibit drastic fluctuations with field gradients reaching 1  T nm⁻¹ V⁻¹. The relevance of our observations for spin relaxation in systems with very weak spin-orbit interaction, such as organic semiconductors, is discussed. In such systems, spin relaxation induced by bias driven orbital magnetism competes with relaxation induced by the hyperfine interaction and appears to be of similar strength. We propose a NMR-type experiment in the presence of dc-current flow to observe the spatial fluctuations of the induced magnetic fields.

  18. Self-contained automatic recorder of the dc Josephson current.

    PubMed

    Simon, R W; Landmeier, P

    1978-12-01

    A circuit for the automatic recording of the dc Josephson current as a function of magnetic field or other variable has been designed and constructed. The apparatus requires no additional signal processing devices as have techniques for this measurement utilized in the past. Sensitivity to critical current amplitudes corresponding to the appearance of 5 mV across a sensing resistor is attained, as well as separate examination of the positive and negative halves of the zero-bias current. PMID:18699046

  19. Input current shaped ac-to-dc converters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator.

  20. A feasibility study of full-bridge type superconducting fault current controller on electric machine power stability

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Hwang, Y. J.; Lee, J.; Ko, T. K.

    2016-02-01

    Recently, because of the advent of Smart Grid and integration of distributed generations, electrical power grids are facing uncountable challenges. Increase of fault current is one of such serious challenges and there are some fault current limiters (FCLs) that can limit the fault current. Existing grid protection FCLs, however, simply limit the fault current passively and can allow the existing protection coordination schemes to fail. This phenomenon leads to catastrophic failure in the complex system and may cause unpredictable power grid operation. Unlike a FCL, a superconducting fault current controller (SFCC) employs a full-bridge thyristor rectifier, a high temperature superconducting (HTS) DC reactor, and an embedded control unit to maintain the fault current level at a proper value by adjusting the phase angle of thyristors. This paper contains experimental and numerical analysis to design and fabricate a SFCC system for protection and stability improvement in power grids. At first, fundamental characteristics of a SFCC system were introduced. System circuit diagram and operational principles were proposed. Secondly, the developed small-scale SFCC system was introduced and verified. A 40 Vrms/30 Arms class prototype SFCC employing HTS DC reactor was fabricated and short circuit tests that simulate various fault conditions were implemented to verify the control performance of the fault current. Finally, the practical feasibility of application of the SFCC system to the power system was studied. The problems caused by three-phase faults from the power grid were surveyed and transient stability analysis of the power system was conducted by simulations. From the experimental and simulation results, we can verify the feasibility of the SFCC in power system.

  1. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-09-01

    Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  2. Fault current limiter with solid-state circuit breakers

    NASA Astrophysics Data System (ADS)

    Bălan, H.; Neamț, L.; Buzdugan, M. I.; Varodi, T.; Pop, E.

    2016-08-01

    Switching of power circuit breakers is an important technical issue, especially at short circuit, since the fault current cause thermal and dynamic stresses, and the power quality worsens. Recently, the development of distributed renewable electricity induces the short circuit protection problematic because the distributed production of electric energy cause the transport networks to lose their radial character and disturbs the protective relays coordination. The modern technologies for power switching uses static fault current limiters, which offers a viable solution to remove the problems caused by large fault currents in the system. An appropriate design of the current limiting device reduces the thermal and dynamic stress and limits the fault current to a low value. The static switches are based on high power semiconductor devices that offer advantages compared to mechanical switches. Using a fault current limiter that minimizes the effect of distributed generation of electricity in a radial network on the co-ordination of protective relays is a solution to this problem in terms of switching speed and lifespan of power switches.

  3. Symmetrical dynamics of peak current-mode and valley current-mode controlled switching dc-dc converters with ramp compensation

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-Hua; Xu, Jian-Ping; Bao, Bo-Cheng; Jin, Yan-Yan

    2010-06-01

    The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D > 0.5 and that of the VCM controlled switching dc-dc converter to D < 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.

  4. Bifurcation boundary conditions for current programmed PWM DC-DC converters at light loading

    NASA Astrophysics Data System (ADS)

    Fang, Chung-Chieh

    2012-10-01

    Three types of bifurcations (instabilities) in the PWM DC-DC converter at light loading under current mode control in continuous-conduction mode (CCM) or discontinuous-conduction mode (DCM) are analysed: saddle-node bifurcation (SNB) in CCM or DCM, border-collision bifurcation during the CCM-DCM transition, and period-doubling bifurcation in CCM. Different bifurcations occur in some particular loading ranges. Bifurcation boundary conditions separating stable regions from unstable regions in the parametric space are derived. A new methodology to analyse the SNB in the buck converter based on the peak inductor current is proposed. The same methodology is applied to analyse the other types of bifurcations and converters. In the buck converter, multiple stable/unstable CCM/DCM steady-state solutions may coexist. Possibility of multiple solutions deserves careful study, because an ignored solution may merge with a desired stable solution and make both disappear. Understanding of SNB can explain some sudden disappearances or jumps of steady-state solutions observed in switching converters.

  5. Input-current shaped ac to dc converters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.

  6. Influence of longitudinal temperature distribution on current limiting function of Superconducting Fault Current Limiting Cable (SFCLC)

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Osawa, T.; Hayakawa, N.; Hanai, M.; Okubo, H.

    2014-05-01

    We have proposed a Superconducting Fault Current Limiting Cable (SFCLC), which is an HTS cable with fault current limiting function. SFCLC is expected to limit the fault current and also immediately recover the cable function after the fault clearance. In the SFCLC operation, a longitudinal temperature distribution will exist due to heat penetration, AC loss, dielectric loss and the performance of cryocooling system, which will influence its current limitation characteristics. In this paper, we investigate the influence of the longitudinal temperature distribution on current limiting function and temperature rise after the current limitation of SFCLC. We suggested the effective measures of parameter control, i.e. decreasing the critical current (Ic@77K), n value at flux flow region (n1-0), increasing the coefficient of longitudinal temperature gradient (α), inflow temperature (Tin) to achieve both the higher current limiting function and the lower temperature rise.

  7. Testing of 3-meter Prototype Fault Current Limiting Cables

    SciTech Connect

    Gouge, Michael J; Duckworth, Robert C; Demko, Jonathan A; Rey, Christopher M; Thompson, James R; Lindsay, David T; Tolbert, Jerry Carlton; Willen, Dag; Lentge, Heidi; Thidemann, Carsten; Carter, Bill

    2009-01-01

    Two 3-m long, single-phase cables have been fabricated by Ultera from second generation (2G) superconductor supplied by American Superconductor. The first cable was made with two layers of 2G tape conductor and had a critical current of 5,750 A while the second cable had four layers and a critical current of 8,500 A. AC loss was measured for both cables at ac currents of up to 4 kArms. Ultera performed initial fault current studies of both cables in Denmark with limited currents in the range from 9.1 to 44 kA. Results from these tests will provide a basis for a 25-m long, three-phase, prototype cable to be tested at ORNL early next year and a 300-m long, fault current limiting, superconducting cable to be installed in a ConEd substation in New York City.

  8. New Approaches for Direct Current (DC) Balanced SpaceWire

    NASA Technical Reports Server (NTRS)

    Kisin, Alex; Rakow, Glenn

    2016-01-01

    Direct Current (DC) line balanced SpaceWire is attractive for a number of reasons. Firstly, a DC line balanced interface provides the ability to isolate the physical layer with either a transformer or capacitor to achieve higher common mode voltage rejection and or the complete galvanic isolation in the case of a transformer. And secondly, it provides the possibility to reduce the number of conductors and transceivers in the classical SpaceWire interface by half by eliminating the Strobe line. Depending on the modulator scheme the clock data recovery frequency requirements may be only twice that of the transmit clock, or even match the transmit clock: depending on the Field Programmable Gate Array (FPGA) decoder design. In this paper, several different implementation scenarios will be discussed. Two of these scenarios are backward compatible with the existing SpaceWire hardware standards except for changes at the character level. Three other scenarios, while decreasing by half the standard SpaceWire hardware components, will require changes at both the character and signal levels and work with fixed rates. Other scenarios with variable data rates will require an additional SpaceWire interface handshake initialization sequence.

  9. Testing of a high current dc ESQ accelerator

    SciTech Connect

    Kwan, J.W.; Ackerman, G.D.; Ackerman, O.A.; Chan, C.F.; Cooper, W.S.; deVries, G.J.; Kunkel, W.B.; Soroka, L.; Steele, W.F.; Wells, R.P.

    1991-05-01

    A high current dc electrostatic quadrupole (ESQ) accelerator is being developed for negative-ion-based neutral beam heating and current drive on the next generation tokamak. Beam energy and current will eventually be in the MeV and multiampere range.l This CCVV (constant- current variable-voltage) accelerator uses a series of identical ESQ modules. We have successfully tested a prototype CCVV accelerator up to 200 keV with a 100 mA He{sub +} beam (with space charge equivalence of 140 mA of D{sup {minus}}) for a pulse length of 1 s. Testing was also done with a 42 mA H{sup {minus}} beam (H{sup {minus}} beam current was limited by source performance). There was almost no beam loss in the ESQ accelerator. no emittance growth was found in the beam injected from the preaccelerator into the ESQ accelerator had low aberration. We are presently designing a proof-of- principle one-channel CCVV accelerator that would accelerate 1.0 A of D{sup {minus}} 1.3 MeV energy. 4 refs., 7 figs.

  10. High voltage fault current limiter having immersed phase coils

    DOEpatents

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  11. Electronic Current Transducer (ECT) for high voltage dc lines

    NASA Astrophysics Data System (ADS)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  12. Test Report - Fault Current Through Graphite Filament Reinforced Plastic

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Tests were performed to determine the damage to samples of composite material when a current carrying wire is shorted to the surface of the composite material, and to determine whether enough current can flow through the material to blow a fuse before damage can occur. Fault current tests were performed on samples of graphite epoxy materials. Samples consisted of six layers of IM7 graphite fiber mat in Hercules 8552 epoxy resin. A variable power supply provided up to 35 amps of current. The high voltage side of the power supply was attached to a wire at the end of a hinged arm, and the low side was attached to the edge of the sample. To test joints, the return was connected to the edge of one sample, and the high side was shorted to the top of the other sample. Tests show that when current exceeds approximately 5 amps, the graphite glows, and the epoxy melts out at the shorted contact. At higher current levels the epoxy burns. At voltages above 15 volts the epoxy outer coat is easily broken, and fire, flame, and a rise in current occur suddenly. When joints are introduced, resistance is increased, and the maximum current resulting from a short circuit to the graphite epoxy is reduced. This condition can easily result in fault current lower than the circuit breaker limit and higher than the 5 amp ignition level. The shorting contact and the joint become hot spots with melting epoxy, smoke, and fire.

  13. Superconducting fault current-limiter with variable shunt impedance

    SciTech Connect

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  14. Rotor position sensor switches currents in brushless dc motors

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.

  15. Discrete time domain modelling and analysis of dc-dc converters with continuous and discontinuous inductor current

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Lee, F. C.; Triner, J. E.

    1977-01-01

    Using discrete time state variable representation, a generalized computer-aided modeling and analysis of dc-dc converters is presented. The methodology provides exact modeling and is applicable to all types of power stages and duty-cycle control, including continuous and discontinuous inductor current operation. Converter stability, transient behavior and audio susceptibility can be analytically evaluated and predicted. The generalized theory of the proposed approach to converter modeling and analysis is presented first, followed by a demonstrative example applying the theory to a constant frequency buck converter operating in continuous and discontinuous inductor current mode. Excellent agreement with laboratory test data has been observed.

  16. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  17. Pupils' Representations of Electric Current before, during and after Instruction on DC Circuits.

    ERIC Educational Resources Information Center

    Psillos, D.; And Others

    1987-01-01

    Reported are compulsory education pupils' representations of electric current in a constructivist approach to introducing direct current (DC) circuits. Suggests that the pupils views can be modelled after an energy framework. Makes suggestions about the content, the apparatus and the experiments used in teaching DC circuits. (CW)

  18. Superconducting matrix fault current limiter with current-driven trigger mechanism

    DOEpatents

    Yuan, Xing

    2008-04-15

    A modular and scalable Matrix-type Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. An inductor is connected in series with the trigger superconductor in the trigger matrix and physically surrounds the superconductor. The current surge during a fault will generate a trigger magnetic field in the series inductor to cause fast and uniform quenching of the trigger superconductor to significantly reduce burnout risk due to superconductor material non-uniformity.

  19. Restoration and testing of an HTS fault current controller

    SciTech Connect

    Waynert, J. A.; Boenig, H.; Mielke, C. H.; Willis, J. O.; Burley, B. L.

    2002-01-01

    A three-phase, 1200 A, 12.5 kV fault current controller using three HTS 4 mH coils, was built by industry and tested in 1999 at the Center Substation of Southern California Edison in Norwalk, CA. During the testing, it appeared that each of the three single-phase units had experienced a voltage breakdown, one externally and two internally. Los Alamos National Laboratory (LANL) was asked by DOE to restore the operation of the fault current controller provided the HTS coils had not been damaged during the initial substation tests. When the internally-failed coil vacuum vessels were opened it became evident that in these two vessels, a flashover had occurred at the high voltage bus section leading to the terminals of the superconducting coil. An investigation into the failure mechanism resulted in six possible causes for the flashover. Based on these causes, the high voltage bus was completely redesigned. Single-phase tests were successfully performed on the modified unit at a 13.7 kV LANL substation. This paper presents the postulated voltage flashover failure mechanisms, the new high voltage bus design which mitigates the failure mechanisms, the sequence of tests used to validate the new design, and finally, the results of variable load and short-circuit tests with the single-phase unit operating on the LANL 13.7 kV substation.

  20. Observation of self-magnetic field relaxations in Bi2223 and Y123 HTS tapes after over-current pulse and DC current operation

    NASA Astrophysics Data System (ADS)

    Tallouli, M.; Sun, J.; Chikumoto, N.; Otabe, E. S.; Shyshkin, O.; Charfi-Kaddour, S.; Yamaguchi, S.

    2016-07-01

    The development of power transmission lines based on long-length HTS tapes requires the production of high quality tapes. Due to fault conditions, technical mistakes and human errors during the operation of a DC power transmission line, an over-current pulse, several times larger than the rated current, could occur. To study the effect of such over-current pulses on the transport current density distribution in the HTS tapes, we simulated two start-up scenarios for one BSCCO and two YBCO tapes. The first start-up scenario is an initial over-current pulse during which the transport current was turned on rapidly, rising to 900 A during the first milliseconds, then reduced to a 100 A DC current. The second start-up scenario is normal operation, and involved increasing the transport current slowly from 0 A to 100 A at a rate of 1 A/s. For both scenarios, we then measured the vertical component of the self-magnetic field by means of a Hall probe above the tape, and afterward, by solving a linear equation of the inverse problem we obtain the current density profiles. We observe a change of the self-magnetic field above the edge of the BSCCO and YBCO tapes during 30 min after the 5 ms of over-current pulse and during the normal operation. The current density profiles are peaked in the centre for over-current pulse, and more peaked around the edge of the HTS tape for normal operation, which means that the limited time over-current pulse changes the current density profiles of the HTS tapes. We observe also a loop of current for YBCO tapes and we show the role of the HTS tape stabilizer.

  1. Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination

    DOEpatents

    Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy

    2009-04-14

    DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

  2. Method for Estimating Low-Frequency Return Current of DC Electric Railcar

    NASA Astrophysics Data System (ADS)

    Hatsukade, Satoru

    The Estimation of the harmonic current of railcars is necessary for achieving compatibility between train signaling systems and railcar equipment. However, although several theoretical analyses methods for estimating the harmonic current of railcars using switching functions exist, there are no theoretical analysis methods estimating a low-frequency current at a frequency less than the power converter's carrier frequency. This paper describes a method for estimating the spectrum (frequency and amplitude) of the low-frequency return current of DC electric railcars. First, relationships between the return current and characteristics of the DC electric railcars, such as mass and acceleration, are determined. Then, the mathematical (not numerical) calculation results for low-frequency current are obtained from the time-current curve for a DC electric railcar by using Fourier series expansions. Finally, the measurement results clearly show the effectiveness of the estimation method development in this study.

  3. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  4. Combined DC Resistivity Survey and Electric Conductivity- Dielectric Permittivity Measurement at Sag Pond near Lembang Fault, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Iryanti, Mimin; Srigutomo, Wahyu; Bijaksana, Satria; Setiawan, Tedy

    2016-08-01

    Lembang Fault is a normal fault situated at the southern flank of Tangkuban Parahu Volcano in West Java Indonesia. The fault's movement may have caused the formation of sag pond in the vicinity of its which is characterized by the soil layers of the sag pond. The characteristics of the soil can be examined based on its electrical properties such as conductivity (the inverse of resistivity) and dielectric permittivity. Direct field measurement was conducted using DC-resistivity Wenner-Schlumberger method on the sag pond as well as laboratory resistivity measurement of cores taken from the sag pond. Two resistivity crosssections were obtained after performing 2D inversion of the data which reveal that the resistivity distribution consist of a resistive layer (40-60 ohm.m) overlying a medium resistive layer (30-35 ohm.m). The third layer has relatively low resistivity of 16-25 ohm.m. At the intersection of these two lines we took coring samples down to depth of 5 m below surface and measured the electrical conductivity and dielectric permittivity for each 1 cm of sample using EM-50 data logger. Results from both field and laboratory measurement were analysed to get a better understanding of the sag pond.

  5. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    SciTech Connect

    Darmann, Frank; Lombaerde, Robert; Moriconi, Franco; Nelson, Albert

    2012-03-01

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with warm bore diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged spider design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP's product development program, the amount of HTS wire

  6. Complete bifurcation analysis of DC-DC converters under current mode control

    NASA Astrophysics Data System (ADS)

    Pikulin, D.

    2014-03-01

    The purpose of this research is to investigate to what extend application of novel method of complete bifurcation groups to the analysis of global dynamics of piecewise-smooth hybrid systems enables one to highlight new nonlinear effects before periodic and chaotic regimes. Results include the construction of complete one and two-parameter bifurcation diagrams, detection of various types of bifurcation groups and investigation of their interactions, localization of rare attractors, and the investigation of different principles of birth of chaotic attractors. Effectiveness of the approach is illustrated in respect to one of the most widely used switching systems-boost converter under current mode control operating in continuous current mode.

  7. System and method for bearing fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  8. Impact of quasi-dc currents on three-phase distribution transformer installations

    SciTech Connect

    McConnell, B.W.; Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Schafer, D.A. )

    1992-06-01

    This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This smoking neutral'' results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.

  9. AC and DC transport currents in melt-grown YBCO

    SciTech Connect

    Yi, Z.; Ashworth, S.; Becluz, C.; Scurlock, R.G. )

    1991-03-01

    It has been suggested that the transport J{sub c} in multi-grain samples of bulk YBCO are limited by the intergrain links. This paper reports on preliminary measurements of intergrain currents. The intergrain critical currents in melt grown YBCO do not appear to be as sensitive to the precise crystallographic alignment of adjacent grains a has been reported for thin films. The measured critical current of similar grain boundaries varies widely, between 15000 A/cm{sup 2} and 200A/Cm{sub 2} for adjacent boundaries in the same sample.

  10. The dynamics of PWM current-mode dc/dc converters

    NASA Astrophysics Data System (ADS)

    Maranesi, P.; Pinola, L.; Varoli, V.

    Exact analysis of current-mode PWM voltage regulators provides their transfer functions in closed form. This result requires that a convergence criterion be satisfied: the norm of a characteristic matrix has to be less than unity. The same condition ensures open-loop circuit stability. In this way, the inner-loop instability of these regulators when the duty-cycle exceeds 50 percent can be explained. The limit value of the compensating slope versus duty-cycle is derived.

  11. Integrated on-chip 0.35 μm BiCMOS current-mode DC-DC buck converter

    NASA Astrophysics Data System (ADS)

    Lee, Chan-Soo; Kim, Nam-Soo; Gendensuren, Munkhsuld; Choi, Jae-Ho; Choi, Joong-Ho

    2012-12-01

    A current-mode DC-DC buck converter with a fully integrated power module is presented in this article. The converter is implemented using BiCMOS technology in amplifier and power MOSFET in a current sensor. The current sensor is realised by the power lateral double-diffused MOSFET with the aspect ratio much larger than that of a matched p-MOSFET. In addition, BiCMOS technology is applied in the error amplifier for an accurate current sensing and a fast transient response. The DC-DC converter is fabricated with 0.35 µm BiCMOS process. Experimental results show that the fully integrated converter operates at 1.3 MHz switching frequency with a supply voltage of 5 V. The output DC voltage is obtained as expected and the output ripple is controlled to be within 2% with a 30 µH off-chip inductor and 100 µF off-chip capacitor.

  12. High current DC negative ion source for cyclotron.

    PubMed

    Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y

    2016-02-01

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power. PMID:26932017

  13. Low current linearization of magnetic amplifier for dc transducer

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1981-01-01

    A magnetic amplifier having two saturable reactor cores with a separate excitation winding on each connected in series opposition, a common control winding, and a common output winding, is adapted for use as a low level signal transducer. The separate excitation windings are excited in push-pull mode through a center tapped transformer, and at least one diode is included in series with a load resistor connected to the output winding. A resistor in series with the output winding and load resistor is connected between the center tap of the excitation transformer and the connection between the two excitation windings of the saturable cores. This series resistor provides a return current path for the output winding and allows the excitation windings of the saturable cores to operate as primary windings of transformers.

  14. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    NASA Astrophysics Data System (ADS)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  15. Design of energy-storage reactors for single-winding constant-frequency dc-to-dc converters operating in the discontinuous-reactor-current mode

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Owen, H. A., Jr.; Wilson, T. G.

    1980-01-01

    This paper presents an algorithm and equations for designing the energy-storage reactor for dc-to-dc converters which are constrained to operate in the discontinuous-reactor-current mode. This design procedure applied to the three widely used single-winding configurations: the voltage step-up, the current step-up, and the voltage-or-current step-up converters. A numerical design example is given to illustrate the use of the design algorithm and design equations.

  16. Current limiting level-time characteristic of a superconducting fault current limiter

    NASA Astrophysics Data System (ADS)

    Tang, Y. J.; Yokomizu, Y.; Hayakawa, N.; Matsumura, T.; Okubo, H.; Kito, Y.

    A model superconducting fault current limiter (SE-FCL) has been developed. The adopted superconducting cable is composed of six strands insulated from each other. The current limiting level of the SC-FCL is measured under two types of overcurrent, a sinusoidal and an inrush current. The results show that the current limiting level of the SC-FCL Iq increases with an increase in the rate of rise of the overcurrent. By introducing a new parameter of time-to-quench tf, it is found that Iq increases with decreasing tf. This feature is taken as a current limiting level-time characteristic i.e. the Iq- tf characteristic. The existence of the Iq- tf characteristic found in the SC-FCL is qualitatively explained by measuring current distribution among the six strands. The superconducting cable is driven to the normal state strand by strand. Some delay in time is found from the quench of the first strand to that of the last and this is recognized as an Iq- tf characteristic in its current limiting performance.

  17. Operation of the DC current transformer intensity monitors at FNAL during run II

    SciTech Connect

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  18. Detecting arcing downed-wires using fault current flicker and half-cycle asymmetry

    SciTech Connect

    Sultan, A.F.; Swift, G.W. . Dept. of Electrical and Computer Engineering); Fedirchuk, D.J. . System Operating Dept.)

    1994-01-01

    The downed-wires problem, known as high impedance faults, is described. A high voltage laboratory setup was devised to investigate the phenomenon. The laboratory model results agreed with field test results, and previous research efforts. The arcing fault model was justified. The setup was used as a source of fault current signal. A simple approach was taken to design an arcing fault detector. The algorithm utilizes the random behavior of the fault current. It compares the positive and negative current peaks in one cycle to those in the next cycle to measure the flicker in the current signal. The asymmetry of the current is calculated by comparing the positive peak to the negative peak, for each cycle; the moving window length is half a cycle. Both values are used as a signature of arcing. The result is filtered and compared with a suitable detection threshold. The algorithm was tested by traces of normal load, and no-load current disturbed by currents of faults on dry and wet soil, arc welders, computers, and fluorescent light loads, as well as short circuit currents. The algorithm performed well under the test conditions, except for the arc welder load. This load is also a source of insecurity for other algorithms. The detection criterion will be integrated with another detection method to improve the security during arcing load events. On-line testing is required to demonstrate algorithm dependability.

  19. A Theoretical Analysis of Sideband Harmonics on the Inverter DC-link Current for an Electric Railcar

    NASA Astrophysics Data System (ADS)

    Ogawa, Tomoyuki; Wakao, Shinji; Taufiq, Jat; Kondo, Keiichiro; Terauchi, Nobuo

    The harmonics of the return current may interfere with the signaling current along with the rails. In this paper, we present the theoretical studies of the return current harmonics in the inverter-controlled DC electric railcar, aiming at contributing future work to improve the compatibility with the signaling current. We theoretically derive sideband harmonics of the DC-link current. Then, in order to verify the theoretical study, we experimentally measure the harmonics and numerically simulate the harmonics. As a result, we concluded the theoretical DC-link current is enough accurate to be utilized for the future improvement of the inverter harmonics current.

  20. Analysis of transient state in HTS tapes under ripple DC load current

    NASA Astrophysics Data System (ADS)

    Stepien, M.; Grzesik, B.

    2014-05-01

    The paper concerns the analysis of transient state (quench transition) in HTS tapes loaded with the current having DC component together with a ripple component. Two shapes of the ripple were taken into account: sinusoidal and triangular. Very often HTS tape connected to a power electronic current supply (i.e. superconducting coil for SMES) that delivers DC current with ripples and it needs to be examined under such conditions. Additionally, measurements of electrical (and thermal) parameters under such ripple excitation is useful to tape characterization in broad range of load currents. The results presented in the paper were obtained using test bench which contains programmable DC supply and National Instruments data acquisition system. Voltage drops and load currents were measured vs. time. Analysis of measured parameters as a function of the current was used to tape description with quench dynamics taken into account. Results of measurements were also used to comparison with the results of numerical modelling based on FEM. Presented provisional results show possibility to use results of measurements in transient state to prepare inverse models of superconductors and their detailed numerical modelling.

  1. D.C. transit stray current leakage paths -- Prevention and/or correction

    SciTech Connect

    Sidoriak, W.

    1994-12-31

    The resurgence of D.C. Rail Transit in major metropolitan areas, and resulting possible stray current effects, are of major concern to operating transit companies and local utilities. Uninsulated, or poorly insulated rail systems can produce a high degree of stray current leakage into the earth. The resultant effects to buried metallic installations can be detrimental or, if prolonged, catastrophic. This paper will address methods for prevention of stray current leakage into the earth, and possible corrective actions to eliminate or reduce, existing stray current leakage paths.

  2. Acoustic noise alters selective attention processes as indicated by direct current (DC) brain potential changes.

    PubMed

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts-which are discussed to represent different states of cortical activation-of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest-besides some limitations-that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested "attention shift". Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  3. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC) Brain Potential Changes

    PubMed Central

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed. PMID:25264675

  4. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping

    NASA Astrophysics Data System (ADS)

    Zhen, D.; Wang, T.; Gu, F.; Ball, A. D.

    2013-01-01

    Electrical motor stator current signals have been widely used to monitor the condition of induction machines and their downstream mechanical equipment. The key technique used for current signal analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals predominated with supply frequency component and its higher order harmonics. However, the FT based method has limitations such as spectral leakage and aliasing, leading to significant errors in estimating the sideband components. Therefore, this paper presents the use of dynamic time warping (DTW) to process the motor current signals for detecting and quantifying common faults in a downstream two-stage reciprocating compressor. DTW is a time domain based method and its algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to suppress the supply frequency component and highlight the sideband components based on the introduction of a reference signal which has the same frequency component as that of the supply power. Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for effective calculation. Based on the proposed method, the stator current signals measured from the compressor induced with different common faults and under different loads are analysed for fault diagnosis. Results show that DTW based on residual signal analysis through the introduction of a reference signal allows the supply components to be suppressed well so that the fault related sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In particular, the root mean square (RMS) values of the residual signal can indicate the differences between the healthy case and different faults under varying discharge pressures. It provides an effective and easy approach to the analysis of motor current signals for better fault diagnosis of the downstream mechanical equipment of motor drives in the time

  5. Current-fed Step-up DC/DC Converter for Fuel Cell Applications with Active Overvoltage Clamping

    NASA Astrophysics Data System (ADS)

    Andreiciks, Aleksandrs; Steiks, Ingars; Krievs, Oskars

    2010-01-01

    In order to use hydrogen fuel cells in domestic applications either as main power supply or backup source, their low DC output voltage has to be matched to the level and frequency of the utility grid AC voltage. Such power converter systems usually consist of a DC-DC converter and a DC-AC inverter. A double inductor step-up push-pull converter is investigated in this paper, presenting simulation and experimental results for passive and active overvoltage clamping. The prototype of the investigated converter is elaborated for 1200 W power to match the rated power of the proton exchange membrane (PEM) fuel cell located in hydrogen fuel cell research laboratory.

  6. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  7. SIM regional comparison of ac-dc current transfer difference SIM.EM-K12

    NASA Astrophysics Data System (ADS)

    Di Lillo, Lucas

    2015-01-01

    The ac-dc current transfer difference identified as SIM.EM.K-12 began in July 2010 and was completed in September 2012. Six NMIs in the SIM region and one NMI in the AFRIMET region took part: NRC (Canada), NIST (United States of America), CENAM (Mexico), INTI (Argentina), UTE (Uruguay), INMETRO (Brazil) and NIS (Egypt). The comparisons were proposed to assess the measurement capabilities in ac-dc current transfer difference of the participants NMIs. The ac-dc current transfer differences of the travelling standard had been measured at 10 mA and 5 A at 10 Hz, 55 Hz, 1 kHz, 10 kHz, 20 kHz, 50 kHz and 100 kHz. The test points were selected to link the results with the equivalent CCEM Key Comparisons (CCEM-K12), through three NMIs participating in both SIM and CCEM key comparisons (INTI, NRC and NIST). The report shows the degree of equivalence in the SIM region and also the degree of equivalence with the corresponding CCEM reference value. The results of all participants support the values and uncertainties of the applicable CMC entries for ac-dc current transfer difference in the Key Comparison Database held at the BIPM. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Portable precision dc voltage-current transfer standard for electrometer calibration

    USGS Publications Warehouse

    Landis, G.; Godwin, M.

    1982-01-01

    A circuit design is presented for an instrument providing a highly stable and fully adjustable voltage and current in the range of 0-1.999 V or 0-199.9 mV and 10-11-10-15 A. This instrument is used to verify the calibration and performance of dc and vibrating reed electrometers and chart recorders on mass spectrometers of the USGS Isotope Laboratories in Denver.

  9. Alfven Wave - DC Dualism in Description of Stationary Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2009-01-01

    In many cases, the field-aligned currents (FACs) in the Earth's magnetosphere and heliosphere may be described in terms of both DC currents and the currents of a propagating Alfven wave. The simplest example is when a propagating Alfven wave transports a potential hop along the magnetic fieid: between the source of the wave and its front, the problem is well stationary and includes the stationary field-aligned currents, transporting the electric charges along the magnetic field, which may be described as a DC problem, and only at the front of the wave there are the polarization (inertial) currents, closing across the magnetic field. In some cases, the Alfven wave approach brings better understanding to many problems. We will consider here the results of the applications of this approach to two long-staying problems: the effect of saturation of the transpolar voltage in the Earth's magnetosphere, and the experimentally-observed existence of the strong field-aligned currents in the subtle Mercury's magnetosphere which is not able tc close the measured field-aligned currents.

  10. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    SciTech Connect

    Zheng, Yuesheng; Zhang, Bo He, Jinliang

    2015-02-15

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U − U{sub 0}){sup m}, where m is within the range 1.5–2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current, while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.

  11. 6. 6 kV/1. 5 kA-class superconducting fault current limiter development

    SciTech Connect

    Ito, D.; Yoneda, E.S.; Tsurunaga, K.; Tada, T. ); Hara, T.; Ohkuma, T.; Yamamoto, T. )

    1992-01-01

    This paper reports that the authors have developed and tested a 6.6 kV/1.5 kA-class fault current limiter wound with a 42-strand AC superconducting wire having ultra-fine MbTi filaments in a high resistivity matrix. In experiments, voltages up to 7.2 kV were applied to the limiter with phase angles of 0, 45, and 90 degrees. The limiter was able to limit the fault current to 1.8 kA successfully from the 55 kA short-circuit current that would flow in a circuit without limiter.

  12. A high average current DC GaAs photocathode gun for ERLs and FELs

    SciTech Connect

    C. Hernandez-Garcia; T. Siggins; S. Benson; D. Bullard; H. F. Dylla; K. Jordan; C. Murray; G. R. Neil; Michelle D. Shinn; R. Walker

    2005-05-01

    The Jefferson Lab (JLab) 10 kW IR Upgrade FEL DC GaAs photocathode gun is presently the highest average current electron source operational in the U.S., delivering a record 9.1 mA CW, 350 kV electron beam with 122 pC/bunch at 75 MHz rep rate. Pulsed operation has also been demonstrated with 8 mA per pulse (110 pC/bunch) in 16 ms-long pulses at 2 Hz rep rate. Routinely the gun delivers 5 mA CW and pulse current at 135 pC/bunch for FEL operations. The Upgrade DC photocathode gun is a direct evolution of the DC photocathode gun used in the previous JLab 1 kW IR Demo FEL. Improvements in the vacuum conditions, incorporation of two UHV motion mechanisms (a retractable cathode and a photocathode shield door) and a new way to add cesium to the GaAs photocathode surface have extended its lifetime to over 450 Coulombs delivered between re-cesiations (quantum efficiency replenishment). With each photocathode activation quantum efficiencies above 6% are routinely achieved. The photocathode activation and performance will be described in detail.

  13. Electric currents along earthquake faults and the magnetization of pseudotachylite veins

    NASA Astrophysics Data System (ADS)

    Freund, Friedemann; Salgueiro da Silva, Manuel A.; Lau, Bobby W. S.; Takeuchi, Akihiro; Jones, Hollis H.

    2007-02-01

    Pseudotachylites occur in the form of thin glassy veins quenched from frictional melts along the fault planes of major earthquakes. They contain finely grained magnetite and often exhibit a high natural remanent magnetization (NRM). High NRM values imply strong local electric currents. These currents must persist for some time, while the pseudotachylite veins cool through the Curie temperature of magnetite around 580 °C. There is no generally accepted theory explaining how such powerful, persistent currents may be generated along the fault plane. Data presented here suggest the activation of electronic charge carriers, which are present in igneous rocks in a dormant, inactive form. These charge carriers can be "awakened" by the application of stress. They are electrons and defect electrons, also known as positive holes or p-holes for short. While p-holes are capable of spreading out of the stressed rock volume into adjacent p-type conductive unstressed rocks, electrons require a connection to the hot, n-type conductive lower crust. However, as long as the (downward) electron flow is not connected, the circuit is not closed. Hence, with the outflow of p-holes impeded, no current can be sustained. This situation is comparable to that of a charged battery where one pole remains unconnected. The friction melt that forms coseismically during rupture, provides a conductive path downward, which closes the circuit. This allows a current to flow along the fault plane. Extrapolating from laboratory data, every km 3 of stressed igneous rocks adjacent to the fault plane can deliver 10 3-10 5 A. Hence, the current along the fault plane will not be limited by the number of charge carriers but more likely by the (electronic) conductivity of the cooling pseudotachylite vein. The sheet current will produce a magnetic field, whose vectors will lie in the fault plane and perpendicular to the flow direction.

  14. A Current-Mode Buck DC-DC Converter with Frequency Characteristics Independent of Input and Output Voltages Using a Quadratic Compensation Slope

    NASA Astrophysics Data System (ADS)

    Sai, Toru; Sugimoto, Yasuhiro

    By using a quadratic compensation slope, a CMOS current-mode buck DC-DC converter with constant frequency characteristics over wide input and output voltage ranges has been developed. The use of a quadratic slope instead of a conventional linear slope makes both the damping factor in the transfer function and the frequency bandwidth of the current feedback loop independent of the converter's output voltage settings. When the coefficient of the quadratic slope is chosen to be dependent on the input voltage settings, the damping factor in the transfer function and the frequency bandwidth of the current feedback loop both become independent of the input voltage settings. Thus, both the input and output voltage dependences in the current feedback loop are eliminated, the frequency characteristics become constant, and the frequency bandwidth is maximized. To verify the effectiveness of a quadratic compensation slope with a coefficient that is dependent on the input voltage in a buck DC-DC converter, we fabricated a test chip using a 0.18µm high-voltage CMOS process. The evaluation results show that the frequency characteristics of both the total feedback loop and the current feedback loop are constant even when the input and output voltages are changed from 2.5V to 7V and from 0.5V to 5.6V, respectively, using a 3MHz clock.

  15. Current-Voltage Characteristics of DC Discharge in Micro Gas Jet Injected into Vacuum Environment

    NASA Astrophysics Data System (ADS)

    Matra, K.; Furuta, H.; Hatta, A.

    2013-06-01

    A current-voltage characteristic of direct current (DC) gas discharge operated in a micro gas jet injected into a secondary electron microscope (SEM) chamber is presented. Ar gas was injected through a 30 μm orifice gas nozzle (OGN) and was evacuated by an additional pump to keep the high vacuum environment. Gas discharges were ignited between the OGN as anode and a counter electrode of Si wafer. The discharge was self-pulsating in most of the cases while it was stable at lower pressure, larger gap length, and larger time averaged current. The self-pulsating discharge was oscillated by the RC circuit consisting of a stray capacitor and a large ballast resistor. The real time plots of voltage and current during the pulsating was investigated using a discharge model.

  16. Spin Hall voltages from a.c. and d.c. spin currents

    PubMed Central

    Wei, Dahai; Obstbaum, Martin; Ribow, Mirko; Back, Christian H.; Woltersdorf, Georg

    2014-01-01

    In spin electronics, the spin degree of freedom is used to transmit and store information. To this end the ability to create pure spin currents—that is, without net charge transfer—is essential. When the magnetization vector in a ferromagnet–normal metal junction is excited, the spin pumping effect leads to the injection of pure spin currents into the normal metal. The polarization of this spin current is time-dependent and contains a very small d.c. component. Here we show that the large a.c. component of the spin currents can be detected efficiently using the inverse spin Hall effect. The observed a.c.-inverse spin Hall voltages are one order of magnitude larger than the conventional d.c.-inverse spin Hall voltages measured on the same device. Our results demonstrate that ferromagnet–normal metal junctions are efficient sources of pure spin currents in the gigahertz frequency range. PMID:24780927

  17. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  18. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems.

    PubMed

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  19. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems.

    PubMed

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-05-11

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

  20. Proposal of rectifier type superconducting fault current limiter with non-inductive reactor (SFCL)

    NASA Astrophysics Data System (ADS)

    Mohammad Salim, Khosru; Muta, Itsuya; Hoshino, Tsutomu; Nakamura, Taketsune; Yamada, Masato

    2004-03-01

    A rectifier type superconducting fault current limiter (SFCL) with non-inductive reactor has been proposed. The concept behind this SFCL is the appearance of high impedance during non-superconducting state of the coil. In a hybrid bridge circuit, two superconducting coils connected in anti-parallel: a trigger coil and a limiting coil. Both the coils are magnetically coupled with each other and have same number of turns. There is almost zero flux inside the core and therefore the total inductance is small during normal operation. At fault time when the trigger coil current reaches to a certain level, the trigger coil changes from superconducting state to normal state. This super-to-normal transition of the trigger coil changes the current ratio of the coils and therefore the flux inside the reactor is no longer zero. So, the equivalent impedance of both the coils increased thus limits the fault current. We have carried out computer simulation using EMTDC and observed the results. A preliminary experiment has already been performed using copper wired reactor with simulated super-to-normal transition resistance and magnetic switches. Both the simulation and preliminary experiment shows good results. The advantage of using hybrid bridge circuit is that the SFCL can also be used as circuit breaker. Two separate bridge circuit can be used for both trigger coil and the limiter coil. In such a case, the trigger coil can be shutdown immediately after the fault to reduce heat and thus reduce the recovery time. Again, at the end of fault when the SFCL needs to re-enter to the grid, turning off the trigger circuit in the two-bridge configuration the inrush current can be reduced. This is because the current only flows through the limiting coil. Another advantage of this type of SFCL is that no voltage sag will appear during load increasing time as long as the load current stays below the trigger current level.

  1. High field dc conduction current and spectroscopy of aged transformer oil

    SciTech Connect

    El-Sulaiman, A.A.; Ahmed, O.; Hassan, M.M.; Quresh, M.

    1982-11-01

    This paper studies the experimental results of the quasi-state high field dc conduction current, and changes occuring in the molecular structure of aged transformer oil, sampled from EHV transformer operating for the last five years. Aged oil was compared with fresh transformer oil and liquid paraffin. It was found that aged oil exhibits higher conduction than both of the other oils through 600 seconds of field application. However, no molecular changes were detected using different techniques of spectroscopy such as GC; UV; IR and NMR. Metallic impurities were found to be of the same order but the acidity increased manifolds to that of fresh oil.

  2. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    PubMed

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-01-01

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183

  3. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles

    PubMed Central

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-01-01

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183

  4. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    PubMed

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-08-19

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.

  5. Simulation of current filamentation in a dc-driven planar gas discharge-semiconductor system

    NASA Astrophysics Data System (ADS)

    Mokrov, M. S.; Raizer, Yu P.

    2011-10-01

    We have performed a theoretical study of self-organized current filamentation in a dc-driven planar gas discharge-semiconductor system at very low currents and under cryogenic conditions. The discharge instability and the observed formation of current filaments are explained by a thermal mechanism, as proposed in our previous paper. We have found, for the first time, a stationary periodic current structure in a two-dimensional Cartesian geometry from first principles, by numerically solving the general system of continuity equations for ions and electrons, the Poisson equation for the electric field in the gas, together with the equation for gas temperature and the equation for electric field in the semiconductor. The space charge induced electric field redistribution, which usually leads to a discharge instability and is automatically included in the first three equations of the system, is practically absent at the very low currents considered, and thus it cannot be responsible for the discharge instability. This is why another mechanism of filamentation (thermal) should be considered. The calculated periodic current structure agrees with the hexagonal current pattern observed in the experiment, as well as with the periodic current structure found in the frame of the previously developed simple model. This serves as a corroboration of the fact that the thermal effect is essential for pattern formation under the conditions considered.

  6. Operation Tests for SN Transition Superconducting Fault Current Limiter in the Power System Simulator

    NASA Astrophysics Data System (ADS)

    Kameda, Hideyuki; Torii, Shinji; Kumano, Teruhisa; Sakaki, Hisayoshi; Kubota, Hiroshi; Yasuda, Kenji

    One of important problems to be solved in Japanese trunk transmission systems is the reduction of short circuit capacity. As this countermeasure, double buses are split into two buses in some substations. In recent years, dispersed generators are introduced in lower voltage classes due to the introduction of the electricity deregulation. In such a distribution system as many dispersed generators are introduced, it is a possibility that the fault current becomes beyond the breaking capacity at the occurrence of short circuit. Introduction of superconducting fault current limiters into a power system is very effective as one of the means to solve the above-mentioned problem, and we have studied on the effective introduction method of them and setting method of their parameters. This paper describes the results of the operation tests for SN transition type of a superconducting fault current limiter using 3 phases of FCL modules against various kinds of system faults or inrush current in the Power System Simulator installed at CRIEPI.

  7. Electrical Motor Current Signal Analysis using a Dynamic Time Warping Method for Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Zhen, D.; Alibarbar, A.; Zhou, X.; Gu, F.; Ball, A. D.

    2011-07-01

    This paper presents the analysis of phase current signals to identify and quantify common faults from an electrical motor based on dynamic time warping (DTW) algorithm. In condition monitoring, measurements are often taken when the motor undertakes varying loads and speeds. The signals acquired in these conditions show similar profiles but have phase shifts, which do not line up in the time-axis for adequate comparison to discriminate the small changes in machine health conditions. In this study, DTW algorithms are exploited to align the signals to an ideal current signal constructed based on average operating conditions. In this way, comparisons between the signals can be made directly in the time domain to obtain residual signals. These residual signals are then based on to extract features for detecting and diagnosing the faults of the motor and components operating under different loads and speeds. This study provides a novel approach to the analysis of electrical current signal for diagnosis of motor faults. Experimental data sets of electrical motor current signals have been studied using DTW algorithms. Results show that DTW based residual signals highlights more the modulations due to the compressor process. And hence can obtain better fault detection and diagnosis results.

  8. Superconducting NbN Coplanar Switch Driven by DC Current for CMB Instruments

    NASA Astrophysics Data System (ADS)

    Bordier, G.; Cammilleri, V. D.; Bélier, B.; Bleurvacq, N.; Ghribi, A.; Piat, M.; Tartari, A.; Zannoni, M.

    2014-09-01

    The next generations of cosmic microwave background (CMB) instruments will be dedicated to the detection and characterisation of CMB B-modes. To measure this tiny signal, instruments need to control and minimise systematics. Signal modulation is one way to achieve such a control. New generation of focal planes will include the entire detection chain on chip. In this context, we present a superconducting coplanar switch driven by DC current. It consists of a superconducting micro-bridge which commutes between its on (superconducting) and off (normal metal) states, depending on the amplitude of the current injection. To be effective, we have to use a high normal state resistivity superconducting material with a gap frequency higher than the frequencies of operation (millimeter waves). Several measurements were made at low temperature on NbN and yielded very high resistivities. Preliminary results of components dc behavior is shown. Thanks to its low power consumption, fast modulation and low weight, this component is a perfect candidate for future CMB space missions.

  9. A superconducting fault current limiter integrated in the cold heat exchanger of a thermoacoustic refrigerator

    NASA Astrophysics Data System (ADS)

    Osorio, M. R.; Bétrancourt, A.; François, M. X.; Veira, J. A.; Vidal, F.

    2008-09-01

    In this work we probe a compact superconducting fault current limiter (SFCL) integrated in the cold heat exchanger of a thermoacoustic refrigerator. A design for an SFCL device with a power of about 2.2 kW is presented and described in detail. A thermoacoustic refrigerator is also proposed which, under fault conditions, must be able to remove around 50 W at 80 K. A simulation routine is run to test the performance of the SFCL, based on YBCO films, in terms of both the limiting capacity and the energy to be dissipated and removed inside the heat exchanger.

  10. Application Study of a High Temperature Superconducting Fault Current Limiter for Electric Power System

    NASA Astrophysics Data System (ADS)

    Naito, Yuji; Shimizu, Iwao; Yamaguchi, Iwao; Kaiho, Katsuyuki; Yanabu, Satoru

    Using high temperature superconductor, a Superconducting Fault Current Limiter (SFCL) was made and tested. Superconductor and vacuum interrupter as commutation switch are connected in parallel with bypass coil. When a fault occurs and the excessive current flows, superconductor is first quenched and the current is transferred to bypass coil because on voltage drop of superconductor. At the same time, since magnetic field is generated by current which flows in bypass coil, commutation switch is immediately driven by electromagnetic repulsion plate connected to driving rod of vacuum interrupter, and superconductor is separated from this circuit. Using the testing model, we could separate the superconductor from a circuit due to movement of vacuum interrupter within half-cycle current and transfer all current to bypass coil. Since operation of a commutation switch is included in current limiting operation of this testing model, it is one of helpful circuit of development of SFCL in the future. Moreover, since it can make the consumed energy of superconductor small during fault state due to realization of high-speed switch with simple composition, the burden of superconductor is reduced compared with conventional resistive type SFCL and it is considered that the flexibility of a SFCL design increases. Cooperation with a circuit breaker was also considered, the trial calculation of a parameter and energy of operation is conducted and discussion in the case of installing the SFCL to electric power system is made.

  11. Research on fast fault identification method of 10.5 kV/1.5 kA superconducting fault current limiter

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Sun, Qiang; Xiao, Liye; Liu, Daqian; Qiu, Ming; Qiu, Qinquan; Zhang, Guomin; Dai, Shaotao; Lin, Liangzhen

    2014-09-01

    Superconducting fault current limiter (SFCL) is a prospective electric devices connected in series in power grid to limit short-circuit current. A 10.5 kV/1.5 kA 3-phase SFCL with HTS coil of 6.24 mH was developed at IEECAS in China in 2005, which was operated in a local power grid in Hunan province for more than 11,000 h, and integrated lately in a superconducting power substation in Baiyin city in 2011 and is still running safely and reliably. In order to reduce the fault response time and enhance the performance of the SFCL, we analyzed the structure characteristics of the SFCL and discussed the variation of currents and voltages of the HTS coil and the bridge during the fault time. The simulation and tests results of power system validate the feasibility of the fast fault identification method.

  12. Symmetrical and Unsymmetrical Fault Currents of a Wind Power Plant: Preprint

    SciTech Connect

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    This paper investigates the short-circuit behavior of a wind power plant for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. The size of wind power plants (WPPs) keeps getting bigger and bigger. The number of wind plants in the U.S. has increased very rapidly in the past 10 years. It is projected that in the U.S., the total wind power generation will reach 330 GW by 2030. As the importance of WPPs increases, planning engi-neers must perform impact studies used to evaluate short-circuit current (SCC) contribution of the plant into the transmission network under different fault conditions. This information is needed to size the circuit breakers, to establish the proper sys-tem protection, and to choose the transient suppressor in the circuits within the WPP. This task can be challenging to protec-tion engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. Three different soft-ware packages are utilized to develop this paper. Time domain simulations and steady-state calculations are used to perform the analysis.

  13. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-11-01

    High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  14. Dependence of DC HTS Cable Critical Current on the Temperature Distribution along the Cable

    NASA Astrophysics Data System (ADS)

    Vyatkin, Vladimir S.; Sun, Jian; Ivanov, Yury V.; Chikumoto, Noriko; Watanabe, Hirofumi; Shyshkin, Oleg; Yamaguchi, Satarou

    A temperature of the long HTS cable increases with the temperature of the liquid nitrogen flowing along the cable accumulating the heat load. Therefore, the critical current decreases along the cable and in the part of the cable near outlet becomes the minimum. The critical current of the long HTS cable is estimated by the voltage drop across the cable. The typical n-value of the voltage-current characteristic of the cable is about 10-20. The decreasing of the critical current near the outlet leads the increasing of local electrical losses and it causes consequently the increasing of the local temperature of liquid nitrogen. In spite of the fact, that average electrical field is enough low (E0 = 10-6V/cm) the local current can be higher than the critical one. Measurement of the critical current with criterion of average electrical field cannot provide the safe heat losses value in every part of the cable. In the present paper the local heat generation along the cable and the method for providing the safe local DC heat losses in the every part of the cable are discussed.

  15. A novel wide-area backup protection based on fault component current distribution and improved evidence theory.

    PubMed

    Zhang, Zhe; Kong, Xiangping; Yin, Xianggen; Yang, Zengli; Wang, Lijun

    2014-01-01

    In order to solve the problems of the existing wide-area backup protection (WABP) algorithms, the paper proposes a novel WABP algorithm based on the distribution characteristics of fault component current and improved Dempster/Shafer (D-S) evidence theory. When a fault occurs, slave substations transmit to master station the amplitudes of fault component currents of transmission lines which are the closest to fault element. Then master substation identifies suspicious faulty lines according to the distribution characteristics of fault component current. After that, the master substation will identify the actual faulty line with improved D-S evidence theory based on the action states of traditional protections and direction components of these suspicious faulty lines. The simulation examples based on IEEE 10-generator-39-bus system show that the proposed WABP algorithm has an excellent performance. The algorithm has low requirement of sampling synchronization, small wide-area communication flow, and high fault tolerance.

  16. Impact of quasi-dc currents on three-phase distribution transformer installations. Power Systems Technology Program

    SciTech Connect

    McConnell, B.W.; Barnes, P.R.; Tesche, F.M.; Schafer, D.A.

    1992-06-01

    This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This ``smoking neutral`` results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.

  17. Non-invasive long-term recordings of cortical 'direct current' (DC-) activity in humans using magnetoencephalography.

    PubMed

    Mackert, B M; Wübbeler, G; Burghoff, M; Marx, P; Trahms, L; Curio, G

    1999-10-01

    Recently, biomagnetic fields below 0.1 Hz arising from nerve or muscle injury currents have been measured non-invasively using superconducting quantum interference devices (SQUIDs). Here we report first long-term recordings of cortical direct current (DC) fields in humans based on a horizontal modulation (0.4 Hz) of the body and, respectively, head position beneath the sensor array: near-DC fields with amplitudes between 90 and 540 fT were detected in 5/5 subjects over the auditory cortex throughout prolonged stimulation periods (here: 30 s) during which subjects were listening to concert music. These results prove the feasibility to record non-invasively low amplitude near-DC magnetic fields of the human brain and open the perspective for studies on DC-phenomena in stroke, such as anoxic depolarization or periinfarct depolarization, and in migraine patients.

  18. Modeling of Vortex Flows in Direct Current (DC) Electric Arc Furnace with Different Bottom Electrode Positions

    NASA Astrophysics Data System (ADS)

    Kazak, Oleg

    2013-10-01

    This article is devoted to the numerical modeling of electrovortex and convection flows in the direct current (DC) electric arc furnace with a different position of the bottom electrode. The electromagnetic, temperature, and hydrodynamic distribution parameters are given. The shear stress on the fettle area is offered as a criterion for the estimation of vortex flow influence on the increased wearing of the fettle. It is shown that lifting the bottom electrode above the fettle surface at the electrode radius leads to the decrease of shear stress on the fettle area by 30 pct. Putting the bottom electrode lower than the fettle surface by the distance equal to the electrode radius and its expanding by the same distance reduces the stress by 10 pct.

  19. The bridge-type fault current controller--a new facts controller

    SciTech Connect

    Boenig, Heinrich J.; Mielke, C. H.; Burley, B. L.; Chen, Hong; Waynert, J. A.; Willis, J. O.

    2002-01-01

    The operation of a novel current controller, which can also function as a fault current limiter and as a solid-state ac circuit breaker, is presented. The controller, which consists of a thyristor bridge, an inductor, and an optional bias power supply, is installed in series with the voltage source and the load, For load current values smaller than a preset value, the inductor of the current controller presents no impedance to the ac current flow. For values higher than the preset current value, the inductor is switched automatically into the ac circuit and limits the amount of current flow. Theoretical results in the form of circuit simulations and experimental results with a single-phase unit, operating on a 13.7 kV three-phase system with peak short-circuit currents of 3140 Arms, are presented.

  20. Modeling and Dynamic Analysis of Paralleled of dc/dc Converters with Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  1. Modeling and Dynamic Analysis of Paralleled dc/dc Converters With Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  2. Documentation of the current fault detection, isolation and reconfiguration software of the AIPS fault-tolerant processor

    NASA Technical Reports Server (NTRS)

    Lanning, David T.; Shepard, Allen W.; Johnson, Sally C.

    1987-01-01

    Documentation is presented of the December 1986 version of the ADA code for the fault detection, isolation, and reconfiguration (FDIR) functions of the Advanced Information processing System (AIPS) Fault-Tolerant Processor (FTP). Because the FTP is still under development and the software is constantly undergoing changes, this should not be considered final documentation of the FDIR software of the FTP.

  3. A Study of University Students' Understanding of Simple Electric Circuits. Part 1: Current in d.c. Circuits.

    ERIC Educational Resources Information Center

    Picciarelli, V.; And Others

    1991-01-01

    The results of an investigation concerned with sequential reasoning in interpreting the current flow in d.c. electric circuits are presented. Analysis of the results of a questionnaire completed by 236 college sophomores shows the presence of a common misunderstanding based on a "local" interpretation of the current flow. A copy of the…

  4. Design and development of DC high current sensor using Hall-Effect method

    NASA Astrophysics Data System (ADS)

    Dewi, Sasti Dwi Tungga; Panatarani, C.; Joni, I. Made

    2016-02-01

    This paper report a newly developed high DC current sensor by using a Hall effect method and also the measurement system. The Hall effect sensor receive the magnetic field generated by a current carrying conductor wire. The SS49E (Honeywell) magnetoresistive sensor was employed to sense the magnetic field from the field concentrator. The voltage received from SS49E then converted into digital by using analog to digital converter (ADC-10 bit). The digital data then processed in the microcontroller to be displayed as the value of the electric current in the LCD display. In addition the measurement was interfaced into Personal Computer (PC) using the communication protocols of RS232 which was finally displayed in real-time graphical form on the PC display. The performance test on the range ± 40 Ampere showed that the maximum relative error is 5.26%. It is concluded that the sensors and the measurement system worked properly according to the design with acceptable accuracy.

  5. 3D MHD modelling of low current-high voltage dc plasma torch under restrike mode

    NASA Astrophysics Data System (ADS)

    Lebouvier, A.; Delalondre, C.; Fresnet, F.; Cauneau, F.; Fulcheri, L.

    2012-01-01

    We present in this paper a magnetohydrodynamic (MHD) modelling of the gliding arc behaviour of a dc plasma torch operating with air under low current and high voltage conditions. The low current leads to instabilities and difficulties with simulating the process because the magnetic field is not sufficient to constrict the arc. The model is 3D, time dependent and the MHD equations are solved using CFD software Code_Saturne®. Although the arc is definitively non-local thermodynamic equilibrium (LTE), the LTE assumption is considered as a first approach. The injection of air is tangential. A hot gas channel reattachment model has been used to simulate the restriking process of the arc root. After the description of the model, the most appropriate electrical voltage breakdown parameter has been selected in comparing with experimental results. A typical operating point is then studied in detail and shows the helical shape of the arc discharge in the nozzle. Finally, the mass flow rate and the current have been varied in the range 0.16-0.5 g s-1 and 100-300 mA, respectively, corresponding to typical glidarc operating points of our experimental plasma torch. The model shows good consistency with experimental data in terms of global behaviour, arc length, mean voltage and glidarc frequency.

  6. A Novel Transient Fault Current Sensor Based on the PCB Rogowski Coil for Overhead Transmission Lines

    PubMed Central

    Liu, Yadong; Xie, Xiaolei; Hu, Yue; Qian, Yong; Sheng, Gehao; Jiang, Xiuchen

    2016-01-01

    The accurate detection of high-frequency transient fault currents in overhead transmission lines is the basis of malfunction detection and diagnosis. This paper proposes a novel differential winding printed circuit board (PCB) Rogowski coil for the detection of transient fault currents in overhead transmission lines. The interference mechanism of the sensor surrounding the overhead transmission line is analyzed and the guideline for the interference elimination is obtained, and then a differential winding printed circuit board (PCB) Rogowski coil is proposed, where the branch and return line of the PCB coil were designed to be strictly symmetrical by using a joining structure of two semi-rings and collinear twisted pair differential windings in each semi-ring. A serial test is conducted, including the frequency response, linearity, and anti-interference performance as well as a comparison with commercial sensors. Results show that a PCB Rogowski coil has good linearity and resistance to various external magnetic field interferences, thus enabling it to be widely applied in fault-current-collecting devices. PMID:27213402

  7. A Novel Transient Fault Current Sensor Based on the PCB Rogowski Coil for Overhead Transmission Lines.

    PubMed

    Liu, Yadong; Xie, Xiaolei; Hu, Yue; Qian, Yong; Sheng, Gehao; Jiang, Xiuchen

    2016-05-21

    The accurate detection of high-frequency transient fault currents in overhead transmission lines is the basis of malfunction detection and diagnosis. This paper proposes a novel differential winding printed circuit board (PCB) Rogowski coil for the detection of transient fault currents in overhead transmission lines. The interference mechanism of the sensor surrounding the overhead transmission line is analyzed and the guideline for the interference elimination is obtained, and then a differential winding printed circuit board (PCB) Rogowski coil is proposed, where the branch and return line of the PCB coil were designed to be strictly symmetrical by using a joining structure of two semi-rings and collinear twisted pair differential windings in each semi-ring. A serial test is conducted, including the frequency response, linearity, and anti-interference performance as well as a comparison with commercial sensors. Results show that a PCB Rogowski coil has good linearity and resistance to various external magnetic field interferences, thus enabling it to be widely applied in fault-current-collecting devices.

  8. Ac losses for the self field of an ac transport current with a dc transport current offset in high {Tc} superconducting magnet coils for MagLev application

    SciTech Connect

    Koosh, V.F.

    1993-10-01

    Although much research has been conducted concerning the losses of high-{Tc} superconductors, very little has concentrated on the self-field losses in an actual magnet arrangement. The coils studied in this work were designed for use as actual magnets in an industrial application. Self field loss measurements were made upon tape-wound 2223 superconducting helix coils. The self-field losses were produced by an AC transport current with a DC transport current offset. Losses were taken for single, double and triple tape windings, giving essentially monofilament, dual, and three filament cases. The losses measured here were varied over a range of AC current values for several different DC values, and over a range of frequencies. The currents were all AC sinusoids with a DC offset. All measurements were made at T = 77K.

  9. Simulation analysis of three-phase current type AC-to-DC converter with high power factor

    SciTech Connect

    Okui, Yoshiaki; Yamada, Hajime

    1997-03-01

    A new three-phase current type AC-to-DC converter has been developed by the authors. This paper describes the principle of the circuit operation and the circuit configuration of the AC-to-DC converter controlled by PWM. Simulation analysis of each waveform, such as AC and DC voltages and currents, are calculated by Euler`s method. The simulated values of the total power factor agreed with the measured values within the difference of 5.8% on the condition of full load, 10kW. When the AC side voltage is unbalanced, it is found by simulation that the total harmonic distortion controlled by both feedforward control and AC side current feedback control (proportion gain, k{sub 4} = 1) is restrained at only 38% compared with only feedforward control (k{sub 4} = 0).

  10. Study on Recovery Performance of High Tc Superconducting Tapes for Resistive Type Superconducting Fault Current Limiter Applications

    NASA Astrophysics Data System (ADS)

    kar, Soumen; Kulkarni, Sandeep; Dixit, Manglesh; Singh, Kuwar Pal; Gupta, Alok; Balasubramanyam, P. V.; Sarangi, S. K.; Rao, V. V.

    Recent advances in reliable production of long length high temperature superconducting (HTS) tapes have resulted in commercial application of superconducting fault current limiters (SFCLs) in electrical utility networks. SFCL gives excellent technical performance when compared to conventional fault current limiters. The fast self-recovery from normal state to superconducting state immediately after the fault removal is an essential criterion for resistive type SFCL operation. In this paper, results on AC over-current testing of 1st generation (1G) Bi2223 tapes and 2nd generation (2G) YBCO coated conductors operating at 77 K are reported. From these results, the recovery time is estimated for different available HTS tapes in the market. The current limiting tests have also been performed to study the effective current limitation. Further, the recovery characteristics after the current limitation are quantitatively discussed for repetitive faults for different time intervals in the range of 100 ms to few seconds.

  11. Quantitative Thermal Microscopy Measurement with Thermal Probe Driven by dc+ac Current

    NASA Astrophysics Data System (ADS)

    Bodzenta, Jerzy; Juszczyk, Justyna; Kaźmierczak-Bałata, Anna; Firek, Piotr; Fleming, Austin; Chirtoc, Mihai

    2016-07-01

    Quantitative thermal measurements with spatial resolution allowing the examination of objects of submicron dimensions are still a challenging task. The quantity of methods providing spatial resolution better than 100 nm is very limited. One of them is scanning thermal microscopy (SThM). This method is a variant of atomic force microscopy which uses a probe equipped with a temperature sensor near the apex. Depending on the sensor current, either the temperature or the thermal conductivity distribution at the sample surface can be measured. However, like all microscopy methods, the SThM gives only qualitative information. Quantitative measuring methods using SThM equipment are still under development. In this paper, a method based on simultaneous registration of the static and the dynamic electrical resistances of the probe driven by the sum of dc and ac currents, and examples of its applications are described. Special attention is paid to the investigation of thin films deposited on thick substrates. The influence of substrate thermal properties on the measured signal and its dependence on thin film thermal conductivity and film thickness are analyzed. It is shown that in the case where layer thicknesses are comparable or smaller than the probe-sample contact diameter, a correction procedure is required to obtain actual thermal conductivity of the layer. Experimental results obtained for thin SiO2 and BaTiO_{3 }layers with thicknesses in the range from 11 nm to 100 nm are correctly confirmed with this approach.

  12. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    SciTech Connect

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-26

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.

  13. The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia

    NASA Astrophysics Data System (ADS)

    Velandia, Francisco; Acosta, Jorge; Terraza, Roberto; Villegas, Henry

    2005-04-01

    Riedel, synthetic and antithetic type faults, principal displacement zones (PDZ), pull-apart basins (such as lazy-S shaped releasing bend, extensive and rhomboidal shaped and releasing sidestep basins) and minor folds located oblique to the main trace of the Algeciras Fault System (AFS) are interpreted from Landsat TM 5 images and geological mapping. These tectonic features are affecting Quaternary deposits and are related to major historical earthquakes and recent registered seismic events, indicating neotectonic activity of the structure. The AFS is classified as a right lateral wrench complex structure, with an important vertical component in which sedimentary cover and basement rocks are involved. In addition, the system represents a simple shear caused by the oblique convergence between the Nazca Plate and the northern Andes. The transpressive boundary in SW Colombia was previously located along the Eastern Frontal Fault System. However, this paper shows that the AFS constitutes the actual boundary of the current transpressive regime along the Northern Andes, which begins at the Gulf of Guayaquil in Ecuador and continues into Colombia and Venezuela.

  14. Eddy current loss and coil inductance evaluation in DC machines by a PG-based F. E. Code

    SciTech Connect

    Arturi, C.M.; Ubaldini, M. )

    1991-09-01

    The present paper deals with the evaluation of both the eddy current loss and the self and mutual inductances of the commutating coils of a dc machine armature-winding for railway traction by a two-dimension PC-based finite element commercial code. The comparison among several distribution of the conductors occupying a given slot and among slots with different ratio of depth to width is made in this paper in order to determine, for a given dc machine, the best design solution with references to both the loss and the self and mutual inductances of the commutating coils.

  15. A fast novel soft-start circuit for peak current-mode DC—DC buck converters

    NASA Astrophysics Data System (ADS)

    Jie, Li; Miao, Yang; Weifeng, Sun; Xiaoxia, Lu; Shen, Xu; Shengli, Lu

    2013-02-01

    A fully integrated soft-start circuit for DC—DC buck converters is presented. The proposed high speed soft-start circuit is made of two sections: an overshoot suppression circuit and an inrush current suppression circuit. The overshoot suppression circuit is presented to control the input of the error amplifier to make output voltage limit increase in steps without using an external capacitor. A variable clock signal is adopted in the inrush current suppression circuit to increase the duty cycle of the system and suppress the inrush current. The DC—DC converter with the proposed soft-start circuit has been fabricated with a standard 0.13 μm CMOS process. Experimental results show that the proposed high speed soft-start circuit has achieved less than 50 μs start-up time. The inductor current and the output voltage increase smoothly over the whole load range.

  16. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    NASA Astrophysics Data System (ADS)

    Maguire, J. F.; Yuan, J.

    2009-10-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  17. The calculation of equalizer currents in a 4.1 MW lap wound DC machine using finite element analysis

    SciTech Connect

    Pagel, A.; Meyer, A.S.; Landy, C.F.

    1995-12-31

    The design of equalizer windings for large lap wound d.c. machines is generally of an empirical nature. This paper presents an analytical technique, using finite element analysis, for the calculation of equalizer currents in lap windings. Each path in a simplex lap winding is influenced by a different pair of poles. It is practically impossible to make the fluxes of all poles identical in large d.c. machines. The result of uneven pole strength is that the voltages induced in the parallel paths are unequal. Since the paths are in parallel, circulating currents flow in the winding; when the machine is loaded the tendency will be to overload certain of the brushes. To mitigate this effect, permanent equalizer connections are usually made to the back of the winding to join points whose e.m.f should at every instant be the same. The circulating currents then superimpose a partially corrected magnetic field. Since equalizer currents cannot be easily measured during operation, this investigation was undertaken to see how finite element analysis could be used to determine the equalizer current sensitivity to changes in the structure. The analytical technique was used to determine the equalizer currents in a large lap wound d.c. generator. The machine modeled has been rebuilt after a major breakdown when problems occurred with equalizer windings burning out.

  18. Performance test of the cryogenic cooling system for the superconducting fault current limiter

    NASA Astrophysics Data System (ADS)

    Hong, Yong-Ju; In, Sehwan; Yeom, Han-Kil; Kim, Heesun; Kim, Hye-Rim

    2015-12-01

    A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

  19. Computational Study on the Steady-state Impedance of Saturated-core Superconducting Fault Current Limiter

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Tang, Y.; Liang, S.; Ren, L.; Wang, Z.; Xu, Y.

    This paper presents the electromagnetic analysis of a high voltage saturated-core superconducting fault current limiter (SCSFCL). The numerical analyses of a three-dimensional (3D) model is shown, and the specific parameters are given. The model focus on the steady-state impedance of the limiter when connected to the power grid. It analyzed the dependence of steady-state impedance on the AC coil current, and the relationship between oil gap and coil inductance. The results suggest that, adding oil gap between slice of silicon steel can reduce the core cross-section, restrain the ultraharmonic and decrease the steady-state impedance. As the core cross-section of AC limb decreased from 4344 cm2 to 3983 cm2, the total harmonic distortion for voltage decreased from 2.4% to 1.8%, and the impedance decreased from 1.082 Ω to 1.069 Ω(Idc=400A,Iac=1296A).

  20. Fault diagnosis algorithm based on switching function for boost converters

    NASA Astrophysics Data System (ADS)

    Cho, H.-K.; Kwak, S.-S.; Lee, S.-H.

    2015-07-01

    A fault diagnosis algorithm, which is necessary for constructing a reliable power conversion system, should detect fault occurrences as soon as possible to protect the entire system from fatal damages resulting from system malfunction. In this paper, a fault diagnosis algorithm is proposed to detect open- and short-circuit faults that occur in a boost converter switch. The inductor voltage is abnormally kept at a positive DC value during a short-circuit fault in the switch or at a negative DC value during an open-circuit fault condition until the inductor current becomes zero. By employing these abnormal properties during faulty conditions, the inductor voltage is compared with the switching function to detect each fault type by generating fault alarms when a fault occurs. As a result, from the fault alarm, a decision is made in response to the fault occurrence and the fault type in less than two switching time periods using the proposed algorithm constructed in analogue circuits. In addition, the proposed algorithm has good resistivity to discontinuous current-mode operation. As a result, this algorithm features the advantages of low cost and simplicity because of its simple analogue circuit configuration.

  1. Modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    SciTech Connect

    Faudot, E.; Heuraux, S.; Colas, L.

    2007-09-28

    RF heating is fully dependent on edge plasma conditions and particularly on convection of accelerated particles which can damage ICRH antennas (hot spots and impurity injection). These accelerated particle fluxes born in DC potential structures are induced by sheaths which rectify RF potentials. The potential map in front of antenna is not uniform so that transverse (to magnetic field) RF currents occur and can significantly modify the final DC potential map and thus convective flux distribution. The behavior of rectified potentials is investigated here for f = F{sub ci} and f>F{sub ci}, which was not yet achieved in our last works [1]. Therefore, a 2D fluid modeling including RF sheaths physics (parallel current) coupled with transverse RF currents has been built. The full description of the currents exhibits a maximum for frequencies around Fci, which can be explained by the fact that RF oscillation is capacitive at low frequency and inductive at high frequency. Both effects are present at frequencies around F{sub ci} and the DC peak potential appears for f = F{sub ci}/2. This is due to the rectification of the sinusoidal signal, which doubles the effective RF frequency radiated by the antenna. The theoretical DC peak value is 0.5 time the RF amplitude of the applied potential instead of 1/{pi} without transverse currents. For typical potential structures in front of ICRH antennas (centimetric wide and 1000 Volts peak potential), a factor between 0.4 and 0.45 can be expected according to 2D fiuid code results.

  2. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    SciTech Connect

    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman

    2011-04-01

    GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  3. Large reduction of the depinning field for a transverse domain wall under application of rf and dc currents

    NASA Astrophysics Data System (ADS)

    Metaxas, P. J.; Anane, A.; Cros, V.; Grollier, J.; Deranlot, C.; Petroff, F.; Fert, A.; Ulysse, C.; Faini, G.

    2010-03-01

    A new generation of proposed spintronic devices are based on domain wall (DW) motion (DW-MRAM, DW logic, racetrack memory...). However, reliable depinning of domain walls remains elusive, especially in zero field. Here, we have studied the combined effect of rf and dc currents on the depinning of transverse walls in the soft NiFe layer of a 100 nm wide Co/Cu/NiFe spin valve wire. Using the GMR effect, we ensure that the domain wall is always prepared at the same intrinsic defect and then measure the depinning field for different applied dc and rf currents. Notably, for a narrow range of rf frequencies at around 3GHz, we evidence a strong reduction in the depinning field (from ˜80 Oe to ˜30 Oe). Our results are suggestive of a very efficient resonant depinning effect in our spin valve wire which depends not only on the rf power but also on the polarity and amplitude of the accompanying dc current.

  4. Adaptive switching frequency buck DC—DC converter with high-accuracy on-chip current sensor

    NASA Astrophysics Data System (ADS)

    Jinguang, Jiang; Fei, Huang; Zhihui, Xiong

    2015-05-01

    A current-mode PWM buck DC—DC converter is proposed. With the high-accuracy on-chip current sensor, the switching frequency can be selected automatically according to load requirements. This method improves efficiency and obtains an excellent transient response. The high accuracy of the current sensor is achieved by a simple switch technique without an amplifier. This has the direct benefit of reducing power dissipation and die size. Additionally, a novel soft-start circuit is presented to avoid the inrush current at the starting up state. Finally, this DC—DC converter is fabricated with the 0.5 μm standard CMOS process. The chip occupies 3.38 mm2. The accuracy of the proposed current sensor can achieve 99.5% @ 200 mA. Experimental results show that the peak efficiency is 91.8%. The input voltage ranges from 5 to 18 V, while a 2 A load current can be obtained. Project supported by the National Natural Science Foundation of China (No. 41274047), the Natural Science Foundation of Jiangsu Province (No. BK2012639), the Science and Technology Enterprises in Jiangsu Province Technology Innovation Fund (No. BC2012121), and the Changzhou Science and Technology Support (Industrial) Project (No. CE20120074).

  5. Current dependence of heat leak on the terminals in the superconducting DC transmission and distribution system of CASER-2

    NASA Astrophysics Data System (ADS)

    Kawahara, Toshio; Watanabe, Hirofumi; Emoto, Masahiko; Hamabe, Makoto; Yamaguchi, Sataro; Hikichi, Yasuo; Minowa, Masahiro

    2012-12-01

    Superconductivity can solve the energy problems in the world as energy saving technologies. In particular, superconducting direct current (DC) transmission and distribution (T&D) systems is promising, as it can be easily extended to large scale energy transmission systems for energy sharing. We are developing criogenic systems for effective cooling of superconducting T&D systems. In the cooling experiments with the 200 m-class superconducting DC T&D system at Chubu University (CASER-2), we have estimated the performance of the system. For example, our superconducting cable is connected to the outside at the terminals using Peltier current leads (PCLs). The PCL is composed of a thermoelectric material and a copper lead. Small thermal conductivity and large thermopower of the thermoelectric modules can effectively insulate the heat leak to the low temperature end. We measured the temperature along the current leads and the heat leak at the terminals. As current leads have an optimal shape factor, the optimum operation current exists. The current dependence of the system performance is discussed.

  6. Preparative isolation and purification of three sesquiterpenoid lactones from Eupatorium lindleyanum DC. by high-speed counter-current chromatography.

    PubMed

    Yan, Guilong; Ji, Lilian; Luo, Yuming; Hu, Yonghong

    2012-07-27

    A high-speed counter-current chromatography (HSCCC) method was established for the preparative separation of three sesquiterpenoid lactones from Eupatorium lindleyanum DC. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:4:2:3, v/v/v/v) was selected. From 540 mg of the n-butanol fraction of Eupatorium lindleyanum DC., 10.8 mg of 3β-hydroxy-8β-[4'-hydroxytigloyloxy]-costunolide, 17.9 mg of eupalinolide A and 19.3 mg of eupalinolide B were obtained in a one-step HSCCC separation, with purities of 91.8%, 97.9% and 97.1%, respectively, as determined by HPLC. Their structures were further identified by ESI-MS and ¹H-NMR.

  7. Characteristics of sheath-driven tangential flow produced by a low-current DC surface glow discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Shin, Jichul; Shajid Rahman, Mohammad

    2014-08-01

    An experimental investigation of low-speed flow actuation at near-atmospheric pressure is presented. The flow actuation is achieved via low-current ( \\lesssim 1.0 mA) continuous or pulsed DC surface glow discharge plasma. The plasma actuator, consisting of two sharp-edged nickel electrodes, produces a tangential flow in a direction from anode to cathode, and is visualized using high-speed schlieren photography. The induced flow velocity estimated via the schlieren images reaches up to 5 m/s in test cases. The actuation capability increases with pressure and electrode gap distances, and the induced flow velocity increases logarithmically with the discharge power. Pulsed DC exhibits slightly improved actuation capability with better directionality. An analytic estimation of induced flow velocity obtained based on ion momentum in the cathode sheath and gas dynamics in one-dimensional flow yields values similar to those measured.

  8. Spin-Hall-Effect-Assisted Electroresistance in Antiferromagnets via 105 A/cm2 dc Current

    NASA Astrophysics Data System (ADS)

    Han, Jiahao; Wang, Yuyan; Pan, Feng; Song, Cheng

    2016-08-01

    Antiferromagnet (AFM) spintronics with reduced electrical current is greatly expected to process information with high integration and low power consumption. In Pt/FeMn and Ta/FeMn hybrids, we observe significant resistance variation (up to 7% of the total resistance) manipulated by 105 A/cm2 dc current. We have excluded the contribution of isotropic structural effects, and confirmed the critical role of the spin Hall injection from Pt (or Ta) to FeMn. This electrical current-manipulated resistance (i.e. electroresistance) is proposed to be attributed to the spin-Hall-effect-induced spin-orbit torque in FeMn. Similar results have also been detected in plain IrMn films, where the charge current generates spin current via the spin Hall effect with the existence of Ir atoms. All the measurements are free from external magnetic fields and ferromagnets. Our findings present an interesting step towards high-efficiency spintronic devices.

  9. Test Results for a 25 Meter Prototype Fault Current Limiting Hts Cable for Project Hydra

    NASA Astrophysics Data System (ADS)

    Rey, C. M.; Duckworth, R. C.; Demko, J. A.; Ellis, A.; James, D. R.; Gouge, M. J.; Tuncer, E.

    2010-04-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its HTS cable test facility. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture between Southwire and nkt cables. System integration and HTS wire were provided by American Superconductor Corporation who was the overall team leader of the project. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ˜200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3-Φ) HTS Triax™ design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase (7967 V phase-to-ground) and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  10. Status and Progress of a Fault Current Limiting Hts Cable to BE Installed in the con EDISON Grid

    NASA Astrophysics Data System (ADS)

    Maguire, J.; Folts, D.; Yuan, J.; Henderson, N.; Lindsay, D.; Knoll, D.; Rey, C.; Duckworth, R.; Gouge, M.; Wolff, Z.; Kurtz, S.

    2010-04-01

    In the last decade, significant advances in the performance of second generation (2G) high temperature superconducting wire have made it suitable for commercially viable applications such as electric power cables and fault current limiters. Currently, the U.S. Department of Homeland Security is co-funding the design, development and demonstration of an inherently fault current limiting HTS cable under the Hydra project with American Superconductor and Consolidated Edison. The cable will be approximately 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The underground cable will be installed and energized in New York City. The project is led by American Superconductor teamed with Con Edison, Ultera (Southwire and nkt cables joint venture), and Air Liquide. This paper describes the general goals, design criteria, status and progress of the project. Fault current limiting has already been demonstrated in 3 m prototype cables, and test results on a 25 m three-phase cable will be presented. An overview of the concept of a fault current limiting cable and the system advantages of this unique type of cable will be described.

  11. Electrical Motor Current Signal Analysis using a Modulation Signal Bispectrum for the Fault Diagnosis of a Gearbox Downstream

    NASA Astrophysics Data System (ADS)

    Haram, M.; Wang, T.; Gu, F.; Ball, A. D.

    2012-05-01

    Motor current signal analysis has been an effective way for many years of monitoring electrical machines themselves. However, little work has been carried out in using this technique for monitoring their downstream equipment because of difficulties in extracting small fault components in the measured current signals. This paper investigates the characteristics of electrical current signals for monitoring the faults from a downstream gearbox using a modulation signal bispectrum (MSB), including phase effects in extracting small modulating components in a noisy measurement. An analytical study is firstly performed to understand amplitude, frequency and phase characteristics of current signals due to faults. It then explores the performance of MSB analysis in detecting weak modulating components in current signals. Experimental study based on a 10kw two stage gearbox, driven by a three phase induction motor, shows that MSB peaks at different rotational frequencies can be based to quantify the severity of gear tooth breakage and the degrees of shaft misalignment. In addition, the type and location of a fault can be recognized based on the frequency at which the change of MSB peak is the highest among different frequencies.

  12. Novel DC ring topology and protection system - a comprehensive solution for mega city power grids

    NASA Astrophysics Data System (ADS)

    Haj-Maharsi, Mohamed Yassine

    2009-07-01

    using data provided by ABB corporate research located in China. I built on the work that had been performed in ABB China by considering different contingencies and I applied solutions using individual FACTS devices such as FCL, SVC-LightRTM, and HVDC-LightRTM. I analyzed the results from each solution in order to assess its merits and limitations in dealing with fault current and voltage stability problems. Then I presented a novel DC ring topology that provides redundancy, better protection against cascading faults, and does not increase short circuit levels. With this topology, adding loads or power sources does not impact system protection or performance. (2) I proposed two novel designs for a DC circuit breaker that is of critical importance to DC applications using multiple converter stations. The proposed designs solve the problem of DC fault clearing without causing significant voltage drops, current oscillations, or shutting down of any converter station connected to the DC bus. The DC breaker rated at a voltage of 320 kV and a current of 3000 A can interrupt DC currents as high as 70 kA within 800 mus. (3) I proposed a novel placement of the DC circuit breakers within the DC ring topology combined with an intelligent protection algorithm that optimizes fault detection and isolation without affecting the rest of the DC system. The protection scheme uses local measurements and special coordination techniques for clearing solid faults and uses differential measurements to identify and isolate high impedance faults.

  13. Comparison microstructure and sliding wear properties of nickel-cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition

    NASA Astrophysics Data System (ADS)

    Karslioglu, Ramazan; Akbulut, Hatem

    2015-10-01

    Nickel-cobalt (Ni-Co) alloys and Ni-Co/multiwalled carbon nanotube (MWCNT) composite coatings were prepared under direct current (DC), pulse current (PC) and pulse reverse current (PRC) methods. The effect of different deposition currents on the surface microstructure, crystallographic structure, microhardness, and reciprocating sliding wear behavior were investigated. MWCNT co-deposition caused to modify Ni-Co surface morphology, decrease in grain size, and increase in surface roughness, since MWCNTs effected the deposition mechanisms of Ni-Co alloy. The nanocomposite coatings deposited using PC and PRC deposition exhibited significant improvement in microhardness and wear resistance due to unique enhanced reinforcement of MWCNTs in Ni-Co coatings. Reciprocating sliding wear tests evidenced that co-deposition of MWCNTs provided effective load bearing ability and self-lubrication between the friction surfaces. However, the friction coefficient increases for all the nanocomposites produced with DC, PC and PRC methods showed to be increased. In the Ni-Co alloy coatings, the predominant wear mechanisms was delamination caused by fatigue micro cracking whereas in the MWCNT co-deposited composites wear mechanism showed abrasive grooves and plastic deformation due to decreased real contact area.

  14. Photovoltaic ground fault and blind spot electrical simulations.

    SciTech Connect

    Flicker, Jack David; Johnson, Jay

    2013-06-01

    Ground faults in photovoltaic (PV) systems pose a fire and shock hazard. To mitigate these risks, AC-isolated, DC grounded PV systems in the United States use Ground Fault Protection Devices (GFPDs), e.g., fuses, to de-energize the PV system when there is a ground fault. Recently the effectiveness of these protection devices has come under question because multiple fires have started when ground faults went undetected. In order to understand the limitations of fuse-based ground fault protection in PV systems, analytical and numerical simulations of different ground faults were performed. The numerical simulations were conducted with Simulation Program with Integrated Circuit Emphasis (SPICE) using a circuit model of the PV system which included the modules, wiring, switchgear, grounded or ungrounded components, and the inverter. The derivation of the SPICE model and the results of parametric fault current studies are provided with varying array topologies, fuse sizes, and fault impedances. Closed-form analytical approximations for GFPD currents from faults to the grounded current carrying conductor-known as %E2%80%9Cblind spot%E2%80%9D ground faults-are derived to provide greater understanding of the influence of array impedances on fault currents. The behavior of the array during various ground faults is studied for a range of ground fault fuse sizes to determine if reducing the size of the fuse improves ground fault detection sensitivity. The results of the simulations show that reducing the amperage rating of the protective fuse does increase fault current detection sensitivity without increasing the likelihood of nuisance trips to a degree. Unfortunately, this benefit reaches a limit as fuses become smaller and their internal resistance increases to the point of becoming a major element in the fault current circuit.

  15. Design, Fabrication and Testing of a Superconducting Fault Current Limiter (SFCL)

    SciTech Connect

    Gouge, M..; Schwenterly, S.W.; Hazelton, D.

    2011-06-15

    The purpose of this project was to conduct R&D on specified components and provide technical design support to a SuperPower team developing a high temperature superconducting Fault Current Limiter (SFCL). ORNL teamed with SuperPower, Inc. on a Superconductivity Partnerships with Industry (SPI) proposal for the SFCL that was submitted to DOE and approved in FY 2003. A contract between DOE and SuperPower, Inc. was signed on July 14, 2003 to design, fabricate and test the SFCL. This device employs high temperature superconducting (HTS) elements and SuperPower's proprietary technology. The program goal was to demonstrate a device that will address a broad range of the utility applications and meet utility industry requirements. This DOE-sponsored Superconductivity Partnership with Industry project would positively impact electric power transmission reliability and security by introducing a new element in the grid that can significantly mitigate fault currents and provide lower cost solutions for grid protection. The project will conduct R&D on specified components and provide technical design support to a SuperPower-led team developing a SFCL as detailed in tasks 1-5 below. Note the SuperPower scope over the broad SPI project is much larger than that shown below which indicates only the SuperPower tasks that are complementary to the ORNL tasks. SuperPower is the Project Manager for the SFCL program, and is responsible for completion of the project on schedule and budget. The scope of work for ORNL is to provide R&D support for the SFCL in the following four broad areas: (1) Assist with high voltage subsystem R&D, design, fabrication and testing including characterization of the general dielectric performance of LN2 and component materials; (2) Consult on cryogenic subsystem R&D, design, fabrication and testing; (3) Participate in project conceptual and detailed design reviews; and (4) Guide commercialization by participation on the Technical Advisory Board (TAB). Super

  16. High-angle origin of the currently low-angle Badwater Turtleback fault, Death Valley, California

    SciTech Connect

    Miller, M.G. )

    1991-04-01

    The late Cenozoic Badwater Turtleback fault separates an upper plate of volcanic and sedimentary rocks from a lower plate of predominantly mylonitic plutonic and metamorphic rocks. The Turtleback fault, however, is not a single continuous surface, but consists of a least three generations of faults. These faults occur as discrete, crosscutting segments that progressively decrease in age and increase in dip to the west. Therefore, they probably began at moderate to steep angles but rotated to lower angles with extensional strain. If so, lower plate mylonitic rocks also restore to steeper dips and suggest that transport of the upper plate occurred on moderate to steeply dipping surfaces in the middle and upper crust. The crosscutting nature of the fault segments and their initial moderate to steep dips, plus a possible offset marker on one of the segments, are most consistent with moderate amounts of extension in the Death Valley region.

  17. State of the art of superconducting fault current limiters and their application to the electric power system

    NASA Astrophysics Data System (ADS)

    Morandi, Antonio

    2013-01-01

    Modern electric power systems are becoming more and more complex in order to meet new needs. Nowadays a high power quality is mandatory and there is the need to integrate increasing amounts of on-site generation. All this translates in more sophisticated electric network with intrinsically high short circuit rate. This network is vulnerable in case of fault and special protection apparatus and procedures needs to be developed in order to avoid costly or even irreversible damage. A superconducting fault current limiter (SFCL) is a device with a negligible impedance in normal operating conditions that reliably switches to a high impedance state in case of extra-current. Such a device is able to increase the short circuit power of an electric network and to contemporarily eliminate the hazard during the fault. It can be regarded as a key component for future electric power systems. In this paper the state of the art of superconducting fault current limiters mature for applications is briefly resumed and the potential impact of this device on the paradigm of design and operation of power systems is analyzed. In particular the use of the FCL as a mean to allow more interconnection of MV bus-bars as well an increased immunity with respect to the voltage disturbances induced by critical customer is discussed. The possibility to integrate more distributed generation in the distribution grid is also considered.

  18. Explaining the current geodetic field with geological models: A case study of the Haiyuan fault system

    NASA Astrophysics Data System (ADS)

    Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M. P.; Barbot, S.; Peltzer, G.; Tapponnier, P.

    2015-12-01

    Oblique convergence across Tibet leads to slip partitioning with the co-existence of strike-slip, normal and thrust motion in major fault systems. While such complexity has been shown at the surface, the question is to understand how faults interact and accumulate strain at depth. Here, we process InSAR data across the central Haiyuan restraining bend, at the north-eastern boundary of the Tibetan plateau and show that the surface complexity can be explained by partitioning of a uniform deep-seated convergence rate. We construct a time series of ground deformation, from Envisat radar data spanning from 2001-2011 period, across a challenging area because of the high jump in topography between the desert environment and the plateau. To improve the signal-to-noise ratio, we used the latest Synthetic Aperture Radar interferometry methodology, such as Global Atmospheric Models (ERA Interim) and Digital Elevation Model errors corrections before unwrapping. We then developed a new Bayesian approach, jointly inverting our InSAR time series together with published GPS displacements. We explore fault system geometry at depth and associated slip rates and determine a uniform N86±7E° convergence rate of 8.45±1.4 mm/yr across the whole fault system with a variable partitioning west and east of a major extensional fault-jog. Our 2D model gives a quantitative understanding of how crustal deformation is accumulated by the various branches of this thrust/strike-slip fault system and demonstrate the importance of the geometry of the Haiyuan Fault, controlling the partitioning or the extrusion of the block motion. The approach we have developed would allow constraining the low strain accumulation along deep faults, like for example for the blind thrust faults or possible detachment in the San Andreas "big bend", which are often associated to a poorly understood seismic hazard.

  19. Evaluation of the intragrain critical current density in a multidomain FeSe crystal by means of dc magnetic measurements

    NASA Astrophysics Data System (ADS)

    Galluzzi, A.; Polichetti, M.; Buchkov, K.; Nazarova, E.; Mancusi, D.; Pace, S.

    2015-11-01

    The magnetic behavior of an iron-based FeSe crystal sample has been studied by means of dc magnetization measurements as a function of the temperature (T), the dc magnetic field (H) and the time (t). The M(T) curves show a discrepancy in the determination of the onset of the critical temperature T C with respect to what is observed in the superconducting M(H) measurements obtained by subtracting the ferromagnetic background from the curves measured at various temperatures. By using magnetic relaxation measurements M(t), the correct value of T C has been obtained. Moreover, the superconducting M(H) loops show the presence of a noisy signal up to an anomalous ‘peak effect’ only found for positive and negative increasing fields. These features have been analyzed by fitting the temperature dependence of the critical current density J c(T), extracted from the M(H) loops, with the help of the J c(T) dependencies governing an S-N-S junction network. This analysis has allowed us to interpret the behavior found in the M(H) loops and to obtain the value of the intrinsic critical current density J 0 which is not influenced by the presence of the junctions.

  20. Design and Development of High Voltage Direct Current (DC) Sources for the Solar Array Module Plasma Interaction Experiment

    NASA Technical Reports Server (NTRS)

    Bibyk, Irene K.; Wald, Lawrence W.

    1995-01-01

    Two programmable, high voltage DC power supplies were developed as part of the flight electronics for the Solar Array Module Plasma Interaction Experiment (SAMPIE). SAMPIE's primary objectives were to study and characterize the high voltage arcing and parasitic current losses of various solar cells and metal samples within the space plasma of low earth orbit (LEO). High voltage arcing can cause large discontinuous changes in spacecraft potential which lead to damage of the power system materials and significant Electromagnetic Interference (EMI). Parasitic currents cause a change in floating potential which lead to reduced power efficiency. These primary SAMPIE objectives were accomplished by applying artificial biases across test samples over a voltage range from -600 VDC to +300 VDC. This paper chronicles the design, final development, and test of the two programmable high voltage sources for SAMPIE. The technical challenges to the design for these power supplies included vacuum, space plasma effects, thermal protection, Shuttle vibrations and accelerations.

  1. Calculated spinal cord electric fields and current densities for possible neurite regrowth from quasi-DC electrical stimulation.

    PubMed

    Greenebaum, Ben

    2015-12-01

    The prime goal of this work was to model essentially steady (DC) fields from electrodes, implanted in several ways, which have been suggested as possible means to encourage nerve fiber regrowth in spinal cord injuries. A simplified model of the human spinal cord in the lumbar region and the SEMCAD-X computer program were used to calculate electric field and current density patterns from electrodes outside vertebrae and those inserted extradurally within the spinal canal. DC electric fields guide nerve growth in developing organisms and in vitro. They also have been shown to encourage healing of injured peripheral nerves, and application of a longitudinal field has been used in attempts to bridge spinal cord injuries. When calculated results are scaled to the experimental level used in the literature, all modeled electrodes produced fields in the spinal cord below fields needed in the literature for stimulation of spinal as well as peripheral nerve growth in vitro, in dogs, and in a published clinical human trial. The highly-conducting cerebrospinal fluid appeared to provide effective shielding; there was also a very high degree of polarization at electrodes.

  2. Quench behavior of Sr0.6K0.4Fe2As2/Ag tapes with AC and DC transport currents at different temperature

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Zhang, Guomin; Yang, Hua; Li, Zhenming; Liu, Wei; Jing, Liwei; Yu, Hui; Liu, Guole

    2016-09-01

    In applications, superconducting wires may carry AC or DC transport current. Thus, it is important to understand the behavior of normal zone propagation in conductors and magnets under different current conditions in order to develop an effective quench protection system. In this paper, quench behavior of Ag sheathed Sr0.6K0.4Fe2As2 (Sr-122 in the family of iron-based superconductor) tapes with AC and DC transport current is reported. The measurements are performed as a function of different temperature (20 K-30 K), varying transport current and operating frequency (50 Hz-250 Hz). The focus of the research is the minimum quench energy (MQE), the normal zone propagation velocity (NZPV) and the comparison of the related results with AC and DC transport current.

  3. Unusual dc electric fields induced by a high frequency alternating current in superconducting Nb films under a perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Aliev, F. G.; Levanyuk, A. P.; Villar, R.; Sierra, J. F.; Pryadun, V. V.; Awad, A.; Moshchalkov, V. V.

    2009-06-01

    We report a systematic study of dc electric fields produced by sinusoidal high frequency ac currents in Nb superconducting films subject to a constant magnetic field perpendicular to the film plane. At frequencies in the 100 kHz to MHz range appears a new rectification effect which has not been previously observed at lower frequencies. We have observed the dc electric field generated in this regime in films without intentionally created anisotropic pinning centres, i.e. plain films, both in strip geometry as in cross-shape geometry, and also in films with symmetric periodic pinning centres. The electric field appears in both directions along and transverse to the alternating current and is essentially different at opposite film sides. It depends strongly on the intensity of the magnetic field and may exceed by nearly an order of magnitude the rectified electric fields recently reported at lower frequencies (few kHz) in systems with artificially induced anisotropic vortex pinning. The effect has a non-monotonic dependence on the drive current frequency, being maximum around a few 100 kHz to MHz, and shows a complicated temperature dependence. It is found to be different in long strips and cross shape samples. In the case of films with symmetric periodic pinning centres the rectified voltage shows a lower magnitude than in plain films, and shows an interesting structure when the applied magnetic field crosses the matching fields. We are only able to put forward tentative ideas to explain this phenomenon, which irrespective of its explanation should be taken into account in experimental studies of rectification effects in superconductors.

  4. Spin-Hall-Effect-Assisted Electroresistance in Antiferromagnets via 10(5) A/cm(2) dc Current.

    PubMed

    Han, Jiahao; Wang, Yuyan; Pan, Feng; Song, Cheng

    2016-01-01

    Antiferromagnet (AFM) spintronics with reduced electrical current is greatly expected to process information with high integration and low power consumption. In Pt/FeMn and Ta/FeMn hybrids, we observe significant resistance variation (up to 7% of the total resistance) manipulated by 10(5) A/cm(2) dc current. We have excluded the contribution of isotropic structural effects, and confirmed the critical role of the spin Hall injection from Pt (or Ta) to FeMn. This electrical current-manipulated resistance (i.e. electroresistance) is proposed to be attributed to the spin-Hall-effect-induced spin-orbit torque in FeMn. Similar results have also been detected in plain IrMn films, where the charge current generates spin current via the spin Hall effect with the existence of Ir atoms. All the measurements are free from external magnetic fields and ferromagnets. Our findings present an interesting step towards high-efficiency spintronic devices. PMID:27546199

  5. Spin-Hall-Effect-Assisted Electroresistance in Antiferromagnets via 105 A/cm2 dc Current

    PubMed Central

    Han, Jiahao; Wang, Yuyan; Pan, Feng; Song, Cheng

    2016-01-01

    Antiferromagnet (AFM) spintronics with reduced electrical current is greatly expected to process information with high integration and low power consumption. In Pt/FeMn and Ta/FeMn hybrids, we observe significant resistance variation (up to 7% of the total resistance) manipulated by 105 A/cm2 dc current. We have excluded the contribution of isotropic structural effects, and confirmed the critical role of the spin Hall injection from Pt (or Ta) to FeMn. This electrical current-manipulated resistance (i.e. electroresistance) is proposed to be attributed to the spin-Hall-effect-induced spin-orbit torque in FeMn. Similar results have also been detected in plain IrMn films, where the charge current generates spin current via the spin Hall effect with the existence of Ir atoms. All the measurements are free from external magnetic fields and ferromagnets. Our findings present an interesting step towards high-efficiency spintronic devices. PMID:27546199

  6. Joint operation of the superconducting fault current limiter and magnetic energy storage system in an electric power network

    NASA Astrophysics Data System (ADS)

    Kopylov, S. I.; Balashov, N. N.; Ivanov, S. S.; Veselovsky, A. S.; Zhemerikin, V. D.

    2010-06-01

    An opportunity of using superconductors as active elements of electric power systems designed to control the electric power distribution, to enhance the systems operating modes and to limit fault currents, was very attractive for investigators for a long time. In this paper, is considered an opportunity to enhance the electric power systems with the aid of superconducting magnetic energy storage systems (SMES) and superconducting fault current limiters (SFCL) operating together. It has been shown that the joint operation of both these superconducting devices allows additional varying of their parameters, what in turn gives a further opportunity to reduce their mass and dimensions and consequently the costs. There had been also shown an additional advantage of the SMES and SFCL joint operation consisting in that they ensure a more effective protection for a power system, preventing its uncontrolled load-off and subsequent acceleration up to the inaccessible rotation speed.

  7. DC BUFFERING AND FLOATING CURRENT FOR A HIGH VOLTAGE IMB APPLICATION

    SciTech Connect

    J.L. Morrison

    2014-08-01

    An interface technique for the latest generation of the Impedance Measurement Box (IMB) has been conceived to enable measurement of impedance spectra for battery modules up to 300V. A 300V capable or higher IMB is an enabling technology for in-situ diagnostics within electric vehicle charging stations or battery back-ups within power distribution sub-stations. It is possible that the existing IMB can be adapted via a 300V interface module to a test battery with voltage significantly greater than 50V. Recently a new concept was conceived for the calibration, algorithm and electronics of the IMB. That algorithm and calibration for that concept have been physically validated. The principal feature of the new electronics is the floating current source excitation of the battery under test. The single ended current excitation of the battery under test, used in the 50V IMB, requires that the negative terminal of the test battery must be the analog ground for the IMB. The new floating current technique allows the test battery to be fully high impedance isolated for a measurement. That isolation will improve IMB noise immunity and enable interrogation of cells internal to a battery module. All these techniques still use the same rapid concept for impedance measurement with the IMB. The purpose of this disclosure is to provide an overview of the analytical validation for three concepts to interface the floating current excitation to a high voltage battery. Recursive simulation models were used in different test scenarios to validate the various new concepts. The analysis will show that it is possible to interface the floating signal current to obtain an impedance measurement on a high voltage test battery. Additionally, the analysis will investigate stress seen by electronics while testing a 300V battery.

  8. Rotor Current Control of DFIG for Improving Fault Ride - Through Using a Novel Sliding Mode Control Approach

    NASA Astrophysics Data System (ADS)

    Cai, Guowei; Liu, Cheng; Yang, Deyou

    2013-11-01

    The doubly fed induction generators (DFIG) have been recognized as the dominant technology used in wind power generation systems with the rapid development of wind power. However, continuous operation of DFIG may cause a serious wind turbine generators tripping accident, due to destructive over-current in the rotor winding which is caused by the power system fault or inefficient fault ride-through (FRT) strategy. A new rotor current control scheme in the rotor-side converter (RSC) ispresented to enhance FRT capacities of grid-connected DFIG. Due to the strongly nonlinear nature of DFIG and insensitive to DFIG parameter's variations, a novel sliding mode controller was designed. The controller combines extended state observer (ESO) with sliding model variable structure control theory. The simulation is carried out to verify the effectiveness of the proposed control approach under various types of grid disturbances. It is shown that the proposed controller provides enhanced transient features than the classic proportional-integral control. The proposed control method can effectively reduce over-current in the RSC, and the transient pulse value of electromagnetic torque is too large under power grid fault.

  9. Radial Broadening of DC potential structures in front of ICRF antennas by transverse exchange of RF currents

    SciTech Connect

    Faudot, E.; Heuraux, S.; Colas, L.; Gunn, J.

    2009-11-26

    Measurements show that the vicinity of powered Ion Cyclotron Range of Frequency (ICRF) antennae is biased positively with respect to its environment. This is attributed to RF-sheaths. The radial penetration of DC potentials into Tokamak SOL determines the power deposition on the walls and especially on the antenna structure, which is a key point for long time clean discharges. Within independent flux tube models of RF-sheath rectification the radial penetration of DC potentials is determined by the skin depth x{sub 0} = c/{omega}{sub pe} for the slow wave. When self-consistent exchanges of transverse RF currents are allowed between neighboring flux tubes, such a structure can be broadened radially up to a characteristic transverse length L. Broadening arises as soon as L>r{sub 0}. A linear modeling gives a first evaluation of the theoretical length L{approx_equal}(L{sub parallel} {rho}{sub ci}/){sup 1/2}. Within the 'flute assumption' it scales with the length L{sub parallel} of open flux tubes and the ion Larmor radius {rho}{sub ci}. This has been confirmed by the SEM code which takes into account non-linear rectifications. Applying our model to several potential maps generated by an ITER antenna, it comes out that L ranges between 1 and 10 cm depending on local L{sub parallel} and on typical ITER plasma parameters. Langmuir probe measurements on Tore Supra suggest that the broadening is lower than predicted by the code, which supposes that currents do not occur all over the parallel magnetic lines but on a fraction of it.

  10. DC resistance comparison between a current comparator bridge and the quantum Hall system at Inmetro

    NASA Astrophysics Data System (ADS)

    da Silva, M. C.; Carvalho, H. R.; Vasconcellos, R. T. B.

    2016-07-01

    This paper presents a comparison results between the Quantum Hall System (QHS) under development at the Quantum Electrical Metrology Laboratory (Lameq) and the current comparator calibration system, traceable to the Bureau International des Poids et Mesures (BIPM), at the Electrical Standardization Metrology Laboratory (Lampe), both part of the Electrical Metrology Division, at Inmetro. Comparisons were performed with 1 Ω, 10 Ω, 100 Ω, 1 kΩ and 10 kΩ resistors. The results obtained over two years of work are presented here, showing that the comparison contributed to improve the calibration systems of both Lampe and Lameq.

  11. Transport behavior of hairless mouse skin during constant current DC iontophoresis I: baseline studies.

    PubMed

    Liddell, Mark R; Li, S Kevin; Higuchi, William I

    2011-04-01

    The fluxes of charged and nonionic molecules across hairless mouse skin (HMS) were induced by direct current iontophoresis and used to characterize the transport pathways of the epidermal membrane. Experimental data were used to determine permeability coefficients from which the effective pore radii (Rp) of the transport pathways were calculated. Permeants used in these experiments were nonionic permeants (urea, mannitol, and raffinose), monovalent cationic permeants (sodium, tetraethylammonium, and tetraphenylphosphonium ions), and monovalent anionic permeants (chloride, salicylate, and taurocholate ions). The Rp estimates obtained by the anionic permeant pairs were 49, 22, and 20 Å for the chloride/salicylate (Cl:SA), chloride/taurocholate (Cl:TC), and salicylate/taurocholate (SA:TC) pairs, respectively; with the cationic permeant pairs, the Rp values obtained were 19, 30, and 24 Å for the sodium/tetraethylammonium (Na:TEA), sodium/tetraphenylphosphonium (Na:TPP), and the tetraethylammonium/tetraphenylphosphonium (TEA:TPP) pairs, respectively. Rp estimates for HMS obtained from nonionic permeant experiments ranged from 6.7 to 13.4 Å. When plotted versus their respective diffusion coefficients, all of the permeability coefficients for the cationic permeants were greater than those of the anionic permeants. Additionally, the magnitudes of permeability coefficients determined in the current study with HMS were of the same order of magnitude as those previously determined in our laboratory using human epidermal membrane under similar iontophoresis conditions. PMID:21259234

  12. Transport behavior of hairless mouse skin during constant current DC iontophoresis I: baseline studies.

    PubMed

    Liddell, Mark R; Li, S Kevin; Higuchi, William I

    2011-04-01

    The fluxes of charged and nonionic molecules across hairless mouse skin (HMS) were induced by direct current iontophoresis and used to characterize the transport pathways of the epidermal membrane. Experimental data were used to determine permeability coefficients from which the effective pore radii (Rp) of the transport pathways were calculated. Permeants used in these experiments were nonionic permeants (urea, mannitol, and raffinose), monovalent cationic permeants (sodium, tetraethylammonium, and tetraphenylphosphonium ions), and monovalent anionic permeants (chloride, salicylate, and taurocholate ions). The Rp estimates obtained by the anionic permeant pairs were 49, 22, and 20 Å for the chloride/salicylate (Cl:SA), chloride/taurocholate (Cl:TC), and salicylate/taurocholate (SA:TC) pairs, respectively; with the cationic permeant pairs, the Rp values obtained were 19, 30, and 24 Å for the sodium/tetraethylammonium (Na:TEA), sodium/tetraphenylphosphonium (Na:TPP), and the tetraethylammonium/tetraphenylphosphonium (TEA:TPP) pairs, respectively. Rp estimates for HMS obtained from nonionic permeant experiments ranged from 6.7 to 13.4 Å. When plotted versus their respective diffusion coefficients, all of the permeability coefficients for the cationic permeants were greater than those of the anionic permeants. Additionally, the magnitudes of permeability coefficients determined in the current study with HMS were of the same order of magnitude as those previously determined in our laboratory using human epidermal membrane under similar iontophoresis conditions.

  13. Current Results Of The Taiwan Chelungpu-Fault Drilling Project (Invited)

    NASA Astrophysics Data System (ADS)

    Yeh, E.; Song, S.; Ma, K.; Lin, W.; Hung, J.; Boullier, A.; Wang, C.

    2010-12-01

    1999 Chi-Chi earthquake, out-of-sequence thrusting event, shakes Taiwan along the Chelungpu fault of the central Western Foothills. Along 90km surface rupture, larger slip of 9m took place in the northern segment. On the other hand, much high-frequency acceleration occurred in the south. To better understand this hazardous seismogenic faulting, the Taiwan Chelungpu-fault Drilling Project (TCDP) was conducted with two main holes 40m away and one side-track. Continuous coring and downhole physical logging provides us unique core material and physical data for detailed analysis. Based on the multiple-scale observations from shallow seismic reflection, downhole logging, core examination and geochemical/paleomagnetic analysis, we identified the slip zone of the Chi-Chi rupture within 2cm black smectite-rich gouge. Due to frictional heating induced by larger slip, material within the slip zone is melted/decomposed/ altered in various degrees depending on mineral characteristics and heat amount generated. Results of seismologic data and core analysis further show that the Chelungpu-fault is a younger seismogenic fault with more energy expense on fracture energy. Based on microscale anatomy on retrieved core, clay-coating aggregates and foliated gouge are found in the slip zone and dilated calcite vein above it. Thus, among different proposed hypotheses of slip-weakening mechanisms for the Chi-Chi earthquake, thermal pressurization is the most likely one. Analysis of residual heat measurement along the borehole displaces a low frictional coefficient for the Chi-Chi earthquake. After integrating the results of in-situ stress measurements, stress state displays 90-degree rotation of maximum horizontal stress direction around the Chi-Chi slip zone, which might allows us to reconstruct the stress change of the Chi-Chi rupture.

  14. Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack

    SciTech Connect

    Dr. Ram Adapa; Mr. Dante Piccone

    2012-04-30

    ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the line in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide current

  15. Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.; Yoon, Howard W.; Jarrett, Dean G.; Larason, Thomas C.

    2013-10-01

    For photocurrent measurements with low uncertainties, wide dynamic range reference current-to-voltage converters and a new converter calibration method have been developed at the National Institute of Standards and Technology (NIST). The high-feedback resistors of a reference converter were in situ calibrated on a high-resistivity, printed circuit board placed in an electrically shielded box electrically isolated from the operational amplifier using jumpers. The feedback resistors, prior to their installation, were characterized, selected and heat treated. The circuit board was cleaned with solvents, and the in situ resistors were calibrated using measurement systems for 10 kΩ to 10 GΩ standard resistors. We demonstrate that dc currents from 1 nA to 100 µA can be measured with uncertainties of 55 × 10-6 (k = 2) or lower, which are lower in uncertainties than any commercial device by factors of 10 to 30 at the same current setting. The internal (NIST) validations of the reference converter are described.

  16. Fault-tolerant three-level inverter

    DOEpatents

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-12-05

    A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.

  17. Detection and characterization of stacking faults by light beam induced current mapping and scanning infrared microscopy in silicon

    NASA Astrophysics Data System (ADS)

    Vève-Fossati, C.; Martinuzzi, S.

    1998-08-01

    Non destructive techniques like scanning infrared microscopy and light beam induced current mapping are used to reveal the presence of stacking faults in heat treated Czochralski grown silicon wafers. In oxidized or contaminated samples, scanning infrared microscopy reveals that stacking faults grow around oxygen precipitates. This could be due to an aggregation of silicon self-interstitials emitted by the growing precipitates in the (111) plane. Light beam induced current maps show that the dislocations which surround the stacking faults are the main source of recombination centers, especially when they are decorated by a fast diffuser like copper. Des techniques non destructives telles que la microscopie infrarouge à balayage et la cartographie de photocourant induit par un spot lumineux ont été utilisées pour révéler la présence de fautes d'empilement après traitements thermiques, dans des plaquettes de silicium préparées par tirage Czochralski. Dans des échantillons oxydés ou contaminés, la microscopie infrarouge à balayage révèle des fautes d'empilement qui se développent autour des précipités d'oxygène. Cela peut être dû à la formation d'un agglomérat d'auto-interstitiels de silicium émis par la croissance des précipités dans les plans (111). Les cartographies de photocourant montrent que les dislocations qui entourent les fautes d'empilement sont la principale source de centres de recombinaison, et cela tout particulièrement quand ces fautes sont décorées par un diffuseur rapide tel que le cuivre.

  18. Specific Intensity Direct Current (DC) Electric Field Improves Neural Stem Cell Migration and Enhances Differentiation towards βIII-Tubulin+ Neurons

    PubMed Central

    Zhao, Huiping; Steiger, Amanda; Nohner, Mitch; Ye, Hui

    2015-01-01

    Control of stem cell migration and differentiation is vital for efficient stem cell therapy. Literature reporting electric field–guided migration and differentiation is emerging. However, it is unknown if a field that causes cell migration is also capable of guiding cell differentiation—and the mechanisms for these processes remain unclear. Here, we report that a 115 V/m direct current (DC) electric field can induce directional migration of neural precursor cells (NPCs). Whole cell patching revealed that the cell membrane depolarized in the electric field, and buffering of extracellular calcium via EGTA prevented cell migration under these conditions. Immunocytochemical staining indicated that the same electric intensity could also be used to enhance differentiation and increase the percentage of cell differentiation into neurons, but not astrocytes and oligodendrocytes. The results indicate that DC electric field of this specific intensity is capable of promoting cell directional migration and orchestrating functional differentiation, suggestively mediated by calcium influx during DC field exposure. PMID:26068466

  19. Experimental studies of the quench behaviour of MgB2 superconducting wires for fault current limiter applications

    NASA Astrophysics Data System (ADS)

    Ye, Lin; Majoros, M.; Campbell, A. M.; Coombs, T.; Astill, D.; Harrison, S.; Husband, M.; Rindfleisch, M.; Tomsic, M.

    2007-07-01

    Various MgB2 wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26 K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB2 wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83 mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 °C for a hold time of 20-40 min. Current limiting properties of MgB2 wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50 Hz. The quench currents extracted from the pulse measurements were in a range of 200-328 A for different samples, corresponding to an average engineering critical current density (Je) of around 4.8 × 104 A cm-2 at 25 K in the self-field, based on the 1 µV cm-1 criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB2 wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB2 wires. This work is supported by Rolls-Royce plc and the UK Department of Trade and Industry (DTI).

  20. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  1. Dissipated energy as a design parameter of coated conductors for their use in resistive fault current limiters

    NASA Astrophysics Data System (ADS)

    Schacherer, C.; Kudymow, A.; Noe, M.

    2008-02-01

    Coated conductors are suitable for many power applications like motors, magnets and superconducting fault current limiters (SCFCLs). For their use in resistive SCFCLs main requirements are quench stability and resistance development above Tc. Several coated conductors are available with different kinds of stabilization like thickness or material of cap-layer and additional stabilization. The stabilization can vary and has a great influence on the quench stability and quench behaviour of a coated conductor. Thus, for the dimensioning of a superconducting current limiting element there is a need of reliable and universal design parameters. This paper presents experimental quench test results on several coated conductor types with different stabilization and geometry. The test results show that the dissipated energy during a quench is a very useful parameter for the SCFCL design.

  2. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    SciTech Connect

    Vuckovic, V.; Vukosavic, S. )

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  3. Origin of dc voltage in type II superconducting flux pumps: field, field rate of change, and current density dependence of resistivity

    NASA Astrophysics Data System (ADS)

    Geng, J.; Matsuda, K.; Fu, L.; Fagnard, J.-F.; Zhang, H.; Zhang, X.; Shen, B.; Dong, Q.; Baghdadi, M.; Coombs, T. A.

    2016-03-01

    Superconducting flux pumps are the kind of devices which can generate direct current into superconducting circuit using external magnetic field. The key point is how to induce a dc voltage across the superconducting load by ac fields. Giaever (1966 IEEE Spectr. 3 117) pointed out flux motion in superconductors will induce a dc voltage, and demonstrated a rectifier model which depended on breaking superconductivity. van de Klundert et al (1981 Cryogenics 21 195, 267) in their review(s) described various configurations for flux pumps all of which relied on inducing the normal state in at least part of the superconductor. In this letter, following their work, we reveal that a variation in the resistivity of type II superconductors is sufficient to induce a dc voltage in flux pumps and it is not necessary to break superconductivity. This variation in resistivity is due to the fact that flux flow is influenced by current density, field intensity, and field rate of change. We propose a general circuit analogy for travelling wave flux pumps, and provide a mathematical analysis to explain the dc voltage. Several existing superconducting flux pumps which rely on the use of a travelling magnetic wave can be explained using the analysis enclosed. This work can also throw light on the design and optimization of flux pumps.

  4. Microwave polarization angle study of the radiation-induced magnetoresistance oscillations in the GaAs/AlGaAs 2D electron system under dc current bias

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad-Zahir; Liu, Han-Chun; Heimbeck, Martin S.; Everitt, Henry O.; Wegscheider, Werner; Mani, Ramesh G.

    Microwave-induced magnetoresistance oscillations followed by the vanishing resistance states are a prime representation of non-equilibrium transport phenomena in two-dimensional electron systems (2DES). The effect of a dc current bias on the nonlinear response of 2DES with microwave polarization angle under magnetic field is a subject of interest. Here, we have studied the effect of various dc current bias on microwave radiation-induced magnetoresistance oscillations in a high mobility 2DES. Further, we systematically investigate the effect of the microwave polarization angle on the magneto-resistance oscillations at two different frequencies 152.78 GHz and 185.76 GHz. This study aims to better understand the effects of both dc current and microwave polarization angle in the GaAs/AlGaAs system, both of which modify the observed magneto-transport properties DOE-BES, Mat'l. Sci. & Eng. Div., DE-SC0001762; ARO W911NF-14-2-0076; ARO W911NF-15-1-0433.

  5. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  6. Method and apparatus for generating motor current spectra to enhance motor system fault detection

    DOEpatents

    Linehan, D.J.; Bunch, S.L.; Lyster, C.T.

    1995-10-24

    A method and circuitry are disclosed for sampling periodic amplitude modulations in a nonstationary periodic carrier wave to determine frequencies in the amplitude modulations. The method and circuit are described in terms of an improved motor current signature analysis. The method insures that the sampled data set contains an exact whole number of carrier wave cycles by defining the rate at which samples of motor current data are collected. The circuitry insures that a sampled data set containing stationary carrier waves is recreated from the analog motor current signal containing nonstationary carrier waves by conditioning the actual sampling rate to adjust with the frequency variations in the carrier wave. After the sampled data is transformed to the frequency domain via the Discrete Fourier Transform, the frequency distribution in the discrete spectra of those components due to the carrier wave and its harmonics will be minimized so that signals of interest are more easily analyzed. 29 figs.

  7. Method and apparatus for generating motor current spectra to enhance motor system fault detection

    DOEpatents

    Linehan, Daniel J.; Bunch, Stanley L.; Lyster, Carl T.

    1995-01-01

    A method and circuitry for sampling periodic amplitude modulations in a nonstationary periodic carrier wave to determine frequencies in the amplitude modulations. The method and circuit are described in terms of an improved motor current signature analysis. The method insures that the sampled data set contains an exact whole number of carrier wave cycles by defining the rate at which samples of motor current data are collected. The circuitry insures that a sampled data set containing stationary carrier waves is recreated from the analog motor current signal containing nonstationary carrier waves by conditioning the actual sampling rate to adjust with the frequency variations in the carrier wave. After the sampled data is transformed to the frequency domain via the Discrete Fourier Transform, the frequency distribution in the discrete spectra of those components due to the carrier wave and its harmonics will be minimized so that signals of interest are more easily analyzed.

  8. Normal zone propagation in superconducting thin-film fault current limiting elements with Au-Ag alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Arai, K.; Yamasaki, H.; Kaiho, K.; Furuse, M.; Nakagawa, Y.; Sohma, M.; Yamaguchi, I.

    2008-02-01

    We have been developing a superconducting fault current limiter (FCL), in which YBCO superconducting thin films with Au-Ag alloy shunt layers are used. We have already achieved high electric fields (>40 Vpeak/cm), which enable the total length of FCL elements to be reduced drastically, thus greatly reducing the cost of FCLs. In this paper, we report the normal zone propagation velocity in our films when over-current was applied to the films at 50 Hz for 100 ms. The velocity plotted against the root-mean square values of the normalized film current showed a common curve or curves. The data were also discussed using the adiabatic theory. As the normal zone propagation velocity was not so fast, we divided one unit film of 120 mm length into two portions, to each of which an external resistance was attached. The test result showed that a high electric field of 45 Vpeak/cm and total voltage of 450 Vpeak were achieved in the first cycle after quenching, and the film withstood the voltage for five cycles. The temperature distribution along the length of the film was also shown.

  9. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  10. Multilevel DC link inverter

    DOEpatents

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  11. Cathodoluminescence and electron beam induced current investigations of stacking faults mechanically introduced in 4H-SiC in the brittle domain

    NASA Astrophysics Data System (ADS)

    Yakimov, E. B.; Regula, G.; Pichaud, B.

    2013-08-01

    The electrical and optical properties of stacking faults (SFs), introduced in 4H-SiC by plastic deformation in the brittle domain of temperature (823 K and 973 K), were studied by cathodoluminescence and electron beam induced current (EBIC) methods. As expected from previous studies, at 973 K, all the SFs generated were found to be double stacking faults (DSFs) and at 823 K, the latter also constituted the major part of the defects. Rather surprisingly, in addition to DSFs, single stacking faults (SSFs) were revealed but only very near the defect nucleation area. Moreover, an inversion of DSF EBIC contrast was obtained which designates these defects as relevant candidates for electron guides to enhance detector performances. Eventually, no dark contrast corresponding to the casual recombination activity of the partial dislocations dragging the DSFs was observed.

  12. A Single-Phase Current Source Solar Inverter with Constant Instantaneous Power, Improved Reliability, and Reduced-Size DC-Link Filter

    NASA Astrophysics Data System (ADS)

    Bush, Craig R.

    This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.

  13. An improved low-voltage ride-through performance of DFIG based wind plant using stator dynamic composite fault current limiter.

    PubMed

    Gayen, P K; Chatterjee, D; Goswami, S K

    2016-05-01

    In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG.

  14. An improved low-voltage ride-through performance of DFIG based wind plant using stator dynamic composite fault current limiter.

    PubMed

    Gayen, P K; Chatterjee, D; Goswami, S K

    2016-05-01

    In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG. PMID:26876377

  15. A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant D.C. electric current.

    PubMed

    Kaya, Ahmet; Onac, Canan; Alpoguz, H Korkmaz

    2016-11-01

    In this study, the use of polymer inclusion membrane under constant electric current for the removal of Cr(VI) from water has investigated for the first time. Transport of Cr(VI) is performed by an electric current from the donor phase to the acceptor phase with a constant electric current of 0.5A. The optimized membrane includes of 12.1% 2-nitrophenyl octyl ether (2-NPOE), 77.6% cellulose triacetate (CTA), 10.3% tricapryl-methylammonium chloride (Aliquat 336) as a carrier. We tested the applicability of the selected membrane for Cr(VI) removal in real environmental water samples and evaluated its reusability. Electro membrane experiments were carried out under various parameters, such as the effect of electro membrane voltage at constant DC electric current; electro membrane current at constant voltage, acceptor phase pH, and stable electro membrane; and a comparison of polymer inclusion membrane and electro membrane transport studies. The Cr(VI) transport was achieved 98.33% after 40min under optimized conditions. An alternative method has been employed that eliminates the changing of electrical current by the application of constant electric current for higher reproducibility of electro membrane extraction experiments by combining the excellent selective and long-term use features of polymer inclusion membrane. PMID:27239722

  16. A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant D.C. electric current.

    PubMed

    Kaya, Ahmet; Onac, Canan; Alpoguz, H Korkmaz

    2016-11-01

    In this study, the use of polymer inclusion membrane under constant electric current for the removal of Cr(VI) from water has investigated for the first time. Transport of Cr(VI) is performed by an electric current from the donor phase to the acceptor phase with a constant electric current of 0.5A. The optimized membrane includes of 12.1% 2-nitrophenyl octyl ether (2-NPOE), 77.6% cellulose triacetate (CTA), 10.3% tricapryl-methylammonium chloride (Aliquat 336) as a carrier. We tested the applicability of the selected membrane for Cr(VI) removal in real environmental water samples and evaluated its reusability. Electro membrane experiments were carried out under various parameters, such as the effect of electro membrane voltage at constant DC electric current; electro membrane current at constant voltage, acceptor phase pH, and stable electro membrane; and a comparison of polymer inclusion membrane and electro membrane transport studies. The Cr(VI) transport was achieved 98.33% after 40min under optimized conditions. An alternative method has been employed that eliminates the changing of electrical current by the application of constant electric current for higher reproducibility of electro membrane extraction experiments by combining the excellent selective and long-term use features of polymer inclusion membrane.

  17. DC-to-DC switching converter

    NASA Technical Reports Server (NTRS)

    Cuk, Slobodan M. (Inventor); Middlebrook, Robert D. (Inventor)

    1980-01-01

    A dc-to-dc converter having nonpulsating input and output current uses two inductances, one in series with the input source, the other in series with the output load. An electrical energy transferring device with storage, namely storage capacitance, is used with suitable switching means between the inductances to DC level conversion. For isolation between the source and load, the capacitance may be divided into two capacitors coupled by a transformer, and for reducing ripple, the inductances may be coupled. With proper design of the coupling between the inductances, the current ripple can be reduced to zero at either the input or the output, or the reduction achievable in that way may be divided between the input and output.

  18. Crafting glass vessels: current research on the ancient glass collections in the Freer Gallery of Art, Washington, D.C.

    NASA Astrophysics Data System (ADS)

    Nagel, Alexander; McCarthy, Blythe; Bowe, Stacy

    Our knowledge of glass production in ancient Egypt has been well augmented by the publication of recently excavated materials and glass workshops, but also by more recent materials analysis, and experiments of modern glass-makers attempting to reconstruct the production process of thin-walled coreformed glass vessels. From the mounting of a prefabricated core to the final glass product our understanding of this profession has much improved. The small but well preserved glass collection of the Freer Gallery of Art in Washington, D.C. is a valid tool for examining and studying the technology and production of ancient Egyptian core formed glass vessels. Charles Lang Freer (1854-1919) acquired most of the material from Giovanni Dattari in Cairo in 1909. Previously the glass had received only limited discussion, suggesting that most of these vessels were produced in the 18th Dynasty in the 15th and 14th centuries BCE, while others date from the Hellenistic period and later. In an ongoing project we conducted computed radiography in conjunction with qualitative x-ray fluorescence analysis on a selected group of vessels to understand further aspects of the ancient production process. This paper will provide an overview of our recent research and present our data-gathering process and preliminary results. How can the examinations of core formed glass vessels in the Freer Gallery contribute to our understanding of ancient glass production and technology? By focusing on new ways of looking at old assumptions using the Freer Gallery glass collections, we hope to increase understanding of the challenges of the production process of core-vessel technology as represented by these vessels.

  19. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOEpatents

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  20. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  1. Effect of natural convection on the current-voltage characteristic of a DC discharge in neon at intermediate pressures

    SciTech Connect

    Uvarov, A. V.; Sakharova, N. A.; Vinnichenko, N. A.

    2011-12-15

    The parameters of the positive column of a glow discharge in neon are calculated with allowance for the induced hydrodynamic motion. It is shown that natural convection in the pressure range of {approx}0.1 atm significantly affects the profiles of the parameters of the positive column and its current-voltage characteristic. The convection arising at large deposited energies improves heat removal, due to which the temperature in the central region of the discharge becomes lower than that calculated from the heat conduction equation. As a result, the current-voltage characteristic is shifted. With allowance for convection, the current-voltage characteristic changes at currents much lower than the critical current at which a transition into the constricted state is observed. This change is uniquely related to the Rayleigh number in the discharge. Thus, a simplified analysis of thermal conduction and diffusion, even with detailed account of kinetic processes occurring in the positive column, does not allow one to accurately calculate the current-voltage characteristic and other discharge parameters at intermediate gas pressures.

  2. Milliwatt dc/dc Inverter

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  3. Study of Stand-Alone Microgrid under Condition of Faults on Distribution Line

    NASA Astrophysics Data System (ADS)

    Malla, S. G.; Bhende, C. N.

    2014-10-01

    The behavior of stand-alone microgrid is analyzed under the condition of faults on distribution feeders. During fault since battery is not able to maintain dc-link voltage within limit, the resistive dump load control is presented to do so. An inverter control is proposed to maintain balanced voltages at PCC under the unbalanced load condition and to reduce voltage unbalance factor (VUF) at load points. The proposed inverter control also has facility to protect itself from high fault current. Existing maximum power point tracker (MPPT) algorithm is modified to limit the speed of generator during fault. Extensive simulation results using MATLAB/SIMULINK established that the performance of the controllers is quite satisfactory under different fault conditions as well as unbalanced load conditions.

  4. Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone

    NASA Technical Reports Server (NTRS)

    Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

    1994-01-01

    We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

  5. Implementation of GNSS-Constrained Real-Time Finite Fault Modeling for Improved Earthquake Early Warning: Current Activities at USGS, Menlo Park

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Minson, S. E.; Langbein, J. O.; Murray, J. R.; Guillemot, C.

    2014-12-01

    Currently implemented Earthquake Early Warning (EEW) algorithms based on seismic data alone should provide the most robust warnings for most M<6 earthquakes, since real-time GPS positions are too noisy to aid in EEW. However, for larger events, which generate larger fault offsets, GPS data can provide a direct on-scale displacement measurements and has sufficient precision. In such situations, the GPS observations may enable more accurate estimation of magnitude and rupture extent than seismic data. The USGS Earthquake Science Center in Menlo Park currently obtains real-time data from approximately 100 GNSS stations in northern California. These stations, which span the San Andreas fault system from the Mendocino Triple Junction to San Juan Bautista, are operated by USGS-Menlo Park, UC Berkeley, and UNAVCO. We have developed software tools for monitoring and troubleshooting data acquisition and quality. We have evaluated the latency and precision of position estimates obtained through real-time processing and we have found these results satisfactory for EEW. We are now implementing the BEFORES algorithm (Minson et al., 2014) that uses Bayesian analysis to determine the best-fitting coseismic fault orientation and finite fault slip distribution (from which moment and rupture extent are obtained) in real-time. BEFORES has been tested extensively on both simulated and real data (retrospectively) for a variety of earthquakes. We are now focusing on three aspects of its implementation: 1) receiving real-time earthquake locations from independent seismic EEW algorithms, that are obtained through multiple TCP/IP connections, and 3) optimizing the computation of elastic Green's functions. Completion of these tasks plus additional tests using simulated waveforms of earthquakes displacements superimposed on actual data will prepare the algorithm for implementation in the West Coast EEW system.

  6. Investigation of Ground-Fault Protection Devices for Photovoltaic Power Systems Applications

    SciTech Connect

    BOWER,WARD I.; WILES,JOHN

    2000-10-03

    Photovoltaic (PV) power systems, like other electrical systems, may be subject to unexpected ground faults. Installed PV systems always have invisible elements other than those indicated by their electrical schematics. Stray inductance, capacitance and resistance are distributed throughout the system. Leakage currents associated with the PV modules, the interconnected array, wires, surge protection devices and conduit add up and can become large enough to look like a ground-fault. PV systems are frequently connected to other sources of power or energy storage such as batteries, standby generators, and the utility grid. This complex arrangement of distributed power and energy sources, distributed impedance and proximity to other sources of power requires sensing of ground faults and proper reaction by the ground-fault protection devices. The different dc grounding requirements (country to country) often add more confusion to the situation. This paper discusses the ground-fault issues associated with both the dc and ac side of PV systems and presents test results and operational impacts of backfeeding commercially available ac ground-fault protection devices under various modes of operation. Further, the measured effects of backfeeding the tripped ground-fault devices for periods of time comparable to anti-islanding allowances for utility interconnection of PV inverters in the United States are reported.

  7. Effect of high energy electrons on H⁻ production and destruction in a high current DC negative ion source for cyclotron.

    PubMed

    Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments. PMID:26932009

  8. DC current induced metal-insulator transition in epitaxial Sm{sub 0.6}Nd{sub 0.4}NiO{sub 3}/LaAlO{sub 3} thin film

    SciTech Connect

    Huang, Haoliang; Luo, Zhenlin Yang, Yuanjun; Yang, Mengmeng; Wang, Haibo; Hu, Sixia; Bao, Jun; Yun, Yu; Meng, Dechao; Lu, Yalin; Gao, Chen

    2014-05-15

    The metal-insulator transition (MIT) in strong correlated electron materials can be induced by external perturbation in forms of thermal, electrical, optical, or magnetic fields. We report on the DC current induced MIT in epitaxial Sm{sub 0.6}Nd{sub 0.4}NiO{sub 3} (SNNO) thin film deposited by pulsed laser deposition on (001)-LaAlO{sub 3} substrate. It was found that the MIT in SNNO film not only can be triggered by thermal, but also can be induced by DC current. The T{sub MI} of SNNO film decreases from 282 K to 200 K with the DC current density increasing from 0.003 × 10{sup 9} A•m{sup −2} to 4.9 × 10{sup 9} A•m{sup −2}. Based on the resistivity curves measured at different temperatures, the MIT phase diagram has been successfully constructed.

  9. Research on a novel two-stage direct current hybrid circuit breaker.

    PubMed

    Wu, Yifei; Wu, Yi; Rong, Mingzhe; Yang, Fei; Niu, Chunping; Li, Mei; Hu, Yang

    2014-08-01

    The DC hybrid circuit breaker based on high-speed switch (HSS) and parallel connected capacitor has been widely applied in the fault current breaking of DC system. However, when the current is commutated from HSS to the capacitor according to single-stage operation, the capacitor has to absorb a large amount of energy stored in the system inductance within very short time. Meanwhile, a high over-voltage rate of rise is especially prone to be produced between the contacts of HSS, which will lead to a failed breaking. As a result, a novel DC hybrid circuit breaker based on the two-stage operation is proposed and analyzed in this paper. By controlling the thyristors in the commutation branches, the fault current is fast commutated into the capacitor, which can not only realize the arcless open of HSS, but also decrease the over-voltage rate of rise significantly in comparison to the traditional single-stage operation. The simulation model of fault current breaking under different conditions in 10 kV medium voltage DC system is constructed. The simulated over-voltages of single-stage and two-stage operations in the case of fault current breaking are compared and analyzed. Finally, the fault current breaking test in the two-stage operation is investigated experimentally, which validates the feasibility and effectiveness of the simulation model well.

  10. Research on a novel two-stage direct current hybrid circuit breaker

    NASA Astrophysics Data System (ADS)

    Wu, Yifei; Wu, Yi; Rong, Mingzhe; Yang, Fei; Niu, Chunping; Li, Mei; Hu, Yang

    2014-08-01

    The DC hybrid circuit breaker based on high-speed switch (HSS) and parallel connected capacitor has been widely applied in the fault current breaking of DC system. However, when the current is commutated from HSS to the capacitor according to single-stage operation, the capacitor has to absorb a large amount of energy stored in the system inductance within very short time. Meanwhile, a high over-voltage rate of rise is especially prone to be produced between the contacts of HSS, which will lead to a failed breaking. As a result, a novel DC hybrid circuit breaker based on the two-stage operation is proposed and analyzed in this paper. By controlling the thyristors in the commutation branches, the fault current is fast commutated into the capacitor, which can not only realize the arcless open of HSS, but also decrease the over-voltage rate of rise significantly in comparison to the traditional single-stage operation. The simulation model of fault current breaking under different conditions in 10 kV medium voltage DC system is constructed. The simulated over-voltages of single-stage and two-stage operations in the case of fault current breaking are compared and analyzed. Finally, the fault current breaking test in the two-stage operation is investigated experimentally, which validates the feasibility and effectiveness of the simulation model well.

  11. Auxiliary resonant DC tank converter

    DOEpatents

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  12. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation.

    PubMed

    Mohammadi, Mahdi; Madadi, Hojjat; Casals-Terré, Jasmina; Sellarès, Jordi

    2015-06-01

    Evaluation and diagnosis of blood alterations is a common request for clinical laboratories, requiring a complex technological approach and dedication of health resources. In this paper, we present a microfluidic device that owing to a novel combination of hydrodynamic and dielectrophoretic techniques can separate plasma from fresh blood in a microfluidic channel and for the first time allows optical real-time monitoring of the components of plasma without pre- or post-processing. The microchannel is based on a set of dead-end branches at each side and is initially filled using capillary forces with a 2-μL droplet of fresh blood. During this process, stagnation zones are generated at the dead-end branches and some red blood cells (RBCs) are trapped there. An electric field is then applied and dielectrophoretic trapping of RBCs is used to prevent more RBCs entering into the channel, which works like a sieve. Besides, an electroosmotic flow is generated to sweep the rest of the RBCs from the central part of the channel. Consequently, an RBC-free zone of plasma is formed in the middle of the channel, allowing real-time monitoring of the platelet behavior. To study the generation of stagnation zones and to ensure RBC trapping in the initial constrictions, two numerical models were solved. The proposed experimental design separates up to 0.1 μL blood plasma from a 2-μL fresh human blood droplet. In this study, a plasma purity of 99 % was achieved after 7 min, according to the measurements taken by image analysis. Graphical Abstract Schematics of a real-time plasma monitoring system based on a Hydrodynamic and direct-current insulator-based dielectrophoresis microfluidic channel.

  13. Forback DC-to-DC converter

    NASA Astrophysics Data System (ADS)

    Lukemire, Alan T.

    1993-03-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  14. Forback DC-to-DC converter

    NASA Astrophysics Data System (ADS)

    Lukemire, Alan T.

    1995-05-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  15. Forback DC-to-DC converter

    NASA Technical Reports Server (NTRS)

    Lukemire, Alan T. (Inventor)

    1995-01-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  16. Cost reduction and minimization of land based on an accurate determination of fault current distribution in shield wires and grounding systems

    SciTech Connect

    Daily, W.K. ); Dawalibi, F. )

    1993-01-01

    Careful analysis of Fault Current Distribution in neutral metallic paths, Power System Protection requirements and Ground Potential Rise (GPR) evaluations were carried out at FPL's Lauderdale Power Plant and associated switchyard. These studies resulted in substantial cost savings and land utilization minimization for the power system expansions at Lauderdale Plant by confirming that the in-situ expansion and reconfiguration aimed at constructing two electrically independent substations sharing the same site and grounding system is a sound economical alternative to the construction of a new substation and associated significant site preparation and construction costs. This paper describes the methodology used to conduct this study.

  17. High-power-density fault-current limiting devices using superconducting YBa2Cu3O7 films and high-resistivity alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hirofumi; Furuse, Mitsuho; Nakagawa, Yoshihiko

    2004-11-01

    Switching of superconducting thin-film resistive fault-current limiting devices with alloy shunt layers was studied. Au -Ag alloy thin films, whose room-temperature resistivity is about six times higher than that of pure gold, were sputter deposited on YBa2Cu3O7 films on sapphire substrates with high critical current density of Jc=3.05±0.05MA /cm2. A small sample, 5mm wide and 40mm long, had the capacity of a rated current of 32Arms in normal operation and withstood a high voltage of 107Vrms for 0.1s after switching, resulting in a very high switching power density of ˜1.7kVA /cm2, which is more than four times higher than conventional devices using gold shunt layers.

  18. DC conduction and breakdown characteristics of Al2O3/cross-linked polyethylene nanocomposites for high voltage direct current transmission cable insulation

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Kwon, Jung-Hun; Sim, Jae-Yong; Hwang, Ju-Na; Seo, Cheong-Won; Kim, Ji-Ho; Lim, Kee-Joe

    2014-08-01

    We have discussed a cross-linked polyethylene (XLPE) nanocomposite insulating material that is able to DC voltage applications. Nanocomposites, which are composed in polymer matrix mixed with nano-fillers, have received considerable attention because of their potential benefits as dielectrics. The nano-sized alumina oxide (Al2O3)/XLPE nanocomposite was prepared, and three kinds of test, such as DC breakdown, DC polarity reversal breakdown, and volume resistivity were performed. By the addition of nano-sized Al2O3 filler, both the DC breakdown strength and the volume resistivity of XLPE were increased. A little homogeneous space charge was observed in Al2O3/XLPE nanocomposite material in the vicinity of electrode through the polarity reversal breakdown test. From these results, it is thought that the addition of Al2O3 nano-filler is effective for the improvement of DC electrical insulating properties of XLPE.

  19. High voltage DC switchgear development for multi-kW space power system: Aerospace technology development of three types of solid state power controllers for 200-1100VDC with current ratings of 25, 50, and 80 amperes with one type utilizing an electromechanical device

    NASA Technical Reports Server (NTRS)

    Billings, W. W.

    1981-01-01

    Three types of solid state power controllers (SSPC's) for high voltage, high power DC system applications were developed. The first type utilizes a SCR power switch. The second type employes an electromechanical power switch element with solid state commutation. The third type utilizes a transistor power switch. Significant accomplishments include high operating efficiencies, fault clearing, high/low temperature performance and vacuum operation.

  20. Lightweight, Low-Loss dc Transducer

    NASA Technical Reports Server (NTRS)

    Nagano, S.; Koerner, T.; Brisendine, P.; Weiner, H.; Detwiler, R.

    1982-01-01

    Direct current is measured by lightweight, magnetically coupled transducer that weighs only 4 grams, without actually being wired into circuit under test. Miniature dc transducer has five windings: 2 for ac excitation inputs, 2 for dc control inputs, and 1 for feedback. Wire gages are selected for minimum size and weight. Size and number of turns of dc windings are selected according to dc current range to be measured.

  1. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30

    installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the

  2. DC Breakdown Experiments

    SciTech Connect

    Calatroni, S.; Descoeudres, A.; Levinsen, Y.; Taborelli, M.; Wuensch, W.

    2009-01-22

    In the context of the CLIC (Compact Linear Collider) project investigations of DC breakdown in ultra high vacuum are carried out in parallel with high power RF tests. From the point of view of saturation breakdown field the best material tested so far is stainless steel, followed by titanium. Copper shows a four times weaker breakdown field than stainless steel. The results indicate clearly that the breakdown events are initiated by field emission current and that the breakdown field is limited by the cathode. In analogy to RF, the breakdown probability has been measured in DC and the data show similar behaviour as a function of electric field.

  3. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  4. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones

    USGS Publications Warehouse

    Marone, C.; Kilgore, B.

    1993-01-01

    THEORETICAL and experimentally based laws for seismic faulting contain a critical slip distance1-5, Dc, which is the slip over which strength breaks down during earthquake nucleation. On an earthquake-generating fault, this distance plays a key role in determining the rupture nucleation dimension6, the amount of premonitory and post-seismic slip7-10, and the maximum seismic ground acceleration1,11. In laboratory friction experiments, Dc has been related to the size of surface contact junctions2,5,12; thus, the discrepancy between laboratory measurements of Dc (??? 10-5 m) and values obtained from modelling earthquakes (??? 10-2 m) has been attributed to differences in roughness between laboratory surfaces and natural faults5. This interpretation predicts a dependence of Dc on the particle size of fault gouge 2 (breccia and wear material) but not on shear strain. Here we present experimental results showing that Dc scales with shear strain in simulated fault gouge. Our data suggest a new physical interpretation for the critical slip distance, in which Dc is controlled by the thickness of the zone of localized shear strain. As gouge zones of mature faults are commonly 102-103 m thick13-17, whereas laboratory gouge layers are 1-10 mm thick, our data offer an alternative interpretation of the discrepancy between laboratory and field-based estimates of Dc.

  5. Towards Fault Resilient Global Arrays

    SciTech Connect

    Tipparaju, Vinod; Krishnan, Manoj Kumar; Palmer, Bruce J.; Petrini, Fabrizio; Nieplocha, Jaroslaw

    2007-09-03

    The focus of the current paper is adding fault resiliency to the Global Arrays. We extended the GA toolkit to provide a minimal level of capabilities to enable programmer to implement fault resiliency at the user level. Our fault-recovery approach is programmer assisted and based on frequent incremental checkpoints and rollback recovery. In addition, it relies of pool of spare nodes that are used to replace the failing node. We demonstrate usefulness of fault resilient Global Arrays in application context.

  6. ENSYSTROB - Design, manufacturing and test of a 3-phase resistive fault current limiter based on coated conductors for medium voltage application

    NASA Astrophysics Data System (ADS)

    Elschner, S.; Kudymow, A.; Brand, J.; Fink, S.; Goldacker, W.; Grilli, F.; Noe, M.; Vojenciak, M.; Hobl, A.; Bludau, M.; Jänke, C.; Krämer, S.; Bock, J.

    2012-11-01

    Within the German project ENSYSTROB a 3-phase resistive fault current limiter for medium voltage applications (12 kV, 533 Arms) was designed, built, tested and installed in the grid for a one year’s field test. The superconducting modules are made of YBCO coated conductors and replace the modules of an already successfully tested limiter on the basis of BSCCO 2212 bulk material. The components are multifilar spirals equipped with pairs of 12 mm wide YBCO tapes. The single components were characterized with respect to critical current, AC losses and limitation behavior under all possible operation conditions. The finally mounted limiter was successfully tested with respect to high voltage and limitation according to the standards of the customer. It is now installed and operating in its field test location. Finally we give a first comparison of both materials with respect to the different operational aspects.

  7. DC to DC power converters and methods of controlling the same

    DOEpatents

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  8. The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations and implication for coseismic electrical currents

    NASA Astrophysics Data System (ADS)

    Ferré, E. C.; Zechmeister, M. S.; Geissman, J. W.; MathanaSekaran, N.; Kocak, K.

    2005-06-01

    Several examples of fault-related pseudotachylites display a significantly higher initial magnetic susceptibility than their granitic host rock (10:1 to 20:1). These higher values are attributed to the presence of fine magnetic particles formed during melt quenching. The hysteresis properties of the particles indicate a single domain (SD) to pseudo single domain (PSD) magnetic grain size. The Curie temperature (Tc) of the magnetic particles is close to 580 °C. The natural remanent magnetization (NRM) of these pseudotachylites is also significantly higher than that of the host rock (up to 300:1). Such anomalously high remanence cannot be explained by a magnetization acquired in the Earth's magnetic field, regardless of pseudotachylite age. Ground lightning and other strong electric pulses can cause anomalously high NRM intensities. A ground lightning explanation seems unlikely to explain the systematically high NRM intensities, particularly in the case of recently exposed samples that have been collected from active quarries. Alternatively, high NRM intensities could be explained by earthquake lightning (EQL), a seismic phenomenon occasionally reported in connection with large magnitude earthquakes ( M > 6.0). The coseismic electrical properties of the pseudotachylite vein-host rock system are characterized by (1) a core of molten material (high conductivity), (2) vapor-rich margins of thermally and mechanically fractured host rocks (low conductivity) and (3) moderately fractured to undeformed host rock (normal conductivity). Such a core conductor bordered by insulating margins is potentially responsible for the propagation of EQL pulses. The coseismic thermal history of pseudotachylite veins has been modeled in 2-D using conductive heat transfer equations. It shows that EQL can be recorded only during a brief time interval (less than 1 min) for a given vein thickness and host-rock temperatures. If the vein is too thick or if the host rock is too hot, the

  9. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  10. Effect of inductors to mitigate the hot-spot problem in parallel-connected superconducting thin-film fault current limiting elements

    NASA Astrophysics Data System (ADS)

    Yamasaki, H.; Furuse, M.; Kaiho, K.

    2015-06-01

    We have been developing superconducting thin-film fault current limiter (FCL) elements, in which high-resistivity Au-Ag alloy shunt layers are used to protect YBa2Cu3O7 (YBCO) thin films deposited on CeO2-buffered sapphire substrates. The high resistance of the thin films enables the element to withstand high electric fields of more than 40 Vpeak cm-1 during the current-limiting period after quenching, thus greatly reducing the amount of YBCO thin film needed and, consequently, the cost of an FCL. We have succeeded in fabricating and testing 500 V/200 A FCL modules using two 20 cm long YBCO films connected in parallel. In the present study, we performed extensive switching experiments on FCL elements, in which two YBCO films are connected in parallel to achieve higher rated currents, and confirmed the previously observed phenomenon that the hot-spot problem causing film damage just after quench initiation becomes more severe when the total critical current of the thin films is higher. We have investigated the origin of this phenomenon and found that a rapid current transfer from the first-quenched film with lower critical current to the other film causes higher current in the secondly-quenched film that sometimes leads to hot spots. It is demonstrated that the serious hot-spot problem can be mitigated by the use of inductors when the high-resistance FCL elements are connected in parallel. Based on these findings we propose an appropriate architecture of a high electric-field superconducting thin-film FCL that can be used in a real power grid.

  11. Efficient Design in a DC to DC Converter Unit

    NASA Technical Reports Server (NTRS)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  12. Earthquakes and fault creep on the northern San Andreas fault

    USGS Publications Warehouse

    Nason, R.

    1979-01-01

    At present there is an absence of both fault creep and small earthquakes on the northern San Andreas fault, which had a magnitude 8 earthquake with 5 m of slip in 1906. The fault has apparently been dormant after the 1906 earthquake. One possibility is that the fault is 'locked' in some way and only produces great earthquakes. An alternative possibility, presented here, is that the lack of current activity on the northern San Andreas fault is because of a lack of sufficient elastic strain after the 1906 earthquake. This is indicated by geodetic measurements at Fort Ross in 1874, 1906 (post-earthquake), and 1969, which show that the strain accumulation in 1969 (69 ?? 10-6 engineering strain) was only about one-third of the strain release (rebound) in the 1906 earthquake (200 ?? 10-6 engineering strain). The large difference in seismicity before and after 1906, with many strong local earthquakes from 1836 to 1906, but only a few strong earthquakes from 1906 to 1976, also indicates a difference of elastic strain. The geologic characteristics (serpentine, fault straightness) of most of the northern San Andreas fault are very similar to the characteristics of the fault south of Hollister, where fault creep is occurring. Thus, the current absence of fault creep on the northern fault segment is probably due to a lack of sufficient elastic strain at the present time. ?? 1979.

  13. Investigation of DC hybrid circuit breaker based on high-speed switch and arc generator.

    PubMed

    Wu, Yifei; Rong, Mingzhe; Wu, Yi; Yang, Fei; Li, Mei; Zhong, Jianying; Han, Guohui; Niu, Chunping; Hu, Yang

    2015-02-01

    A new design of DC hybrid circuit breaker based on high-speed switch (HSS) and arc generator (AG), which can drastically profit from low heat loss in normal state and fast current breaking under fault state, is presented and analyzed in this paper. AG is designed according to the magnetic pinch effect of liquid metal. By utilizing the arc voltage generated across AG, the fault current is rapidly commutated from HSS into parallel connected branch. As a consequence, the arcless open of HSS is achieved. The post-arc conducting resume time (Δ tc) of AG and the commutation original voltage (Uc), two key factors in the commutation process, are investigated experimentally. Particularly, influences of the liquid metal channel diameter (Φ) of AG, fault current rate of rise (di/dt) and Uc on Δ tc are focused on. Furthermore, a suitable Uc is determined during the current commutation process, aiming at the reliable arcless open of HSS and short breaking time. Finally, the fault current breaking test is carried out for the current peak value of 11.8 kA, and the validity of the design is confirmed by the experimental results.

  14. Investigation of DC hybrid circuit breaker based on high-speed switch and arc generator.

    PubMed

    Wu, Yifei; Rong, Mingzhe; Wu, Yi; Yang, Fei; Li, Mei; Zhong, Jianying; Han, Guohui; Niu, Chunping; Hu, Yang

    2015-02-01

    A new design of DC hybrid circuit breaker based on high-speed switch (HSS) and arc generator (AG), which can drastically profit from low heat loss in normal state and fast current breaking under fault state, is presented and analyzed in this paper. AG is designed according to the magnetic pinch effect of liquid metal. By utilizing the arc voltage generated across AG, the fault current is rapidly commutated from HSS into parallel connected branch. As a consequence, the arcless open of HSS is achieved. The post-arc conducting resume time (Δ tc) of AG and the commutation original voltage (Uc), two key factors in the commutation process, are investigated experimentally. Particularly, influences of the liquid metal channel diameter (Φ) of AG, fault current rate of rise (di/dt) and Uc on Δ tc are focused on. Furthermore, a suitable Uc is determined during the current commutation process, aiming at the reliable arcless open of HSS and short breaking time. Finally, the fault current breaking test is carried out for the current peak value of 11.8 kA, and the validity of the design is confirmed by the experimental results. PMID:25725867

  15. Investigation of DC hybrid circuit breaker based on high-speed switch and arc generator

    NASA Astrophysics Data System (ADS)

    Wu, Yifei; Rong, Mingzhe; Wu, Yi; Yang, Fei; Li, Mei; Zhong, Jianying; Han, Guohui; Niu, Chunping; Hu, Yang

    2015-02-01

    A new design of DC hybrid circuit breaker based on high-speed switch (HSS) and arc generator (AG), which can drastically profit from low heat loss in normal state and fast current breaking under fault state, is presented and analyzed in this paper. AG is designed according to the magnetic pinch effect of liquid metal. By utilizing the arc voltage generated across AG, the fault current is rapidly commutated from HSS into parallel connected branch. As a consequence, the arcless open of HSS is achieved. The post-arc conducting resume time (Δ tc) of AG and the commutation original voltage (Uc), two key factors in the commutation process, are investigated experimentally. Particularly, influences of the liquid metal channel diameter (Φ) of AG, fault current rate of rise (di/dt) and Uc on Δ tc are focused on. Furthermore, a suitable Uc is determined during the current commutation process, aiming at the reliable arcless open of HSS and short breaking time. Finally, the fault current breaking test is carried out for the current peak value of 11.8 kA, and the validity of the design is confirmed by the experimental results.

  16. Adaptable DC offset correction

    NASA Technical Reports Server (NTRS)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  17. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  18. Controls and protective devices for d-c constant potential crane power supplies

    SciTech Connect

    Boldt, A.E. ); Gomez, H.R. )

    1993-07-01

    Many changes have taken place in the American steel industry in recent years. Improvements in the efficiency of processes and systems are noticeable in all areas. To compete in the world market, older, less efficient mills and processes have been eliminated in favor of the new and more efficient. This drive for improvement has been noticeable in the area of electric overhead traveling cranes. Older, obsolete electrical equipment has been replaced by newer, more efficient systems. Improvements in collector systems and use of festooned systems has changed the characteristics of the typical soft d-c crane power supply. The 230-v or less d-c utilization voltage on cranes has now become 250 v (or higher) in many mills. The one large resistive element (ie, collectors, m-g sets, etc) in crane power distribution systems has all but disappeared. The changes in d-c crane power supplies have resulted in the need for changes in protection and in the design of traditional d-c constant potential controls. Higher fault currents are now available, and the 10 to 15 ms inductive time constant, traditionally used to determine the interrupting rating of protective devices (such as fuses and circuit breaker) may no longer be adequate. In addition, constant potential controls designed for 230 v may experience problems at voltages higher than 250 v d-c. This paper will discuss these problems and possible solutions involving testing of protective devices and changes to the traditional d-c crane control system.

  19. Application of electric and electromagnetic prospection methods for the investigation of geological fault zones

    NASA Astrophysics Data System (ADS)

    Schaumann, G.; Günther, T.; Musmann, P.; Grinat, M.

    2012-04-01

    Electric and electromagnetic prospection methods are applied in combination and investigated concerning their ability to image geological fault zones with depths up to a few km. Faults are prominent targets to explore because they bear possible flow paths for hydrothermal fluids. Therefore resistivity can become a valuable key parameter. Within the German Research Association gebo (Geothermal Energy and High Performance Drilling, www.gebo-nds.de) the electric/electromagnetic methods are operated alongside with the seismic exploration method. While seismic investigations yield information about the subsurface structure, electric and electromagnetic methods supplement these results with their ability to provide information about the resistivity distribution. Commonly used survey setups are analysed with respect to their investigation depth. Non-standard large-scale DC resistivity measurements in a dipole-dipole configuration energized by a high current source were applied in the field. Furthermore, Transient electromagnetic (TEM) soundings with a high transmitter moment were carried out. The setup in the field was modified in order to reach greater investigation depths. The course of seismic reflectors was incorporated into the inversion of the DC resistivity data by structural constraints. Especially thin low-resistive layers, detected by a 1D interpretation of the TEM data show a correlation to the seismic reflectors. While the 2D DC results give information about the resistivity structure of the fault zone, layers of low resistivity that are poorly determined with the DC measurements can be observed with an adapted TEM survey setup. After an initial investigation of known shallow fault zones more emphasis will be attached to the exploration of deeper structures in the subsurface, significant for geothermal tasks. A concept for a suitable field survey design is under development, especially adapted to the specific geological features in the sedimentary basin of

  20. Triple voltage dc-to-dc converter and method

    SciTech Connect

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  1. Light-weight DC to very high voltage DC converter

    DOEpatents

    Druce, R.L.; Kirbie, H.C.; Newton, M.A.

    1998-06-30

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

  2. Light-weight DC to very high voltage DC converter

    DOEpatents

    Druce, Robert L.; Kirbie, Hugh C.; Newton, Mark A.

    1998-01-01

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.

  3. Using Precision Gravity Survey To Locate Faults Within The Southern Mesilla Bolson, Rio Grande Rift.

    NASA Astrophysics Data System (ADS)

    Khatun, S.; Doser, D.; Imana, E.

    2003-12-01

    The southern Mesilla bolson of west Texas and southern New Mexico is a rapidly growing portion of the El Paso-Juarez metropolitan area. Faulting within the bolson is difficult to trace due to intensive urban and agricultural activities. Prior to channelization of the Rio Grande in the 1930's the river also frequently altered its course, rapidly depositing or eroding sediment within the bolson, also making the tracing of faults or offset surfaces difficult. We have used the precision gravity technique (digital precision gravity meter, station spacing of 60 m or less, elevation known to 30 cm or less) as an inexpensive method to map possible locations of faults within the bolson. We analyze the gravity data using 3-D modeling techniques that can account for known geology and topography, which are then subtracted from the observed gravity data. The residual gravity map is then examined for sharp gradients and bends in gravity contours that may indicate the presence of faults. Once suspected faults are identified we have conducted follow-up geophysical surveys (DC resistivity sounding, spectral analysis of surface waves) over the structures to determine if grain size or sediment compaction changes (often indicative of faults) are associated with the gravity anomalies. Water well logs have also aided in our interpretations. Our results suggest there are at least 3 faults within the bolson that parallel the range bounding fault that separates the eastern bolson from the western edge of the Franklin Mountains. If these faults are currently seismogenic, they represent a significant hazard to the urban areas located on the thick (1500 m), water saturated sediments of the bolson. We feel the precision gravity technique could serve as a useful reconnaissance tool to help identify faults in other regions where urbanization or other factors limit surface exposure of recent geologic processes.

  4. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  5. High-Efficiency dc/dc Converter

    NASA Technical Reports Server (NTRS)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  6. The dc power circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A compilation of reports concerning power circuits is presented for the dissemination of aerospace information to the general public as part of the NASA Technology Utilization Program. The descriptions for the electronic circuits are grouped as follows: dc power supplies, power converters, current-voltage power supply regulators, overload protection circuits, and dc constant current power supplies.

  7. Pen Branch Fault Program

    SciTech Connect

    Price, V.; Stieve, A.L.; Aadland, R.

    1990-09-28

    Evidence from subsurface mapping and seismic reflection surveys at Savannah River Site (SRS) suggests the presence of a fault which displaces Cretaceous through Tertiary (90--35 million years ago) sediments. This feature has been described and named the Pen Branch fault (PBF) in a recent Savannah River Laboratory (SRL) paper (DP-MS-88-219). Because the fault is located near operating nuclear facilities, public perception and federal regulations require a thorough investigation of the fault to determine whether any seismic hazard exists. A phased program with various elements has been established to investigate the PBF to address the Nuclear Regulatory Commission regulatory guidelines represented in 10 CFR 100 Appendix A. The objective of the PBF program is to fully characterize the nature of the PBF (ESS-SRL-89-395). This report briefly presents current understanding of the Pen Branch fault based on shallow drilling activities completed the fall of 1989 (PBF well series) and subsequent core analyses (SRL-ESS-90-145). The results are preliminary and ongoing: however, investigations indicate that the fault is not capable. In conjunction with the shallow drilling, other activities are planned or in progress. 7 refs., 8 figs., 1 tab.

  8. Comparative study of reference currents and DC bus voltage control for Three-Phase Four-Wire Four-Leg SAPF to compensate harmonics and reactive power with 3D SVM.

    PubMed

    Chebabhi, A; Fellah, M K; Kessal, A; Benkhoris, M F

    2015-07-01

    In this paper the performances of three reference currents and DC bus voltage control techniques for Three-Phase Four-Wire Four-Leg SAPF are compared for balanced and unbalanced load conditions. The main goals are to minimize the harmonics, reduce the magnitude of neutral current, eliminate the zero-sequence current components caused by single-phase nonlinear loads and compensate the reactive power, and on the other hand improve performances such as robustness, stabilization, trajectory pursuit, and reduce time response. The three techniques are analyzed mathematically and simulation results are compared. The techniques considered for comparative study are the PI Control, Sliding Mode Control and the Backstepping Control. Synchronous reference frame theory (SRF) in the dqo-axes is used to generate the reference currents, of the inverter.

  9. Comparative study of reference currents and DC bus voltage control for Three-Phase Four-Wire Four-Leg SAPF to compensate harmonics and reactive power with 3D SVM.

    PubMed

    Chebabhi, A; Fellah, M K; Kessal, A; Benkhoris, M F

    2015-07-01

    In this paper the performances of three reference currents and DC bus voltage control techniques for Three-Phase Four-Wire Four-Leg SAPF are compared for balanced and unbalanced load conditions. The main goals are to minimize the harmonics, reduce the magnitude of neutral current, eliminate the zero-sequence current components caused by single-phase nonlinear loads and compensate the reactive power, and on the other hand improve performances such as robustness, stabilization, trajectory pursuit, and reduce time response. The three techniques are analyzed mathematically and simulation results are compared. The techniques considered for comparative study are the PI Control, Sliding Mode Control and the Backstepping Control. Synchronous reference frame theory (SRF) in the dqo-axes is used to generate the reference currents, of the inverter. PMID:25704056

  10. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  11. Interleaved DC-DC Converter with Discrete Duty Cycle and Open Loop Control

    NASA Astrophysics Data System (ADS)

    Kroics, K.; Sokolovs, A.

    2016-08-01

    The authors present the control principle of the multiphase interleaved DC-DC converter that can be used to vastly reduce output current ripple of the converter. The control algorithm can be easily implemented by using microcontroller without current loop in each phase. The converter works in discontinuous conduction mode (DCM) but close to boundary conduction mode (BCM). The DC-DC converter with such a control algorithm is useful in applications that do not require precise current adjustment. The prototype of the converter has been built. The experimental results of the current ripple are presented in the paper.

  12. Digital Control Technologies for Modular DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  13. Fault mechanics

    SciTech Connect

    Segall, P. )

    1991-01-01

    Recent observational, experimental, and theoretical modeling studies of fault mechanics are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include interseismic strain accumulation, coseismic deformation, postseismic deformation, and the earthquake cycle; long-term deformation; fault friction and the instability mechanism; pore pressure and normal stress effects; instability models; strain measurements prior to earthquakes; stochastic modeling of earthquakes; and deep-focus earthquakes. Maps, graphs, and a comprehensive bibliography are provided. 220 refs.

  14. Novel bidirectional DC-DC converters based on the three-state switching cell

    NASA Astrophysics Data System (ADS)

    da Silva Júnior, José Carlos; Robles Balestero, Juan Paulo; Lessa Tofoli, Fernando

    2016-05-01

    It is well known that there is an increasing demand for bidirectional DC-DC converters for applications that range from renewable energy sources to electric vehicles. Within this context, this work proposes novel DC-DC converter topologies that use the three-state switching cell (3SSC), whose well-known advantages over conventional existing structures are ability to operate at high current levels, while current sharing is maintained by a high frequency transformer; reduction of cost and dimensions of magnetics; improved distribution of losses, with consequent increase of global efficiency and reduction of cost associated to the need of semiconductors with lower current ratings. Three distinct topologies can be derived from the 3SSC: one DC-DC converter with reversible current characteristic able to operate in the first and second quadrants; one DC-DC converter with reversible voltage characteristic able to operate in the first and third quadrants and one DC-DC converter with reversible current and voltage characteristics able to operate in four quadrants. Only the topology with bidirectional current characteristic is analysed in detail in terms of the operating stages in both nonoverlapping and overlapping modes, while the design procedure of the power stage elements is obtained. In order to validate the theoretical assumptions, an experimental prototype is also implemented, so that relevant issues can be properly discussed.

  15. Variable load automatically tests dc power supplies

    NASA Technical Reports Server (NTRS)

    Burke, H. C., Jr.; Sullivan, R. M.

    1965-01-01

    Continuously variable load automatically tests dc power supplies over an extended current range. External meters monitor current and voltage, and multipliers at the outputs facilitate plotting the power curve of the unit.

  16. dc power system for deuteron accelerator

    SciTech Connect

    Creek, K.O.; Liska, D.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility dc power system provides excitation current for all linac and High-Energy Beam Transport (HEBT) quadrupole and bending magnets, excitation for horizontal and vertical beam steering, and current-bypass shunts.

  17. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  18. A DC Transformer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.

    2013-01-01

    A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.

  19. Tacting "To a Fault."

    ERIC Educational Resources Information Center

    Baer, Donald M.

    1991-01-01

    This paper argues that behavior analysis is not technological to a fault, but rather has a faulty technology by being incomplete. The paper examines reinforcers and punishers that result from the outcomes of either (1) striving for better experimental control, or (2) inventing theories to explain why current control is imperfect. (JDD)

  20. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  1. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  2. Switch failure diagnosis based on inductor current observation for boost converters

    NASA Astrophysics Data System (ADS)

    Jamshidpour, E.; Poure, P.; Saadate, S.

    2016-09-01

    Face to the growing number of applications using DC-DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC-DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC-DC boost converter with one redundant switch.

  3. Fault ride-through enhancement using an enhanced field oriented control technique for converters of grid connected DFIG and STATCOM for different types of faults.

    PubMed

    Ananth, D V N; Nagesh Kumar, G V

    2016-05-01

    With increase in electric power demand, transmission lines were forced to operate close to its full load and due to the drastic change in weather conditions, thermal limit is increasing and the system is operating with less security margin. To meet the increased power demand, a doubly fed induction generator (DFIG) based wind generation system is a better alternative. For improving power flow capability and increasing security STATCOM can be adopted. As per modern grid rules, DFIG needs to operate without losing synchronism called low voltage ride through (LVRT) during severe grid faults. Hence, an enhanced field oriented control technique (EFOC) was adopted in Rotor Side Converter of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. A STATCOM is coordinated to the system for obtaining much better stability and enhanced operation during grid fault. For the EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during symmetric and asymmetric faults. The offset decomposition of flux will be oscillatory in a conventional field oriented control, whereas in EFOC it was aimed to damp quickly. This paper mitigates voltage and limits surge currents to enhance the operation of DFIG during symmetrical and asymmetrical faults. The system performance with different types of faults like single line to ground, double line to ground and triple line to ground was applied and compared without and with a STATCOM occurring at the point of common coupling with fault resistance of a very small value at 0.001Ω.

  4. Quantum states and linear response in dc and electromagnetic fields for the charge current and spin polarization of electrons at the Bi/Si interface with the giant spin-orbit coupling

    SciTech Connect

    Khomitsky, D. V.

    2012-05-15

    An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons, and Grioni [1] describing quantum states at the Bi/Si(111) interface with the giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis of the charge current and induced spin caused by a dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at a realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response for both the current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample, while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.

  5. Quantum states and linear response in dc and electromagnetic fields for the charge current and spin polarization of electrons at the Bi/Si interface with the giant spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Khomitsky, D. V.

    2012-05-01

    An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons, and Grioni [1] describing quantum states at the Bi/Si(111) interface with the giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis of the charge current and induced spin caused by a dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at a realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response for both the current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample, while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.

  6. A dc to dc converter

    NASA Astrophysics Data System (ADS)

    Willis, A. E.; Gould, J. M.; Matheney, J. L.; Garrett, H.

    1984-01-01

    The object of the invention is to provide an improved converter for converting one direct current voltage to another. A plurality of phased square wave voltages are provided from a ring counter through amplifiers to a like plurality of output transformers. Each of these transformers has two windings, and S(1) winding and an S(2) winding. The S(1) windings are connected in series, then the S(2) windings are connected in series, and finally, the two sets of windings are connected in series. One of six SCRs is connected between each two series connected windings to a positive output terminal and one of diodes is connected between each set of two windings of a zero output terminal. By virtue of this configuration, a quite high average direct current voltage is obtained, which varies between full voltage and two-thirds full voltage rather than from full voltage to zero. Further, its variation, ripple frequency, is reduced to one-sixth of that present in a single phase system. Application to raising battery voltage for an ion propulsion system is mentioned.

  7. Fault models

    NASA Astrophysics Data System (ADS)

    Sayah, H. R.; Buehler, M. G.

    1985-06-01

    A major problem in the qualification of integrated circuit cells and in the development of adequate tests for the circuits is to lack of information on the nature and density of fault models. Some of this information is being obtained from the test structures. In particular, the Pinhole Array Capacitor is providing values for the resistance of gate oxide shorts, and the Addressable Inverter Matrix is providing values for parameter distributions such as noise margins. Another CMOS fault mode, that of the open-gated transistor, is examined and the state of the transistors assessed. Preliminary results are described for a number of open-gated structures such as transistors, inverters, and NAND gates. Resistor faults are applied to various CMOS gates and the time responses are noted. The critical value for the resistive short to upset the gate response was determined.

  8. Fault analysis of multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  9. DC-Powered Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Farhang, Amiri

    2016-01-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…

  10. Nonlinear Phenomena and Resonant Parametric Perturbation Control in QR-ZCS Buck DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Hsieh, Fei-Hu; Liu, Feng-Shao; Hsieh, Hui-Chang

    The purpose of this study is to investigate the chaotic phenomena and to control in current-mode controlled quasi-resonant zero-current-switching (QR-ZCS) DC-DC buck converters, and to present control of chaos by resonant parametric perturbation control methods. First of all, MATLAB/SIMULINK is used to derive a mathematical model for QR-ZCS DC-DC buck converters, and to simulate the converters to observe the waveform of output voltages, inductance currents and phase-plane portraits from the period-doubling bifurcation to chaos by changing the load resistances. Secondly, using resonant parametric perturbation control in QR-ZCS buck DC-DC converters, the simulation results of the chaotic converter form chaos state turn into stable state period 1, and improve ripple amplitudes of converters under the chaos, to verify the validity of the proposes method.

  11. Polyscale, polymodal fault geometries: evolution and predictive capability

    NASA Astrophysics Data System (ADS)

    Blenkinsop, T. G.; Carvell, J.; Clarke, G.; Tonelli, M.

    2012-12-01

    The Late Permian Rangal coal measures on the edge of the Nebo synclinorium in the Bowen basin, NE Queensland, Australia, are cut by normal faults. Mining operations allow 13 faults to be mapped in some detail to depths of 200m. These faults cut Tertiary intrusions and a reverse fault as well as the coal seams, and show no obvious signs of reactivation. The steeply dipping faults are clustered into groups of two to four, separated by hundreds of meters. The faults trend ENE and NE; both trends of faults dip in both directions, defining a quadrimodal geometry. The odd axis construction for these faults suggests that vertical shortening was accompanied by horizontal extension along both principal directions of 153° and 063°. The mapped extents of the faults are limited by erosion and the depth to which the faults have been drilled, but displacement profiles along the lengths of the faults show maxima within the fault planes. The displacement profiles suggest that the currently mapped faults have similar lengths to the total preserved lengths of the faults, and that they will continue into the unmined ground to a limited, but predictable extent. The fault planes have a complex geometry, with segments of individual faults showing a similar variability in orientation to the ensemble of fault planes: the fault planes themselves are polymodal. Displacement profiles show a good correlation with segment orientation. An odd axis construction based on fault segments, rather than individual faults, gives principal extension directions within 4° of the above results. The variable orientation of fault segments, the correlation of the displacement profiles with fault orientation, and the similarity between the segment and ensemble fault kinematics suggest that the faults have evolved by propagation and linking of smaller polymodal faults in the same bulk strain field.ross section of polymodal fault at Hail Creek coal mine

  12. The role of fluid pressure in fault creep vs. frictional instability: insights from rock deformation experiments on carbonates

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco M.; Collettini, Cristiano

    2016-04-01

    Fluid overpressure is one of the primary mechanisms for tectonic fault slip. This mechanism is appealing as fluids lubricate the fault and fluid pressure, Pf, reduces the effective normal stress that holds the fault in place. However, current models of earthquake nucleation imply that stable sliding is favored by the increase of pore fluid pressure. Despite this opposite effects, currently, there are only a few studies on the role of fluid pressure under controlled, laboratory conditions. Here, we use laboratory experiments, conducted on a biaxial apparatus within a pressure vessel on limestone fault gouge, to: 1) evaluate the rate- and state- friction parameters as the pore fluid pressure is increased from hydrostatic to near lithostatic values and 2) fault creep evolution as a function of a step increase in fluid pressure. In this second suite of experiments we reached 85% of the maximum shear strength and than in load control we induced fault slip by increasing fluid pressure. Our data show that the friction rate parameter (a-b) evolves from slightly velocity strengthening to velocity neutral behaviour and the critical slip distance, Dc, decreases from about 100 to 20 μm as the pore fluid pressure is increased. Fault creep is slow (i.e 0.001μm/s) away from the maximum shear strength and for small increases in fluid pressure and it accelerates near the maximum shear strength and for larger fluid pressure build-ups, where we observe episodic accelerations/decelerations that in some cases evolve to small dynamic events. Our data suggest that fluid overpressure can increase aseismic creep with the development of frictional instability. Since fault rheology and fault stability parameters change with fluid pressure, we suggest that a comprehensive characterization of these parameters is fundamental for better assessing the role of fluid pressure in natural and human induced earthquakes.

  13. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    PubMed

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  14. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    PubMed

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  15. A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications

    PubMed Central

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  16. The fault-tolerant multiprocessor computer

    SciTech Connect

    Smith, T.B. III; Lala, J.H.; Goldberg, J.; Kautz, W.H.; Melliar-Smith, P.M.; Green, M.W.; Levitt, K.N.; Schwartz, R.L.; Weinstock, C.B.; Palumbo, D.; Butler, R.W.

    1986-01-01

    This book presents studies of two fault-tolerant computer systems designed to meet the extreme reliability requirements for safety- critical functions in advanced NASA vehicles , plus a study of potential architectures for future flight control fault-tolerant systems, which might succeed the current generation of computers. While it is understood that these studies were done for NASA, they also have practical commercial applicability. The fault-tolerant multiprocessor (FTMP) architecture is a high reliability computer concept. The basic organization of the FTMP is that of a general purpose homogeneous multiprocessor. Three processors operate on a shared system (memory and l/O) bus. Replication and tight synchronization of all elements and hardware voting are employed to detect and correct any single fault. Reconfiguration is then employed to ''repair'' a fault. Multiple faults may be tolerated as a sequence of single faults with repair between fault occurrences.

  17. Patterns of Seismic and Aseismic Slip on Heterogeneous Faults

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Ampuero, J. P.

    2013-12-01

    Geological studies of exhumed faults and seismological observations reveal interesting aspects of fault heterogeneity. We thus carried numerical studies to explore the implications of fault heterogeneity on the organization of seismicity and transient aseismic slip. Our quasi-dynamic, continuum models are based on laboratory derived rate-and-state friction with heterogeneity introduced by spatial distributions of characteristic slip distance (Dc). We considered two types of faults, a simple strike-slip fault and a typical subduction fault; and two types of spatial distribution of Dc, a model with uniformly random log Dc distribution, and a hierarchical model of asperities with self-similar power-law asperity size distribution and Dc value proportional to asperity size. Our systematic study shows that by varying the distribution of Dc value, we are able to reproduce a wide variety of macroscopic fault behaviors ranging from characteristic seismic events to steady-slip. For different combinations of minimum and maximum Dc values on a fault we simulated multiple earthquake cycles with a total duration long enough to characterize the general behavior of the fault: characteristic (regularly repeating events that break the whole fault), non-characteristic (events with a range of magnitudes, in some cases with a complex but repeating pattern), aseismic transients and steady slip. We found that non-characteristic seismicity behavior occurs only over a relatively narrow range of Dc distributions. We extended our study in this regime and observed complex sequences of seismic events ranging over two orders of magnitude of seismic moments. We generated a synthetic catalog containing over 10,000 events and studied their source scaling relations. The catalog shows a transition in the moment magnitude (M0) - rupture area (A) scaling, from M0~A3/2 at low magnitudes to M0~A at large magnitudes, controlled by the effect of the finite seismogenic depth. Our modeling provides

  18. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  19. Inrush Current Control Circuit

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  20. Frictional Heterogeneities Along Carbonate Faults

    NASA Astrophysics Data System (ADS)

    Collettini, C.; Carpenter, B. M.; Scuderi, M.; Tesei, T.

    2014-12-01

    The understanding of fault-slip behaviour in carbonates has an important societal impact as a) a significant number of earthquakes nucleate within or propagate through these rocks, and b) half of the known petroleum reserves occur within carbonate reservoirs, which likely contain faults that experience fluid pressure fluctuations. Field studies on carbonate-bearing faults that are exhumed analogues of currently active structures of the seismogenic crust, show that fault rock types are systematically controlled by the lithology of the faulted protolith: localization associated with cataclasis, thermal decomposition and plastic deformation commonly affect fault rocks in massive limestone, whereas distributed deformation, pressure-solution and frictional sliding along phyllosilicates are observed in marly rocks. In addition, hydraulic fractures, indicating cyclic fluid pressure build-ups during the fault activity, are widespread. Standard double direct friction experiments on fault rocks from massive limestones show high friction, velocity neutral/weakening behaviour and significant re-strengthening during hold periods, on the contrary, phyllosilicate-rich shear zones are characterized by low friction, significant velocity strengthening behavior and no healing. We are currently running friction experiments on large rock samples (20x20 cm) in order to reproduce and characterize the interaction of fault rock frictional heterogeneities observed in the field. In addition we have been performing experiments at near lithostatic fluid pressure in the double direct shear configuration within a pressure vessel to test the Rate and State friction stability under these conditions. Our combination of structural observations and mechanical data have been revealing the processes and structures that are at the base of the broad spectrum of fault slip behaviors recently documented by high-resolution geodetic and seismological data.

  1. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  2. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  3. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  4. Current Issues in Mental Retardation and Human Development: Selected Papers from the 1970 Staff Development Conferences of the President's Committee on Mental Retardation (Washington, D.C., 1971).

    ERIC Educational Resources Information Center

    Stedman, Donald J., Ed.

    Six papers discuss some of the current issues in the field of mental retardation and human development. Epidemiology of mental retardation from a sociological and clinical point of view is analyzed by Jane R. Mercer, based on studies of mental retardation in the community in Pomona, California. The role of genetics and intra-uterine diagnosis of…

  5. Current level detector

    DOEpatents

    Kerns, Cordon R.

    1977-01-01

    A device is provided for detecting the current level of a DC signal. It includes an even harmonic modulator to which a reference AC signal is applied. The unknown DC signal acts on the reference AC signal so that the output of the modulator includes an even harmonic whose amplitude is proportional to the unknown DC current.

  6. Randomness fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1996-01-01

    A method and apparatus are provided for detecting a fault on a power line carrying a line parameter such as a load current. The apparatus monitors and analyzes the load current to obtain an energy value. The energy value is compared to a threshold value stored in a buffer. If the energy value is greater than the threshold value a counter is incremented. If the energy value is greater than a high value threshold or less than a low value threshold then a second counter is incremented. If the difference between two subsequent energy values is greater than a constant then a third counter is incremented. A fault signal is issued if the counter is greater than a counter limit value and either the second counter is greater than a second limit value or the third counter is greater than a third limit value.

  7. High concentration effects of neutral-potential-well interface traps on recombination dc current-voltage lineshape in metal-oxide-silicon transistors

    NASA Astrophysics Data System (ADS)

    Chen, Zuhui; Jie, Bin B.; Sah, Chih-Tang

    2008-11-01

    Steady-state Shockley-Read-Hall kinetics is employed to explore the high concentration effect of neutral-potential-well interface traps on the electron-hole recombination direct-current current-voltage (R-DCIV) properties in metal-oxide-silicon field-effect transistors. Extensive calculations include device parameter variations in neutral-trapping-potential-well electron interface-trap density NET (charge states 0 and -1), dopant impurity concentration PIM, oxide thickness Xox, forward source/drain junction bias VPN, and transistor temperature T. It shows significant distortion of the R-DCIV lineshape by the high concentrations of the interface traps. The result suggests that the lineshape distortion observed in past experiments, previously attributed to spatial variation in surface impurity concentration and energy distribution of interface traps in the silicon energy gap, can also arise from interface-trap concentration along surface channel region.

  8. Radiation effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, Dexin; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2000-01-01

    DC-DC switching converters are circuits that can be used to convert a DC voltage of one value to another by switching action. They are increasing being used in space systems. Most of the popular DC-DC switching converters utilize power MOSFETs. However power MOSFETs, when subjected to radiation, are susceptible to degradation of device characteristics or catastrophic failure. This work focuses on the effects of total ionizing dose on converter performance. Four fundamental switching converters (buck converter, buck-boost converter, cuk converter, and flyback converter) were built using Harris IRF250 power MOSFETs. These converters were designed for converting an input of 60 volts to an output of about 12 volts with a switching frequency of 100 kHz. The four converters were irradiated with a Co-60 gamma source at dose rate of 217 rad/min. The performances of the four converters were examined during the exposure to the radiation. The experimental results show that the output voltage of the converters increases as total dose increases. However, the increases of the output voltage were different for the four different converters, with the buck converter and cuk converter the highest and the flyback converter the lowest. We observed significant increases in output voltage for cuk converter at a total dose of 24 krad (si).

  9. The application of standardized control and interface circuits to three dc to dc power converters.

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  10. High power density dc/dc converter: Selection of converter topology

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  11. Single Event Burnout in DC-DC Converters for the LHC Experiments

    SciTech Connect

    Claudio H. Rivetta et al.

    2001-09-24

    High voltage transistors in DC-DC converters are prone to catastrophic Single Event Burnout in the LHC radiation environment. This paper presents a systematic methodology to analyze single event effects sensitivity in converters and proposes solutions based on de-rating input voltage and output current or voltage.

  12. Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

  13. Multiple sensor fault diagnosis for dynamic processes.

    PubMed

    Li, Cheng-Chih; Jeng, Jyh-Cheng

    2010-10-01

    Modern industrial plants are usually large scaled and contain a great amount of sensors. Sensor fault diagnosis is crucial and necessary to process safety and optimal operation. This paper proposes a systematic approach to detect, isolate and identify multiple sensor faults for multivariate dynamic systems. The current work first defines deviation vectors for sensor observations, and further defines and derives the basic sensor fault matrix (BSFM), consisting of the normalized basic fault vectors, by several different methods. By projecting a process deviation vector to the space spanned by BSFM, this research uses a vector with the resulted weights on each direction for multiple sensor fault diagnosis. This study also proposes a novel monitoring index and derives corresponding sensor fault detectability. The study also utilizes that vector to isolate and identify multiple sensor faults, and discusses the isolatability and identifiability. Simulation examples and comparison with two conventional PCA-based contribution plots are presented to demonstrate the effectiveness of the proposed methodology.

  14. Subaru FATS (fault tracking system)

    NASA Astrophysics Data System (ADS)

    Winegar, Tom W.; Noumaru, Junichi

    2000-07-01

    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  15. Mesoscopic electronics beyond DC transport

    NASA Astrophysics Data System (ADS)

    di Carlo, Leonardo

    Since the inception of mesoscopic electronics in the 1980's, direct current (dc) measurements have underpinned experiments in quantum transport. Novel techniques complementing dc transport are becoming paramount to new developments in mesoscopic electronics, particularly as the road is paved toward quantum information processing. This thesis describes seven experiments on GaAs/AlGaAs and graphene nanostructures unified by experimental techniques going beyond traditional dc transport. Firstly, dc current induced by microwave radiation applied to an open chaotic quantum dot is investigated. Asymmetry of mesoscopic fluctuations of induced current in perpendicular magnetic field is established as a tool for separating the quantum photovoltaic effect from classical rectification. A differential charge sensing technique is next developed using integrated quantum point contacts to resolve the spatial distribution of charge inside a double quantum clot. An accurate method for determining interdot tunnel coupling and electron temperature using charge sensing is demonstrated. A two-channel system for detecting current noise in mesoscopic conductors is developed, enabling four experiments where shot noise probes transmission properties not available in dc transport and Johnson noise serves as an electron thermometer. Suppressed shot noise is observed in quantum point contacts at zero parallel magnetic field, associated with the 0.7 structure in conductance. This suppression evolves with increasing field into the shot-noise signature of spin-lifted mode degeneracy. Quantitative agreement is found with a phenomenological model for density-dependent mode splitting. Shot noise measurements of multi-lead quantum-dot structures in the Coulomb blockade regime distill the mechanisms by which Coulomb interaction and quantum indistinguishability correlate electron flow. Gate-controlled sign reversal of noise cross correlation in two capacitively-coupled dots is observed, and shown to

  16. Transformerless dc-Isolated Converter

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1987-01-01

    Efficient voltage converter employs capacitive instead of transformer coupling to provide dc isolation. Offers buck/boost operation, minimal filtering, and low parts count, with possible application in photovoltaic power inverters, power supplies and battery charges. In photovoltaic inverter circuit with transformerless converter, Q2, Q3, Q4, and Q5 form line-commutated inverter. Switching losses and stresses nil because switching performed when current is zero.

  17. Radiation Effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2001-01-01

    In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25

  18. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  19. Transform fault earthquakes in the North Atlantic - Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1988-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  20. The fault-tree compiler

    NASA Technical Reports Server (NTRS)

    Martensen, Anna L.; Butler, Ricky W.

    1987-01-01

    The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.

  1. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    NASA Astrophysics Data System (ADS)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  2. Design of Current Source Dc/Dc Converter for Interfacing a 5 Kw Pem Fuel Cell / Paaugstinošā Strāvas Avota Līdzsprieguma Pārveidotāja Izstrāde 5 Kw Ūdeņraža Degvielas Elementam

    NASA Astrophysics Data System (ADS)

    Andreičiks, A.; Steiks, I.; Krievs, O.

    2013-08-01

    In domestic applications the low DC output voltage of a hydrogen fuel cell used as the main power supply or a backup power source has to be matched to the level and frequency of the AC voltage of utility grid. The interfacing power converter system usually consists of a DC/DC converter and an inverter. In this work, a DC/DC step-up converter stage is designed for interfacing a 5kW proton exchange membrane (PEM) fuel cell. The losses of DC/DC conversion are estimated and, basing on the relevant analysis, the most appropriate configuration of converter modules is selected for a DC/DC converter stage of increased efficiency. The authors present the results of experimental analysis and simulation for the selected configuration of four double inductor step-up push-pull converter modules Ūdeņraža degvielas elementa invertoru sistēmas mājsaimniecības pielietojumiem parasti sastāv no līdzsprieguma paaugstināšanas un invertēšanas mezgliem. Šis raksts ir veltīts paaugstinošā līdzsprieguma pārveidotāja izstrādei 5 kW protonu apmaiņas membrānas degvielas elementam. Rakstā izpētīts divu induktoru divtaktu strāvas avota paaugstinošais līdzsprieguma pārveidotājs, aplūkojot gan datormodelēšanas, gan eksperimentālos rezultātus. Lai palielinātu DC/DC pārveidotāja efektivitāti var izmantot vairākus pārveidotāja moduļus, kam ieejas savienotas paralēli un izejās - virkne. Analīze Šajā raksta ir veikta analīze, balstoties uz kuras var izvēlieties skaitu pārveidotāj moduļu skaitu, kuri nodrošina vislabāko efektivitāti DC/DC pārveidotāja posmā. Kopējais eksperimentāli noteiktais izstrādātās degvielas elementa pārveidotāju sistēmas fizikālā modeļa lietderības koeficients ir 93%

  3. High impedance fault detection in low voltage networks

    SciTech Connect

    Christie, R.D. . Dept. of Electrical Engineering); Zadehgol, H.; Habib, M.M. )

    1993-10-01

    High impedance faults are those with fault current magnitude similar to load currents. Experimental results were obtained that conform operating experience that such faults can occur in the low voltage (600V and below) underground distribution networks typically found in urban power systems. These faults produce current waveforms qualitatively similar to those found on overhead feeders, but quantitatively smaller. Loose connectors can produce similar, but cleaner current characteristics. Noisy loads remain a major impediment to reliable detection. Design and installation of an inexpensive prototype fault detector on the Seattle City Light street network is described.

  4. Fault Location Methods for Ungrounded Distribution Systems Using Local Measurements

    NASA Astrophysics Data System (ADS)

    Xiu, Wanjing; Liao, Yuan

    2013-08-01

    This article presents novel fault location algorithms for ungrounded distribution systems. The proposed methods are capable of locating faults by using obtained voltage and current measurements at the local substation. Two types of fault location algorithms, using line to neutral and line to line measurements, are presented. The network structure and parameters are assumed to be known. The network structure needs to be updated based on information obtained from utility telemetry system. With the help of bus impedance matrix, local voltage changes due to the fault can be expressed as a function of fault currents. Since the bus impedance matrix contains information about fault location, superimposed voltages at local substation can be expressed as a function of fault location, through which fault location can be solved. Simulation studies have been carried out based on a sample distribution power system. From the evaluation study, it is evinced that very accurate fault location estimates are obtained from both types of methods.

  5. Estimation of Bidirectional Buck/boost DC/DC Converters with Electric Double-Layer Capacitors for Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Funabiki, Shigeyuki; Yamamoto, Masayoshi

    Renewable energy such as wind force and solar light has collected the attention as alternative energy sources of fossil fuel. An energy storage system with an electric double-layer capacitor (EDLC), which balances the demand and supply power, is required in order to introduce the electric power generating system that utilizes renewable energy. Currently, the research and development of these energy storage systems are actively carried out. In the energy storage system with an EDLC, the DC/DC converter having the function of the bidirectional power flow and the buck/boost performance is essential as an interface and power control circuit. There are two types of the bidirectional buck/boost DC/DC converters. One type consists of two buck/boost DC/DC converters with one reactor. The other type consists of two sets of two-quadrant DC/DC converters with one reactor. This paper discusses the comparison of these types of DC/DC converters with bidirectional power flow and buck/boost performance. The two types of DC/DC converters are estimated for their application to the energy storage system with the EDLC. As the voltage endurance of the device is lower and the mean current is smaller in the latter type of converter despite of having twice the number of devices compared to the former, the latter type of converter has the advantage of a smaller reactor, i.e., core volume and loss, and lower loss in the converter.

  6. Preparative separation of 1,3,6-pyrenetrisulfonic acid trisodium salt from the color additive D&C Green No. 8 (pyranine) by pH-zone-refining counter-current chromatography.

    PubMed

    Weisz, Adrian; Mazzola, Eugene P; Ito, Yoichiro

    2011-11-11

    In developing analytical methods for batch certification of the color additive D&C Green No. 8 (G8), the U.S. Food and Drug Administration needed the trisodium salt of 1,3,6-pyrenetrisulfonic acid (P3S) for use as a reference material. Since P3S was not commercially available, preparative quantities of it were separated from portions of a sample of G8 that contained ∼3.5% P3S. The separations were performed by pH-zone-refining counter-current chromatography using dodecylamine (DA) as the hydrophobic counterion. The added DA enabled partitioning of the polysulfonated components into the organic stationary phase of the two-phase solvent system used, 1-butanol-water (1:1). Thus, a typical separation that involved 20.3g of G8, using sulfuric acid as the retainer acid and 20% DA in the stationary phase and 0.1M sodium hydroxide as the mobile phase, resulted in ∼0.58 g of P3S of greater than 99% purity. The identification and characterization of the separated P3S were performed by elemental analyses, proton nuclear magnetic resonance, high-resolution mass spectrometry, ultra-violet spectra, and high-performance liquid chromatography. PMID:21982993

  7. Preparative separation of 1,3,6-pyrenetrisulfonic acid trisodium salt from the color additive D&C Green No. 8 by affinity-ligand pH-zone-refining counter-current chromatography

    PubMed Central

    Weisz, Adrian; Mazzola, Eugene P.; Ito, Yoichiro

    2011-01-01

    In developing analytical methods for batch certification of the color additive D&C Green No. 8 (G8), the U.S. Food and Drug Administration needed the trisodium salt of 1,3,6-pyrenetrisulfonic acid (P3S) for use as a reference material. Since P3S was not commercially available, preparative quantities of it were separated from portions of a sample of G8 that contained ~ 3.5% P3S. The separations were performed by affinity-ligand pH-zone-refining counter-current chromatography using dodecylamine (DA) as the ligand. The added ligand enabled partitioning of the polysulfonated components into the organic stationary phase of the two-phase solvent system used, 1-butanol – water (1:1). A typical separation that involved 20.3 g of G8, using sulfuric acid as the retainer acid and 20% DA in the stationary phase and 0.1M sodium hydroxide as the mobile phase, resulted in ~0.58 g of P3S of greater than 99% purity. The identification and characterization of the separated P3S were performed by proton nuclear magnetic resonance, high-resolution mass spectrometry, ultra-violet spectra and high-performance liquid chromatography. PMID:21982993

  8. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  9. Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller. [a dc to dc voltage converter

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.

    1979-01-01

    Performance data obtained through experimental testing of a 22.4 kW traction motor using two types of excitation are presented. Ripple free dc from a motor-generator set for baseline data and pulse width modulated dc as supplied by a battery pack and chopper controller were used for excitation. For the same average values of input voltage and current, the motor power output was independent of the type of excitation. However, at the same speeds, the motor efficiency at low power output (corresponding to low duty cycle of the controller) was 5 to 10 percentage points lower on chopped dc than on ripple free dc. The chopped dc locked-rotor torque was approximately 1 to 3 percent greater than the ripple free dc torque for the same average current.

  10. The Curiosity Mars Rover's Fault Protection Engine

    NASA Technical Reports Server (NTRS)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  11. Results of an electrical power system fault study

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  12. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations.

  13. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. PMID:24906895

  14. Intelligent dc-dc Converter Technology Developed and Tested

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2001-01-01

    The NASA Glenn Research Center and the Cleveland State University have developed a digitally controlled dc-dc converter to research the benefits of flexible, digital control on power electronics and systems. Initial research and testing has shown that conventional dc-dc converters can benefit from improved performance by using digital-signal processors and nonlinear control algorithms.

  15. Fault tolerant operation of switched reluctance machine

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    experiments. With the proposed optimal waveform, torque production is greatly improved under the same Root Mean Square (RMS) current constraint. Additionally, position sensorless operation methods under phase faults are investigated to account for the combination of physical position sensor and phase winding faults. A comprehensive solution for position sensorless operation under single and multiple phases fault are proposed and validated through experiments. Continuous position sensorless operation with seamless transition between various numbers of phase fault is achieved.

  16. Paleoseismicity of two historically quiescent faults in Australia: Implications for fault behavior in stable continental regions

    USGS Publications Warehouse

    Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.

    2003-01-01

    Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.

  17. Formation of stacking faults and their correlation with flux-pinning and critical current density for Sm-doped YBa2Cu3O7- films

    SciTech Connect

    Wee, Sung Hun; Specht, Eliot D; Cantoni, Claudia; Zuev, Yuri L; Maroni, V. A.; Wong-Ng, W.; Liu, G.; Haugan, T. J.; Goyal, Amit

    2011-01-01

    A correlation between flux-pinning characteristics and stacking faults (SFs) formed by Sm substitution on Y and Ba sites was found in Sm-doped YBa2Cu3O7- (YBCO) films. It was confirmed that 223 type SFs, Y2Ba2Cu3Ox, composed of extra Y and O planes aligned parallel to the ab-planes formed via Sm substitution on the Y site and increased in number with increasing Sm doping on the Ba site. The number density of 223 SFs is correlated strongly with the enhancement in ab-plane correlated flux-pinning, resulting in a sharpening of the H ab peak in the plot of critical current density versus magnetic field orientation.

  18. POTENTIAL EFFECTS OF FAULTS ON GROUNDWATER FLOW FOR THE YUCCA FLAT BASIN, NEVADA TEST SITE, NEVADA

    NASA Astrophysics Data System (ADS)

    Dickerson, R. P.; Fryer, W.

    2009-12-01

    The permeability changes resulting from finely comminuted material in fault cores and the fractured and brecciated rock in fault damage zones allows faults to channelize groundwater flow along the plane of the fault. The efficiency of faults as permeability structures depends on fault zone width, fault offset, depth at which the fault developed, type of faulted rock, extent of secondary mineralization, and fault orientation within current stress field. Studies of faulted volcanic rocks at Yucca Mountain, Nevada, indicate that fault zone width and brecciation increase with fault offset, that faulted welded tuff is more permeable than nonwelded or bedded tuff, and that non-hydrothermal secondary mineralization commonly diminishes fracture permeability. These results are applied to the groundwater conceptual flow model for Yucca Flat (YF) on the Nevada Test Site (NTS). Yucca Flat contains Tertiary volcanic rocks similar to thoise at Yucca Mountain deposited on Paleozoic carbonate rocks whose thickness is increased by local thrust-faults. The YF basin contains north-striking normal faults and is bordered by southwest-striking strike-slip faults to the south and east. Fault permeability values derived from faulted volcanic rocks at Yucca Mountain suggests that major normal faults in Yucca Flat potentially manifest permeability values along the fault plane equal to the highest values determined for volcanic aquifers. Numerous minor faults not assigned specific permeability values are assumed to imbue the basin with a hydraulic anisotropy favoring fault-parallel flow. In this scenario groundwater flows generally from north to south in the Yucca Flat basin, even as the head gradient is primarily towards the centrally located Yucca Fault, which acts as the main subsurface drainage feature within the basin. Studies show that the regional stress field has rotated clockwise such that southwest-striking strike-slip faults are currently under tension. In this scenario these

  19. Comparison of solar panel cooling system by using dc brushless fan and dc water

    NASA Astrophysics Data System (ADS)

    Irwan, Y. M.; Leow, W. Z.; Irwanto, M.; M, Fareq; Hassan, S. I. S.; Safwati, I.; Amelia, A. R.

    2015-06-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer.

  20. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  1. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  2. High speed variable-inductor controlled with DC-DC converter

    SciTech Connect

    Ichinokura, Osamu; Kagami, Toshiro; Jinzenji, Toshimasa; Maeda, Mitsuru; Wakiya, Yoshie

    1995-11-01

    This paper describes a fundamental consideration on high speed control of the orthogonal-core type variable-inductor. The variable-inductor is applicable to a VAR compensation in the electric power system. The transient characteristics of the variable-inductor under the condition of dc control are discussed based on simulation and experiment. For high speed operation, the authors present an instantaneous control of the primary current. A simple control circuit using a dc-dc converter is demonstrated in this paper.

  3. RISK D/C

    NASA Technical Reports Server (NTRS)

    Dias, W. C.

    1994-01-01

    RISK D/C is a prototype program which attempts to do program risk modeling for the Space Exploration Initiative (SEI) architectures proposed in the Synthesis Group Report. Risk assessment is made with respect to risk events, their probabilities, and the severities of potential results. The program allows risk mitigation strategies to be proposed for an exploration program architecture and to be ranked with respect to their effectiveness. RISK D/C allows for the fact that risk assessment in early planning phases is subjective. Although specific to the SEI in its present form, RISK D/C can be used as a framework for developing a risk assessment program for other specific uses. RISK D/C is organized into files, or stacks, of information, including the architecture, the hazard, and the risk event stacks. Although predefined, all stacks can be upgraded by a user. The architecture stack contains information concerning the general program alternatives, which are subsequently broken down into waypoints, missions, and mission phases. The hazard stack includes any background condition which could result in a risk event. A risk event is anything unfavorable that could happen during the course of a specific point within an architecture, and the risk event stack provides the probabilities, consequences, severities, and any mitigation strategies which could be used to reduce the risk of the event, and how much the risk is reduced. RISK D/C was developed for Macintosh series computers. It requires HyperCard 2.0 or later, as well as 2Mb of RAM and System 6.0.8 or later. A Macintosh II series computer is recommended due to speed concerns. The standard distribution medium for this package is one 3.5 inch 800K Macintosh format diskette. RISK D/C was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Macintosh and HyperCard are trademarks of Apple Computer, Inc.

  4. High performance dc-dc conversion with voltage multipliers. [using transformerless capacitor diode circuit

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1974-01-01

    An experimental 100W 1000V dc-dc converter using a capacitor diode voltage multipler (CDVM) with a nominal frequency of 100 kHz is studied. A component weight of about 1 kg/kW was obtained. Design equations for current, output -ripple and -power, efficiency and output voltage are derived. Agreement between experimental results and calculations is fairly good except for ripple.

  5. Solid-state circuit breaker with current limiting characteristic using a superconducting coil

    DOEpatents

    Boenig, Heinrich J.

    1984-01-01

    A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two cycles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.

  6. Solid-state circuit breaker with current-limiting characteristic using a superconducting coil

    DOEpatents

    Boenig, H.J.

    1982-08-16

    A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two eyeles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.

  7. Characterization of Appalachian faults

    SciTech Connect

    Hatcher, R.D. Jr.; Odom, A.L.; Engelder, T.; Dunn, D.E.; Wise, D.U.; Geiser, P.A.; Schamel, S.; Kish, S.A.

    1988-02-01

    This study presents a classification/characterization of Appalachian faults. Characterization factors include timing of movement relative to folding, metamorphism, and plutonism; tectonic position in the orogen; relations to existing anisotropies in the rock masses; involvement of particular rock units and their ages, as well as the standard Andersonian distinctions. Categories include faults with demonstrable Cenozoic activity, wildflysch-associated thrusts, foreland bedding-plane thrusts, premetamorphic to synmetamorphic thrusts in medium- to high-grade terranes, postmetamorphic thrusts in medium- to high-grade terranes, thrusts rooted in Precambrian basement, reverse faults, strike-slip faults, normal (block) faults, compound faults, structural lineaments, faults associated with local centers of disturbance, and geomorphic (nontectonic) faults.

  8. Friction experiments on Alpine Fault DFDP core samples: Implications for slip style on plate boundary faults

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Trütner, S.; Toy, V. G.; Carpenter, B. M.; Kopf, A.

    2014-12-01

    The Alpine Fault is a major plate-boundary fault zone that poses a significant seismic hazard in southern New Zealand, with the next major earthquake expected to be imminent. Core samples from the Alpine Fault were recovered from two Deep Fault Drilling Project pilot boreholes that penetrated the principal slip zone (PSZ). We show here that at room temperature and low effective stress (30 MPa), materials from within and very near the PSZ are weaker than the surrounding cataclasites (μ = 0.45), exhibit velocity-strengthening friction, and also tend to restrengthen (heal) rapidly. Under conditions appropriate for several kilometers depth on the Alpine Fault (100 MPa, 160 °C, fluid-saturated), a cataclasite/gouge sample located very near to the PSZ exhibits μ = 0.67, which is high compared to measurements performed at lower pressures and temperatures for the Alpine Fault and other major fault zones sampled by scientific drilling. Every major lithological unit tested under elevated P-T conditions exhibits both positive and negative values of friction velocity-dependence suggesting that they are all capable of earthquake nucleation. Using representative values of the friction velocity-dependent parameter a-b, the critical slip distance Dc, and previously documented elastic properties of the wall rock, estimated critical nucleation patch lengths may be as low as ~3 m. This small value is consistent with a seismic moment Mo = ~4x1010 or a Mw = ~1, which suggests that events of this size or larger are expected to occur as normal earthquakes and that slow or transient slip events are unlikely in the approximate depth range of 3-7 km. In conjunction with previous geodetic and seismologic observations, our results indicate that the Alpine Fault has a high potential for frictional instability throughout the brittle crust, in contrast with other major fault zones on which the uppermost portion is relatively stable.

  9. Description of the SSF PMAD DC testbed control system data acquisition function

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Mackin, Michael; Wright, Theodore

    1992-01-01

    The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data

  10. DYLOS DC110

    EPA Science Inventory

    The Dylos DC1100 air quality monitor measures particulate matter (PM) to provide a continuous assessment of indoor air quality. The unit counts particles in two size ranges: large and small. According to the manufacturer, large particles have diameters between 2.5 and 10 micromet...

  11. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  12. SFT: Scalable Fault Tolerance

    SciTech Connect

    Petrini, Fabrizio; Nieplocha, Jarek; Tipparaju, Vinod

    2006-04-15

    In this paper we will present a new technology that we are currently developing within the SFT: Scalable Fault Tolerance FastOS project which seeks to implement fault tolerance at the operating system level. Major design goals include dynamic reallocation of resources to allow continuing execution in the presence of hardware failures, very high scalability, high efficiency (low overhead), and transparency—requiring no changes to user applications. Our technology is based on a global coordination mechanism, that enforces transparent recovery lines in the system, and TICK, a lightweight, incremental checkpointing software architecture implemented as a Linux kernel module. TICK is completely user-transparent and does not require any changes to user code or system libraries; it is highly responsive: an interrupt, such as a timer interrupt, can trigger a checkpoint in as little as 2.5μs; and it supports incremental and full checkpoints with minimal overhead—less than 6% with full checkpointing to disk performed as frequently as once per minute.

  13. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  14. Kilovolt dc solid state remote power controller development

    NASA Technical Reports Server (NTRS)

    Mitchell, J. T.

    1982-01-01

    The experience gained in developing and applying solid state power controller (SSPC) technology at high voltage dc (HVDC) potentials and power levels of up to 25 kilowatts is summarized. The HVDC switching devices, power switching concepts, drive circuits, and very fast acting overcurrent protection circuits were analyzed. A 25A bipolar breadboard with Darlington connected switching transistor was built. Fault testing at 900 volts was included. A bipolar transistor packaged breadboard design was developed. Power MOSFET remote power controller (RPC) was designed.

  15. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    PubMed

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem.

  16. DC-DC powering for the CMS pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, Lutz; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R&D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  17. Applying to the DC Opportunity Scholarship Program: How Do Parents Rate Their Children's Current Schools at Time of Application and What Do They Want in New Schools? NCEE Evaluation Brief. NCEE 2016-4003

    ERIC Educational Resources Information Center

    Dynarski, Mark; Betts, Julian; Feldman, Jill

    2016-01-01

    The DC Opportunity Scholarship Program (OSP), established in 2004, is the only federally-funded private school voucher program for low-income parents in the United States. This evaluation brief describes findings using data from more than 2,000 applicants' parents, who applied to the program from spring 2011 to spring 2013 following…

  18. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography☆

    PubMed Central

    Weisz, Adrian; Ridge, Clark D.; Mazzola, Eugene P.; Ito, Yoichiro

    2015-01-01

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5 mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1 g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3 mg of B of >85% purity, and 91 mg of C of 65–72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. PMID:25591404

  19. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography.

    PubMed

    Weisz, Adrian; Ridge, Clark D; Mazzola, Eugene P; Ito, Yoichiro

    2015-02-01

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3mg of B of >85% purity, and 91 mg of C of 65-72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity.

  20. Integration of offshore wind farms through high voltage direct current networks

    NASA Astrophysics Data System (ADS)

    Livermore, Luke

    The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared..

  1. Effects of Fault Displacement on Emplacement Drifts

    SciTech Connect

    F. Duan

    2000-04-25

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10{sup -5} adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M&O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure.

  2. DC Self Bias Trends in Dual Frequency PECVD Deposition Systems

    NASA Astrophysics Data System (ADS)

    Keil, D. L.; Augustyniak, E.; Leeser, C.; Galli, F.

    2011-10-01

    Capacitively coupled plasma (CCP) etch systems commonly report the DC auto or self bias developed as a consequence of capacitively coupling RF to the plasma. Frequently, these systems employ wafer pedestals comprised of electrostatic chucks which must monitor the self bias as part of their normal operation. DC self bias is often found to correlate with various etch process behaviors or system states. It is less common, however, to find CCP deposition systems that report DC self bias. This work reports results of a study of DC self bias trends due to chamber pressure, chamber conditioning and aging, and changes in wafer pedestal hardware. In particular, chamber film accumulation is found to correlate to certain DC bias trends. The applicability of these results for process tracking and system monitoring is discussed. Additionally, the DC self bias response to deliberate perturbations to the RF system are examined. These perturbations include those not normally encountered during commercial deposition such as `bleeding' current to ground.

  3. Fault-Tree Compiler

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Boerschlein, David P.

    1993-01-01

    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  4. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  5. Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard

    2003-01-01

    DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.

  6. Tractable particle filters for robot fault diagnosis

    NASA Astrophysics Data System (ADS)

    Verma, Vandi

    Experience has shown that even carefully designed and tested robots may encounter anomalous situations. It is therefore important for robots to monitor their state so that anomalous situations may be detected in a timely manner. Robot fault diagnosis typically requires tracking a very large number of possible faults in complex non-linear dynamic systems with noisy sensors. Traditional methods either ignore the uncertainly or use linear approximations of nonlinear system dynamics. Such approximations are often unrealistic, and as a result faults either go undetected or become confused with non-fault conditions. Probability theory provides a natural representation for uncertainty, but an exact Bayesian solution for the diagnosis problem is intractable. Classical Monte Carlo methods, such as particle filters, suffer from substantial computational complexity. This is particularly true with the presence of rare, yet important events, such as many system faults. The thesis presents a set of complementary algorithms that provide an approach for computationally tractable fault diagnosis. These algorithms leverage probabilistic approaches to decision theory and information theory to efficiently track a large number of faults in a general dynamic system with noisy measurements. The problem of fault diagnosis is represented as hybrid (discrete/continuous) state estimation. Taking advantage of structure in the domain it dynamically concentrates computation in the regions of state space that are currently most relevant without losing track of less likely states. Experiments with a dynamic simulation of a six-wheel rocker-bogie rover show a significant improvement in performance over the classical approach.

  7. Fault Management Techniques in Human Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    O'Hagan, Brian; Crocker, Alan

    2006-01-01

    This paper discusses human spaceflight fault management operations. Fault detection and response capabilities available in current US human spaceflight programs Space Shuttle and International Space Station are described while emphasizing system design impacts on operational techniques and constraints. Preflight and inflight processes along with products used to anticipate, mitigate and respond to failures are introduced. Examples of operational products used to support failure responses are presented. Possible improvements in the state of the art, as well as prioritization and success criteria for their implementation are proposed. This paper describes how the architecture of a command and control system impacts operations in areas such as the required fault response times, automated vs. manual fault responses, use of workarounds, etc. The architecture includes the use of redundancy at the system and software function level, software capabilities, use of intelligent or autonomous systems, number and severity of software defects, etc. This in turn drives which Caution and Warning (C&W) events should be annunciated, C&W event classification, operator display designs, crew training, flight control team training, and procedure development. Other factors impacting operations are the complexity of a system, skills needed to understand and operate a system, and the use of commonality vs. optimized solutions for software and responses. Fault detection, annunciation, safing responses, and recovery capabilities are explored using real examples to uncover underlying philosophies and constraints. These factors directly impact operations in that the crew and flight control team need to understand what happened, why it happened, what the system is doing, and what, if any, corrective actions they need to perform. If a fault results in multiple C&W events, or if several faults occur simultaneously, the root cause(s) of the fault(s), as well as their vehicle-wide impacts, must be

  8. Trishear for curved faults

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. P.

    2013-08-01

    Fault-propagation folds form an important trapping element in both onshore and offshore fold-thrust belts, and as such benefit from reliable interpretation. Building an accurate geologic interpretation of such structures requires palinspastic restorations, which are made more challenging by the interplay between folding and faulting. Trishear (Erslev, 1991; Allmendinger, 1998) is a useful tool to unravel this relationship kinematically, but is limited by a restriction to planar fault geometries, or at least planar fault segments. Here, new methods are presented for trishear along continuously curved reverse faults defining a flat-ramp transition. In these methods, rotation of the hanging wall above a curved fault is coupled to translation along a horizontal detachment. Including hanging wall rotation allows for investigation of structures with progressive backlimb rotation. Application of the new algorithms are shown for two fault-propagation fold structures: the Turner Valley Anticline in Southwestern Alberta, and the Alpha Structure in the Niger Delta.

  9. A 10 kW dc-dc converter using IGBTs with active snubbers. [Insulated Gate Bipolar Transistor

    NASA Technical Reports Server (NTRS)

    Masserant, Brian J.; Shriver, Jeffrey L.; Stuart, Thomas A.

    1993-01-01

    This full bridge dc-dc converter employs zero voltage switching (ZVS) on one leg and zero current switching (ZCS) on the other. This technique produces exceptionally low IGBT switching losses through the use of an active snubber that recycles energy back to the source. Experimental results are presented for a 10 kW, 20 kHz converter.

  10. Perspective View, San Andreas Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space

  11. DC to DC Converter Testing for Space Applications: Use of EMI Filters and Thermal Range of Operation

    NASA Technical Reports Server (NTRS)

    Leon, Rosa

    2008-01-01

    Several tests were performed on Interpoint and International Rectifier (IR) direct current (DC) to DC converters to evaluate potential performance and reliability issues in space use of DC to DC converters and to determine if the use of electromagnetic interference (EMI) filters mitigates concerns observed during previous tests. Test findings reported here include those done up until September - October 2008. Tests performed include efficiency, regulation, cross-regulation, power consumption with inhibit on, load transient response, synchronization, and turn-on tests. Some of the test results presented here span the thermal range -55 C to 125 C. Lower range was extended to -120 C in some tested converters. Determination of failure root cause in DC/DC converters that failed at thermal extremes is also included.

  12. Design of a 3/2 Step-Up SC DC-DC Converter for Diode-Lamps

    NASA Astrophysics Data System (ADS)

    Eguchi, Kei; Ueno, Fumio; Inoue, Takahiro

    Aiming an IC implementation of a DC-DC converter which can provide a 4.5˜5 V stepped-up voltage for diode-lamps, a switched-capacitor (SC) DC-DC converter is proposed in this paper. Different from a conventional approach employing doubler circuits, the proposed circuit provides the output voltage by achieving a 3/2 step-up conversion. Therefore, decline in power efficiency for the proposed circuit is gentle. The process of DC-DC conversion is analyzed theoretically. To confirm the validity of the circuit design, SPICE simulations are performed. For the input voltage 3.2˜4.5 V, the power efficiency is 73˜92 % in the output current about 150 mA.

  13. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1994-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  14. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  15. FTAPE: A fault injection tool to measure fault tolerance

    NASA Astrophysics Data System (ADS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1994-07-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  16. Study on fault diagnose expert system for large astronomy telescope

    NASA Astrophysics Data System (ADS)

    Liu, Jia-jing; Luo, Ming-Cheng; Tang, Peng-yi; Wu, Wen-qing; Zhang, Guang-yu; Zhang, Hong-fei; Wang, Jian

    2014-08-01

    The development of astronomical techniques and telescopes currently entered a new vigorous period. The telescopes have trends of the giant, complex, diversity of equipment and wide span of control despite of optical, radio space telescopes. That means, for telescope observatory, the control system must have these specifications: flexibility, scalability, distributive, cross-platform and real-time, especially the fault locating and fault processing is more important when fault or exception arise. Through the analysis of the structure of large telescopes, fault diagnosis expert system of large telescope based on the fault tree and distributed log service is given.

  17. Coordinated Fault Tolerance for High-Performance Computing

    SciTech Connect

    Dongarra, Jack; Bosilca, George; et al.

    2013-04-08

    Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

  18. Isolability of faults in sensor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Sharifi, Reza; Langari, Reza

    2011-10-01

    A major concern with fault detection and isolation (FDI) methods is their robustness with respect to noise and modeling uncertainties. With this in mind, several approaches have been proposed to minimize the vulnerability of FDI methods to these uncertainties. But, apart from the algorithm used, there is a theoretical limit on the minimum effect of noise on detectability and isolability. This limit has been quantified in this paper for the problem of sensor fault diagnosis based on direct redundancies. In this study, first a geometric approach to sensor fault detection is proposed. The sensor fault is isolated based on the direction of residuals found from a residual generator. This residual generator can be constructed from an input-output or a Principal Component Analysis (PCA) based model. The simplicity of this technique, compared to the existing methods of sensor fault diagnosis, allows for more rational formulation of the isolability concepts in linear systems. Using this residual generator and the assumption of Gaussian noise, the effect of noise on isolability is studied, and the minimum magnitude of isolable fault in each sensor is found based on the distribution of noise in the measurement system. Finally, some numerical examples are presented to clarify this approach.

  19. 500 V/200 A fault current limiter modules made of large-area MOD-YBa2Cu3O7 thin films with high-resistivity Au-Ag alloy shunt layers

    NASA Astrophysics Data System (ADS)

    Yamasaki, H.; Arai, K.; Kaiho, K.; Nakagawa, Y.; Sohma, M.; Kondo, W.; Yamaguchi, I.; Matsui, H.; Kumagai, T.; Natori, N.; Higuchi, N.

    2009-12-01

    We developed 500 Vrms/ 200 Arms superconducting thin-film fault current limiter (FCL) modules that can withstand high electric fields (E>30 Vrms cm-1) by using large-area YBa2Cu3O7 (YBCO) thin films with high-resistivity Au-Ag alloy shunt layers. Au-Ag alloy films about 60 nm thick were sputter-deposited on YBCO/CeO2/sapphire films (2.7 cm × 20 cm) prepared using a fluorine-free MOD method. Each 20 cm long Au-Ag/YBCO film was then divided into three segments (each ~5.7 cm long) by four Ag electrodes deposited on the Au-Ag layer, resulting in an effective length of 17 cm. The 500 V/200 A FCL modules were then fabricated by first connecting two of the segmented films in parallel using Ag-sheathed Bi-2223 superconducting tapes and then connecting in parallel an external resistor and a capacitor for each segment to protect the Au-Ag/YBCO film from hot spots. Switching tests using a short-circuit generator revealed that all the modules carried a superconducting ac current of >=237 Arms and that modules prepared with YBCO films having a relatively homogeneous critical current Ic distribution successfully withstood >=515 Vrms for five cycles without any damage. These results demonstrate that (a) the FCL modules fabricated here successfully achieved the rated current of 200 Arms and rated voltage of 500 Vrms and (b) total area of the YBCO films on sapphire substrates required for the 500 V/200 A (100 kV A) module was less than one-third that for conventional thin-film FCL modules that use gold shunt layers, leading to the significantly reduced cost of thin-film FCLs. Film damage due to hot spots depended on the difference in Ic between the two parallel-connected films and on the inhomogeneity of the Ic distribution in the film, and is most probably due to nonlinear current flows at the moment of quenching that cause local overheating.

  20. Harmonics generated from a DC biased transformer

    SciTech Connect

    Shu Lu; Yilu Liu; Ree, J. De La . The Bradley Dept. of Electrical Engineering)

    1993-04-01

    The paper presents harmonic characteristics of transformer excitation currents under DC bias caused by geomagnetically induced currents (GIC). A newly developed saturation model of a single phase shell form transformer based on 3D finite element analysis is used to calculate the excitation currents. As a consequence, the complete variations of excitation current harmonics with respect to an extended range of GIC bias are revealed. The results of this study are useful in understanding transformers as harmonic sources and the impact on power systems during a solar magnetic disturbance.

  1. Perspective View, San Andreas Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is the San Andreas Fault in an image created with data from NASA's shuttle Radar Topography Mission (SRTM), which will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, California, about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. This area is at the junction of two large mountain ranges, the San Gabriel Mountains on the left and the Tehachapi Mountains on the right. Quail Lake Reservoir sits in the topographic depression created by past movement along the fault. Interstate 5 is the prominent linear feature starting at the left edge of the image and continuing into the fault zone, passing eventually over Tejon Pass into the Central Valley, visible at the upper left.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994

  2. Frictional Strength of Hayward Fault Gouge

    NASA Astrophysics Data System (ADS)

    Morrow, C.; Moore, D.; Lockner, D.

    2007-12-01

    A recent 3-D geologic model of the Hayward fault in the San Francisco Bay Region shows that a number of different rock units are juxtaposed across the fault surface as a result of lateral displacement. The fault gouge formed therein is likely a mixture of these various rock types. To better model the mechanical behavior of the Hayward fault, which is known to both creep and have large earthquakes, frictional properties of mixtures of the principal rock types were determined in the laboratory. Room temperature triaxial shearing tests were conducted on binary and ternary mixtures of Great Valley Sequence graywacke, Franciscan jadeite-bearing metagraywacke, Franciscan pumpellyite-bearing metasandstone, Franciscan melange matrix, serpentinite and two-pyroxene gabbro. The gouge samples were crushed and sieved (<150 μm grains), then applied in a 1-mm layer between saw-cut sliding blocks. Each sample assemblage was saturated and sheared at constant pore water pressure of 1 MPa and normal stress of 51 MPa. Coefficients of friction, μ, ranged from a low of 0.38 for the serpentinite to a maximum of 0.85 for the gabbro. While the serpentinite and the Franciscan melange matrix were relatively weak, all other rock types obeyed Byerlee's Law. The friction coefficient of mixtures could be reliably predicted by a simple average based on dry weight percent of the end member strengths. This behavior is in contrast to some mixtures of common gouge materials such as montmorillonite+quartz, which exhibit non- linear frictional strength trends with varying weight percent of constituents. All materials tested except serpentinite were velocity strengthening, therefore promoting creeping behavior. The addition of serpentinite decreased a-b values of the gouge and increased the characteristic displacement, dc, of strength evolution. Because temperature strongly influences the mechanical properties of fault gouge as well as speeding chemical reactions between the constituents, elevated

  3. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  4. Controllable Bidirectional dc Power Sources For Large Loads

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1995-01-01

    System redesigned for greater efficiency, durability, and controllability. Modern electronically controlled dc power sources proposed to supply currents to six electromagnets used to position aerodynamic test model in wind tunnel. Six-phase bridge rectifier supplies load with large current at voltage of commanded magnitude and polarity. Current-feedback circuit includes current-limiting feature giving some protection against overload.

  5. How Faults Shape the Earth.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  6. Implications of fault constitutive properties for earthquake prediction.

    PubMed

    Dieterich, J H; Kilgore, B

    1996-04-30

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  7. 21 CFR 74.1206 - D&C Green No. 6.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... consistent with current good manufacturing practice. (d) Labeling. The label of the color additive shall... ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1206 D&C Green No. 6. (a) Identity. The color additive D&C... additive D&C Green No. 6 for use in coloring externally applied drugs shall conform to the...

  8. 21 CFR 74.1206 - D&C Green No. 6.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... consistent with current good manufacturing practice. (d) Labeling. The label of the color additive shall... ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1206 D&C Green No. 6. (a) Identity. The color additive D&C... additive D&C Green No. 6 for use in coloring externally applied drugs shall conform to the...

  9. Efficient, lightweight dc/dc switching converter

    NASA Technical Reports Server (NTRS)

    Cuk, S.; Middlebrook, R. D.

    1981-01-01

    Converters have input properties of boost power stage and output properties of buck power stage, yet they perform general conversion function with high efficiency. Other features include non-pulsating input/output currents, use of capacitive energy transfer, low output voltage ripple, reduced EMI, and small size.

  10. Permeability & Grain Size Distribution of Wenchuan Earthquake Fault Rocks

    NASA Astrophysics Data System (ADS)

    Yang, X.; Chen, J.; Ma, S.

    2010-12-01

    Permeability and grain size distribution of fault rocks from two outcrops of Wenchuan earthquake fault zone were measured. The results show that the permeability (at 40MPa) varies obviously across the fault zone, from 10-13 m2 -10-15 m2 for fractured and shattered breccias, ~ 10-17 m2 for crushed breccias to 10-18 m2 - <10-19 m2 for fresh gouges and country rocks. Particle sizes dominate the permeability of the fault rocks. The more the percentage of fine particles is, the lower the permeability is. Due to the impermeable gouges and permeable fractured breccias, seismic fault zone is characterized by anisotropy for fluid flowing. Fluids cycle along fault zone easily if breccias are not cemented. Two methods, sieve weighting and laser analyzer, were combined to analyze the grain size distribution of the fault rocks. The measurements indicate that the slope of log(N) ~ log(d) changes at a critical diameter dc with 1 - 2 mm, which corresponds to grinding limit of rocks and may represent a change from grinding process to attrition one. The fractal dimension (D), calculated based on the grains with size larger than dc, of gouges is higher than 3.0 with the fresh gouges having the highest value (≥ 3.4), of crushed breccias ranges from 2.56 to 2.99, and of fractured and shattered breccias has the lowest value, about 2.63 in average. However, the fractal dimension matching smaller grains (> 2 mm) becomes much lower, ranging from 1.7 to 2.2. It is expected that the estimation of surface fracture energy associated with faulting is less than that we thought if the grain size distribution is considered.

  11. Characteristic investigation and control of a modular multilevel converter-based HVDC system under single-line-to-ground fault conditions

    DOE PAGESBeta

    Shi, Xiaojie; Wang, Zhiqiang; Liu, Bo; Liu, Yiqi; Tolbert, Leon M.; Wang, Fred

    2014-05-16

    This paper presents the analysis and control of a multilevel modular converter (MMC)-based HVDC transmission system under three possible single-line-to-ground fault conditions, with special focus on the investigation of their different fault characteristics. Considering positive-, negative-, and zero-sequence components in both arm voltages and currents, the generalized instantaneous power of a phase unit is derived theoretically according to the equivalent circuit model of the MMC under unbalanced conditions. Based on this model, a novel double-line frequency dc-voltage ripple suppression control is proposed. This controller, together with the negative-and zero-sequence current control, could enhance the overall fault-tolerant capability of the HVDCmore » system without additional cost. To further improve the fault-tolerant capability, the operation performance of the HVDC system with and without single-phase switching is discussed and compared in detail. Lastly, simulation results from a three-phase MMC-HVDC system generated with MATLAB/Simulink are provided to support the theoretical analysis and proposed control schemes.« less

  12. Characteristic investigation and control of a modular multilevel converter-based HVDC system under single-line-to-ground fault conditions

    SciTech Connect

    Shi, Xiaojie; Wang, Zhiqiang; Liu, Bo; Liu, Yiqi; Tolbert, Leon M.; Wang, Fred

    2014-05-16

    This paper presents the analysis and control of a multilevel modular converter (MMC)-based HVDC transmission system under three possible single-line-to-ground fault conditions, with special focus on the investigation of their different fault characteristics. Considering positive-, negative-, and zero-sequence components in both arm voltages and currents, the generalized instantaneous power of a phase unit is derived theoretically according to the equivalent circuit model of the MMC under unbalanced conditions. Based on this model, a novel double-line frequency dc-voltage ripple suppression control is proposed. This controller, together with the negative-and zero-sequence current control, could enhance the overall fault-tolerant capability of the HVDC system without additional cost. To further improve the fault-tolerant capability, the operation performance of the HVDC system with and without single-phase switching is discussed and compared in detail. Lastly, simulation results from a three-phase MMC-HVDC system generated with MATLAB/Simulink are provided to support the theoretical analysis and proposed control schemes.

  13. Optimization of spin-torque switching using AC and DC pulses

    SciTech Connect

    Dunn, Tom; Kamenev, Alex

    2014-06-21

    We explore spin-torque induced magnetic reversal in magnetic tunnel junctions using combined AC and DC spin-current pulses. We calculate the optimal pulse times and current strengths for both AC and DC pulses as well as the optimal AC signal frequency, needed to minimize the Joule heat lost during the switching process. The results of this optimization are compared against numeric simulations. Finally, we show how this optimization leads to different dynamic regimes, where switching is optimized by either a purely AC or DC spin-current, or a combination AC/DC spin-current, depending on the anisotropy energies and the spin-current polarization.

  14. High performance dc-dc conversion with voltage multipliers

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T.; Myers, I. T.

    1974-01-01

    The voltage multipliers using capacitors and diodes first developed by Cockcroft and Walton in 1932 were reexamined in terms of state of the art fast switching transistors and diodes, and high energy density capacitors. Because of component improvements, the voltage multiplier, used without a transformer, now appears superior in weight to systems now in use for dc-dc conversion. An experimental 100-watt 1000-volt dc-dc converter operating at 100 kHz was built, with a component weight of about 1 kg/kW. Calculated and measured values of output voltage and efficiency agreed within experimental error.

  15. Tectonic geomorphology and neotectonics of the Kyaukkyan Fault, Myanmar

    NASA Astrophysics Data System (ADS)

    Crosetto, Silvia; Watkinson, Ian; Gori, Stefano; Falcucci, Emanuela; Min, Soe

    2016-04-01

    . Paleoseismological trenching currently underway on the cross-basin fault aims to confirm the 1912 rupture trace, and to delimit the Kyaukkyan Fault's earthquake recurrence interval in order to reveal its modern seismic hazard, fundamental to define the seismic zonation of the area.

  16. Improved DC Gun Insulator

    SciTech Connect

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  17. Bearing Fault Detection in Induction Motor-Gearbox Drivetrain

    NASA Astrophysics Data System (ADS)

    Cibulka, Jaroslav; Ebbesen, Morten K.; Robbersmyr, Kjell G.

    2012-05-01

    The main contribution in the hereby presented paper is to investigate the fault detection capability of a motor current signature analysis by expanding its scope to include the gearbox, and not only the induction motor. Detecting bearing faults outside the induction motor through the stator current analysis represents an interesting alternative to traditional vibration analysis. Bearing faults cause changes in the stator current spectrum that can be used for fault diagnosis purposes. A time-domain simulation of the drivetrain model is developed. The drivetrain system consists of a loaded single stage gearbox driven by a line-fed induction motor. Three typical bearing faults in the gearbox are addressed, i.e. defects in the outer raceway, the inner raceway, and the rolling element. The interaction with the fault is modelled by means of kinematical and mechanical relations. The fault region is modelled in order to achieve gradual loss and gain of contact. A bearing fault generates an additional torque component that varies at the specific bearing defect frequency. The presented dynamic electromagnetic dq-model of an induction motor is adjusted for diagnostic purpose and considers such torque variations. The bearing fault is detected as a phase modulation of the stator current sine wave at the expected bearing defect frequency.

  18. Reset Tree-Based Optical Fault Detection

    PubMed Central

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  19. Study of fault-tolerant software technology

    NASA Technical Reports Server (NTRS)

    Slivinski, T.; Broglio, C.; Wild, C.; Goldberg, J.; Levitt, K.; Hitt, E.; Webb, J.

    1984-01-01

    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance.

  20. Modeling, Detection, and Disambiguation of Sensor Faults for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai F.; Curran, Simon

    2009-01-01

    Sensor faults continue to be a major hurdle for systems health management to reach its full potential. At the same time, few recorded instances of sensor faults exist. It is equally difficult to seed particular sensor faults. Therefore, research is underway to better understand the different fault modes seen in sensors and to model the faults. The fault models can then be used in simulated sensor fault scenarios to ensure that algorithms can distinguish between sensor faults and system faults. The paper illustrates the work with data collected from an electro-mechanical actuator in an aerospace setting, equipped with temperature, vibration, current, and position sensors. The most common sensor faults, such as bias, drift, scaling, and dropout were simulated and injected into the experimental data, with the goal of making these simulations as realistic as feasible. A neural network based classifier was then created and tested on both experimental data and the more challenging randomized data sequences. Additional studies were also conducted to determine sensitivity of detection and disambiguation efficacy to severity of fault conditions.

  1. Fault-Zone Maturity Defines Maximum Earthquake Magnitude: The case of the North Anatolian Fault Zone

    NASA Astrophysics Data System (ADS)

    Bohnhoff, Marco; Bulut, Fatih; Stierle, Eva; Martinez-Garzon, Patricia; Benzion, Yehuda

    2015-04-01

    Estimating the maximum likely magnitude of future earthquakes on transform faults near large metropolitan areas has fundamental consequences for the expected hazard. Here we show that the maximum earthquakes on different sections of the North Anatolian Fault Zone (NAFZ) scale with the duration of fault zone activity, cumulative offset and length of individual fault segments. The findings are based on a compiled catalogue of historical earthquakes in the region, using the extensive literary sources that exist due to the long civilization record. We find that the largest earthquakes (M~8) are exclusively observed along the well-developed part of the fault zone in the east. In contrast, the western part is still in a juvenile or transitional stage with historical earthquakes not exceeding M=7.4. This limits the current seismic hazard to NW Turkey and its largest regional population and economical center Istanbul. Our findings for the NAFZ are consistent with data from the two other major transform faults, the San Andreas fault in California and the Dead Sea Transform in the Middle East. The results indicate that maximum earthquake magnitudes generally scale with fault-zone evolution.

  2. Solar system fault detection

    NASA Astrophysics Data System (ADS)

    Farrington, R. B.; Pruett, J. C., Jr.

    1984-05-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combing the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  3. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  4. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  5. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect

    Agamy, Mohammed S; Chi, Song; Elasser, Ahmed; Harfman-Todorovic, Maja; Jiang, Yan; Mueller, Frank; Tao, Fengfeng

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  6. Electrostatic quadrupole DC accelerators for BNCT applications

    SciTech Connect

    Kwan, J.W.; Anderson, O.A.; Reginato, L.L.; Vella, M.C.; Yu, S.S.

    1994-04-01

    A dc electrostatic quadrupole (ESQ) accelerator is capable of producing a 2.5 MeV, 100 mA proton beam for the purpose of generating neutrons for Boron Neutron Capture Therapy. The ESQ accelerator is better than the conventional aperture column in high beam current application due to the presence of stronger transverse field for beam focusing and for suppressing secondary electrons. The major challenge in this type of accelerator is in developing the proper power supply system.

  7. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  8. A Plasma-Based DC-DC Electrical Transformer

    NASA Astrophysics Data System (ADS)

    Nebel, Richard; Finn, John

    2013-10-01

    Previous work has indicated that it may be possible to make DC-DC electrical transformers using plasmas. The mechanism is an MHD electromagnetic relaxation process induced by helical electrodes. This process is now being tested on the Bismark device at Tibbar Technologies.

  9. Advanced fault diagnosis for the mass production of small-power electric motors

    NASA Astrophysics Data System (ADS)

    Filbert, Dieter

    1993-09-01

    High quality is a principal goal in the mass production of electric niotors (i.e. d.c. motors for cars and universal motors for house hold appliances).The processing of vibration and acoustical signals are widely used in quality assurance in the mass production but the coupling of the sensors to the motor as well as noise produced in the environment make it still difficult to get reproducible diagnostic results. High quality in production can be achieved by the powerful modern diagnostic methods which became possible because of the progress in microelectronics (microprocessors and signal processors). This progress made mathematical methods and signal processing applicable. Therefore this paper deals with diagnostic methods that use the measured signals of voltage, current and speed only but achieve a good testing. It gives an overview of new methods for the feature extraction and fault detection on small power electric motors.

  10. Early Oscillation Detection Technique for Hybrid DC/DC Converters

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s

  11. Strike-slip fault propagation and linkage via work optimization with application to the San Jacinto fault, California

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; McBeck, J.; Cooke, M. L.

    2013-12-01

    Over multiple earthquake cycles, strike-slip faults link to form through-going structures, as demonstrated by the continuous nature of the mature San Andreas fault system in California relative to the younger and more segmented San Jacinto fault system nearby. Despite its immaturity, the San Jacinto system accommodates between one third and one half of the slip along the boundary between the North American and Pacific plates. It therefore poses a significant seismic threat to southern California. Better understanding of how the San Jacinto system has evolved over geologic time and of current interactions between faults within the system is critical to assessing this seismic hazard accurately. Numerical models are well suited to simulating kilometer-scale processes, but models of fault system development are challenged by the multiple physical mechanisms involved. For example, laboratory experiments on brittle materials show that faults propagate and eventually join (hard-linkage) by both opening-mode and shear failure. In addition, faults interact prior to linkage through stress transfer (soft-linkage). The new algorithm GROW (GRowth by Optimization of Work) accounts for this complex array of behaviors by taking a global approach to fault propagation while adhering to the principals of linear elastic fracture mechanics. This makes GROW a powerful tool for studying fault interactions and fault system development over geologic time. In GROW, faults evolve to minimize the work (or energy) expended during deformation, thereby maximizing the mechanical efficiency of the entire system. Furthermore, the incorporation of both static and dynamic friction allows GROW models to capture fault slip and fault propagation in single earthquakes as well as over consecutive earthquake cycles. GROW models with idealized faults reveal that the initial fault spacing and the applied stress orientation control fault linkage propensity and linkage patterns. These models allow the gains in

  12. Microfabricated Thin-Film Inductors for High-Frequency DC-DC Power Conversion

    NASA Astrophysics Data System (ADS)

    Yao, Di

    2011-12-01

    Microfabricated V-groove inductors targeted to operate above 10 MHz are investigated. Multilayer nano-granular Co-Zr-O/ZrO2 magnetic thin films are used as the core material of the inductors to improve the magnetic performance of the films deposited on the sidewalls of V-grooves and to control eddy-current loss in the core, which goes up very quickly as frequency increases. A loss model is developed to estimate eddy-current loss in multilayer magnetic thin films considering the effect of displacement current at high frequencies, and the model is applied in the design of V-groove inductors. V-groove inductors using multilayer magnetic thin films are co-optimized with power MOSFETs for 7-V to 3.3-V, 1-A DC-DC buck converters to maximize power handling capability per unit substrate area for given efficiencies. Prototype V-groove inductors are fabricated based on the optimization results, and measured and predicted performance of the inductors match well. The prototype inductors are a promising candidate for high-power-density high-efficiency DC-DC converters. The 7-V to 3.3-V, 1-A converters using prototype V-groove inductors are expected to exhibit power density of 2.5 W/mm2 and efficiency of 86% at 100 MHz, and power density of 0.36 W/mm2 and efficiency of 91% at 11 MHz.

  13. A DC-DC converter based powering scheme for the upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Feld, L.; Karpinski, W.; Klein, K.; Merz, J.; Sammet, J.; Wlochal, M.

    2011-11-01

    Around 2016, the pixel detector of the CMS experiment will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the currently installed supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing the provision of power at higher voltages, thereby facilitating the supply of the required currents with the present cable plant. This conference report introduces the foreseen powering scheme of the pixel upgrade. For the first time, system tests have been conducted with pixel barrel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, studies of the stability of different powering schemes under various conditions are summarized. In particular the impact of large and fast load variations, which are related to the bunch structure of the LHC beam, has been studied.

  14. An Adaptive Coordinated Control for an Offshore Wind Farm Connected VSC Based Multi-Terminal DC Transmission System

    NASA Astrophysics Data System (ADS)

    Kumar, M. Ajay; Srikanth, N. V.

    2014-11-01

    The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.

  15. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  16. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    SciTech Connect

    Janssen, C.; Wirth, R.; Wenk, H. -R.; Morales, L.; Naumann, R.; Kienast, M.; Song, S. -R.; Dresen, G.

    2014-08-20

    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has been observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.

  17. Thermal Fluid and Fault Interactions at the Intersection of Two Faults, Agua Caliente, California

    NASA Astrophysics Data System (ADS)

    Wood, R. E.; Evans, J. P.

    2011-12-01

    air temperature plays a larger role than anticipated for the subsurface fluids. Conductivity also displays daily cycles. We propose a larger scale map of the intersection of the two faults and the continuation of the Elsinore farther south showing the current extent and probable growth of the damage and alteration as more slip occurs. Spring flow increases post seismic events, and we believe by monitoring fluid chemistry and comparing seismicity along the faults we will see precursors to and effects from fault motion.

  18. Measuring fault tolerance with the FTAPE fault injection tool

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The major parts of the tool include a system-wide fault-injector, a workload generator, and a workload activity measurement tool. The workload creates high stress conditions on the machine. Using stress-based injection, the fault injector is able to utilize knowledge of the workload activity to ensure a high level of fault propagation. The errors/fault ratio, performance degradation, and number of system crashes are presented as measures of fault tolerance.

  19. Measuring fault tolerance with the FTAPE fault injection tool

    NASA Astrophysics Data System (ADS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-05-01

    This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The major parts of the tool include a system-wide fault-injector, a workload generator, and a workload activity measurement tool. The workload creates high stress conditions on the machine. Using stress-based injection, the fault injector is able to utilize knowledge of the workload activity to ensure a high level of fault propagation. The errors/fault ratio, performance degradation, and number of system crashes are presented as measures of fault tolerance.

  20. Significance of brittle deformation in the footwall of the Alpine Fault, New Zealand: Smithy Creek Fault zone

    NASA Astrophysics Data System (ADS)

    Lund Snee, J.-E.; Toy, V. G.; Gessner, K.

    2014-07-01

    The Smithy Creek Fault represents a rare exposure of a brittle fault zone within Australian Plate rocks that constitute the footwall of the Alpine Fault zone in Westland, New Zealand. Outcrop mapping and paleostress analysis of the Smithy Creek Fault were conducted to characterize deformation and mineralization in the footwall of the nearby Alpine Fault, and the timing of these processes relative to the modern tectonic regime. While unfavorably oriented, the dextral oblique Smithy Creek thrust has kinematics compatible with slip in the current stress regime and offsets a basement unconformity beneath Holocene glaciofluvial sediments. A greater than 100 m wide damage zone and more than 8 m wide, extensively fractured fault core are consistent with total displacement on the kilometer scale. Based on our observations we propose that an asymmetric damage zone containing quartz-carbonate-chlorite-epidote veins is focused in the footwall. Damage zone asymmetry likely resulted from the fact that the hanging wall was mostly deformed at greater depth than the footwall, rather than resulting from material contrasts across the fault plane. Kinematic inversions on mineralized fractures within the damage zone suggest veins formed in the current stress regime, from fluids comparable to those now circulating in the footwall. The Smithy Creek Fault zone is therefore a rare exhumed example of the modern footwall hydrothermal system, and of a structure actively accommodating footwall deformation near the Alpine Fault zone. Two significantly less mature, subvertical faults having narrow (20 cm or less) damage zones and similar orientations to nearby strike-slip segments of the Alpine Fault crosscut the mineralized zone at Smithy Creek. We envisage that hydrothermal mineralization strengthened the fault core, causing it to widen as later slip was partitioned into the (now) weaker surrounding damage zone. With progressive alteration, formation of favorably oriented faults became

  1. Diagnosing faults in autonomous robot plan execution

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Doshi, Rajkumar S.; Atkinson, David J.; Lawson, Denise M.

    1989-01-01

    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment.

  2. Diagnosing faults in autonomous robot plan execution

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Doshi, Rajkumar S.; Atkinson, David J.; Lawson, Denise M.

    1988-01-01

    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment.

  3. Fault detection and diagnosis of photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Wu, Xing

    The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV) systems. One of the primary aims of research in building-integrated PV systems is to improve the performance of the system's efficiency, availability, and reliability. Although much work has been done on technological design to increase a photovoltaic module's efficiency, there is little research so far on fault diagnosis for PV systems. Faults in a PV system, if not detected, may not only reduce power generation, but also threaten the availability and reliability, effectively the "security" of the whole system. In this paper, first a circuit-based simulation baseline model of a PV system with maximum power point tracking (MPPT) is developed using MATLAB software. MATLAB is one of the most popular tools for integrating computation, visualization and programming in an easy-to-use modeling environment. Second, data collection of a PV system at variable surface temperatures and insolation levels under normal operation is acquired. The developed simulation model of PV system is then calibrated and improved by comparing modeled I-V and P-V characteristics with measured I--V and P--V characteristics to make sure the simulated curves are close to those measured values from the experiments. Finally, based on the circuit-based simulation model, a PV model of various types of faults will be developed by changing conditions or inputs in the MATLAB model, and the I--V and P--V characteristic curves, and the time-dependent voltage and current characteristics of the fault modalities will be characterized for each type of fault. These will be developed as benchmark I-V or P-V, or prototype transient curves. If a fault occurs in a PV system, polling and comparing actual measured I--V and P--V characteristic curves with both normal operational curves and these baseline fault curves will aid in fault diagnosis.

  4. Historical Material Analysis of DC745U Pressure Pads

    SciTech Connect

    Ortiz-Acosta, Denisse

    2012-07-30

    As part of the Enhance Surveillance mission, it is the goal to provide suitable lifetime assessment of stockpile materials. This report is an accumulation of historical publication on the DC745U material and their findings. It is the intention that the B61 LEP program uses this collection of data to further develop their understanding and potential areas of study. DC745U is a commercially available silicone elastomer consisting of dimethyl, methyl-phenyl, and methyl-vinyl siloxane repeat units. Originally, this material was manufactured by Dow Corning as Silastic{reg_sign} DC745U at their manufacturing facility in Kendallville, IN. Recently, Dow Corning shifted this material to the Xiameter{reg_sign} brand product line. Currently, DC745U is available through Xiameter{reg_sign} or Dow Corning's distributor R. D. Abbott Company. DC745U is cured using 0.5 wt% vinyl-specific peroxide curing agent known as Luperox 101 or Varox DBPH-50. This silicone elastomer is used in numerous parts, including two major components (outer pressure pads and aft cap support) in the W80 and as pressure pads on the B61. DC745U is a proprietary formulation, thus Dow Corning provides limited information on its composition and properties. Based on past experience with Dow Corning, DC745U is at risk of formulation changes without notification to the costumer. A formulation change for DC745U may have a significant impact because the network structure is a key variable in determining material properties. The purpose of this report is to provide an overview of historical DC745U studies and identify gaps that need to be addressed in future work. Some of the previous studies include the following: 1. Spectroscopic characterization of raw gum stock. 2. Spectroscopic, thermal, and mechanical studies on cured DC745U. 3. Nuclear Magnetic Resonance (NMR) and solvent swelling studies on DC745U with different crosslink densities. 4. NMR, solvent swelling, thermal, and mechanical studies on thermally aged

  5. Bi-Directional DC-DC Converter for PHEV Applications

    SciTech Connect

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  6. Architectural issues in fault-tolerant, secure computing systems

    SciTech Connect

    Joseph, M.K.

    1988-01-01

    This dissertation explores several facets of the applicability of fault-tolerance techniques to secure computer design, these being: (1) how fault-tolerance techniques can be used on unsolved problems in computer security (e.g., computer viruses, and denial-of-service); (2) how fault-tolerance techniques can be used to support classical computer-security mechanisms in the presence of accidental and deliberate faults; and (3) the problems involved in designing a fault-tolerant, secure computer system (e.g., how computer security can degrade along with both the computational and fault-tolerance capabilities of a computer system). The approach taken in this research is almost as important as its results. It is different from current computer-security research in that a design paradigm for fault-tolerant computer design is used. This led to an extensive fault and error classification of many typical security threats. Throughout this work, a fault-tolerance perspective is taken. However, the author did not ignore basic computer-security technology. For some problems he investigated how to support and extend basic-security mechanism (e.g., trusted computing base), instead of trying to achieve the same result with purely fault-tolerance techniques.

  7. Validation of Helicopter Gear Condition Indicators Using Seeded Fault Tests

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula; Brandon, E. Bruce

    2013-01-01

    A "seeded fault test" in support of a rotorcraft condition based maintenance program (CBM), is an experiment in which a component is tested with a known fault while health monitoring data is collected. These tests are performed at operating conditions comparable to operating conditions the component would be exposed to while installed on the aircraft. Performance of seeded fault tests is one method used to provide evidence that a Health Usage Monitoring System (HUMS) can replace current maintenance practices required for aircraft airworthiness. Actual in-service experience of the HUMS detecting a component fault is another validation method. This paper will discuss a hybrid validation approach that combines in service-data with seeded fault tests. For this approach, existing in-service HUMS flight data from a naturally occurring component fault will be used to define a component seeded fault test. An example, using spiral bevel gears as the targeted component, will be presented. Since the U.S. Army has begun to develop standards for using seeded fault tests for HUMS validation, the hybrid approach will be mapped to the steps defined within their Aeronautical Design Standard Handbook for CBM. This paper will step through their defined processes, and identify additional steps that may be required when using component test rig fault tests to demonstrate helicopter CI performance. The discussion within this paper will provide the reader with a better appreciation for the challenges faced when defining a seeded fault test for HUMS validation.

  8. Identifying electrical loads which can use direct photovoltaic dc power

    NASA Astrophysics Data System (ADS)

    Goff, H. C.; Chan, T. S.; Allred, R.; Dale, D. W.; Nichols, J. A.

    1981-11-01

    Direct current energy is used in several industrial and commercial applications including residential appliance type equipment that operates from dc, as used in recreational vehicles. These applications are reviewed to determine the potential for using photovoltaic generated power directly in the respective processes. Generally, the dc load requirements are very high or they require strict regulation. This limits the widespread introduction of PV generated power. The three most promising applications are water desalination, telephone switching stations and fluorescent lighting.

  9. OpenStudio - Fault Modeling

    SciTech Connect

    Frank, Stephen; Robertson, Joseph; Cheung, Howard; Horsey, Henry

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  10. Multi-kw dc power distribution system study program

    NASA Technical Reports Server (NTRS)

    Berkery, E. A.; Krausz, A.

    1974-01-01

    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.

  11. Fault Wear and Friction Evolution: Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Boneh, Y.; Chang, J. C.; Lockner, D. A.; Reches, Z.

    2011-12-01

    Wear is an inevitable product of frictional sliding of brittle rocks as evidenced by the ubiquitous occurrence of fault gouge and slickenside striations. We present here experimental observations designed to demonstrate the relationship between wear and friction and their governing mechanisms. The experiments were conducted with a rotary shear apparatus on solid, ring-shaped rock samples that slipped for displacements up to tens of meters. Stresses, wear and temperature were continuously monitored. We analyzed 86 experiments of Kasota dolomite, Sierra White granite, Pennsylvania quartzite, Karoo gabbro, and Tennessee sandstone at slip velocities ranging from 0.002 to 0.97 m/s, and normal stress from 0.25 to 6.9 MPa. We conducted two types of runs: short slip experiments (slip distance < 25 mm) primarily on fresh, surface-ground samples, designed to analyze initial wear mechanisms; and long slip experiments (slip distance > 3 m) designed to achieve mature wear conditions and to observe the evolution of wear and friction as the fault surfaces evolved. The experiments reveal three wear stages: initial, running-in, and steady-state. The initial stage is characterized by (1) discrete damage striations, the length of which is comparable to total slip , and local pits or plow features; (2) timing and magnitude of fault-normal dilation corresponds to transient changes of normal and shear stresses; and (3) surface roughness increasing with the applied normal stress. We interpret these observations as wear mechanisms of (a) plowing into the fresh rock surfaces; (b) asperity breakage; and (c) asperity climb. The running-in stage is characterized by (1) intense wear-rate over a critical wear distance of Rd = 0.3-2 m; (2) drop of friction coefficient over a weakening distance of Dc = 0.2-4 m; (3) Rd and Dc display positive, quasi-linear relation with each other. We interpret these observations as indicating the organizing of newly-created wear particles into a 'three

  12. Table-aided design of the energy-storage reactor in dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Owen, H. A., Jr.

    1975-01-01

    A new procedure for the selection of magnetic cores for use in energy-storage dc-to-dc power converters which eliminates the need for an automated computer search algorithm and stored data file is presented. The converter configurations included in the procedure are the three commonly encountered single-winding converters for voltage step-up, for current step-up and for voltage step-up/current step-up, and for the two-winding converter for voltage step-up/current step-up. For each converter configuration, three types of controllers are considered - constant-frequency, constant on-time and constant off-time. Using concepts developed from analyses of these converters by considering the transfer of energy by means of an energy-storage inductor or transformer, a special table of parameters calculated from magnetic core data is constructed and leads to a considerably simplified design procedure.

  13. Artificial neural network application for space station power system fault diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  14. Hayward Fault, California Interferogram

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of California's Hayward fault is an interferogram created using a pair of images taken by Synthetic Aperture Radar(SAR) combined to measure changes in the surface that may have occurred between the time the two images were taken.

    The images were collected by the European Space Agency's Remote Sensing satellites ERS-1 and ERS-2 in June 1992 and September 1997 over the central San Francisco Bay in California.

    The radar image data are shown as a gray-scale image, with the interferometric measurements that show the changes rendered in color. Only the urbanized area could be mapped with these data. The color changes from orange tones to blue tones across the Hayward fault (marked by a thin red line) show about 2-3centimeters (0.8-1.1 inches) of gradual displacement or movement of the southwest side of the fault. The block west of the fault moved horizontally toward the northwest during the 63 months between the acquisition of the two SAR images. This fault movement is called a seismic creep because the fault moved slowly without generating an earthquake.

    Scientists are using the SAR interferometry along with other data collected on the ground to monitor this fault motion in an attempt to estimate the probability of earthquake on the Hayward fault, which last had a major earthquake of magnitude 7 in 1868. This analysis indicates that the northern part of the Hayward fault is creeping all the way from the surface to a depth of 12 kilometers (7.5 miles). This suggests that the potential for a large earthquake on the northern Hayward fault might be less than previously thought. The blue area to the west (lower left) of the fault near the center of the image seemed to move upward relative to the yellow and orange areas nearby by about 2 centimeters (0.8 inches). The cause of this apparent motion is not yet confirmed, but the rise of groundwater levels during the time between the images may have caused the reversal of a small portion of the subsidence that

  15. Creating an automated chiller fault detection and diagnostics tool using a data fault library.

    PubMed

    Bailey, Margaret B; Kreider, Jan F

    2003-07-01

    Reliable, automated detection and diagnosis of abnormal behavior within vapor compression refrigeration cycle (VCRC) equipment is extremely desirable for equipment owners and operators. The specific type of VCRC equipment studied in this paper is a 70-ton helical rotary, air-cooled chiller. The fault detection and diagnostic (FDD) tool developed as part of this research analyzes chiller operating data and detects faults through recognizing trends or patterns existing within the data. The FDD method incorporates a neural network (NN) classifier to infer the current state given a vector of observables. Therefore the FDD method relies upon the availability of normal and fault empirical data for training purposes and therefore a fault library of empirical data is assembled. This paper presents procedures for conducting sophisticated fault experiments on chillers that simulate air-cooled condenser, refrigerant, and oil related faults. The experimental processes described here are not well documented in literature and therefore will provide the interested reader with a useful guide. In addition, the authors provide evidence, based on both thermodynamics and empirical data analysis, that chiller performance is significantly degraded during fault operation. The chiller's performance degradation is successfully detected and classified by the NN FDD classifier as discussed in the paper's final section. PMID:12858981

  16. Fault Tolerant Homopolar Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Li, Ming-Hsiu; Palazzolo, Alan; Kenny, Andrew; Provenza, Andrew; Beach, Raymond; Kascak, Albert

    2003-01-01

    Magnetic suspensions (MS) satisfy the long life and low loss conditions demanded by satellite and ISS based flywheels used for Energy Storage and Attitude Control (ACESE) service. This paper summarizes the development of a novel MS that improves reliability via fault tolerant operation. Specifically, flux coupling between poles of a homopolar magnetic bearing is shown to deliver desired forces even after termination of coil currents to a subset of failed poles . Linear, coordinate decoupled force-voltage relations are also maintained before and after failure by bias linearization. Current distribution matrices (CDM) which adjust the currents and fluxes following a pole set failure are determined for many faulted pole combinations. The CDM s and the system responses are obtained utilizing 1D magnetic circuit models with fringe and leakage factors derived from detailed, 3D, finite element field models. Reliability results are presented vs. detection/correction delay time and individual power amplifier reliability for 4, 6, and 7 pole configurations. Reliability is shown for two success criteria, i.e. (a) no catcher bearing contact following pole failures and (b) re-levitation off of the catcher bearings following pole failures. An advantage of the method presented over other redundant operation approaches is a significantly reduced requirement for backup hardware such as additional actuators or power amplifiers.

  17. Fault Diagnostics for Electrically Operated Pitch Systems in Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Teja Kandukuri, Surya; Khang Huynh, Van; Karimi, Hamid Reza; Robbersmyr, Kjell Gunnar

    2016-09-01

    This paper investigates the electrically operated pitch systems of offshore wind turbines for online condition monitoring and health assessment. The current signature based fault diagnostics is developed for electrically operated pitch systems using model-based approach. The electrical motor faults are firstly modelled based on modified winding function theory and then, current signature analysis is performed to detect the faults. Further, in order to verify the fault diagnostics capabilities in realistic conditions, the operating profiles are obtained from FAST simulation of offshore wind turbines in various wind conditions. In this way, the applicability of current signature analysis for fault diagnostics in offshore wind turbine pitch systems is demonstrated.

  18. Managing systems faults on the commercial flight deck: Analysis of pilots' organization and prioritization of fault management information

    NASA Technical Reports Server (NTRS)

    Rogers, William H.

    1993-01-01

    In rare instances, flight crews of commercial aircraft must manage complex systems faults in addition to all their normal flight tasks. Pilot errors in fault management have been attributed, at least in part, to an incomplete or inaccurate awareness of the fault situation. The current study is part of a program aimed at assuring that the types of information potentially available from an intelligent fault management aiding concept developed at NASA Langley called 'Faultfinde' (see Abbott, Schutte, Palmer, and Ricks, 1987) are an asset rather than a liability: additional information should improve pilot performance and aircraft safety, but it should not confuse, distract, overload, mislead, or generally exacerbate already difficult circumstances.

  19. Quaternary tectonic faulting in the Eastern United States

    USGS Publications Warehouse

    Wheeler, R.L.

    2006-01-01

    City), Lancaster Seismic Zone and the epicenter of the shallow Cacoosing Valley earthquake (Lancaster and Reading, Pennsylvania), Kingston fault (central New Jersey between New York and Philadelphia), and Everona fault-Mountain Run fault zone (Washington, D.C., and Arlington and Alexandria, Virginia). ?? 2005 Elsevier B.V. All rights reserved.

  20. An Interleaved Reduced-Component-Count Multivoltage Bus DC/DC Converter for Fuel Cell Powered Electric Vehicle Applications

    SciTech Connect

    Tang, Lixin; Su, Gui-Jia

    2008-01-01

    An interleaved reduced-component-count dc/dc converter is proposed for power management in fuel cell powered vehicles with a multivoltage electric net. The converter is based on a simplified topology and can handle more power with less ripple current, therefore reducing the capacitor requirements, making it more suited for fuel cell powered vehicles in the near future. A prototype rated at 4.3 kW was built and tested to verify the proposed topology.

  1. A 1.6-kW, 110-kHz dc-dc converter optimized for IGBT's

    NASA Technical Reports Server (NTRS)

    Chen, Keming; Stuart, Thomas A.

    1993-01-01

    A full bridge dc-dc converter using a zero-current and zero-voltage switching technique is described. This circuit utilizes the characteristics of the IGBT to achieve power and frequency combinations that are much higher than previously reported for this device. Experimental results are included for a 1.6-kW, 110-kHz converter with 95 percent efficiency.

  2. Large-scale Geometry of Intra-continental Strike-slip Faults: Example of the Karakorum Fault, Western Tibet

    NASA Astrophysics Data System (ADS)

    Chevalier, M. L.; Leloup, P. H.; Li, H.

    2015-12-01

    How large-scale, active strike-slip fault systems are defined can sometimes be ambiguous, especially when viewed at different timescales (geodetic vs longer term measurements). Does every kilometer of the fault system need to be visible in the morphology (offset geomorphic features, fault trace, etc) to be considered as currently active? Does every segment of the fault need to have a unique and consistent kinematics along the entire fault system (normal, strike-slip, reverse)? Does all segments need to be physically connected at the surface to be considered part of the same fault system? To illustrate our arguments against such statements, we use the example of the right-lateral strike-slip Karakorum fault, located in western Tibet, along which lively debates have been taking place in the last ~20 years. These concern its initiation age, total geologic offsets, slip-rates, and more recently, even the location and current activity of the northern half of the fault. In particular, whether the active Kongur Shan extensional system, located in the Chinese Pamir, belongs to the Karakorum fault system remains controversial. Here, we argue that both systems are connected and that they both play a significant role in accommodating deformation at the western Himalayan syntaxis, under the form of extensional displacement in the Chinese Pamir.

  3. Packaged Fault Model for Geometric Segmentation of Active Faults Into Earthquake Source Faults

    NASA Astrophysics Data System (ADS)

    Nakata, T.; Kumamoto, T.

    2004-12-01

    In Japan, the empirical formula proposed by Matsuda (1975) mainly based on the length of the historical surface fault ruptures and magnitude, is generally applied to estimate the size of future earthquakes from the extent of existing active faults for seismic hazard assessment. Therefore validity of the active fault length and defining individual segment boundaries where propagating ruptures terminate are essential and crucial to the reliability for the accurate assessments. It is, however, not likely for us to clearly identify the behavioral earthquake segments from observation of surface faulting during the historical period, because most of the active faults have longer recurrence intervals than 1000 years in Japan. Besides uncertainties of the datasets obtained mainly from fault trenching studies are quite large for fault grouping/segmentation. This is why new methods or criteria should be applied for active fault grouping/segmentation, and one of the candidates may be geometric criterion of active faults. Matsuda (1990) used _gfive kilometer_h as a critical distance for grouping and separation of neighboring active faults. On the other hand, Nakata and Goto (1998) proposed the geometric criteria such as (1) branching features of active fault traces and (2) characteristic pattern of vertical-slip distribution along the fault traces as tools to predict rupture length of future earthquakes. The branching during the fault rupture propagation is regarded as an effective energy dissipation process and could result in final rupture termination. With respect to the characteristic pattern of vertical-slip distribution, especially with strike-slip components, the up-thrown sides along the faults are, in general, located on the fault blocks in the direction of relative strike-slip. Applying these new geometric criteria to the high-resolution active fault distribution maps, the fault grouping/segmentation could be more practically conducted. We tested this model

  4. A study of fault injection in multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1991-01-01

    NASA/Marshall Space Flight Center proposes to implement fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Among the elements to be studied are the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power is being performed to yield a list of the most common power system faults. The results of this study are being applied to a multichannel high-voltage DC spacecraft power system called the Large Autonomous Spacecraft Electrical Power System Breadboard. Some of the reactions of the breadboard to some of the faults which have been encountered are presented along with the results of this study.

  5. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    NASA Astrophysics Data System (ADS)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  6. Fault Management Guiding Principles

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan

    2011-01-01

    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  7. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  8. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  9. Application of Multi-port Bidirectional DC-DC Converter to Fuel Cell Vehicle Driving in JC08 Mode

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsunori; Katayama, Noboru; Kogoshi, Sumio; Fukada, Takafumi; Ogawa, Makoto

    A fuel cell-EDLC hybrid power system with a multi-port bidirectional DC-DC converter has been recently proposed for extending lifetime of a fuel cell due to smoothing the output current of the fuel cell. This paper studies the performance of the hybrid power system when a fuel cell vehicle drives in the JC08 mode using a simulation model. The simulation results indicate that even if the load current fluctuates, the output current of the fuel cell could be maintained at almost constant values with an assist from the EDLC although small spikes are observed.

  10. An adaptive high and low impedance fault detection method

    SciTech Connect

    Yu, D.C. ); Khan, S.H. )

    1994-10-01

    An integrated high impedance fault (HIF) and low impedance fault (LIF) detection method is proposed in this paper. For a HIF detection, the proposed technique is based on a number of characteristics of the HIF current. These characteristics are: fault current magnitude, magnitude of the 3rd harmonic current, magnitude of the 5th harmonic current, the angle of the third harmonic current, the angle difference between the third harmonics current and the fundamental voltage, negative sequence current of HIF. These characteristics are identified by modeling the distribution feeders in EMTP. Apart from these characteristics, the above ambient (average) negative sequence current is also considered. An adjustable block out region around the average load current is provided. The average load current is calculated at every 18,000 cycles (5 minutes) interval. This adaptive feature will not only make the proposed scheme more sensitive to the low fault current, but it will also prevent the relay from tripping during the normal load current. In this paper, the logic circuit required for implementing the proposed HIF detection methods is also included. With minimal modifications, the logic developed for the HIF detection can be applied for the low impedance fault (LIF) detection. A complete logic circuit which detects both the HIF and LIF is proposed. Using this combined logic, the need of installing separate devices for HIF and LIF detection can be eliminated.

  11. Properties of dc helicity injected tokamak plasmas

    SciTech Connect

    Darrow, D.S.; Ono, M.; Forest, C.B.; Greene, G.J.; Hwang, Y.S.; Park, H.K. ); Taylor, R.J.; Pribyl, P.A.; Evans, J.D.; Lai, K.F.; Liberati, J.R. )

    1990-06-01

    Several dc helicity injection experiments using an electron beam technique have been conducted on the Current Drive Experiment (CDX) (Phys. Rev. Lett. {bold 59}, 2165 (1987)) and the Continuous Current Tokamak (CCT) (Phys. Rev. Lett. {bold 63}, 2365 (1989)). The data strongly suggest that tokamak plasmas are being formed and maintained by this method. The largest currents driven to date are 1 kA in CDX ({ital q}{sub {ital a}} =5) and 6 kA in CCT ({ital q}{sub {ital a}} =3.5). An initial comparison of discharge properties with helicity theory indicates rough agreement. Current drive energy efficiencies are 9% and 23% of Ohmic efficiency in two cases analyzed. Strong radial electric fields are observed in these plasmas that cause poloidal rotation and, possibly, improved confinement.

  12. Experimental application of nonlinear minimum variance estimation for fault detection systems

    NASA Astrophysics Data System (ADS)

    Alkaya, Alkan; Grimble, Michael John

    2016-09-01

    The purpose of this paper is to present an experimental design and application of a novel model-based fault detection technique by using a nonlinear minimum variance (NMV) estimator. The NMV estimation technique is used to generate a residual signal which is then used to detect faults in the system. The main advantage of the approach is the simplicity of the nonlinear estimator theory and the straightforward structure of the resulting solution. The proposed method is implemented and validated experimentally on DC servo system. Experimental results demonstrate that the technique can produce acceptable performance in terms of fault detection and false alarm.

  13. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    NASA Astrophysics Data System (ADS)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  14. Changes in fault length distributions due to fault linkage

    NASA Astrophysics Data System (ADS)

    Xu, Shunshan; Nieto-Samaniego, A. F.; Alaniz-Álvarez, S. A.; Velasquillo-Martínez, L. G.; Grajales-Nishimura, J. M.; García-Hernández, J.; Murillo-Muñetón, G.

    2010-01-01

    Fault linkage plays an important role in the growth of faults. In this paper we analyze a published synthetic model to simulate fault linkage. The results of the simulation indicate that fault linkage is the cause of the shallower local slopes on the length-frequency plots. The shallower local slopes lead to two effects. First, the curves of log cumulative number against log length exhibit fluctuating shapes as reported in literature. Second, for a given fault population, the power-law exponents after linkage are negatively related to the linked length scales. Also, we present datasets of fault length measured from four structural maps at the Cantarell oilfield in the southern Gulf of Mexico (offshore Campeche). The results demonstrate that the fault length data, corrected by seismic resolution at the tip fault zone, also exhibit fluctuating curves of log cumulative frequency vs. log length. The steps (shallower slopes) on the curves imply the scale positions of fault linkage. We conclude that fault linkage is the main reason for the fluctuating shapes of log cumulative frequency vs. log length. On the other hand, our data show that the two-tip faults are better for linear analysis between maximum displacement ( D) and length ( L). Evidently, two-tip faults underwent fewer fault linkages and interactions.

  15. Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tsutsumi, A.; Nishino, S.; Mizoguchi, K.; Hirose, T.; Uehara, S.; Sato, K.; Tanikawa, W.; Shimamoto, T.

    2004-02-01

    The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10 -20 m 2. Water permeability as low as 10 -20 m 2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.

  16. CIFTS : A coordinated infrastructure for fault-tolerant systems.

    SciTech Connect

    Gupta, R.; Beckman, P.; Park, B. H.; Lusk, E.; Hargrove, P.; Geist, A.; Panda, D. K.; Lumsdaine, A.; Dongarra, J.; ORNL; LBNL; Ohio State Univ.; Indiana Univ.; Univ. of Tennessee

    2009-01-01

    In the next few years SciDAC applications will utilize petascale systems with tens to hundreds of thousands of processors, hundreds of I/O nodes, and thousands of disks. This leap of two orders of magnitude in scale from today's typical systems is causing a critical gap in fault management of these systems. The fault management issues for these emerging systems are well beyond the scope of today's common infrastructure and practice. Currently, systems software components for large-scale machines remain largely independent in their fault awareness and notification strategies. Faults can arise not just from the hardware but also from the OS, middleware, libraries, and application levels. Petascale applications that are evolving to utilize these platforms face many new challenges. With the CIFTS initiative, we aim to provide a coordinated infrastructure that will enable Fault Tolerant Systems to adapt to faults occuring in the operating environment in a holistic manner. Our approach will be to design a reference implementation of a fault awareness and notification backplane to provide common uniform event handling and notification mechanisms for fault-aware libraries and middleware; create an interface specification that allows libraries, run- time systems, and applications to connect to and use the fault-tolerance backplane; and extend key libraries and applications to validate the interface choices and to form the critical mass necessary for adoption in the community.

  17. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    NASA Astrophysics Data System (ADS)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  18. A pulsed DC gas flow hollow cathode

    NASA Astrophysics Data System (ADS)

    Paduraru, Cristian

    A new gas flow hollow cathode discharge source (GFHC) has been developed, characterized, and applied to thin film deposition by sputtering and low-temperature PECVD. Non-reactive and reactive sputtering processes were investigated using copper and aluminum targets, respectively. For the first time, pulsed DC power was applied to a GFHC in order to avoid arcing caused by electrode surface contamination, and to stabilize the discharge in general. The electrical characteristics of the source, the parameters of the remote plasma and its optical emission, were studied and compared to those of a DC powered GFHC. We determined the electrical characteristics of the plasma, including the temporal behavior of the current and voltage under various conditions of pressure and inert gas flow through the cathode. The transition from a glow discharge mode to the hollow cathode mode was studied in an effort to determine the operating range of the GFHC. A capacitive current was discovered at the beginning of the on-time. The properties of the remote plasma were investigated using averaged and time-resolved Langmuir probe and optical emission measurements. The distribution of the remote plasma density resembles the gas flow velocity distribution through the cathode. Plasma processes during off time (decaying plasma) and on-time (plasma reestablishment) were studied and compared to those in pulsed DC magnetron and high power inductively coupled glow discharges. The dependence of the deposition rate, resistivity and thickness distribution of copper films dependence on pulse parameters, power, inert gas flow through the cathode and pressure have been studied. The thin film thickness distribution is governed by the distribution of the gas flow velocity, which can be calculated using laminar flow gas dynamics. In a pulsed DC GFHC system, the inert gas flow through the cathode prevents the penetration of the reactive gas from the chamber into the cathode. A special reactive gas delivery

  19. Integrated modeling and control of a PEM fuel cell power system with a PWM DC/DC converter

    NASA Astrophysics Data System (ADS)

    Choe, Song-Yul; Lee, Jung-Gi; Ahn, Jong-Woo; Baek, Soo-Hyun

    A fuel cell powered system is regarded as a high current and low voltage source. To boost the output voltage of a fuel cell, a DC/DC converter is employed. Since these two systems show different dynamics, they need to be coordinated to meet the demand of a load. This paper proposes models for the two systems with associated controls, which take into account a PEM fuel cell stack with air supply and thermal systems, and a PWM DC/DC converter. The integrated simulation facilitates optimization of the power control strategy, and analyses of interrelated effects between the electric load and the temperature of cell components. In addition, the results show that the proposed power control can coordinate the two sources with improved dynamics and efficiency at a given dynamic load.

  20. Vehicle condition monitoring and fault diagnosis

    SciTech Connect

    Not Available

    1985-01-01

    This book contains a compilation of papers on vehicle condition monitoring and fault diagnosis. The complete contents include: Bus operators' needs for the nineties; The use of portable remote data collection devices in vehicle preventive maintenance programs; The diagnosis of cylinder power faults in diesel engines by flywheel speed measurements; Current and future developments in vehicle servicing, condition monitoring and diagnostics; Experience with condition monitoring in other industries; Contamination and viscosity monitoring of automobile and motor cycle oils using a portable contamination meter; Knock detection alternatives for production vehicles; Oil monitoring - under what conditions can it improve engine life, yet be financed by condition-based oil changes: The use of speed sensing for monitoring the condition of military vehicle engines; The development of vehicle condition monitoring and fault diagnosis equipment for commercial vehicle fleets; The development of automotive diagnostic systems for armoured fighting vehicles in the British Army; Oil analysis techniques used in the development of automotive diesel engines and their condition monitoring in service; Recent developments in the nonintrusive diagnosis of engine faults; Operating experience with a vehicle fault diagnosis system; The case for on-board diagnostics; An on-board monitoring system with its essential sensors and evaluating characteristics; Computerized diagnostics for diesel engines; Laser tools for diesel engine diagnosis.

  1. Development of a Novel Bi-Directional Isolated Multiple-Input DC-DC Converter

    SciTech Connect

    Li, H.

    2005-10-24

    There is vital need for a compact, lightweight, and efficient energy-storage system that is both affordable and has an acceptable cycle life for the large-scale production of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Most of the current research employs a battery-storage unit (BU) combined with a fuel cell (FC) stack in order to achieve the operating voltage-current point of maximum efficiency for the FC system. A system block diagram is shown in Fig.1.1. In such a conventional arrangement, the battery is sized to deliver the difference between the energy required by the traction drive and the energy supplied by the FC system. Energy requirements can increase depending on the drive cycle over which the vehicle is expected to operate. Peak-power transients result in an increase of losses and elevated temperatures which result in a decrease in the lifetime of the battery. This research will propose a novel two-input direct current (dc) dc to dc converter to interface an additional energy-storage element, an ultracapacitor (UC), which is shown in Fig.1.2. It will assist the battery during transients to reduce the peak-power requirements of the battery.

  2. Fault terminations, Seminoe Mountains, Wyoming

    SciTech Connect

    Dominic, J.B.; McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Two basement-involved faults terminate in folds in the Seminoe Mountains. Mesoscopic and macroscopic structures in sedimentary rocks provide clues to the interrelationship of faults and folds in this region, and on the linkage between faulting and folding in general. The Hurt Creek fault trends 320[degree] and has maximum separation of 1.5 km measured at the basement/cover contact. Separation on the fault decreases upsection to zero within the Jurassic Sundance Formation. Unfaulted rock units form an anticline around the fault tip. The complementary syncline is angular with planar limbs and a narrow hinge zone. The syncline axial trace intersects the fault in the footwall at the basement/cover cut-off. Map patterns are interpreted to show thickening of Mesozoic units adjacent to the syncline hinge. In contrast, extensional structures are common in the faulted anticline within the Permian Goose Egg and Triassic Chugwater Formations. A hanging wall splay fault loses separation into the Goose Egg formation which is thinned by 50% at the fault tip. Mesoscopic normal faults are oriented 320--340[degree] and have an average inclination of 75[degree] SW. Megaboudins of Chugwater are present in the footwall of the Hurt Creek fault, immediately adjacent to the fault trace. The Black Canyon fault transported Precambrian-Pennsylvanian rocks over Pennsylvanian Tensleep sandstone. This fault is layer-parallel at the top of the Tensleep and loses separation along strike into an unfaulted syncline in the Goose Egg Formation. Shortening in the pre-Permian units is accommodated by slip on the basement-involved Black Canyon fault. Equivalent shortening in Permian-Cretaceous units occurs on a system of thin-skinned'' thrust faults.

  3. 75 FR 36298 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-8-31, DC-8-32, DC-8-33, DC-8-41...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ...-09-04, Amendment 39-15484 (73 FR 21523, April 22, 2008), for all Model DC-8-31, DC-8-32, DC-8-33, DC... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3... removing Amendment 39-15484 (73 FR 21523, April 22, 2008) and adding the following new AD:...

  4. Fault displacement hazard for strike-slip faults

    USGS Publications Warehouse

    Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D.

    2011-01-01

    In this paper we present a methodology, data, and regression equations for calculating the fault rupture hazard at sites near steeply dipping, strike-slip faults. We collected and digitized on-fault and off-fault displacement data for 9 global strikeslip earthquakes ranging from moment magnitude M 6.5 to M 7.6 and supplemented these with displacements from 13 global earthquakes compiled byWesnousky (2008), who considers events up to M 7.9. Displacements on the primary fault fall off at the rupture ends and are often measured in meters, while displacements on secondary (offfault) or distributed faults may measure a few centimeters up to more than a meter and decay with distance from the rupture. Probability of earthquake rupture is less than 15% for cells 200 m??200 m and is less than 2% for 25 m??25 m cells at distances greater than 200mfrom the primary-fault rupture. Therefore, the hazard for off-fault ruptures is much lower than the hazard near the fault. Our data indicate that rupture displacements up to 35cm can be triggered on adjacent faults at distances out to 10kmor more from the primary-fault rupture. An example calculation shows that, for an active fault which has repeated large earthquakes every few hundred years, fault rupture hazard analysis should be an important consideration in the design of structures or lifelines that are located near the principal fault, within about 150 m of well-mapped active faults with a simple trace and within 300 m of faults with poorly defined or complex traces.

  5. Computer hardware fault administration

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  6. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOEpatents

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  7. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  8. Advances in DC photocathode electron guns

    SciTech Connect

    Bruce M. Dunham; P. Heartmann; Reza Kazimi; Hongxiu Liu; B. M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; Charles K. Sinclair

    1998-07-01

    At Jefferson Lab, a DC photoemission gun using GaAs and GaAs-like cathodes provides a source of polarized electrons for the main accelerator. The gun is required to produce high average current with long operational lifetimes and high system throughout. Recent work has shown that careful control of the parameters affecting cathode lifetime lead to dramatic improvements in source operation. These conditions include vacuum and the related effect of ion backbombardment, and precise control of all of the electrons emitted from the cathode. In this paper, the authors will review recent results and discuss implications for future photocathode guns.

  9. Stress relaxation in pulsed DC electromigration measurements

    NASA Astrophysics Data System (ADS)

    Ringler, I. J.; Lloyd, J. R.

    2016-09-01

    When a high current density is applied to a conductor, it activates several driving forces for mass transport that can lead to device failure, the most prominent of which is electromigration. However, there are other driving forces operating as well that can counteract or add to the effects of electromigration. A major driving force is a stress gradient that is developed as a response to electromigration in the presence of a blocking boundary condition. When the electrical stress is interrupted by pulsing DC measurements at low frequency, relaxation of the stress is observed through longer lifetime.

  10. [Temperature measurement of DC argon plasma jet].

    PubMed

    Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa

    2008-01-01

    The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.

  11. Transformerless dc-to-dc converters with large conversion ratios

    NASA Astrophysics Data System (ADS)

    Middlebrook, R. D.

    1988-10-01

    A novel switching dc-dc converter is introduced in which large voltage step-down ratios can be achieved without a very small duty ratio and without a transformer. The circuit is an extension of the Cuk converter to incorporate a multistage capacitor divider. A particularly suitable application would be a 50-V to 5-V converter in which dc isolation is not required. The absence of a transformer and the larger duty ratio permit operation at a high switching frequency and make the circuit amenable to partial integration and hybrid construction techniques. An experimental 50-W three-stage voltage-divider Cuk converter converts 50 V to 5 V at 500 kHz, with efficiency higher than for a basic Cuk converter operated at the same conditions. A corresponding voltage-multiplier Cuk converter is described, as well as dual buck-boost-derived step-down and step-up converters.

  12. Fault tree models for fault tolerant hypercube multiprocessors

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Tuazon, Jezus O.

    1991-01-01

    Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.

  13. Behavior of Eupcheon fault Using Fault Monitoring Data in South Korea

    NASA Astrophysics Data System (ADS)

    Cho, S.; Hwang, J.; Park, D.; Choi, W.; Chang, C.

    2013-12-01

    In the early 1960s, the Fault Monitoring System(FMS) was adopted in several countries including U.S., Japan and Taiwan, where fault movement related with tectonics have occurred frequently. In Korea, only the Korea Hydro & Nuclear Power Co. Ltd. - Central Research Institute (KHNP-CRI) has been managing FMS. The first FMS of South Korea had been installed to monitor the Eupcheon fault located in Gyeoungju city from 2009. The system is equipped with in-situ measuring units including strainmeter, creepmeter, Global Navigation Satellite System (GNSS), seismometer, and groundwater level meter. This paper presents the behavior of the Eupcheon fault based on the monitored data from EFMS in 2012. These data reveal that the earthquakes near Eupcheon fault did not lead to considerable changes in underground stress and displacement as the data in 2011. The creepmeter is sensitive to the temperature so that the data from the creepmeter showed the seasonal variation. The GNSS and strainmeter data have influenced by the tides. For this reason, it is required to employ a calibration system considering the external parameters such as tides and temperature variations. The KHNP-CRI is currently developing technical systems for data correction and analysis to predict the long-term behavior characteristics of Eupcheon fault. It is expected that the enhanced monitoring system contributes significantly in geo-tectonic safety assessment of nuclear plants and other critical facilities related to the national security.

  14. Controller for computer control of brushless dc motors

    NASA Astrophysics Data System (ADS)

    Hieda, L. S.

    1981-02-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  15. Controller for computer control of brushless dc motors. [automobile engines

    NASA Technical Reports Server (NTRS)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  16. Commercial Of-The Shelf DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Denzinger, W.; Baumel, S.

    2011-10-01

    A commercial of-the-shelf (COTS) DC/DC converter for the supply of digital electronics on board of spacecraft has been developed with special emphasis on: *Low cost Readily available *Easy manufacturing *No use of ITAR listed EEE parts like rad-hard mosfets *Minimum number of rad-hard digital and analog IC's *Design tolerance against SEE by appropriate filtering The study was supported by the European Space Agency (ESA) under the contract number 21729/08/NL7LvH.

  17. Low dose failures of hardened DC-DC power converters

    NASA Technical Reports Server (NTRS)

    Lehman, J.; Yui, C.; Rax, B. G.; Miyahira, T. F.; Weideman, M.; Schrick, P.; Swift, G. M.; Johnston, A. H.

    2002-01-01

    Box-level total dose testing of the FOG (Fiber Optic Gyro) by IXSEA at ESA's GammabeamFacility were abruptly terminated at 8krad (Si) due to catastrophic failure (complete shutdown). This was unexpected because all components within the gyro were supposedly radiation tolerant. Further testing showed that the components responsible for the failure were two DC-DC converters, manufactured by Interpoint, that stopped regulating shortly before shutdown. This paper summarizes diagnostic test results for the converters to determine the underlying cause of the unexpected failure at low levels of radiation.

  18. Project DAFNE - Drilling Active Faults in Northern Europe

    NASA Astrophysics Data System (ADS)

    Kukkonen, I. T.; Ask, M. S. V.; Olesen, O.

    2012-04-01

    We are currently developing a new ICDP project 'Drillling Active Faults in Northern Europe' (DAFNE) which aims at investigating, via scientific drilling, the tectonic and structural characteristics of postglacial (PG) faults in northern Fennoscandia, including their hydrogeology and associated deep biosphere [1, 2]. During the last stages of the Weichselian glaciation (ca. 9,000 - 15,000 years B.P.), reduced ice load and glacially affected stress field resulted in active faulting in Fennoscandia with fault scarps up to 160 km long and 30 m high. These postglacial (PG) faults are usually SE dipping, SW-NE oriented thrusts, and represent reactivated, pre-existing crustal discontinuities. Postglacial faulting indicates that the glacio-isostatic compensation is not only a gradual viscoelastic phenomenon, but includes also unexpected violent earthquakes, suggestively larger than other known earthquakes in stable continental regions. The research is anticipated to advance science in neotectonics, hydrogeology and deep biosphere studies, and provide important information for nuclear waste and CO2 disposal, petroleum exploration on the Norwegian continental shelf and studies of mineral resources in PG fault areas. We expect that multidisciplinary research applying shallow and deep drilling of postglacial faults would provide significant scientific results through generating new data and models, namely: (1) Understanding PG fault genesis and controls of their locations; (2) Deep structure and depth extent of PG faults; (3) Textural, mineralogical and physical alteration of rocks in the PG faults; (4) State of stress and estimates of paleostress of PG faults; (5) Hydrogeology, hydrochemistry and hydraulic properties of PG faults; (6) Dating of tectonic reactivation(s) and temporal evolution of tectonic systems hosting PG faults; (7) Existence/non-existence of deep biosphere in PG faults; (8) Data useful for planning radioactive waste disposal in crystalline bedrock; (9) Data

  19. Test and Treat DC: Forecasting the Impact of a Comprehensive HIV Strategy in Washington DC

    PubMed Central

    Walensky, Rochelle P.; Paltiel, A. David; Losina, Elena; Morris, Bethany L.; Scott, Callie A.; Rhode, Erin R.; Seage, George R.; Freedberg, Kenneth A.

    2010-01-01

    Background US and international agencies have signaled their commitment to containing the HIV epidemic via early case identification and linkage to antiretroviral therapy (ART) immediately upon diagnosis. We forecast outcomes of this approach if implemented in Washington DC. Methods Using a mathematical model of HIV case detection and treatment, we evaluate combinations of HIV screening and ART initiation strategies. We define current practice as no regular screening program and ART at ≤350/μl, and test and treat as annual screening and ART upon diagnosis. Outcomes include life expectancy of HIV-infected persons and changes in the population time with transmissible HIV RNA. Data, largely from DC, include undiagnosed HIV prevalence 0.6%, annual incidence 0.13%, 31% test offer, 60% acceptance, and 50% linkage to care. Input parameters, including optimized ART efficacy, are varied in sensitivity analyses. Results Projected life expectancies, from an initial mean age 41 years, for current practice, test and treat, and test and treat with optimized ART are 23.9, 25.0, and 25.6 years. Compared to current practice, test and treat leads to a 14.7% reduction in time spent with transmissible HIV RNA in the next 5 years; test and treat with optimized ART results in a 27.2% reduction. Conclusions An expanded HIV test and treat program in Washington DC will increase life expectancy of HIV-infected patients but will have a modest impact on HIV transmission over the next five years and is unlikely to halt the HIV epidemic. Summary The CEPAC model shows a test and treat strategy in Washington DC would result in a substantial clinical impact to HIV-infected individuals. Results suggest a need to temper expectations regarding the extent to which test and treat will control the epidemic. PMID:20617921

  20. Characteristics of On-fault and Off-fault displacement of various fault types based on numerical simulation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Takemura, K.

    2015-12-01

    There are two types of fault displacement related to the earthquake fault: on-fault displacement and off-fault displacement. Off-fault displacement should be evaluated in important facilities, such as Nuclear Installations. Probabilistic Fault Displacement Hazard Analysis (PFDHA) is developing on the basis of PSHA. PFDHA estimates on-fault and off-fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. However, observed displacement data are still sparse, especially off-fault displacement. In Nuclear Installations, estimation of off-fault displacement is more important than that of on-fault. We carried out numerical fault displacement simulations to assist in understanding distance-displacement relations of on-fault and off-fault according to fault types, normal, reverse and strike fault. We used Okada's dislocation method. The displacements were calculated based on the single fault model with several rakes of slip. On-fault displacements (along the fault profile) of each fault types show a similar trend. Off-fault displacements (cross profile to the fault) of vertical (reverse and normal) fault types show the rapid decreasing displacement on the foot wall side. In the presentation, we will show the displacement profile and also stress, strain and so on. The dislocation model can not express discontinuous displacements. In the future, we will apply various numerical simulations (Finite Element Method, Distinct Element Method) in order to evaluate off-fault displacements. We will also compare numerical simulation results with observed data.

  1. NASA Spacecraft Fault Management Workshop Results

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen

    2010-01-01

    Fault Management is a critical aspect of deep-space missions. For the purposes of this paper, fault management is defined as the ability of a system to detect, isolate, and mitigate events that impact, or have the potential to impact, nominal mission operations. The fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and

  2. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  3. 14 CFR 93.339 - Requirements for operating in the DC SFRA, including the DC FRZ.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., including the DC FRZ. (a) Except as provided in paragraphs (b) and (c) of this section and in § 93.345, or... operating within the DC SFRA; (5) For VFR operations, the pilot must file and activate a DC FRZ or DC SFRA..., out of, or through the Washington, DC Tri-Area Class B Airspace Area, the pilot receives a...

  4. 14 CFR 93.339 - Requirements for operating in the DC SFRA, including the DC FRZ.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., including the DC FRZ. (a) Except as provided in paragraphs (b) and (c) of this section and in § 93.345, or... operating within the DC SFRA; (5) For VFR operations, the pilot must file and activate a DC FRZ or DC SFRA..., out of, or through the Washington, DC Tri-Area Class B Airspace Area, the pilot receives a...

  5. 14 CFR 93.339 - Requirements for operating in the DC SFRA, including the DC FRZ.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., including the DC FRZ. (a) Except as provided in paragraphs (b) and (c) of this section and in § 93.345, or... operating within the DC SFRA; (5) For VFR operations, the pilot must file and activate a DC FRZ or DC SFRA..., out of, or through the Washington, DC Tri-Area Class B Airspace Area, the pilot receives a...

  6. 14 CFR 93.339 - Requirements for operating in the DC SFRA, including the DC FRZ.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., including the DC FRZ. (a) Except as provided in paragraphs (b) and (c) of this section and in § 93.345, or... operating within the DC SFRA; (5) For VFR operations, the pilot must file and activate a DC FRZ or DC SFRA..., out of, or through the Washington, DC Tri-Area Class B Airspace Area, the pilot receives a...

  7. Fault-Tolerant Flight Computer

    NASA Technical Reports Server (NTRS)

    Chau, Savio

    1996-01-01

    In design concept for adaptive, fault-tolerant flight computer, upon detection of fault in either processor, surviving processor assumes responsibility for both equipment systems. Possible because of cross-strapping between processors, memories, and input/output units. Concept also applicable to other computing systems required to tolerate faults and in which partial loss of processing speed or functionality acceptable price to pay for continued operation in event of faults.

  8. Row fault detection system

    SciTech Connect

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  9. Fault-Mechanism Simulator

    ERIC Educational Resources Information Center

    Guyton, J. W.

    1972-01-01

    An inexpensive, simple mechanical model of a fault can be produced to simulate the effects leading to an earthquake. This model has been used successfully with students from elementary to college levels and can be demonstrated to classes as large as thirty students. (DF)

  10. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  11. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  12. Human tolerogenic DC-10: perspectives for clinical applications

    PubMed Central

    2012-01-01

    Dendritic cells (DCs) are critically involved in inducing either immunity or tolerance. During the last decades efforts have been devoted to the development of ad hoc methods to manipulate DCs in vitro to enhance or stabilize their tolerogenic properties. Addition of IL-10 during monocyte-derived DC differentiation allows the induction of DC-10, a subset of human tolerogenic DCs characterized by high IL-10/IL-12 ratio and co-expression of high levels of the tolerogenic molecules HLA-G and immunoglobulin-like transcript 4. DC-10 are potent inducers of adaptive type 1 regulatory T cells, well known to promote and maintain peripheral tolerance. In this review we provide an in-depth comparison of the phenotype and mechanisms of suppression mediated by DC-10 and other known regulatory antigen-presenting cells currently under clinical development. We discuss the clinical therapeutic application of DC-10 as inducers of type 1 regulatory T cells for tailoring regulatory T-cell-based cell therapy, and the use of DC-10 as adoptive cell therapy for promoting and restoring tolerance in T-cell-mediated diseases. PMID:23369527

  13. Fault-Related Sanctuaries

    NASA Astrophysics Data System (ADS)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  14. Design of Performance Driven Self-Tuning PID Control Systems and It's Application for DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yoshihiro; Ikemoto, Takahiro; Yamamoto, Toru

    This paper proposes an adaptive PID controller which is driven by current control performance. The calculations of the PID parameters are based on the generalized minimum variance control(GMVC) algorithm. The current control performance is obtained in an online manner over a user-specified time-window with some overlap. The retuning of PID parameters are only carried out when controller performance deteriorates below a user-specified threshold. Experimental evaluations on the voltage control of the DC-DC converter demonstrates the practicality and utility of this idea.

  15. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines.

    PubMed

    Swetapadma, Aleena; Yadav, Anamika

    2015-01-01

    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance.

  16. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines

    PubMed Central

    Swetapadma, Aleena; Yadav, Anamika

    2015-01-01

    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088

  17. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  18. Faults in parts of north-central and western Houston metropolitan area, Texas

    USGS Publications Warehouse

    Verbeek, Earl R.; Ratzlaff, Karl W.; Clanton, Uel S.

    1979-01-01

    Hundreds of residential, commercial, and industrial structures in the Houston metropolitan area have sustained moderate to severe damage owing to their locations on or near active faults. Paved roads have been offset by faults at hundreds of locations, butted pipelines have been distorted by fault movements, and fault-induced gradient changes in drainage lines have raised concern among flood control engineers. Over 150 faults, many of them moving at rates of 0.5 to 2 cm/yr, have been mapped in the Houston area; the number of faults probably far exceeds this figure. This report includes a map of eight faults, in north-central and western Houston, at a scale useful for land-use planning. Seven of the faults, are known, to be active and have caused considerable damage to structures built on or near them. If the eighth fault is active, it may be of concern to new developments on the west side of Houston. A ninth feature shown on the map is regarded only as a possible fault, as an origin by faulting has not been firmly established. Seismic and drill-hold data for some 40 faults, studied in detail by various investigators have verified connections between scarps at the land surface and growth faults in the shallow subsurface. Some scarps, then, are known to be the surface manifestations of faults that have geologically long histories of movement. The degree to which natural geologic processes contribute to current fault movement, however, is unclear, for some of man?s activities may play a role in faulting as well. Evidence that current rates of fault movement far exceed average prehistoric rates and that most offset of the land surface in the Houston area has occurred only within the last 50 years indirectly suggest that fluid withdrawal may be accelerating or reinitiating movement on pre-existing faults. This conclusion, however, is based only on a coincidence in time between increased fault activity and increased rates of withdrawal of water, oil, and gas from

  19. Engine Fault Diagnosis using DTW, MFCC and FFT

    NASA Astrophysics Data System (ADS)

    Singh, Vrijendra; Meena, Narendra

    . In this paper we have used a combination of three algorithms: Dynamic time warping (DTW) and the coefficients of Mel frequency Cepstrum (MFC) and Fast Fourier Transformation (FFT) for classifying various engine faults. Dynamic time warping and MFCC (Mel Frequency Cepstral Coefficients), FFT are used usually for automatic speech recognition purposes. This paper introduces DTW algorithm and the coefficients extracted from Mel Frequency Cepstrum, FFT for automatic fault detection and identification (FDI) of internal combustion engines for the first time. The objective of the current work was to develop a new intelligent system that should be able to predict the possible fault in a running engine at different-different workshops. We are doing this first time. Basically we took different-different samples of Engine fault and applied these algorithms, extracted features from it and used Fuzzy Rule Base approach for fault Classification.

  20. Fault tolerant architectures for integrated aircraft electronics systems, task 2

    NASA Technical Reports Server (NTRS)

    Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.

    1984-01-01

    The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported.

  1. An integrated dc SQUID cascade

    SciTech Connect

    Davidson, A.

    1983-05-01

    An integrated tunnel junction dc SQUID cascade has been built and some of its operating characteristics measured. It is shown for the first time that good modulation can be achieved with a remote termination for the tunnel junction shunts. Response time of one of the SQUID's in the cascade was measured to be better than 5 nanoseconds. Maintenance of this high speed is an advantage of the cascade arrangement over other schemes for matching and reading-out dc tunnel junction SQUID's. True cascade operation was not obtained, due to coupling of Josephson oscillations from the first stage of the cascade to the second.

  2. AC and DC power transmission

    SciTech Connect

    Not Available

    1985-01-01

    The technical and economic assessment of AC and DC transmission systems; long distance transmission, cable transmission, system inter-connection, voltage support, reactive compensation, stabilisation of systems; parallel operation of DC links with AC systems; comparison between alternatives for particular schemes. Design and application equipment: design, testing and application of equipment for HVDC, series and shunt static compensated AC schemes, including associated controls. Installations: overall design of stations and conductor arrangements for HVDC, series and shunt static AC schemes including insulation co-ordination. System analysis and modelling.

  3. What electrical measurements can say about changes in fault systems.

    PubMed Central

    Madden, T R; Mackie, R L

    1996-01-01

    Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone. PMID:11607664

  4. Structure and mechanics of the San Andreas-San Gregorio fault junction, San Francisco, California

    NASA Astrophysics Data System (ADS)

    Parsons, Tom; Bruns, Terry R.; Sliter, Ray

    2005-01-01

    The right-lateral San Gregorio and San Andreas faults meet west of the Golden Gate near San Francisco. Coincident seismic reflection and refraction profiling across the San Gregorio and San Andreas faults south of their junction shows the crust between them to have formed shallow extensional basins that are dissected by parallel strike-slip faults. We employ a regional finite element model to investigate the long-term consequences of the fault geometry. Over the course of 2-3 m.y. of slip on the San Andreas-San Gregorio fault system, elongated extensional basins are predicted to form between the two faults. An additional consequence of the fault geometry is that the San Andreas fault is expected to have migrated eastward relative to the San Gregorio fault. We thus propose a model of eastward stepping right-lateral fault formation to explain the observed multiple fault strands and depositional basins. The current manifestation of this process might be the observed transfer of slip from the San Andreas fault east to the Golden Gate fault.

  5. Study of Anisotropy of Magnetic Susceptibility on Central Chimei Fault, Coastal Range of Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Rong, C. Y.

    2014-12-01

    The Chimei fault is the only major reverse fault across the entire Coastal Range and is also a typical lithology-contrast fault thrusting the volcanic Tuluanshan Formation of Miocene over the sedimentary Paliwan Formation of Pleistocene. To investigate the deformation pattern across the Chimei fault more precisely, we analyzed oriented coring samples of mudstone across the fault zone, damage zone, fold zone and wall rocks along the Hsiukuluan River via anisotropy of magnetic susceptibility (AMS). Prolate (cigar-shaped) and oblate (disc-shaped) ellipsoids appear together at fault zone, damage zone and fold zone, suggesting that strong variation of deformation and lithology in each zone of the Chimei fault. Previous study pointed out that oblate ellipsoid usually appears in the footwall, further indicating that the Chimei fault behaves differently from regular detachment faults. It strongly speculates although the central Chimei fault displays N-S shortening, the deformation is not strong enough to develop penetrative oblate fabric, even in the main fault zone of the Chimei fault. Further studies will be rnrformation is not sobear theequired to identify the magnetic carriers and grain size to improve current concept. Keywords : Anisotropy of Magnetic Susceptibility, Coastal Range, Chimei Fault, Taiwan

  6. Piezometer completion report for borehole cluster sites DC-19, DC-20, and DC-22

    SciTech Connect

    Jackson, R.L.; Diediker, L.D.; Ledgerwood, R.K.; Veatch, M.D.

    1984-07-01

    This report describes the design and installation of multi-level piezometers at borehole cluster sites DC-19, DC-20 and DC-22. The network of borehole cluster sites will provide facilities for multi-level water-level monitoring across the RRL for piezometer baseline monitoring and for large-scale hydraulic stress testing. These groundwater-monitoring facilities were installed between August 1983 and March 1984. Three series of piezometer nests (A-, C- and D-series) were installed in nine hydrogeologic units (monitoring horizons) within the Columbia River Basalt Group at each borehole cluster site. In addition to the piezometer facilities, a B-series pumping well was installed at borehole cluster sites DC-20 and DC-22. The A-series piezometer nest monitors the basal Ringold sediments and the Rattlesnake Ridge interbed. The C-series piezometer nests monitors the six deepest horizons, which are in increasing depth, the Priest Rapids interflow, Sentinel Gap flow top, Ginkgo flow top, Rocky Coulee flow top, Cohassett flow top and Umtanum flow top. The D-series piezometer monitors the Mabton interbed. The B-series pumping well was completed in the Priest Rapids interflow. 21 refs., 6 figs., 6 tabs.

  7. Diagnostic of water trees using DC and AC voltages

    SciTech Connect

    Romero, P.; Puerta, J.

    1996-12-31

    Electric tools for non-destructive water tree diagnostic in XLPE medium voltage cables, by means of DC and AC voltages are presented. The DC method is related to the determination of a non-linear dependence of the polarization current on the applied DC step voltage, in contrast to a linear dependence found in non-water tree-damaged cables. In both cases the current follows the Curie-von Schweidler empirical law, I(t) = I{sub 0}t{sup {minus}n}. The AC method is based on the measurement of the dispersion relation of both the loss factor and the capacitance in the low and very low frequency ranges by means of the Fourier Transform techniques. The devised measuring instrumentation is presented.

  8. The 25 kW resonant dc/dc power converter

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  9. Analysis of Discontinuity Induced Bifurcations in a Dual Input DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Giaouris, Damian; Banerjee, Soumitro; Mandal, Kuntal; Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; El Aroudi, Abdelali

    DC-DC power converters with multiple inputs and a single output are used in numerous applications where multiple sources, e.g. two or more renewable energy sources and/or a battery, feed a single load. In this work, a classical boost converter topology with two input branches connected to two different sources is chosen, with each branch independently being controlled by a separate peak current mode controller. We demonstrate for the first time that even though this converter is similar to other well known topologies that have been studied before, it exhibits many complex nonlinear behaviors that are not found in any other standard PWM controlled power converter. The system undergoes period incrementing cascade as a parameter is varied, with discontinuous hard transitions between consecutive periodicities. We show that the system can be described by a discontinuous map, which explains the observed bifurcation phenomena. The results have been experimentally validated.

  10. SSP Technology Investigation of a High-Voltage DC-DC Converter

    NASA Technical Reports Server (NTRS)

    Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)

    2002-01-01

    The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.

  11. High efficiency interleaved bi-directional ZVS DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zafarullah Khan, M.; Mohsin Naveed, M.; Akbar Hussain, D. M.

    2013-06-01

    A high efficiency interleaved bi-directional ZVS DC-DC converter is presented in this paper. This converter can be operated in both buck and boost mode. CoolMOS is used as a power device to achieve low conduction losses and fast turn off. The value of inductance is selected such that the CoolMOS drain-to-source voltage always falls to zero before it turns on and ZVS is achieved. Multiphase interleaved inductors are used to achieve high power and low ripple currents. Converter is operated at 50kHz and MATLAB Simulink simulation is performed. 6kW prototype converter is implemented in buck mode and simulation results are verified.

  12. Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel

    2010-01-01

    This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.

  13. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    DOEpatents

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  14. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.

  15. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation. PMID:22254704

  16. The San Andreas Fault and a Strike-slip Fault on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    materials, but may be filled in mostly by sedimentary and erosional material deposited from above. Comparisons between faults on Europa and Earth may generate ideas useful in the study of terrestrial faulting.

    One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. The tidal tension opens the fault; subsequent tidal stress causes it to move lengthwise in one direction. Then the tidal forces close the fault up again. This prevents the area from moving back to its original position. If it moves forward with the next daily tidal cycle, the result is a steady accumulation of these lengthwise offset motions.

    Unlike Europa, here on Earth, large strike-slip faults such as the San Andreas are set in motion not by tidal pull, but by plate tectonic forces from the planet's mantle.

    North is to the top of the picture. The Earth picture (left) shows a LandSat Thematic Mapper image acquired in the infrared (1.55 to 1.75 micrometers) by LandSat5 on Friday, October 20th 1989 at 10:21 am. The original resolution was 28.5 meters per picture element.

    The Europa picture (right)is centered at 66 degrees south latitude and 195 degrees west longitude. The highest resolution frames, obtained at 40 meters per picture element with a spacecraft range of less than 4200 kilometers (2600 miles), are set in the context of lower resolution regional frames obtained at 200 meters per picture element and a range of 22,000 kilometers (13,600 miles). The images were taken on September 26, 1998 by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images

  17. A Low-Cost Soft-Switched DC/DC Converter for Solid-Oxide Fuel Cells

    SciTech Connect

    Jason Lai

    2009-03-03

    A highly efficient DC to DC converter has been developed for low-voltage high-current solid oxide fuel cells. The newly developed 'V6' converter resembles what has been done in internal combustion engine that split into multiple cylinders to increase the output capacity without having to increase individual cell size and to smooth out the torque with interleaving operation. The development was started with topology overview to ensure that all the DC to DC converter circuits were included in the study. Efficiency models for different circuit topologies were established, and computer simulations were performed to determine the best candidate converter circuit. Through design optimization including topology selection, device selection, magnetic component design, thermal design, and digital controller design, a bench prototype rated 5-kW, with 20 to 50V input and 200/400V output was fabricated and tested. Efficiency goal of 97% was proven achievable through hardware experiment. This DC to DC converter was then modified in the later stage to converter 35 to 63 V input and 13.8 V output for automotive charging applications. The complete prototype was tested at Delphi with their solid oxide fuel cell test stand to verify the performance of the modified DC to DC converter. The output was tested up to 3-kW level, and the efficiency exceeded 97.5%. Multiple-phase interleaving operation design was proved to be reliable and ripple free at the output, which is desirable for the battery charging. Overall this is a very successful collaboration project between the SECA Core Technology Team and Industrial Team.

  18. Fault-Zone Maturity Defines Maximum Earthquake Magnitude

    NASA Astrophysics Data System (ADS)

    Bohnhoff, M.; Bulut, F.; Stierle, E.; Ben-Zion, Y.

    2014-12-01

    Estimating the maximum likely magnitude of future earthquakes on transform faults near large metropolitan areas has fundamental consequences for the expected hazard. Here we show that the maximum earthquakes on different sections of the North Anatolian Fault Zone (NAFZ) scale with the duration of fault zone activity, cumulative offset and length of individual fault segments. The findings are based on a compiled catalogue of historical earthquakes in the region, using the extensive literary sources that exist due to the long civilization record. We find that the largest earthquakes (M~8) are exclusively observed along the well-developed part of the fault zone in the east. In contrast, the western part is still in a juvenile or transitional stage with historical earthquakes not exceeding M=7.4. This limits the current seismic hazard to NW Turkey and its largest regional population and economical center Istanbul. Our findings for the NAFZ are consistent with data from the two other major transform faults, the San Andreas fault in California and the Dead Sea Transform in the Middle East. The results indicate that maximum earthquake magnitudes generally scale with fault-zone evolution.

  19. Automatic Fault Characterization via Abnormality-Enhanced Classification

    SciTech Connect

    Bronevetsky, G; Laguna, I; de Supinski, B R

    2010-12-20

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

  20. Termination of major strike-slip faults against thrust faults in a syntaxis, as interpreted from landsat images

    SciTech Connect

    Iranpanah, A.

    1988-01-01

    The north to northeast-striking Minab fault (Zendan fault) in western Makran, Iran, is interpreted as an intracontinental transform structure that separates, along its length, the Zagros foldbelt from the Makran active trench-arc system. The 200-km long fault has a right-lateral strike-slip component and is terminated at its northern end by the north-northwest and northwest-striking Zagros main thrust. The Minab transform zone delimits the western margin of the Makran convergence zone where an oceanic part of the Afro-Arabian lithosphere is being subducted beneath the Lut and Afghan microplates. A northern extension of the Minab transform zone terminates at an internal convergence boundary within the Bandar Abbas-Minab syntaxis. The Minab transform fault consists of a zone of generally north-northwest-trending thombic conjugate strike-slip faults. The pattern of faulting for the Minab strike-slip fault zone, when traced over the entire area on the Landsat image, shows that areas with rhombic sets of conjugate strike-slip faults are separated by a few areas showing only extensional zones. This is compatible with the traditionally idealized reverse-S pattern for the strike-slip faults reported from the United States Basin and Range province. The mechanical explanation for the rhombic pattern of the fault system is consistent with the same pattern and motion as currently exists in the Makran accretionary belt. The origin of the Bandar Abbas-Minab syntaxis is believed to be related to convergence between the Afro-Arabian plate and the Lut and Afghan microplates. The convergence zone is a well-developed trench-arc gap. The western edge of this trench-arc system has been dragged to the north along the Minab dextral fault zone. This zone, which started developing in the Late Cretaceous-Paleocene, is directly responsible for the development of the Bandar Abbas-Minab syntaxis.