Sample records for dc insulation tests

  1. Forecasting of high voltage insulation performance: Testing of recommended potting materials and of capacitors

    NASA Technical Reports Server (NTRS)

    Bever, R. S.

    1984-01-01

    Nondestructive high voltage test techniques (mostly electrical methods) are studied to prevent total or catastrophic breakdown of insulation systems under applied high voltage in space. Emphasis is on the phenomenon of partial breakdown or partial discharge (P.D.) as a symptom of insulation quality, notably partial discharge testing under D.C. applied voltage. Many of the electronic parts and high voltage instruments in space experience D.C. applied stress in service, and application of A.C. voltage to any portion thereof would be prohibited. Suggestions include: investigation of the ramp test method for D.C. partial discharge measurements; testing of actual flight-type insulation specimen; perfect plotting resin samples with controlled defects for test; several types of plotting resins and recommendations of the better ones from the electrical characteristics; thermal and elastic properties are also considered; testing of commercial capaciters; and approximate acceptance/rejection/rerating criteria for sample test elements for space use, based on D.C. partial discharge.

  2. REPORT OF THE QUALIFICATION TESTING OF SNAP 10A FUSISTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holtwick, J.S. III; Nowell, V.P.

    1963-07-31

    Qualification testing of SNAP 10A fusistors was performed. Test operations included: visual inspection, insulation resistance, dielectric strength, and d-c resistance testing prior to subjecting the fusisters to environmental testing; opening-time testing prior to, during, and following vacuum and temperature testing; and insulation resistance, dielectric strength, and d-c resistance testing following environmental applications of temperature, vacuum, and sinusoidal vibration. (auth)

  3. High-voltage testing of a 500-kV dc photocathode electron gun.

    PubMed

    Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki; Muto, Toshiya; Yamamoto, Masahiro; Honda, Yosuke; Miyajima, Tsukasa; Iijima, Hokuto; Kuriki, Masao; Kuwahara, Makoto; Okumi, Shoji; Nakanishi, Tsutomu

    2010-03-01

    A high-voltage dc photocathode electron gun was successfully conditioned up to a voltage of 550 kV and a long-time holding test for 8 h was demonstrated at an acceleration voltage of 500 kV. The dc photocathode electron gun is designed for future light sources based on energy-recovery linac and consists of a Cockcroft-Walton generator, a segmented cylindrical ceramic insulator, guard-ring electrodes, a support-rod electrode, a vacuum chamber, and a pressurized insulating gas tank. The segmented cylindrical ceramic insulator and the guard-ring electrodes were utilized to prevent any damage to the insulator from electrons emitted by the support-rod electrode.

  4. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    PubMed

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  5. Experimental and analytical study of the DC breakdown characteristics of polypropylene laminated paper with a butt gap condition considering the insulation design of superconducting cable

    NASA Astrophysics Data System (ADS)

    Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon

    2014-08-01

    It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.

  6. DC breakdown characteristics of silicone polymer composites for HVDC insulator applications

    NASA Astrophysics Data System (ADS)

    Han, Byung-Jo; Seo, In-Jin; Seong, Jae-Kyu; Hwang, Young-Ho; Yang, Hai-Won

    2015-11-01

    Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.

  7. The Application of Surface Potential Test on Hand-making Insulation for Generator Stator End-winding

    NASA Astrophysics Data System (ADS)

    Lu, Zhu-mao; Liu, Qing; Wang, Tian-zheng; Bai, Lu; Li, Yan-peng

    2017-05-01

    This paper presents the advantage of surface potential test on hand-making insulation for generator stator end-winding insulation detection, compared with DC or AC withstand voltage test, also details the test principle, connection method and test notes. And through the case, surface potential test on hand-making insulation proved effective for insulation quality detection after generator stator end-winding maintenance, and the experimental data is useful and reliable for the electrical equipment operation and maintenance in the power plant.

  8. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  9. Role of thermal heating on the voltage induced insulator-metal transition in VO2.

    PubMed

    Zimmers, A; Aigouy, L; Mortier, M; Sharoni, A; Wang, Siming; West, K G; Ramirez, J G; Schuller, Ivan K

    2013-02-01

    We show that the main mechanism for the dc voltage or dc current induced insulator-metal transition in vanadium dioxide VO(2) is due to local Joule heating and not a purely electronic effect. This "tour de force" experiment was accomplished by using the fluorescence spectra of rare-earth doped micron sized particles as local temperature sensors. As the insulator-metal transition is induced by a dc voltage or dc current, the local temperature reaches the transition temperature indicating that Joule heating plays a predominant role. This has critical implications for the understanding of the dc voltage or dc current induced insulator-metal transition and has a direct impact on applications which use dc voltage or dc current to externally drive the transition.

  10. Evaluation of pyrolysis and arc tracking on candidate wire insulation designs for space applications

    NASA Astrophysics Data System (ADS)

    Stueber, Thomas J.; Hammoud, Ahmad; Stavnes, Mark W.; Hrovat, Kenneth

    1994-05-01

    Polyimide wire insulation has been found to be vulnerable to pyrolization and arc tracking due to momentary short circuit arcing events. This report compares arc tracking susceptibility of candidate insulation configurations for space wiring applications. The insulation types studied in this report were gauge 20 (0.81 mm dia.) hybrid wiring constructions using polyimide, tetrafluoroethylene (TFE), cross-linked ethylene tetrafluoroethylene (XL-ETFE) and/or polytetrafluoroethylene (PTFE) insulations. These constructions were manufactured according to military wiring standards for aerospace applications. Arc track testing was conducted under DC bias and vacuum (10(exp -6) torr). The tests were conducted to compare the various insulation constructions in terms of their resistance to arc tracking restrike. The results of the tests are presented.

  11. Determination of threshold and maximum operating electric stresses for selected high voltage insulations. Task 2: Investigation of oil-filled paper insulated cables

    NASA Astrophysics Data System (ADS)

    Sosnowski, M.; Eager, G. S., Jr.

    1983-06-01

    Threshold voltage of oil-impregnated paper insulated cables are investigaed. Experimental work was done on model cables specially manufactured for this project. The cables were impregnated with mineral and with synthetic oils. Standard impulse breakdown voltage tests and impulse voltage breakdown tests with dc prestressing were performed at room temperature and at 1000C. The most important result is the finding of very high level of threshold voltage stress for oil-impregnated paper insulated cables. This threshold voltage is approximately 1.5 times higher than the threshold voltage or crosslinked polyethylene insulated cables.

  12. The inverse power law model for the lifetime of a mylar-polyurethane laminated dc hv insulating structure

    NASA Astrophysics Data System (ADS)

    Kalkanis, G.; Rosso, E.

    1989-09-01

    Results of an accelerated test on the lifetime of a mylar-polyurethane laminated dc high voltage insulating structure are reported. This structure consists of mylar ribbons placed side by side in a number of layers, staggered and glued together with a polyurethane adhesive. The lifetime until breakdown as a function of extremely high values of voltage stress is measured and represented by a mathematical model, the inverse power law model with a 2-parameter Weibull lifetime distribution. The statistical treatment of the data — either by graphical or by analytical methods — allowed us to estimate the lifetime distribution and confidence bounds for any required normal voltage stress. The laminated structure under consideration is, according to the analysis, a very reliable dc hv insulating material, with a very good life performance according to the inverse power law model, and with an exponent of voltage stress equal to 6. A large insulator of cylindrical shape with this kind of laminated structure can be constructed by winding helically a mylar ribbon in a number of layers.

  13. Partial discharge testing under direct voltage conditions

    NASA Technical Reports Server (NTRS)

    Bever, R. S.; Westrom, J. L.

    1982-01-01

    DC partial discharge (PD) (corona) testing is performed using a multichannel analyzer for pulse storing, and data is collected during increase of voltage and at quiescent voltage levels. Thus high voltage ceramic disk capacitors were evaluated by obtaining PD data interspersed during an accelerated life test. Increased PD activity was found early in samples that later failed catastrophically. By this technique, trends of insulation behavior are revealed sensitively and nondestructively in high voltage dc components.

  14. DC partial discharge/environmental test screening of space TWTS

    NASA Astrophysics Data System (ADS)

    Hai, F.; Paschen, K. W.

    Direct-current partial discharge/environmental tests are being conducted on traveling wave tubes (TWTs) designated for long-term space operation to screen out tubes with high voltage defects. Two types of TWTs with different external high-voltage insulation are being examined: (1) TWTs with polymeric potting, and (2) TWTs with ceramic feedthroughs. Detection of high voltage defects in the form of cracks and seprations in potted systems is enhanced by combining dc partial discharge testing with environmental (temperature and pressure) testing. These defects are usually caused by high stresses in the potting produced during temperature excursions by the difference in thermal expansion between the potting material and the confining ceramic-metal structure. Tests of all-ceramic-insulated TWTs indicate that the high voltage problem is internal to the vacuum envelope and requires both leakage and discharge measurements for diagnosis. This problem appears to be field emission from contaminated surfaces.

  15. High reliability megawatt transformer/rectifier

    NASA Technical Reports Server (NTRS)

    Zwass, Samuel; Ashe, Harry; Peters, John W.

    1991-01-01

    The goal of the two phase program is to develop the technology and design and fabricate ultralightweight high reliability DC to DC converters for space power applications. The converters will operate from a 5000 V dc source and deliver 1 MW of power at 100 kV dc. The power weight density goal is 0.1 kg/kW. The cycle to cycle voltage stability goals was + or - 1 percent RMS. The converter is to operate at an ambient temperature of -40 C with 16 minute power pulses and one hour off time. The uniqueness of the design in Phase 1 resided in the dc switching array which operates the converter at 20 kHz using Hollotron plasma switches along with a specially designed low loss, low leakage inductance and a light weight high voltage transformer. This approach reduced considerably the number of components in the converter thereby increasing the system reliability. To achieve an optimum transformer for this application, the design uses four 25 kV secondary windings to produce the 100 kV dc output, thus reducing the transformer leakage inductance, and the ac voltage stresses. A specially designed insulation system improves the high voltage dielectric withstanding ability and reduces the insulation path thickness thereby reducing the component weight. Tradeoff studies and tests conducted on scaled-down model circuits and using representative coil insulation paths have verified the calculated transformer wave shape parameters and the insulation system safety. In Phase 1 of the program a converter design approach was developed and a preliminary transformer design was completed. A fault control circuit was designed and a thermal profile of the converter was also developed.

  16. Design of a -1 MV dc UHV power supply for ITER NBI

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Yamamoto, M.; Takemoto, J.; Yamashita, Y.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Umeda, N.; Sakamoto, K.; Inoue, T.

    2009-05-01

    Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.

  17. Dielectric Breakdown Characteristics of Oil-pressboard Insulation System against AC/DC Superposed Voltage

    NASA Astrophysics Data System (ADS)

    Ebisawa, Yoshihito; Yamada, Shin; Mori, Shigekazu; Ikeda, Masami

    This paper describes breakdown characteristics of an oil-pressboard insulation system to a superposition voltage of AC and DC voltages. Although AC electric field is decided by the ratio of the relative permittivity of a pressboard and insulating oil, DC electric field is decided by ratio α of volume resistivities. From the measurement in this study, 13—78 and 1.8—5.7 are obtained as the volume resistivity ratios α at temperature of 30°C and 80°C, respectively. The breakdown voltages against AC, DC, and those superposition voltages are surveyed to insulation models. In normal temperature, the breakdown voltage to the superposition voltage of AC and DC is determined by AC electric field applied to the oil duct. Since the α becomes as low as 2-3 at temperature of 80°C, AC and DC voltages almost equally contribute to the electric field of the oil duct as a result. That is, it became clear that superposed DC voltage boosts the electric field across oil ducts at operating high temperature.

  18. Influence of Insulation Monitoring Devices on the Operation of DC Control Circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszowiec, Piotr, E-mail: olpio@o2.pl

    The insulation level of DC control circuits is an important safety-critical factor and, thus, should be subject to continuous and periodic monitoring. The methods used for monitoring the insulation in live circuits may, however, disturb the reliable operation of control relays. The risks of misoperation and failure to reset of relays posed by the operation of various insulation monitoring and fault location systems are evaluated.

  19. Quantum cascade lasers with Y2O3 insulation layer operating at 8.1 µm.

    PubMed

    Kang, JoonHyun; Yang, Hyun-Duk; Joo, Beom Soo; Park, Joon-Suh; Lee, Song-Ee; Jeong, Shinyoung; Kyhm, Jihoon; Han, Moonsup; Song, Jin Dong; Han, Il Ki

    2017-08-07

    SiO 2 is a commonly used insulation layer for QCLs but has high absorption peak around 8 to 10 µm. Instead of SiO 2 , we used Y 2 O 3 as an insulation layer for DC-QCL and successfully demonstrated lasing operation at the wavelength around 8.1 µm. We also showed 2D numerical analysis on the absorption coefficient of our DC-QCL structure with various parameters such as insulating materials, waveguide width, and mesa angle.

  20. Research on breakdown characteristics of converter transformer oil-paper insulation under compound electric field in alpine region

    NASA Astrophysics Data System (ADS)

    Xu, C.; Gao, Z. W.; Lan, S.; Guo, H. X.; Gong, M. C.

    2018-01-01

    In the paper, existing research and operating experience was summarized. On the basis, the particularity of oil-paper insulation operation condition for converter transformer was combined for studying the influence of temperature on oil-paper insulation field intensity distribution of converter transformers under different AC contents within wide temperature scope (-40°C∼105°C). The law of temperature gradients on space charge accumulation was analyzed. The breakdown or flashover characteristics of typical oil-paper compound insulation structure under the action of DC, AC and AC-DC superposition voltage at different temperatures were explored. The design principles of converter transformer oil-paper insulation structures in alpine region was proposed. The principle was adjusted and optimized properly according to the operation temperature scope and withstood AC-DC proportion. The reliability of transformer operation was improved on the one hand, and the insulating medium can be rationally utilized for reducing the manufacturing cost of the transformer on the other hand.

  1. Research on breakdown characteristics of oil-paper insulation in compound field at different temperatures

    NASA Astrophysics Data System (ADS)

    Li, L.; Chen, M. Y.; Zhu, X. C.; Gao, Z. W.; Zhang, H. D.; Li, G. X.; Zhang, J.; Yu, C. L.; Feng, Y. M.

    2018-01-01

    The breakdown characteristics of oil-paper insulation in AC, DC and compound field at different temperatures were studied. The breakdown mechanism of oil-paper insulation at different temperatures and in AC and DC electric fields was analyzed. The breakdown characteristic mechanisms of the oil-paper insulation in the compound field at different temperatures were obtained: the dielectric strength of oil-paper compound insulation is changed gradually from dependence on oil dielectric strength to dependence on paperboard dielectric strength at low temperature. The dielectric strength of oil-paper compound insulation is always related to the oil dielectric strength closely at high temperature with decrease of AC content.

  2. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Johnson, R. Wayne; Askew, Ray; Bromstead, James; Weir, Bennett

    1991-01-01

    The results of the NPN bipolar transistor (BJT) (2N6023) breakdown voltage measurements were analyzed. Switching measurements were made on the NPN BJT, the insulated gate bipolar transistor (IGBT) (TA9796) and the N-channel metal oxide semiconductor field effect transistor (MOSFET) (RFH75N05E). Efforts were also made to build a H-bridge inverter. Also discussed are the plans that have been made to do life testing on the devices, to build an inductive switching test circuit and to build a dc/dc switched mode converter.

  3. Estimation of dc transport dynamics in strongly correlated (La,Pr,Ca)MnO{sub 3} film using an insulator-metal composite model for terahertz conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, T. V. A.; Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531; Hattori, A. N.

    2014-07-14

    Temperature-dependent conductivities at dc and terahertz (THz) frequency region (σ{sub THz}(ω,T)) were obtained for a strongly correlated (La{sub 0.275}Pr{sub 0.35}Ca{sub 0.375})MnO{sub 3} (LPCMO) film using THz time domain spectroscopy. A composite model that describes σ{sub THz}(ω,T) for LPCMO through the insulator-metal transition (IMT) was established by incorporating Austin-Mott model characterizing the hopping of localized electrons and Drude model explaining the behavior of free electrons. This model enables us to reliably investigate the dc transport dynamics from THz conductivity measurement, i.e., simultaneously evaluate the dc conductivity and the competing composition of metal and insulator phases through the IMT, reflecting the changesmore » in microscopic conductivity of these phases.« less

  4. Current-induced strong diamagnetism in the Mott insulator Ca2RuO4

    NASA Astrophysics Data System (ADS)

    Sow, Chanchal; Yonezawa, Shingo; Kitamura, Sota; Oka, Takashi; Kuroki, Kazuhiko; Nakamura, Fumihiko; Maeno, Yoshiteru

    2017-11-01

    Mott insulators can host a surprisingly diverse set of quantum phenomena when their frozen electrons are perturbed by various stimuli. Superconductivity, metal-insulator transition, and colossal magnetoresistance induced by element substitution, pressure, and magnetic field are prominent examples. Here we report strong diamagnetism in the Mott insulator calcium ruthenate (Ca2RuO4) induced by dc electric current. The application of a current density of merely 1 ampere per centimeter squared induces diamagnetism stronger than that in other nonsuperconducting materials. This change is coincident with changes in the transport properties as the system becomes semimetallic. These findings suggest that dc current may be a means to control the properties of materials in the vicinity of a Mott insulating transition.

  5. Thermal Simulation of a Silicon Carbide (SiC) Insulated-Gate Bipolar Transistor (IGBT) in Continuous Switching Mode

    DTIC Science & Technology

    operation in a DC-DC power converter switching at a frequency of up to 15 kHz. Calculations also estimated the effect of solder layers on temperature in the device....Thermal simulations were used to calculate temperatures in a silicon carbide (SiC) Insulated -Gate Bipolar Transistor (IGBT),simulating device

  6. Current-induced strong diamagnetism in the Mott insulator Ca2RuO4.

    PubMed

    Sow, Chanchal; Yonezawa, Shingo; Kitamura, Sota; Oka, Takashi; Kuroki, Kazuhiko; Nakamura, Fumihiko; Maeno, Yoshiteru

    2017-11-24

    Mott insulators can host a surprisingly diverse set of quantum phenomena when their frozen electrons are perturbed by various stimuli. Superconductivity, metal-insulator transition, and colossal magnetoresistance induced by element substitution, pressure, and magnetic field are prominent examples. Here we report strong diamagnetism in the Mott insulator calcium ruthenate (Ca 2 RuO 4 ) induced by dc electric current. The application of a current density of merely 1 ampere per centimeter squared induces diamagnetism stronger than that in other nonsuperconducting materials. This change is coincident with changes in the transport properties as the system becomes semimetallic. These findings suggest that dc current may be a means to control the properties of materials in the vicinity of a Mott insulating transition. Copyright © 2017, American Association for the Advancement of Science.

  7. Mechanical and electrical performance characterization of partial mock-up of the ITER PF6 coil tail

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Song, Y.; Wu, H.; Zhang, M.; Xie, Y.; Hu, B.; Liu, F.; Shen, G.; Wu, W.; Lu, K.; Wei, J.; Bilbao, M.; Peñate, J.; Readman, P.; Sborchia, C.; Valente, P.; Smith, K.

    2017-12-01

    International Thermonuclear Experimental Reactor (ITER) is a full superconducting coil tokamak. The tail is an important component of Poloidal Field (PF) coil, of which the main functions are to provide the electrical isolation and transfer the longitudinal load from the last turn to the last-but-one turn. The paper focuses on an optimized mechanical structure of PF6 coil tail, which is made up of two main parts. One was welded to the last turn and the other was welded to the last-but-one turn. Both of them were connected by the mechanical coupling. The electrical isolation between the two parts was maintained by a strap made of insulating composite. In addition, as the PF6 coil is operated under the cyclic electromagnetic load during the tokamak operation, the fatigue property of the tail should be assessed and qualified at low temperature. Moreover, taking into consideration the complexity of the insulation winding process which is performed in a confined space, the wrapping process of the insulation needs to be established. Meanwhile, the high voltage (HV) tests of the tail insulation, including the direct current (DC) and alternating current (AC) tests, need to be assessed before and after the fatigue test. In this paper, a fully bonded PF6 coil tail partial mock-up (not including the weld of the tail to the last conductor turn) was designed and manufactured by simulating the actual manufacturing processes. In addition, the fatigue tests on the sample were carried out at 77 K, and the results showed the sample had good and stable fatigue properties at cryogenic temperature. The HV tests before and after the fatigue test, also including the final 30 kV breakdown DC test after the fatigue test, were carried out. The test results satisfied the requirements of ITER and were discussed in depth. Finally, the sample was destructively inspected to validate the integrity of the insulation by mechanical cross sectioning, and no voids and cracks were observed. Therefore it can be verified from the test results that the designed PF6 coil tail has good comprehensive properties, which can be applied to the formal production of the PF6 coil.

  8. Suppression of surface charge accumulation on Al{sub 2}O{sub 3}-filled epoxy resin insulator under dc voltage by direct fluorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Boya; Zhang, Guixin, E-mail: guixin@mail.tsinghua.edu.cn; Li, Chuanyang

    2015-12-15

    Surface charge accumulation on insulators under high dc voltage is a major factor that may lead to the reduction of insulation levels in gas insulated devices. In this paper, disc insulators made of Al{sub 2}O{sub 3}-filled epoxy resin were surface fluorinated using a F{sub 2}/N{sub 2} mixture (12.5% F{sub 2}) at 50 °C and 0.1 MPa for different durations of 15 min, 30 min and 60 min. A dc voltage was applied to the insulator for 30 min and the charge density on its surface was measured by an electrostatic probe. The results revealed significant lower surface charge densities on themore » fluorinated insulators in comparison with the original one. Surface conductivity measurements indicated a higher surface conductivity by over three orders of magnitude after fluorination, which would allow the charges to transfer along the surface and thus may suppress their accumulation. Further, attenuated total reflection infrared analysis and surface morphology observations of the samples revealed that the introduction of fluoride groups altered the surface physicochemical properties. These structure changes, especially the physical defects reduced the depth of charge traps in the surface layer, which was verified by the measurement of energy distributions of the electron and hole traps based on the isothermal current theory. The results in this paper demonstrate that fluorination can be a promising and effective method to suppress surface charge accumulation on epoxy insulators in gas insulated devices.« less

  9. On the use of doped polyethylene as an insulating material for HVDC cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, M.S.

    1996-12-31

    The merits of HVDC cables with polymeric insulation are well recognized. However, the development of such cables is still hampered due to the problems resulting from the complicated dependence of the electrical conductivity of the polymer on the temperature and the dc electric field and the effects of space charge accumulation in this material. Different methods have been suggested to solve these problems yet none of these methods seem to give a conclusive solution. The present report provides, firstly a critical review of the previous works reported in the literature concerning the development of HVDC cables with polymeric insulation. Differentmore » aspects of those works are examined and discussed. Secondly, an account is given on an investigation using low density polyethylene (LDPE) doped with an inorganic additive as a candidate insulating material for HVDC cables. Preliminary results from measurements of dc breakdown strength and insulation resistivity of both the undoped and the doped materials are presented. It is shown that the incorporation of an inorganic additive into LDPE has improved the performance of the doped material under polarity reversal dc conditions at room temperature. Moreover, the dependency of the insulation resistivity on temperature for the doped material appears to be beneficially modified.« less

  10. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing techniquemore » commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (~11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Here, tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.« less

  11. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    DOE PAGES

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; ...

    2017-09-11

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing techniquemore » commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (~11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Here, tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.« less

  12. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing technique commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  13. The LSLE echocardiograph - Commercial hardware aboard Spacelab. [Life Sciences Laboratory Equipment

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1983-01-01

    The Life Sciences Laboratory Equipment Echocardiograph, a commercial 77020AC Ultrasound Imaging System modified to meet NASA's spacecraft standards, is described. The assembly consists of four models: display and control, scanner, scan converter, and physioamplifiers. Four separate processors communicate over an IEE-488 bus, and the system has more than 6000 individual components on 35 printed circuit cards. Three levels of self test are provided: a short test during power up, a basic test initiated by a front panel switch, and interactive tests for specific routines. Default mode operation further enhances reliability. Modifications of the original system include the replacement of ac power supplies with dc to dc converters, a slide-out keyboard (to prevent accidental operation), Teflon insulated wire, and additional shielding for the ultrasound transducer cable.

  14. DC conductivity of a suspension of insulating particles with internal rotation

    NASA Astrophysics Data System (ADS)

    Pannacci, N.; Lemaire, E.; Lobry, L.

    2009-04-01

    We analyse the consequences of Quincke rotation on the conductivity of a suspension. Quincke rotation refers to the spontaneous rotation of insulating particles dispersed in a slightly conducting liquid and subject to a high DC electric field: above a critical field, each particle rotates continuously around itself with an axis pointing in any direction perpendicular to the DC field. When the suspension is subject to an electric field lower than the threshold one, the presence of insulating particles in the host liquid decreases the bulk conductivity since the particles form obstacles to ion migration. But for electric fields higher than the critical one, the particles rotate and facilitate ion migration: the effective conductivity of the suspension is increased. We provide a theoretical analysis of the impact of Quincke rotation on the apparent conductivity of a suspension and we present experimental results obtained with a suspension of PMMA particles dispersed in weakly conducting liquids.

  15. Transitioning Streaming to Trapping in DC Insulator-based Dielectrophoresis for Biomolecules

    PubMed Central

    Camacho-Alanis, Fernanda; Gan, Lin; Ros, Alexandra

    2012-01-01

    Exploiting dielectrophoresis (DEP) to concentrate and separate biomolecules has recently shown large potential as a microscale bioanalytical tool. Such efforts however require tailored devices and knowledge of all interplaying transport mechanisms competing with dielectrophoresis (DEP). Specifically, a strong DEP contribution to the overall transport mechanism is necessary to exploit DEP of biomolecules for analytical applications such as separation and fractionation. Here, we present improved microfluidic devices combining optical lithography and focused ion beam milling (FIBM) for the manipulation of DNA and proteins using insulator-based dielectrophoresis (iDEP) and direct current (DC) electric fields. Experiments were performed on an elastomer platform forming the iDEP microfluidic device with integrated nanoposts and nanopost arrays. Microscale and nanoscale iDEP was studied for λ-DNA (48.5 kbp) and the protein bovine serum albumin (BSA). Numerical simulations were adapted to the various tested geometries revealing excellent qualitative agreement with experimental observations for streaming and trapping DEP. Both the experimental and simulation results indicate that DC iDEP trapping for λ-DNA occurs with tailored nanoposts fabricated via FIBM. Moreover, streaming iDEP concentration of BSA is improved with integrated nanopost arrays by a factor of 45 compared to microfabricated arrays. PMID:23441049

  16. New Insulation Constructions for Aerospace Wiring Applications. Volume 1. Testing and Evaluation

    DTIC Science & Technology

    1991-06-01

    28 S.3.2 CORONA INCEPTION AND EXTINCIION VOLTAGES 5 - 33 5.3.2.. AC CORONA INCEPTION AND EXTINCTION VOLTAGES 5...... - 33 5.3.2.2 DC CORONA ...SETUP ....... .. 5 - 27 5.10 DIELECTRIC CONSTANT TEST RESULTS .......... .. 5 - 32 5.11 AC CORONA INCEPTION AND EXTINCTION TEST, 22 AWG, 8.6 MIL WALL...AIRFRAME WIRE ... .......... 5 - 39 5.12 AC CORONA INCEPTION AND EXTINCTION TEST, 22 AWG, 5.8 MIL WALL, HOOK UP WIRE .... ........... 5 - 40 5.13 AC

  17. Arcing on dc power systems

    NASA Technical Reports Server (NTRS)

    Moores, Greg; Heller, R. P.; Sutanto, Surja; Dugal-Whitehead, Norma R.

    1992-01-01

    Unexpected and undesirable arcing on dc power systems can produce hazardous situations aboard space flights. The potential for fire and shock might exist in a situation where there is a broken conductor, a loose power connection, or a break in the insulation of the power cable. Such arcing has been found to be reproducible in a laboratory environment. Arcing tests show that the phenomena can last for several seconds and yet be undetectable by present protection schemes used in classical power relaying and remote power controller applications. This paper characterizes the arcing phenomena and suggests future research that is needed.

  18. Optical fiber sensor of partial discharges in High Voltage DC experiments

    NASA Astrophysics Data System (ADS)

    Búa-Núñez, I.; Azcárraga-Ramos, C. G.; Posada-Román, J. E.; Garcia-Souto, J. A.

    2014-05-01

    A setup simulating High Voltage DC (HVDC) transformers barriers was developed to demonstrate the effectiveness of an optical fiber (OF) sensor in detecting partial discharges (PD) under these peculiar conditions. Different PD detection techniques were compared: electrical methods, and acoustic methods. Standard piezoelectric sensors (R15i-AST) and the above mentioned OF sensors were used for acoustic detection. The OF sensor was able to detect PD acoustically with a sensitivity better than the other detection methods. The multichannel instrumentation system was tested in real HVDC conditions with the aim of analyzing the behavior of the insulation (mineral oil/pressboard).

  19. Workshop on multifactor aging mechanisms and models

    NASA Astrophysics Data System (ADS)

    Agarwal, V. K.

    1992-10-01

    There have been considerable efforts to understand the aging and failure mechanisms of insulation in electrical systems. However, progress has been slow because of the complex nature of the subject particularly when dealing with multiple stresses e.g. electrical, thermal, mechanical, radiation, humidity and other environmental factors. When an insulating material is exposed to just one stress factor e.g. electric field, one must devise test(s) which are not only economically efficient and practical but which take into account the nature of electric field (ac, dc and pulsed), duration and level or field strength, and field configurations. Any additional stress factor(s) make the matrix of measurements and the understanding of resulting degradation processes more complex, time consuming and expensive.

  20. Insulation Technology in Dry Air and Vacuum for a 72kV Low Pressured Dry Air Insulated Switchgear

    NASA Astrophysics Data System (ADS)

    Yoshida, Tadahiro; Koga, Hiromi; Harada, Takakazu; Miki, Shinichi; Arioka, Masahiro; Sato, Shinji; Yoshida, Satoru; Inoue, Naoaki; Maruyama, Akihiko; Takeuchi, Toshie

    A new 72kV rated low pressured dry air insulated switchgear applying electromagnetic actuation and function that supports CBM has been developed. First, dielectric characteristics in dry air under lightning impulse application has been investigated at bare and insulator covered electrodes. Dependence of the breakdown electric field strength on the effective area has been clarified to apply the configuration design of the insulation mold for the vacuum interrupter. In addition, moisture volume dependence on surface resistance has been clarified to decide moisture volume in gas pressure tank. Next, a new vacuum circuit breaker (VCB) has been designed. To keep dimensions from former 72kV SF6 gas insulated switchgear, distance between contacts in vacuum interrupter is needed to be shorter than that of former switchgear. Voltage withstand capability between electrodes practically designed for vacuum interrupter has been investigated under dc voltage application simulated the small capacitive current breaking test. Gap configuration including contacts and slits has been optimized and distance has been shortened 11% from former switchgear. As a result, the new low pressured dry air insulated switchgear has been designed comparably in outer size to former SF6 gas insulated switchgear. Using dry air as an insulation medium with low pressure has been able to reduce the environmental burden.

  1. Application of Arrester Simulation Device in Training

    NASA Astrophysics Data System (ADS)

    Baoquan, Zhang; Ziqi, Chai; Genghua, Liu; Wei, Gao; Kaiyue, Wu

    2017-12-01

    Combining with the arrester simulation device put into use successfully, this paper introduces the application of arrester test in the insulation resistance measurement, counter test, Leakage current test under DC 1mA voltage and leakage current test under 0.75U1mA. By comparing with the existing training, this paper summarizes the arrester simulation device’s outstanding advantages including real time monitoring, multi-type fault data analysis and acousto-optic simulation. It effectively solves the contradiction between authenticity and safety in the existing test training, and provides a reference for further training.

  2. Multiport power router and its impact on future smart grids

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shichijo, Daiki; Wada, Keiji; Iwatsuki, Katsumi

    2016-07-01

    We propose a Y configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y configuration power router controls the direction and magnitude of power flows between three ports regardless of DC or AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y configuration power router. The electrical insulation between three ports assures safety and reliability for power network systems. We then tested the operation of power flow control. The experimental results revealed that our methodology based on a governing equation was appropriate to control the power flow of the three-way DC/DC converter. In addition, a distribution network composed of power routers had the ability to easily enable interchanges of electrical power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flows in a coordinated manner and their impact on resilient power grid systems.

  3. Labeling and advertising of home insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This staff report, prepared by the F.T.C.'s Bureau of Consumer Protection for Commission review, includes recommendations as to the final form of a trade regulation rule relating to the labeling and advertising of home insulation. Because of marketing abuses which accompanied the rising demand for home insulation, there has been broad support for a rule requiring information disclosures to help purchasers of home insulation to make an informed decision. The Commission, to provide such rule as quickly as possible, undertook its rulemaking proceeding under its new expedited rulemaking procedure. The rule was proposed on November 18, 1977, and, following amore » two-month period for written comments, four weeks of hearings were held in Washington, D.C. in February 1978. The record, contributed to by a variety of interests, shows that consumers do not know how to shop for home insulation. The staff-recommended rule, among other things, would require that insulation be tested and R-values (a measure of insulation's ability to retain heat) disclosed on labels and in advertising. To facilitate comparison shopping, the industry would also be required to furnish consumers with fact sheets describing, on a product-to-product basis, factors that can reduce the R-value of insulation.« less

  4. High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun

    DOE PAGES

    Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.

    2016-02-01

    Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less

  5. High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.

    Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less

  6. Experiment study on an inductive superconducting fault current limiter using no-insulation coils

    NASA Astrophysics Data System (ADS)

    Qiu, D.; Li, Z. Y.; Gu, F.; Huang, Z.; Zhao, A.; Hu, D.; Wei, B. G.; Huang, H.; Hong, Z.; Ryu, K.; Jin, Z.

    2018-03-01

    No-insulation (NI) coil made of 2 G high temperature superconducting (HTS) tapes has been widely used in DC magnet due to its excellent performance of engineering current density, thermal stability and mechanical strength. However, there are few AC power device using NI coil at present. In this paper, the NI coil is firstly applied into inductive superconducting fault current limiter (iSFCL). A two-winding structure air-core iSFCL prototype was fabricated, composed of a primary copper winding and a secondary no-insulation winding using 2 G HTS coated conductors. Firstly, in order to testify the feasibility to use NI coil as the secondary winding, the impedance variation of the prototype at different currents and different cycles was tested. The result shows that the impedance increases rapidly with the current rises. Then the iSFCL prototype was tested in a 40 V rms/ 3.3 kA peak short circuit experiment platform, both of the fault current limiting and recovery property of the iSFCL are discussed.

  7. Insulating Material Requirements for Low-Power-Consumption Electrowetting-Based Liquid Lenses.

    PubMed

    Chevalliot, Stéphanie; Malet, Géraldine; Keppner, Herbert; Berge, Bruno

    2016-12-27

    Insulating materials from the parylene family were investigated for use in low-power-consumption electrowetting-based liquid lenses. It was shown that for DC-driven operations, parylene C leads to hysteresis, regardless of the presence of a hydrophobic top coat. This hysteresis was attributed to the non-negligible time needed to reach a stable contact angle, due to charge injection and finite conductivity of the material. It was further demonstrated that by using materials with better insulating properties, such as parylene HT and VT4, satisfactory results can be obtained under DC voltages, reaching a low contact angle hysteresis of below 0.2°. We propose a simplified model that takes into account the injection of charges from both sides of the insulating material (the liquid side and the electrode side), showing that electrowetting response can be both increased and decreased.

  8. A 10 kW dc-dc converter using IGBTs with active snubbers. [Insulated Gate Bipolar Transistor

    NASA Technical Reports Server (NTRS)

    Masserant, Brian J.; Shriver, Jeffrey L.; Stuart, Thomas A.

    1993-01-01

    This full bridge dc-dc converter employs zero voltage switching (ZVS) on one leg and zero current switching (ZCS) on the other. This technique produces exceptionally low IGBT switching losses through the use of an active snubber that recycles energy back to the source. Experimental results are presented for a 10 kW, 20 kHz converter.

  9. Rectenna that converts infrared radiation to electrical energy

    DOEpatents

    Davids, Paul; Peters, David W.

    2016-09-06

    Technologies pertaining to converting infrared (IR) radiation to DC energy are described herein. In a general embodiment, a rectenna comprises a conductive layer. A thin insulator layer is formed on the conductive layer, and a nanoantenna is formed on the thin insulator layer. The thin insulator layer acts as a tunnel junction of a tunnel diode.

  10. USAF/WL robust 300 C wire insulation system program status

    NASA Technical Reports Server (NTRS)

    Wong, Wing

    1995-01-01

    The objective of this program is to identify, develop, and demonstrate an optimum wire insulation system capable of continuous operation at 300 C which possesses a combination of superior electrical (AC or DC), mechanical, and physical properties over Kapton derived insulations described in MIL-W-81381 and those hybrid materials commonly known as TKT constructions.

  11. USAF/WL robust 300 C wire insulation system program status

    NASA Astrophysics Data System (ADS)

    Wong, Wing

    1995-11-01

    The objective of this program is to identify, develop, and demonstrate an optimum wire insulation system capable of continuous operation at 300 C which possesses a combination of superior electrical (AC or DC), mechanical, and physical properties over Kapton derived insulations described in MIL-W-81381 and those hybrid materials commonly known as TKT constructions.

  12. Synchronous γ (Co60) photons and thermal processing induced insulator metal transition in amorphous chalcogenide As4Se3Te3 composition

    NASA Astrophysics Data System (ADS)

    El-Sayed, S. A.; Morsy, M. A.

    2018-05-01

    Amorphous chalcogenide composition AS4Se3Te3 is prepared by conventional quenching technique. The separate annealing or γ quanta irradiation not effect on the dc conductivity properties of the prepared composition. When the prepared samples are subjected to simultaneous annealing at temperature 413 K and γ quanta irradiation the dc conductivity increases. The dark dc conductivity increases by increasing the time of exposure to γ irradiation. At irradiation dose 1.47 × 104 Gy the dc conductivity starts to have metallic like conductivity character. These samples could be used as high temperature γ quanta dosimeter. By applying scaling theory on the samples irradiated with different dose of γ irradiation the critical exponents are determined and found to be < 2. The dark dc conductivity continuously decreases to 0 as temperature tends to zero. The steric value is low in the insulator side of conductivity, but high and almost saturated in the metallic side of conductivity.

  13. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOEpatents

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  14. TQUID Magnetometer and Artificial Neural Circuitry Based on a Topological Kondo Insulator

    DTIC Science & Technology

    2016-05-01

    phenomena in this surface-bulk system. Sufficient Joule heating , induced by an external DC current, can heat the bulk into a less insulating state, and...are the surface and bulk resistances with insulating gap Δ; H = H0(/0)3 and are the heat capacity dominated by phonons and...0, while Δ is the energy gap in the insulating bulk; is the temperature independent heat transfer rate trough external leads, which plays the

  15. The ac and dc performance of polymeric insulating materials under accelerated aging in a fog chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorur, R.S.; Cherney, E.A.; Hackam, R.

    1988-10-01

    The paper presents the results of the dc performance of polymeric insulating materials in a fog chamber. The materials evaluated in fog produced from low (250 ..mu..S/cm) and high (1000 ..mu..S/cm) conductivity water include cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of either alumina trihydrate (ATH) or silica fillers, or both. Comparison is made of material performance obtained with ac which was reported in an earlier study. In both low and high conductivity fog, the time to failure with ac and +dc was very similar, but amore » reduction by a factor of about four was observed in the time to failure with -dc. For both ac and dc, silicone rubber performed better than EPDM samples in low conductivity fog, while the order of performance was reversed in high conductivity fog. A theoretical model to determine the effect of dry band discharges on material is presented. Good agreement of the predicted behavior of materials with the experimental findings is shown.« less

  16. Robust 300 C wire insulation system

    NASA Technical Reports Server (NTRS)

    Nairus, John G.

    1994-01-01

    The objective of this program is to identify, develop, and demonstrate an optimum wire insulation system that is capable of continuous operation at 300 C. The system is to possess a combination of superior electrical (AC or DC), mechanical, and physical properties over the KAPTON (trademark) derived insulations described in MIL-W-81381 and those hybrid constructions identified in Air Force contract F33615-89-C-5606, commonly known as TKT constructions.

  17. DC current induced metal-insulator transition in epitaxial Sm{sub 0.6}Nd{sub 0.4}NiO{sub 3}/LaAlO{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haoliang; CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026; Luo, Zhenlin, E-mail: zlluo@ustc.edu.cn

    2014-05-15

    The metal-insulator transition (MIT) in strong correlated electron materials can be induced by external perturbation in forms of thermal, electrical, optical, or magnetic fields. We report on the DC current induced MIT in epitaxial Sm{sub 0.6}Nd{sub 0.4}NiO{sub 3} (SNNO) thin film deposited by pulsed laser deposition on (001)-LaAlO{sub 3} substrate. It was found that the MIT in SNNO film not only can be triggered by thermal, but also can be induced by DC current. The T{sub MI} of SNNO film decreases from 282 K to 200 K with the DC current density increasing from 0.003 × 10{sup 9} A•m{sup −2}more » to 4.9 × 10{sup 9} A•m{sup −2}. Based on the resistivity curves measured at different temperatures, the MIT phase diagram has been successfully constructed.« less

  18. Lightning vulnerability of fiber-optic cables.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Leonard E.; Caldwell, Michele

    2008-06-01

    One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.« less

  19. Size effect in Quincke rotation: a numerical study.

    PubMed

    Peters, F; Lobry, L; Khayari, A; Lemaire, E

    2009-05-21

    This paper deals with the Quincke rotation of small insulating particles. This dc electrorotation of insulating objects immersed in a slightly conducting liquid is usually explained by looking at the action of the free charges present in the liquid. Under the effect of the dc electric field, the charges accumulate at the surface of the insulating particle which, in turn, acquires a dipole moment in the direction opposite to that of the field and begins to rotate in order to flip its dipole moment. In the classical Quincke model, the charge distribution around the rotor is supposed to be purely superficial. A consequence of this assumption is that the angular velocity does not depend on the rotor size. Nevertheless, this hypothesis holds only if the rotor size is much larger than the characteristic ion layer thickness around the particle. In the opposite case, we show thanks to numerical calculations that the bulk charge distribution has to be accounted for to predict the electromechanical behavior of the rotor. We consider the case of an infinite insulating cylinder whose axis is perpendicular to the dc electric field. We use the finite element method to solve the conservation equations for the positive and the negative ions coupled with Navier-Stokes and Poisson equations. Doing so, we compute the bulk charge distribution and the velocity field in the liquid surrounding the cylinder. For sufficiently small cylinders, we show that the smaller the cylinder is, the smaller its angular velocity is when submitted to a dc electric field. This size effect is shown to originate both in ion diffusion and electromigration in the charge layer. At last, we propose a simple analytical model which allows calculating the angular velocity of the rotor when electromigration is present but weak and diffusion can be neglected.

  20. Size effect in Quincke rotation: A numerical study

    NASA Astrophysics Data System (ADS)

    Peters, F.; Lobry, L.; Khayari, A.; Lemaire, E.

    2009-05-01

    This paper deals with the Quincke rotation of small insulating particles. This dc electrorotation of insulating objects immersed in a slightly conducting liquid is usually explained by looking at the action of the free charges present in the liquid. Under the effect of the dc electric field, the charges accumulate at the surface of the insulating particle which, in turn, acquires a dipole moment in the direction opposite to that of the field and begins to rotate in order to flip its dipole moment. In the classical Quincke model, the charge distribution around the rotor is supposed to be purely superficial. A consequence of this assumption is that the angular velocity does not depend on the rotor size. Nevertheless, this hypothesis holds only if the rotor size is much larger than the characteristic ion layer thickness around the particle. In the opposite case, we show thanks to numerical calculations that the bulk charge distribution has to be accounted for to predict the electromechanical behavior of the rotor. We consider the case of an infinite insulating cylinder whose axis is perpendicular to the dc electric field. We use the finite element method to solve the conservation equations for the positive and the negative ions coupled with Navier-Stokes and Poisson equations. Doing so, we compute the bulk charge distribution and the velocity field in the liquid surrounding the cylinder. For sufficiently small cylinders, we show that the smaller the cylinder is, the smaller its angular velocity is when submitted to a dc electric field. This size effect is shown to originate both in ion diffusion and electromigration in the charge layer. At last, we propose a simple analytical model which allows calculating the angular velocity of the rotor when electromigration is present but weak and diffusion can be neglected.

  1. High-density Two-Dimensional Small Polaron Gas in a Delta-Doped Mott Insulator

    PubMed Central

    Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler A.; Zhang, Jack Y.; Stemmer, Susanne; Emin, David; Allen, S. James

    2013-01-01

    Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical point Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)+1 plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~7 × 1014 cm−2. PMID:24257578

  2. Field-Tuned Superconductor-Insulator Transition with and without Current Bias.

    PubMed

    Bielejec, E; Wu, Wenhao

    2002-05-20

    The magnetic-field-tuned superconductor-insulator transition has been studied in ultrathin beryllium films quench condensed near 20 K. In the zero-current limit, a finite-size scaling analysis yields the scaling exponent product nuz = 1.35+/-0.10 and a critical sheet resistance, R(c), of about 1.2R(Q), with R(Q) = h/4e(2). However, in the presence of dc bias currents that are smaller than the zero-field critical currents, nuz becomes 0.75+/-0.10. This new set of exponents suggests that the field-tuned transitions with and without a dc bias current belong to different universality classes.

  3. The DC and AC insulating properties of magnetic fluids based on transformer oil

    NASA Astrophysics Data System (ADS)

    Tomo, L.; Marton, K.; Herchl, F.; Kopanský, P.; Potoová, I.; Koneracká, M.; Timko, M.

    2006-01-01

    The AC-dielectric breakdown was investigated in magnetic fluids based on transformer oil TECHNOL US 4000 for two orientations of external magnetic field (B E and B E) and in B = 0. The found results were compared with those obtained formerly for the DC-dielectric breakdown. The observations of the time development of the AC-dielectric breakdown showed the presence of partial discharges long before the complete breakdown occurrence, while for DC-dielectric breakdown a complete breakdown of the gap next to the onset of a measurable ionization was characteristic. The comparison of the AC-dielectric breakdown strengths of pure transformer oil and transformer-oil-based magnetic fluid showed better dielectric properties of magnetic fluid in external magnetic field and comparable, but not worse, in B = 0. Regarding to the better heat transfer, provided by magnetic fluids, they could be used in power transformers as insulating fluids.

  4. Metal-oxide-metal point contact junction detectors. [detection mechanism and mechanical stability

    NASA Technical Reports Server (NTRS)

    Baird, J.; Havemann, R. H.; Fults, R. D.

    1973-01-01

    The detection mechanism(s) and design of a mechanically stable metal-oxide-metal point contact junction detector are considered. A prototype for a mechanically stable device has been constructed and tested. A technique has been developed which accurately predicts microwave video detector and heterodyne mixer SIM (semiconductor-insulator-metal) diode performance from low dc frequency volt-ampere curves. The difference in contact potential between the two metals and geometrically induced rectification constitute the detection mechanisms.

  5. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  6. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  7. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  8. Optimal design of DC-based polarization beam splitter in lithium niobate on insulator

    NASA Astrophysics Data System (ADS)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wang, Junbao; Wu, Chonghao; Li, Xiao; Zhang, Shicheng

    2017-08-01

    We propose a DC-based polarization beam splitter (PBS) in lithium niobate on insulator (LNOI). Utilizing the high birefringence property of Lithium Niobate (LiNbO3, LN), the device is achieved by simple structure in a short length. With the use of beam propagation method (BPM), the simulation results show that the device has a good performance for the separation of TE and TM polarizations with a high extinction ratio (about 35 dB). The simulated fabrication tolerance for the variation of the waveguide width is about 100 nm and the bandwidth is about 65 nm when the extinction ratio is higher than 10 dB.

  9. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.

    PubMed

    Sridharan, Sriram; Zhu, Junjie; Hu, Guoqing; Xuan, Xiangchun

    2011-09-01

    Insulator-based dielectrophoresis (iDEP) is an emerging technology that has been successfully used to manipulate a variety of particles in microfluidic devices. However, due to the locally amplified electric field around the in-channel insulator, Joule heating often becomes an unavoidable issue that may disturb the electroosmotic flow and affect the particle motion. This work presents the first experimental study of Joule heating effects on electroosmotic flow in a typical iDEP device, e.g., a constriction microchannel, under DC-biased AC voltages. A numerical model is also developed to simulate the observed flow pattern by solving the coupled electric, energy, and fluid equations in a simplified two-dimensional geometry. It is observed that depending on the magnitude of the DC voltage, a pair of counter-rotating fluid circulations can occur at either the downstream end alone or each end of the channel constriction. Moreover, the pair at the downstream end appears larger in size than that at the upstream end due to DC electroosmotic flow. These fluid circulations, which are reasonably simulated by the numerical model, form as a result of the action of the electric field on Joule heating-induced fluid inhomogeneities in the constriction region. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of impurity resonant states on optical and thermoelectric properties on the surface of a topological insulator.

    PubMed

    Zhong, Min; Li, Shuai; Duan, Hou-Jian; Hu, Liang-Bin; Yang, Mou; Wang, Rui-Qiang

    2017-06-21

    We investigate the thermoelectric effect on a topological insulator surface with particular interest in impurity-induced resonant states. To clarify the role of the resonant states, we calculate the dc and ac conductivities and the thermoelectric coefficients along the longitudinal direction within the full Born approximation. It is found that at low temperatures, the impurity resonant state with strong energy de-pendence can lead to a zero-energy peak in the dc conductivity, whose height is sensitively dependent on the strength of scattering potential, and even can reverse the sign of the thermopower, implying the switching from n- to p-type carriers. Also, we exhibit the thermoelectric signatures for the filling process of a magnetic band gap by the resonant state. We further study the impurity effect on the dynamic optical conductivity, and find that the resonant state also generates an optical conductivity peak at the absorption edge for the interband transition. These results provide new perspectives for understanding the doping effect on topological insulator materials.

  11. Joule Heating-Induced Metal-Insulator Transition in Epitaxial VO2/TiO2 Devices.

    PubMed

    Li, Dasheng; Sharma, Abhishek A; Gala, Darshil K; Shukla, Nikhil; Paik, Hanjong; Datta, Suman; Schlom, Darrell G; Bain, James A; Skowronski, Marek

    2016-05-25

    DC and pulse voltage-induced metal-insulator transition (MIT) in epitaxial VO2 two terminal devices were measured at various stage temperatures. The power needed to switch the device to the ON-state decrease linearly with increasing stage temperature, which can be explained by the Joule heating effect. During transient voltage induced MIT measurement, the incubation time varied across 6 orders of magnitude. Both DC I-V characteristic and incubation times calculated from the electrothermal simulations show good agreement with measured values, indicating Joule heating effect is the cause of MIT with no evidence of electronic effects. The width of the metallic filament in the ON-state of the device was extracted and simulated within the thermal model.

  12. Transmission line design for the lunar environment

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.

    1990-01-01

    How the mass, operating temperature, and efficiency of a transmission line operating on the moon are affected by its operating parameters, the lunar environment, and the choice of materials is examined. The key transmission line parameters which have an effect on mass, operating temperature, and efficiency are voltage, power loss, and waveform. The choice of waveform for transmission will be influenced by the waveform of the source and load, and therefore an analysis of both DC and AC transmission is necessary for a complete understanding of lunar power transmission. The data presented are for the DC case only; however, the discussion of the environmental effects and of material selection is pertinent to both AC and DC transmission. The operating voltage is shown to be a key parameter in transmission line design. The role efficiency plays in transmission line design is also examined. The analyses include above- and below-the-surface operation for both a vacuum-insulated, two-wire, transmission line, and a solid-dielectric-insulated, coaxial, transmission line.

  13. The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun

    2018-06-01

    The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.

  14. Hybrid insulation coordination and optimisation for 1 MV operation of pulsed electron accelerator KALI-30GW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthil, K.; Mitra, S.; Sandeep, S., E-mail: sentilk@barc.gov.in

    In a multi-gigawatt pulsed power system like KALI-30 GW, insulation coordination is required to achieve high voltages ranging from 0.3 MV to 1 MV. At the same time optimisation of the insulation parameters is required to minimize the inductance of the system, so that nanoseconds output can be achieved. The KALI-30GW pulse power system utilizes a combination of Perspex, delrin, epoxy, transformer oil, nitrogen/SF{sub 6} gas and vacuum insulation at its various stages in compressing DC high voltage to a nanoseconds pulse. This paper describes the operation and performance of the system from 400 kV to 1030 kV output voltagemore » pulse and insulation parameters utilized for obtaining peak 1 MV output. (author)« less

  15. Electrochemical polishing of notches

    DOEpatents

    Kephart, A.R.; Alberts, A.H.

    1989-02-21

    An apparatus and method are disclosed for the selective electrochemical polishing of a lateral tip of a deep longitudinal notch in a work piece used to test crack initiation properties of materials. A DC power source is connected to the work piece and to an electrode disposed laterally along the distal end of an insulated body which is inserted in the longitudinal notch. The electrode and distal end of the body are disposed along the tip of the notch, but are spaced from the notch so as to provide a lateral passage for an electrolyte. The electrolyte is circulated through the passage so that the electrolyte only contacts the work piece adjacent the passage. Conveniently, the electrolyte is circulated by use of an inlet tube and an outlet tube provided at opposite ends of the passage. These tubes are preferably detachably located adjacent the ends of the passage and suitable seals are provided. A holding device including arms to which the tubes are attached is conveniently used to rapidly and easily locate the test specimen with the passage aligned with the tubes. The electrode is preferably a wire which is located in grooves along the distal end of the insulated body and up one side of the body or a plastic sheath insulated thin metal strip. 4 figs.

  16. Electrochemical polishing of notches

    DOEpatents

    Kephart, Alan R.; Alberts, Alfred H.

    1989-01-01

    An apparatus and method are disclosed for the selective electrochemical polishing of a lateral tip of a deep longitudinal notch in a work piece used to test crack initiation properties of materials. A DC power source is connected to the work piece and to an electrode disposed laterally along the distal end of an insulated body which is inserted in the longitudinal notch. The electrode and distal end of the body are disposed along the tip of the notch, but are spaced from the notch so as to provide a lateral passage for an electrolyte. The electrolyte is circulated through the passage so that the electrolyte only contacts the work piece adjacent the passage. Conveniently, the electrolyte is circulated by use of an inlet tube and an outlet tube provided at opposite ends of the passage. These tubes are preferably detachably located adjacent the ends of the passage and suitable seals are provided. A holding device including arms to which the tubes are attached is conveniently used to rapidly and easily locate the test specimen with the passage aligned with the tubes. The electrode is preferably a wire which is located in grooves along the distal end of the insulated body and up one side of the body or a plastic sheath insulated thin metal strip.

  17. The experimental study of the DC dielectric breakdown strength in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Kopčanský, P.; Tomčo, L.; Marton, K.; Koneracká, M.; Potočová, I.; Timko, M.

    2004-05-01

    Magnetic fluids have been studied for use as a high-voltage insulation. High-voltage measurements on magnetic fluids based on transformer oil, as a function of volume concentrations of magnetite particles and applied magnetic field, showed the increase of the DC dielectric breakdown strength opposite transformer oil, if the saturation magnetization of magnetic fluid is up to 4 mT approximately.

  18. A Process to Reduce DC Ingot Butt Curl and Swell

    NASA Astrophysics Data System (ADS)

    Yu, Ho

    1980-11-01

    A simple and effective process to reduce DC ingot butt curl and swell has been developed in the Ingot Casting Division of Alcoa Technical Center.1 In the process, carbon dioxide gas is dissolved under high pressure into the ingot cooling water upstream of the mold during the first several inches of the ingot cast. As the cooling water exits from the mold, the dissolved gas evolves as micron-size bubbles, forming a temporary effective insulation layer on the ingot surface. This reduces thermal stress in the ingot butt. An insulation pad covering about 60% of the bottom block is used in conjunction with the carbon dioxide injection when maximum butt swell reduction is desired. The process, implemented in four Alcoa ingot plants, has proven extremely successful.

  19. Josephson junctions of candidate topological crystalline insulator Pb1-xSnxTe

    NASA Astrophysics Data System (ADS)

    Snyder, Rodney; Trimble, Christie; Taylor, Patrick; Williams, James

    Incorporating superconducting ordering through proximity effects in topological states of matter offers potential routes to novel excitations with properties beyond that of simple electrons. Topological crystalline insulators TCI offer alternative routes to topological states of matter with surface states of distinct character to those in more common 3d topological insulators. We report on the fabrication Josephson junctions using MBE-grown candidate TCI material Pb-doped SnTe as weak links and characterize the departures from conventional junctions using combined DC and RF techniques. Opportunities to create junction weak links from materials possessing electronic interactions will be discussed.

  20. Pulsed-DC DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Duong, Alan; Corke, Thomas; Thomas, Flint

    2017-11-01

    A power system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. A key difference is that the pulsed-DC actuator utilizes a DC voltage source to drive the actuator instead of an AC voltage input. The DC source is supplied to both electrodes. The exposed electrode remains constant in time while the encapsulated electrode is periodically grounded for short instances then is allowed to rise to the source DC level. Further investigation of the pulsed-DC plasma actuator was conducted. Time-resolved velocity measurements were done to characterize the induced velocity field generated by the pulsed-DC plasma actuator. A model of the pulsed-DC plasma actuator is developed in LTspice for further study. The work presented are intended in developing a model to be used in CFD flow control simulations. NASA SBIR NNX14CC12C.

  1. Tunnel Magneto Resistance of Fe/Insulator/Fe

    NASA Astrophysics Data System (ADS)

    Aryee, Dennis; Seifu, Dereje

    Tri-layer thin films of Fe/Insulator/Fe were synthesized using magnetron DC/ RF sputtering with MgO insulator and Bi2Te3 topological insulators as middle buffer layer. The multi-layered samples thus produced were studied using in-house built magneto-optic Kerr effect (MOKE) instrument, vibrating sample magnetometer (VSM), torque magnetometer (TMM), AFM, MFM, and magneto-resistance (MR). This system, that is Fe/Insulator/Fe on MgO(100) substrate, is a well-known tunnel magneto resistance (TMR) structure often used in magnetic tunnel junction (MTJ) devices. TMR effect is a method by which MTJs are used in developing magneto-resistive random access memory (MRAM), magnetic sensors, and novel logic devices. The main purpose behind this research is to measure the magnetic anisotropy of Fe/Insulator /Fe structure and correlate it to magneto-resistance. In this presentation, we will present results from MOKE, VSM, TMM, AFM, MFM, and MR studies of Fe/Insulator/Fe on MgO(100). We would like to acknowledge support by NSF-MRI-DMR-1337339.

  2. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  3. Dielectric Breakdown Strength of Thermally Sprayed Ceramic Coatings: Effects of Different Test Arrangements

    NASA Astrophysics Data System (ADS)

    Niittymäki, Minna; Lahti, Kari; Suhonen, Tomi; Metsäjoki, Jarkko

    2015-02-01

    Dielectric properties (e.g., DC resistivity and dielectric breakdown strength) of insulating thermally sprayed ceramic coatings differ depending on the form of electrical stress, ambient conditions, and aging of the coating, however, the test arrangements may also have a remarkable effect on the properties. In this paper, the breakdown strength of high velocity oxygen fuel-sprayed alumina coating was studied using six different test arrangements at room conditions in order to study the effects of different test and electrode arrangements on the breakdown behavior. In general, it was shown that test arrangements have a considerable influence on the results. Based on the results, the recommended testing method is to use embedded electrodes between the voltage electrode and the coating at least in DC tests to ensure a good contact with the surface. With and without embedded electrodes, the DBS was 31.7 and 41.8 V/µm, respectively. Under AC excitation, a rather good contact with the sample surface is, anyhow, in most cases acquired by a rather high partial discharge activity and no embedded electrodes are necessarily needed (DBS 29.2 V/µm). However, immersion of the sample in oil should strongly be avoided because the oil penetrates quickly into the coating affecting the DBS (81.2 V/µm).

  4. Hafnium transistor design for neural interfacing.

    PubMed

    Parent, David W; Basham, Eric J

    2008-01-01

    A design methodology is presented that uses the EKV model and the g(m)/I(D) biasing technique to design hafnium oxide field effect transistors that are suitable for neural recording circuitry. The DC gain of a common source amplifier is correlated to the structural properties of a Field Effect Transistor (FET) and a Metal Insulator Semiconductor (MIS) capacitor. This approach allows a transistor designer to use a design flow that starts with simple and intuitive 1-D equations for gain that can be verified in 1-D MIS capacitor TCAD simulations, before final TCAD process verification of transistor properties. The DC gain of a common source amplifier is optimized by using fast 1-D simulations and using slower, complex 2-D simulations only for verification. The 1-D equations are used to show that the increased dielectric constant of hafnium oxide allows a higher DC gain for a given oxide thickness. An additional benefit is that the MIS capacitor can be employed to test additional performance parameters important to an open gate transistor such as dielectric stability and ionic penetration.

  5. Signatures of in-plane and out-of-plane magnetization generated by synchrotron radiation in magnetically doped and pristine topological insulators

    NASA Astrophysics Data System (ADS)

    Shikin, A. M.; Rybkina, A. A.; Estyunin, D. A.; Sostina, D. M.; Voroshnin, V. Yu.; Klimovskikh, I. I.; Rybkin, A. G.; Surnin, Yu. A.; Kokh, K. A.; Tereshchenko, O. E.; Petaccia, L.; Di Santo, G.; Skirdkov, P. N.; Zvezdin, K. A.; Zvezdin, A. K.; Kimura, A.; Chulkov, E. V.; Krasovskii, E. E.

    2018-06-01

    Possibility of in-plane and out-of-plane magnetization generated by synchrotron radiation (SR) in magnetically doped and pristine topological insulators (TIs) is demonstrated and studied by angle-resolved photoemission spectroscopy. We show experimentally and by ab initio calculations how nonequal depopulation of the Dirac cone (DC) states with opposite momenta in V-doped and pristine TIs generated by linearly polarized SR leads to the hole-generated uncompensated spin accumulation followed by the SR-induced magnetization via spin-torque effect. Moreover, the photoexcitation of the DC is asymmetric, and it varies with the photon energy. We find a relation between the photoexcitation asymmetry, the generated spin accumulation, and the induced in-plane and out-of-plane magnetic field. Experimentally the SR-generated in-plane and out-of-plane magnetization is confirmed by the k∥ shift of the DC position and by the gap opening at the Dirac point even above the Curie temperature. Theoretical predictions and estimations of the measurable physical quantities substantiate the experimental results.

  6. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets

    PubMed Central

    Naumov, Yuri N.; Bahjat, Keith S.; Gausling, Rudolph; Abraham, Roshini; Exley, Mark A.; Koezuka, Yasuhiko; Balk, Steven B.; Strominger, Jack L.; Clare-Salzer, Michael; Wilson, S. Brian

    2001-01-01

    CD1d-restricted invariant NKT (iNKT) cells are immunoregulatory cells whose loss exacerbates diabetes in nonobese diabetic (NOD) female mice. Here, we show that the relative numbers of iNKT cells from the pancreatic islets of NOD mice decrease at the time of conversion from peri-insulitis to invasive insulitis and diabetes. Conversely, NOD male mice who have a low incidence of diabetes showed an increased frequency of iNKT cells. Moreover, administration of α-galactosylceramide, a potent activating ligand presented by CD1d, ameliorated the development of diabetes in NOD female mice and resulted in the accumulation of iNKT cells and myeloid dendritic cells (DC) in pancreatic lymph nodes (PLN), but not in inguinal lymph nodes. Strikingly, injection of NOD female mice with myeloid DC isolated from the PLN, but not those from the inguinal lymph nodes, completely prevented diabetes. Thus, the immunoregulatory role of iNKT cells is manifested by the recruitment of tolerogenic myeloid DC to the PLN and the inhibition of ongoing autoimmune inflammation. PMID:11707602

  7. Fabrication and Testing of Polyvinylidene Fluoride Capacitors

    NASA Technical Reports Server (NTRS)

    Buritz, R. S.

    1980-01-01

    High energy density capacitors made from metallized polyvinylidene fluoride film were built and tested. Terminations of aluminum-babbitt, tin-babbitt, and all-babbitt were evaluated. All-babbit terminations appeared to be better. The 0.1 microfarad and 2 microfarad capacitors were made of 6 micrometer material. Capacitance, dissipation factor, and insulation resistance measurements were made over the ranges -55 C to 125 C and 10 Hz to 100 kHz. Twelve of forty-one 0.1 microfarad capacitors survived a 5000 hour dc plus ac life test. Under the same conditions, the 2 microfarad capacitors exhibited overheating because of excessive power loss. Some failures occurred after low temperature exposures for 48 hours. No failures were caused by vibration or temperature cycling.

  8. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.

    PubMed

    Lewpiriyawong, Nuttawut; Xu, Guolin; Yang, Chun

    2018-03-01

    This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Corona evaluation for 270 volt dc systems

    NASA Astrophysics Data System (ADS)

    Dunbar, William G.

    When designing 270 V dc power system electronics and wiring systems, it is essential to evaluate such corona-initiation-prone parts with bare electrodes as terminations and leads, and to take into account spacings, gas pressures (as a function of maximum altitude), temperature, voltage transients, and insulation coating thickness. Both persistent and intermittent transients are important. Filters and transient suppressors are excellent methods for limiting overvoltage transients in order to prevent corona initiation within a module.

  10. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  11. Electric field control in DC cable test termination by nano silicone rubber composite

    NASA Astrophysics Data System (ADS)

    Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai

    2017-07-01

    The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.

  12. Experiments with high-voltage insulators in the presence of tritium

    NASA Astrophysics Data System (ADS)

    Grisham, L. R.; Falter, H.; Causey, R.; Chrisman, W.; Stevenson, T.; Wright, K.

    1991-02-01

    During the final deuterium-tritium phases of the TFTR and JET tokamaks half of the neutral injectors will be used to produce tritium neutral beams to maintain an equal mix of deuterium and tritium in the core plasma, and such requirements may also occur in future devices. This will require that the voltage hold off capabilities of the high voltage insulators in the accelerators be unimpaired by any charge buildups associated with the beta decay of adsorbed layers. We report tests in which we measured the drain currents under high dc voltage of TFTR and JET accelerator insulators while they were successively exposed to vacuum, deuterium and tritium. There did not appear to be any substantial reduction in hold-off capability with tritium, although at some voltages there was a small increase in the leakage current. We also compared the breakdown properties of a plastic tubing filled with deuterium and then tritium at varying pressures, since such tubing has been considered as a high-voltage break in the gas feed system for TFTR, and the presence of large numbers of electron-ion pairs might lead to enhanced Paschen breakdown. We found no significant differences in the behavior for the geometry used.

  13. Effect of barium titanate (BaTiO{sub 3}) additive on the short-term DC breakdown strength of polyethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, M.S.; Henk, P.O.

    1996-12-31

    The use of additives to insulating materials is one of the methods to improve certain properties of these materials. Additives can also be used to provide more insight into some processes like conduction, space charge formation and breakdown under certain conditions of field application. In the present paper, the effect of the addition of fine particles 1 wt% BaTiO{sub 3} to plain low density polyethylene (LDPE) on the short-term dc breakdown strength of LDPE at room temperature was investigated. The characteristics of the used polyethylene are as follows: density 0.925 g/cm{sup 3}, melt index 0.25 g/10 min. The BaTiO{sub 3}more » used was laboratory grade with particle size less than 7 {micro}m. Special cylindrical test samples of both undoped and doped materials were used in this investigation. Stainless steel hemispherically tipped electrodes were embedded in the material by molding. The mean value of the gap length between the electrodes was 0.25 mm. The design of the test sample allows for determining the intrinsic breakdown strength of the material. The Weibull plots were used to analyze the breakdown test results. Analysis of the results indicate that the addition of BaTiO{sub 3} to LDPE has reduced the short term dc breakdown strength of the doped material by about 16% if compared with the corresponding value for the plain LDPE. An attempt is made to correlate between the present results, and earlier published results about the effect of BaTiO{sub 3} on dc conductivity and space charge formation in LDPE.« less

  14. Very Low Frequency Breakdown Properties of Electrical Insulation Materials at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Sauers, I.; Tuncer, E.; Polizos, G.; James, D. R.; Ellis, A. R.; Pace, M. O.

    2010-04-01

    For long cables or equipment with large capacitance it is not always possible to conduct high voltage withstand tests at 60 Hz due to limitations in charging currents of the power supply. Very low frequency (typically at a frequency of 0.1 Hz) has been used for conventional cables as a way of getting around the charging current limitation. For superconducting grid applications the same issues apply. However there is very little data at cryogenic temperatures on how materials perform at low frequency compared to 60 Hz and whether higher voltages should be applied when performing a high voltage acceptability test. Various materials including G10 (fiberglass reinforced plastic or FRP), Cryoflex™ (a tape insulation used in some high temperature superconducting cables), kapton (commonly used polyimide), polycarbonate, and polyetherimide, and in liquid nitrogen alone have been tested using a step method for frequencies of 60 Hz, 0.1 Hz, and dc. The dwell time at each step was chosen so that the aging factor would be the same in both the 60 Hz and 0.1 Hz tests. The data indicated that, while there is a small frequency dependence for liquid nitrogen, there are significant differences for the solid materials studied. Breakdown data for these materials and for model cables will be shown and discussed.

  15. Plasma-assisted atomic layer deposition of Al(2)O(3) and parylene C bi-layer encapsulation for chronic implantable electronics.

    PubMed

    Xie, Xianzong; Rieth, Loren; Merugu, Srinivas; Tathireddy, Prashant; Solzbacher, Florian

    2012-08-27

    Encapsulation of biomedical implants with complex three dimensional geometries is one of the greatest challenges achieving long-term functionality and stability. This report presents an encapsulation scheme that combines Al(2)O(3) by atomic layer deposition with parylene C for implantable electronic systems. The Al(2)O(3)-parylene C bi-layer was used to encapsulate interdigitated electrodes, which were tested invitro by soak testing in phosphate buffered saline solution at body temperature (37 °C) and elevated temperatures (57 °C and 67 °C) for accelerated lifetime testing up to 5 months. Leakage current and electrochemical impedance spectroscopy were measured for evaluating the integrity and insulation performance of the coating. Leakage current was stably about 15 pA at 5 V dc, and impedance was constantly about 3.5 MΩ at 1 kHz by using electrochemical impedance spectroscopy for samples under 67 °C about 5 months (approximately equivalent to 40 months at 37 °C). Alumina and parylene coating lasted at least 3 times longer than parylene coated samples tested at 80 °C. The excellent insulation performance of the encapsulation shows its potential usefulness for chronic implants.

  16. What is the origin of anomalous dielectric response in 2D organic dimer Mott insulators κ-(BEDT-TTF)2Cu[N(CN)2]Cl and κ-(BEDT-TTF)2Cu2(CN)3

    NASA Astrophysics Data System (ADS)

    Pinterić, M.; Ivek, T.; Čulo, M.; Milat, O.; Basletić, M.; Korin-Hamzić, B.; Tafra, E.; Hamzić, A.; Dressel, M.; Tomić, S.

    2015-03-01

    Novel forms of the low-temperature phases in the two-dimensional molecular solids with competing interactions between charges, spins and lattice, in particular those featuring anomalous dielectric relaxation, have been the focus of intense activity in recent years. Open issues concern the nature of collective charge excitations as well as their coupling to applied ac and dc electric fields. The charge response is reasonably well understood by now in the charge-ordered phase with the formation of ferroelectric-like domains below the metal-to-insulator phase transition. Conversely, the dielectric response observed in dimer Mott insulator phases with no complete evidence for charge ordering is rather intriguing. We overview our recent results of anisotropic complex conductivity (dc - MHz) in the magnetic phase of κ-(BEDT - TTF) 2 Cu [ N(CN)2 ] Cl and in the spin-liquid phase of κ-(BEDT - TTF) 2Cu2(CN)3. We discuss possible explanations for the observed dynamics within current theoretical models and compare them with the well-known fingerprints of the spin density wave response to ac electric fields.

  17. Insulation Coordination and Failure Mitigation Concerns for Roust Dc Electrical Power Systems (Preprint)

    DTIC Science & Technology

    2014-05-01

    vulnerable to failure is air. This could be a discharge through an air medium or along an air/surface interface. Achieving robustness in dc power...sputtering” arcs) are discharges that are most commonly located in series with the intended load; the electrical impedance of the load limits the...particularly those used at voltages > 1000 V, is detection and measurement of partial- discharge (PD) activity. The presence of PD in a component typically

  18. Materials for High-Density Electronic Packaging and Interconnection

    DTIC Science & Technology

    1990-04-10

    play a prominent role in the future. Glass and Porcelain The earliest use of electronic ceramics was as insulators for carrying telegraph lines...Administration 61L & CORES , (Ot. stem. SAI WCJm 76. LOISS (C". SUMt *oW WVCf B’%2101 Constitution Avenue. N W Washington, D.C. 20418 Washington. D.C. 20301 G...Density Packaging 84 Tape Automated Bonding 87 Diamond 88 Superconductors 88 Composites 89 Materials for Very-High-Frequency Digital Systems 91

  19. On the mechanism of charge transport in low density polyethylene

    NASA Astrophysics Data System (ADS)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  20. Improved DC Gun and Insulator Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, Michael

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diametermore » ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.« less

  1. Materials characterization and fracture mechanics of a space grade dielectric silicone insulation

    NASA Technical Reports Server (NTRS)

    Abdel-Latif, A. I.; Tweedie, A. T.

    1982-01-01

    The present investigation is concerned with the DC 93-500 high voltage silicone insulation material employed to pot the gun and the collector end of a traveling wave tube (TWT) used on the Landsat D Satellite. The fracture mechanics behavior of the silicone resin was evaluated by measuring the slow crack velocity as a function of the opening mode of the stress intensity factor at +25 and -10 C, taking into account various uniaxial discrete strain values. It was found that the silicone resins slow crack growth is faster than that for a high voltage insulation polyurethane material at the same stress intensity factor value and room temperature.

  2. Fermi surfaces in Kondo insulators

    NASA Astrophysics Data System (ADS)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  3. DC Characteristics of InAs/AlSb HEMTs at Cryogenic Temperatures

    DTIC Science & Technology

    2009-05-01

    Molecular Beam Epitaxy - MBE XIV, April 2007, Volumes 301- 302, Pages 1025-1029 Fig. 5: SEM image showing the 2x50μm InAs/AlSb HEMT . 325 ...started with a heterostructure grown by molecular beam epitaxy on a semi- insulating InP substrate. The heterostructure is shown in Fig. 1. Mesa isolation...DC characteristics of InAs/AlSb HEMTs at cryogenic temperatures G. Moschetti, P-Å Nilsson, N. Wadefalk, M. Malmkvist, E. Lefebvre, J. Grahn

  4. Modeling the Effects of Varying the Capacitance, Resistance, Temperature, and Frequency Dependence for HTS Josephson Junctions, DC SQUIDs and DC bi-SQUIDS

    DTIC Science & Technology

    2014-09-01

    junction is a thin layer of insulating material sep- arating two superconductors that is thin enough for electrons to tunnel through. Two Josephson...can sense minute magnetic fields approaching 1015 Tesla. These SQUIDs can be arranged in arrays with different coupling schemes and parameter values to...different material and/or method on the bisecting Josephson junction for high temperature superconductor (HTS) YBa2Cu3O7 (YBCO) bi-SQUIDs. This

  5. High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers

    NASA Technical Reports Server (NTRS)

    Hammoud, A. N.; Baumann, E. D.; Overton, E.; Myers, I. T.; Suthar, J. L.; Khachen, W.; Laghari, J. R.

    1992-01-01

    Reliable lightweight systems capable of providing electrical power at the magawatt level are a requirement for future manned space exploration missions. This can be achieved by the development of high temperature insulating materials which are not only capable of surviving the hostile space environment but can contribute to reducing the mass and weight of the heat rejection system. In this work, Apical, Upilex, Kapton, Teflon AF, and Peek polymers are characterized for AC and DC dielectric breakdown in air and in silicone oil at temperatures up to 250 C. The materials are also tested in terms of their dielectric constant and dissipation factor at high temperatures with an electrical stress of 60 Hz, 200 V/mil present. The effects of thermal aging on the properties of the films are determined after 15 hours of exposure to 200 and 250 C, each. The results obtained are discussed and conclusions are made concerning the suitability of these dielectrics for use in capacitors and cable insulations in high temperature environments.

  6. High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers

    NASA Astrophysics Data System (ADS)

    Hammoud, A. N.; Baumann, E. D.; Overton, E.; Myers, I. T.; Suthar, J. L.; Khachen, W.; Laghari, J. R.

    1992-06-01

    Reliable lightweight systems capable of providing electrical power at the magawatt level are a requirement for future manned space exploration missions. This can be achieved by the development of high temperature insulating materials which are not only capable of surviving the hostile space environment but can contribute to reducing the mass and weight of the heat rejection system. In this work, Apical, Upilex, Kapton, Teflon AF, and Peek polymers are characterized for AC and DC dielectric breakdown in air and in silicone oil at temperatures up to 250 C. The materials are also tested in terms of their dielectric constant and dissipation factor at high temperatures with an electrical stress of 60 Hz, 200 V/mil present. The effects of thermal aging on the properties of the films are determined after 15 hours of exposure to 200 and 250 C, each. The results obtained are discussed and conclusions are made concerning the suitability of these dielectrics for use in capacitors and cable insulations in high temperature environments.

  7. Strong mechanically induced effects in DC current-biased suspended Josephson junctions

    NASA Astrophysics Data System (ADS)

    McDermott, Thomas; Deng, Hai-Yao; Isacsson, Andreas; Mariani, Eros

    2018-01-01

    Superconductivity is a result of quantum coherence at macroscopic scales. Two superconductors separated by a metallic or insulating weak link exhibit the AC Josephson effect: the conversion of a DC voltage bias into an AC supercurrent. This current may be used to activate mechanical oscillations in a suspended weak link. As the DC-voltage bias condition is remarkably difficult to achieve in experiments, here we analyze theoretically how the Josephson effect can be exploited to activate and detect mechanical oscillations in the experimentally relevant condition with purely DC current bias. We unveil how changing the strength of the electromechanical coupling results in two qualitatively different regimes showing dramatic effects of the oscillations on the DC-voltage characteristic of the device. These include the appearance of Shapiro-type plateaus for weak coupling and a sudden mechanically induced retrapping for strong coupling. Our predictions, measurable in state-of-the-art experimental setups, allow the determination of the frequency and quality factor of the resonator using DC only techniques.

  8. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6

    NASA Astrophysics Data System (ADS)

    Hartstein, M.; Toews, W. H.; Hsu, Y.-T.; Zeng, B.; Chen, X.; Hatnean, M. Ciomaga; Zhang, Q. R.; Nakamura, S.; Padgett, A. S.; Rodway-Gant, G.; Berk, J.; Kingston, M. K.; Zhang, G. H.; Chan, M. K.; Yamashita, S.; Sakakibara, T.; Takano, Y.; Park, J.-H.; Balicas, L.; Harrison, N.; Shitsevalova, N.; Balakrishnan, G.; Lonzarich, G. G.; Hill, R. W.; Sutherland, M.; Sebastian, Suchitra E.

    2018-02-01

    The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.

  9. Mechanical and electric characteristics of vacuum impregnated no-insulation HTS coil

    NASA Astrophysics Data System (ADS)

    Park, Heecheol; Kim, A.-rong; Kim, Seokho; Park, Minwon; Kim, Kwangmin; Park, Taejun

    2014-09-01

    For the conduction cooling application, epoxy impregnation is inevitable to enhance the thermal conduction. However, there have been several research results on the delamination problem with coated conductor and the main cause of the delamination is related with the different thermal contraction between epoxy, the insulation layer and the weak conductor. To avoid this problem, the amount of epoxy and insulation layer between conductors should be minimized or removed. Therefore, no insulation (NI) winding method and impregnation after dry winding can be considered to solve the problem. The NI coil winding method is very attractive due to high mechanical/thermal stability for the special purpose of DC magnets by removing the insulation layer. In this paper, the NI coil winding method and vacuum impregnation are applied to a HTS coil to avoid the delamination problem and enhance the mechanical/thermal stability for the conduction cooling application. Through the charging/discharging operation, electric/thermal characteristics are investigated at 77 K and 30 K.

  10. Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng

    2018-03-01

    Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.

  11. High current polarized electron source

    NASA Astrophysics Data System (ADS)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  12. Performance characteristics of nanocrystalline diamond vacuum field emission transistor array

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.

    2012-06-01

    Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.

  13. Performance characteristics of nanocrystalline diamond vacuum field emission transistor array

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.

    2012-05-01

    Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.

  14. Organic thin film transistor with a simplified planar structure

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yu, Jungsheng; Zhong, Jian; Jiang, Yadong

    2009-05-01

    Organic thin film transistor (OTFT) with a simplified planar structure is described. The gate electrode and the source/drain electrodes of OTFT are processed in one planar structure. And these three electrodes are deposited on the glass substrate by DC sputtering technology using Cr/Ni target. Then the electrode layouts of different width length ratio are made by photolithography technology at the same time. Only one step of deposition and one step of photolithography is needed while conventional process takes at least two steps of deposition and two steps of photolithography. Metal is first prepared on the other side of glass substrate and electrode is formed by photolithography. Then source/drain electrode is prepared by deposition and photolithography on the side with the insulation layer. Compared to conventional process of OTFTs, the process in this work is simplified. After three electrodes prepared, the insulation layer is made by spin coating method. The organic material of polyimide is used as the insulation layer. A small molecular material of pentacene is evaporated on the insulation layer using vacuum deposition as the active layer. The process of OTFTs needs only three steps totally. A semi-auto probe stage is used to connect the three electrodes and the probe of the test instrument. A charge carrier mobility of 0.3 cm2 /V s, is obtained from OTFTs on glass substrates with and on/off current ratio of 105. The OTFTs with the planar structure using simplified process can simplify the device process and reduce the fabrication cost.

  15. Proceedings of the STRESS Data Review Meeting, 29-30 November 1977

    DTIC Science & Technology

    1978-06-01

    INSULATORS MAGNETOMETER BEACON ANTENNA fe?^ S-BAND ANTENNA- -DC PROBE SENSING ELEMENT PLASMA FREQUENCY PROBE MONOPOLE -GUARD ELECTRODE PLASMA...have demonstrated, using calculational results from MICE and MRHYDE (MHD computer codes), that the gradient-drift instability is the one primarily

  16. Low power loss and field-insensitive permeability of Fe-6.5%Si powder cores with manganese oxide-coated particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junnan, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Wang, Xian; Xu, Xiaojun

    Fe-6.5%Si alloy powders coated with manganese oxides using an innovative in situ process were investigated. The in-situ coating of the insulating oxides was realized with a KMnO{sub 4} solution by a chemical process. The insulating manganese oxides with mixed valance state were verified by X-ray photoelectron spectroscopy analysis. The thickness of the insulating layer on alloy particles was determined to be in a range of 20–210 nm, depending upon the KMnO{sub 4} concentration. The powder core loss and the change in permeability under a DC-bias field were measured at frequencies ranging from 50 to 100 kHz. The experiments indicated that themore » Fe-6.5%Si powder cores with a 210 nm-thick manganese oxide layer not only showed a low core loss of 459 mW/cm{sup 3} at 100 kHz but also showed a small reduction in permeability (μ(H)/μ(0) = 85% for μ = 42) at a DC-bias field of 80 Oe. This work has defined a novel pathway to realizing low core loss and field-insensitive permeability for Fe-Si powder cores.« less

  17. Arcing time analysis of liquid nitrogen with respect to electrode materials

    NASA Astrophysics Data System (ADS)

    Junaid, Muhammad; Yang, Kun; Ge, Hanming; Wang, Jianhua

    2018-03-01

    Unlike sulphur hexafluoride (SF6), liquid nitrogen (LN2) is cost effective, environment friendly and cryogenic dielectric. It has astounding insulating properties with the potential to decrease power loss in switchgear applications due to its remarkably low temperatures. The basic research is however a necessity to observe the performance of LN2 subjected to high luminance arcs. So far, there are no findings that refer to the arcing time inside the LN2 environment. The objective of this work was to investigate the arcing times in LN2 and compare the results with open air conditions using different electrode materials. Experiments were conducted on different DC voltages and their arcing times were measured. Three different kinds of electrode materials, namely: pure copper (Cu), stainless used steel (SUS) and aluminium alloy (Al 6061) were tested under 1 atmospheric pressure. The results revealed that LN2 extinguishes arc in almost half the amount of time required by the open air insulation. With Al 6061 has the shortest arcing time, whilst Cu, the second best choice and SUS places last in the evaluation. It was encapsulated from the findings that LN2 is a better choice than air insulation in terms of arc quenching and a better alternative to SF6 when environment is the priority.

  18. An extensive investigation of work function modulated trapezoidal recessed channel MOSFET

    NASA Astrophysics Data System (ADS)

    Lenka, Annada Shankar; Mishra, Sikha; Mishra, Satyaranjan; Bhanja, Urmila; Mishra, Guru Prasad

    2017-11-01

    The concept of silicon on insulator (SOI) and grooved gate help to lessen the short channel effects (SCEs). Again the work function modulation along the metal gate gives a better drain current due to the uniform electric field along the channel. So all these concepts are combined and used in the proposed MOSFET structure for more improved performance. In this work, trapezoidal recessed channel silicon on insulator (TRC-SOI) MOSFET and work function modulated trapezoidal recessed channel silicon on insulator (WFM-TRC-SOI) MOSFET are compared with DC and RF parameters and later linearity of both the devices is tested. An analytical model is formulated by using a 2-D Poisson's equation and develops a compact equation for threshold voltage using minimum surface potential. In this work we analyze the effect of negative junction depth and the corner angle on various device parameters such as minimum surface potential, sub-threshold slope (SS), drain induced barrier lowering (DIBL) and threshold voltage. The analysis interprets that the switching performance of WFM-TRC-SOI MOSFET surpasses TRC-SOI MOSFET in terms of high Ion/Ioff ratio and also the proposed structure can minimize the short channel effects (SCEs) in RF application. The validity of proposed model has been verified with simulation result performed on Sentaurus TCAD device simulator.

  19. Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2015-11-06

    We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y 3Fe 5O 12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc currentmore » through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. In conclusion, we find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.« less

  20. SOI MESFETs on high-resistivity, trap-rich substrates

    NASA Astrophysics Data System (ADS)

    Mehr, Payam; Zhang, Xiong; Lepkowski, William; Li, Chaojiang; Thornton, Trevor J.

    2018-04-01

    The DC and RF characteristics of metal-semiconductor field-effect-transistors (MESFETs) on conventional CMOS silicon-on-insulator (SOI) substrates are compared to nominally identical devices on high-resistivity, trap-rich SOI substrates. While the DC transfer characteristics are statistically identical on either substrate, the maximum available gain at GHz frequencies is enhanced by ∼2 dB when using the trap-rich substrates, with maximum operating frequencies, fmax, that are approximately 5-10% higher. The increased fmax is explained by the reduced substrate conduction at GHz frequencies using a lumped-element, small-signal model.

  1. Metal-Insulator-Metal Diode Process Development for Energy Harvesting Applications

    DTIC Science & Technology

    2010-04-01

    Sputter Tool Dep Method: Sputtering (DC Magnetron ) Recipe: MC_Pt 1640A_TiO2 1000A_Ti 2000A_500C_1a MC_Pt 1640A_TiO2 1000A_Ti 2000A_300C_1a MC_Pt...thin films were sputtered onto silicon substrates with silicon dioxide overlayers. I-V measurements were taken using an electrical characterization...deposition of the entire MIM material stack to be done without breaking the vacuum within a multi-material system DC sputtering tool. A CAD layout of a MIM

  2. Anomalous three-dimensional bulk ac conduction within the Kondo gap of SmB 6 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurita, N. J.; Morris, C. M.; Koohpayeh, S. M.

    The Kondo insulator SmB 6 has long been known to display anomalous transport behavior at low temperatures, T < 5 K. In this temperatures range, a plateau is observed in the dc resistivity, contrary to the exponential divergence expected for a gapped system. Some recent theoretical calculations suggest that SmB 6 may be the first topological Kondo insulator (TKI) and propose that the residual conductivity is due to topological surface states which reside within the Kondo gap. Since the TKI prediction many experiments have claimed to observe high mobility surface states within a perfectly insulating hybridization gap. We investigate themore » low energy optical conductivity within the hybridization gap of single crystals of SmB 6 via time domain terahertz spectroscopy. Samples grown by both optical floating zone and aluminum flux methods are investigated to probe for differences originating from sample growth techniques. We find that both samples display significant three-dimensional bulk conduction originating within the Kondo gap. Although SmB 6 may be a bulk dc insulator, it shows significant bulk ac conduction that is many orders of magnitude larger than any known impurity band conduction. The nature of these in-gap states and their coupling with the low energy spin excitons of SmB 6 is discussed. In addition, the well-defined conduction path geometry of our optical experiments allows us to show that any surface states, which lie below our detection threshold if present, must have a sheet resistance of R / square ≥ 1000 Ω .« less

  3. Anomalous three-dimensional bulk ac conduction within the Kondo gap of SmB 6 single crystals

    DOE PAGES

    Laurita, N. J.; Morris, C. M.; Koohpayeh, S. M.; ...

    2016-10-21

    The Kondo insulator SmB 6 has long been known to display anomalous transport behavior at low temperatures, T < 5 K. In this temperatures range, a plateau is observed in the dc resistivity, contrary to the exponential divergence expected for a gapped system. Some recent theoretical calculations suggest that SmB 6 may be the first topological Kondo insulator (TKI) and propose that the residual conductivity is due to topological surface states which reside within the Kondo gap. Since the TKI prediction many experiments have claimed to observe high mobility surface states within a perfectly insulating hybridization gap. We investigate themore » low energy optical conductivity within the hybridization gap of single crystals of SmB 6 via time domain terahertz spectroscopy. Samples grown by both optical floating zone and aluminum flux methods are investigated to probe for differences originating from sample growth techniques. We find that both samples display significant three-dimensional bulk conduction originating within the Kondo gap. Although SmB 6 may be a bulk dc insulator, it shows significant bulk ac conduction that is many orders of magnitude larger than any known impurity band conduction. The nature of these in-gap states and their coupling with the low energy spin excitons of SmB 6 is discussed. In addition, the well-defined conduction path geometry of our optical experiments allows us to show that any surface states, which lie below our detection threshold if present, must have a sheet resistance of R / square ≥ 1000 Ω .« less

  4. Space Charge Modulated Electrical Breakdown

    PubMed Central

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  5. Physical processes in high field insulating liquid conduction

    NASA Astrophysics Data System (ADS)

    Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert

    2017-10-01

    In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.

  6. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  7. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.

    PubMed

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-27

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  8. Investigation of short-circuit failure mechanisms of SiC MOSFETs by varying DC bus voltage

    NASA Astrophysics Data System (ADS)

    Namai, Masaki; An, Junjie; Yano, Hiroshi; Iwamuro, Noriyuki

    2018-07-01

    In this study, the experimental evaluation and numerical analysis of short-circuit mechanisms of 1200 V SiC planar and trench MOSFETs were conducted at various DC bus voltages from 400 to 800 V. Investigation of the impact of DC bus voltage on short-circuit capability yielded results that are extremely useful for many existing power electronics applications. Three failure mechanisms were identified in this study: thermal runaway, MOS channel current following device turn-off, and rupture of the gate oxide layer (gate oxide layer damage). The SiC MOSFETs experienced lattice temperatures exceeding 1000 K during the short-circuit transient; as Si insulated gate bipolar transistors (IGBTs) are not typically subject to such temperatures, the MOSFETs experienced distinct failure modes, and the mode experienced was significantly influenced by the DC bus voltage. In conclusion, suggestions regarding the SiC MOSFET design and operation methods that would enhance device robustness are proposed.

  9. On effective holographic Mott insulators

    NASA Astrophysics Data System (ADS)

    Baggioli, Matteo; Pujolàs, Oriol

    2016-12-01

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of `traffic-jam'-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  10. Rectifying antenna and method of manufacture

    NASA Technical Reports Server (NTRS)

    Bhansali, Shekhar (Inventor); Buckle, Kenneth (Inventor); Goswami, D. Yogi (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor)

    2006-01-01

    In accordance with the present invention, an aperture rectenna is provided where the substrate is transparent and of sufficient mechanical strength to support the fabricated structure above it. An aperture antenna is deposited on the transparent substrate and a metal-insulator-metal (MIM) diode is constructed on top of the aperture antenna. There is an insulating layer between the aperture antenna metal and the metal ground plane optimized to maximize the collection of incident radiation. The top of the structure is capped with a metal ground plane layer, which also serves as the DC connection points for each rectenna element.

  11. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

  12. Effect of an applied magnetic field on the performance of a SIS receiver near 300 GHz

    NASA Technical Reports Server (NTRS)

    Mallison, W. H.; De Zafra, R. L.

    1992-01-01

    A superconductor-insulator-superconductor (SIS) receiver has been successfully constructed and tested for operation at 265 - 280 GHz using 1 micron/sq area Nb-AlO(x)-Nb tunnel junctions fabricated at Stony Brook. The best performance to date is a double sideband (DSB) receiver noise temperature of 129 K at 278 GHz. It is found that suppression of the Josephson pair currents with a magnetic field is essential for good performance and a stable dc bias point. Fields as high as 280 gauss have been used with no degradation of mixing performance. The improvement in the intermediate frequency output stability with progressively increasing magnetic fields is illustrated.

  13. Methods to characterize charging effects

    NASA Astrophysics Data System (ADS)

    Slots, H.

    1984-08-01

    Methods to characterize charging in insulating material under high voltage dc stress, leading to electrical breakdown, are reviewed. The behavior of the charges can be studied by ac loss angle measurements after application or removal of dc bias. Measurements were performed on oil-paper and oil-Mylar systems. The poor reproducibility of the measurements makes it impossible to draw more than qualitative conclusions about the charging effects. With an ultrasound pressure wave the electric field distribution in a material can be determined. An alternative derivation for the transient response of a system which elucidates the influence of several parameters in a simple way is given.

  14. The DC dielectric breakdown strength of magnetic fluids based on transformer oil

    NASA Astrophysics Data System (ADS)

    Kopčanský, Peter; Tomčo, Ladislav; Marton, Karol; Koneracká, Martina; Timko, Milan; Potočová, Ivana

    2005-03-01

    The DC dielectric breakdown strength of magnetic fluids based on transformer oil TECHNOL US 4000, with different saturation magnetizations, was investigated in various orientations of external magnetic field. It was shown that the dielectric breakdown strength in H∣∣ E is strongly influenced by the aggregation effects. As a boundary volume concentration of magnetic particles, below which the magnetic fluids have better dielectric properties than pure transformer oil, the volume concentration Φ=0.01 was found. Thus magnetic fluids with Φ<0.01 are suitable for the use as a high-voltage insulation.

  15. Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage

    NASA Astrophysics Data System (ADS)

    Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.

    2017-08-01

    This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction

  16. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation

    NASA Astrophysics Data System (ADS)

    Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.

    2018-01-01

    A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.

  17. Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices

    PubMed Central

    Gallo-Villanueva, Roberto C.; Sano, Michael B.; Lapizco-Encinas, Blanca H.; Davalos, Rafael V.

    2014-01-01

    In this work, the temperature effects due to Joule heating obtained by application of a DC electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator based dielectrophoresis (iDEP). The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force towards the inlet of the channel while decreasing towards the outlet. Experimental results are in good agreement with simulations on the particle trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing iDEP systems. PMID:24002905

  18. Suppression of space charge in crosslinked polyethylene filled with poly(stearyl methacrylate)-grafted SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Khani, Mohammad M.; Krentz, Timothy M.; Huang, Yanhui; Zhou, Yuanxiang; Benicewicz, Brian C.; Nelson, J. Keith; Schadler, Linda S.

    2017-03-01

    Incorporating inorganic nanoparticles (NPs) into polymer matrices provides a promising solution for suppressing space charge effects that can lead to premature failure of electrical insulation used in high voltage direct current engineering. However, realizing homogeneous NP dispersion is a great challenge especially in high-molecular-weight polymers. Here, we address this issue in crosslinked polyethylene by grafting matrix-compatible polymer brushes onto spherical colloidal SiO2 NPs (10-15 nm diameter) to obtain a uniform NP dispersion, thus achieving enhanced space charge suppression, improved DC breakdown strength, and restricted internal field distortion (≤10.6%) over a wide range of external DC fields from -30 kV/mm to -100 kV/mm at room temperature. The NP dispersion state is the key to ensuring an optimized distribution of deep trapping sites. A well-dispersed system provides sufficient charge trapping sites and shows better performance compared to ones with large aggregates. This surface ligand strategy is attractive for future nano-modification of many engineering insulating polymers.

  19. Non-destructive reversible resistive switching in Cr doped Mott insulator Ca2RuO4: Interface vs bulk effects

    NASA Astrophysics Data System (ADS)

    Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    2017-12-01

    A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.

  20. Recent Advances in Alternating Current-Driven Organic Light-Emitting Devices.

    PubMed

    Pan, Yufeng; Xia, Yingdong; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei

    2017-11-01

    Organic light-emitting devices (OLEDs), typically operated with constant-voltage or direct-current (DC) power sources, are candidates for next-generation solid-state lighting and displays, as they are light, thin, inexpensive, and flexible. However, researchers have focused mainly on the device itself (e.g., development of novel materials, design of the device structure, and optical outcoupling engineering), and little attention has been paid to the driving mode. Recently, an alternative concept to DC-driven OLEDs by directly driving devices using time-dependent voltages or alternating current (AC) has been explored. Here, the effects of different device structures of AC-driven OLEDs, for example, double-insulation, single-insulation, double-injection, and tandem structure, on the device performance are systematically investigated. The formation of excitons and the dielectric layer, which are important to achieve high-performance AC-driven OLEDs, are carefully considered. The importance of gaining further understanding of the fundamental properties of AC-driven OLEDs is then discussed, especially as they relate to device physics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Theoretical study on the perpendicular anisotropic magnetoresistance using Rashba-type ferromagnetic model

    NASA Astrophysics Data System (ADS)

    Yahagi, Y.; Miura, D.; Sakuma, A.

    2018-05-01

    We investigated the anisotropic magnetoresistance (AMR) effects in ferromagnetic-metal multi-layers stacked on non-magnetic insulators in the context of microscopic theory. We represented this situation with tight-binding models that included the exchange and Rashba fields, where the Rashba field was assumed to originate from spin-orbit interactions as junction effects with the insulator. To describe the AMR ratios, the DC conductivity was calculated based on the Kubo formula. As a result, we showed that the Rashba field induced both perpendicular and in-plane AMR effects and that the perpendicular AMR effect rapidly decayed with increasing film thickness.

  2. Better Modeling of Electrostatic Discharge in an Insulator

    NASA Technical Reports Server (NTRS)

    Pekov, Mihail

    2010-01-01

    An improved mathematical model has been developed of the time dependence of buildup or decay of electric charge in a high-resistivity (nominally insulating) material. The model is intended primarily for use in extracting the DC electrical resistivity of such a material from voltage -vs.- current measurements performed repeatedly on a sample of the material over a time comparable to the longest characteristic times (typically of the order of months) that govern the evolution of relevant properties of the material. This model is an alternative to a prior simplistic macroscopic model that yields results differing from the results of the time-dependent measurements by two to three orders of magnitude.

  3. An increase in Tc under hydrostatic pressure in the superconducting doped topological insulator Nb0.25Bi2Se3

    NASA Astrophysics Data System (ADS)

    Smylie, M. P.; Willa, K.; Ryan, K.; Claus, H.; Kwok, W.-K.; Qiu, Y.; Hor, Y. S.; Welp, U.

    2017-12-01

    We report a positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator Nb0.25Bi2Se3 via dc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues CuxBi2Se3 and SrxBi2Se3 where smooth suppression of Tc is observed. This difference may be attributable to an electronic structure composed of multiple bands whereas the other materials in the superconducting doped Bi2Se3 family are believed to be single-band.

  4. An increase in Tc under hydrostatic pressure in the superconducting doped topological insulator Nb 0.25Bi 2Se 3

    DOE PAGES

    Smylie, M. P.; Willa, K.; Ryan, K.; ...

    2017-10-26

    Here, we report a positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator Nb 0.25Bi 2Se 3 via dc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues Cu xBi 2Se 3 and Sr xBi 2Se 3 where smooth suppression of T c is observed. This difference may be attributable to an electronic structure composed of multiple bands whereas the other materials in the superconducting doped Bi 2Se 3 family are believed to be single-band.

  5. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation are...

  6. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation are...

  7. Tuned-circuit dual-mode Johnson noise thermometers

    NASA Astrophysics Data System (ADS)

    Shepard, R. L.; Carroll, R. M.; Falter, D. D.; Blalock, T. V.; Roberts, M. J.

    1992-02-01

    Dual-mode Johnson noise and direct current (DC) resistance thermometers can be used in control systems where prompt indications of temperature changes and long-term accuracy are needed. Such a thermometer is being developed for the SP-100 space nuclear electric power system that requires temperature measurement at 1400 K in space for 10 years, of which 7 are expected to be at full reactor power. Several direct coupled and transformer coupled, tuned resistance inductance capacitance (RLC) circuits that produce a single, continuous voltage signal were evaluated for noise temperature measurement. The simple direct coupled RLC circuit selected provides a mean squared noise voltage that depends only on the capacitance used and the temperature of the sensor, and it is independent of the value of or changes in the sensor resistance. These circuits provide a noise signal with long term accuracy but require integrating noise signals for a finite length of time. The four wire resistor for the noise temperature sensor allows simultaneous DC resistance measurements to be made that provide a prompt, continuous temperature indication signal. The DC current mode is employed continuously, and a noise voltage measurement is made periodically to correct the temperature indication. The differential noise voltage preamplifier used substantially reduces electromagnetic interference (EMI) in the system. A sensor has been tested that should provide good performance (+/- 1 percent accuracy) and long-term (10 year) reliability in space environments. Accurate noise temperature measurements were made at temperatures above 1300 K, where significant insulator shunting occurs, even though shunting does affect the dc resistance measurements and makes the system more susceptible to EMI.

  8. dc Arc Fault Effect on Hybrid ac/dc Microgrid

    NASA Astrophysics Data System (ADS)

    Fatima, Zahra

    The advent of distributed energy resources (DER) and reliability and stability problems of the conventional grid system has given rise to the wide spread deployment of microgrids. Microgrids provide many advantages by incorporating renewable energy sources and increasing the reliability of the grid by isolating from the main grid in case of an outage. AC microgrids have been installed all over the world, but dc microgrids have been gaining interest due to the advantages they provide over ac microgrids. However the entire power network backbone is still ac and dc microgrids require expensive converters to connect to the ac power network. As a result hybrid ac/dc microgrids are gaining more attention as it combines the advantages of both ac and dc microgrids such as direct integration of ac and dc systems with minimum number of conversions which increases the efficiency by reducing energy losses. Although dc electric systems offer many advantages such as no synchronization and no reactive power, successful implementation of dc systems requires appropriate protection strategies. One unique protection challenge brought by the dc systems is dc arc faults. A dc arc fault is generated when there is a gap in the conductor due to insulation degradation and current is used to bridge the gap, resulting in an arc with very high temperature. Such a fault if it goes undetected and is not extinguished can cause damage to the entire system and cause fires. The purpose of the research is to study the effect of the dc arc fault at different locations in the hybrid ac/dc microgrid and provide insight on the reliability of the grid components when it is impacted by arc faults at various locations in the grid. The impact of dc arc fault at different locations on the performance of the PV array, wind generation, and constant power loads (CPL) interfaced with dc/dc converters is studied. MATLAB/Simulink is used to model the hybrid ac/dc microgrid and arc fault.

  9. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  10. Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Hsiang, Hsing-I.; Fan, Liang-Fang; Hung, Jia-Jing

    2018-02-01

    The phosphoric acid addition effect on phosphate insulation coating microstructure was investigated in this study. The relationships between the phosphate insulation coating microstructure and temperature resistance, corrosion resistance and magnetic properties of iron-based soft magnetic composites (SMCs) were studied by using SEM, TEM/EDS and FTIR. It was observed that an iron phosphate/carbonyl iron core/shell structure is formed with carbonyl iron powder after phosphatizing treatment. The iron phosphate phase was identified as amorphous and its thickness increased from 30 nm to 60 nm as the phosphoric acid concentration was increased from 1 wt% to 2 wt%. When the phosphoric acid concentration was further increased to 5 wt%, the excess iron phosphate precipitates between the soft magnetic composite particles. The temperature and corrosion resistance and resistivity of the iron-based SMCs can be effectively improved using carbonyl iron powders after phosphatizing. The initial permeability of the iron-based SMCs decreased with increasing phosphoric acid concentration due to thicker insulation layer formation. However, the imaginary permeability below the domain wall displacement resonance frequency decreased with increasing phosphoric acid concentration. The DC-bias superposition characteristic can also be improved by increasing the phosphoric acid concentration. Iron-based SMCs with superior temperature and corrosion resistance, initial permeability, magnetic loss and DC-bias superposition characteristics can be obtained by controlling the phosphoric acid concentration during phosphatizing to adjust the iron phosphate precipitate thickness on the iron powder surface.

  11. Tuning metal-insulator transitions in epitaxial V2O3 thin films

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Einar B.; Shayestehaminzadeh, Seyedmohammad; Arnalds, Unnar B.

    2018-04-01

    We present a study of the synthesis of epitaxial V2O3 films on c-plane Al2O3 substrates by reactive dc-magnetron sputtering. The results reveal a temperature window, at substantially lower values than previously reported, wherein epitaxial films can be obtained when deposited on [0001] oriented surfaces. The films display a metal-insulator transition with a change in the resistance of up to four orders of magnitude, strongly dependent on the O2 partial pressure during deposition. While the electronic properties of the films show sensitivity to the amount of O2 present during deposition of the films, their crystallographic structure and surface morphology of atomically flat terraced structures with up to micrometer dimensions are maintained. The transition temperature, as well as the scale of the metal-insulator transition, is correlated with the stoichiometry and local strain in the films controllable by the deposition parameters.

  12. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    NASA Astrophysics Data System (ADS)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  13. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    NASA Astrophysics Data System (ADS)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  14. Incipient 2D Mott insulators in extreme high electron density, ultra-thin GdTiO3/SrTiO3/GdTiO3 quantum wells

    NASA Astrophysics Data System (ADS)

    Allen, S. James; Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler; Chen, Ru; Balents, Leon; Stemmer, Susanne

    2013-03-01

    By reducing the number of SrO planes in a GdTiO3 /SrTiO3/ GdTiO3 quantum well heterostructure, an electron gas with ~ fixed 2D electron density can be driven close to the Mott metal insulator transition - a quantum critical point at ~1 electron per unit cell. A single interface between the Mott insulator GdTiO3 and band insulator SrTiO3 has been shown to introduce ~ 1/2 electron per interface unit cell. Two interfaces produce a quantum well with ~ 7 1014 cm-2 electrons: at the limit of a single SrO layer it may produce a 2D magnetic Mott insulator. We use temperature and frequency dependent (DC - 3eV) conductivity and temperature dependent magneto-transport to understand the relative importance of electron-electron interactions, electron-phonon interactions, and surface roughness scattering as the electron gas is compressed toward the quantum critical point. Terahertz time-domain and FTIR spectroscopies, measure the frequency dependent carrier mass and scattering rate, and the mid-IR polaron absorption as a function of quantum well thickness. At the extreme limit of a single SrO plane, we observe insulating behavior with an optical gap substantially less than that of the surrounding GdTiO3, suggesting a novel 2D Mott insulator. MURI program of the Army Research Office - Grant No. W911-NF-09-1-0398

  15. 49 CFR 234.267 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Insulation resistance tests, wires in trunking and... resistance tests, wires in trunking and cables. (a) Insulation resistance tests shall be made when wires or... between conductors in trunking. Insulation resistance tests shall be performed when wires, cables, and...

  16. 49 CFR 234.267 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation resistance tests, wires in trunking and... resistance tests, wires in trunking and cables. (a) Insulation resistance tests shall be made when wires or... between conductors in trunking. Insulation resistance tests shall be performed when wires, cables, and...

  17. The Development and Application of Simulative Insulation Resistance Tester

    NASA Astrophysics Data System (ADS)

    Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao

    2018-02-01

    The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.

  18. Insulation Resistance Degradation in Ni-BaTiO3 Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang (David)

    2015-01-01

    Insulation resistance (IR) degradation in Ni-BaTiO3 multilayer ceramic capacitors has been characterized by the measurement of both time to failure and direct-current (DC) leakage current as a function of stress time under highly accelerated life test conditions. The measured leakage current-time dependence data fit well to an exponential form, and a characteristic growth time ?SD can be determined. A greater value of tau(sub SD) represents a slower IR degradation process. Oxygen vacancy migration and localization at the grain boundary region results in the reduction of the Schottky barrier height and has been found to be the main reason for IR degradation in Ni-BaTiO3 capacitors. The reduction of barrier height as a function of time follows an exponential relation of phi (??)=phi (0)e(exp -2?t), where the degradation rate constant ??=??o??(????/????) is inversely proportional to the mean time to failure (MTTF) and can be determined using an Arrhenius plot. For oxygen vacancy electromigration, a lower barrier height phi(0) will favor a slow IR degradation process, but a lower phi(0) will also promote electronic carrier conduction across the barrier and decrease the insulation resistance. As a result, a moderate barrier height phi(0) (and therefore a moderate IR value) with a longer MTTF (smaller degradation rate constant ??) will result in a minimized IR degradation process and the most improved reliability in Ni-BaTiO3 multilayer ceramic capacitors.

  19. Pulsed metallic-plasma generators.

    NASA Technical Reports Server (NTRS)

    Gilmour, A. S., Jr.; Lockwood, D. L.

    1972-01-01

    A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.

  20. Superconductivity in the graphene monolayer calculated using the Kubo formulalism

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-03-01

    We have employed the massless Dirac's fermions formalism together with the Kubo's linear response theory to study the transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC electric conductivities of the system that is known to be a relativistic electron plasma. Our results show a superconductor behavior to the electron transport and consequently the spin transport for all values of T > 0 and a behavior of the AC conductivity tending to infinity in the limit ω → 0. In T = 0 our results show an insulator behavior with a transition from a superconductor state at T > 0 to an insulator state at T = 0 .

  1. Epitaxial Ba2IrO4 thin-films grown on SrTiO3 substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nichols, J.; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A.

    2014-03-01

    We have synthesized epitaxial Ba2IrO4 (BIO) thin-films on SrTiO3 (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr2IrO4. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.

  2. A No-Arc DC Circuit Breaker Based on Zero-Current Interruption

    NASA Astrophysics Data System (ADS)

    Xiang, Xuewei; Chai, Jianyun; Sun, Xudong

    2017-05-01

    A dc system has no natural current zero-crossing point, so a dc arc is more difficult to extinguish than an ac arc. In order to effectively solve the problem of the dc arc, this paper proposes a dc circuit breaker (DCCB) capable of implementing a no-arc interruption. The proposed DCCB includes a main branch consisting of a mechanical switch, a diode and a current-limiting inductor, a semi-period resonance circuit consisting of a diode, an inductor and a capacitor, and a buffer branch consisting of a capacitor, a thyristor and a resistor. The mechanical switch is opened in a zero-current state, and the overvoltage caused by the counter electromotive force of the inductor does not exist. Meanwhile, the capacitor has a buffering effect on the voltage. The rising of the voltage of the mechanical switch is slower than the rising of the insulating strength of a contact gap of the mechanical switch, resulting in the contact gap not able to be broken down. Thus, the arc cannot be generated. The simulation results show that the proposed DCCB does not generate the arc in the interruption process, the rise rate of the short circuit current can be effectively limited, and the short circuit fault point can be rapidly isolated from the dc power supply.

  3. Alternator insulation evaluation tests

    NASA Technical Reports Server (NTRS)

    Penn, W. B.; Schaefer, R. F.; Balke, R. L.

    1972-01-01

    Tests were conducted to predict the remaining electrical insulation life of a 60 KW homopolar inductor alternator following completion of NASA turbo-alternator endurance tests for SNAP-8 space electrical power systems application. The insulation quality was established for two alternators following completion of these tests. A step-temperature aging test procedure was developed for insulation life prediction and applied to one of the two alternators. Armature winding insulation life of over 80,000 hours for an average winding temperature of 248 degrees C was predicted using the developed procedure.

  4. Novel Physical Model for DC Partial Discharge in Polymeric Insulators

    NASA Astrophysics Data System (ADS)

    Andersen, Allen; Dennison, J. R.

    The physics of DC partial discharge (DCPD) continues to pose a challenge to researchers. We present a new physically-motivated model of DCPD in amorphous polymers based on our dual-defect model of dielectric breakdown. The dual-defect model is an extension of standard static mean field theories, such as the Crine model, that describe avalanche breakdown of charge carriers trapped on uniformly distributed defect sites. It assumes the presence of both high-energy chemical defects and low-energy thermally-recoverable physical defects. We present our measurements of breakdown and DCPD for several common polymeric materials in the context of this model. Improved understanding of DCPD and how it relates to eventual dielectric breakdown is critical to the fields of spacecraft charging, high voltage DC power distribution, high density capacitors, and microelectronics. This work was supported by a NASA Space Technology Research Fellowship.

  5. Methods of Testing Thermal Insulation and Associated Test Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2004-01-01

    The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.

  6. Experimental validation of prototype high voltage bushing

    NASA Astrophysics Data System (ADS)

    Shah, Sejal; Tyagi, H.; Sharma, D.; Parmar, D.; M. N., Vishnudev; Joshi, K.; Patel, K.; Yadav, A.; Patel, R.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A.

    2017-08-01

    Prototype High voltage bushing (PHVB) is a scaled down configuration of DNB High Voltage Bushing (HVB) of ITER. It is designed for operation at 50 kV DC to ensure operational performance and thereby confirming the design configuration of DNB HVB. Two concentric insulators viz. Ceramic and Fiber reinforced polymer (FRP) rings are used as double layered vacuum boundary for 50 kV isolation between grounded and high voltage flanges. Stress shields are designed for smooth electric field distribution. During ceramic to Kovar brazing, spilling cannot be controlled which may lead to high localized electrostatic stress. To understand spilling phenomenon and precise stress calculation, quantitative analysis was performed using Scanning Electron Microscopy (SEM) of brazed sample and similar configuration modeled while performing the Finite Element (FE) analysis. FE analysis of PHVB is performed to find out electrical stresses on different areas of PHVB and are maintained similar to DNB HV Bushing. With this configuration, the experiment is performed considering ITER like vacuum and electrical parameters. Initial HV test is performed by temporary vacuum sealing arrangements using gaskets/O-rings at both ends in order to achieve desired vacuum and keep the system maintainable. During validation test, 50 kV voltage withstand is performed for one hour. Voltage withstand test for 60 kV DC (20% higher rated voltage) have also been performed without any breakdown. Successful operation of PHVB confirms the design of DNB HV Bushing. In this paper, configuration of PHVB with experimental validation data is presented.

  7. Viscosity of a Suspension with Internal Rotation

    NASA Astrophysics Data System (ADS)

    Elisabeth, Lemaire; Laurent, Lobry; François, Peters

    2008-07-01

    When an insulating particle immersed into a low conducting liquid is submitted to a sufficiently high DC field, E, it can rotate spontaneously around itself along any axis perpendicular to the electric field. This symmetry break is known as Quincke rotation and could have important consequences on the rheology of such a suspension of particles (insulating particles dispersed in a slightly conducting liquid). Indeed, if the suspension is subject to a shear rate, and a DC electric field is applied in the velocity gradient direction, the spin rate of the particles is greater than in the absence of an E field, so that the macroscopic spin rate of the particles drives the suspending liquid and thus leads to a decrease of the apparent viscosity of the suspension. The purpose of this paper is to provide a relation between the apparent viscosity of the suspension, the spin rate of the particles and the E field intensity. The predictions of the model are compared to experimental data which have been obtained on a suspension of PMMA particles dispersed in a low polar dielectric liquid. The agreement between experiments and theory is rather good even if the model overestimates the viscosity decrease induced by the field.

  8. Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer

    PubMed Central

    Lin, Der-Song; Zhuang, Xuefeng; Wong, Serena H.; Kupnik, Mario; Khuri-Yakub, Butrus Thomas

    2010-01-01

    The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as polydimethylsiloxane (PDMS), were investigated for an encapsulation material. In addition, PDMS, with a glass-transition temperature below room temperature, provides a low Young's modulus that preserves the static behavior; at higher frequencies for ultrasonic operation, this material becomes stiffer and acoustically matches to water. In this paper, we demonstrate the modeling and implementation of the viscoelastic polymer as the encapsulation material. We introduce a finite element model (FEM) that addresses viscoelasticity. This enables us to correctly calculate both the static operation point and the dynamic behavior of the CMUT. CMUTs designed for medical imaging and therapeutic ultrasound were fabricated and encapsulated. Static and dynamic measurements were used to verify the FEM and show excellent agreement. This paper will help in the design process for optimizing the static and the dynamic behavior of viscoelastic-polymer-coated CMUTs. PMID:21170294

  9. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikam, Pravin N., E-mail: pravinya26@gmail.com; Deshpande, Vineeta D., E-mail: drdeshpandevd@gmail.com

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al{sub 2}O{sub 3}) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observedmore » at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σ{sub AC}) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher’s universal power law of solids. It revealed that σ{sub AC} of PET/alumina nanocomposites can be well characterized by the DC conductivity (σ{sub DC}), critical frequency (ω{sub c}), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σ{sub DC}) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.« less

  10. Dry and wet arc track propagation resistance testing

    NASA Technical Reports Server (NTRS)

    Beach, Rex

    1995-01-01

    The wet arc-propagation resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical environment. Results of an arc-propagation test may vary slightly due to the method of arc initiation; therefore a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc by dripping salt water over pre-damaged wires which creates a conductive path between the wires. The power supply, test current, circuit resistances, and other variables are optimized for testing 20 guage wires. The use of other wire sizes may require modifications to the test variables. The dry arc-propagation resistance test for wire insulation also provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment. In service, electrical arcs may originate form a variety of factors including insulation deterioration, faulty installation, and chafing. Here too, a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc with a vibrating blade. The test also evaluates the ability of the insulation to prevent further arc-propagation when the electrical arc is re-energized.

  11. Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica

    2010-01-01

    The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.

  12. Investigation of the difference between spin Hall magnetoresistance rectification and spin pumping from the viewpoint of magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Qihan; Fan, Xiaolong; Zhou, Hengan; Kong, Wenwen; Zhou, Shiming; Gui, Y. S.; Hu, C.-M.; Xue, Desheng

    2018-02-01

    Spin pumping (SP) and spin rectification due to spin Hall magnetoresistance (SMR) can result in a dc resonant voltage signal, when magnetization in ferromagnetic insulator/nonmagnetic structures experiences ferromagnetic resonance. Since the two effects are often interrelated, quantitative identification of them is important for studying the dynamic nonlocal spin transport through an interface. In this letter, the key difference between SP and SMR rectification was investigated from the viewpoint of spin dynamics. The phase-dependent nature of SMR rectification, which is the fundamental characteristic distinguishing it from SP, was tested by a well-designed experiment. In this experiment, two identical yttrium iron garnet/Pt strips with a π phase difference in dynamic magnetization show the same SP signals and inverse SMR signals.

  13. Theoretical formulation of optical conductivity of La0.7Ca0.3MnO3 exhibiting paramagnetic insulator - ferromagnetic metal transition

    NASA Astrophysics Data System (ADS)

    Satiawati, L.; Majidi, M. A.

    2017-07-01

    A theory of high-energy optical conductivity of La0.7Ca0.3MnO3 has been proposed previously. The proposed theory works to explain the temperature-dependence of the optical conductivity for the photon energy region above ˜0.5 eV for up to ˜22 eV, but fails to capture the correct physics close to the dc limit in which metal-insulator transition occurs. The missing physics at the low energy has been acknowledged as mainly due to not incorporating phonon degree of freedom and electron-phonon interactions. In this study, we aim to complete the above theory by proposing a more complete Hamiltonian incorporating additional terms such as crystal field, two modes of Jahn-Teller vibrations, and coupling between electrons and the two Jahn-Teller vibrational modes. We solve the model by means of dynamical mean-field theory. At this stage, we aim to derive the analytical formulae involved in the calculation, and formulate the algorithmic implementation for the self-consistent calculation process. Our final goal is to compute the density of states and the optical conductivity for the complete photon energy range from 0 to 22 eV at various temperatures, and compare them with the experimental data. We expect that the improved model preserves the correct temperature-dependent physics at high photon energies, as already captured by the previous model, while it would also reveal ferromagnetic metal - paramagnetic insulator transition at the dc limit.

  14. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  15. Accelerated aging test results for aerospace wire insulation constructions

    NASA Astrophysics Data System (ADS)

    Dunbar, William G.

    1995-11-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  16. Impulse Flashover Tests at Edgar Beauchamp High Voltage Test Facility, Dixon, California, in Support of Cutler Insulator Failure Investigation

    DTIC Science & Technology

    2006-07-01

    sites. The strength member of the safety core insulators is a fiberglass belt wrapped around pins in the end fittings. Porcelain tubes cover the belt... porcelain tube and heavily tracked the fiberglass belt but left the belt intact structurally (Figure 1). Figure 1. Cutler safety core insulator ...fail-safe insulators . For these tests, the porcelain tube of the safety core insulator was replaced with a plastic see-through tube. The test report [5

  17. 76 FR 48745 - Energy Conservation Program: Compliance Date Regarding the Test Procedures for Walk-In Coolers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ...), specified a test procedure that must be followed when determining the insulation value of the insulating... tests must be performed on walk-in panels and when tests may be performed on insulation foam used in the... WICF doors: The door type, R-value of the door insulation, and a declaration that the manufacturer has...

  18. Temperature-Dependent Characterization, Modeling, and Switching Speed-Limitation Analysis of Third-Generation 10-kV SiC MOSFET

    DOE PAGES

    Ji, Shiqi; Zheng, Sheng; Wang, Fei; ...

    2017-07-06

    The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less

  19. Temperature-Dependent Characterization, Modeling, and Switching Speed-Limitation Analysis of Third-Generation 10-kV SiC MOSFET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Shiqi; Zheng, Sheng; Wang, Fei

    The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less

  20. DC Interruption Characteristic on Vacuum Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Odaka, Hiromi; Yamada, Masataka; Sakuma, Ryohei; Ding, Cuie; Kaneko, Eiji; Yanabu, Satoru

    A high speed vacuum circuit breaker (HSVCB) has been investigated. HSVCB makes high frequency current superimposed on a fault current so that the current is forced to be zero and is interrupted. Its interruption performance is considered to be dependent on a rate of change of the current (di/dt). As a fundamental research, we investigated the di/dt-dv/dt characteristics and the insulation recovery characteristic after interrupting the counter-pulse current for various contact materials of AgWC, CuW, and CuCr. The results revealed that the case where gap length is larger is better in a current interruption performance. Moreover, it was found that di/dt is not dependent on the insulation recovery characteristics, but the magnitude of interruption current influences greatly.

  1. Sialons as high temperature insulators

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Kuo, Y. S.

    1978-01-01

    Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.

  2. A metal-insulator transition study of VO 2 thin films grown on sapphire substrates

    DOE PAGES

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; ...

    2017-12-15

    In this paper, vanadium thin films were deposited on sapphire substrates by DC magnetron sputtering and then oxidized in a tube furnace filled with oxygen under different temperatures and oxygen flow rates. The significant influence of the oxygen flow rate and oxidation temperature on the electrical and structural properties of the vanadium oxide thin films were investigated systematically. It shows the pure vanadium dioxide (VO 2) state can only be obtained in a very narrow temperature and oxygen flow rate range. The resistivity change during the metal-insulator transition varies from 0.2 to 4 orders of magnitude depending on the oxidationmore » condition. Large thermal hysteresis during the metal-insulator phase transition was observed during the transition compared to the results in literature. Proper oxidation conditions can significantly reduce the thermal hysteresis. Finally, the fabricated VO 2 thin films showed the potential to be applied in the development of electrical sensors and other smart devices.« less

  3. Gate-tunable supercurrent and multiple Andreev reflections in a superconductor-topological insulator nanoribbon-superconductor hybrid device

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis A.; Kayyalha, Morteza; Kazakov, Aleksandr; Miotkowski, Ireneusz; Rokhinson, Leonid P.; Chen, Yong P.

    2018-02-01

    We report on the observation of gate-tunable proximity-induced superconductivity and multiple Andreev reflections (MARs) in a bulk-insulating BiSbTeSe2 topological insulator nanoribbon (TINR) Josephson junction with superconducting Nb contacts. We observe a gate-tunable critical current (IC) for gate voltages (Vg) above the charge neutrality point (VCNP), with IC as large as 430 nA. We also observe MAR peaks in the differential conductance (dI/dV) versus DC voltage (Vdc) across the junction corresponding to sub-harmonic peaks (at Vdc = Vn = 2ΔNb/en, where ΔNb is the superconducting gap of the Nb contacts and n is the sub-harmonic order). The sub-harmonic order, n, exhibits a Vg-dependence and reaches n = 13 for Vg = 40 V, indicating the high transparency of the Nb contacts to TINR. Our observations pave the way toward exploring the possibilities of using TINR in topologically protected devices that may host exotic physics such as Majorana fermions.

  4. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB 6

    DOE PAGES

    Hartstein, M.; Toews, W. H.; Hsu, Y. -T.; ...

    2017-10-23

    The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less

  5. Demonstration of Microsphere Insulation in Cryogenic Vessels

    NASA Astrophysics Data System (ADS)

    Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.

    2006-04-01

    While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.

  6. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  7. Designing and Implementation a Lab Testing Method for Power Cables Insulation Resistance According with STAS 10411-89, SR EN ISO/CEI/17025/2005

    NASA Astrophysics Data System (ADS)

    Dobra, R.; Pasculescu, D.; Marc, G.; Risteiu, M.; Antonov, A.

    2017-06-01

    Insulation resistance measurement is one of the most important tests required by standards and regulations in terms of electrical safety. Why these tests are is to prevent possible accidents caused by electric shock, damage to equipment or outbreak of fire in normal operating conditions of electrical cables. The insulation resistance experiment refers to the testing of electrical cable insulation, which has a measured resistance that must be below the imposed regulations. Using a microcontroller system data regarding the insulation resistance of the power cables is acquired and with SCADA software the test results are displayed.

  8. Final Technical Report: Electromagnetic Pump Insulation Materials Development and Testing (PLM-DOC-0005-2465) Report # DOEGEHB00613

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krahn, John; Reed, Claude; Loewen, Eric

    Final Technical Report: Electromagnetic Pump Insulation Materials Development and Testing (Report # DOEGEHB00613) summarizes the information gathered from the analysis of the 160 m3/min EM Pump insulation that was tested in 2000-2002 and additional evaluations of new resilient, engineered insulation system evaluated and tested at both GRC and ANL. This report provides information on Tasks 1 and 2 of the entire project. This report also provides information in three broad areas: Historical and current data; Conclusions based on test data; and Insulation specifications for use in EM Pumps. The research for Task 2 builds upon Task 1: Update EM Pumpmore » Databank, which is summarized within this report. Where research for Task 3 and 4 Next-Generation EM Pump Analysis Tools identified parameters or analysis model that benefits Task 2 research, those items are noted within this report. The important design variables for the manufacture and operation of an EM Pump that the insulation research can evaluate are: space constraints; voltage capability of insulation system; maximum flux density through iron; flow rate and outlet pressure; efficiency and manufacturability. The development summary of the Electromagnetic Pump Insulation Materials Development and Testing was completed to include: Historical and current data; Conclusions based on test data; and Insulation specifications for use in EM Pumps.« less

  9. Thermal Performance of Cryogenic Piping Multilayer Insulation in Actual Field Installations

    NASA Technical Reports Server (NTRS)

    Fesmire, J.; Augustnynowicz, S.; Thompson, K. (Technical Monitor)

    2002-01-01

    A standardized way of comparing the thermal performance of different pipelines in different sizes is needed. Vendor data for vacuum-insulated piping are typically given in heat leak rate per unit length (W/m) for a specific diameter pipeline. An overall k-value for actual field installations (k(sub oafi)) is therefore proposed as a more generalized measure for thermal performance comparison and design calculation. The k(sub oafi) provides a direct correspondence to the k-values reported for insulation materials and illustrates the large difference between ideal multilayer insulation (MLI) and actual MLI performance. In this experimental research study, a section of insulated piping was tested under cryogenic vacuum conditions, including simulated spacers and bending. Several different insulation systems were tested using a 1-meter-long cylindrical cryostat test apparatus. The simulated spacers tests showed significant degradation in the thermal performance of a given insulation system. An 18-meter-long pipeline test apparatus is now in operation at the Cryogenics Test Laboratory, NASA Kennedy Space Center, for conducting liquid nitrogen thermal performance tests.

  10. Thermal Performance Testing of Order Dependancy of Aerogels Multilayered Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, James E.; Demko, J. A.

    2009-01-01

    Robust multilayer insulation systems have long been a goal of many research projects. Such insulation systems must provide some degree of structural support and also mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MU) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel and multilayer insulation systems have been tested at Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MU and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  11. DC to DC Converter Testing for Space Applications: Use of EMI Filters and Thermal Range of Operation

    NASA Technical Reports Server (NTRS)

    Leon, Rosa

    2008-01-01

    Several tests were performed on Interpoint and International Rectifier (IR) direct current (DC) to DC converters to evaluate potential performance and reliability issues in space use of DC to DC converters and to determine if the use of electromagnetic interference (EMI) filters mitigates concerns observed during previous tests. Test findings reported here include those done up until September - October 2008. Tests performed include efficiency, regulation, cross-regulation, power consumption with inhibit on, load transient response, synchronization, and turn-on tests. Some of the test results presented here span the thermal range -55 C to 125 C. Lower range was extended to -120 C in some tested converters. Determination of failure root cause in DC/DC converters that failed at thermal extremes is also included.

  12. Design improvement, qualification testing, purge and vent investigation, fabrication, and documentation of a GAC-9 insulation system

    NASA Technical Reports Server (NTRS)

    Shriver, C. B.; Apisa, J. N.; Kariotis, A. H.

    1971-01-01

    Results of the research and development program to determine the purge and vent characteristics of the GAC-9 insulation system are summarized. The work scope comprised: (1) literature survey; (2) design improvement and insulation effort; (3) testing; and (4) evaluation of test results. Program objectives to be realized are: (1) definition of purge gas flow characteristics of the GAC-9 insulation system through laboratory measurements; and (2) demonstration of insulation effectiveness as a system for prelaunch purging and launch venting of the 76-cm diameter calorimeter, which is a subscale model simulating a realistic type of GAC-9 insulation application.

  13. Development of Nanomechanical Sensors for Breast Cancer Biomarkers

    DTIC Science & Technology

    2008-06-01

    semiconductor industry in developing large scale integrated circuits at very lost cost can lead to similar breakthroughs in array sensors for biomolecules of...insulated from the serum or buffer. The entire device is mounted onto a semiconductor chip carrier, for easy integration with electronics. Figure 3...Keithley 2400 source meter. The ac modulation and the dc bias are added by a noninverting summing circuit, which is integrated with the preamplifier

  14. Evidence of two-stage melting of Wigner solids

    NASA Astrophysics Data System (ADS)

    Knighton, Talbot; Wu, Zhe; Huang, Jian; Serafin, Alessandro; Xia, J. S.; Pfeiffer, L. N.; West, K. W.

    2018-02-01

    Ultralow carrier concentrations of two-dimensional holes down to p =1 ×109cm-2 are realized. Remarkable insulating states are found below a critical density of pc=4 ×109cm-2 or rs≈40 . Sensitive dc V-I measurement as a function of temperature and electric field reveals a two-stage phase transition supporting the melting of a Wigner solid as a two-stage first-order transition.

  15. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Technical Reports Server (NTRS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  16. SINIS bolometer with a suspended absorber

    NASA Astrophysics Data System (ADS)

    Tarasov, M.; Edelman, V.; Mahashabde, S.; Fominsky, M.; Lemzyakov, S.; Chekushkin, A.; Yusupov, R.; Winkler, D.; Yurgens, A.

    2018-03-01

    We have developed a Superconductor-Insulator-Normal Metal-Insulator-Superconductor (SINIS) bolometer with a suspended normal metal bridge. The suspended bridge acts as a bolometric absorber with reduced heat losses to the substrate. Such bolometers were characterized at 100-350 mK bath temperatures and electrical responsivity of over 109 V/W was measured by dc heating the absorber through additional contacts. Suspended bolometers were also integrated in planar twin-slot and log-periodic antennas for operation in the submillimetre-band of radiation. The measured voltage response to radiation at 300 GHz and at 100 mK bath temperature is 3*108 V/W and a current response is 1.1*104 A/W which corresponds to a quantum efficiency of ~15 electrons per photon. An important feature of such suspended bolometers is the thermalization of electrons in the absorber heated by optical radiation, which in turn provides better quantum efficiency. This has been confirmed by comparison of bolometric response to dc and rf heating. We investigate the performance of direct SN traps and NIS traps with a tunnel barrier between the superconductor and normal metal trap. Increasing the volume of superconducting electrode helps to reduce overheating of superconductor. Influence of Andreev reflection and Kapitza resistance, as well as electron-phonon heat conductivity and thermal conductivity of N-wiring are estimated for such SINIS devices.

  17. A new theoretical formulation of coupling thermo-electric breakdown in LDPE film under dc high applied fields

    NASA Astrophysics Data System (ADS)

    Boughariou, F.; Chouikhi, S.; Kallel, A.; Belgaroui, E.

    2015-12-01

    In this paper, we present a new theoretical and numerical formulation for the electrical and thermal breakdown phenomena, induced by charge packet dynamics, in low-density polyethylene (LDPE) insulating film under dc high applied field. The theoretical physical formulation is composed by the equations of bipolar charge transport as well as by the thermo-electric coupled equation associated for the first time in modeling to the bipolar transport problem. This coupled equation is resolved by the finite-element numerical model. For the first time, all bipolar transport results are obtained under non-uniform temperature distributions in the sample bulk. The principal original results show the occurring of very sudden abrupt increase in local temperature associated to a very sharp increase in external and conduction current densities appearing during the steady state. The coupling between these electrical and thermal instabilities reflects physically the local coupling between electrical conduction and thermal joule effect. The results of non-uniform temperature distributions induced by non-uniform electrical conduction current are also presented for several times. According to our formulation, the strong injection current is the principal factor of the electrical and thermal breakdown of polymer insulating material. This result is shown in this work. Our formulation is also validated experimentally.

  18. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Astrophysics Data System (ADS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-04-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  19. Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.; Causey, W. H., Jr.

    1977-01-01

    A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.

  20. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.

    PubMed

    Hawkins, Benjamin G; Kirby, Brian J

    2010-11-01

    We simulate electrothermally induced flow in polymeric, insulator-based dielectrophoresis (iDEP) systems with DC-offset, AC electric fields at finite thermal Péclet number, and we identify key regimes where electrothermal (ET) effects enhance particle deflection and trapping. We study a single, two-dimensional constriction in channel depth with parametric variations in electric field, channel geometry, fluid conductivity, particle electrophoretic (EP) mobility, and channel electroosmotic (EO) mobility. We report the effects of increasing particle EP mobility, channel EO mobility, and AC and DC field magnitudes on the mean constriction temperature and particle behavior. Specifically, we quantify particle deflection and trapping, referring to the deviation of particles from their pathlines due to dielectrophoresis as they pass a constriction and the stagnation of particles due to negative dielectrophoresis near a constriction, respectively. This work includes the coupling between fluid, heat, and electromagnetic phenomena via temperature-dependent physical parameters. Results indicate that the temperature distribution depends strongly on the fluid conductivity and electric field magnitude, and particle deflection and trapping depend strongly on the channel geometry. Electrothermal (ET) effects perturb the EO flow field, creating vorticity near the channel constriction and enhancing the deflection and trapping effects. ET effects alter particle deflection and trapping responses in insulator-based dielectrophoresis devices, especially at intermediate device aspect ratios (2 ≤ r ≤ 7) in solutions of higher conductivity (σ m ≥ 1 × 10(-3)S/m). The impact of ET effects on particle deflection and trapping are diminished when particle EP mobility or channel EO mobility is high. In almost all cases, ET effects enhance negative dielectrophoretic particle deflection and trapping phenomena. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  2. High Voltage Power Supply Design Guide for Space

    NASA Technical Reports Server (NTRS)

    Bever, Renate S.; Ruitberg, Arthur P.; Kellenbenz, Carl W.; Irish, Sandra M.

    2006-01-01

    This book is written for newcomers to the topic of high voltage (HV) in space and is intended to replace an earlier (1970s) out-of-print document. It discusses the designs, problems, and their solutions for HV, mostly direct current, electric power, or bias supplies that are needed for space scientific instruments and devices, including stepping supplies. Output voltages up to 30kV are considered, but only very low output currents, on the order of microamperes. The book gives a brief review of the basic physics of electrical insulation and breakdown problems, especially in gases. It recites details about embedment and coating of the supplies with polymeric resins. Suggestions on HV circuit parts follow. Corona or partial discharge testing on the HV parts and assemblies is discussed both under AC and DC impressed test voltages. Electric field analysis by computer on an HV device is included in considerable detail. Finally, there are many examples given of HV power supplies, complete with some of the circuit diagrams and color photographs of the layouts.

  3. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER Tank Arrives at NASA’s Marshall Center for Spray-On Foam InsulationSHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.

  4. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.SHIIVER Tank Arrives at NASA’s Marshall Center for Spray-On Foam Insulation

  5. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  6. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  7. Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets

    NASA Astrophysics Data System (ADS)

    Johansen, Øyvind; Brataas, Arne

    2017-06-01

    Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2,FeF2, and NiO. Near the spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin pumping is independent of the external magnetic field when the driving field has the optimal circular polarization. In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.

  8. Far-infrared and dc magnetotransport of CaMnO3-CaRuO3 superlattices

    NASA Astrophysics Data System (ADS)

    Yordanov, P.; Boris, A. V.; Freeland, J. W.; Kavich, J. J.; Chakhalian, J.; Lee, H. N.; Keimer, B.

    2011-07-01

    We report temperature- and magnetic-field-dependent measurements of the dc resistivity and the far-infrared reflectivity (FIR) (photon energies ℏω=50-700 cm-1) of superlattices comprising ten consecutive unit cells of the antiferromagnetic insulator CaMnO3, and four to ten unit cells of the correlated paramagnetic metal CaRuO3. Below the Néel temperature of CaMnO3, the dc resistivity exhibits a logarithmic divergence upon cooling, which is associated with a large negative, isotropic magnetoresistance. The ω→0 extrapolation of the resistivity extracted from the FIR reflectivity, on the other hand, shows a much weaker temperature and field dependence. We attribute this behavior to scattering of itinerant charge carriers in CaRuO3 from sparse, spatially isolated magnetic defects at the CaMnO3-CaRuO3 interfaces. This field-tunable “transport bottleneck” effect may prove useful for functional metal-oxide devices.

  9. Development and validation of cryogenic foam insulation for LH2 subsonic transports

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.

    1981-01-01

    Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.

  10. Environmental and Sustainable Technology Evaluation: Mold-Resistant Armacell Insulation--Armacell LLC, AP Armaflex Black

    EPA Science Inventory

    The ESTE test program measured the mold resistance of Armacell AP Armaflex Black insulation. Tests for emissions of VOCs and formaldehyde were also performed. AP Armaflex Roll Insulation is a black flexible closed-cell, fiber-free elastomeric thermal insulation. The expanded clos...

  11. ASRM test report: Autoclave cure process development

    NASA Technical Reports Server (NTRS)

    Nachbar, D. L.; Mitchell, Suzanne

    1992-01-01

    ASRM insulated segments will be autoclave cured following insulation pre-form installation and strip wind operations. Following competitive bidding, Aerojet ASRM Division (AAD) Purchase Order 100142 was awarded to American Fuel Cell and Coated Fabrics Company, Inc. (Amfuel), Magnolia, AR, for subcontracted insulation autoclave cure process development. Autoclave cure process development test requirements were included in Task 3 of TM05514, Manufacturing Process Development Specification for Integrated Insulation Characterization and Stripwind Process Development. The test objective was to establish autoclave cure process parameters for ASRM insulated segments. Six tasks were completed to: (1) evaluate cure parameters that control acceptable vulcanization of ASRM Kevlar-filled EPDM insulation material; (2) identify first and second order impact parameters on the autoclave cure process; and (3) evaluate insulation material flow-out characteristics to support pre-form configuration design.

  12. Charge dissipative dielectric for cryogenic devices

    NASA Technical Reports Server (NTRS)

    Cantor, Robin Harold (Inventor); Hall, John Addison (Inventor)

    2007-01-01

    A Superconducting Quantum Interference Device (SQUID) is disclosed comprising a pair of resistively shunted Josephson junctions connected in parallel within a superconducting loop and biased by an external direct current (dc) source. The SQUID comprises a semiconductor substrate and at least one superconducting layer. The metal layer(s) are separated by or covered with a semiconductor material layer having the properties of a conductor at room temperature and the properties of an insulator at operating temperatures (generally less than 100 Kelvins). The properties of the semiconductor material layer greatly reduces the risk of electrostatic discharge that can damage the device during normal handling of the device at room temperature, while still providing the insulating properties desired to allow normal functioning of the device at its operating temperature. A method of manufacturing the SQUID device is also disclosed.

  13. DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration.

    PubMed

    Zhang, Peng; Liu, Yuxin

    2017-09-01

    Sample enrichment or molecules concentration is considered an essential step in sample processing of miniaturized devices aimed at biosensing and bioanalysis. Among all the means involved to achieve this aim, dielectrophoresis (DEP) is increasingly employed in molecules manipulation and concentration because it is non-destructive and high efficiency. This paper presents a methodology to achieve protein concentration utilizing the combination effects of electrokinetics and low frequency insulating dielectrophoresis (iDEP) generated within a microfluidic device, in which a submicron constricted channel was fabricated using DNA molecular combing and replica molding. This fabrication technique avoids using e-beam lithography or other complicated nanochannel fabrication methods, and provides an easy and low cost approach with the flexibility of controlling channel dimensions to create highly constricted channels embedded in a microfluidic device. With theoretical analysis and experiments, we demonstrated that fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) protein molecules can be significantly concentrated to form an arc-shaped band near the constricted channel under the effects of a negative dielectrophoretic force and DC electrokinetic forces within a short period of time. It was also observed that the amplitudes of the applied DC and AC electric fields, the AC frequencies as well as the suspending medium conductivities had strong effects on the concentration responses of the FITC-BSA molecules, including the concentrated area and position, intensities of the focused molecules, and concentration speed. Our method provides a simple and flexible approach for quickly concentrating protein molecules by controlling the applied electric field parameters. The iDEP device reported in this paper can be used as a stand-alone sensor or worked as a pre-concentration module integrated with biosensors for protein biomarker detection. Furthermore, low frequency dielectrophoresis provides practical uses for integrating the concentration module with a portable biosensing system.

  14. Strain induced novel quantum magnetotransport properties of topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn; Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049; Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn

    Recent theoretical and experimental researches have revealed that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). Motivated by this, we explore the strain effects on the transport properties of the HgTe surface states, which are modulated by a weak 1D in-plane electrostatic periodic potential in the presence of a perpendicular magnetic field. We analytically derive the zero frequency (dc) diffusion conductivity for the case of quasielastic scattering in the Kubo formalism, and find that, in strong magnetic field regime, the Shubnikov–de Haas oscillations are superimposed on top of the Weiss oscillations due to the electricmore » modulation for null and finite strain. Furthermore, the strain is shown to remove the degeneracy in inversion symmetric Dirac cones on the top and bottom surfaces. This accordingly gives rise to the splitting and mixture of Landau levels, and the asymmetric spectrum of the dc conductivity. These phenomena, not known in a conventional 2D electron gas and even in a strainless TI and graphene, are a consequence of the anomalous spectrum of surface states in a fully stained TI. These results should be valuable for electronic and spintronic applications of TIs, and thus we fully expect to see them in the further experiment. - Highlights: • The strain removes the degeneracy in inversion symmetric Dirac cones. • The strain gives rise to the splitting and mixture of the Landau levels. • The strain leads to the asymmetric spectrum of the dc conductivity. • Shubnikov de Haas oscillations are shown to be superimposed on Weiss oscillations. • Interplay between strain and electric field causes different occupancy of TI states.« less

  15. Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7

    NASA Astrophysics Data System (ADS)

    Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim

    2016-12-01

    We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.

  16. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.

  17. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  18. Investigations of dc electrical discharges in low-pressure sodium vapor with implications for AMTEC converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkan, A.; Hunt, T.K.

    1998-07-01

    Upcoming designs for AMTEC modules capable of delivering as much as 150 watts will see the introduction of higher voltages into sodium vapor at pressures spanning a wide range. In theory, with any value for two out of three parameters: voltage, pressure, and electrode geometry, a value exists for the third parameter where DC electrical breakdown can occur; due to its low ionization energy, sodium vapor may be particularly susceptible to breakdown. This destructive event is not desirable in AMTEC modules, and sets a limit on the maximum voltage that can be built-up within any single enclosed module. An experimentalmore » cell was fabricated with representative electrode configurations and a separately heated sodium reservoir to test conditions typically expected during start-up, operation, and shutdown of AMTEC cells. Breakdown voltages were investigated in both sodium vapor and, for comparison, argon gas. The dependence on electrode material and polarity was also investigated. Additional information about leakage currents and the insulating properties of {alpha}-alumina in the presence of sodium vapor was collected, revealing a reversible tendency for conductive sodium films to build up under certain conditions, electrically shorting-out previously isolated components. In conclusion, safe operating limits on voltages, temperatures, and pressures are discussed.« less

  19. Magnon-mediated current drag across a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Shi, Jing

    Electric current transmission can occur in a magnetic insulator via spin current inter-conversions at heavy metal/magnetic insulator interfaces. In magnetic insulators, spin current is carried by spin wave excitations or their quanta, magnons. This marvelous phenomenon was first theoretically predicted and dubbed as the magnon-mediated current drag in 2012 by Zhang et al.. Following a breakthrough in materials growth, i.e. yttrium iron garnet films or YIG ranging from 30 to 80 nm in thickness sandwiched between two heavy metal films, we successfully showed the nonlocal DC current transmission in such sandwich structures via spin current rather than charge current. To exclude the leakage effect, the experiments are conducted at temperatures below 250 K where the resistance between the metal layers exceeds 20 Gohms. In addition, by replacing the top Pt electrode with beta-Ta which is known to reverse the sign in the spin Hall angle, we found that the nonlocal signal reverses the polarity, which is a direct demonstration of the spin current nature. Furthermore, the temperature dependence of the nonlocal signal confirms the role of magnons in this effect. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. SC0012670.

  20. A test and instrumentation system for the investigation of degradation of electrical insulating materials

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The basic test methods of aging and deterioration mechanisms of electrical insulating materials are discussed. A comprehensive test system developed to study the degradation process is described. This system is completely checked, and calibrated with a few insulating material samples.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayakumar, R.; Martovetsky, N.N.; Perfect, S.A.

    A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete.more » It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations.« less

  2. Basic Research on Plasma Cathode for HPM Sources (NE - Luginsland)

    DTIC Science & Technology

    2011-11-30

    to NEPP Vacuum Pump for Mock Magnetron 12 (b) Borosilicate glass (Insulator)  Anode Cathode Vacuum chamber Ion gauge controller Charge...channeling may be one physical mechanism that can explain the stability of the pinch in the discharge. (a) Scroll Pump High Voltage Power Supply DC... vacuum and/or low vacuum slow wave devices and cross field devices) in burst mode? Here, burst mode effectively implies an impulse-like (short pulse

  3. How Insulating Particles Increase the Conductivity of a Suspension

    NASA Astrophysics Data System (ADS)

    Pannacci, N.; Lobry, L.; Lemaire, E.

    2007-08-01

    Nonconducting particles suspended in a liquid usually decreases the bulk conductivity since they form obstacles to the ions’ migration. However, for sufficiently high dc electric fields, these particles rotate spontaneously (Quincke rotation) and facilitate the ions migration: the effective conductivity of the suspension is thus increased. We present a theoretical analysis and show experimental results which demonstrate that the apparent conductivity of the whole suspension can be higher than that of the suspending liquid.

  4. New insulation constructions for aerospace wiring applications

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1994-01-01

    Outlined in this presentation is the background to insulation constructions for aerospace wiring applications, the Air Force wiring policy, the purpose and contract requirements of new insulation constructions, the test plan, and the test results.

  5. Design and Development of E3 Antenna Container,

    DTIC Science & Technology

    1985-09-03

    reinforced with square tubing. The walls and ceiling shall be insulated with expanded polystyrene . TEST LOCATION - This test will be performed at the...ceiling shall be insulated with expanded polystyrene . TEST LOCATION - This test will be performed at the Edgewater Machine & Fabricator’s facility...insulated with expanded polystyrene . TEST LOCATION - This test will be performed at the Edgewater Machine & Fabricator’s facility located at 200 N

  6. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  7. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flame propagation characteristics of thermal/acoustic insulation when exposed to both a radiant heat... test. Radiant heat source means an electric or air propane panel. Thermal/acoustic insulation means a... insulation and in small parts, materials must be tested either as a section cut from a fabricated part as...

  8. Fabrication and characterization of hybrid Nb-YBCO dc SQUIDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frack, E.K.; Drake, R.E.; Patt, R.

    This paper reports on the fabrication of hybrid low T{sub c}/high T{sub c} dc SQUIDs of two flavors. The first kind utilizes niobium tunnel junctions and a YBCO film strip as the most inductive portion of the SQUID loop. This configuration allows a direct measurement of the inductance of the YBCO microstrip from which the effective penetration depth can be calculated. The successful fabrication of these SQUIDs has required 1. superconducting Nb-to-YBCO contacts, 2. deposition and patterning of an SiO{sub 2} insulation layer over YBCO, and 3. selective patterning of niobium and SiO{sub 2} relative to YBCO. All these processmore » steps are pertinent to the eventual use of YBCO thin films in electronic devices.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartstein, M.; Toews, W. H.; Hsu, Y. -T.

    The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less

  10. Modifying ultrafast optical response of sputtered VOX nanostructures in a broad spectral range by altering post annealing atmosphere

    NASA Astrophysics Data System (ADS)

    Kürüm, U.; Yaglioglu, H. G.; Küçüköz, B.; Oksuzoglu, R. M.; Yıldırım, M.; Yağcı, A. M.; Yavru, C.; Özgün, S.; Tıraş, T.; Elmali, A.

    2015-01-01

    Nanostructured VOX thin films were grown in a dc magnetron sputter system under two different Ar:O2 gas flow ratios. The films were annealed under vacuum and various ratios of O2/N2 atmospheres. The insulator-to-metal transition properties of the thin films were investigated by temperature dependent resistance measurement. Photo induced insulator-to-metal transition properties were investigated by Z-scan and ultrafast white light continuum pump probe spectroscopy measurements. Experiments showed that not only insulator-to-metal transition, but also wavelength dependence (from NIR to VIS) and time scale (from ns to ultrafast) of nonlinear optical response of the VOX thin films could be fine tuned by carefully adjusting post annealing atmosphere despite different initial oxygen content in the production. Fabricated VO2 thin films showed reflection change in the visible region due to photo induced phase transition. The results have general implications for easy and more effective fabrication of the nanostructured oxide systems with controllable electrical, optical, and ultrafast optical responses.

  11. Non-Asbestos Insulation Testing Using a Plasma Torch

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Prince, A. S.; Selvidge, S. A.; Phelps, J.; Martin, C. L.; Lawrence, T. W.

    2000-01-01

    Insulation obsolescence issues are a major concern for the Reusable Solid Rocket Motor (RSRM). As old sources of raw materials disappear, new sources must be found and qualified. No simple, inexpensive test presently exists for predicting the erosion performance of a candidate insulation in the full-scale motor, Large motor tests cost million of dollars and therefore can only be used on a few very select candidates. There is a need for a simple, low cost method of screening insulation performance that can simulate some of the different erosion environments found in the RSRM. This paper describes a series of erosion tests on two different non-asbestos insulation formulations, a KEVLAR(registered) fiber-filled and a carbon fiber-filled insulation containing Ethylene-Propylene-Diene Monomer (EPDM) rubber as the binder. The test instrument was a plasma torch device. The two main variables investigated were heat flux and alumina particle impingement concentration. Statistical analysis revealed that the two different formulations had very different responses to the main variable. The results of this work indicate that there may be fundamental differences in how these insulation formulations perform in the motor operating environment. The plasma torch appears to offer a low-cost means of obtaining a fundamental understanding of insulation response to critical factors in a series of statistically designed experiments.

  12. Failure analysis of glass-ceramic insulators of shock tested vacuum (neutron) tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, R.K.

    1980-08-25

    Eight investigative techniques were used to examine the glass-ceramic insulators in vacuum (neutron) tubes. The insulators were extracted from units that had been subjected to low temperature mechanical shock tests. Two of the three units showed reduced neutron output after these tests and an insulator on one of these two was cracked completely through which probably occurred during shock testing. The objective of this study was to determine if any major differences existed between the insulators of these tubes. After eight analyses, it was concluded that no appreciable differences existed. It appeared that cracking of the one glass-ceramic sample wasmore » initiated at inner-sleeve interface voids. For this sample, the interface void density was much higher than is presently acceptable. All insulators were made with glass-ceramic having a Na/sub 2/O content of 4.6 wt%. An increased Na/sub 2/O content will cause an increase in the coefficient of expansion and will reduce the residual stress level since the molybdenum has a higher coefficient of thermal expansion than the insulator. Thus, it is believed that a decrease in interface voids and an increase in Na/sub 2/O should aid in reduced cracking of the insulator during these tests.« less

  13. Comparison of Arc Tracking Tests in Various Aerospace Environments

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Hammoud, Ahmad; McCall, David

    1996-01-01

    Momentary short-circuit arcs between a polyimide insulated wire with defective insulation and another conductor may cause pyrolization of the insulation resulting in a conductive path capable of sustaining the arc. These sustained arcs may propagate along the wires or to neighboring wires leading to complete failure of the wire bundle. Wire insulation susceptibility to arc tracking may be dependent on its environment. Because all wire insulation types tested to date arc track, a test procedure has been developed to compare different insulation types with respect to their arc tracking susceptibility. This test procedure is presented along with a comparison of arc tracking in the following three environments: (1) Air at atmospheric pressure and 1 gravitational(g) force; (2) Vacuum (2.67 x 10(exp -3) Pa) and 1g, and (3) Air at atmospheric pressure and microgravity (less than 0.04g).

  14. F-15B in on ramp with close-up of test panels covered with advanced spray-on foam insulation materia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Test panels covered with an advanced foam insulation material for the Space Shuttle's giant external fuel tank were test flown aboard an F-15B research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Six panels were mounted on the left side of a heavily instrumented Flight Text Fixture mounted underneath the F-15B's fuselage. Insulation on this panel was finely machined over a horizontal rib structure to simulate in-line airflow past the tank; other panels had the ribs mounted vertically or had the insulation left in a rough as-sprayed surface. The tests were part of an effort by NASA's Marshall Space Flight Center to determine why small particles of the new insulation flaked off the tank on recent Shuttle missions. The tests with Dryden's F-15B were designed to replicate the pressure environment the Shuttle encounters during the first minute after launch. No noticeable erosion of the insulation material was noted after the flight experiment at Dryden.

  15. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel

    2015-08-15

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the materialmore » in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.« less

  16. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films

    NASA Astrophysics Data System (ADS)

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel

    2015-08-01

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the material in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.

  17. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films.

    PubMed

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel

    2015-08-01

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the material in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.

  18. Cryogenic insulation standard data and methodologies

    NASA Astrophysics Data System (ADS)

    Demko, J. A.; Fesmire, J. E.; Johnson, W. L.; Swanger, A. M.

    2014-01-01

    Although some standards exist for thermal insulation, few address the sub-ambient temperature range and cold-side temperatures below 100 K. Standards for cryogenic insulation systems require cryostat testing and data analysis that will allow the development of the tools needed by design engineers and thermal analysts for the design of practical cryogenic systems. Thus, this critically important information can provide reliable data and methodologies for industrial efficiency and energy conservation. Two Task Groups have been established in the area of cryogenic insulation systems Under ASTM International's Committee C16 on Thermal Insulation. These are WK29609 - New Standard for Thermal Performance Testing of Cryogenic Insulation Systems and WK29608 - Standard Practice for Multilayer Insulation in Cryogenic Service. The Cryogenics Test Laboratory of NASA Kennedy Space Center and the Thermal Energy Laboratory of LeTourneau University are conducting Inter-Laboratory Study (ILS) of selected insulation materials. Each lab carries out the measurements of thermal properties of these materials using identical flat-plate boil-off calorimeter instruments. Parallel testing will provide the comparisons necessary to validate the measurements and methodologies. Here we discuss test methods, some initial data in relation to the experimental approach, and the manner reporting the thermal performance data. This initial study of insulation materials for sub-ambient temperature applications is aimed at paving the way for further ILS comparative efforts that will produce standard data sets for several commercial materials. Discrepancies found between measurements will be used to improve the testing and data reduction techniques being developed as part of the future ASTM International standards.

  19. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... for the battery box and cover, only one sample need be prepared and tested. (2) Prepare a 30 percent... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  20. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... for the battery box and cover, only one sample need be prepared and tested. (2) Prepare a 30 percent... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  1. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... for the battery box and cover, only one sample need be prepared and tested. (2) Prepare a 30 percent... insulation plus the battery cover or box material. The insulation thickness shall be representative of that...

  2. 14 CFR Appendix F to Part 23 - Test Procedure

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... materials used in electrical wire and cable insulation and in small parts, materials must be tested either... wire and cable insulation, the wire and cable specimens must be the same size as used in the airplane... specification (make and size) must be tested. The specimen of wire or cable (including insulation) must be...

  3. Design of load-to-failure tests of high-voltage insulation breaks for ITER's cryogenic network

    NASA Astrophysics Data System (ADS)

    Langeslag, S. A. E.; Rodriguez Castro, E.; Aviles Santillana, I.; Sgobba, S.; Foussat, A.

    2015-12-01

    The development of new generation superconducting magnets for fusion research, such as the ITER experiment, is largely based on coils wound with so-called cable-in-conduit conductors. The concept of the cable-in-conduit conductor is based on a direct cooling principle, by supercritical helium, flowing through the central region of the conductor, in close contact with the superconducting strands. Consequently, a direct connection exists between the electrically grounded helium coolant supply line and the highly energised magnet windings. Various insulated regions, constructed out of high-voltage insulation breaks, are put in place to isolate sectors with different electrical potential. In addition to high voltages and significant internal helium pressure, the insulation breaks will experience various mechanical forces resulting from differential thermal contraction phenomena and electro-magnetic loads. Special test equipment was designed, prepared and employed to assess the mechanical reliability of the insulation breaks. A binary test setup is proposed, where mechanical failure is assumed when leak rate of gaseous helium exceeds 10-9·Pa·m3/s. The test consists of a load-to-failure insulation break charging, in tension, while immersed in liquid nitrogen at the temperature of 77 K. Leak tightness during the test is monitored by measuring the leak rate of the gaseous helium, directly surrounding the insulation break, with respect to the existing vacuum inside the insulation break. The experimental setup is proven effective, and various insulation breaks performed beyond expectations.

  4. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.

    2016-12-01

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  5. Observation of spin-glass behavior in homogeneous (Ga,Mn)N layers grown by reactive molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Brandt, O.; Trampert, A.; Friedland, K. J.; Sun, Y. J.; Ploog, K. H.

    2003-04-01

    We present a detailed study of the magnetic properties of (Ga,Mn)N layers grown directly on 4H-SiC substrates by reactive molecular-beam epitaxy. X-ray diffraction and transmission electron microscopy demonstrates that homogeneous (Ga,Mn)N alloys of high crystal quality can be synthesized by this growth method up to a Mn-content of 10 12 %. Using a variety of magnetization experiments (temperature-dependent dc magnetization, isothermal remanent magnetization, frequency and field dependent ac susceptibility), we demonstrate that insulating (Ga,Mn)N alloys represent a Heisenberg spin-glass with a spin-freezing temperature around 4.5 K. We discuss the origins of this spin-glass characteristics in terms of the deep-acceptor nature of Mn in GaN and the resulting insulating character of this compound.

  6. Microwave spectroscopic observation of multiple phase transitions in the bilayer electron solid in wide quantum wells

    NASA Astrophysics Data System (ADS)

    Hatke, Anthony; Engel, Lloyd; Liu, Yang; Shayegan, Mansour; Pfeiffer, Loren; West, Ken; Baldwin, Kirk

    2015-03-01

    The termination of the low Landau filling factor (ν) fractional quantum Hall series for a single layer two dimensional system results in the formation of a pinned Wigner solid for ν < 1 / 5. In a wide quantum well the system can support a bilayer state in which interlayer and intralayer interactions become comparable, which is measured in traditional transport as an insulating state for ν < 1 / 2. We perform microwave spectroscopic studies of this bilayer state and observe that this insulator exhibits a resonance, a signature of a solid phase. Additionally, we find that as we increase the density of the well at fixed ν this bilayer solid exhibits multiple sharp reductions in the resonance amplitude vs ν. This behavior is characteristic of multiple phase transitions, which remain hidden from dc transport measurements.

  7. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  8. Cryopumping in Cryogenic Insulations for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Weiser, Erik S.; Grimsley, Brian W.; Jensen, Brian J.

    2003-01-01

    Testing at cryogenic temperatures was performed to verify the material characteristics and manufacturing processes of reusable propellant tank cryogenic insulations for a Reusable Launch Vehicle (RLV). The unique test apparatus and test methods developed for the investigation of cryopumping in cryogenic insulations are described. Panel level test specimens with various types of cryogenic insulations were subjected to a specific thermal profile where the temperature varied from -262 C to 21 C. Cryopumping occurred if the interior temperature of the specimen exhibited abnormal temperature fluctuations, such as a sudden decrease in temperature during the heating phase.

  9. Evaluation of Fire Test Methods for Aircraft Thermal Acoustical Insulation

    DOT National Transportation Integrated Search

    1997-09-01

    This report presents the results of laboratory round robin flammability testing performed on thermal acoustical insulation blankets and the films used as insulation coverings. This work was requested by the aircraft industry as a result of actual inc...

  10. Thermal Performance Testing of Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  11. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...

  12. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...

  13. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...

  14. Novel Electrically Tunable Microwave Solenoid Inductor and Compact Phase Shifter Utilizing Permaloy and PZT Thin Films

    DOE PAGES

    Wang, Tengxing; Jiang, Wei; Divan, Ralu; ...

    2017-08-03

    A Permalloy (Py) thin film enabled tunable 3-D solenoid inductor is designed and fabricated. The special configuration of magnetic core is discussed and by selectively patterning Py thin film, the proposed tunable inductor can work at frequency up to several GHz range. The inductance of the solenoid inductor can be electrically tuned by dc current and the tunability is above 10%. Utilizing the implemented Py enabled tunable solenoid inductor and Lead Zirconate Titanate (PZT) thin film enabled metal-insulator-metal (MIM) capacitor, a compact fully electrically tunable lumped elements phase shifter is achieved. The tunable phase shifter has both inductive and capacitivemore » tunability and the dual tunability significantly improves the tuning range and design flexibility. Moreover, the dual tunability is able to retain the equivalent characteristic impedance of the device in the process of the phase being tuned. Here, the phase of the device can be tuned by fully electrical methods and when dc current and dc voltage are provided, the length normalized phase tunability is up to 210°/cm« less

  15. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction.

    PubMed

    Choi, Insub; Kim, JunHee; Kim, Ho-Ryong

    2015-03-19

    A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs) subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP) shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.

  16. Multipurpose Thermal Insulation Test Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2002-01-01

    A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.

  17. DC High Voltage Conditioning of Photoemission Guns at Jefferson Lab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Benson, S. V.; Biallas, G.

    2009-08-04

    DC high voltage photoemission electron guns with GaAs photocathodes have been used to produce polarized electron beams for nuclear physics experiments for about 3 decades with great success. In the late 1990s, Jefferson Lab adopted this gun technology for a free electron laser (FEL), but to assist with high bunch charge operation, considerably higher bias voltage is required compared to the photoguns used at the Jefferson Lab Continuous Electron Beam Accelerator Facility. The FEL gun has been conditioned above 400 kV several times, albeit encountering non-trivial challenges with ceramic insulators and field emission from electrodes. Recently, high voltage processing withmore » krypton gas was employed to process very stubborn field emitters. This work presents a summary of the high voltage techniques used to high voltage condition the Jefferson Lab FEL photoemission gun.« less

  18. Unidirectional Spin-Wave-Propagation-Induced Seebeck Voltage in a PEDOT:PSS/YIG Bilayer

    NASA Astrophysics Data System (ADS)

    Wang, P.; Zhou, L. F.; Jiang, S. W.; Luan, Z. Z.; Shu, D. J.; Ding, H. F.; Wu, D.

    2018-01-01

    We clarify the physical origin of the dc voltage generation in a bilayer of a conducting polymer film and a micrometer-thick magnetic insulator Y3Fe5O12 (YIG) film under ferromagnetic resonance and/or spin wave excitation conditions. The previous attributed mechanism, the inverse spin Hall effect in the polymer [Nat. Mater. 12, 622 (2013), 10.1038/nmat3634], is excluded by two control experiments. We find an in-plane temperature gradient in YIG which has the same angular dependence with the generated voltage. Both vanish when the YIG thickness is reduced to a few nanometers. Thus, we argue that the dc voltage is governed by the Seebeck effect in the polymer, where the temperature gradient is created by the nonreciprocal magnetostatic surface spin wave propagation in YIG.

  19. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  20. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  1. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  2. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  3. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...

  4. Distributing Radiant Heat in Insulation Tests

    NASA Technical Reports Server (NTRS)

    Freitag, H. J.; Reyes, A. R.; Ammerman, M. C.

    1986-01-01

    Thermally radiating blanket of stepped thickness distributes heat over insulation sample during thermal vacuum testing. Woven of silicon carbide fibers, blanket spreads heat from quartz lamps evenly over insulation sample. Because of fewer blanket layers toward periphery of sample, more heat initially penetrates there for more uniform heat distribution.

  5. Electrical transport across nanometric SrTiO3 and BaTiO3 barriers in conducting/insulator/conducting junctions

    NASA Astrophysics Data System (ADS)

    Navarro, H.; Sirena, M.; González Sutter, J.; Troiani, H. E.; del Corro, P. G.; Granell, P.; Golmar, F.; Haberkorn, N.

    2018-01-01

    We report the electrical transport properties of conducting/insulator/conducting heterostructures by studying current-voltage IV curves at room temperature. The measurements were obtained on tunnel junctions with different areas (900, 400 and 100 μm2) using a conducting atomic force microscope. Trilayers with GdBa2Cu3O7 (GBCO) as the bottom electrode, SrTiO3 or BaTiO3 (thicknesses between 1.6 and 4 nm) as the insulator barrier, and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO3 substrates For SrTiO3 and BaTiO3 barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. In addition, hysteretic IV curves are obtained for BaTiO3 barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/BaTiO3/GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/insulator/conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures).

  6. Insulator-based dielectrophoresis of microorganisms: theoretical and experimental results.

    PubMed

    Moncada-Hernandez, Hector; Baylon-Cardiel, Javier L; Pérez-González, Victor H; Lapizco-Encinas, Blanca H

    2011-09-01

    Dielectrophoresis (DEP) is the motion of particles due to polarization effects in nonuniform electric fields. DEP has great potential for handling cells and is a non-destructive phenomenon. It has been utilized for different cell analysis, from viability assessments to concentration enrichment and separation. Insulator-based DEP (iDEP) provides an attractive alternative to conventional electrode-based systems; in iDEP, insulating structures are used to generate nonuniform electric fields, resulting in simpler and more robust devices. Despite the rapid development of iDEP microdevices for applications with cells, the fundamentals behind the dielectrophoretic behavior of cells has not been fully elucidated. Understanding the theory behind iDEP is necessary to continue the progress in this field. This work presents the manipulation and separation of bacterial and yeast cells with iDEP. A computational model in COMSOL Multiphysics was employed to predict the effect of direct current-iDEP on cells suspended in a microchannel containing an array of insulating structures. The model allowed predicting particle behavior, pathlines and the regions where dielectrophoretic immobilization should occur. Experimental work was performed at the same operating conditions employed with the model and results were compared, obtaining good agreement. This is the first report on the mathematical modeling of the dielectrophoretic response of yeast and bacterial cells in a DC-iDEP microdevice. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Environmental Influence of Gravity and Pressure on Arc Tracking of Insulated Wires Investigated

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Momentary short-circuit arcs between a defective polyimide-insulated wire and another conductor may thermally char (pyrolize) the insulating material. The charred polyimide, being conductive, can sustain the short-circuit arc, which may propagate along the wire through continuous pyrolization of the polyimide insulation (arc tracking). If the arcing wire is part of a multiple-wire bundle, the polyimide insulation of other wires within the bundle may become thermally charred and start arc tracking also (flash over). Such arc tracking can lead to complete failure of an entire wire bundle, causing other critical spacecraft or aircraft failures. Unfortunately, all tested candidate wire insulations for aerospace vehicles were susceptible to arc tracking. Therefore, a test procedure was designed at the NASA Lewis Research Center to select the insulation type least susceptible to arc tracking. This test procedure addresses the following three areas of concern: (1) probability of initiation, (2) probability of reinitiation (restrike), and (3) extent of arc tracking damage (propagation rate). Item 2 (restrike probability) is an issue if power can be terminated from and reapplied to the arcing wire (by a switch, fuse, or resettable circuit breaker). The degree of damage from an arcing event (item 3) refers to how easily the arc chars nearby insulation and propagates along the wire pair. Ease of nearby insulation charring can be determined by measuring the rate of arc propagation. Insulation that chars easily will propagate the arc faster than insulation that does not char very easily. A popular polyimide insulated wire for aerospace vehicles, MIL-W-81381, was tested to determine a degree of damage from an arcing event (item 3) in the following three environments: (1) microgravity with air at 1-atm pressure, (2) 1g with air at 1 atm, and (3) 1g within a 10^-6 Torr vacuum. The microgravity 1-atm air was the harshest environment, with respect to the rate of damage of arc tracking, for the 20 AWG (American Wiring Gauge) MIL-W-81381 wire insulation type . The vacuum environment resulted in the least damage. Further testing is planned to determine if the environmental results are consistent between insulation types and to evaluate the other two parameters associated with arc tracking susceptibility.

  8. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  9. Impacting device for testing insulation

    NASA Technical Reports Server (NTRS)

    Redmon, J. W. (Inventor)

    1984-01-01

    An electro-mechanical impacting device for testing the bonding of foam insulation to metal is descirbed. The device lightly impacts foam insulation attached to metal to determine whether the insulation is properly bonded to the metal and to determine the quality of the bond. A force measuring device, preferably a load cell mounted on the impacting device, measures the force of the impact and the duration of the time the hammer head is actually in contact with the insulation. The impactor is designed in the form of a handgun having a driving spring which can propel a plunger forward to cause a hammer head to impact the insulation. The device utilizes a trigger mechanism which provides precise adjustements, allowing fireproof operation.

  10. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  11. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  12. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    DTIC Science & Technology

    2014-10-28

    goes into the kinetic energy of the electrons rather than heating of the surrounding gas.24 The examples of these include corona discharge and micro...Moreau, G. Artana, and G. Touchard, “Influence of a DC corona discharge on the airflow along an inclined flat plate,” J. Electrostat. 51–52, 300 306...10), 2554 2564 (2007). 42E. Moreau, G. Artana, and G. Touchard, “Surface corona discharge along an insulating flat plate in air applied to

  13. Technical Options for Energy Conservation in Buildings. National Conference of States on Building Codes and Standards and National Bureau of Standards Joint Emergency Workshop on Energy Conservation in Buildings. (Washington, D.C., June 19, 1973) NBS Technical Note 789.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC. Inst. for Applied Technology.

    The purpose of this report is to provide reference material on the technical options for energy conservation in buildings. Actions pertinent to existing buildings and new buildings are considered separately. Regarding existing buildings, principal topics include summer cooling, winter heating, and other energy-related features such as insulation,…

  14. Dielectrophoresis device and method having non-uniform arrays for manipulating particles

    DOEpatents

    Cummings, Eric B [Livermore, CA; Fintschenko, Yolanda [Livermore, CA; Simmons, Blake [San Francisco, CA

    2008-09-02

    Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.

  15. Dielectrophoresis device and method having nonuniform arrays for manipulating particles

    DOEpatents

    Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake A.

    2012-09-04

    Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.

  16. Low loss millimeter-wave switches based on the Vanadium Dioxide Metal - Insulator - Transition

    NASA Astrophysics Data System (ADS)

    Field, Mark; Hillman, Christopher; Stupar, Philip; Griffith, Zachary; Rodwell, Mark

    2014-03-01

    A new ultra-low-loss and broad band millimeter wave switch technology based on the reversible metal / insulator phase transition of vanadium dioxide has been developed. We report having fabricated series configured, single-pole single-throw (SPST) switches having measured S-parameters from DC to 110 GHz. The on-state insertion loss is 0.2 dB and off-state isolation is 21 dB at 50 GHz. The resulting impedance contrast ratio, ZOFF / ZON, is greater than 500:1 at 50 GHz (i.e. cut-off frequency fc ~ 40 THz). As a demonstration of the technology's utility, we also present the results of a 2-bit real time delay phase shifter incorporating a pair of VO2 SP4T switches. This switch technology's high impedance contrast ratio combined with its compactness, ease of integration, and low voltage operation make it an enabler of previously unachievable high-performance millimeter wave FPGAs.

  17. THz Pulse Detection by Multilayered GeTe/Sb2Te3.

    PubMed

    Makino, Kotaro; Kuromiya, Shota; Takano, Keisuke; Kato, Kosaku; Nakajima, Makoto; Saito, Yuta; Tominaga, Junji; Iida, Hitoshi; Kinoshita, Moto; Nakano, Takashi

    2016-11-30

    We proposed and demonstrated terahertz (THz) pulse detection by means of multilayered GeTe/Sb 2 Te 3 phase-change memory materials that are also known as a multilayer topological insulator-normal insulator (MTN) system. THz time-domain spectroscopy measurement was performed for MTN films with different multilayer repetitions as well as a conventional as-grown Ge-Te-Sb (GST) alloy film. It was found that MTNs absorb THz waves and that the absorption coefficient depends on the number of layers, while the as-grown GST alloy film was almost transparent for THz waves. Simple MTN-based THz detection devices were fabricated, and the THz-induced change in the current signal was measured when a DC bias voltage was applied between the electrodes. We confirmed that irradiation of THz pulse causes a decrease in the resistance of the MTNs. This result indicates that our devices are capable of THz detection.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming

    In this paper, vanadium thin films were deposited on sapphire substrates by DC magnetron sputtering and then oxidized in a tube furnace filled with oxygen under different temperatures and oxygen flow rates. The significant influence of the oxygen flow rate and oxidation temperature on the electrical and structural properties of the vanadium oxide thin films were investigated systematically. It shows the pure vanadium dioxide (VO 2) state can only be obtained in a very narrow temperature and oxygen flow rate range. The resistivity change during the metal-insulator transition varies from 0.2 to 4 orders of magnitude depending on the oxidationmore » condition. Large thermal hysteresis during the metal-insulator phase transition was observed during the transition compared to the results in literature. Proper oxidation conditions can significantly reduce the thermal hysteresis. Finally, the fabricated VO 2 thin films showed the potential to be applied in the development of electrical sensors and other smart devices.« less

  19. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    PubMed

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  20. The Structural Heat Intercept-Insulation-Vibration Evaluation Rig (SHIVER)

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Zoeckler, J. G.; Best-Ameen, L. M.

    2015-01-01

    NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into intercepting heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a representative test tank is currently being designed to include skirt structural systems with integral vapor cooling. The tank is 4 m in diameter and 6.8 m tall to contain 5000 kg of liquid hydrogen. A multilayer insulation system will be designed to insulate the tank and structure while being installed in a representative manner that can be extended to tanks up to 10 meters in diameter. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plumbrook Station both before and after being vibration tested at Plumbrooks Space Power Facility.

  1. H-terminated diamond field effect transistor with ferroelectric gate insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaya, Ryota; Furuichi, Hiroki; Nakajima, Takashi

    2016-06-13

    An H-terminated diamond field-effect-transistor (FET) with a ferroelectric vinylidene fluoride (VDF)-trifluoroethylene (TrFE) copolymer gate insulator was fabricated. The VDF-TrFE film was deposited on the H-terminated diamond by the spin-coating method and low-temperature annealing was performed to suppress processing damage to the H-terminated diamond surface channel layer. The fabricated FET structure showed the typical properties of depletion-type p-channel FET and showed clear saturation of the drain current with a maximum value of 50 mA/mm. The drain current versus gate voltage curves of the proposed FET showed clockwise hysteresis loops due to the ferroelectricity of the VDF-TrFE gate insulator, and the memory windowmore » width was 19 V, when the gate voltage was swept from 20 to −20 V. The maximum on/off current ratio and the linear mobility were 10{sup 8} and 398 cm{sup 2}/V s, respectively. In addition, we modulated the drain current of the fabricated FET structure via the remnant polarization of the VDF-TrFE gate and obtained an on/off current ratio of 10{sup 3} without applying a DC gate voltage.« less

  2. Electronic structure of HxVO2 probed with in-situ spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Kim, So Yeun; Sandilands, Luke J.; Kang, Taedong; Son, Jaeseok; Sohn, C. H.; Yoon, Hyojin; Son, Junwoo; Moon, S. J.; Noh, T. W.

    Vanadium dioxide (VO2) undergoes a metal-to-insulator transition (MIT) near 340K. Despite extensive studies on this material, the role of electron-electron correlation and electron-lattice interactions in driving this MIT is still under debate. Recently, it was demonstrated that hydrogen can be reversibly absorbed into VO2 thin film without destroying the lattice framework. This H-doping allows systematic control of the electron density and lattice structure which in turn leads to a insulator (VO2) - metal (HxVO2) - insulator (HVO2) phase modulation. To better understand the phase modulation of HxVO2, we used in-situ spectroscopic ellipsometry to monitor the electronic structure during the hydrogenization process, i.e. we measured the optical conductivity of HxVO2 while varying x. Starting in the high temperature rutile metallic phase of VO2, we observed a large change in the electronic structure upon annealing in H gas at 370K: the low energy conductivity is continuously suppressed, consistent with reported DC resistivity data, while the conductivity peaks at high energy show strong changes in energy and spectral weight. The implications of our results for the MIT in HxVO2 will be discussed.

  3. Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3

    NASA Astrophysics Data System (ADS)

    Wen, Fangdi; Cao, Yanwei; Liu, Xiaoran; Pal, B.; Middey, S.; Kareev, M.; Chakhalian, J.

    2018-03-01

    Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces present an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunctions is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3, the experiment reveals the evidence for magnetic phase separation in a hole-doped Ti d1 t2g system, resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators, thus providing another path for designing all-oxide structures relevant to spintronic applications.

  4. Phase diagram of pressure-induced superconductor β-(BDA-TTP)2MX4 (M=Fe, Ga and X=Cl, Br) with localized magnetic moments

    NASA Astrophysics Data System (ADS)

    Choi, E. S.; Graf, D.; Tokumoto, T.; Brooks, J. S.; Yamada, Jun-Ichi

    2007-03-01

    We have investigated transport and magnetization properties of β-(BDA-TTP)2MX4 (M=Fe, Ga and X=Cl, Br) as a function of pressure, temperature and magnetic field. The title material undergoes metal-insulator transitions above 100 K at ambient pressure. The insulating phase is suppressed with pressure and superconductivity eventually appears above Pc= 4.5 kbar (X=Cl) and 13 kbar (X=Br). The general temperature-pressure (TP) phase diagram is similar each other, while higher pressure is required for X=Br compounds to suppress the insulating state and induce the superconductivity. Pressure dependent DC magnetization studies on β-(BDA-TTP)2FeCl4 compound revealed that the AFM ordering persist well above Pc. In spite of similarity of phase diagram between M=Fe and M=Ga compounds, magnetoresistance results show distinct behaviors, which indicates the magnetic interaction with the conduction electrons are still effective. The comparison between X=Cl and X=Br compounds suggests the anion-size effect rather than the existence of localized magnetic moments plays more important role in determining the ground state.

  5. Technology Solutions Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This case study by the U.S. Department of Energy’s Building America research team Building Science Corporation is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, Florida; zone 2A), insulated with air-permeable insulation (netted and blown fiberglass).

  6. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  7. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction

    PubMed Central

    Choi, Insub; Kim, JunHee; Kim, Ho-Ryong

    2015-01-01

    A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs) subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP) shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors. PMID:28788001

  8. Pumping and Depressurizing of Insulation Materials

    NASA Technical Reports Server (NTRS)

    Porter, Amber

    2010-01-01

    The Fluids Testing and Technology Branch is a group that researches and tests efficient ways to use various Cryogenic Fluids, such as Liquid Nitrogen or Liquid Helium, in ground and space systems. Their main goal is to develop new technologies involving Cryogenic temperatures as well as making sure the existing technologies are understood. During my time here a lot of insulation testing has been done which is where insulation systems are tested for cryogenic systems that are in space for long durations.

  9. Internal insulation system development

    NASA Technical Reports Server (NTRS)

    Gille, J. P.

    1973-01-01

    The development of an internal insulation system for cryogenic liquids is described. The insulation system is based on a gas layer concept in which capillary or surface tension effects are used to maintain a stable gas layer within a cellular core structure between the tank wall and the contained cryogen. In this work, a 1.8 meter diameter tank was insulated and tested with liquid hydrogen. Ability to withstand cycling of the aluminum tank wall to 450 K was a design and test condition.

  10. Evaluation of Test Methods To Determine the Impact Resistance of Exterior Insulation and Finish Systems (EIFS).

    DTIC Science & Technology

    1992-07-01

    be used effectively in new construction or retrofit applications. These systems usually contain: 1. Molded expanded polystyrene insulation board (MEPS...commonly referred to as "bead board," or extruded expanded polystyrene insulation board (XEPS), commonly referred to as "blue board." 2. An...Walls ( Expanded Polystyrene Insulation Faced with a Thin Rendering), M.O.A.T. n 22, June 1988. 7 ASTM D3029-90. "Standard Test Methods for Impact

  11. Load responsive multilayer insulation performance testing

    NASA Astrophysics Data System (ADS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  12. Thermal test of the insulation structure for LH 2 tank by using the large experimental apparatus

    NASA Astrophysics Data System (ADS)

    Kamiya, S.; Onishi, K.; Konshima, N.; Nishigaki, K.

    Conceptual designs of large mass LH 2 (liquid hydrogen) storage systems, whose capacity is 50,000 m3, have been studied in the Japanese hydrogen project, World Energy Network (WE-NET) [K. Fukuda, in: WE-NET Hydrogen Energy Symposium, 1999, P1-P41]. This study has concluded that their thermal insulation structures for the huge LH 2 tanks should be developed. Their actual insulation structures comprise not only the insulation material but also reinforced members and joints. To evaluate their thermal performance correctly, a large test specimen including reinforced members and joints will be necessary. After verifying the thermal performance of a developed large experimental apparatus [S. Kamiya, Cryogenics 40 (1) (2000) 35] for measuring the thermal conductance of various insulation structures, we tested two specimens, a vacuum multilayer insulation (MLI) with a glass fiber reinforced plastic (GFRP) support and a vacuum solid insulation (microtherm ®) with joints. The thermal background test for verifying the thermal design of the experimental apparatus showed that the background heat leak is 0.1 W, small enough to satisfy apparatus performance requirement. The thermal conductance measurements of specimens also showed that thermal heat fluxes of MLI with a GFRP support and microtherm ® are 8 and 5.4 W/m2, respectively.

  13. Single-event burnout of n-p-n bipolar-junction transistors in hybrid DC/DC converters

    NASA Astrophysics Data System (ADS)

    Warren, K.; Roth, D.; Kinnison, J.; Pappalardo, R.

    2002-12-01

    Single-event-induced failure of the Lambda Advanced Analog AMF2805S DC/DC Converter has been traced to burnout of an n-p-n transistor in the MOSFET drive stage. The failures were observed during testing while in inhibit mode only. Modifications to prevent burnout of the drive stage were successfully employed. A discussion of the failure mechanism and consequences for DC/DC converter testing are presented.

  14. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation.

    PubMed

    Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Shi, Wen; Zhang, Chengjiao

    2015-10-01

    In this serial study, 486 thermal manikin tests were carried out to examine the effects of air velocity and walking speed on both total and local clothing thermal insulations. Seventeen clothing ensembles with different layers (i.e., one, two, or three layers) were selected for the study. Three different wind speeds (0.15, 1.55, 4.0 m/s) and three levels of walking speed (0, 0.75, 1.2 m/s) were chosen. Thus, there are totally nine different testing conditions. The clothing total insulation and local clothing insulation at different body parts under those nine conditions were determined. In part I, empirical equations for estimating total resultant clothing insulation as a function of the static thermal insulation, relative air velocity, and walking speed were developed. In part II, the local thermal insulation of various garments was analyzed and correction equations on local resultant insulation for each body part were developed. This study provides critical database for potential applications in thermal comfort study, modeling of human thermal strain, and functional clothing design and engineering.

  15. Surface structural changes of naturally aged silicone and EPDM composite insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlastos, A.E.; Gubanski, S.M.

    1991-04-01

    In a long-term outdoor test with high direct and alternating voltages, silicone and EPDM rubber composite insulators have, at the beginning, shown a superior performance to that of glass and porcelain insulators. In the long-term test, however, the silicone rubber composite insulator has, in spite of the ageing of both insulator types, kept its good performance, while the performance of the EPDM rubber composite insulator was drastically deteriorated. In order to get a better insight into results obtained, the wettability and the surface structural changes of the insulators were studied by the drop deposition method (using a goniometer) and bymore » advanced techniques such as SEM, ESCA, FTIR and SIMS respectively. The results show that the differences in performance have to be found in the differences in the surface structural changes and in the dynamic ability of the surface to compensate the ageing.« less

  16. GIS insulation co-ordination: On-site tests and dielectric diagnostic techniques, a utility point of view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabot, A.; Petit, A.; Taillebois, J.P.

    1996-07-01

    This paper summarizes the Electricite de France experience with insulation co-ordination of GIS. After a review of the insulation co-ordination practice mainly dealing with fast front overvoltage and the one minute AC test, some results of the on-site test procedure applied since 30 years are presented and related to the insulation co-ordination practice. The in-service return of experience dealing with dielectric failures is analyzed then the dielectric diagnostic techniques now available are briefly presented with their possibilities and limitations. According to this survey, the expectations of EDF from these diagnostic techniques as well as the new on-site test and on-linemore » monitoring tendencies at EDF are presented.« less

  17. A 220-GHz SIS Mixer Tightly Integrated With a Sub-Hundred-Microwatt SiGe IF Amplifier

    NASA Astrophysics Data System (ADS)

    Montazeri, Shirin; Grimes, Paul K.; Tong, Cheuk-Yu Edward; Bardin, Joseph C.

    2016-01-01

    Future kilopixel-scale heterodyne focal plane arrays based on superconductor-insulator-superconductor (SIS) mixers will require submilliwatt power consumption low-noise amplifiers (LNAs) which are tightly integrated with the mixers. In this paper, an LNA that is optimized for direct connection to a 220-GHz SIS mixer chip and requires less than 100 μW of dc power is reported. The amplifier design process is described, and measurement results are presented. It is shown that, when pumped at local oscillator frequencies between 214 and 226 GHz, the mixer/amplifier module achieves a double-sideband system noise temperature between 35 and 50 K over the 3.3-6 GHz IF frequency range while requiring just 90 μW of dc power. Moreover, the potential to further reduce the power consumption is explored and successful operation is demonstrated for LNA power consumption as low as 60 μW.

  18. Tc depression and superconductor-insulator transition in molybdenum nitride thin films

    NASA Astrophysics Data System (ADS)

    Ichikawa, F.; Makise, K.; Tsuneoka, T.; Maeda, S.; Shinozaki, B.

    2018-03-01

    We have studied that the Tc depression and the superconductor-insulator transition (SIT) in molybdenum nitride (MoN) thin films. Thin films were fabricated by reactive DC magnetron sputtering method onto (100) MgO substrates in the mixture of Ar and N2 gases. Several dozen MoN thin films were prepared in the range of 3 nm < thickness d < 60 nm. The resistance was measured by a DC four-probe technique. It is found that Tc decreases from 6.6 K for thick films with increase of the normal state sheet resistance {R}{{sq}}{{N}} and experimental data were fitted to the Finkel’stein formula using the bulk superconducting transition temperature Tc 0 = 6.45 K and the elastic scattering time of electron τ = 1.6 × 10‑16 s. From this analysis the critical sheet resistance Rc is found about 2 kΩ, which is smaller than the quantum sheet resistance R Q. This value of Rc is almost the same as those for 2D NbN films. The value of τ for MoN films is also the similar value for NbN films 1.0 × 10‑16 s, while Tc 0 is different from that for NbN films 14.85 K. It is indicated that the mechanism of SIT for MoN films is similar to that of NbN films, while the mean free path ℓ for MoN films is larger than that for NbN films.

  19. Test and evaluation of load converter topologies used in the Space Station Freedom Power Management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  20. NASA Wiring for Space Applications Program: Fiscal year 1994 - 1995 testing activities

    NASA Technical Reports Server (NTRS)

    Johnson, Harry T.; Hirsch, David

    1995-01-01

    The results of the testing of wire insulation materials for space applications is presented in this report. The wire insulations tested were partially fluorinated polyimide, extruded ETFE, extruded PTFE, PTFE tape, and PTFE/Kapton. The tests performed were flammability tests, odor tests, compatibility tests with aerospace fluids, offgassing tests, and thermal vacuum stability tests.

  1. NASA Wiring for Space Applications Program: Fiscal year 1994 - 1995 testing activities

    NASA Astrophysics Data System (ADS)

    Johnson, Harry T.; Hirsch, David

    1995-11-01

    The results of the testing of wire insulation materials for space applications is presented in this report. The wire insulations tested were partially fluorinated polyimide, extruded ETFE, extruded PTFE, PTFE tape, and PTFE/Kapton. The tests performed were flammability tests, odor tests, compatibility tests with aerospace fluids, offgassing tests, and thermal vacuum stability tests.

  2. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types

    PubMed Central

    Kim, JunHee; You, Young-Chan

    2015-01-01

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation. PMID:28787978

  3. Bag Test Measures Leakage From Insulated Pipe

    NASA Technical Reports Server (NTRS)

    Schock, Kent D.; Easter, Barry P.

    1994-01-01

    Test quantifies leakage of gas from pipe even though pipe covered with insulation. Involves use of helium analyzer to measure concentration of helium in impermeable bag around pipe. Test administered after standard soap-solution bubble test indicates presence and general class of leakage.

  4. 46 CFR 38.05-20 - Insulation-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tested to insure suitable cargo resistive properties. (3) The insulation shall have sufficient mechanical... mechanical damage. (c) The insulation shall be adequately protected in areas of probable mechanical damage...

  5. 46 CFR 38.05-20 - Insulation-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tested to insure suitable cargo resistive properties. (3) The insulation shall have sufficient mechanical... mechanical damage. (c) The insulation shall be adequately protected in areas of probable mechanical damage...

  6. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Herrault, F

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g.,more » higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.« less

  7. Itinerant quantum multicriticality of two-dimensional Dirac fermions

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Goswami, Pallab; Juričić, Vladimir

    2018-05-01

    We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.

  8. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J.

    2007-01-01

    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  9. A new test method for the assessment of the arc tracking properties of wire insulation in air, oxygen enriched atmospheres and vacuum

    NASA Technical Reports Server (NTRS)

    Koenig, Dieter

    1994-01-01

    Development of a new test method suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecraft is given in view-graph format. The equipment can be easily adapted for tests at different realistic electrical network conditions incorporating circuit protection and the test system works equally well whatever the test atmosphere. Test results confirm that pure Kapton insulated wire has bad arcing characteristics and ETFE insulated wire is considerably better in air. For certain wires, arc tracking effects are increased at higher oxygen concentrations and significantly increased under vacuum. All tests on different cable insulation materials and in different environments, including enriched oxygen atmospheres, resulted in a more or less rapid extinguishing of all high temperature effects at the beginning of the post-test phase. In no case was a self-maintained fire initiated by the arc.

  10. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  11. Experimental study of two-dimensional quantum Wigner solid in zero magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jian; Pfeiffer, L. N.; West, K. W.

    2014-03-31

    At temperatures T → 0, strongly interacting two-dimensional (2D) electron systems manifest characteristic insulating behaviors that are key for understanding the nature of the ground state in light of the interplay between disorder and electron-electron interaction. In contrast to the hopping conductance demonstrated in the insulating side of the metal-to-insulator transition, the ultra-high quality 2D systems exhibit nonactivated T-dependence of the conductivity even for dilute carrier concentrations down to 7×10{sup 8} cm{sup −2}. The apparent metal-to-insulator transition (MIT) occurs for a large r{sub s} value around 40 for which a Wigner Crystalllization is expected. The magnetoresistance for a series ofmore » carrier densities in the vicinity of the transition exhibits a characteristic sign change in weak perpendicular magnetic field. Within the Wigner Crystallization regime (with r{sub s} > 40), we report an experimental observation of a characteristic nonlinear threshold behavior from a high-resolution dc dynamical response as an evidence for aWigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under an increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. Moreover, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to quantum processes.« less

  12. Testing Devices Garner Data on Insulation Performance

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To develop a test instrument that could garner measurements of the thermal performance of insulation under extreme conditions, researchers at Kennedy Space Center devised the Cryostat 1 and then Cryostat 2. McLean, Virginia-based QinetiQ North America licensed the technology and plans to market it to organizations developing materials for things like piping and storage tank insulation, refrigeration, appliances, and consumer goods.

  13. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  14. Labeling and advertising of home insulation. Final staff report to the Federal Trade Commission and proposed trade regulation rule (16 CFR Part 460)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Insulation can save significant amounts of fuel and money, and has therefore captured public attention as a desirable energy conservation measure. Because insulation is a very difficult product for uninformed consumers to evaluate, there was broad support for a rule requiring the disclosure of information facilitating choices among insulation products. With the information that the Recommended Rule will require, consumers will be able to compare the thermal properties of varous types of insulation and make the best purchases for their needs. In order to provide consumers, as quickly as possible, with information aiding their purchase of this major conservation measure,more » and to protect consumers from the abuses that rising demand has brought, the Commission undertook this rulemaking proceeding on an expedited schedule. The Rule was proposed on November 18, 1977. The tests mandated by the Rule will provide reproducible and accurate R-values, permitting comparisons of thermal performance. As a result of the testing and required disclosures of R-values and related information, consumers should be able to make sound choices for their needs, without being uninformed or misinformed about the relative values of different types of insulation. The Recommended Rule covers the testing, advertising, and labeling of thermal insulation products. It includes organic, fibrous, cellular, and reflective insulations sold for use in homes, apartments, and other residential dwellings. Insulation sold directly to consumers for do-it-yourself installation is covered, as well as insulation installed by professionals.« less

  15. A water blown urethane insulation for use in cryogenic environments

    NASA Technical Reports Server (NTRS)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  16. Stability testing and analysis of a PMAD dc test bed for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Brush, Andrew S.

    1992-01-01

    The Power Management and Distribution (PMAD) dc Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power dc to dc converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD dc Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions.

  17. Stability Testing and Analysis of a PMAD DC Test Bed for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Brush, Andrew S.

    1992-01-01

    The Power Management and Distribution (PMAD) DC Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power DC to DC converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD DC Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions.

  18. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  19. Recent Ground Hold and Rapid Depressurization Testing of Multilayer Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.

    2014-01-01

    In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.

  20. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Fimmers, C.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Rittich, D.; Sammet, J.; Wlochal, M.

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  1. Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

  2. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament.

    PubMed

    Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A

    2010-02-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  3. On an efficient multilevel inverter assembly: structural savings and design optimisations

    NASA Astrophysics Data System (ADS)

    Choupan, Reza; Nazarpour, Daryoush; Golshannavaz, Sajjad

    2018-01-01

    This study puts forward an efficient unit cell to be taken in use in multilevel inverter assemblies. The proposed structure is in line with reductions in number of direct current (dc) voltage sources, insulated-gate bipolar transistors (IGBTs), gate driver circuits, installation area, and hence the implementation costs. Such structural savings do not sacrifice the technical performance of the proposed design wherein an increased number of output voltage levels is attained, interestingly. Targeting a techno-economic characteristic, the contemplated structure is included as the key unit of cascaded multilevel inverters. Such extensions require development of applicable design procedures. To this end, two efficient strategies are elaborated to determine the magnitudes of input dc voltage sources. As well, an optimisation process is developed to explore the optimal allocation of different parameters in overall performance of the proposed inverter. These parameters are investigated as the number of IGBTs, dc sources, diodes, and overall blocked voltage on switches. In the lights of these characteristics, a comprehensive analysis is established to compare the proposed design with the conventional and recently developed structures. Detailed simulation and experimental studies are conducted to assess the performance of the proposed design. The obtained results are discussed in depth.

  4. Removal of Pre-Formed Asbestos Insulation. A Project of the Manufacturing Technology Program.

    DTIC Science & Technology

    1982-10-01

    of Generator No. 5 4-18 21 Insulation on Exhaust Stack of Generator No. 6 4-19 22 Insulation on Overhead Pipe 4-19 23 Glasswool Insulation Construction...material insulation was glasswool . Since the glasswool does not have the capacity to absorb as much solution as asbestos insulation, the excess amount... glasswool (which was not suspected). Ran- dom core sampling undertaken earlier in the year had not revealed the presence of any glasswool . Pre-test core

  5. Materials Testing on the DC-X and DC-XA

    NASA Technical Reports Server (NTRS)

    Smith, Dane; Carroll, Carol; Marschall, Jochen; Pallix, Joan

    1997-01-01

    Flight testing of thermal protection materials has been carried out over a two year period on the base heat shield of the Delta Clipper (DC-X and DC-XA), as well on a body flap. The purpose was to use the vehicle as a test bed for materials and more efficient repair or maintenance processes which would be potentially useful for application on new entry vehicles (i.e., X-33, RLV, planetary probes), as well as on the existing space shuttle orbiters. Panels containing Thermal Protection Systems (TPS) and/or structural materials were constructed either at NASA Ames Research Center or at McDonnell Douglas Aerospace (MDA) and attached between two of the four thrusters in the base heat shield of the DC-X or DC-XA. Three different panels were flown on DC-X flights 6, 7, and 8. A total of 7 panels were flown on DC-XA flights 1, 2, and 3. The panels constructed at Ames contained a variety of ceramic TPS including flexible blankets, tiles with high emissivity coatings, lightweight ceramic ablators and other ceramic composites. The MDS test panels consisted primarily of a variety of metallic composites. This report focuses on the ceramic TPS test results.

  6. Load responsive multilayer insulation performance testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dye, S.; Kopelove, A.; Mills, G. L.

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that providemore » high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.« less

  7. Testing reflective insulation for improvement of buildings energy efficiency

    NASA Astrophysics Data System (ADS)

    Vrachopoulos, Michalis Gr.; Koukou, Maria K.; Stavlas, Dimitris G.; Stamatopoulos, Vasilis N.; Gonidis, Achilleas F.; Kravvaritis, Eleftherios D.

    2012-03-01

    Reflective insulation stands as an alternative to common building materials used to reduce a building's heating and cooling loads. In this work, an experimental prototype chamber facility has been designed and constructed at the campus of the Technological Educational Institution of Halkida, located in an area of climatic zone B in Greece, aiming to the evaluation of reflective insulation's performance. Reflective insulation is a part of the test room wall construction, specifically, heat insulation material of the vertical wall construction all directions (North, South, East, West), and temperature and water proofing element of the roof. Measurements were obtained for both winter and summer periods. Results indicate that the existence of reflective insulation during summer period averts the overheating at the interior of the experimental chamber, while during winter the heat is retained in the chamber.

  8. Lung function in insulation workers.

    PubMed Central

    Clausen, J; Netterstrøm, B; Wolff, C

    1993-01-01

    To evaluate the effects of working with modern insulation materials (rock and glass wool), the members of the Copenhagen Union of Insulation Workers were invited to participate in a study based on a health examination that included lung function tests. Three hundred and forty men (74%) agreed to participate, and 166 bus drivers served as the control group. Age distribution, height, and smoking habits were similar in the two groups. Forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) were used as tests for lung function. There were no differences in FVC between the study and control groups, but the insulation workers had significantly lower values of FEV1 (mean 2.51) compared with the controls (mean 3.4 1), independent of smoking habits. Six years before the present study, 114 of the insulation workers participated in a similar study, and eight years after the initial study, the lung function of 59 of the bus drivers was tested. The decline in FVC in insulation workers who smoked was significantly higher (7.7 cl/year) than in bus drivers who smoked (3.1 cl/year); the decline in FEV1 was significantly higher in insulation workers independent of smoking habits (17.0 cl/year v 2.9 cl/year). Self assessed former exposure to asbestos was not associated with lung function in insulation workers. The study concludes that working with modern insulation materials is associated with increased risk of developing obstructive lung disease. PMID:8457492

  9. Reusable LH2 tank technology demonstration through ground test

    NASA Technical Reports Server (NTRS)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  10. Thermal Testing and Analysis of an Efficient High-Temperature Multi-Screen Internal Insulation

    NASA Technical Reports Server (NTRS)

    Weiland, Stefan; Handrick, Karin; Daryabeigi, Kamran

    2007-01-01

    Conventional multi-layer insulations exhibit excellent insulation performance but they are limited to the temperature range to which their components reflective foils and spacer materials are compatible. For high temperature applications, the internal multi-screen insulation IMI has been developed that utilizes unique ceramic material technology to produce reflective screens with high temperature stability. For analytical insulation sizing a parametric material model is developed that includes the main contributors for heat flow which are radiation and conduction. The adaptation of model-parameters based on effective steady-state thermal conductivity measurements performed at NASA Langley Research Center (LaRC) allows for extrapolation to arbitrary stack configurations and temperature ranges beyond the ones that were covered in the conductivity measurements. Experimental validation of the parametric material model was performed during the thermal qualification test of the X-38 Chin-panel, where test results and predictions showed a good agreement.

  11. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  12. Development and laboratory testing of a 138-kV PPP-insulated joint for commercial application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walldorf, S.P.; Chu, H.; Elbadaly, H.

    1990-04-01

    This paper describes the design, development and laboratory testing of a high voltage PPP (paper polypropylene/paper laminate) insulated joint for commercial application on 138-kV PPP-insulated cable. The design approach taken is conservative and addresses the typical variations in field conditions and in skill and workmanship of the splicing. Joint construction details, including choice of connector, taping structure, and joint mechanical reinforcement, are discussed. The test criteria are described and results are presented.

  13. Underwriters Laboratories Fire Tests of Sprayed Polyurethane Foam Applied Directly to Metal Roof Decks.

    DTIC Science & Technology

    1983-12-01

    with 1 in. mineral wool insulation positioned on the tunnel ledges to provide a more positive seal. These tests will be identified with the letter "I...during test minus 4-1/2 ft igniting flame. (1) - Mineral wool insulation positioned on the tunnel ledges. -A41 File USNC77 Issued: 12-29-78... Mineral wool insulation positioned on the tunnel ledges. ,-A2 Fie SNśIsud: 12297 ;. "’"’._." "-...:. " ., , ’ "’" .k

  14. Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.

    2015-01-01

    A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.

  15. 24 CFR 200.949 - Building product standards and certification program for exterior insulated steel door systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... certification program for exterior insulated steel door systems. 200.949 Section 200.949 Housing and Urban... program for exterior insulated steel door systems. (a) Applicable standards. (1) All Exterior Insulated Steel Door Systems shall be designed, manufactured, and tested in compliance with the following...

  16. 24 CFR 200.949 - Building product standards and certification program for exterior insulated steel door systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... certification program for exterior insulated steel door systems. 200.949 Section 200.949 Housing and Urban... program for exterior insulated steel door systems. (a) Applicable standards. (1) All Exterior Insulated Steel Door Systems shall be designed, manufactured, and tested in compliance with the following...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Willa, K.; Ryan, K.

    Here, we report a positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator Nb 0.25Bi 2Se 3 via dc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues Cu xBi 2Se 3 and Sr xBi 2Se 3 where smooth suppression of T c is observed. This difference may be attributable to an electronic structure composed of multiple bands whereas the other materials in the superconducting doped Bi 2Se 3 family are believed to be single-band.

  18. Evidence for Jahn-Teller distortions at the antiferromagnetic transition in LaTiO3.

    PubMed

    Hemberger, J; Krug von Nidda, H-A; Fritsch, V; Deisenhofer, J; Lobina, S; Rudolf, T; Lunkenheimer, P; Lichtenberg, F; Loidl, A; Bruns, D; Büchner, B

    2003-08-08

    LaTiO3 is known as a Mott insulator which orders antiferromagnetically at T(N)=146 K. We report on results of thermal expansion and temperature dependent x-ray diffraction together with measurements of the heat capacity, electrical transport measurements, and optical spectroscopy in untwinned single crystals. At T(N) significant structural changes appear, which are volume conserving. Concomitant anomalies are also observed in the dc resistivity, in bulk modulus, and optical reflectivity spectra. We interpret these experimental observations as evidence of orbital order.

  19. Highly uniform and reliable resistive switching characteristics of a Ni/WOx/p+-Si memory device

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hyeon; Kim, Sungjun; Kim, Hyungjin; Kim, Min-Hwi; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook

    2018-02-01

    In this paper, we investigate the resistive switching behavior of a bipolar resistive random-access memory (RRAM) in a Ni/WOx/p+-Si RRAM with CMOS compatibility. Highly unifrom and reliable bipolar resistive switching characteristics are observed by a DC voltage sweeping and its switching mechanism can be explained by SCLC model. As a result, the possibility of metal-insulator-silicon (MIS) structural WOx-based RRAM's application to Si-based 1D (diode)-1R (RRAM) or 1T (transistor)-1R (RRAM) structure is demonstrated.

  20. SHIIVER_Interview_And_Move

    NASA Image and Video Library

    2017-08-10

    A technical challenge that NASA is working to solve is how to maintain super-cooled liquid propellants to be used as fuel for deep space missions. Heat intercept concepts such as advanced insulation blankets, foam insulation and vapor-based concepts will be evaluated with the Structural Heat Intercept Insulation Vibration Evaluation Rig or SHIIVER. The SHIIVER tank arrived Aug. 10 at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for application of its first round of insulation. While at Marshall, the tank will have sensors installed. The team will then apply spray-on foam insulation (SOFI) to the 13-foot-long tank in Marshall’s Thermal Protection System Facility. A rotisserie-style fixture allows for even spraying of large objects. Following SOFI trimming, the tank will undergo a white-light scan to measure its final dimensions to assist with eventual Multi-Layer Insulation (MLI) application. The SOFI and MLI will reduce future propellant storage tank heat leak while on the launch pad where it is subject to atmospheric temperature and pressure conditions. After the spray-on foam insulation application, the tank will travel to Plum Brook Station in Sandusky, Ohio, which is managed by Glenn, for assembly, integration and testing in the B2 test chamber. The assembly will first undergo thermal vacuum testing with only SOFI on the tank surface. This will be the baseline heat load from which to assess future improvements. Then, the tank will be insulated on the top and bottom domes with MLI over the layer of SOFI and will undergo further cryogenic testing.

  1. Effects of RTV coating on the electrical performance of polymer insulator under lightning impulse voltage condition.

    PubMed

    Jamaludin, Farah Adilah; Ab-Kadir, Mohd Zainal Abidin; Izadi, Mahdi; Azis, Norhafiz; Jasni, Jasronita; Abd-Rahman, Muhammad Syahmi

    2017-01-01

    Located near the equator, Malaysia is a country with one of the highest lightning densities in the world. Lightning contributes to 70% of the power outages in Malaysia and affects power equipment, automated network systems, causes data losses and monetary losses in the nation. Therefore, consideration of insulator evaluation under lightning impulses can be crucial to evaluate and attempt to overcome this issue. This paper presents a new approach to increase the electrical performance of polymer insulators using a Room Temperature Vulcanisation (RTV) coating. The evaluation involves three different settings of polymer insulator, namely uncoated, RTV type 1, and RTV type 2 upper surface coatings. All the insulators were tested under three different conditions as dry, clean wet and salty under different impulse polarities using the even-rising test method. The voltage breakdown for each test was recorded. From the experiment, it was found that the effectiveness of the RTV coating application became apparent when tested under salty or polluted conditions. It increased the voltage withstand capabilities of the polymer insulator up to 50% from the basic uncoated insulator. Under dry and clean conditions, the RTV coating provided just a slight increase of the breakdown voltage. The increase in voltage breakdown capability decreased the probability of surface discharge and dry band arcing that could cause degradation of the polymeric material housing. The RTV type 1 coating was found to be more effective when performing under a lightning impulse. The findings might help the utility companies improve the performance of their insulators in order to increase power system reliability.

  2. Effects of RTV coating on the electrical performance of polymer insulator under lightning impulse voltage condition

    PubMed Central

    Jamaludin, Farah Adilah; Ab-Kadir, Mohd Zainal Abidin; Izadi, Mahdi; Azis, Norhafiz; Jasni, Jasronita; Abd-Rahman, Muhammad Syahmi

    2017-01-01

    Located near the equator, Malaysia is a country with one of the highest lightning densities in the world. Lightning contributes to 70% of the power outages in Malaysia and affects power equipment, automated network systems, causes data losses and monetary losses in the nation. Therefore, consideration of insulator evaluation under lightning impulses can be crucial to evaluate and attempt to overcome this issue. This paper presents a new approach to increase the electrical performance of polymer insulators using a Room Temperature Vulcanisation (RTV) coating. The evaluation involves three different settings of polymer insulator, namely uncoated, RTV type 1, and RTV type 2 upper surface coatings. All the insulators were tested under three different conditions as dry, clean wet and salty under different impulse polarities using the even-rising test method. The voltage breakdown for each test was recorded. From the experiment, it was found that the effectiveness of the RTV coating application became apparent when tested under salty or polluted conditions. It increased the voltage withstand capabilities of the polymer insulator up to 50% from the basic uncoated insulator. Under dry and clean conditions, the RTV coating provided just a slight increase of the breakdown voltage. The increase in voltage breakdown capability decreased the probability of surface discharge and dry band arcing that could cause degradation of the polymeric material housing. The RTV type 1 coating was found to be more effective when performing under a lightning impulse. The findings might help the utility companies improve the performance of their insulators in order to increase power system reliability. PMID:29136025

  3. High-pressure dielectric-strength tests on PPP (PPLP) insulation. Final report. [Paper-polypropylene film-paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hata, R.; Hirose, M.; Nagai, T.

    1983-06-01

    The objectives of this project were to establish the effects of fluid pressure on the impulse and ac breakdown strengths of PPP (PPLP) (paper-polypropylene film-paper) insulation. Two thicknesses of PPP (PPLP), which was developed jointly by Sumitomo Electric Industries, Ltd. and Tomoegawa Paper Co., Ltd. and produced by the latter company, were tested with dodecylebenzene (DDB) of the alkylbenzene family as dielectric fluid. Appropriate flat/model cells as employed for previous breakdown tests on paper-oil insulation were used, suitable for test pressures up to 20 kg/cm/sup 2/ abs. (2.0 MN/m/sup 2/ or 284 psi). Impulse and ac breakdown tests were performedmore » at a series of applied pressures, at room temperature and 90/sup 0/C. The results were analyzed and are presented in comparison with previously published data on paper-oil cable insulation.« less

  4. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Dokos, Adam G. (Inventor); Fesmire, James E. (Inventor)

    2014-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  5. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2016-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  6. 16 CFR Figure 10 to Subpart A of... - Insulation Radiant Panel Test Data Log Format

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Insulation Radiant Panel Test Data Log Format 10 Figure 10 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 10 Figure 10 to Subpart A...

  7. 16 CFR Figure 10 to Subpart A of... - Insulation Radiant Panel Test Data Log Format

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Insulation Radiant Panel Test Data Log Format 10 Figure 10 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 10 Figure 10 to Subpart A...

  8. 16 CFR Figure 10 to Subpart A of... - Insulation Radiant Panel Test Data Log Format

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Insulation Radiant Panel Test Data Log Format 10 Figure 10 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 10 Figure 10 to Subpart A...

  9. 16 CFR Figure 10 to Subpart A of... - Insulation Radiant Panel Test Data Log Format

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Insulation Radiant Panel Test Data Log Format 10 Figure 10 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 10 Figure 10 to Subpart A...

  10. 16 CFR Figure 10 to Subpart A of... - Insulation Radiant Panel Test Data Log Format

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Insulation Radiant Panel Test Data Log Format 10 Figure 10 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 10 Figure 10 to Subpart A...

  11. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of... test for the membrane and the membrane supporting insulation must be submitted to the Commandant (CG...

  12. Evaluation of cryogenic insulation materials and composites for use in nuclear radiation environments

    NASA Technical Reports Server (NTRS)

    Bullock, R. E.

    1972-01-01

    The following subjects are studied: (1) composite materials tests; (2) test of liquid level sensors and fission couples; (3) test of valve-seal materials; (4) boron epoxy composites; (5) radiation analysis of explosive materials and bifuels for RNS applications; and (6) test of thermal insulation.

  13. 46 CFR 164.007-5 - Test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Test requirements. 164.007-5 Section 164.007-5 Shipping...: SPECIFICATIONS AND APPROVAL MATERIALS Structural Insulations § 164.007-5 Test requirements. The insulation value of the specimens for the full scale test shall be such that the average temperature of the...

  14. Development of a Battery-Free Solar Refrigerator

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Bergeron, David J., III

    2000-01-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls. Its compressor was replaced with a Danfoss DC compressor slightly larger than the one used in the laboratory unit. The control system was integrated onto a single electronics card and packaged with its starting capacitors. The water for thermal storage was placed behind a liner that was made to fit inside the original factory liner. The original condenser was also augmented with additional surface area to improve performance. PV panels with a total rated power of 180 watts were used. The unit was tested with very successful results in an outside ambient environment, demonstrating its potential for widespread use in many off-grid applications for solar refrigeration.

  15. Comparison of reusable insulation systems for cryogenically-tanked earth-based space vehicles

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Barber, J. R.

    1978-01-01

    Three reusable insulation systems concepts have been developed for use with cryogenic tanks of earth-based space vehicles. Two concepts utilized double-goldized Kapton (DGK) or double-aluminized Mylar (DAM) multilayer insulation (MLI), while the third utilized a hollow-glass-microsphere, load-bearing insulation (LBI). All three insulation systems have recently undergone experimental testing and evaluation under NASA-sponsored programs. Thermal performance measurements were made under space-hold (vacuum) conditions for insulation warm boundary temperatures of approximately 291 K. The resulting effective thermal conductivity was approximately .00008 W/m-K for the MLI systems (liquid hydrogen test results) and .00054 W/m-K for the LBI system (liquid nitrogen test results corrected to liquid hydrogen temperature). The DGK MLI system experienced a maximum thermal degradation of 38 percent, the DAM MLI system 14 percent, and the LBI system 6.7 percent due to repeated thermal cycling representing typical space flight conditions. Repeated exposure of the DAM MLI system to a high humidity environment for periods as long as 8 weeks provided a maximum degradation of only 24 percent.

  16. Exploratory Environmental Tests of Several Heat Shields

    NASA Technical Reports Server (NTRS)

    Goodman, George P.; Betts, John, Jr.

    1961-01-01

    Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.

  17. Development and testing of a source subsystem for the supporting development PMAD DC test bed

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1991-01-01

    The supporting Development Power Management and Distribution (PMAD) DC Test Bed is described. Its benefits to the Space Station Freedom Electrical Power System design are discussed along with a short description of how the PMAD DC Test Bed was systematically integrated. The Source Subsystem of the PMAD DC Test Bed consisting of a Sequential Shunt Unit (SSU) and a Battery Charge/Discharge Unit (BCDU) is introduced. The SSU is described in detail and component level test data is presented. Next, the BCDU's operation and design is given along with component level test data. The Source Subsystem is then presented and early data given to demonstrate an effective subsystem design.

  18. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    NASA Technical Reports Server (NTRS)

    Zhu, Minshao

    2002-01-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  19. Performance evaluation of the FDA-approved Determine™ HIV-1/2 Ag/Ab Combo assay using plasma and whole blood specimens.

    PubMed

    Masciotra, Silvina; Luo, Wei; Westheimer, Emily; Cohen, Stephanie E; Gay, Cynthia L; Hall, Laura; Pan, Yi; Peters, Philip J; Owen, S Michele

    2017-06-01

    The Determine™ HIV-1/2 Ag/Ab Combo (DC) rapid test can identify HIV-1 infection earlier than rapid antibody-only tests in plasma specimens. We compared the performance of DC with a laboratory-based antigen/antibody (Ag/Ab) combo assay in plasma and evaluated antigen reactivity in whole blood specimens. We tested by DC 508 plasma specimens collected in a prospective study and 107 sequential plasma and simulated whole blood specimens from 20 seroconversion panels. Previous results using the ARCHITECT (ARC) Ag/Ab combo assay were compared to DC results. In seroconversion panels, the days from the first HIV1 RNA-positive test to first DC-reactive in plasma and whole blood was compared. McNemar's and Wilcoxon signed rank tests were used for statistical analysis. Of 415 HIV-positive samples, ARC detected 396 (95.4%) and DC 337 (81.2%) (p<0.0001). DC was reactive in 50.0% of ARC-reactive/MS-negative, 78.6% of ARC-reactive/MS-indeterminate, and 99.6% of ARC-reactive/MS-HIV-1-positive or -undifferentiated specimens. DC antigen reactivity was higher among ARC-reactive/MS-negative than MS-indeterminate samples. In 20 HIV-1 seroconversion panels, there was a significant difference between DC reactivity in plasma (91.1%) and whole blood (56.4%) (p<0.0001). DC with whole blood showed a significant delay in reactivity compared to plasma (p=0.008). In plasma, DC was significantly less sensitive than an instrumented laboratory-based Ag/Ab combo assay. DC in plasma was significantly more sensitive compared to whole blood in early HIV-1 infections. With the U.S. laboratory-based diagnostic algorithm, DC as the first step would likely miss a high proportion of HIV-1 infections in early stages of seroconversion. Published by Elsevier B.V.

  20. Resistance noise spectroscopy across the thermally and electrically driven metal-insulator transitions in VO2 nanobeams

    NASA Astrophysics Data System (ADS)

    Alsaqqa, Ali; Kilcoyne, Colin; Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.

    Vanadium dioxide (VO2) is a strongly correlated material that exhibits a sharp thermally driven metal-insulator transition at Tc ~ 340 K. The transition can also be triggered by a DC voltage in the insulating phase with a threshold (Vth) behavior. The mechanisms behind these transitions are hotly discussed and resistance noise spectroscopy is a suitable tool to delineate different transport mechanisms in correlated systems. We present results from a systematic study of the low frequency (1 mHz < f < 10 Hz) noise behavior in VO2 nanobeams across the thermally and electrically driven transitions. In the thermal transition, the power spectral density (PSD) of the resistance noise is unchanged as we approach Tc from 300 K and an abrupt drop in the magnitude is seen above Tc and it remains unchanged till 400 K. However, the noise behavior in the electrically driven case is distinctly different: as the voltage is ramped from zero, the PSD gradually increases by an order of magnitude before reaching Vth and an abrupt increase is seen at Vth. The noise magnitude decreases above Vth, approaching the V = 0 value. The individual roles of percolation, Joule heating and signatures of correlated behavior will be discussed. This work is supported by NSF DMR 0847324.

  1. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    NASA Astrophysics Data System (ADS)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  2. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  3. Development of radiation resistant electrical cable insulations

    NASA Technical Reports Server (NTRS)

    Lee, B. S.; Soo, P.; Mackenzie, D. R.

    1994-01-01

    Two new polyethylene cable insulations have been formulated for nuclear applications and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb2O3 as additives. The test results show that the concept of using inorganic antioxidants to retard radiation initiated oxidation (RIO) is viable. PbO is more effective than Sb2O3 in minimizing RIO.

  4. 30 CFR 27.36 - Test for adequacy of electrical insulation and clearances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for adequacy of electrical insulation and clearances. 27.36 Section 27.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.36...

  5. 16 CFR 460.5 - R-value tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSULATION 460.5 R-value tests. R-value measures resistance to heat flow. R-values given in labels, fact...) All types of insulation except aluminum foil must be tested with ASTM C 177-04, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded...

  6. 16 CFR 460.5 - R-value tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSULATION 460.5 R-value tests. R-value measures resistance to heat flow. R-values given in labels, fact...) All types of insulation except aluminum foil must be tested with ASTM C 177-04, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded...

  7. 16 CFR 460.5 - R-value tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSULATION 460.5 R-value tests. R-value measures resistance to heat flow. R-values given in labels, fact...) All types of insulation except aluminum foil must be tested with ASTM C 177-04, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded...

  8. 16 CFR 460.5 - R-value tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSULATION 460.5 R-value tests. R-value measures resistance to heat flow. R-values given in labels, fact...) All types of insulation except aluminum foil must be tested with ASTM C 177-04, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded...

  9. 16 CFR 460.5 - R-value tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSULATION 460.5 R-value tests. R-value measures resistance to heat flow. R-values given in labels, fact...) All types of insulation except aluminum foil must be tested with ASTM C 177-04, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded...

  10. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  11. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  12. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  13. 49 CFR 179.200-22 - Test of tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... evidence of distress. All rivets and closures, except safety relief valves or safety vents, shall be in place when test is made. (b) Insulated tanks shall be tested before insulation is applied. (c) Rubber-lined tanks shall be tested before rubber lining is applied. (d) Caulking of welded joints to stop leaks...

  14. 30 CFR 27.36 - Test for adequacy of electrical insulation and clearances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for adequacy of electrical insulation and clearances. 27.36 Section 27.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.36...

  15. 46 CFR 164.008-4 - Test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Test requirements. 164.008-4 Section 164.008-4 Shipping...: SPECIFICATIONS AND APPROVAL MATERIALS Bulkhead Panels § 164.008-4 Test requirements. (a) Thermal insulation: The insulation value of the specimens for the full scale test shall be such that the average temperature of...

  16. Research and application of high performance GPES rigid foam composite plastic insulation boards

    NASA Astrophysics Data System (ADS)

    sun, Hongming; xu, Hongsheng; Han, Feifei

    2017-09-01

    A new type of heat insulation board named GPES was prepared by several polymers and modified nano-graphite particles, injecting high-pressure supercritical CO2. Compared with the traditional thermal insulation material, GPES insulation board has higher roundness bubble and thinner bubble wall. Repeatability and reproducibility tests show that melting knot, dimensional stability, strength and other physical properties are significantly better than traditional organic heat insulation materials. Especially the lower and more stable thermal conductivity of GPES can significantly reduce thermal insulation layer thickness. Obviously GPES is the best choice of insulation materials with the implement of 75% and higher energy efficiency standard.

  17. Arcjet Testing and Thermal Model Development for Multilayer Felt Reusable Surface Insulation

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Scott, Carl Douglas; Papa, Steven V.

    2012-01-01

    Felt Reusable Surface Insulation was used extensively on leeward external surfaces of the Shuttle Orbiter, where the material is reusable for temperatures up to 670 K. For application on leeward surfaces of the Orion Multi-Purpose Crew Vehicle, where predicted temperatures reach 1620 K, the material functions as a pyrolyzing conformal ablator. An arcjet test series was conducted to assess the performance of multilayer Felt Reusable Surface Insulation at high temperatures, and a thermal-response, pyrolysis, and ablation model was developed. Model predictions compare favorably with the arcjet test data

  18. Method of testing gas insulated systems for the presence of conducting particles utilizing a gas mixture of nitrogen and sulfur hexafluoride

    DOEpatents

    Wootton, Roy E.

    1979-01-01

    A method of testing a gas insulated system for the presence of conducting particles. The method includes inserting a gaseous mixture comprising about 98 volume percent nitrogen and about 2 volume percent sulfur hexafluoride into the gas insulated system at a pressure greater than 60 lb./sq. in. gauge, and then applying a test voltage to the system. If particles are present within the system, the gaseous mixture will break down, providing an indicator of the presence of the particles.

  19. Fragile magnetic order in the honeycomb lattice Iridate Na2IrO3 revealed by magnetic impurity doping

    NASA Astrophysics Data System (ADS)

    Mehlawat, Kavita; Sharma, G.; Singh, Yogesh

    2015-10-01

    We report the structure, magnetic, and thermal property measurements on single-crystalline and polycrystalline samples of the Ru-substituted honeycomb lattice iridate Na2Ir1 -xRuxO3 (x =0 ,0.05 ,0.1 ,0.15 ,0.2 ,0.3 ,0.5 ) . The evolution of magnetism in Na2Ir1 -xRuxO3 has been studied using dc and ac magnetic susceptibilities and heat-capacity measurements. The parent compound Na2IrO3 is a spin-orbit-driven Mott insulator with magnetic order of reduced moments below TN=15 K . In the Ru-substituted samples the antiferromagnetic long-range state is replaced by a spin-glass-like state even for the smallest substitution suggesting that the magnetic order in Na2IrO3 is extremely fragile. We argue that these behaviors indicate the importance of nearest-neighbor magnetic exchange in the parent Na2IrO3 . Additionally, all samples show insulating electrical transport.

  20. Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction.

    PubMed

    Birgül, Ozlem; Eyüboğlu, B Murat; Ider, Y Ziya

    2003-11-07

    Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging is adopted. A reconstruction algorithm based on the sensitivity matrix relation between conductivity and only one component of magnetic flux distribution is used. Therefore, the requirement for object rotation is eliminated. Once the relative conductivity distribution is found, it is scaled using the peripheral voltage measurements to obtain the absolute conductivity distribution. Images of several insulator and conductor objects in saline filled phantoms are reconstructed. The L2 norm of relative error in conductivity values is found to be 13%, 17% and 14% for three different conductivity distributions.

  1. Low Voltage Electrowetting on Ferroelectric PVDF-HFP Insulator with Highly Tunable Contact Angle Range.

    PubMed

    Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G

    2016-09-14

    We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.

  2. Development of lifetime test procedure for powder evacuated panel insulation. CRADA final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkes, K E; Graves, R S; Childs, K W

    This CRADA is between Appliance Research Consortium (ARC) of the Association of Home Appliance Manufacturers (AHAM) and the Lockheed Martin Energy Research Corp. A Powder Evacuated Panel (PEP) is a "super" thermal insulation, having a thermal resistivity (R) substantially above that of existing insulation without the environmental problems of some insulations such as Chlorofluorocarbon (CFC) blown foam.

  3. NASA Tech Briefs, November 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics include: Wireless Measurement of Contact and Motion Between Contact Surfaces; Wireless Measurement of Rotation and Displacement Rate; Portable Microleak-Detection System; Free-to-Roll Testing of Airplane Models in Wind Tunnels; Cryogenic Shrouds for Testing Thermal-Insulation Panels; Optoelectronic System Measures Distances to Multiple Targets; Tachometers Derived From a Brushless DC Motor; Algorithm-Based Fault Tolerance for Numerical Subroutines; Computational Support for Technology- Investment Decisions; DSN Resource Scheduling; Distributed Operations Planning; Phase-Oriented Gear Systems; Freeze Tape Casting of Functionally Graded Porous Ceramics; Electrophoretic Deposition on Porous Non- Conductors; Two Devices for Removing Sludge From Bioreactor Wastewater; Portable Unit for Metabolic Analysis; Flash Diffusivity Technique Applied to Individual Fibers; System for Thermal Imaging of Hot Moving Objects; Large Solar-Rejection Filter; Improved Readout Scheme for SQUID-Based Thermometry; Error Rates and Channel Capacities in Multipulse PPM; Two Mathematical Models of Nonlinear Vibrations; Simpler Adaptive Selection of Golomb Power-of- Two Codes; VCO PLL Frequency Synthesizers for Spacecraft Transponders; Wide Tuning Capability for Spacecraft Transponders; Adaptive Deadband Synchronization for a Spacecraft Formation; Analysis of Performance of Stereoscopic-Vision Software; Estimating the Inertia Matrix of a Spacecraft; Spatial Coverage Planning for Exploration Robots; and Increasing the Life of a Xenon-Ion Spacecraft Thruster.

  4. Measurement of insulation integrity of IUE camera tube facsimiles by partial discharges method and diffusion of gases through various silicone rubbers

    NASA Technical Reports Server (NTRS)

    Bever, R. S.

    1977-01-01

    Several dummy tubes imitating the IUE Camera System design were encapsulated with Solithane 2, Conathane EN-11, Green and Black Hysols and SMRD 432. Various flaws were purposefully placed in some of these. Partial discharge testing in vacuum under direct voltage conditions was carried once a week for 12 weeks, 15 kv dc being applied during normal working hours for 40 hours duration per week. None of the units showed much damage during this time judging by the P.D. energy histograms. A more complete mathematical presentation is given on diffusion and permeation than previously. Measurements of diffusion constants for various silicone rubbers are carried out by the Time-Lag method and compared to other determinations in the literature. Calculations of the time required for diffusion through a thick wall are demonstrated in the long time approximation and for dimensions pertaining to void and wall sizes of a delamination problem in the LANDSAT-C vidicon tubes. An actual delaminated LANDSAT-C tube and some facsimiles are immersed in vacuum for long periods and tested for catastrophic breakdown due to diffusion of gas, by application of high voltage.

  5. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.

    PubMed

    Huang, Jianhua

    2012-07-01

    There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.

  6. Using fiberglass volumes for VPI of superconductive magnetic systems’ insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, I. S.; Bezrukov, A. A.; Pischugin, A. B.

    2014-01-29

    The paper describes the method of manufacturing fiberglass molds for vacuum pressure impregnation (VPI) of high-voltage insulation of superconductive magnetic systems (SMS) with epoxidian hot-setting compounds. The basic advantages of using such vacuum volumes are improved quality of insulation impregnation in complex-shaped areas, and considerable cost-saving of preparing VPI of large-sized components due to dispensing with the stage of fabricating a metal impregnating volume. Such fiberglass vacuum molds were used for VPI of high-voltage insulation samples of an ITER reactor’s PF1 poloidal coil. Electric insulation of these samples has successfully undergone a wide range of high-voltage and mechanical tests atmore » room and cryogenic temperatures. Some results of the tests are also given in this paper.« less

  7. Strain compatibility tests for sprayed foam cryogenic insulation

    NASA Technical Reports Server (NTRS)

    Hill, W. L.; Kimberlin, D. O.

    1970-01-01

    Mechanical stress applied to foam-coated aluminum alloy specimens maintained at cryogenic temperature simulates actual use conditions of the foam insulation. The testing reveals defects in the polyurethane foam or in the foam to metal bond.

  8. Biodegradation performance of environmentally-friendly insulating oil

    NASA Astrophysics Data System (ADS)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  9. Purely hopping conduction in c-axis oriented LiNbO3 thin films

    NASA Astrophysics Data System (ADS)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Dielectric constant and ac conductivity of highly c-axis oriented LiNbO3 thin film grown by pulsed laser deposition were studied in a metal-insulator-metal configuration over a wide temperature (200 to 450 K) and frequency (100 Hz to 1 MHz) range. The preferred oriented Al (1%) doped ZnO film with electrical conductivity 1.1×103 Ω-1 cm-1 was deposited for dual purpose: (1) to serve as nucleating center for LiNbO3 crystallites along preferred c-axis growth direction, and (2) to act as a suitable bottom electrode for electrical studies. The room temperature dc conductivity (σdc) of LiNbO3 film was about 5.34×10-10 Ω-1 cm-1 with activation energy ˜0.3 eV, indicating extrinsic conduction. The ac conductivity σac was found to be much higher in comparison to σdc in the low temperature region (<300 K) and exhibits a power law behavior due to the hopping of charge carriers. In higher temperature region (>300 K), σac shows a weak frequency dependence, whereas dielectric constant exhibits a strong frequency dispersion. The dielectric dispersion data has been discussed in the light of theoretical models based on Debye type mixed conduction and purely hopping conduction. The dominant conduction in c-axis oriented LiNbO3 thin film is attributed to the purely hopping where both σdc and σac arise due to same mechanism.

  10. Vibration and Thermal Cycling Effects on Bulk-fill Insulation Materials for Cryogenic Tanks

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.

    2006-04-01

    Large-scale (1,000,000 liters or more) cryogenic storage tanks are typically perlite-insulated double-walled vessels. Associated problems with perlite, such as mechanical compaction and settling, could be greatly reduced by using newer bulk-fill materials such as glass bubbles or aerogel beads. Using the newer materials should translate to lower life cycle costs and improved system reliability. NASA Kennedy Space Center is leveraging its experience in the areas of materials development, insulation testing, and cryogenic systems design to develop an insulation retrofit option that will meet both industry and NASA requirements. A custom 10-liter dewar test apparatus, developed by the KSC Cryogenics Test Laboratory, was used to determine the vibration and thermal cycling effects on different bulk-fill insulation materials for cryogenic tanks. The testing included liquid-nitrogen boiloff testing and thermal cycling (with vibration) of a number of test dewars. Test results show that glass bubbles have better thermal performance and less mechanical compaction compared to perlite powder. The higher cost of the bulk material should be offset by reduced commodity loss from boiloff and improvements in material handling, evacuation, and vacuum retention. The long-term problem with settling and compaction of perlite should also be eliminated. Aerogel beads are superior for the no-vacuum condition and can now be considered in some applications. Further studies on large-scale systems are presently being pursued.

  11. Technology Solutions for New and Existing Homes Case Study: Optimized Slab-on-Grade Foundation Insulation Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Schirber; Goldberg, L.; Mosiman, G.

    A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulationmore » at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).« less

  12. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Louise F.; Mosiman, Garrett E.

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulationmore » at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).« less

  13. Evaluation of three thermal protection systems in a hypersonic high-heating-rate environment induced by an elevon deflected 30 deg

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Weinstein, I.

    1977-01-01

    Three thermal protection systems proposed for a hypersonic research airplane were subjected to high heating rates in the Langley 8 foot, high temperature structures tunnel. Metallic heat sink (Lockalloy), reusable surface insulation, and insulator-ablator materials were each tested under similar conditions. The specimens were tested for a 10 second exposure on the windward side of an elevon deflected 30 deg. The metallic heat sink panel exhibited no damage; whereas the reusable surface insulation tiles were debonded from the panel and the insulator-ablator panel eroded through its thickness, thus exposing the aluminum structure to the Mach 7 environment.

  14. Experimental simulation of space plasma interactions with high voltage solar arrays

    NASA Technical Reports Server (NTRS)

    Stillwell, R. P.; Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    Operating high voltage solar arrays in the space environment can result in anomalously large currents being collected through small insulation defects. Tests of simulated defects have been conducted in a 45-cm vacuum chamber with plasma densities of 100,000 to 1,000,000/cu cm. Plasmas were generated using an argon hollow cathode. The solar array elements were simulated by placing a thin sheet of polyimide (Kapton) insulation with a small hole in it over a conductor. Parameters tested were: hole size, adhesive, surface roughening, sample temperature, insulator thickness, insulator area. These results are discussed along with some preliminary empirical correlations.

  15. Flammability, odor, offgassing, thermal vacuum stability, and compatibility with aerospace fluids of wire insulations

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Johnson, Harry

    1994-01-01

    The NASA Lewis Research Center requested NASA Johnson Space Center White Sands Test Facility to conduct flammability, odor, offgassing, thermal vacuum stability, and compatibility tests with aerospace fluids of several wire insulations.

  16. Dual wound dc brush motor gearhead

    NASA Technical Reports Server (NTRS)

    Henson, Barrie W.

    1986-01-01

    The design requirements, the design, development tests and problems, the qualification and life test and the findings of the strip examination of a dual wound DC brushed motor gearhead are described. It is the only space qualified dual wound dc brushed motor gearhead in Europe.

  17. Investigation of plasma-surface interaction effects on pulsed electrostatic manipulation for reentry blackout alleviation

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, S.; Close, S.

    2017-03-01

    The reentry blackout phenomenon affects most spacecraft entering a dense planetary atmosphere from space, due to the presence of a plasma layer that surrounds the spacecraft. This plasma layer is created by ionization of ambient air due to shock and frictional heating, and in some cases is further enhanced due to contamination by ablation products. This layer causes a strong attenuation of incoming and outgoing electromagnetic waves including those used for command and control, communication and telemetry over a period referred to as the ‘blackout period’. The blackout period may last up to several minutes and is a major contributor to the landing error ellipse at best, and a serious safety hazard in the worst case, especially in the context of human spaceflight. In this work, we present a possible method for alleviation of reentry blackout using electronegative DC pulses applied from insulated electrodes on the reentry vehicle’s surface. We study the reentry plasma’s interaction with a DC pulse using a particle-in-cell (PIC) model. Detailed models of plasma-insulator interaction are included in our simulations. The absorption and scattering of ions and electrons at the plasma-dielectric interface are taken into account. Secondary emission from the insulating surface is also considered, and its implications on various design issues is studied. Furthermore, we explore the effect of changing the applied voltage and the impact of surface physics on the creation and stabilization of communication windows. The primary aim of this analysis is to examine the possibility of restoring L- and S-band communication from the spacecraft to a ground station. Our results provide insight into the effect of key design variables on the response of the plasma to the applied voltage pulse. Simulations show the creation of pockets where electron density in the plasma layer is reduced three orders of magnitude or more in the vicinity of the electrodes. These pockets extend to distances up to three times the electrode length normal to the vehicle surface. Based on our results, we postulate that pulsed electrostatic manipulation (PEM) may be a viable candidate for reentry blackout alleviation in the future.

  18. Development and validation of purged thermal protection systems for liquid hydrogen fuel tanks of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. D.; Colt, J. Z.

    1977-01-01

    An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.

  19. Hydrogen storage in insulated pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aceves, S.M.; Garcia-Villazana, O.

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use ofmore » insulated pressure vessels for light-duty vehicles.« less

  20. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Astrophysics Data System (ADS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2008-03-01

    Thermal conductivity testing under actual-use conditions is a key to understanding how cryogenic thermal insulation systems perform in regard to engineering, economics, and materials factors. The Cryogenics Test Laboratory at NASA's Kennedy Space Center tested a number of bulk-fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boiloff method were 78 K and 293 K. Tests were performed as a function of cold vacuum pressure under conditions ranging from high vacuum to no vacuum. Results were compared with those from complementary test methods in the range of 20 K to 300 K. Various testing techniques are required to completely understand the operating performance of a material and to provide data for answers to design engineering questions.

  1. The full-scale process and design changes for elimination of insulation edge separations and voids in tang flap area

    NASA Technical Reports Server (NTRS)

    Danforth, Richard A.

    1991-01-01

    Qualification of the full-scale process and design changes for elimination of redesigned solid rocket motor tang nitrile butadiene rubber insulation edge separations and voids was performed from 24 March to 3 December 1990. The objectives of this test were: to qualify design and process changes on flight hardware using a tie ply between the redesigned solid rocket motor steel case and the nitrile butadiene rubber insulation over the tang capture features; to qualify the use of methyl ethyl ketone in the tang flap region to reduce voids; and to determine if holes in the separator film reduce voids in the tang flap region. The tie ply is intended to aid insulation flow during the insulation cure process, and thus reduce or eliminate edge unbonds. Methyl ethyl ketone is intended to reduce voids in the tang flap area by providing better tacking characteristics. The perforated film was intended to provide possible vertical breathe paths to reduce voids in the tang area. Tang tie ply testing consisted of 270 deg of the tang circumference using a new layup method and 90 deg of the tang circumference using the current layup methods. Tie ply process success was defined as a reduction of insulation unbonds. Lack of any insulation edge unbonds on the tang area where the new process was used, and the presence of 17 unbonds with the current process, proves the test to be a success. Successful completion of this test has qualified the new processes.

  2. Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.

  3. Evaluation of pyrolysis and arc tracking on candidate wire insulation designs for space applications

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Hrovat, Kenneth

    1994-01-01

    The ability of wire insulation materials and constructions to resist arc tracking was determined and the damage caused by initial arcing and restrike events was assessed. Results of arc tracking tests on various insulation constructions are presented in view-graph format. Arc tracking tests conducted on Champlain, Filotex, and Teledyne Thermatics indicate the Filotex is least likely to arc track. Arc tracking occurs more readily in air than it does in vacuum.

  4. Possibilities and testing of CPRNG in block cipher mode of operation PM-DC-LM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacek, Petr; Jasek, Roman; Malanik, David

    2016-06-08

    This paper discusses the chaotic pseudo-random number generator (CPRNG), which is used in block cipher mode of operation called PM-DC-LM. PM-DC-LM is one of possible subversions of general PM mode. In this paper is not discussed the design of PM-DC-LM, but only CPRNG as a part of it because designing is written in other papers. Possibilities, how to change or to improve CPRNG are mentioned. The final part is devoted for a little testing of CPRNG and some testing data are shown.

  5. Cotton-Fiber-Filled Rubber Insulation

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Carbonization of fibers at high temperatures improves strength and erosion resistance. Cotton linters tested as replacement for asbestos filler currently used in rubber insulation in solid rocket motors. Cotton-filled rubber insulation has industrial uses; in some kinds of chemical- or metal-processing equipment, hoses, and protective clothing.

  6. Development, Integration and Testing of Automated Triggering Circuit for Hybrid DC Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Kanabar, Deven; Roy, Swati; Dodiya, Chiragkumar; Pradhan, Subrata

    2017-04-01

    A novel concept of Hybrid DC circuit breaker having combination of mechanical switch and static switch provides arc-less current commutation into the dump resistor during quench in superconducting magnet operation. The triggering of mechanical and static switches in Hybrid DC breaker can be automatized which can effectively reduce the overall current commutation time of hybrid DC circuit breaker and make the operation independent of opening time of mechanical switch. With this view, a dedicated control circuit (auto-triggering circuit) has been developed which can decide the timing and pulse duration for mechanical switch as well as static switch from the operating parameters. This circuit has been tested with dummy parameters and thereafter integrated with the actual test set up of hybrid DC circuit breaker. This paper deals with the conceptual design of the auto-triggering circuit, its control logic and operation. The test results of Hybrid DC circuit breaker using this circuit have also been discussed.

  7. Corrosion studies of DC reactive magnetron sputtered alumina coating on 304 SS

    NASA Astrophysics Data System (ADS)

    Thangaraj, Baskar; Mahadevan, Krishnan

    2017-12-01

    Aluminum oxide films on SS 304 deposited by DC reactive magnetron sputtering technique were studied with respect to the composition of the sputter gas (Ar:O2), gas pressure, substrate temperature, current etc. to achieve good insulating films with high corrosion resistance. The films were characterized by XRD and SEM techniques. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements were made under static conditions in order to evaluate the corrosion performance of the alumina-coated SS 304 for various immersion durations in 0.5 M and 1 M NaCl solution. Alumina-coated SS 304 has low corrosion value of 0.4550 and 1.1090MPY for 24 h immersion time in both solutions. The impedance plots for the alumina coated SS 304 in 1 M NaCl solution at different durations are slightly different to when compared to its immersion in 0.5 M NaCl solutions and are composed of two depressed semi circles. For the alumina coated film, the impedance spectrum decreased, when immersion time increased.

  8. Acoustic Emission Characteristics of Nanocrystalline Porous Silicon Device Driven as an Ultrasonic Speaker

    NASA Astrophysics Data System (ADS)

    Tsubaki, Kenji; Komoda, Takuya; Koshida, Nobuyoshi

    2006-04-01

    It is shown that the dc-superimposed driving mode is more useful for the efficient operation of a novel thermally induced ultrasonic emitter based on nanocrystalline porous silicon (nc-PS) than the conventional simple ac-voltage driving mode. The nc-PS device is composed of a patterned heater electrode, an nc-PS layer and a single crystalline silicon (c-Si) substrate. The almost complete thermally insulating property of nc-PS as a quantum-sized system makes it possible to apply the nc-PS device as an ultrasonic generator by efficient thermo acoustic conversion without any mechanical vibrations. In the dc-superimposed driving mode, the output frequency is the same as the input frequency and a stationary temperature rise is kept constant independent of input peak-to-peak voltage. In addition, power efficiency is significantly increases compared with that in the ac-voltage driving mode without affecting on the temperature rise. The present results suggest the further possibility of the nc-PS device being used as a functional speaker.

  9. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    DOE PAGES

    Tselev, Alexander; Yu, Pu; Cao, Ye; ...

    2016-05-31

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphologicalmore » roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. Finally, this demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.« less

  10. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    PubMed Central

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-01-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997

  11. Unexpected resonant response in [Fe(001)/Cr(001)]10/MgO(001) multilayers in a magnetic field.

    PubMed

    Aliev, F G; Pryadun, V V; Snoeck, E

    2009-01-23

    We observed unexpected resonant response in [Fe/Cr]10 multilayers epitaxially grown on MgO(100) substrates which exists only when both ac current and dc magnetic field are simultaneously applied. The magnitude of the resonances is determined by the multilayer magnetization proving their intrinsic character. The reduction of interface epitaxy leads to nonlinear dependence of the magnitude of resonances on the alternating current density. We speculate that the existence of the interface transition zone could facilitate the subatomic vibrations in thin metallic films and multilayers grown on bulk insulating substrates.

  12. High-voltage, low-inductance gas switch

    DOEpatents

    Gruner, Frederick R.; Stygar, William A.

    2016-03-22

    A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.

  13. 7 CFR 1755.860 - RUS specification for filled buried wires.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sufficient heat barrier to prevent visible evidence of conductor insulation deformation or adhesion between... Insulations and Jackets for Telecommunications Wire and Cable; ASTM D 4566-90, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable; ASTM D...

  14. 7 CFR 1755.860 - RUS specification for filled buried wires.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sufficient heat barrier to prevent visible evidence of conductor insulation deformation or adhesion between... Insulations and Jackets for Telecommunications Wire and Cable; ASTM D 4566-90, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable; ASTM D...

  15. 7 CFR 1755.860 - RUS specification for filled buried wires.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sufficient heat barrier to prevent visible evidence of conductor insulation deformation or adhesion between... Insulations and Jackets for Telecommunications Wire and Cable; ASTM D 4566-90, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable; ASTM D...

  16. Design and evaluation of thin metal surface insulation for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Petach, A. M.

    1976-01-01

    An all-metal insulation was studied as a thermal protection system for hypersonic vehicles. Key program goals included fabricating the insulation in thin packages which are optimized for high temperature insulation of an actively cooled aluminum structure, and the use of state-of-the-art alloys. The insulation was fabricated from 300 series stainless steel in thicknesses of 0.8 to 12 mm. The outer, 0.127 mm thick, skin was textured to accommodate thermal expansion and oxidized to increase emittance. The thin insulating package was achieved using an insulation concept consisting of foil radiation shields spaced within the package, and conical foil supports to carry loads from the skin and maintain package dimensions. Samples of the metal-insulation were tested to evaluate thermal insulation capability, rain and sand erosion resistance, high temperature oxidation resistance, applied load capability, and high temperature emittance.

  17. Evaluation of the Fretting Resistance of the High Voltage Insulation on the ITER Magnet Feeder Busbars

    NASA Astrophysics Data System (ADS)

    Clayton, N.; Crouchen, M.; Evans, D.; Gung, C.-Y.; Su, M.; Devred, A.; Piccin, R.

    2017-12-01

    The high voltage (HV) insulation on the ITER magnet feeder superconducting busbars and current leads will be prepared from S-glass fabric, pre-impregnated with an epoxy resin, which is interleaved with polyimide film and wrapped onto the components and cured during feeder manufacture. The insulation architecture consists of nine half-lapped layers of glass/Kapton, which is then enveloped in a ground-screen, and two further half-lapped layers of glass pre-preg for mechanical protection. The integrity of the HV insulation is critical in order to inhibit electrical arcs within the feeders. The insulation over the entire length of the HV components (bus bar, current leads and joints) must provide a level of voltage isolation of 30 kV. In operation, the insulation on ITER busbars will be subjected to high mechanical loads, arising from Lorentz forces, and in addition will be subjected to fretting erosion against stainless steel clamps, as the pulsed nature of some magnets results in longitudinal movement of the busbar. This work was aimed at assessing the wear on, and the changes in, the electrical properties of the insulation when subjected to typical ITER operating conditions. High voltage tests demonstrated that the electrical isolation of the insulation was intact after the fretting test.

  18. Reduction of heat insulation upon soaking of the insulation layer

    NASA Astrophysics Data System (ADS)

    Achtliger, J.

    1983-09-01

    Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.

  19. Cryogenic Insulation Standard Data and Methodologies Project

    NASA Technical Reports Server (NTRS)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system for applications at sub-ambient to cryogenic temperatures. A growing need for energy efficiency and cryogenic applications is creating a worldwide demand for improved thermal insulation systems for low temperatures. The need for thermal characterization of these systems and materials raises a corresponding need for insulation test standards and thermal data targeted for cryogenic-vacuum applications. Such standards have a strong correlation to energy, transportation, and environment and the advancement of new materials technologies in these areas. In conjunction with this project, two new standards on cryogenic insulation were recently published by ASTM International: C1774 and C740. Following the requirements of NPR 7120.10, Technical Standards for NASA Programs and Projects, the appropriate information in this report can be provided to the NASA Chief Engineer as input for NASA's annual report to NIST, as required by OMB Circular No. A-119, describing NASA's use of voluntary consensus standards and participation in the development of voluntary consensus standards and bodies.

  20. Study on electrochemical corrosion mechanism of steel foot of insulators for HVDC lines

    NASA Astrophysics Data System (ADS)

    Zheng, Weihua; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    The main content of this paper is the mechanism of electrochemical corrosion of insulator steel foot in HVDC transmission line, and summarizes five commonly used artificial electrochemical corrosion accelerated test methods in the world. Various methods are analyzed and compared, and the simulation test of electrochemical corrosion of insulator steel feet is carried out by water jet method. The experimental results show that the experimental environment simulated by water jet method is close to the real environment. And the three suspension modes of insulators in the actual operation, the most serious corrosion of the V type suspension hardware, followed by the tension string suspension, and the linear string corrosion rate is the slowest.

  1. Loss of Pace Capture on the Ablation Line During Pulmonary Vein Isolation versus "Dormant Conduction": Is Adenosine Expendable?

    PubMed

    Schaeffer, Benjamin; Willems, Stephan; Sultan, Arian; Hoffmann, Boris A; Lüker, Jakob; Schreiber, Doreen; Akbulak, Ruken; Moser, Julia; Kuklik, Pawel; Steven, Daniel

    2015-10-01

    Permanent pulmonary vein isolation (PVI) remains an essential goal of ablation therapy in patients with atrial fibrillation. Aim of this study was the intraindividual comparison of unexcitability to pacing along the ablation line versus dormant conduction (DC) as additional procedural endpoints. A total of 58 patients with paroxysmal atrial fibrillation (PAF) underwent PVI by circumferential ablation of ipsilateral pulmonary veins (PVs), followed by testing for DC by adenosine administration. Irrespective of the presence of DC, pacing along the ablation line for left atrium capture was performed and additional radio frequency energy applied if necessary. PVs with initial DC were retested after achieving unexcitability. PVI was achieved in 224 of 224 PVs. In 33 of 224 PVs (15%) DC was revealed. At 92 of 112 ablation lines (82%) sites of excitability were found. Three (9%) of the initial 33 PVs with DC showed further DC after achieving unexcitability at repeated testing. Thirty-two of 33 assumed areas of unmasked PV-LA reconduction as revealed by DC-testing showed a corresponding site of excitability on the ablation line. After a follow-up of 11.6 ± 3.4 months 79% of patients were free of arrhythmia. Pacing for unexcitability can safely identify potential sites of DC and even sites that would have not been detected by testing for DC. Unexcitability, therefore, serves as a suitable and safe procedural endpoint not only for patients with contraindications to adenosine administration. Our data suggest that adenosine may be expendable when achieving unexcitability along the ablation line. © 2015 Wiley Periodicals, Inc.

  2. Interdigital Capacitance Local Non-Destructive Examination of Nuclear Power Plant Cable for Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Bowler, Nicola

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of non-destructive test methods focusing on local cable insulation and jacket testing using an interdigital capacitance (IDC) approach. Earlier studies have assessed a number of non-destructive examination (NDE) methods for bulk, distributed, and local cable tests. A typical test strategy is to perform bulk assessments of the cable response using dielectric spectroscopy, Tan , or partial discharge followed by distributed tests like time domain reflectometry or frequency domain reflectometry to identify the most likely defect location followed by a local test that can include visual inspection,more » indenter modulus tests, or Fourier Transform Infrared Spectroscopy (FTIR) or Near Infrared Spectroscopy FTIR (FTNIR). If a cable is covered with an overlaying jacket, the jacket’s condition is likely to be more severely degraded than the underlying insulation. None of the above local test approaches can be used to evaluate insulation beneath a cable jacket. Since the jacket’s function is neither structural nor electrical, a degraded jacket may not have any significance regarding the cable’s performance or suitability for service. IDC measurements offer a promising alternative or complement to these local test approaches including the possibility to test insulation beneath an overlaying jacket.« less

  3. Simulation Analysis of DC and Switching Impulse Superposition Circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Chenmeng; Xie, Shijun; Zhang, Yu; Mao, Yuxiang

    2018-03-01

    Surge capacitors running between the natural bus and the ground are affected by DC and impulse superposition voltage during operation in the converter station. This paper analyses the simulation aging circuit of surge capacitors by PSCAD electromagnetic transient simulation software. This paper also analyses the effect of the DC voltage to the waveform of the impulse voltage generation. The effect of coupling capacitor to the test voltage waveform is also studied. Testing results prove that the DC voltage has little effect on the waveform of the output of the surge voltage generator, and the value of the coupling capacitor has little effect on the voltage waveform of the sample. Simulation results show that surge capacitor DC and impulse superimposed aging test is feasible.

  4. Testing of Compact Bolted Fasteners with Insulation and Friction-Enhanced Shims for NCSX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. E. Dudek, J.H. Chrzanowski, G. Gettelfinger, P. Heitzenroeder, S. Jurczynski, M. Viola and K. Freudenberg

    The fastening of the National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to the high magnetic forces, need to control induced currents, tight tolerances and restrictive space envelope. A fastening method using high strength studs, jack nuts, insulating spacers, bushings and alumina coated shims was developed which met the requirements. A test program was conducted to verify the design. The tests included measurements of flatness of the spacers, determination of contact area, torque vs. tension of the studs and jack nuts, friction coefficient tests on the alumina and G-10 insulators, electrical tests,more » and tension relaxation tests due to temperature excursions from room temperature to liquid nitrogen temperatures. This paper will describe the design and the results of the test program.« less

  5. Improved Method of Locating Defects in Wiring Insulation

    NASA Technical Reports Server (NTRS)

    Greulich, Owen R.

    2004-01-01

    An improved method of locating small breaches in insulation on electrical wires combines aspects of the prior dielectric withstand voltage (DWV) and time-domain reflectometry (TDR) methods. The method was invented to satisfy a need for reliably and quickly locating insulation defects in spacecraft, aircraft, ships, and other complex systems that contain large amounts of wiring, much of it enclosed in structures that make it difficult to inspect. In the DWV method, one applies a predetermined potential (usually 1.5 kV DC) to the wiring and notes whether the voltage causes any arcing between the wiring and ground. The DWV method does not provide an indication of the location of the defect (unless, in an exceptional case, the arc happens to be visible). In addition, if there is no electrically conductive component at ground potential within about 0.010 in. (approximately equal to 0.254 mm) of the wire at the location of an insulation defect, then the DWV method does not provide an indication of the defect. Moreover, one does not have the option to raise the potential in an effort to increase the detectability of such a defect because doing so can harm previously undamaged insulation. In the TDR method as practiced heretofore, one applies a pulse of electricity having an amplitude of less than 25 V to a wire and measures the round-trip travel time for the reflection of the pulse from a defect. The distance along the wire from the point of application of the pulse to the defect is then calculated as the product of half the round-trip travel time and the characteristic speed of a propagation of an electromagnetic signal in the wire. While the TDR method as practiced heretofore can be used to locate a short or open circuit, it does not ordinarily enable one to locate a small breach in insulation because the pulse voltage is too low to cause arcing and thus too low to induce an impedance discontinuity large enough to generate a measurable reflection. The present improved method overcomes the weaknesses of both the prior DWV and the prior TDR method.

  6. Use of Several Thermal Analysis Techniques to Study the Cracking of an Nitrile Butadiene Rubber (NBR) Insulator on the Booster Separation Motor (BSM) of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Wingard, Charles D.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM used on both of the Solid Rocket Boosters (SRBs) of the Space Shuttle. A number of lots of the BSM insulator in 1998-99 exhibited surface cracks and/or crazing. Each insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive. Induced insulator stresses from adhesive cure are likely greatest where the insulator/adhesive contour is the greatest, thus showing increased insulator surface cracking in this area. Thermal analysis testing by Dynamic Mechanical Analyzer (DMA) and Thermomechanical Analysis (TMA) was performed on one each of the two vendor BSM insulators previously bonded that exhibited the surface cracking. The TMA data from the film/fiber technique yielded the most meaningful results, with thin insulator surface samples containing cracks having roughly the same modulus (stiffness) as thin insulator bulk samples just underneath.

  7. Biophysical evaluation of footwear for cold-weather climates.

    PubMed

    Santee, W R; Endrusick, T L

    1988-02-01

    Proper selection of footwear for cold-wet environments is important in determining individual performance and comfort. Testing only total dry insulation (It) is not a wholly adequate basis for boot selection. The present study demonstrates an effective method for evaluating the effects of surface moisture on boot insulation. This method allows a more knowledgeable selection of footwear for cold-wet climates. In this study, regional insulation values were obtained under dry conditions, then during a soak in shallow water, and finally for insulation recovery after removal from water. Results for seven boots show no advantage of presently used synthetic materials during short soak episodes. Insulated leather-synthetic boots, however, recovered to dry insulation levels more rapidly than more traditional insulated leather boots. Rubber waterproof bottoms were the most effective boot construction for retaining insulation levels during water exposure.

  8. Influence of different propellant systems on ablation of EPDM insulators in overload state

    NASA Astrophysics Data System (ADS)

    Guan, Yiwen; Li, Jiang; Liu, Yang; Xu, Tuanwei

    2018-04-01

    This study examines the propellants used in full-scale solid rocket motors (SRM) and investigates how insulator ablation is affected by two propellant formulations (A and B) during flight overload conditions. An experimental study, theoretical analysis, and numerical simulations were performed to discover the intrinsic causes of insulator ablation rates from the perspective of lab-scaled ground-firing tests, the decoupling of thermochemical ablation, and particle erosion. In addition, the difference in propellant composition, and the insulator charring layer microstructure were analyzed. Results reveal that the degree of insulator ablation is positively correlated with the propellant burn rate, particle velocity, and aggregate concentrations during the condensed phase. A lower ratio of energetic additive material in the AP oxidizer of the propellant is promising for the reduction in particle size and increase in the burn rate and pressure index. However, the overall higher velocity of a two-phase flow causes severe erosion of the insulation material. While the higher ratio of energetic additive to the AP oxidizer imparts a smaller ablation rate to the insulator (under lab-scale test conditions), the slag deposition problem in the combustion chamber may cause catastrophic consequences for future large full-scale SRM flight experiments.

  9. Sound absorption of low-temperature reusable surface insulation candidate materials

    NASA Technical Reports Server (NTRS)

    Johnston, J. D.

    1974-01-01

    Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.

  10. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on real-world tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  11. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  12. 46 CFR 164.007-4 - Testing procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL MATERIALS Structural Insulations § 164.007-4 Testing procedure. (a) Tests. All tests.... Measurements of dimensions of fibrous insulations shall be made to the nearest 1.5 mm. (1/16″) on a nominal 30... heat the bottle and sample at 105° ±5 °C. (221° ±9 °F.) for 4 hours, insert the stopper, cool and weigh...

  13. 46 CFR 164.007-4 - Testing procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL MATERIALS Structural Insulations § 164.007-4 Testing procedure. (a) Tests. All tests.... Measurements of dimensions of fibrous insulations shall be made to the nearest 1.5 mm. (1/16″) on a nominal 30... heat the bottle and sample at 105° ±5 °C. (221° ±9 °F.) for 4 hours, insert the stopper, cool and weigh...

  14. 46 CFR 164.007-4 - Testing procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL MATERIALS Structural Insulations § 164.007-4 Testing procedure. (a) Tests. All tests.... Measurements of dimensions of fibrous insulations shall be made to the nearest 1.5 mm. (1/16″) on a nominal 30... heat the bottle and sample at 105° ±5 °C. (221° ±9 °F.) for 4 hours, insert the stopper, cool and weigh...

  15. 46 CFR 164.007-4 - Testing procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL MATERIALS Structural Insulations § 164.007-4 Testing procedure. (a) Tests. All tests.... Measurements of dimensions of fibrous insulations shall be made to the nearest 1.5 mm. (1/16″) on a nominal 30... heat the bottle and sample at 105° ±5 °C. (221° ±9 °F.) for 4 hours, insert the stopper, cool and weigh...

  16. 46 CFR 164.007-4 - Testing procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL MATERIALS Structural Insulations § 164.007-4 Testing procedure. (a) Tests. All tests.... Measurements of dimensions of fibrous insulations shall be made to the nearest 1.5 mm. (1/16″) on a nominal 30... heat the bottle and sample at 105° ±5 °C. (221° ±9 °F.) for 4 hours, insert the stopper, cool and weigh...

  17. Technique for Evaluating the Erosive Properties of Ablative Internal Insulation Materials

    NASA Technical Reports Server (NTRS)

    McComb, J. C.; Hitner, J. M.

    1989-01-01

    A technique for determining the average erosion rate versus Mach number of candidate internal insulation materials was developed for flight motor applications in 12 inch I.D. test firing hardware. The method involved the precision mounting of a mechanical measuring tool within a conical test cartridge fabricated from either a single insulation material or two non-identical materials each of which constituted one half of the test cartridge cone. Comparison of the internal radii measured at nine longitudinal locations and between eight to thirty two azimuths, depending on the regularity of the erosion pattern before and after test firing, permitted calculation of the average erosion rate and Mach number. Systematic criteria were established for identifying erosion anomalies such as the formation of localized ridges and for excluding such anomalies from the calculations. The method is discussed and results presented for several asbestos-free materials developed in-house for the internal motor case insulation in solid propellant rocket motors.

  18. Internally insulated thermal storage system development program

    NASA Technical Reports Server (NTRS)

    Scott, O. L.

    1980-01-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  19. Internally insulated thermal storage system development program

    NASA Astrophysics Data System (ADS)

    Scott, O. L.

    1980-03-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  20. Insulation Reformulation Development

    NASA Technical Reports Server (NTRS)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  1. Electron spin resonance spectral study of PVC and XLPE insulation materials and their life time analysis.

    PubMed

    Morsy, M A; Shwehdi, M H

    2006-03-01

    Electron spin resonance (ESR) study is carried out to characterize thermal endurance of insulating materials used in power cable industry. The presented work provides ESR investigation and evaluation of widely used cable insulation materials, namely polyvinyl chloride (PVC) and cross-linked polyethylene (XLPE). The results confirm the fact that PVC is rapidly degrades than XLPE. The study also indicates that colorants and cable's manufacturing processes enhance the thermal resistance of the PVC. It also verifies the powerfulness and the importance of the ESR-testing of insulation materials compared to other tests assumed by International Electrotechnical Commission (IEC) Standard 216-procedure, e.g. weight loss (WL), electric strength (ES) or tensile strength (TS). The estimated thermal endurance parameters by ESR-method show that the other standard methods overestimate these parameters and produce less accurate thermal life time curves of cable insulation materials.

  2. Demonstration of Hybrid Multilayer Insulation for Fixed Thickness Applications

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Fesmire, James; Heckle, Wayne

    2015-01-01

    Once on orbit, high performing insulation systems for cryogenic systems need just as good radiation (optical) properties as conduction properties. This requires the use of radiation shields with low conductivity spacers in between. By varying the height and cross-sectional area of the spacers between the radiation shields, the relative radiation and conduction heat transfers can be manipulated. However, in most systems, there is a fixed thickness or volume allocated to the insulation. In order to understand how various combinations of different multilayer insulation (MLI) systems work together and further validate thermal models of such a hybrid MLI set up, test data is needed. The MLI systems include combinations of Load Bearing MLI (LB-MLI) and traditional MLI. To further simulate the space launch vehicle case wherein both ambient pressure and vacuum environments are addressed, different cold-side thermal insulation substrates were included for select tests.

  3. Minnesota retrofit insulation in situ test program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-06-01

    The use of cellulose, glass fiber, rock/slag fiber and urea formaldehyde installed as retrofit insulation materials in residential walls and ceilings was studied. Homes were selected for testing according to the type of retrofit insulation, age of retrofit insulation and whether the retrofit was in the wall or ceiling. The total project was comprised of 22 wall and 48 ceiling samples. Samples of retrofit insulation were taken from an area of three to four square feet in the ceiling or wall of the home. The sample volume was measured, the sample removed and double-sealed in polyethylene bags. The samples weremore » shipped to the laboratory for testing. Laboratory measurements were made of density, moisture content, thermal resistance, and relative flammability of each sample. Additionally, the friability and compressive strength of each urea-formaldehyde foam sample was measured. The following results were obtained. Cellulosic loose fill insulation tests indicated that settling and moisture build-up are not serious problems. Flammability is a concern. Age did not affect the properties of the cellulosic loose fill, but fungal growth was evident. Shrinkage, ranging from 2.5 to 9 percent, averaging 4.5 percent, was exhibited. Degradation of the foam samples with time did not occur. Density was the most critical property affecting the other properties. The higher the density, the higher the thermal resistence per inch, the lower the friability and the higher the compressive strength. The accurate prediction of the fiber diameter, amount of unfiberized mineral, and extent of modular clumping thermal resistance of loose fill mineral fiber insulations is related to and is not solely a factor of density. The materials in this sample did not noticeably affect the structure or wiring of the retrofitted homes. (LCL)« less

  4. Heat Transfer in High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2002-01-01

    The combined radiation/conduction heat transfer in high-porosity, high-temperature fibrous insulations was investigated experimentally and numerically. The effective thermal conductivity of fibrous insulation samples was measured over the temperature range of 300-1300 K and environmental pressure range of 1.33 x 10(exp -5)-101.32 kPa. The fibrous insulation samples tested had nominal densities of 24, 48, and 72 kilograms per cubic meter and thicknesses of 13.3, 26.6 and 39.9 millimeters. Seven samples were tested such that the applied heat flux vector was aligned with local gravity vector to eliminate natural convection as a mode of heat transfer. Two samples were tested with reverse orientation to investigate natural convection effects. It was determined that for the fibrous insulation densities and thicknesses investigated no heat transfer takes place through natural convection. A finite volume numerical model was developed to solve the governing combined radiation and conduction heat transfer equations. Various methods of modeling the gas/solid conduction interaction in fibrous insulations were investigated. The radiation heat transfer was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. A genetic-algorithm based parameter estimation technique was utilized with this model to determine the relevant radiative properties of the fibrous insulation over the temperature range of 300-1300 K. The parameter estimation was performed by least square minimization of the difference between measured and predicted values of effective thermal conductivity at a density of 24 kilograms per cubic meters and at nominal pressures of 1.33 x 10(exp -4) and 99.98 kPa. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements at other densities and pressures. The numerical model was also validated by comparison with a transient thermal test simulating reentry aerodynamic heating conditions.

  5. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Technical Reports Server (NTRS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  6. Around Marshall

    NASA Image and Video Library

    2002-10-01

    This is a ground level view of Test Stand 300 at the east test area of the Marshall Space Flight Center. Test Stand 300 was constructed in 1964 as a gas generator and heat exchanger test facility to support the Saturn/Apollo Program. Deep-space simulation was provided by a 1960 modification that added a 20-ft thermal vacuum chamber and a 1981 modification that added a 12-ft vacuum chamber. The facility was again modified in 1989 when 3-ft and 15-ft diameter chambers were added to support Space Station and technology programs. This multiposition test stand is used to test a wide range of rocket engine components, systems, and subsystems. It has the capability to simulate launch thermal and pressure profiles. Test Stand 300 was designed for testing solid rocket booster (SRB) insulation panels and components, super-insulated tanks, external tank (ET) insulation panels and components, Space Shuttle components, solid rocket motor materials, and advanced solid rocket motor materials.

  7. Development of an external ceramic insulation for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Tanzilli, R. A. (Editor)

    1972-01-01

    The development and evaluation of a family of reusable external insulation systems for use on the space shuttle orbiter is discussed. The material development and evaluation activities are described. Additional information is provided on the development of an analytical micromechanical model of the reusable insulation and the development of techniques for reducing the heat transfer. Design data on reusable insulation systems and test techniques used for design data generation are included.

  8. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    NASA Astrophysics Data System (ADS)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  9. Cost-Efficient Storage of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojoumer, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2007-01-01

    NASA's cryogenic infrastructure that supports launch vehicle operations and propulsion testing is reaching an age where major refurbishment will soon be required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at the various NASA field centers. Perlite powder has historically been the insulation material of choice for these large storage tank applications. New bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. A research testing program was conducted to investigate the thermal performance benefits as well as to identify operational considerations and associated risks associated with the application of these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, economic analysis, and insulation changeout). The results of this research work show that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarize the operational requirements that should be considered for these applications.

  10. Thermal Performance of Low Layer Density Multilayer Insu1ation Using Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, James E.

    2011-01-01

    In order to support long duration cryogenic propellant storage, the Cryogenic Fluid Management (CFM) Project of the Exploration Technology Development Program (ETDP) is investigating the long duration storage propertie$ of liquid methane on the lunar surface. The Methane Lunar Surface Thermal Control (MLSTC) testing is using a tank of the approximate dimensions of the Altair ascent tanks inside of a vacuum chamber to simulate the environment in low earth orbit and on the lunar surface. The thermal performance testing of multilayer insulation (MLI) coupons that are fabricated identically to the tank applied insulation is necessary to understand the performance of the blankets and to be able to predict the performance of the insulation prior to testing. This coupon testing was completed in Cryostat-100 at the Cryogenics Test Laboratory. The results showed the properties of the insulation as a function of layer density, number of layers, and warm boundary temperature. These results aid in the understanding of the performance parameters o fMLI and help to complete the body of literature on the topic.

  11. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    NASA Astrophysics Data System (ADS)

    Sass, J. P.; Cyr, W. W. St.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2010-04-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years.

  12. Thermal performance of a modularized replaceable multilayer insulation system for a cryogenic stage

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.

    1977-01-01

    A rugged modularized MLI system for a 2.23-meter-diameter (87.6-in.-diam) liquid hydrogen tank was designed, fabricated, and tested under simulated near-earth and deep-space environments. The two blankets of the system were each composed of 17 double-aluminized Mylar radiation shields separated by silk net. The unit area weight of the installed system was 1.54 kg/sqm (0.32 lb/sq ft). The overall average heat transferred into the insulated tank was 22.7 and 0.98 watts (77.4 and 3.3 Btu/hr) during simulated near-earth and deep-space testing, respectively. The near-earth result was only 2.6 times that predicted for an undisturbed insulation system (i.e., no seams or penetrations). Tests indicate that this insulation concept could be useful for a cryogenic space tug or orbit transfer vehicle application.

  13. Insulation bonding test system

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.; Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Redmon, J. W.; Porter, A. C. (Inventor)

    1984-01-01

    A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact.

  14. Thick thermal barrier coatings for diesel components

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1991-01-01

    An engineered thick thermal barrier coating consisting of multiple layers of zirconia and CoCrAlY with a zirconia top layer and having a system thermal conductance less than 410 w/m(exp 2)K exceeded the 100 hour engine durability goals set forth in this program. The thermal barrier coatings were intact at the test conclusion. Back to back single cylinder research engine tests were conducted with watercooled, metal hardware and oil-cooled, thermal barrier coating insulated hardware to determine apparent heat release and fuel economy. Apparent heat release data revealed that the insulated engine had a shorter ignition delay and a longer combustion duration than the metal engine. The insulated engine fuel economy was approximately two percent worse on average for this series of tests. There was no attempt to optimize engine efficiency of the insulated engine by modifying the engine timing, coating, or other techniques.

  15. The research Of Multilayer Thermal Insulation With Mechanical Properties Based On Model Analysis Test

    NASA Astrophysics Data System (ADS)

    Lianhua, Yin

    The heat shield of aircraft is made of the major thrusts structure with multilayer thermal insulation part. For protecting against thermo-radiation from larger thrusting force engine,the heat shield is installed around this engine nearby.The multilayer thermal insulation part with multilayer radiation/reflection structure is made of reflection layer and interval layer.At vacuum condition,these materials is higher heat insulation capability than other material,is applied for lots of pats on aircraft extensively.But because of these material is made of metal and nonmetal,it is impossible to receive it's mechanical properties of materials from mechanical tests.These paper describes a new measure of mechanical properties of materials in the heat shield based on model analysis test.At the requirement for the first order lateral frequency,these measure provide for the FEM analysis foundation on the optimization structure of the heat shield.

  16. Radiant Heat Transfer in Reusable Surface Insulation

    NASA Technical Reports Server (NTRS)

    Hughes, T. A.; Linford, R. M. F.; Chmitt, R. J.; Christensen, H. E.

    1973-01-01

    During radiant testing of mullite panels, temperatures in the insulation and support structure exceeded those predicted on the basis of guarded hot plate thermal conductivity tests. Similar results were obtained during arc tunnel tests of mullite specimens. The differences between effective conductivity and guarded hot plate values suggested that radiant transfer through the mullite was occurring. To study the radiant transport, measurements were made of the infrared transmission through various insulating materials and fibers of interest to the shuttle program, using black body sources over the range of 780 to 2000 K. Experimental data were analyzed and scattering coefficients were derived for a variety of materials, fiber diameters, and source temperature.

  17. Determination of life for a polyimide-epoxy alternator insulation system

    NASA Technical Reports Server (NTRS)

    Penn, W. B.; Schaefer, R. F.; Balke, R. L.

    1974-01-01

    Tests were conducted to predict remaining electrical insulation life of a polyimide epoxy insulated 60 KW, 208 volt homopolar inductor alternator, following completion of 23,130 hours of turbo-alternator endurance tests. The sectioned armature winding of this alternator stator was used as means to evaluate and measure end-life at several aging temperatures for development of an Arrhenius plot. A one-half life rate of 11.3 C was established from these data with a predicted remaining life of 60,000 hours at an armature winding temperature of 248 C and a total life, including endurance test time, of 61,645 hours.

  18. SF6 plastic film insulated outdoor bushing for metalclad switchgear operating at system voltages of 420 kV and above

    NASA Astrophysics Data System (ADS)

    Dietz, H.

    1981-10-01

    In replacement of conventional oil-paper bushings, a type of SF6 insulated bushing with polypropylene plastic film dielectricum was developed for outdoor operation of metalclad switchgear. Such bushings have the advantage of the conformity of the insulation with that of the matching switchgear and of the nonflammability of the SF6 gas. The choice of the plastic film, the winding technique, the thermal and dielectrical test program, and the high voltage long-term test program are described. Series production of a 420 kV bushing is under way and research specimens for 525 kV were successfully tested.

  19. Study for fabrication, evaluation, and testing of monolayer woven type materials for space suit insulation

    NASA Technical Reports Server (NTRS)

    Merrick, E. B.

    1979-01-01

    An alternative space suit insulation concept using a monolayer woven pile material is discussed. The material reduces cost and improves the durability of the overgarment, while providing protection similar to that provided by multilayer insulation (MLI). Twelve samples of different configurations were fabricated and tested for compressibility and thermal conductivity as a function of compression loading. Two samples which showed good results in the initial tests were further tested for thermal conductivity with respect to ambient pressure and temperature. Results of these tests were similar to results of the MLI tests, indicating the potential of the monolayer fabric to replace the present MLI. A seaming study illustrated that the fabric can be sewn in a structurally sound seam with minimal heat loss. It is recommended that a prototype thermal meteroid garment be fabricated.

  20. Demonstration of Hybrid Multilayer Insulation for Fixed Thickness Applications

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Fesmire, J. E.; Heckle, K. W.

    2015-12-01

    Cryogenic multilayer insulation (MLI) systems provide both conductive and radiative thermal insulation performance. The use of radiation shields with low conductivity spacers in between are required. By varying the distance and types of the spacers between the radiation shields, the relative radiation and conduction heat transfers can be manipulated. However, in most systems, there is a fixed thickness or volume allocated to the insulation. To understand how various combinations of different multilayer insulation (MLI) systems work together and to further validate thermal models of hybrid MLI systems, test data are needed. The MLI systems include combinations of Load-Bearing MLI (LB-MLI) and traditional MLI (tMLI). To further simulate the space launch vehicle case wherein both ambient pressure and vacuum environments are addressed, different cold-side thermal insulation substrates were included for select tests. The basic hybrid construction consists of some number of layers of LB-MLI on the cold side of the insulation system followed by layers of tMLI on the warm side of the system. The advantages of LB-MLI on the cold side of the insulation blanket are that its low layer density (0.5 - 0.6 layer/mm) is better suited for lower temperature applications and is a structural component to support heat interception shields that may be placed within the blanket. The advantage of tMLI systems on the warm side is that radiation is more dominant than conduction at warmer temperatures, so that a higher layer density is desired (2 - 3 layer/mm) and less effort need be put into minimizing conduction heat transfer. Liquid nitrogen boiloff test data using a cylindrical calorimeter are presented along with analysis for spacecraft tank applications.

  1. Hybrid Multifoil Aerogel Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Paik, Jong-Ah; Jones, Steven; Nesmith, Bill

    2008-01-01

    This innovation blends the merits of multifoil insulation (MFI) with aerogel-based insulation to develop a highly versatile, ultra-low thermally conductive material called hybrid multifoil aerogel thermal insulation (HyMATI). The density of the opacified aerogel is 240 mg/cm3 and has thermal conductivity in the 20 mW/mK range in high vacuum and 25 mW/mK in 1 atmosphere of gas (such as argon) up to 800 C. It is stable up to 1,000 C. This is equal to commercially available high-temperature thermal insulation. The thermal conductivity of the aerogel is 36 percent lower compared to several commercially available insulations when tested in 1 atmosphere of argon gas up to 800 C.

  2. The Influence of Mechanical Parameters on Dielectric Characteristics of Rigid Electrical Insulating Materials

    NASA Astrophysics Data System (ADS)

    Buică, G.; Antonov, A. E.; Beiu, C.; Dobra, R.; Risteiu, M.

    2018-06-01

    Rigid electrical insulating materials are used in the manufacture of work equipment with electric safety function, being mainly intended for use in the energy sector. The paper presents the results of the research on the identification of the technical and safety requirements for rigid electrical insulating materials that are part of the electrical insulating work equipment. The paper aims to show the behaviour of rigid electrical insulating materials under the influence of mechanical risk factors, in order to check the functionality and to ensure the safety function for the entire life time. There were tested rigid electrical insulating equipment designed to be used as safety means in electrical power stations and overhead power lines.

  3. Programmable Gain Amplifiers with DC Suppression and Low Output Offset for Bioelectric Sensors

    PubMed Central

    Carrera, Albano; de la Rosa, Ramón; Alonso, Alonso

    2013-01-01

    DC-offset and DC-suppression are key parameters in bioelectric amplifiers. However, specific DC analyses are not often explained. Several factors influence the DC-budget: the programmable gain, the programmable cut-off frequencies for high pass filtering and, the low cut-off values and the capacitor blocking issues involved. A new intermediate stage is proposed to address the DC problem entirely. Two implementations were tested. The stage is composed of a programmable gain amplifier (PGA) with DC-rejection and low output offset. Cut-off frequencies are selectable and values from 0.016 to 31.83 Hz were tested, and the capacitor deblocking is embedded in the design. Hence, this PGA delivers most of the required gain with constant low output offset, notwithstanding the gain or cut-off frequency selected. PMID:24084109

  4. Methodology for Evaluating Raw Material Changes to RSRM Elastomeric Insulation Materials

    NASA Technical Reports Server (NTRS)

    Mildenhall, Scott D.; McCool, Alex (Technical Monitor)

    2001-01-01

    The Reusable Solid Rocket Motor (RSRM) uses asbestos and silicon dioxide filled acrylonitrile butadiene rubber (AS-NBR) as the primary internal insulation to protect the case from heat. During the course of the RSRM Program, several changes have been made to the raw materials and processing of the AS-NBR elastomeric insulation material. These changes have been primarily caused by raw materials becoming obsolete. In addition, some process changes have been implemented that were deemed necessary to improve the quality and consistency of the AS-NBR insulation material. Each change has been evaluated using unique test efforts customized to determine the potential impacts of the specific raw material or process change. Following the evaluations, the various raw material and process changes were successfully implemented with no detectable effect on the performance of the AS-NBR insulation. This paper will discuss some of the raw material and process changes evaluated, the methodology used in designing the unique test plans, and the general evaluation results. A summary of the change history of RSRM AS-NBR internal insulation is also presented.

  5. Experimental performance of an ablative material as an external insulator for a hypersonic research aircraft

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Chapman, A. J.

    1977-01-01

    An ablative material composed of silica-filled elastomeric silicone was tested to evaluate its thermal and structural performance as an external insulator, or heat shield, for a hypersonic research aircraft. The material was also tested to determine whether it would form a durable char layer when initially heated and thereafter function primarily as an insulator with little further pyrolysis or char removal. Aerothermal tests were representative of nominal Mach 6 cruise conditions of the aircraft, and additional tests were representative of Mach 8 cruise and interference heating conditions. Radiant heating tests were used to simulate the complete nominal Mach 6 surface-temperature history. The silica char that formed during aerothermal tests was not durable. The char experienced a general and preferential surface recession, with the primary mechanism for char removal being erosion. Tests revealed that radiant heating is not a valid technique for simulating aerodynamic heating of the material.

  6. Evaluation of nonmetallic thermal protection materials for the manned space shuttle. Volume 1, task 1: Assessment of technical risks associated with utilization of nonmetallic thermal protection system

    NASA Technical Reports Server (NTRS)

    Wilkinson, W. H.; Kirkhart, F. P.; Kistler, C. W.; Duckworth, W. H.; Ungar, E. W.; Foster, E. L.

    1970-01-01

    Technical problems of design and flight qualification of the proposed classes of surface insulation materials and leading edge materials were reviewed. A screening test plan, a preliminary design data test plan and a design data test plan were outlined. This program defined the apparent critical differences between the surface insulators and the leading edge materials, structuring specialized screening test plans for each of these two classes of materials. Unique testing techniques were shown to be important in evaluating the structural interaction aspects of the surface insulators and a separate task was defined to validate the test plan. In addition, a compilation was made of available information on proposed material (including metallic TPS), previous shuttle programs, pertinent test procedures, and other national programs of merit. This material was collected and summarized in an informally structured workbook.

  7. Thermal Performance Comparison of Glass Microsphere and Perlite Insulation Systems for Liquid Hydrogen Storage Tanks

    NASA Astrophysics Data System (ADS)

    Sass, J. P.; Fesmire, J. E.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2008-03-01

    A technology demonstration test project was conducted by the Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to provide comparative thermal performance data for glass microspheres, referred to as bubbles, and perlite insulation for liquid hydrogen tank applications. Two identical 1/15th scale versions of the 3,200,000 liter spherical liquid hydrogen tanks at Launch Complex 39 at KSC were custom designed and built to serve as test articles for this test project. Evaporative (boil-off) calorimeter test protocols, including liquid nitrogen and liquid hydrogen, were established to provide tank test conditions characteristic of the large storage tanks that support the Space Shuttle launch operations. This paper provides comparative thermal performance test results for bubbles and perlite for a wide range of conditions. Thermal performance as a function of cryogenic commodity (nitrogen and hydrogen), vacuum pressure, insulation fill level, tank liquid level, and thermal cycles will be presented.

  8. An experimental investigation of electric flashover across solid insulators in vacuum

    NASA Technical Reports Server (NTRS)

    Vonbaeyer, H. C.

    1984-01-01

    The insulation of high voltage conductors often employs solid insulators for many applications. In such applications, an unexpected electric flashover may occur along the insulator surface. Under conditions of high vacuum, the flashover voltage across the insulator is observed to be lower compared with that of the same electrode separation without an insulator. The reason for such an extreme reduction of flashover voltage is not well understood. Several models based on the secondary electron emission, were proposed to explain the onset of the surface flashover. The starting point and the developing velocity of the surface flashover were determined. An intensified image converter camera was used to observe the initial stage of electrical flashover along the insulator surface parallel to the electric field. Several different insulator materials were used as test pieces to determine the effect of the dielectric constant on the flashover voltage characteristics.

  9. Composite flexible insulation for thermal protection of space vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda

    1991-01-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  10. Description of the insulation system for the Langley 0.3-Meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Dress, D. A.; Kilgore, R. A.

    1985-01-01

    The thermal insulation system of the Langley 0.3 Meter Transonic Cryogenic Tunnel is described. The insulation system is designed to operate from room temperature down to about 77.4 K, the temperature of liquid nitrogen at 1 atmosphere. A detailed description is given of the primary insulation sytem consists of glass fiber mats, a three part vapor barrier, and a dry positive pressure purge system. Also described are several secondary insulation systems required for the test section, actuators, and tunnel supports. An appendix briefly describes the original insulation system which is considered inferior to the one presently in place. The time required for opening and closing portions of the insulation system for modification or repair to the tunnel has been reduced, typically, from a few days for the original thermal insulating system to a few hours for the present system.

  11. Electromagnetic Nondestructive Evaluation of Wire Insulation and Models of Insulation Material Properties

    NASA Technical Reports Server (NTRS)

    Bowler, Nicola; Kessler, Michael R.; Li, Li; Hondred, Peter R.; Chen, Tianming

    2012-01-01

    Polymers have been widely used as wiring electrical insulation materials in space/air-craft. The dielectric properties of insulation polymers can change over time, however, due to various aging processes such as exposure to heat, humidity and mechanical stress. Therefore, the study of polymers used in electrical insulation of wiring is important to the aerospace industry due to potential loss of life and aircraft in the event of an electrical fire caused by breakdown of wiring insulation. Part of this research is focused on studying the mechanisms of various environmental aging process of the polymers used in electrical wiring insulation and the ways in which their dielectric properties change as the material is subject to the aging processes. The other part of the project is to determine the feasibility of a new capacitive nondestructive testing method to indicate degradation in the wiring insulation, by measuring its permittivity.

  12. Insulator edge voltage gradient effects in spacecraft charging phenomena

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Purvis, C. K.; Staskus, J. V.

    1978-01-01

    Insulating surfaces on geosynchronous satellites were charged by geomagnetic substorms to a point where discharges occur. The electromagnetic pulses from these discharges couple into satellite electronic systems disrupting operations are examined. Laboratory tests conducted on insulator charging have indicated that discharges appear to be initiated at insulator edges where voltage gradients can exist. An experimental investigation was conducted to measure edge voltage gradients on silvered Teflon samples as they are charged by monoenergetic electron beams. It was found that the surface voltage at insulator edges can be approximated by an exponential expression based on an electron current density balance.

  13. Large-Scale Liquid Hydrogen Testing of Variable Density Multilayer Insulation with a Foam Substrate

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Hastings, L.

    2001-01-01

    The multipurpose hydrogen test bed (MHTB), with an 18-cu m liquid hydrogen tank, was used to evaluate a combination foam/multilayer combination insulation (MLI) concept. The foam element (Isofoam SS-1171) insulates during ground hold/ascent flight, and allowed a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required. The 45-layer MLI was designed for an on-orbit storage period of 45 days. Unique WI features include a variable layer density, larger but fewer double-aluminized Mylar perforations for ascent to orbit venting, and a commercially established roll-wrap installation process that reduced assembly man-hours and resulted in a roust, virtually seamless MLI. Insulation performance was measured during three test series. The spray-on foam insulation (SOFI) successfully prevented purge gas liquefaction within the MLI and resulted in the expected ground hold heat leak of 63 W/sq m. The orbit hold tests resulted in heat leaks of 0.085 and 0.22 W/sq m with warm boundary temperatures of 164 and 305 K, respectively. Compared to the best previously measured performance with a traditional MLI system, a 41-percent heat leak reduction with 25 fewer MLI layers was achieved. The MHTB MLI heat leak is half that calculated for a constant layer density MLI.

  14. Thermal Insulation Test Apparatuses

    NASA Technical Reports Server (NTRS)

    Berman, Brion

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Thermal Insulation Test Apparatuses. Designed by the Cryogenics Test Laboratory at the John F. Kennedy Space Center (KSC) in Florida, these patented technologies (U.S. Patent Numbers: Cryostat 1 - 6,742,926, Cryostat 2 - 6,487,866, and Cryostat 4 - 6,824,306) allow manufacturers to fabricate and test cryogenic insulation at their production and/or laboratory facilities. These new inventions allow for the thermal performance characterization of cylindrical and flat specimens (e.g., bulk-fill, flat-panel, multilayer, or continuously rolled) over the full range of pressures, from high vacuum to no vacuum, and over the full range of temperatures from 77K to 300K. In today's world, efficient, low-maintenance, low-temperature refrigeration is taking a more significant role, from the food industry, transportation, energy, and medical applications to the Space Shuttle. Most countries (including the United States) have laws requiring commercially available insulation materials to be tested and rated by an accepted methodology. The new Cryostat methods go beyond the formal capabilities of the ASTM methods to provide testing for real systems, including full-temperature differences plus full-range vacuum conditions.

  15. Analysis of the Influence of Construction Insulation Systems on Public Safety in China

    PubMed Central

    Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang

    2016-01-01

    With the Government of China’s proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies. PMID:27589774

  16. Analysis of the Influence of Construction Insulation Systems on Public Safety in China.

    PubMed

    Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang

    2016-08-30

    With the Government of China's proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies.

  17. SOFI/Substrate integrity testing for cryogenic propellant tanks at extreme thermal gradient conditions

    NASA Astrophysics Data System (ADS)

    Haynes, M.; Fabian, P.

    2015-12-01

    Liquid propellant tank insulation for space flight requires low weight as well as high insulation factors. Use of Spray-On Foam Insulation (SOFI) is an accepted, cost effective technique for insulating a single wall cryogenic propellant tank and has been used extensively throughout the aerospace industry. Determining the bond integrity of the SOFI to the metallic substrate as well as its ability to withstand the in-service strains, both mechanical and thermal, is critical to the longevity of the insulation. This determination has previously been performed using highly volatile, explosive cryogens, which increases the test costs enormously, as well as greatly increasing the risk to both equipment and personnel. CTD has developed a new test system, based on a previous NASA test that simulates the mechanical and thermal strains associated with filling a large fuel tank with a cryogen. The test enables a relatively small SOFI/substrate sample to be monitored for any deformations, delaminations, or disjunctures during the cooling and mechanical straining process of the substrate, and enables the concurrent application of thermal and physical strains to two specimens at the same time. The thermal strains are applied by cooling the substrate to the desired cryogen temperature (from 4 K to 250 K) while maintaining the outside surface of the SOFI foam at ambient conditions. Multiple temperature monitoring points are exercised to ensure even cooling across the substrate, while at the same time, surface temperatures of the SOFI can be monitored to determine the heat flow. The system also allows for direct measurement of the strains in the substrate during the test. The test system as well as test data from testing at 20 K, for liquid Hydrogen simulation, will be discussed.

  18. 16 CFR 1209.6 - Test procedures for critical radiant flux.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...

  19. 16 CFR 1209.6 - Test procedures for critical radiant flux.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...

  20. 16 CFR 1209.6 - Test procedures for critical radiant flux.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...

  1. 16 CFR 1209.6 - Test procedures for critical radiant flux.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radiant flux of exposed attic floor insulation using a radiant heat energy source. (a) Apparatus and... ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.6 Test procedures... radiant heat energy panel or equivalent panel inclined at 30° above and directed at a horizontally-mounted...

  2. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.

    PubMed

    Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  3. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.

    2010-10-15

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven bymore » TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.« less

  4. Hydrophobic Characteristics of Composite Insulators in Simulated Inland Arid Desert Environment

    NASA Astrophysics Data System (ADS)

    Khan, Yasin; Al-Arainy, Abdulrehman Ali; Malik, Nazar Hussain; Qureshi, Muhammad Iqbal

    2010-06-01

    Presently along with traditional insulators i.e. glass and porcelain, etc., the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters e.g. UV radiations, heat, etc. The UV radiation level in the central region of Saudi Arabia is high as compared to the recommended IEC-61109 standard for the accelerated aging of the composite insulators. In this study, thermoplastic elastomer (TPE) and Ethylene Propylene Diene Monomer (EPDM) insulators were subjected to accelerated aging stress as per IEC standard as well as modified IEC standard simulating the inland arid desert's atmospheric conditions. The hydrophobic characteristics were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that TPE loses its hydrophobic properties more as compared to EPDM insulator. This loss was proportional to the intensity of UV irradiation. The rate of recovery is also low for both the tested materials as compared to Silicone Rubber insulators.

  5. Design analysis of ceramic and polymer 150 kV insulators for tropical condition using quickfield software

    NASA Astrophysics Data System (ADS)

    Walukow, Stephy B.; Manjang, Salama; Zainuddin, Zahir; Samman, Faizal Arya

    2018-03-01

    This research is to analyze design of ceramic and polymer 150 kV insulators for the tropical area. The use of an insulator certainly requires an electric field. The leakage current and breakdown voltage this happens the contaminant on the surface of the insulator. This type of contaminant can be rain, dust, salt air, extreme weather (much in tropical climates), industrial pollutants and cracks on the surface resulting in collisions. The method used in this research is magnetic field and electric field isolator using Quicfield software. To get the test results variation ranges 20 kV, 70 kV and 150 kV. Side effects of magnetic and electric fields around the insulator. The simulation results show the accumulated contaminants on the surface. Planning should be done in insulator insulator on unstable insulator. Thus, the approach using this commercially available software can be applied to. Therefore, the development of further simulations on the different types of composite insulators used on.

  6. HYDROPHOBIC CHARACTERISTICS OF COMPOSITE INSULATORS IN SIMULATED INLAND ARID DESERT ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Yasin; Al-Arainy, Abdulrehman Ali; Malik, Nazar Hussain

    2010-06-15

    Presently along with traditional insulators i.e. glass and porcelain, etc., the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters e.g. UV radiations, heat, etc. The UV radiation level in the central region of Saudi Arabia is high as compared to the recommended IEC-61109 standard for the accelerated aging of the composite insulators. In this study, thermoplastic elastomer (TPE) and Ethylene Propylene Diene Monomer (EPDM) insulators were subjected to accelerated aging stress as per IEC standard as well as modified IEC standard simulating the inland arid desert's atmospheric conditions. The hydrophobic characteristicsmore » were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that TPE loses its hydrophobic properties more as compared to EPDM insulator. This loss was proportional to the intensity of UV irradiation. The rate of recovery is also low for both the tested materials as compared to Silicone Rubber insulators.« less

  7. D.C. Student Test Scores Show Uneven Progress. Data Snapshot

    ERIC Educational Resources Information Center

    DuPre, Mary

    2011-01-01

    Over the past five years, both DC Public Schools (DCPS) and public charter schools (PCS) have seen significant growth in secondary reading and math scores on the state test known as the District of Columbia Comprehensive Assessment System (DC CAS). However, scores have not improved as much at the elementary level. Reading and math scores for DCPS…

  8. 75 FR 7428 - Amendments to Enforceable Consent Agreement Procedural Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ..., EPA West Bldg., 1301 Constitution Ave., NW., Washington, DC. The EPA/DC Public Reading Room hours of... of the EPA/DC Public Reading Room is (202) 566-1744, and the telephone number for the OPPT Docket is... significantly faster than a rule can be promulgated. E. When Does EPA Use Test Rules? EPA typically uses test...

  9. Electric drive motors for industrial robots

    NASA Astrophysics Data System (ADS)

    Fichtner, K.

    1985-04-01

    In robotized industrial plants it is possible to use electric motors in the technological process and also for control, assembly, transport, testing, and measurements. Particularly suitable for these applications are permanent-magnet d.c. motors. A new special series was developed for industrial robots with hinge joints in kinematic pairs. The complete drive includes thyristors or transistor controls with regulators and, if necessary, a line transformer as well as a servomotor with tachometer and odometer for speed, current, and position control. The drive is coupled to a robot tong through mechanical torque and force converters. In addition to a 0 to 4000 rpm speed regulation, without wobble at low speeds, and a high torque-to-weight ratio for repetitive short-time heavy duty, these low-inertia motors develop high starting and accelerating torques over the entire speed range. They operate from a 1 to O 220 V a.c. line through a rectifier. The motors are totally enclosed, or of open construction for better ventilation. Their windings have class F insulation for operation at ambient temperatures up to 40 C.

  10. Nature and function of insulator protein binding sites in the Drosophila genome

    PubMed Central

    Schwartz, Yuri B.; Linder-Basso, Daniela; Kharchenko, Peter V.; Tolstorukov, Michael Y.; Kim, Maria; Li, Hua-Bing; Gorchakov, Andrey A.; Minoda, Aki; Shanower, Gregory; Alekseyenko, Artyom A.; Riddle, Nicole C.; Jung, Youngsook L.; Gu, Tingting; Plachetka, Annette; Elgin, Sarah C.R.; Kuroda, Mitzi I.; Park, Peter J.; Savitsky, Mikhail; Karpen, Gary H.; Pirrotta, Vincenzo

    2012-01-01

    Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes. PMID:22767387

  11. Wrapped Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/sq m, or 27 percent of the heat leak of conventional MLI (26.7 W/sq m). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  12. Wrapped Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  13. Fast switching and signature of efficient domain wall motion driven by spin-orbit torques in a perpendicular anisotropy magnetic insulator/Pt bilayer

    NASA Astrophysics Data System (ADS)

    Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-08-01

    We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.

  14. Monolithic optical link in silicon-on-insulator CMOS technology.

    PubMed

    Dutta, Satadal; Agarwal, Vishal; Hueting, Raymond J E; Schmitz, Jurriaan; Annema, Anne-Johan

    2017-03-06

    This work presents a monolithic laterally-coupled wide-spectrum (350 nm < λ < 1270 nm) optical link in a silicon-on-insulator CMOS technology. The link consists of a silicon (Si) light-emitting diode (LED) as the optical source and a Si photodiode (PD) as the detector; both realized by vertical abrupt n+p junctions, separated by a shallow trench isolation composed of silicon dioxide. Medium trench isolation around the devices along with the buried oxide layer provides galvanic isolation. Optical coupling in both avalanche-mode and forward-mode operation of the LED are analyzed for various designs and bias conditions. From both DC and pulsed transient measurements, it is further shown that heating in the avalanche-mode LED leads to a slow thermal coupling to the PD with time constants in the ms range. An integrated heat sink in the same technology leads to a ∼ 6 times reduction in the change in PD junction temperature per unit electrical power dissipated in the avalanche-mode LED. The analysis paves way for wide-spectrum optical links integrated in smart power technologies.

  15. Giant spin Hall angle from topological insulator BixSe(1 - x) thin films

    NASA Astrophysics Data System (ADS)

    Dc, Mahendra; Jamali, Mahdi; Chen, Junyang; Hickey, Danielle; Zhang, Delin; Zhao, Zhengyang; Li, Hongshi; Quarterman, Patrick; Lv, Yang; Mkhyon, Andre; Wang, Jian-Ping

    Investigation on the spin-orbit torque (SOT) from large spin-orbit coupling materials has been attracting interest because of its low power switching of the magnetization and ultra-fast driving of the domain wall motion that can be used in future spin based memory and logic devices. We investigated SOT from topological insulator BixSe(1 - x) thin film in BixSe(1 - x) /CoFeB heterostructure by using the dc planar Hall method, where BixSe(1 - x) thin films were prepared by a unique industry-compatible deposition process. The angle dependent Hall resistance was measured in the presence of a rotating external in-plane magnetic field at bipolar currents. The spin Hall angle (SHA) from this BixSe(1 - x) thin film was found to be as large as 22.41, which is the largest ever reported at room temperature (RT). The giant SHA and large spin Hall conductivity (SHC) make this BixSe(1 - x) thin film a very strong candidate as an SOT generator in SOT based memory and logic devices.

  16. Quasiclassical description of the nearest-neighbor hopping dc conduction via hydrogen-like donors in intermediately compensated GaAs crystals

    NASA Astrophysics Data System (ADS)

    Poklonski, N. A.; Vyrko, S. A.; Zabrodskii, A. G.

    2010-08-01

    Expressions for the pre-exponential factor σ3 and the thermal activation energy ɛ3 of hopping electric conductivity of electrons via hydrogen-like donors in n-type gallium arsenide are obtained in the quasiclassical approximation. Crystals with the donor concentration N and the acceptor concentration KN at the intermediate compensation ratio K (approximately from 0.25 to 0.75) are considered. We assume that the donors in the charge states (0) and (+1) and the acceptors in the charge state (-1) form a joint nonstoichiometric simple cubic 'sublattice' within the crystalline matrix. In such sublattice the distance between nearest impurity atoms is Rh = [(1 + K)N]-1/3 which is also the length of an electron hop between donors. To take into account orientational disorder of hops we assume that the impurity sublattice randomly and smoothly changes orientation inside a macroscopic sample. Values of σ3(N) and ɛ3(N) calculated for the temperature of 2.5 K agree with known experimental data at the insulator side of the insulator-metal phase transition.

  17. Existing Whole-House Solutions Case Study: Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In this study, IBACOS, in collaboration with GreenHomes America, Inc., was contracted by the New York State Energy Research and Development Authority (NYSERDA) to research exterior wall insulation solutions for enclosure upgrades. This case study describes the deep energy retrofit of three test homes in the Syracuse, New York area and represent these enclosure strategies: rigid foam insulation; spray foam insulation, and a control house that follows Home Performance with ENERGY STAR (HPwES) guidelines.

  18. Effects of Electrical Insulation Breakdown Voltage And Partial Discharge

    NASA Astrophysics Data System (ADS)

    Bahrim, F. S.; Rahman, N. F. A.; Haris, H. C. M.; Salim, N. A.

    2018-03-01

    During the last few decades, development of new materials using composite materials has been of much interest. The Cross-linked Polyethylene (XLPE) which is insulated power cables has been widely used. This paper describes the theoretical analysis, fundamental experiments and application experiments for the XLPE cable insulation. The composite that has been tested is a commercial XLPE and Polypropylene with 30% fiber glass. The results of breakdown strength and partial discharge (PD) behavior described the insulating performance of the composite.

  19. Spark Plug Defects and Tests

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Sawyer, L G; Fonseca, E L; Dickinson, H C; Agnew, P G

    1920-01-01

    The successful operation of the spark plug depends to a large extent on the gas tightness of the plug. Part 1 of this report describes the method used for measuring the gas tightness of aviation spark plugs. Part 2 describes the methods used in testing the electrical conductivity of the insulation material when hot. Part 3 describes the testing of the cold dielectric strength of the insulation material, the resistance to mechanical shock, and the final engine test.

  20. Below-Ambient and Cryogenic Thermal Testing

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

Top