Massagram, Wansuree; Hafner, Noah M; Park, Byung-Kwan; Lubecke, Victor M; Host-Madsen, Anders; Boric-Lubecke, Olga
2007-01-01
This paper describes the experimental results of the beat-to-beat interval measurement from a quadrature Doppler radar system utilizing arctangent demodulation with DC offset compensation techniques. The comparison in SDNN and in RMSDD of both signals demonstrates the potential of using quadrature Doppler radar for HRV analysis.
Effect of DC Offset on the T-Wave Residuum Parameter
NASA Technical Reports Server (NTRS)
Scott, N.; Greco, E. C.; Schlegel, Todd T.
2006-01-01
The T-wave residuum (TWR) is a relatively new 12-lead ECG parameter that may reflect cardiac repolarization heterogeneity. TWR shows clinical promise and may become an important diagnostic tool if accurate, consistent, and convenient methods for its calculation can be developed. However, there are discrepancies between the methods that various investigators have used to calculate TWR, as well as some questions about basic methodology and assumptions that require resolution. The presence of a DC offset or very low frequency AC component to the ECG is often observed. Many researchers have attempted to compensate for these by high pass filters and by median beat techniques. These techniques may help minimize the contribution of a low frequency AC component to the TWR, but they will not eliminate a DC offset inherent within the instrumentation. The present study examined the presence of DC offsets in the ECG record, and their effect on TWR. Specifically, in healthy individuals, a DC offset was added to all 8 channels collectively or to each channel selectively. Even with offsets that were relatively small compared to T-wave amplitude, the addition of either collectively or individually applied offsets was observed to produce very significant changes in the TWR, affecting its value by as much as an order of magnitude. These DC offsets may arise from at least two possible sources: a transient artifact from EMG or electrode movement resulting in a transient baseline offset in one or more channels. Since highpass filters have a settling time of several seconds, these artifacts will contribute to a transitory baseline offset lasting 1020 cycles. The machine hardware may also introduce an offset. Regardless of the cause or source of a DC offset, this study demonstrates that offsets have a very significant impact on TWR, and that future studies must not ignore their presence, but rather more appropriately compensate for them.
Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho
2015-12-31
To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal-oxide-semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.
Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho
2015-01-01
To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal–oxide–semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms. PMID:26729122
Influence of Random DC Offsets on Burst-Mode Receiver Sensitivity
NASA Astrophysics Data System (ADS)
Ossieur, Peter; de Ridder, Tine; Qiu, Xing-Zhi; Vandewege, Jan
2006-03-01
This paper presents the influence of random direct current (dc) offsets on the sensitivity of dc-coupled burst-mode receivers (BMRxs). It is well known that a BMRx exhibits a noisy decision threshold, resulting in a sensitivity penalty. If the BMRx is dc coupled, an additional penalty is incurred by random dc offsets. This penalty can only be determined for a statistically significant number of fabricated BMRx samples. Using Monte Carlo (MC) simulations and a detailed BMRx model, the relationship between the variance of this random dc offset, the resulting sensitivity penalty, and BMRx yield (the fraction of fabricated BMRx samples that meets a given sensitivity specification) is evaluated as a function of various receiver parameters. The obtained curves can be used to trade off BMRx die area against sensitivity for a given yield. It is demonstrated that a thorough understanding of the relationship between BMRx sensitivity, BMRx yield, and the variance of the random dc offsets is needed to optimize a dc-coupled BMRx with respect to sensitivity and die area for a given yield. It is shown that compensation of dc offsets with a resolution of 8 bits results in a sensitivity penalty of 1 dB for a wide range of random dc offsets.
Reaction wheel low-speed compensation using a dither signal
NASA Astrophysics Data System (ADS)
Stetson, John B., Jr.
1993-08-01
A method for improving low-speed reaction wheel performance on a three-axis controlled spacecraft is presented. The method combines a constant amplitude offset with an unbiased, oscillating dither to harmonically linearize rolling solid friction dynamics. The complete, nonlinear rolling solid friction dynamics using an analytic modification to the experimentally verified Dahl solid friction model were analyzed using the dual-input describing function method to assess the benefits of dither compensation. The modified analytic solid friction model was experimentally verified with a small dc servomotor actuated reaction wheel assembly. Using dither compensation abrupt static friction disturbances are eliminated and near linear behavior through zero rate can be achieved. Simulated vehicle response to a wheel rate reversal shows that when the dither and offset compensation is used, elastic modes are not significantly excited, and the uncompensated attitude error reduces by 34:1.
AC coupled three op-amp biopotential amplifier with active DC suppression.
Spinelli, E M; Mayosky, M A
2000-12-01
A three op-amps instrumentation amplifier (I.A) with active dc suppression is presented. dc suppression is achieved by means of a controlled floating source at the input stage, to compensate electrode and op-amps offset voltages. This isolated floating source is built around an optical-isolated device using a general-purpose optocoupler, working as a photovoltaic generator. The proposed circuit has many interesting characteristics regarding simplicity and cost, while preserving common mode rejection ratio (CMRR) and high input impedance characteristics of the classic three op-amps I.A. As an example, a biopotential amplifier with a gain of 80 dB, a lower cutoff frequency of 0.1 Hz, and a dc input range of +/- 8 mV was built and tested. Using general-purpose op-amps, a CMRR of 105 was achieved without trimmings.
Quadrature mixture LO suppression via DSW DAC noise dither
Dubbert, Dale F [Cedar Crest, NM; Dudley, Peter A [Albuquerque, NM
2007-08-21
A Quadrature Error Corrected Digital Waveform Synthesizer (QECDWS) employs frequency dependent phase error corrections to, in effect, pre-distort the phase characteristic of the chirp to compensate for the frequency dependent phase nonlinearity of the RF and microwave subsystem. In addition, the QECDWS can employ frequency dependent correction vectors to the quadrature amplitude and phase of the synthesized output. The quadrature corrections cancel the radars' quadrature upconverter (mixer) errors to null the unwanted spectral image. A result is the direct generation of an RF waveform, which has a theoretical chirp bandwidth equal to the QECDWS clock frequency (1 to 1.2 GHz) with the high Spurious Free Dynamic Range (SFDR) necessary for high dynamic range radar systems such as SAR. To correct for the problematic upconverter local oscillator (LO) leakage, precision DC offsets can be applied over the chirped pulse using a pseudo-random noise dither. The present dither technique can effectively produce a quadrature DC bias which has the precision required to adequately suppress the LO leakage. A calibration technique can be employed to calculate both the quadrature correction vectors and the LO-nulling DC offsets using the radar built-in test capability.
DC coupled Doppler radar physiological monitor.
Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga
2011-01-01
One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.
This patent describes a low offset AC correlator avoids DC offset and low frequency noise by frequency operating the correlation signal so that low...noise, low level AC amplification can be substituted for DC amplification. Subsequently, the high level AC signal is demodulated to a DC level. (Author)
38 CFR 3.658 - Offsets; dependency and indemnity compensation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Offsets; dependency and... AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Adjustments and Resumptions § 3.658 Offsets; dependency and indemnity compensation. (a) When an award of dependency and...
38 CFR 3.658 - Offsets; dependency and indemnity compensation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Offsets; dependency and... AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Adjustments and Resumptions § 3.658 Offsets; dependency and indemnity compensation. (a) When an award of dependency and...
38 CFR 3.658 - Offsets; dependency and indemnity compensation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Offsets; dependency and... AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Adjustments and Resumptions § 3.658 Offsets; dependency and indemnity compensation. (a) When an award of dependency and...
38 CFR 3.658 - Offsets; dependency and indemnity compensation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Offsets; dependency and... AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Adjustments and Resumptions § 3.658 Offsets; dependency and indemnity compensation. (a) When an award of dependency and...
38 CFR 3.658 - Offsets; dependency and indemnity compensation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Offsets; dependency and... AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Adjustments and Resumptions § 3.658 Offsets; dependency and indemnity compensation. (a) When an award of dependency and...
Programmable Gain Amplifiers with DC Suppression and Low Output Offset for Bioelectric Sensors
Carrera, Albano; de la Rosa, Ramón; Alonso, Alonso
2013-01-01
DC-offset and DC-suppression are key parameters in bioelectric amplifiers. However, specific DC analyses are not often explained. Several factors influence the DC-budget: the programmable gain, the programmable cut-off frequencies for high pass filtering and, the low cut-off values and the capacitor blocking issues involved. A new intermediate stage is proposed to address the DC problem entirely. Two implementations were tested. The stage is composed of a programmable gain amplifier (PGA) with DC-rejection and low output offset. Cut-off frequencies are selectable and values from 0.016 to 31.83 Hz were tested, and the capacitor deblocking is embedded in the design. Hence, this PGA delivers most of the required gain with constant low output offset, notwithstanding the gain or cut-off frequency selected. PMID:24084109
Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalsky, Joseph J.; Kutchenreiter, Mark; Long, Charles N.
Ventilators are used to keep the domes of pyranometers clean and dry, but they affect the nighttime offset as well. This paper examines different ventilation strategies. For the several commercial single-black-detector pyranometers with ventilators examined here, high flow rate (50 CFM and higher), 12 VDC fans lower the offsets, lower the scatter, and improve the predictability of the offsets during the night compared with lower flow rate 35 CFM, 120 VAC fans operated in the same ventilator housings. Black-and-white pyranometers sometimes show improvement with DC ventilation, but in some cases DC ventilation makes the offsets slightly worse. Since the offsetsmore » for these black-and-white pyranometers are always small, usually no more than 1 Wm -2, whether AC or DC ventilated, changing their ventilation to higher CFM DC ventilation is not imperative. Future work should include all major manufacturers of pyranometers and unventilated, as well as, ventilated pyranometers. Lastly, an important outcome of future research will be to clarify under what circumstances nighttime data can be used to predict daytime offsets.« less
Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation
Michalsky, Joseph J.; Kutchenreiter, Mark; Long, Charles N.
2017-06-20
Ventilators are used to keep the domes of pyranometers clean and dry, but they affect the nighttime offset as well. This paper examines different ventilation strategies. For the several commercial single-black-detector pyranometers with ventilators examined here, high flow rate (50 CFM and higher), 12 VDC fans lower the offsets, lower the scatter, and improve the predictability of the offsets during the night compared with lower flow rate 35 CFM, 120 VAC fans operated in the same ventilator housings. Black-and-white pyranometers sometimes show improvement with DC ventilation, but in some cases DC ventilation makes the offsets slightly worse. Since the offsetsmore » for these black-and-white pyranometers are always small, usually no more than 1 Wm -2, whether AC or DC ventilated, changing their ventilation to higher CFM DC ventilation is not imperative. Future work should include all major manufacturers of pyranometers and unventilated, as well as, ventilated pyranometers. Lastly, an important outcome of future research will be to clarify under what circumstances nighttime data can be used to predict daytime offsets.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...
Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutchenreiter, Mark; Michalski, J.J.; Long, C.N.
2017-05-22
Accurate solar radiation measurements using pyranometers are required to understand radiative impacts on the Earth's energy budget, solar energy production, and to validate radiative transfer models. Ventilators of pyranometers, which are used to keep the domes clean and dry, also affect instrument thermal offset accuracy. This poster presents a high-level overview of the ventilators for single-black-detector pyranometers and black-and-white pyranometers. For single-black-detector pyranometers with ventilators, high-flow-rate (50-CFM and higher), 12-V DC fans lower the offsets, lower the scatter, and improve the predictability of nighttime offsets compared to lower-flow-rate (35-CFM), 120-V AC fans operated in the same type of environmental setup.more » Black-and-white pyranometers, which are used to measure diffuse horizontal irradiance, sometimes show minor improvement with DC fan ventilation, but their offsets are always small, usually no more than 1 W/m2, whether AC- or DC-ventilated.« less
Great apes and biodiversity offset projects in Africa: the case for national offset strategies.
Kormos, Rebecca; Kormos, Cyril F; Humle, Tatyana; Lanjouw, Annette; Rainer, Helga; Victurine, Ray; Mittermeier, Russell A; Diallo, Mamadou S; Rylands, Anthony B; Williamson, Elizabeth A
2014-01-01
The development and private sectors are increasingly considering "biodiversity offsets" as a strategy to compensate for their negative impacts on biodiversity, including impacts on great apes and their habitats in Africa. In the absence of national offset policies in sub-Saharan Africa, offset design and implementation are guided by company internal standards, lending bank standards or international best practice principles. We examine four projects in Africa that are seeking to compensate for their negative impacts on great ape populations. Our assessment of these projects reveals that not all apply or implement best practices, and that there is little standardization in the methods used to measure losses and gains in species numbers. Even if they were to follow currently accepted best-practice principles, we find that these actions may still fail to contribute to conservation objectives over the long term. We advocate for an alternative approach in which biodiversity offset and compensation projects are designed and implemented as part of a National Offset Strategy that (1) takes into account the cumulative impacts of development in individual countries, (2) identifies priority offset sites, (3) promotes aggregated offsets, and (4) integrates biodiversity offset and compensation projects with national biodiversity conservation objectives. We also propose supplementary principles necessary for biodiversity offsets to contribute to great ape conservation in Africa. Caution should still be exercised, however, with regard to offsets until further field-based evidence of their effectiveness is available.
High-precision buffer circuit for suppression of regenerative oscillation
NASA Technical Reports Server (NTRS)
Tripp, John S.; Hare, David A.; Tcheng, Ping
1995-01-01
Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven.
Great Apes and Biodiversity Offset Projects in Africa: The Case for National Offset Strategies
Kormos, Rebecca; Kormos, Cyril F.; Humle, Tatyana; Lanjouw, Annette; Rainer, Helga; Victurine, Ray; Mittermeier, Russell A.; Diallo, Mamadou S.; Rylands, Anthony B.; Williamson, Elizabeth A.
2014-01-01
The development and private sectors are increasingly considering “biodiversity offsets” as a strategy to compensate for their negative impacts on biodiversity, including impacts on great apes and their habitats in Africa. In the absence of national offset policies in sub-Saharan Africa, offset design and implementation are guided by company internal standards, lending bank standards or international best practice principles. We examine four projects in Africa that are seeking to compensate for their negative impacts on great ape populations. Our assessment of these projects reveals that not all apply or implement best practices, and that there is little standardization in the methods used to measure losses and gains in species numbers. Even if they were to follow currently accepted best-practice principles, we find that these actions may still fail to contribute to conservation objectives over the long term. We advocate for an alternative approach in which biodiversity offset and compensation projects are designed and implemented as part of a National Offset Strategy that (1) takes into account the cumulative impacts of development in individual countries, (2) identifies priority offset sites, (3) promotes aggregated offsets, and (4) integrates biodiversity offset and compensation projects with national biodiversity conservation objectives. We also propose supplementary principles necessary for biodiversity offsets to contribute to great ape conservation in Africa. Caution should still be exercised, however, with regard to offsets until further field-based evidence of their effectiveness is available. PMID:25372894
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... Payments To Collect Delinquent State Unemployment Compensation Debts AGENCY: Financial Management Service... (referred to as ``tax refund offset'') to collect delinquent State unemployment compensation debts. The Department of the Treasury (Treasury) will incorporate the procedures necessary to collect State unemployment...
Electrometer Amplifier With Overload Protection
NASA Technical Reports Server (NTRS)
Woeller, F. H.; Alexander, R.
1986-01-01
Circuit features low noise, input offset, and high linearity. Input preamplifier includes input-overload protection and nulling circuit to subtract dc offset from output. Prototype dc amplifier designed for use with ion detector has features desirable in general laboratory and field instrumentation.
NASA Astrophysics Data System (ADS)
Calderone, Luigi; Pinola, Licia; Varoli, Vincenzo
1992-04-01
The paper describes an analytical procedure to optimize the feed-forward compensation for any PWM dc/dc converters. The aims of achieving zero dc audiosusceptibility was found to be possible for the buck, buck-boost, Cuk, and SEPIC cells; for the boost converter, however, only nonoptimal compensation is feasible. Rules for the design of PWM controllers and procedures for the evaluation of the hardware-introduced errors are discussed. A PWM controller implementing the optimal feed-forward compensation for buck-boost, Cuk, and SEPIC cells is described and fully experimentally characterized.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...
Lee, Hyung-Min; Ghovanloo, Maysam
2011-01-01
We present an active full-wave rectifier with offset-controlled high speed comparators in standard CMOS that provides high power conversion efficiency (PCE) in high frequency (HF) range for inductively powered devices. This rectifier provides much lower dropout voltage and far better PCE compared to the passive on-chip or off-chip rectifiers. The built-in offset-control functions in the comparators compensate for both turn-on and turn-off delays in the main rectifying switches, thus maximizing the forward current delivered to the load and minimizing the back current to improve the PCE. We have fabricated this active rectifier in a 0.5-μm 3M2P standard CMOS process, occupying 0.18 mm2 of chip area. With 3.8 V peak ac input at 13.56 MHz, the rectifier provides 3.12 V dc output to a 500 Ω load, resulting in the PCE of 80.2%, which is the highest measured at this frequency. In addition, overvoltage protection (OVP) as safety measure and built-in back telemetry capabilities have been incorporated in our design using detuning and load shift keying (LSK) techniques, respectively, and tested. PMID:22174666
NASA Technical Reports Server (NTRS)
Binkley, David M.; Verma, Nikhil; Crawford, Robert L.; Brandon, Erik; Jackson, Thomas N.
2004-01-01
Organic strain gauge and other sensors require high-gain, precision dc amplification to process their low-level output signals. Ideally, amplifiers would be fabricated using organic thin-film field-effect transistors (OTFT's) adjacent to the sensors. However, OTFT amplifiers exhibit low gain and high input-referred dc offsets that must be effectively managed. This paper presents a four-stage, cascaded differential OTFT amplifier utilizing switched capacitor auto-zeroing. Each stage provides a nominal voltage gain of four through a differential pair driving low-impedance active loads, which provide common-mode output voltage control. p-type pentacence OTFT's are used for the amplifier devices and auto-zero switches. Simulations indicate the amplifier provides a nominal voltage gain of 280 V/V and effectively amplifies a 1-mV dc signal in the presence of 500-mV amplifier input-referred dc offset voltages. Future work could include the addition of digital gain calibration and offset correction of residual offsets associated with charge injection imbalance in the differential circuits.
Frequency-Offset Cartesian Feedback Based on Polyphase Difference Amplifiers
Zanchi, Marta G.; Pauly, John M.; Scott, Greig C.
2010-01-01
A modified Cartesian feedback method called “frequency-offset Cartesian feedback” and based on polyphase difference amplifiers is described that significantly reduces the problems associated with quadrature errors and DC-offsets in classic Cartesian feedback power amplifier control systems. In this method, the reference input and feedback signals are down-converted and compared at a low intermediate frequency (IF) instead of at DC. The polyphase difference amplifiers create a complex control bandwidth centered at this low IF, which is typically offset from DC by 200–1500 kHz. Consequently, the loop gain peak does not overlap DC where voltage offsets, drift, and local oscillator leakage create errors. Moreover, quadrature mismatch errors are significantly attenuated in the control bandwidth. Since the polyphase amplifiers selectively amplify the complex signals characterized by a +90° phase relationship representing positive frequency signals, the control system operates somewhat like single sideband (SSB) modulation. However, the approach still allows the same modulation bandwidth control as classic Cartesian feedback. In this paper, the behavior of the polyphase difference amplifier is described through both the results of simulations, based on a theoretical analysis of their architecture, and experiments. We then describe our first printed circuit board prototype of a frequency-offset Cartesian feedback transmitter and its performance in open and closed loop configuration. This approach should be especially useful in magnetic resonance imaging transmit array systems. PMID:20814450
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Column 4 “Actuarial Present Value”of past payments = $0.00 NET AMOUNT OWED CLAIMANT ($75,000 less APV... Compensation Act Offset Worksheet—On Site Participants [Present CPI = 185.20] VA paymentsyear Payment Indicated...
Spectrophone stabilized laser with line center offset frequency control
NASA Technical Reports Server (NTRS)
Kavaya, M. J.; Menzies, R. T. (Inventor)
1984-01-01
Continuous offset tuning of a frequency stabilized CW gas laser is achieved by using a spectrophone filled with the same gas as the laser for sensing a dither modulation, detecting a first or second derivative of the spectrophone output with a lock-in amplifier, the detected output of which is integrated, and applying the integrator output as a correction signal through a circuit which adds to the dither signal from an oscillator a dc offset that is adjusted with a potentiometer to a frequency offset from the absorption line center of the gas, but within the spectral linewidth of the gas. Tuning about that offset frequency is achieved by adding a dc value to the detected output of the dither modulation before integration using a potentiometer.
Lee, Hyung-Min; Ghovanloo, Maysam
2014-01-01
In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321
Laitila, Jussi; Moilanen, Atte; Pouzols, Federico M
2014-01-01
Biodiversity offsetting, which means compensation for ecological and environmental damage caused by development activity, has recently been gaining strong political support around the world. One common criticism levelled at offsets is that they exchange certain and almost immediate losses for uncertain future gains. In the case of restoration offsets, gains may be realized after a time delay of decades, and with considerable uncertainty. Here we focus on offset multipliers, which are ratios between damaged and compensated amounts (areas) of biodiversity. Multipliers have the attraction of being an easily understandable way of deciding the amount of offsetting needed. On the other hand, exact values of multipliers are very difficult to compute in practice if at all possible. We introduce a mathematical method for deriving minimum levels for offset multipliers under the assumption that offsetting gains must compensate for the losses (no net loss offsetting). We calculate absolute minimum multipliers that arise from time discounting and delayed emergence of offsetting gains for a one-dimensional measure of biodiversity. Despite the highly simplified model, we show that even the absolute minimum multipliers may easily be quite large, in the order of dozens, and theoretically arbitrarily large, contradicting the relatively low multipliers found in literature and in practice. While our results inform policy makers about realistic minimal offsetting requirements, they also challenge many current policies and show the importance of rigorous models for computing (minimum) offset multipliers. The strength of the presented method is that it requires minimal underlying information. We include a supplementary spreadsheet tool for calculating multipliers to facilitate application. PMID:25821578
Kostolanska, J; Jakus, V; Barak, L; Stanikova, A; Waczulikova, I
2010-01-01
We tried to investigate whether the AGEs in serum and lipoperoxides (LPO) monitoring were suitable for an early prediction of diabetic complications (DC) development in diabetological practice. We wanted to find whether it is better to divide the file according to the presence of DC or in terms of glycemic compensation in this study. 79 diabetic patients with duration of disease for at least 5 years were divided in respect to DC presence/absence and also to long-time glycemic compensation. HbA1c was measured by LPLC in fair capillary blood, s-AGEs were estimated spectrofluorimetrically and LPO iodimetrically and spectrophotometrically in serum. HbA1c, s-AGEs and LPO were significantly higher in the group with DC (+DC) vs. controls and also in -DC vs. controls. HbA1c and s-AGEs were significantly higher in +DC vs. patients without DC (-DC). HbA1c, s-AGEs and LPO were significantly higher in patients with poor glycemic compensation (PGC) compared to controls and HbA1c and LPO in patients with good glycemic compensation (GGC) compared to controls. HbA1c and s-AGEs were significantly higher in PGC vs. GGC. In the group of GGC we have found interesting significant correlations of HbA1c with HDL (r=0.451, p<0.05) and with LDL (r=-0.450, p<0.05). Our findings suggest that the monitoring of s-AGEs in poorly compensated diabetic patients and LPO in all may be very useful to recognize the risk of complications. The dividing of patient file in terms of long time glycemic compensation is more reliable for research of this issue (Tab. 3, Fig. 6, Ref. 41). Full Text in free PDF www.bmj.sk.
Koenig, Bruce E; Lacey, Douglas S
2014-07-01
In this research project, nine small digital audio recorders were tested using five sets of 30-min recordings at all available recording modes, with consistent audio material, identical source and microphone locations, and identical acoustic environments. The averaged direct current (DC) offset values and standard deviations were measured for 30-sec and 1-, 2-, 3-, 6-, 10-, 15-, and 30-min segments. The research found an inverse association between segment lengths and the standard deviation values and that lengths beyond 30 min may not meaningfully reduce the standard deviation values. This research supports previous studies indicating that measured averaged DC offsets should only be used for exclusionary purposes in authenticity analyses and exhibit consistent values when the general acoustic environment and microphone/recorder configurations were held constant. Measured average DC offset values from exemplar recorders may not be directly comparable to those of submitted digital audio recordings without exactly duplicating the acoustic environment and microphone/recorder configurations. © 2014 American Academy of Forensic Sciences.
Measuring earthquakes from optical satellite images.
Van Puymbroeck, N; Michel, R; Binet, R; Avouac, J P; Taboury, J
2000-07-10
Système pour l'Observation de la Terre images are used to map ground displacements induced by earthquakes. Deformations (offsets) induced by stereoscopic effect and roll, pitch, and yaw of satellite and detector artifacts are estimated and compensated. Images are then resampled in a cartographic projection with a low-bias interpolator. A subpixel correlator in the Fourier domain provides two-dimensional offset maps with independent measurements approximately every 160 m. Biases on offsets are compensated from calibration. High-frequency noise (0.125 m(-1)) is approximately 0.01 pixels. Low-frequency noise (lower than 0.001 m(-1)) exceeds 0.2 pixels and is partially compensated from modeling. Applied to the Landers earthquake, measurements show the fault with an accuracy of a few tens of meters and yields displacement on the fault with an accuracy of better than 20 cm. Comparison with a model derived from geodetic data shows that offsets bring new insights into the faulting process.
A Drift Chamber to Measure Charged Particles at COMPASS-II
NASA Astrophysics Data System (ADS)
Heitz, Robert; Compass Collaboration
2013-10-01
A new drift chamber (DC05) will be constructed to replace two tracking detector stations based on straw tubes, ST02 and ST03 in the COMPASS spectrometer. DC05 uses the designs from DC04, a previous drift chamber designed at CEA-Saclay, France, but adds the addition of more wires for improved acceptance. In addition to more wires DC05 will also change its front end electronics using a new pre-amplifier-discriminator chip (CMAD). DC05 consists of 8 layers of anode planes and 21 layers of G-10 material frames carrying cathode planes and gas windows. The wires are orientated with two layers in the vertical x-direction, two layers in the horizontal y-direction, two layers offset +10 deg of the vertical x-direction, and two layers offset -10 deg of the vertical x-direction. The wires in parallel directions are offset half a pitch to resolve left-right ambiguities. The purpose for different wire orientations is to reconstruct the 3D space particle trajectory to fit a particle track. Each layer of wires is covered on the top and bottom by a cathode plane of carbon coated mylar. All these layers are sandwiched between two steel stiffening frames for support and noise reduction. A future drift chamber, DC06, is also being designed based off of DC05. Research funded by NSF-PHY-12-05-671 Medium Energy Nuclear Physics.
The potential for biodiversity offsetting to fund effective invasive species control.
Norton, David A; Warburton, Bruce
2015-02-01
Compensating for biodiversity losses in 1 location by conserving or restoring biodiversity elsewhere (i.e., biodiversity offsetting) is being used increasingly to compensate for biodiversity losses resulting from development. We considered whether a form of biodiversity offsetting, enhancement offsetting (i.e., enhancing the quality of degraded natural habitats through intensive ecological management), can realistically secure additional funding to control biological invaders at a scale and duration that results in enhanced biodiversity outcomes. We suggest that biodiversity offsetting has the potential to enhance biodiversity values through funding of invasive species control, but it needs to meet 7 key conditions: be technically possible to reduce invasive species to levels that enhance native biodiversity; be affordable; be sufficiently large to compensate for the impact; be adaptable to accommodate new strategic and tactical developments while not compromising biodiversity outcomes; acknowledge uncertainties associated with managing pests; be based on an explicit risk assessment that identifies the cost of not achieving target outcomes; and include financial mechanisms to provide for in-perpetuity funding. The challenge then for conservation practitioners, advocates, and policy makers is to develop frameworks that allow for durable and effective partnerships with developers to realize the full potential of enhancement offsets, which will require a shift away from traditional preservation-focused approaches to biodiversity management. © 2014 Society for Conservation Biology.
DC-Compensated Current Transformer.
Ripka, Pavel; Draxler, Karel; Styblíková, Renata
2016-01-20
Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.
NASA Astrophysics Data System (ADS)
Zhang, Qun; Yang, Yanfu; Xiang, Qian; Zhou, Zhongqing; Yao, Yong
2018-02-01
A joint compensation scheme based on cascaded Kalman filter is proposed, which can implement polarization tracking, channel equalization, frequency offset, and phase noise compensation simultaneously. The experimental results show that the proposed algorithm can not only compensate multiple channel impairments simultaneously but also improve the polarization tracking capacity and accelerate the convergence speed. The scheme has up to eight times faster convergence speed compared with radius-directed equalizer (RDE) + Max-FFT (maximum fast Fourier transform) + BPS (blind phase search) and can track up polarization rotation 60 times and 15 times faster than that of RDE + Max-FFT + BPS and CMMA (cascaded multimodulus algorithm) + Max-FFT + BPS, respectively.
Three-dimensional tool radius compensation for multi-axis peripheral milling
NASA Astrophysics Data System (ADS)
Chen, Youdong; Wang, Tianmiao
2013-05-01
Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUT® with different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of three- to five-axis machine tools as a general form.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... offsets in defense trade (See 50 U.S.C. app. Sec. 2099). Offsets are compensation practices required as a condition of purchase in either government-to-government or commercial sales of defense articles and/or...
DC-Compensated Current Transformer †
Ripka, Pavel; Draxler, Karel; Styblíková, Renata
2016-01-01
Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830
Analysis of OFDMA receiver with carrier frequency offset and common carrier frequency offset (CCFO)
NASA Astrophysics Data System (ADS)
Gauni, Sabitha; Kumar, R.
2013-01-01
The technique of Orthogonal frequency multiplexing (OFDM) is used to mitigate the multipath effects and to achieve better data rate. When these systems are extended to enable multiple access wireless multimedia communications they are more beneficial. The performance of the OFDM systems degrades with frequency offset and phase offset. The OFDM multiple access (OFDMA) technology allots groups of the OFDM subcarriers allocated to different users for transmission. In this paper we study the interference effects of the individual subcarriers with the neighbouring subcarriers which also plays a role in the system degradation is termed as Multiuser Interference (MUI). The effect of Carrier frequency offset (CFO) on these systems is also taken in account. There are conventional CFO compensation methods for OFDMA systems the CFOs are usually compensated by directly eliminating the intercarrier interference (ICI) caused by the residual CFOs for individual users.
OLT-centralized sampling frequency offset compensation scheme for OFDM-PON.
Chen, Ming; Zhou, Hui; Zheng, Zhiwei; Deng, Rui; Chen, Qinghui; Peng, Miao; Liu, Cuiwei; He, Jing; Chen, Lin; Tang, Xionggui
2017-08-07
We propose an optical line terminal (OLT)-centralized sampling frequency offset (SFO) compensation scheme for adaptively-modulated OFDM-PON systems. By using the proposed SFO scheme, the phase rotation and inter-symbol interference (ISI) caused by SFOs between OLT and multiple optical network units (ONUs) can be centrally compensated in the OLT, which reduces the complexity of ONUs. Firstly, the optimal fast Fourier transform (FFT) size is identified in the intensity-modulated and direct-detection (IMDD) OFDM system in the presence of SFO. Then, the proposed SFO compensation scheme including phase rotation modulation (PRM) and length-adaptive OFDM frame has been experimentally demonstrated in the downlink transmission of an adaptively modulated optical OFDM with the optimal FFT size. The experimental results show that up to ± 300 ppm SFO can be successfully compensated without introducing any receiver performance penalties.
A Group Neighborhood Average Clock Synchronization Protocol for Wireless Sensor Networks
Lin, Lin; Ma, Shiwei; Ma, Maode
2014-01-01
Clock synchronization is a very important issue for the applications of wireless sensor networks. The sensors need to keep a strict clock so that users can know exactly what happens in the monitoring area at the same time. This paper proposes a novel internal distributed clock synchronization solution using group neighborhood average. Each sensor node collects the offset and skew rate of the neighbors. Group averaging of offset and skew rate value are calculated instead of conventional point-to-point averaging method. The sensor node then returns compensated value back to the neighbors. The propagation delay is considered and compensated. The analytical analysis of offset and skew compensation is presented. Simulation results validate the effectiveness of the protocol and reveal that the protocol allows sensor networks to quickly establish a consensus clock and maintain a small deviation from the consensus clock. PMID:25120163
A respiratory compensating system: design and performance evaluation.
Chuang, Ho-Chiao; Huang, Ding-Yang; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien
2014-05-08
This study proposes a respiratory compensating system which is mounted on the top of the treatment couch for reverse motion, opposite from the direction of the targets (diaphragm and hemostatic clip), in order to offset organ displacement generated by respiratory motion. Traditionally, in the treatment of cancer patients, doctors must increase the field size for radiation therapy of tumors because organs move with respiratory motion, which causes radiation-induced inflammation on the normal tissues (organ at risk (OAR)) while killing cancer cells, and thereby reducing the patient's quality of life. This study uses a strain gauge as a respiratory signal capture device to obtain abdomen respiratory signals, a proposed respiratory simulation system (RSS) and respiratory compensating system to experiment how to offset the organ displacement caused by respiratory movement and compensation effect. This study verifies the effect of the respiratory compensating system in offsetting the target displacement using two methods. The first method uses linac (medical linear accelerator) to irradiate a 300 cGy dose on the EBT film (GAFCHROMIC EBT film). The second method uses a strain gauge to capture the patients' respiratory signals, while using fluoroscopy to observe in vivo targets, such as a diaphragm, to enable the respiratory compensating system to offset the displacements of targets in superior-inferior (SI) direction. Testing results show that the RSS position error is approximately 0.45 ~ 1.42 mm, while the respiratory compensating system position error is approximately 0.48 ~ 1.42 mm. From the EBT film profiles based on different input to the RSS, the results suggest that when the input respiratory signals of RSS are sine wave signals, the average dose (%) in the target area is improved by 1.4% ~ 24.4%, and improved in the 95% isodose area by 15.3% ~ 76.9% after compensation. If the respiratory signals input into the RSS respiratory signals are actual human respiratory signals, the average dose (%) in the target area is improved by 31.8% ~ 67.7%, and improved in the 95% isodose area by 15.3% ~ 86.4% (the above rates of improvements will increase with increasing respiratory motion displacement) after compensation. The experimental results from the second method suggested that about 67.3% ~ 82.5% displacement can be offset. In addition, gamma passing rate after compensation can be improved to 100% only when the displacement of the respiratory motion is within 10 ~ 30 mm. This study proves that the proposed system can contribute to the compensation of organ displacement caused by respiratory motion, enabling physicians to use lower doses and smaller field sizes in the treatment of tumors of cancer patients.
A respiratory compensating system: design and performance evaluation
Huang, Ding‐Yang; Tien, Der‐Chi; Wu, Ren‐Hong; Hsu, Chung‐Hsien
2014-01-01
This study proposes a respiratory compensating system which is mounted on the top of the treatment couch for reverse motion, opposite from the direction of the targets (diaphragm and hemostatic clip), in order to offset organ displacement generated by respiratory motion. Traditionally, in the treatment of cancer patients, doctors must increase the field size for radiation therapy of tumors because organs move with respiratory motion, which causes radiation‐induced inflammation on the normal tissues (organ at risk (OAR)) while killing cancer cells, and thereby reducing the patient's quality of life. This study uses a strain gauge as a respiratory signal capture device to obtain abdomen respiratory signals, a proposed respiratory simulation system (RSS) and respiratory compensating system to experiment how to offset the organ displacement caused by respiratory movement and compensation effect. This study verifies the effect of the respiratory compensating system in offsetting the target displacement using two methods. The first method uses linac (medical linear accelerator) to irradiate a 300 cGy dose on the EBT film (GAFCHROMIC EBT film). The second method uses a strain gauge to capture the patients' respiratory signals, while using fluoroscopy to observe in vivo targets, such as a diaphragm, to enable the respiratory compensating system to offset the displacements of targets in superior‐inferior (SI) direction. Testing results show that the RSS position error is approximately 0.45 ~ 1.42 mm, while the respiratory compensating system position error is approximately 0.48 ~ 1.42 mm. From the EBT film profiles based on different input to the RSS, the results suggest that when the input respiratory signals of RSS are sine wave signals, the average dose (%) in the target area is improved by 1.4% ~ 24.4%, and improved in the 95% isodose area by 15.3% ~ 76.9% after compensation. If the respiratory signals input into the RSS respiratory signals are actual human respiratory signals, the average dose (%) in the target area is improved by 31.8% ~ 67.7%, and improved in the 95% isodose area by 15.3% ~ 86.4% (the above rates of improvements will increase with increasing respiratory motion displacement) after compensation. The experimental results from the second method suggested that about 67.3% ~ 82.5% displacement can be offset. In addition, gamma passing rate after compensation can be improved to 100% only when the displacement of the respiratory motion is within 10 ~ 30 mm. This study proves that the proposed system can contribute to the compensation of organ displacement caused by respiratory motion, enabling physicians to use lower doses and smaller field sizes in the treatment of tumors of cancer patients. PACS number: 87.19. Wx; 87.55. Km PMID:24892345
In-Flight Calibration Methods for Temperature-Dependent Offsets in the MMS Fluxgate Magnetometers
NASA Technical Reports Server (NTRS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.;
2016-01-01
During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
Duggan, Mark; Rosenheck, Robert; Singleton, Perry
2010-01-01
The U.S. Department of Veterans Affairs compensates 13 percent of the nation’s military veterans for service‐related disabilities through the Disability Compensation (DC) program. In 2001, a legislative change made it easier for Vietnam veterans to receive benefits for diabetes associated with military service. In this paper, we investigate this policy’s effect on DC enrollment and expenditures as well as the behavioral response of potential beneficiaries. Our findings demonstrate that the policy increased DC enrollment by 6 percentage points among Vietnam veterans and that an additional 1.7 percent experienced an increase in their DC benefits, which increased annual program expenditures by $2.85 billion in 2007. Using individual-level data from the Veterans Supplement to the Current Population Survey, we find that the induced increase in DC enrollment had little average impact on the labor supply or health status of Vietnam veterans but did reduce labor supply among their spouses.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
..., which replaced prior section 309 and addresses offsets in defense trade (See 50 U.S.C. app. 2172). Offsets are compensation practices required as a condition of purchase in either government-to-government... providing training assistance to plant managers in the purchasing country. Although this distorts the true...
32 CFR 842.134 - Claims in favor of NAFIs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 176-2 and 176-10 or AFR 147-14, as appropriate. (d) Third Party Workers' Compensation Claims. NAF employees are provided workers' compensation benefits under the Longshore and Harbor Workers' Compensation... staff judge advocate. A NAFI also has the right of offset against an employee's pay amounts recovered...
In-Flight Calibration Methods for Temperature-Dependendent Offsets in the MMS Fluxgate Magnetometers
NASA Astrophysics Data System (ADS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.
2016-12-01
During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen — for the period of any given week — to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
Carbon Dioxide Compensation Values in Citronella and Lemongrass 1
Herath, H. M. Walter; Ormrod, Douglas P.
1977-01-01
Carbon dioxide compensation values of mature leaves from 10 selections of citronella (Cymbopogon nardus [L.] Rendle) grown at 32/27 or 27/21 C day/night temperatures and three strains of lemongrass (Cymbopogon citratus [D.C.] Stapf. and Cymbopogon flexuosus [D.C.] Stapf.) grown at 8- or 15-hour photoperiods were measured in a controlled environment at 25 C. All leaves had low compensation values but citronella varied from 1.3 to 9.7 μl/liter and lemongrass from 0.7 to 3.5 μl/liter. Lower growing temperature generally resulted in lower compensation values for citronella but there was no consistent photoperiod effect on lemongrass. PMID:16659935
HYMOSS signal processing for pushbroom spectral imaging
NASA Technical Reports Server (NTRS)
Ludwig, David E.
1991-01-01
The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.
HYMOSS signal processing for pushbroom spectral imaging
NASA Astrophysics Data System (ADS)
Ludwig, David E.
1991-06-01
The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.
Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement
NASA Astrophysics Data System (ADS)
Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.
2017-10-01
A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.
Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian
2016-06-27
Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.
ERIC Educational Resources Information Center
Zumel, P.; Fernandez, C.; Sanz, M.; Lazaro, A.; Barrado, A.
2011-01-01
In this paper, a short introductory course to introduce field-programmable gate array (FPGA)-based digital control of dc/dc switching power converters is presented. Digital control based on specific hardware has been at the leading edge of low-medium power dc/dc switching converters in recent years. Besides industry's interest in this topic, from…
A robust low quiescent current power receiver for inductive power transmission in bio implants
NASA Astrophysics Data System (ADS)
Helalian, Hamid; Pasandi, Ghasem; Jafarabadi Ashtiani, Shahin
2017-05-01
In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC-DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC-DC converter has variable conversion ratios and synchronous controller that lets the DC-DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0-10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.
Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation
NASA Astrophysics Data System (ADS)
Singh, B.; Shahani, D. T.; Verma, A. K.
2015-03-01
This paper deals with a grid interfaced solar photo voltaic (SPV) power generating system with modified perfect harmonic cancellation (MPHC) control for power quality improvement in terms of mitigation of the current harmonics, power factor correction, control of point of common coupling (PCC) voltage with reactive power compensation and load balancing in a three phase distribution system. The proposed grid interfaced SPV system consists of a SPV array, a dc-dc boost converter and a voltage source converter (VSC) used for the compensation of other connected linear and nonlinear loads at PCC. The reference grid currents are estimated using MPHC method and control signals are derived by using pulse width modulation (PWM) current controller of VSC. The SPV power is fed to the common dc bus of VSC and dc-dc boost converter using maximum power point tracking (MPPT). The dc link voltage of VSC is regulated by using dc voltage proportional integral (PI) controller. The analysis of the proposed SPV power generating system is carried out under dc/ac short circuit and severe SPV-SX and SPV-TX intrusion.
Analysis, Simulation, and Fabrication of Current Mode Controlled DC-DC Power Converters
1999-12-01
susceptibility), vou/ vin . 3 . The output impedance including the load. 22 The crossover frequency, coc, appears in all poles and is defined as: oo... VIN - 3 0 VIN - 3 V Delay to Outputs (TJ=25*C, (Note 2) 200 500 200 500 ns ( Current Limit Adjust Section Current Limit Offset
`Earth-ionosphere' mode controlled source electromagnetic method
NASA Astrophysics Data System (ADS)
Li, Diquan; Di, Qingyun; Wang, Miaoyue; Nobes, David
2015-09-01
In traditional artificial-source electromagnetic exploration, the effects of the ionosphere and displacement current (DC) in the air were neglected, and only the geoelectrical structure of the earth's crust and upper mantle was considered, such as for controlled source audio-frequency magnetotelluric (CSAMT). By employing a transmitter (less than 30 kW) to generate source fields, the CSAMT method overcomes the problems associated with weak natural electromagnetic (EM) fields used in magnetotellurics. However, the transmitter is moved and the source-receiver offset is approximately less than 20 km, because of the limitation of emission energy. We put forward a new idea, that is, a fixed artificial source (greater than 200 kW) is used and the source location selected at a high resistivity region (to ensure a high emission efficiency), so there may be a possibility that as long as the source strength magnitude is strong enough, the artificial EM signal can be easily observed within a distance of several thousand kilometres. Previous studies have provided the evidence to support this idea; they used the `earth-ionosphere' mode in modeling the EM fields with the offset up to a thousand kilometres. Such EM fields still have a signal/noise ratio over 10-20 dB; this means that a new EM method with fixed source is feasible. However, in their calculations, the DC which plays a very important role for large offsets was neglected. This paper pays much attention to derive the formulae of the `earth-ionosphere' mode with a horizontal electric dipole source, and the DC is not neglected. We present some three layers modeling results to illustrate the basic EM field characteristics under the `earth-ionosphere' mode. As the offset increases, the contribution of the conduction current decreases, DC and ionosphere were taken into account, and the EM field attenuation decreases. We also quantitatively compare the predicted and observed data. The comparison of these results with the data reveal the excellent agreement between the experimental and theoretical results. The DC and ionosphere affects the EM fields, however impedances (ratio of E to H) are unaffected, and this means we need to include ionosphere and DC effects to accurately model the EM field amplitudes for optimal setting of measurement parameters, but we do not need to include these complications for the interpretation of the data for the Earth conductivity.
NASA Technical Reports Server (NTRS)
Seefeldt, James (Inventor); Feng, Xiaoxin (Inventor); Roper, Weston (Inventor)
2013-01-01
A process, voltage, and temperature (PVT) compensation circuit and a method of continuously generating a delay measure are provided. The compensation circuit includes two delay lines, each delay line providing a delay output. The two delay lines may each include a number of delay elements, which in turn may include one or more current-starved inverters. The number of delay lines may differ between the two delay lines. The delay outputs are provided to a combining circuit that determines an offset pulse based on the two delay outputs and then averages the voltage of the offset pulse to determine a delay measure. The delay measure may be one or more currents or voltages indicating an amount of PVT compensation to apply to input or output signals of an application circuit, such as a memory-bus driver, dynamic random access memory (DRAM), a synchronous DRAM, a processor or other clocked circuit.
Lin, Gong-Ru; Chiu, I-Hsiang; Wu, Ming-Chung
2005-02-07
Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vn. Theoretical simulation indicates that the backward injection of dark-optical comb results in a narrow gain window of 60 ps within one modulating period, providing a cross-gainmodulation induced mode-locking in the SOAFL with a shortest pulsewidth of 15 ps at repetition frequency of 1 GHz. The mode-locked SOAFL pulsewidth can be slightly shortened to 10.8 ps with a 200m-long dispersion compensating fiber. After nonlinearly soliton compression in a 5km-long single mode fiber, the pulsewidth, linewidth and time-bandwidth product become 1.2 ps, 2.06 nm and 0.31, respectively.
Log amplifier with pole-zero compensation
Brookshier, W.
1985-02-08
A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifer circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedstock loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point is offset by a compensating break point or zero.
Log amplifier with pole-zero compensation
Brookshier, William
1987-01-01
A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.
1.688 g/cm(3) satellite-related repeats: a missing link to dosage compensation and speciation.
Gallach, Miguel
2015-09-01
Despite the important progress that has been made on dosage compensation (DC), a critical link in our understanding of the X chromosome recognition mechanisms is still missing. Recent studies in Drosophila indicate that the missing link could be a family of DNA repeats populating the euchromatin of the X chromosome. In this opinion article, I discuss how these findings add a new fresh twist on the DC problem. In the following sections, I first summarize our understanding of DC in Drosophila and integrate these recent discoveries into our knowledge of the X chromosome recognition problem. Next, I introduce a model according to which, 1.688 g/cm(3) satellite-related (SR) repeats would be the primary recognition elements for the dosage compensation complex. Contrary to the current belief, I suggest that the DC system in Drosophila is not conserved and static, but it is continuously co-evolving with the target SR repeats. The potential role of the SR repeats in hybrid incompatibilities and speciation is also discussed. © 2015 John Wiley & Sons Ltd.
Method of recertifying a loaded bearing member
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor)
1992-01-01
A method is described of recertifying a loaded bearing member using ultrasound testing to compensate for different equipment configurations and temperature conditions. The standard frequency F1 of a reference block is determined via an ultrasonic tone burst generated by a first pulsed phased locked loop (P2L2) equipment configuration. Once a lock point number S is determined for F1, the reference frequency F1a of the reference block is determined at this lock point number via a second P2L2 equipment configuration to permit an equipment offset compensation factor Fo1=((F1-F1a)/F1)(1000000) to be determined. Next, a reference frequency F2 of the unloaded bearing member is determined using a second P2L2 equipment configuration and is then compensated for equipment offset errors via the relationship F2+F2(Fo1)/1000000. A lock point number b is also determined for F2. A resonant frequency F3 is determined for the reference block using a third P2L2 equipment configuration to determine a second offset compensation factor F02=((F1-F3)/F1) 1000000. Next the resonant frequency F4 of the loaded bearing member is measured at lock point number b via the third P2L2 equipment configuration and the bolt load determined by the relationship (-1000000)CI(((F2-F4)/F2)-Fo2), wherein CI is a factor correlating measured frequency shift to the applied load. Temperature compensation is also performed at each point in the process.
Understanding Annuity and Deferred Compensation Plans.
ERIC Educational Resources Information Center
Cifelli, Thomas A.
1987-01-01
Summarizes the rules governing Internal Revenue Code (IRC) section 403 (b) annuity plans and IRC section 427 deferred compensation plans. On balance, the burdensome annual form 550 filing requirement of 403 (b) plans seems more than offset by the disadvantages and increased responsibility associated with 427 plans. (MLH)
Topographic Change of the Dichotomy Boundary Suggested by Crustal Inversion
NASA Technical Reports Server (NTRS)
Neumann, G. A.
2004-01-01
Linear negative gravity anomalies in Acidalia Planitia along the eastern edge of Tempe Terra and along the northern edge of Arabia Terra have been noted in Mars Global Surveyor gravity fields. Once proposed to represent buried fluvial channels, it is now believed that these gravity troughs mainly arise from partial compensation of the hemispheric dichotomy topographic scarp. A recent inversion for crustal structure finds that mantle compensation of the scarp is offset from the present-day topographic expression of the dichotomy boundary. The offset suggests that erosion or other forms of mass wasting occurred after lithosphere thickened and no longer accomodated topographic change through viscous relaxation.
Optical Properties of Blow-Off Particulates.
1984-02-29
examination of the SEM data in Sec- tion 3, for the particulates vary greatly in size, structure and melting points . Table 4. Refractive indices of minerals...of the balance. With no dc field applied the particle oscillates about a point below the midplane of the balance. When a dc field is applied to offset...electric field near the null point (midplane) of the balance is given by V dc Edc,z x- (11) where C is a geometrical constant which takes into account the
26 CFR 1.401(l)-3 - Permitted disparity for defined benefit plans.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (an amount above covered compensation) as the integration level, it must reduce the 0.75-percent... 401(l) merely because it contains one or more provisions described in § 1.401(a)(4)-3(b)(6) (such as...) of this section. (5) Integration or offset level. The integration or offset level specified in the...
26 CFR 1.401(l)-3 - Permitted disparity for defined benefit plans.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (an amount above covered compensation) as the integration level, it must reduce the 0.75-percent... 401(l) merely because it contains one or more provisions described in § 1.401(a)(4)-3(b)(6) (such as...) of this section. (5) Integration or offset level. The integration or offset level specified in the...
26 CFR 1.401(l)-3 - Permitted disparity for defined benefit plans.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (an amount above covered compensation) as the integration level, it must reduce the 0.75-percent... 401(l) merely because it contains one or more provisions described in § 1.401(a)(4)-3(b)(6) (such as...) of this section. (5) Integration or offset level. The integration or offset level specified in the...
In-Flight Calibration of the MMS Fluxgate Magnetometers
NASA Technical Reports Server (NTRS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.;
2017-01-01
We present an overview of the approach to in-flight calibration, which is a coordinated effort between the University of California Los Angeles (UCLA), Space Research Institute, Graz, Austria (IWF) and the NASA Goddard Space Flight Center (GSFC). We present details of the calibration effort at GSFC. During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peste, Filipa, E-mail: filipapeste@gmail.com; Department of Biology, University of Aveiro; Paula, Anabela
Wind energy is growing worldwide as a source of power generation. Bat assemblages may be negatively affected by wind farms due to the fatality of a significant number of individuals after colliding with the moving turbines or experiencing barotrauma. The implementation of wind farms should follow standard procedures to prevent such negative impacts: avoid, reduce and offset, in what is known as the mitigation hierarchy. According to this approach avoiding impacts is the priority, followed by the minimisation of the identified impacts, and finally, when residual negative impacts still remain, those must be offset or at least compensated. This papermore » presents a review on conservation measures for bats and presents some guidelines within the compensation scenario, focusing on negative impacts that remain after avoidance and minimisation measures. The conservation strategies presented aim at the improvement of the ecological conditions for the bat assemblage as a whole. While developed under the European context, the proposed measures are potentially applicable elsewhere, taking into consideration the specificity of each region in terms of bat assemblages present, landscape features and policy context regarding nature and biodiversity conservation and management. An analysis of potential opportunities and constraints arising from the implementation of offset/compensation programmes and gaps in the current knowledge is also considered. - Highlights: • Wind energy impacts bat populations in ways not yet fully understood. • As the use of windfarms is growing worldwide greater impacts on bat populations are also expected. • Mitigation hierarchy provides a way to reduce impacts from new wind farm facilities. • Compensation measures may be used to reduce the residual effects on bat populations. • Identify bats ecological needs and compensate according to the existing surroundings.« less
Verification and compensation of respiratory motion using an ultrasound imaging system.
Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien
2015-03-01
The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81-2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm displacement resulted in compensation rates of 60%-84.4%. This study has shown that a respiratory compensating system combined with noninvasive ultrasound can provide real-time compensation of the respiratory motion of patients.
Tool wear compensation scheme for DTM
NASA Astrophysics Data System (ADS)
Sandeep, K.; Rao, U. S.; Balasubramaniam, R.
2018-04-01
This paper is aimed to monitor tool wear in diamond turn machining (DTM), assess effects of tool wear on accuracies of the machined component, and develop compensation methodology to enhance size and shape accuracies of a hemispherical cup. In order to find change in the centre and radius of tool with increasing wear of tool, a MATLAB program is used. In practice, x-offsets are readjusted by DTM operator for desired accuracy in the cup and the results of theoretical model show that change in radius and z-offset are insignificant however x-offset is proportional to the tool wear and this is what assumed while resetting tool offset. Since we could not measure the profile of tool; therefore we modeled our program for cup profile data. If we assume no error due to slide and spindle of DTM then any wear in the tool will be reflected in the cup profile. As the cup data contains surface roughness, therefore random noise similar to surface waviness is added. It is observed that surface roughness affects the centre and radius but pattern of shifting of centre with increase in wear of tool remains similar to the ideal condition, i.e. without surface roughness.
System and method for single-phase, single-stage grid-interactive inverter
Liu, Liming; Li, Hui
2015-09-01
The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.
van der Wel, C M; Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M
2013-03-01
The sensitivity of an imperfectly balanced impedance bridge is limited by the remaining offset voltage. Here, we present a procedure for offset reduction in impedance measurements using a lock-in amplifier, by applying a complex compensating voltage external to the bridge. This procedure takes into account instrumental damping and phase shifting, which generally occur at the high end of the operational frequency range. Measurements demonstrate that the output of the circuit rapidly converges to the instrumentally limited noise at any frequency.
Temperature compensated and self-calibrated current sensor
Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane
2007-09-25
A method is described to provide temperature compensation and reduction of drift due to aging for a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. The offset voltage signal generated by each magnetic field sensor is used to correct variations in the output signal due to temperature variations and aging.
Policy Development for Biodiversity Offsets: A Review of Offset Frameworks
NASA Astrophysics Data System (ADS)
McKenney, Bruce A.; Kiesecker, Joseph M.
2010-01-01
Biodiversity offsets seek to compensate for residual environmental impacts of planned developments after appropriate steps have been taken to avoid, minimize or restore impacts on site. Offsets are emerging as an increasingly employed mechanism for achieving net environmental benefits, with offset policies being advanced in a wide range of countries (i.e., United States, Australia, Brazil, Colombia, and South Africa). To support policy development for biodiversity offsets, we review a set of major offset policy frameworks—US wetlands mitigation, US conservation banking, EU Natura 2000, Australian offset policies in New South Wales, Victoria, and Western Australia, and Brazilian industrial and forest offsets. We compare how the frameworks define offset policy goals, approach the mitigation process, and address six key issues for implementing offsets: (1) equivalence of project impacts with offset gains; (2) location of the offset relative to the impact site; (3) “additionality” (a new contribution to conservation) and acceptable types of offsets; (4) timing of project impacts versus offset benefits; (5) offset duration and compliance; and (6) “currency” and mitigation replacement ratios. We find substantial policy commonalities that may serve as a sound basis for future development of biodiversity offsets policy. We also identify issues requiring further policy guidance, including how best to: (1) ensure conformance with the mitigation hierarchy; (2) identify the most environmentally preferable offsets within a landscape context; and (3) determine appropriate mitigation replacement ratios.
Policy development for biodiversity offsets: a review of offset frameworks.
McKenney, Bruce A; Kiesecker, Joseph M
2010-01-01
Biodiversity offsets seek to compensate for residual environmental impacts of planned developments after appropriate steps have been taken to avoid, minimize or restore impacts on site. Offsets are emerging as an increasingly employed mechanism for achieving net environmental benefits, with offset policies being advanced in a wide range of countries (i.e., United States, Australia, Brazil, Colombia, and South Africa). To support policy development for biodiversity offsets, we review a set of major offset policy frameworks-US wetlands mitigation, US conservation banking, EU Natura 2000, Australian offset policies in New South Wales, Victoria, and Western Australia, and Brazilian industrial and forest offsets. We compare how the frameworks define offset policy goals, approach the mitigation process, and address six key issues for implementing offsets: (1) equivalence of project impacts with offset gains; (2) location of the offset relative to the impact site; (3) "additionality" (a new contribution to conservation) and acceptable types of offsets; (4) timing of project impacts versus offset benefits; (5) offset duration and compliance; and (6) "currency" and mitigation replacement ratios. We find substantial policy commonalities that may serve as a sound basis for future development of biodiversity offsets policy. We also identify issues requiring further policy guidance, including how best to: (1) ensure conformance with the mitigation hierarchy; (2) identify the most environmentally preferable offsets within a landscape context; and (3) determine appropriate mitigation replacement ratios.
Control system and method for a universal power conditioning system
Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang
2014-09-02
A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.
Verification and compensation of respiratory motion using an ultrasound imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Ho-Chiao, E-mail: hchuang@mail.ntut.edu.tw; Hsu, Hsiao-Yu; Chiu, Wei-Hung
Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effectmore » of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm displacement resulted in compensation rates of 60%–84.4%. Conclusions: This study has shown that a respiratory compensating system combined with noninvasive ultrasound can provide real-time compensation of the respiratory motion of patients.« less
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1990-01-01
The implementation and verification of the delay-compensation algorithm are addressed. The delay compensator has been experimentally verified at an IEEE 802.4 network testbed for velocity control of a DC servomotor. The performance of the delay-compensation algorithm was also examined by combined discrete-event and continuous-time simulation of the flight control system of an advanced aircraft that uses the SAE (Society of Automotive Engineers) linear token passing bus for data communications.
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
Interest has been shown in the concept of an energy storage system aimed at leveling load and improving energy efficiency by charging during vehicle regeneration and discharging during running. Such a system represents an efficient countermeasure against pantograph point voltage drop, power load fluctuation and regenerative power loss. We selected an EDLC model as an energy storage medium and a step-up/step-down chopper as a power converter to exchange power between the storage medium and overhead lines. Basic verification was conducted using a mini-model for DC 400V, demonstrating characteristics suitable for its use as an energy storage system. Based on these results, an energy storage system was built for DC 600V and a verification test conducted in conjunction with the Enoshima Electric Railway Co. Ltd. This paper gives its experimental analysis of voltage drop compensation in a DC electrified railway and some discussions based on the test.
Robust digital image watermarking using distortion-compensated dither modulation
NASA Astrophysics Data System (ADS)
Li, Mianjie; Yuan, Xiaochen
2018-04-01
In this paper, we propose a robust feature extraction based digital image watermarking method using Distortion- Compensated Dither Modulation (DC-DM). Our proposed local watermarking method provides stronger robustness and better flexibility than traditional global watermarking methods. We improve robustness by introducing feature extraction and DC-DM method. To extract the robust feature points, we propose a DAISY-based Robust Feature Extraction (DRFE) method by employing the DAISY descriptor and applying the entropy calculation based filtering. The experimental results show that the proposed method achieves satisfactory robustness under the premise of ensuring watermark imperceptibility quality compared to other existing methods.
24 CFR 17.118 - Miscellaneous provisions: correspondence with the Department.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Department Claims Officer, Office of Finance and Accounting, Department of HUD, Washington, DC 20410. (b) The... within four working days. Salary Offset Provisions Source: Sections 17.125 through 17.140, appear at 49...
22 CFR Appendix A to Part 232 - Application for Compensation
Code of Federal Regulations, 2014 CFR
2014-04-01
... Part 232 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT REPUBLIC OF TUNISIA LOAN GUARANTEES ISSUED UNDER THE DEPARTMENT OF STATE, FOREIGN OPERATIONS, AND RELATED PROGRAMS APPROPRIATIONS ACT, 2012... Compensation United States Agency for International Development Washington, DC 20523 Ref: Guarantee dated as of...
22 CFR Appendix A to Part 232 - Application for Compensation
Code of Federal Regulations, 2013 CFR
2013-04-01
... Part 232 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT REPUBLIC OF TUNISIA LOAN GUARANTEES ISSUED UNDER THE DEPARTMENT OF STATE, FOREIGN OPERATIONS, AND RELATED PROGRAMS APPROPRIATIONS ACT, 2012... Compensation United States Agency for International Development Washington, DC 20523 Ref: Guarantee dated as of...
75 FR 22679 - Sound Incentive Compensation Guidance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
.... Ira L. Mills, Paperwork Clearance Officer, Office of Chief Counsel, Office of Thrift Supervision. [FR..., Chief Counsel's Office, Office of Thrift Supervision, 1700 G Street, NW., Washington, DC 20552; send a... principles that are designed to ensure that incentive compensation arrangements at a financial institution do...
75 FR 53023 - Sound Incentive Compensation Guidance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-30
...,280 hours. Dated: August 24, 2010. Ira L. Mills, Paperwork Clearance Officer, Office of Chief Counsel... Comments, Chief Counsel's Office, Office of Thrift Supervision, 1700 G Street, NW., Washington, DC 20552... principles that are designed to ensure that incentive compensation arrangements at a financial institution do...
NASA Technical Reports Server (NTRS)
Desantis, A.
1994-01-01
In this paper the approximation problem for a class of optimal compensators for flexible structures is considered. The particular case of a simply supported truss with an offset antenna is dealt with. The nonrational positive real optimal compensator transfer function is determined, and it is proposed that an approximation scheme based on a continued fraction expansion method be used. Comparison with the more popular modal expansion technique is performed in terms of stability margin and parameters sensitivity of the relative approximated closed loop transfer functions.
Gated integrator with signal baseline subtraction
Wang, X.
1996-12-17
An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window. 5 figs.
Gated integrator with signal baseline subtraction
Wang, Xucheng
1996-01-01
An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window.
Compensation of distributed delays in integrated communication and control systems
NASA Technical Reports Server (NTRS)
Ray, Asok; Luck, Rogelio
1991-01-01
The concept, analysis, implementation, and verification of a method for compensating delays that are distributed between the sensors, controller, and actuators within a control loop are discussed. With the objective of mitigating the detrimental effects of these network induced delays, a predictor-controller algorithm was formulated and analyzed. Robustness of the delay compensation algorithm was investigated relative to parametric uncertainties in plant modeling. The delay compensator was experimentally verified on an IEEE 802.4 network testbed for velocity control of a DC servomotor.
Chopper-stabilized phase detector
NASA Technical Reports Server (NTRS)
Hopkins, P. M.
1978-01-01
Phase-detector circuit for binary-tracking loops and other binary-data acquisition systems minimizes effects of drift, gain imbalance, and voltage offset in detector circuitry. Input signal passes simultaneously through two channels where it is mixed with early and late codes that are alternately switched between channels. Code switching is synchronized with polarity switching of detector output of each channel so that each channel uses each detector for half time. Net result is that dc offset errors are canceled, and effect of gain imbalance is simply change in sensitivity.
Tunable, Highly Stable Lasers for Coherent Lidar
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Hale, Charley P.; EEpagnier, David M.
2006-01-01
Practical space-based coherent laser radar systems envisioned for global winds measurement must be very efficient and must contend with unique problems associated with the large platform velocities that the instruments experience in orbit. To compensate for these large platform-induced Doppler shifts in space-based applications, agile-frequency offset-locking of two single-frequency Doppler reference lasers was thoroughly investigated. Such techniques involve actively locking a frequency-agile master oscillator (MO) source to a comparatively static local oscillator (LO) laser, and effectively producing an offset between MO (the lidar slave oscillator seed source, typically) and heterodyne signal receiver LO that lowers the bandwidth of the receiver data-collection system and permits use of very high-quantum-efficiency, reasonably- low-bandwidth heterodyne photoreceiver detectors and circuits. Recent work on MO/LO offset locking has focused on increasing the offset locking range, improving the graded-InGaAs photoreceiver performance, and advancing the maturity of the offset locking electronics. A figure provides a schematic diagram of the offset-locking system.
Biodiversity Offsets: Two New Zealand Case Studies and an Assessment Framework
NASA Astrophysics Data System (ADS)
Norton, David A.
2009-04-01
Biodiversity offsets are increasingly being used for securing biodiversity conservation outcomes as part of sustainable economic development to compensate for the residual unavoidable impacts of projects. Two recent New Zealand examples of biodiversity offsets are reviewed—while both are positive for biodiversity conservation, the process by which they were developed and approved was based more on the precautionary principal than on any formal framework. Based on this review and the broader offset literature, an environmental framework for developing and approving biodiversity offsets, comprising six principles, is outlined: (1) biodiversity offsets should only be used as part of an hierarchy of actions that first seeks to avoid impacts and then minimizes the impacts that do occur; (2) a guarantee is provided that the offset proposed will occur; (3) biodiversity offsets are inappropriate for certain ecosystem (or habitat) types because of their rarity or the presence of threatened species within them; (4) offsets most often involve the creation of new habitat, but can include protection of existing habitat where there is currently no protection; (5) a clear currency is required that allows transparent quantification of values to be lost and gained in order to ensure ecological equivalency between cleared and offset areas; (6) offsets must take into account both the uncertainty involved in obtaining the desired outcome for the offset area and the time-lag that is involved in reaching that point.
Tunable dispersion compensation of quantum cascade laser frequency combs.
Hillbrand, Johannes; Jouy, Pierre; Beck, Mattias; Faist, Jérôme
2018-04-15
Compensating for group velocity dispersion is an important challenge to achieve stable midinfrared quantum cascade laser (QCL) frequency combs with large spectral coverage. We present a tunable dispersion compensation scheme consisting of a planar mirror placed behind the back facet of the QCL. Dispersion can be either enhanced or decreased depending on the position of the mirror. We demonstrate that the fraction of the comb regime in the dynamic range of the laser increases considerably when the dispersion induced by the Gires-Tournois interferometer compensates the intrinsic dispersion of the laser. Furthermore, it is possible to tune to the offset frequency of the comb with the Gires-Tournois interferometer while the repetition frequency is almost unaffected.
Pension Choices and the Savings Patterns of Public School Teachers
ERIC Educational Resources Information Center
Goldhaber, Dan; Grout, Cyrus
2016-01-01
This paper examines the savings behavior of public school teachers who are enrolled in a hybrid pension plan that includes a defined contribution (DC) component. Few states have incorporated DC features into teacher pension systems and little is known about how providing teachers with greater control over deferred compensation might affect their…
Control of Grid Connected Photovoltaic System Using Three-Level T-Type Inverter
NASA Astrophysics Data System (ADS)
Zorig, Abdelmalik; Belkeiri, Mohammed; Barkat, Said; Rabhi, Abdelhamid
2016-08-01
Three-level T-Type inverter (3LT2I) topology has numerous advantageous compared to three-level neutral-point-clamped (NPC) inverter. The main benefits of 3LT2I inverter are the efficiency, inverter cost, switching losses, and the quality of output voltage waveforms. In this paper, a photovoltaic distributed generation system based on dual-stage topology of DC-DC boost converter and 3LT2I is introduced. To that end, a decoupling control strategy of 3LT2I is proposed to control the current injected into the grid, reactive power compensation, and DC-link voltage. The resulting system is able to extract the maximum power from photovoltaic generator, to achieve sinusoidal grid currents, and to ensure reactive power compensation. The voltage-balancing control of two split DC capacitors of the 3LT2I is achieved using three-level space vector modulation with balancing strategy based on the effective use of the redundant switching states of the inverter voltage vectors. The proposed system performance is investigated at different operating conditions.
Fully Integrated Biopotential Acquisition Analog Front-End IC
Song, Haryong; Park, Yunjong; Kim, Hyungseup; Ko, Hyoungho
2015-01-01
A biopotential acquisition analog front-end (AFE) integrated circuit (IC) is presented. The biopotential AFE includes a capacitively coupled chopper instrumentation amplifier (CCIA) to achieve low input referred noise (IRN) and to block unwanted DC potential signals. A DC servo loop (DSL) is designed to minimize the offset voltage in the chopper amplifier and low frequency respiration artifacts. An AC coupled ripple rejection loop (RRL) is employed to reduce ripple due to chopper stabilization. A capacitive impedance boosting loop (CIBL) is designed to enhance the input impedance and common mode rejection ratio (CMRR) without additional power consumption, even under an external electrode mismatch. The AFE IC consists of two-stage CCIA that include three compensation loops (DSL, RRL, and CIBL) at each CCIA stage. The biopotential AFE is fabricated using a 0.18 µm one polysilicon and six metal layers (1P6M) complementary metal oxide semiconductor (CMOS) process. The core chip size of the AFE without input/output (I/O) pads is 10.5 mm2. A fourth-order band-pass filter (BPF) with a pass-band in the band-width from 1 Hz to 100 Hz was integrated to attenuate unwanted signal and noise. The overall gain and band-width are reconfigurable by using programmable capacitors. The IRN is measured to be 0.94 µVRMS in the pass band. The maximum amplifying gain of the pass-band was measured as 71.9 dB. The CIBL enhances the CMRR from 57.9 dB to 67 dB at 60 Hz under electrode mismatch conditions. PMID:26437404
2012-01-01
Percentage of Total Tinnitus 77,486 9.5 Hearing loss 54,450 6.6 Post-traumatic stress disorder 33,129 4.0 Lumbosacral or cervical strain 30,086 3.7...monthly benefit is a function of the workers’ average indexed monthly earn- ings over his or her work history . In addition, eligibility is conditional...under age 65. SSI benefits are not predicated on work history ; however, SSI benefits are coordinated with SSDI benefits with a dollar-for-dollar offset
Orżanowski, Tomasz
2016-01-01
This paper presents an infrared focal plane array (IRFPA) response nonuniformity correction (NUC) algorithm which is easy to implement by hardware. The proposed NUC algorithm is based on the linear correction scheme with the useful method of pixel offset correction coefficients update. The new approach to IRFPA response nonuniformity correction consists in the use of pixel response change determined at the actual operating conditions in relation to the reference ones by means of shutter to compensate a pixel offset temporal drift. Moreover, it permits to remove any optics shading effect in the output image as well. To show efficiency of the proposed NUC algorithm some test results for microbolometer IRFPA are presented.
Compensation for Work-Related Injury and Illness
1992-01-01
Falls Church, Va., 1990. U.S. Chamber of Commerce , 1990 Analysis of Workers’ Compensation Laws, Washington, D.C., 1990. U.S. Department of Defense...both begin the time limits at the date of discovery of the disease. The remaining states have time limits of one year (U.S. Chamber of Commerce , 1990...allowable according to state law (U.S. Chamber of Commerce , 1990). Workers’ compensation benefits are nontaxable income. Total Disability In the case of
Code of Federal Regulations, 2014 CFR
2014-04-01
... Agency for International Development Washington, DC 20523 A Appendix A to Part 233 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT HASHEMITE KINGDOM OF JORDAN LOAN GUARANTEES ISSUED UNDER THE FURTHER CONTINUING APPROPRIATIONS ACT, 2013, DIV. F, PUB. L. 113-6-STANDARD TERMS AND CONDITIONS Pt. 233, App. A...
77 FR 44696 - Agency Forms Submitted for OMB Review, Request for Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... the social security equivalent and non- social security equivalent portions of Tier I, Tier II, vested... OMB control number of the ICR. For proper consideration of your comments, it is best if the RRB and... and Compensation Reports. OMB Control Number: 3220-0014. Form(s) submitted: DC-2 and DC-2a. Type of...
An integrated CMOS bio-potential amplifier with a feed-forward DC cancellation topology.
Parthasarathy, Jayant; Erdman, Arthur G; Redish, Aaron D; Ziaie, Babak
2006-01-01
This paper describes a novel technique to realize an integrated CMOS bio-potential amplifier with a feedforward DC cancellation topology. The amplifier is designed to provide substantial DC cancellation even while amplifying very low frequency signals. More than 80 dB offset rejection ratio is achieved without any external capacitors. The cancellation scheme is robust against process and temperature variations. The amplifier is fabricated through MOSIS AMI 1.5 microm technology (0.05 mm2 area). Measurement results show a gain of 43.5 dB in the pass band (<1 mHz-5 KHz), an input referred noise of 3.66 microVrms, and a current consumption of 22 microA.
From Best Research to What Works: Performance-Based Compensation in Public Education
ERIC Educational Resources Information Center
Albert Shanker Institute, 2006
2006-01-01
This document is a transcript of a forum held in Washington, D.C. on June 6, 2006 on performance-based compensation in public education. The discussion was introduced by Eugenia Kemble, executive director of the Albert Shanker Institute, forum sponsor. The forum was moderated by Milton Goldberg and featured speakers Edward Lawler (director, Center…
Control of DC gas flow in a single-stage double-inlet pulse tube cooler
NASA Astrophysics Data System (ADS)
Wang, C.; Thummes, G.; Heiden, C.
The use of double-inlet mode in the pulse tube cooler opens up a possibility of DC gas flow circulating around the regenerator and pulse tube. Numerical analysis shows that effects of DC flow in a single-stage pulse tube cooler are different in some aspects from that in a 4 K pulse tube cooler. For highest cooler efficiency, DC flow should be compensated to a small value, i.e. DC flow over average AC flow at regenerator inlet should be in the range -0.0013 to +0.00016. Dual valves with reversed asymmetric geometries were used for the double-inlet bypass to control the DC flow in this paper. The experiment, performed in a single-stage double-inlet pulse tube cooler, verified that the cooler performance can be significantly improved by precisely controlling the DC flow.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Officer, 1500 Pennsylvania Avenue, NW., Attention: Metropolitan Square, Room 6228, Washington, DC 20220... pay debts owed to other agencies before paying a debt owed to a Treasury entity. The Treasury entity...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Officer, 1500 Pennsylvania Avenue, NW., Attention: Metropolitan Square, Room 6228, Washington, DC 20220... pay debts owed to other agencies before paying a debt owed to a Treasury entity. The Treasury entity...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Officer, 1500 Pennsylvania Avenue, NW., Attention: Metropolitan Square, Room 6228, Washington, DC 20220... pay debts owed to other agencies before paying a debt owed to a Treasury entity. The Treasury entity...
Orthogonal fluxgate mechanism operated with dc biased excitation
NASA Astrophysics Data System (ADS)
Sasada, I.
2002-05-01
A mode of operation is presented for an orthogonal fluxgate built with a thin magnetic wire. By adding a proper dc bias to the wire excitation, the new mode is easily established. In this case, the fundamental component of the induced voltage at the sensing coil (secondary voltage) is made sensitive to the axial magnetic field, compared to the second harmonic in a conventional orthogonal fluxgate. The operating principle is explained using a magnetization rotation model. A method is proposed to cancel the offset that is inevitable when the magnetic anisotropy is present in a magnetic wire at an angle to its circumference. Experimental results are shown for a sensor head consisting of a 2-cm-long Co-based amorphous wire 120 μm in diameter with a 220-turn sensing coil. The sensitivity obtained is higher than that obtained using a conventional type of the orthogonal fluxgate built with the same sensor head. It is also demonstrated that the proposed method for canceling the offset works well.
The performance of DC restoration function for MODIS thermal emissive bands
NASA Astrophysics Data System (ADS)
Wang, Zhipeng; Xiong, Xiaoxiong Jack; Shrestha, Ashish
2017-09-01
The DC restore (DCR) process of MODIS instrument maintains the output of a detector at focal plane assembly (FPA) within the dynamic range of subsequent analog-to-digital converter, by adding a specific offset voltage to the output. The DCR offset value is adjusted per scan, based on the comparison of the detector response in digital number (DN) collected from the blackbody (BB) view with target DN saved as an on-board look-up table. In this work, the MODIS DCR mechanism is revisited, with the trends of DCR offset being provided for thermal emissive bands (TEB). Noticeable changes have been occasionally found which coincide with significant detector gain change due to various instrumental events such as safe-mode anomaly or FPA temperature fluctuation. In general, MODIS DCR functionality has been effective and the change of DCR offset has no impact to the quality of MODIS data. One exception is the Earth view (EV) data saturation of Aqua MODIS LWIR bands 33, 35 ad 36 during BB warm-up cool-down (WUCD) cycle which has been observed since 2008. The BB view of their detectors saturate when the BB temperature is above certain threshold so the DCR cannot work as designed. Therefore, the dark signal DN fluctuates with the cold FPA (CFPA) temperature and saturate for a few hours per WUCD cycle, which also saturate the EV data sector within the scan. The CFPA temperature fluctuation peaked in 2012 and has been reduced in recent years and the saturation phenomenon has been easing accordingly. This study demonstrates the importance of DCR to data generation.
Suppression of fixed pattern noise for infrared image system
NASA Astrophysics Data System (ADS)
Park, Changhan; Han, Jungsoo; Bae, Kyung-Hoon
2008-04-01
In this paper, we propose suppression of fixed pattern noise (FPN) and compensation of soft defect for improvement of object tracking in cooled staring infrared focal plane array (IRFPA) imaging system. FPN appears an observable image which applies to non-uniformity compensation (NUC) by temperature. Soft defect appears glittering black and white point by characteristics of non-uniformity for IR detector by time. This problem is very important because it happen serious problem for object tracking as well as degradation for image quality. Signal processing architecture in cooled staring IRFPA imaging system consists of three tables: low, normal, high temperature for reference gain and offset values. Proposed method operates two offset tables for each table. This is method which operates six term of temperature on the whole. Proposed method of soft defect compensation consists of three stages: (1) separates sub-image for an image, (2) decides a motion distribution of object between each sub-image, (3) analyzes for statistical characteristic from each stationary fixed pixel. Based on experimental results, the proposed method shows an improved image which suppresses FPN by change of temperature distribution from an observational image in real-time.
CFO compensation method using optical feedback path for coherent optical OFDM system
NASA Astrophysics Data System (ADS)
Moon, Sang-Rok; Hwang, In-Ki; Kang, Hun-Sik; Chang, Sun Hyok; Lee, Seung-Woo; Lee, Joon Ki
2017-07-01
We investigate feasibility of carrier frequency offset (CFO) compensation method using optical feedback path for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. Recently proposed CFO compensation algorithms provide wide CFO estimation range in electrical domain. However, their practical compensation range is limited by sampling rate of an analog-to-digital converter (ADC). This limitation has not drawn attention, since the ADC sampling rate was high enough comparing to the data bandwidth and CFO in the wireless OFDM system. For CO-OFDM, the limitation is becoming visible because of increased data bandwidth, laser instability (i.e. large CFO) and insufficient ADC sampling rate owing to high cost. To solve the problem and extend practical CFO compensation range, we propose a CFO compensation method having optical feedback path. By adding simple wavelength control for local oscillator, the practical CFO compensation range can be extended to the sampling frequency range. The feasibility of the proposed method is experimentally investigated.
An inverse dynamic analysis on the influence of upper limb gravity compensation during reaching.
Essers, J M N Hans; Meijer, Kenneth; Murgia, Alessio; Bergsma, Arjen; Verstegen, Paul
2013-06-01
Muscular dystrophies (MDs) are characterized by progressive muscle wasting and weakness. Several studies have been conducted to investigate the influence of arm supports in an attempt to restore arm function. Lowering the load allows the user to employ the residual muscle force for movement as well as for posture stabilization. In this pilot study three conditions were investigated during a reaching task performed by three healthy subjects and three MD subjects: a control condition involving reaching; a similar movement with gravity compensation using braces to support the forearm; an identical reaching movement in simulated zero-gravity. In the control condition the highest values of shoulder moments were present, with a maximum of about 6 Nm for shoulder flexion and abduction. In the gravity compensation and zero gravity conditions the maximum shoulder moments were decreased by more than 70% and instead of increasing during reaching, they remained almost unvaried, fluctuating around an offset value less than 1 Nm. Similarly, the elbow moments in the control condition were the highest with a peak around 3.3 Nm for elbow flexion, while the moments were substantially reduced in the remaining two conditions, fluctuating around offset values between 0 to 0.5 Nm. In conclusion, gravity compensation by lower arm support is effective in healthy subjects and MD subjects and lowers the amount of shoulder and elbow moments by an amount comparable to a zero gravity environment. However the influence of gravity compensation still needs to be investigated on more people with MDs in order to quantify any beneficial effect on this population.
NASA Astrophysics Data System (ADS)
Lyu, WeiChao; Wang, Andong; Xie, Dequan; Zhu, Long; Guan, Xun; Wang, Jian; Xu, Jing
2018-05-01
We propose a novel architecture for wavelength-division-multiplexed passive optical network (WDM-PON) that can simultaneously circumvent both remodulation crosstalk and Rayleigh noise, based on self-homodyne detection and optical orthogonal frequency-division multiplexing (OFDM) remodulation. The proposed self-homodyne detection at optical network unit (ONU) requires neither frequency offset compensation nor phase noise compensation, and thus can significantly reduce system complexity and power consumption. Bidirectional transmission of 12.5 Gb/s down- and up-stream signals, via single 25 km single-mode fiber without dispersion compensation, is demonstrated in a proof-of-concept experiment.
NASA Astrophysics Data System (ADS)
Shadmand, Mohammad Bagher
Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.
Research on Three-phase Four-wire Inverter
NASA Astrophysics Data System (ADS)
Xin, W. D.; Li, X. K.; Huang, G. Z.; Fan, X. C.; Gong, X. J.; Sun, L.; Wang, J.; Zhu, D. W.
2017-05-01
The concept of Voltage Source Converter (VSC) based hybrid AC and DC distribution system architecture is proposed, which can solve the traditional AC distribution power quality problems and respond to the request of DC distribution development. At first, a novel VSC system structure combining the four-leg based three-phase four-wire with LC filter is adopted, using the overall coordination control scheme of the AC current tracking compensation based grid-interfaced VSC. In the end, the 75 kW simulation experimental system is designed and tested to verify the performance of the proposed VSC under DC distribution, distributed DC sources conditions, as well as power quality management of AC distribution.
NASA Astrophysics Data System (ADS)
Radhakrishna, M.; Searle, R. C.
2006-04-01
The Alula-Fartak and Owen transforms are the active parts of major fracture zones with a distinct topographic expression in the Eastern Gulf of Aden and the Arabian Sea, respectively. While the Alula-Fartak transform offsets the Sheba Ridge by about 180 km and is associated with a broad steep-sided valley with a relief of nearly 3.5 km, the Owen transform offsets the Carlsberg Ridge by nearly 300 km and is associated with a broad step-like valley surrounded by deeper water depths. The gravity and topography data along several profiles selected across these two transforms have been analysed using cross-spectral analysis in order to investigate their isostatic compensation. The observed admittance estimates have been compared with three theoretical isostatic compensation models, two local compensation models (Airy I and II) and one regional compensation (plate) model. Comparing the longer wavelength admittance estimates suggests that the regional compensation model gives the best fit for both the Alula-Fartak transform and the Owen transform, with effective elastic thickness (Te) of 5 km and slightly less than 10 km, respectively. For the Alula-Fartak transform, the Airy II model might also be acceptable, though with large scatter in the observed values: it suggests a mean value of 9 km for the mantle layer with a 6 km thick crust. For the Owen transform, on the other hand, the two local compensation models failed. The difference in Te estimate between the two transforms could be ascribed to differences in thermal structure arising from their varied tectonic history. A comparison with the isostatic response estimates of transform/fracture zones along the slow-spreading Mid-Atlantic Ridge suggests that the regional compensation model is generally applicable for transform/fracture zone topography along such mid-ocean ridges.
28 CFR 104.47 - Collateral sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... determining the appropriate collateral source offset for future benefit payments, the Special Master may employ an appropriate methodology for determining the present value of such future benefits. In... compensation, including life insurance, pension funds, death benefits programs, and payments by Federal, State...
Elimination of Sensor Artifacts from Infrared Data.
1984-12-11
channel to compensate detector responsivity nonuniformity . Before inspecting the bar target measurements, it was expected that the preceding sequence of...sample errors and by applyieg separate pain and offset costants to each canel for nonuniformity compensation. 12(t) -7. Y2 lar I ,ar hr’ In apern...W5 RICHARD STEIDRO E 1 -- t4 ii x3 .13 275 325 3i5 425 SAMPLE NUMBER FI. 4 - Postamplfler output waveform for LWIR channel 3, for data frame shown in
Collinear interferometer with variable delay for carrier-envelope offset frequency measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowska, Monika; Ozimek, Filip; Fita, Piotr
2009-08-15
We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.
Collinear interferometer with variable delay for carrier-envelope offset frequency measurement
NASA Astrophysics Data System (ADS)
Pawłowska, Monika; Ozimek, Filip; Fita, Piotr; Radzewicz, Czesław
2009-08-01
We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.
Application of VSC-HVDC with Shunt Connected SMES for Compensation of Power Fluctuation
NASA Astrophysics Data System (ADS)
Linn, Zarchi; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi
This paper describes the application of VSC-HVDC (High Voltage DC Transmission using Voltage Source Converter) with shunt connected SMES (Superconducting Magnetic Energy Storage) for compensation of power fluctuation caused by fluctuating power source such as photovoltaics and wind turbines. The objectives of this proposed system is to smooth out fluctuating power in one terminal side of HVDC in order to avoid causing power system instability and frequency deviation by absorbing or providing power according to the system requirement while another terminal side power is fluctuated. The shunt connected SMES charges and discharges the energy to and from the dc side and it compensates required power of fluctuation to obtain constant power flow in one terminal side of VSC-HVDC system. This system configuration has ability for power system stabilization in the case of power fluctuation from natural energy source. PSCAD/EMTDC simulation is used to evaluate the performance of applied system configuration and control method.
Study on compensation algorithm of head skew in hard disk drives
NASA Astrophysics Data System (ADS)
Xiao, Yong; Ge, Xiaoyu; Sun, Jingna; Wang, Xiaoyan
2011-10-01
In hard disk drives (HDDs), head skew among multiple heads is pre-calibrated during manufacturing process. In real applications with high capacity of storage, the head stack may be tilted due to environmental change, resulting in additional head skew errors from outer diameter (OD) to inner diameter (ID). In case these errors are below the preset threshold for power on recalibration, the current strategy may not be aware, and drive performance under severe environment will be degraded. In this paper, in-the-field compensation of small DC head skew variation across stroke is proposed, where a zone table has been equipped. Test results demonstrating its effectiveness to reduce observer error and to enhance drive performance via accurate prediction of DC head skew are provided.
Optimal design strategy of switching converters employing current injected control
NASA Astrophysics Data System (ADS)
Lee, F. C.; Fang, Z. D.; Lee, T. H.
1985-01-01
This paper analyzes a buck/boost regulator employing current-injected control (CIC). It reveals the complex interactions between the dc loop and the current-injected loop and underlines the fundamental principle that governs the loop gain determination. Three commonly used compensation techniques are compared. The integral and lead/lag compensation are shown to be most desirable for performance optimization and stability.
NASA Technical Reports Server (NTRS)
Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.
2007-01-01
This report summarizes the results of delay measurement and piloted performance tests that were conducted to assess the effectiveness of the adaptive compensator and the state space compensator for alleviating the phase distortion of transport delay in the visual system in the VMS at the NASA Langley Research Center. Piloted simulation tests were conducted to assess the effectiveness of two novel compensators in comparison to the McFarland predictor and the baseline system with no compensation. Thirteen pilots with heterogeneous flight experience executed straight-in and offset approaches, at various delay configurations, on a flight simulator where different predictors were applied to compensate for transport delay. The glideslope and touchdown errors, power spectral density of the pilot control inputs, NASA Task Load Index, and Cooper-Harper rating of the handling qualities were employed for the analyses. The overall analyses show that the adaptive predictor results in slightly poorer compensation for short added delay (up to 48 ms) and better compensation for long added delay (up to 192 ms) than the McFarland compensator. The analyses also show that the state space predictor is fairly superior for short delay and significantly superior for long delay than the McFarland compensator.
Image Quality Assessment Based on Local Linear Information and Distortion-Specific Compensation.
Wang, Hanli; Fu, Jie; Lin, Weisi; Hu, Sudeng; Kuo, C-C Jay; Zuo, Lingxuan
2016-12-14
Image Quality Assessment (IQA) is a fundamental yet constantly developing task for computer vision and image processing. Most IQA evaluation mechanisms are based on the pertinence of subjective and objective estimation. Each image distortion type has its own property correlated with human perception. However, this intrinsic property may not be fully exploited by existing IQA methods. In this paper, we make two main contributions to the IQA field. First, a novel IQA method is developed based on a local linear model that examines the distortion between the reference and the distorted images for better alignment with human visual experience. Second, a distortion-specific compensation strategy is proposed to offset the negative effect on IQA modeling caused by different image distortion types. These score offsets are learned from several known distortion types. Furthermore, for an image with an unknown distortion type, a Convolutional Neural Network (CNN) based method is proposed to compute the score offset automatically. Finally, an integrated IQA metric is proposed by combining the aforementioned two ideas. Extensive experiments are performed to verify the proposed IQA metric, which demonstrate that the local linear model is useful in human perception modeling, especially for individual image distortion, and the overall IQA method outperforms several state-of-the-art IQA approaches.
Directly induced swing for closed loop control of electroslag remelting furnace
Damkroger, Brian
1998-01-01
An apparatus and method for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal.
Miniature Intelligent Sensor Module
NASA Technical Reports Server (NTRS)
Beech, Russell S.
2007-01-01
An electronic unit denoted the Miniature Intelligent Sensor Module performs sensor-signal-conditioning functions and local processing of sensor data. The unit includes four channels of analog input/output circuitry, a processor, volatile and nonvolatile memory, and two Ethernet communication ports, all housed in a weathertight enclosure. The unit accepts AC or DC power. The analog inputs provide programmable gain, offset, and filtering as well as shunt calibration and auto-zeroing. Analog outputs include sine, square, and triangular waves having programmable frequencies and amplitudes, as well as programmable amplitude DC. One innovative aspect of the design of this unit is the integration of a relatively powerful processor and large amount of memory along with the sensor-signalconditioning circuitry so that sophisticated computer programs can be used to acquire and analyze sensor data and estimate and track the health of the overall sensor-data-acquisition system of which the unit is a part. The unit includes calibration, zeroing, and signalfeedback circuitry to facilitate health monitoring. The processor is also integrated with programmable logic circuitry in such a manner as to simplify and enhance acquisition of data and generation of analog outputs. A notable unique feature of the unit is a cold-junction compensation circuit in the back shell of a sensor connector. This circuit makes it possible to use Ktype thermocouples without compromising a housing seal. Replicas of this unit may prove useful in industrial and manufacturing settings - especially in such large outdoor facilities as refineries. Two features can be expected to simplify installation: the weathertight housings should make it possible to mount the units near sensors, and the Ethernet communication capability of the units should facilitate establishment of communication connections for the units.
An electrode polarization impedance based flow sensor for low water flow measurement
NASA Astrophysics Data System (ADS)
Yan, Tinghu; Sabic, Darko
2013-06-01
This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h-1 and remained sensitive at a flow rate of 25.18 l h-1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering.
NASA Astrophysics Data System (ADS)
Yuan, Jiaxin; Zhou, Hang; Gan, Pengcheng; Zhong, Yongheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao
2018-05-01
To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high voltage circumstances. In this paper, a novel concept of high voltage DC transmission system fault current limiter (DCSFCL) based on saturable core was proposed. In the DCSFCL, the permanent magnets (PM) are added on both up and down side of the core to generate reverse magnetic flux that offset the magnetic flux generated by DC current and make the DC winding present a variable inductance to the DC system. In normal state, DCSFCL works as a smoothing reactor and its inductance is within the scope of the design requirements. When a fault occurs, the inductance of DCSFCL rises immediately and limits the steepness of the fault current. Magnetic field simulations were carried out, showing that compared with conventional smoothing reactor, DCSFCL can decrease the high steepness of DC fault current by 17% in less than 10ms, which verifies the feasibility and effectiveness of this method.
Economic and ecological outcomes of flexible biodiversity offset systems.
Habib, Thomas J; Farr, Daniel R; Schneider, Richard R; Boutin, Stan
2013-12-01
The commonly expressed goal of biodiversity offsets is to achieve no net loss of specific biological features affected by development. However, strict equivalency requirements may complicate trading of offset credits, increase costs due to restricted offset placement options, and force offset activities to focus on features that may not represent regional conservation priorities. Using the oil sands industry of Alberta, Canada, as a case study, we evaluated the economic and ecological performance of alternative offset systems targeting either ecologically equivalent areas (vegetation types) or regional conservation priorities (caribou and the Dry Mixedwood natural subregion). Exchanging dissimilar biodiversity elements requires assessment via a generalized metric; we used an empirically derived index of biodiversity intactness to link offsets with losses incurred by development. We considered 2 offset activities: land protection, with costs estimated as the net present value of profits of petroleum and timber resources to be paid as compensation to resource tenure holders, and restoration of anthropogenic footprint, with costs estimated from existing restoration projects. We used the spatial optimization tool MARXAN to develop hypothetical offset networks that met either the equivalent-vegetation or conservation-priority targets. Networks that required offsetting equivalent vegetation cost 2-17 times more than priority-focused networks. This finding calls into question the prudence of equivalency-based systems, particularly in relatively undeveloped jurisdictions, where conservation focuses on limiting and directing future losses. Priority-focused offsets may offer benefits to industry and environmental stakeholders by allowing for lower-cost conservation of valued ecological features and may invite discussion on what land-use trade-offs are acceptable when trading biodiversity via offsets. Resultados Económicos y Ecológicos de Sistemas de Compensación de Biodiversidad Flexible Habib et al. © 2013 Society for Conservation Biology.
Carbon Dioxide Compensation Points of Flowering Plants 1
Krenzer, Eugene G.; Moss, Dale N.; Crookston, R. Kent
1975-01-01
Carbon dioxide compensation points of several hundred species of monocotyledons and dicotyledons have been measured during the course of various experiments in our laboratory over a period of several years. These have been classified into two groups: high, compensation points of 40 μl/l or greater; and low, compensation points of 10 μl/l or less. They are listed alphabetically both by families and species for monocotyledons and dicotyledons. Only two species did not unequivocally fit into the above established groups. These were Moricandia arvensis (L.) DC., which had an average compensation point of 26 μl/l and Panicum milioides Nees ex Trin., which was variable, but most often equilibrated between 12 to 20 μl/l CO2. PMID:16659272
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
NASA Astrophysics Data System (ADS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-04-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
NASA Technical Reports Server (NTRS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-01-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
A high accuracy magnetic heading system composed of fluxgate magnetometers and a microcomputer
NASA Astrophysics Data System (ADS)
Liu, Sheng-Wu; Zhang, Zhao-Nian; Hung, James C.
The authors present a magnetic heading system consisting of two fluxgate magnetometers and a single-chip microcomputer. The system, when compared to gyro compasses, is smaller in size, lighter in weight, simpler in construction, quicker in reaction time, free from drift, and more reliable. Using a microcomputer in the system, heading error due to compass deviation, sensor offsets, scale factor uncertainty, and sensor tilts can be compensated with the help of an error model. The laboratory test of a typical system showed that the accuracy of the system was improved from more than 8 deg error without error compensation to less than 0.3 deg error with compensation.
Motion-blur-compensated structural health monitoring system for tunnels at a speed of 100 km/h
NASA Astrophysics Data System (ADS)
Hayakawa, Tomohiko; Ishikawa, Masatoshi
2017-04-01
High quality images of tunnel surfaces are necessary for visual judgment of abnormal parts. Hence, we propose a monitoring system from a vehicle, which is motion-blur-compensated by the back and forth motion of a galvanometer mirror to offset the vehicle speed, prolong exposure time, and take sharp images including detailed textures. As experimental result of the vehicle-mounted system, we confirmed significant improvements in image quality for a few millimeter-sized ordered black-and-white stripes and cracks, by means of motion blur compensation and prolonged exposure time, under the maximum speed allowed in Japan in a standard tunnel of a highway.
Cutti, Andrea Giovanni; Cappello, Angelo; Davalli, Angelo
2006-01-01
Soft tissue artefact is the dominant error source for upper extremity motion analyses that use skin-mounted markers, especially in humeral axial rotation. A new in vivo technique is presented that is based on the definition of a humerus bone-embedded frame almost "artefact free" but influenced by the elbow orientation in the measurement of the humeral axial rotation, and on an algorithm designed to solve this kinematic coupling. The technique was validated in vivo in a study of six healthy subjects who performed five arm-movement tasks. For each task the similarity between a gold standard pattern and the axial rotation pattern before and after the application of the compensation algorithm was evaluated in terms of explained variance, gain, phase and offset. In addition the root mean square error between the patterns was used as a global similarity estimator. After the application, for four out of five tasks, patterns were highly correlated, in phase, with almost equal gain and limited offset; the root mean square error decreased from the original 9 degrees to 3 degrees . The proposed technique appears to help compensate for the soft tissue artefact affecting axial rotation. A further development is also proposed to make the technique effective also for the pure prono-supination task.
Zone compensated multilayer laue lens and apparatus and method of fabricating the same
Conley, Raymond P.; Liu, Chian Qian; Macrander, Albert T.; Yan, Hanfei; Maser, Jorg; Kang, Hyon Chol; Stephenson, Gregory Brian
2015-07-14
A multilayer Laue Lens includes a compensation layer formed in between a first multilayer section and a second multilayer section. Each of the first and second multilayer sections includes a plurality of alternating layers made of a pair of different materials. Also, the thickness of layers of the first multilayer section is monotonically increased so that a layer adjacent the substrate has a minimum thickness, and the thickness of layers of the second multilayer section is monotonically decreased so that a layer adjacent the compensation layer has a maximum thickness. In particular, the compensation layer of the multilayer Laue lens has an in-plane thickness gradient laterally offset by 90.degree. as compared to other layers in the first and second multilayer sections, thereby eliminating the strict requirement of the placement error.
Directly induced swing for closed loop control of electroslag remelting furnace
Damkroger, B.
1998-04-07
An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.
An In-Rush Current Suppression Technique for the Solid-State Transfer Switch System
NASA Astrophysics Data System (ADS)
Cheng, Po-Tai; Chen, Yu-Hsing
More and more utility companies provide dual power feeders as a premier service of high power quality and reliability. To take advantage of this, the solid-state transfer switch (STS) is adopted to protect the sensitive load against the voltage sag. However, the fast transfer process may cause in-rush current on the load-side transformer due to the resulting DC-offset in its magnetic flux as the load-transfer is completed. The in-rush current can reach 2∼6 p.u. and it may trigger the over-current protections on the power feeder. This paper develops a flux estimation scheme and a thyristor gating scheme based on the impulse commutation bridge STS (ICBSTS) to minimize the DC-offset on the magnetic flux. By sensing the line voltages of both feeders, the flux estimator can predict the peak transient flux linkage at the moment of load-transfer and evaluate a suitable moment for the transfer to minimize the in-rush current. Laboratory test results are presented to validate the performance of the proposed system.
Self-referenced continuous-variable quantum key distribution
Soh, Daniel B. S.; Sarovar, Mohan; Camacho, Ryan
2017-01-24
Various technologies for continuous-variable quantum key distribution without transmitting a transmitter's local oscillator are described herein. A receiver on an optical transmission channel uses an oscillator signal generated by a light source at the receiver's location to perform interferometric detection on received signals. An optical reference pulse is sent by the transmitter on the transmission channel and the receiver computes a phase offset of the transmission based on quadrature measurements of the reference pulse. The receiver can then compensate for the phase offset between the transmitter's reference and the receiver's reference when measuring quadratures of received data pulses.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS HOURS WORKED Application of Principles Rest and Meal Periods... industry. They promote the efficiency of the employee and are customarily paid for as working time. They must be counted as hours worked. Compensable time of rest periods may not be offset against other...
Code of Federal Regulations, 2010 CFR
2010-07-01
... INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS HOURS WORKED Application of Principles Rest and Meal Periods... industry. They promote the efficiency of the employee and are customarily paid for as working time. They must be counted as hours worked. Compensable time of rest periods may not be offset against other...
Design of analog pixels front-end active feedback
NASA Astrophysics Data System (ADS)
Kmon, P.; Kadlubowski, L. A.; Kaczmarczyk, P.
2018-01-01
The paper presents the design of the active feedback used in a charge-sensitive amplifier. The predominant advantages of the presented circuit are its ability for setting wide range of pulse-time widths, small silicon area occupation and low power consumption. The feedback also allows sensor leakage current compensation and, thanks to an additional DC amplifier, it minimizes the output DC voltage variations, which is especially important in the DC coupled recording chain and for processes with limited supply voltage. The paper provides feedback description and its operation principle. The proposed circuit was designed in the CMOS 130nm technology.
McKenna, Erin; Bray, Laurence C Jayet; Zhou, Weiwei; Joiner, Wilsaan M
2017-10-01
Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for altered movement dynamics are largely unknown. Here we examined the influence of 1 ) delayed and 2 ) removed visual feedback on the adaptation to novel movement dynamics. These results contribute to understanding of the control strategies that compensate for movement errors when there is a temporal separation between motion state and sensory information. Copyright © 2017 the American Physiological Society.
Perelman, Yevgeny; Ginosar, Ran
2007-01-01
A mixed-signal front-end processor for multichannel neuronal recording is described. It receives 12 differential-input channels of implanted recording electrodes. A programmable cutoff High Pass Filter (HPF) blocks dc and low-frequency input drift at about 1 Hz. The signals are band-split at about 200 Hz to low-frequency Local Field Potential (LFP) and high-frequency spike data (SPK), which is band limited by a programmable-cutoff LPF, in a range of 8-13 kHz. Amplifier offsets are compensated by 5-bit calibration digital-to-analog converters (DACs). The SPK and LFP channels provide variable amplification rates of up to 5000 and 500, respectively. The analog signals are converted into 10-bit digital form, and streamed out over a serial digital bus at up to 8 Mbps. A threshold filter suppresses inactive portions of the signal and emits only spike segments of programmable length. A prototype has been fabricated on a 0.35-microm CMOS process and tested successfully, demonstrating a 3-microV noise level. Special interface system incorporating an embedded CPU core in a programmable logic device accompanied by real-time software has been developed to allow connectivity to a computer host.
Magnetoresistive magnetometer for space science applications
NASA Astrophysics Data System (ADS)
Brown, P.; Beek, T.; Carr, C.; O'Brien, H.; Cupido, E.; Oddy, T.; Horbury, T. S.
2012-02-01
Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz-1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm3, respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012.
Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine
Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M. S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun
2015-01-01
Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan’s National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423
NASA Astrophysics Data System (ADS)
Jimichi, Takushi; Fujita, Hideaki; Akagi, Hirofumi
This paper deals with a dynamic voltage restorer (DVR) characterized by installing the shunt converter at the load side. The DVR can compensate for the load voltage when a voltage sag appears in the supply voltage. An existing DVR requires a large capacitor bank or other energy-storage elements such as double-layer capacitors or batteries. The DVR presented in this paper requires only a small dc capacitor intended for smoothing the dc-link voltage. Moreover, three control methods for the series converter are compared and discussed to reduce the series-converter rating, paying attention to the zero-sequence voltages included in the supply voltage and the compensating voltage. Experimental results obtained from a 200-V, 5-kW laboratory system are shown to verify the viability of the system configuration and the control methods.
The MSPICE simulation of a saturating transformer
NASA Astrophysics Data System (ADS)
Maclean, David N.
A transformer is simulated using a nonlinear saturating magnetic model. Hysteresis and gradual smooth reduction of core permeability are achieved with standard SPICE networks and functions. The equations that define the nonlinear inductance and the MSPICE circuits used to simulate them are derived. A hierarchy of circuit complexity that is based on the structured logic design subcircuit method is used. An example of a push-pull buck regulator being operated in an unbalanced condition is given. Noise ripple on the input power cable generates a dc offset current in the transformer. The example demonstrates how avionics power equipment can be evaluated for large-signal ac, dc, and transient behavior.
Nutritional status in patients with hepatitis C.
Ismail, Faisal Wasim; Khan, Rustam A; Kamani, Lubna; Wadalawala, Ashfaq A; Shah, Hasnain Ali; Hamid, Saeed S; Jafri, Wasim
2012-03-01
To assess the nutritional status via the SGA (subjective global assessment) screening tool of patients at all stages of hepatitis C virus (HCV) liver disease. Descriptive study. Out-patient Clinics of the Aga Khan University Hospital, Karachi, conducted from October 2009 to January 2011. Patients with hepatitis C virus infection and their HCV-negative attendants were enrolled from the outpatient clinics, and categorized into 4 groups of 100 patients each: healthy controls (HC), those with chronic hepatitis C infection (CHC), compensated cirrhotics (CC) and decompensated cirrhotics (DC). The validated subjective global assessment (SGA) tool was used to assess nutritional status. A total of 400 patients were enrolled. Most of the patients in the HC group were class 'A' (best nutritional status). In contrast, the majority (64%) in the DC group were in the class 'C' (worst status). The compensated cirrhosis (CC) group showed that 90% of patients were malnourished, while 98% of all patients were malnourished in the DC group, predominantly class 'C'. Most importantly, 14% of patients with chronic hepatitis C (CHC) also scored a 'B' on the SGA; which when compared to HC was statistically significant (p=0.005). As the groups progressed in their disease from CHC to DC, the transition in nutritional status from 'A' to 'C' between groups was statistically significant. Malnutrition occurs early in the course of HCV, and progresses relentlessly throughout the spectrum of HCVdisease.
Yan Lu; Wing-Hung Ki
2014-06-01
A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|. The comparators are implemented with switched-offset biasing to compensate for the delays of active diodes and to eliminate multiple pulsing and reverse current. The proposed rectifier uses a modified CMOS peaking current source with bias current that is quasi-inversely proportional to the supply voltage to better control the reverse current over a wide AC input range (1.5 to 4 V). The rectifier was fabricated in a standard 0.35 μm CMOS N-well process with active area of 0.0651 mm(2). For the proposed rectifier measured at |VAC| = 3.0 V, the voltage conversion ratios are 0.89 and 0.93 for RL=500 Ω and 5 kΩ, respectively, and the measured power conversion efficiencies are 82.2% to 90.1% with |VAC| ranges from 1.5 to 4 V for RL=500 Ω.
Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar
2014-10-01
Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.
Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira
2011-01-01
This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.
NASA Astrophysics Data System (ADS)
Zubrzycka, W.; Kasinski, K.
2018-04-01
Leakage current flowing into the charge sensitive amplifier (CSA) is a common issue in many radiation detection systems as it can increase overall system noise, shift a DC baseline or even lead a recording channel to instability. The commonly known leakage current contributor is a detector, however other system components like wires or an input protection circuit may become a serious problem. Compensation of the leakage current resulting from the electrostatic discharge (ESD) protection circuit by properly sizing its components is possible only for a narrow temperature range. Moreover, the leakage current from external sources can be significantly larger. Many applications, especially High Energy Physics (HEP) experiments, require a fast baseline restoration for high input hit rates by applying either a low-value feedback resistor or a high feedback resistance combined with a pulsed reset circuit. Leakage current flowing in the feedback in conjunction with a large feedback resistance supplied with a pulsed reset results in a significant voltage offset between the CSA input and output which can cause problems (e.g. fake hits or instability). This paper shows an issue referred to the leakage current of the ESD protection circuit flowing into the input amplifier. The following analysis and proposed solution is a result of the time and energy readout ASIC project realization for the Compressed Baryonic Matter (CBM) experiment at FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. This chip is purposed to work with microstrip and gaseous detectors, with high average input pulses frequencies (250 kHit/s per channel) and the possibility to process input charge of both polarities. We present measurements of the test structure fabricated in UMC 180 nm technology and propose a solution addressing leakage current related issues. This work combines the leakage current compensation capabilities at the CSA level with high, controllable value of the amplifier feedback resistor independent of the leakage current level and polarity. The simulation results of the double, switchable, Krummenacher circuit-based feedback application in the CSA with a pulsed reset functionality are presented.
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M. A.
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods. PMID:24883374
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
Optimized OFDM Transmission of Encrypted Image Over Fading Channel
NASA Astrophysics Data System (ADS)
Eldin, Salwa M. Serag
2014-11-01
This paper compares the quality of diffusion-based and permutation-based encrypted image transmission using orthogonal frequency division multiplexing (OFDM) over wireless fading channel. Sensitivity to carrier frequency offsets (CFOs) is one of the limitations in OFDM transmission that was compensated here. Different OFDM diffusions are investigated to study encrypted image transmission optimization. Peak signal-to-noise ratio between the original image and the decrypted image is used to evaluate the received image quality. Chaotic encrypted image modulated with CFOs compensated FFT-OFDM was found to give outstanding performance against other encryption and modulation techniques.
NASA Astrophysics Data System (ADS)
Ma, Qian; Liu, Yu; Xiang, Yuanjiang
2018-07-01
Due to its merits of flexible bandwidth allocation and robustness towards fiber transmission impairments, coherent optical orthogonal frequency division multiplexing (CO-OFDM) technology draws a lot of attention for passive optical networks (PON). However, a CO-OFDM system is vulnerable to frequency offsets between modulated optical signals and optical local oscillators (OLO). This is particularly serious for low cost PONs where low cost lasers are used. Thus, it is of great interest to develop efficient algorithms for frequency synchronization in CO-OFDM systems. Usually frequency synchronization proposed in CO-OFDM systems are done by detecting the phase shift in time domain. In such a way, there is a trade-off between estimation accuracy and range. Considering that the integer frequency offset (IFO) contributes to the major frequency offset, a more efficient method to estimate IFO is of demand. By detecting IFO induced circular channel rotation (CCR), the frequency offset can be directly estimated after fast Fourier transforming (FFT). In this paper, circular acquisition offset frequency and timing synchronization (CAO-FTS) scheme is proposed. A specially-designed frequency domain pseudo noise (PN) sequence is used for CCR detection and timing synchronization. Full-range frequency offset compensation and non-plateau timing synchronization are experimentally demonstrated in presence of fiber dispersion. Based on CAO-FTS, 16.9 Gb/s CO-OFDM signal is successfully delivered over a span of 80-km single mode fiber.
Chebabhi, A; Fellah, M K; Kessal, A; Benkhoris, M F
2015-07-01
In this paper the performances of three reference currents and DC bus voltage control techniques for Three-Phase Four-Wire Four-Leg SAPF are compared for balanced and unbalanced load conditions. The main goals are to minimize the harmonics, reduce the magnitude of neutral current, eliminate the zero-sequence current components caused by single-phase nonlinear loads and compensate the reactive power, and on the other hand improve performances such as robustness, stabilization, trajectory pursuit, and reduce time response. The three techniques are analyzed mathematically and simulation results are compared. The techniques considered for comparative study are the PI Control, Sliding Mode Control and the Backstepping Control. Synchronous reference frame theory (SRF) in the dqo-axes is used to generate the reference currents, of the inverter. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
In-ground optical fibre Bragg grating pressure switch for security applications
NASA Astrophysics Data System (ADS)
Allwood, Gary; Wild, Graham; Hinckley, Steven
2012-02-01
In this study, a fibre Bragg grating (FBG) was embedded beneath three common flooring materials acting as a pressure switch for in-ground intrusion detection. This is achieved using an intensiometric detection system, where a laser diode and FBG were optically mismatched so that there was a static dc offset from the transmitted and reflected optical power signals. As pressure was applied, in the form of a footstep, a strain induced wavelength shift occurred that could then be detected by converting the wavelength shift into an intensity change. The change in intensity caused a significant change in the DC offset which behaved as on optical switch. This switch could easily be configured to trigger an alarm if required. The intention is to use the FBG sensor as an in-ground intrusion detection pressure switch to detect an intruder walking within range of the sensor. This type of intrusion detection system can be applied to both external (in soil, etc) and internal (within the foundations or flooring of the home) security systems. The results show that a person's footstep can clearly be detected through solid wood flooring, laminate flooring, and ceramic floor tiles.
Response of double cropping suitability to climate change in the United States
NASA Astrophysics Data System (ADS)
Seifert, Christopher A.; Lobell, David B.
2015-02-01
In adapting US agriculture to the climate of the 21st century, a key unknown is whether cropping frequency may increase, helping to offset projected negative yield impacts in major production regions. Combining daily weather data and crop phenology models, we find that cultivated area in the US suited to dryland winter wheat-soybeans, the most common double crop (DC) system, increased by up to 28% from 1988 to 2012. Changes in the observed distribution of DC area over the same period agree well with this suitability increase, evidence consistent with climate change playing a role in recent DC expansion in phenologically constrained states. We then apply the model to projections of future climate under the RCP45 and RCP85 scenarios and estimate an additional 126-239% increase, respectively, in DC area. Sensitivity tests reveal that in most instances, increases in mean temperature are more important than delays in fall freeze in driving increased DC suitability. The results suggest that climate change will relieve phenological constraints on wheat-soy DC systems over much of the United States, though it should be recognized that impacts on corn and soybean yields in this region are expected to be negative and larger in magnitude than the 0.4-0.75% per decade benefits we estimate here for double cropping.
Extraneous torque and compensation control on the electric load simulator
NASA Astrophysics Data System (ADS)
Jiao, Zongxia; Li, Chenggong; Ren, Zhiting
2003-09-01
In this paper a novel motor-drive load simulator based on compensation control strategy is proposed and designed. Through analyzing the torque control system consisting of DC torque motor, PWM module and torque sensor, it is shown that performance of the motor-drive load simulator is possible to be as good as that of the electro-hydraulic load simulator in the range of small torque. In the course of loading, the rotation of the actuator would cause a strong disturbance torque through the motor back-EMF, which produces extraneous torque similar as in electro-hydraulic load simulator. This paper analyzes the cause of extraneous torque inside the torque motor in detail and presents an appropriate compensation control with which the extraneous torque can be compensated and the good performance of the torque control system can be obtained. The results of simulation indicate that the compensation is very effective and the track performance is according with the request.
NASA Astrophysics Data System (ADS)
Buchholz, B.; Ebert, V.
2014-07-01
Large systematic errors in absorption spectrometers (AS) can be caused by ‘parasitic’ optical absorption (parA) outside the measurement region. In particular, calibration-free direct tunable diode laser AS (dTDLAS) can take advantage of an effective parA-compensation to provide correct absolute values. However, parA also negatively affects calibrated AS in calibration frequency and stability. A common strategy to suppress parA in TDLAS systems is to fiber-couple the light source and even the detector. However, this can be a critical approach if the TDL spectrometer is validated/calibrated under laboratory conditions in ambient humidity and used afterwards in much drier and variable conditions, for example in aircrafts. This paper shows that, e.g., ‘hermetically sealed’ butterfly packages, despite fiber coupling, can possess fixed as well as variable parA sections. Two new methods for absolute parA-quantification in dTDLAS were developed, including a novel, fiber-coupled, parA-free I0-detector for permanent parA-monitoring. Their dependences on ambient humidity/pressure and temporal behavior were studied. For the example of a 1.4 µm dTDLAS hygrometer SEALDH-II with a commercial DFB-laser module and an extractive 1.5 m path cell, we quantified the parA-induced signal offsets and their dependence on cell pressure. The conversion of parA-uncertainty into H2O signal uncertainty was studied and an updated uncertainty budget including parA-uncertainty was derived. The studies showed that parA in commercial laser modules can cause substantial, systematic concentration offsets of ≈25 ppmv fixed and ≈100 ppmv variable offsets for one meter absorption path. Applying our parA-quantification techniques these offsets could be compensated by a factor of 20 to an overall offset uncertainty of 4.5 ppmv m-1. Finally, we developed an innovative, integrated, µ-pumped closed-loop air drying unit for the parA minimization and temporal stabilization in airborne laser hygrometers. This compact and light weight dryer eliminates the variable parA by ambient humidity in less than 120 min and is well suited for airborne applications as it fulfils all airborne operation and safety restrictions.
78 FR 60559 - Pay Ratio Disclosure
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
... Division of Corporation Finance; 100 F Street NE., Washington, DC 20549. SUPPLEMENTARY INFORMATION: We are... Associations''); Society of Corporate Secretaries and Governance Professionals (``SCSGP''); Greta E. Cowart... Compensation Partners, LLC; National Association of Corporate Directors (``NACD''); and Retail Industry Leaders...
Tracking and disturbance rejection of MIMO nonlinear systems with PI controller
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Lin, C. A.
1985-01-01
The tracking and disturbance rejection of a class of MIMO nonlinear systems with a linear proportional plus integral (PI) compensator is studied. Roughly speaking, it is shown that if the given nonlinear plant is exponentially stable and has a strictly increasing dc steady-state I/O map, then a simple PI compensator can be used to yield a stable unity-feedback closed-loop system which asymptotically tracks reference inputs that tend to constant vectors and asymptotically rejects disturbances that tend to constant vectors.
Tracking and disturbance rejection of MIMO nonlinear systems with PI controller
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Lin, C.-A.
1985-01-01
The tracking and disturbance rejection of a class of MIMO nonlinear systems with linear proportional plus integral (PI) compensator is studied. Roughly speaking, it is shown that if the given nonlinear plant is exponentially stable and has a strictly increasing dc steady-state I/O map, then a simple PI compensator can be used to yield a stable unity-feedback closed-loop system which asymptotically tracks reference inputs that tend to constant vectors and asymptotically rejects disturbances that tend to constant vectors.
Problems with the Small Business Administration’s Merit Appraisal and Compensation System.
1981-09-21
TAD-AI07 181 GENERAL ACCOUNTING OFFICE WASHINGTON DC FEDERAL PERS-ETC F/6 5/9 PROBLEMS WITH THE SMALL BUSINESS ADMINISTRATION’S MERIT APPRAIS--ETC(U...Adninistrator, Small Business Administration Dear Mr. Car D Subjec::/ Problems with the Small Business Administra- tjon’s Merit Appraisal and Compensation...System, (rLP68 8i 71). We reviewed the Small Business Administration’s (SBA’s) performance appraisal/merit pay program as part of our review of
2013-03-01
acquisition DC Direct current DHPC Discrete harmonic plant compensation DLMs Dorsal longitudinal muscles DOE Design of experiments DOF Degrees of...nature, would have the inherent benefit of stealth through mimicry of insects. Such a MAV is referred to as a flapping wing micro air vehicle (FWMAV...and discrete harmonic plant compensation (DHPC) to manipulate the wings of the FWMAV. A clear understanding of what research has been done in all of
Liquid Nitrogen Temperature Operation of a Switching Power Converter
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.
20 CFR 30.510 - How does OWCP notify an individual of a payment made on a claim?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false How does OWCP notify an individual of a payment made on a claim? 30.510 Section 30.510 Employees' Benefits OFFICE OF WORKERS' COMPENSATION... AMENDED Survivors; Payments and Offsets; Overpayments Overpayments § 30.510 How does OWCP notify an...
A prototype automatic phase compensation module
NASA Technical Reports Server (NTRS)
Terry, John D.
1992-01-01
The growing demands for high gain and accurate satellite communication systems will necessitate the utilization of large reflector systems. One area of concern of reflector based satellite communication is large scale surface deformations due to thermal effects. These distortions, when present, can degrade the performance of the reflector system appreciable. This performance degradation is manifested by a decrease in peak gain, and increase in sidelobe level, and pointing errors. It is essential to compensate for these distortion effects and to maintain the required system performance in the operating space environment. For this reason the development of a technique to offset the degradation effects is highly desirable. Currently, most research is direct at developing better material for the reflector. These materials have a lower coefficient of linear expansion thereby reducing the surface errors. Alternatively, one can minimize the distortion effects of these large scale errors by adaptive phased array compensation. Adaptive phased array techniques have been studied extensively at NASA and elsewhere. Presented in this paper is a prototype automatic phase compensation module designed and built at NASA Lewis Research Center which is the first stage of development for an adaptive array compensation module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saila, S.B.; Chen, X.; Erzini, K.
1987-05-01
This study includes case histories of certain fish species which are experiencing chronic perturbations and related literature pertaining to compensation processes. ''Compensation'' has been defined as the ability of fish to offset the population reduction caused by natural or man-induced stresses. Certain compensation methods are widely accepted, and include cannibalism, competition, disease, growth and predation, among others. These compensation methods are examined in relation to each fish species included in the study. Stock-recruit relationships and empirical observations of changes in growth and mortality have been the focus of much of the background on compensation. One of the conclusions drawn frommore » this study is that a significant amount of recruitment variability exists and can be attributed to environmental (rather than compensatory) factors. The stock-recruitment problem appears to be the most significant scientific problem related to compensation in the types of fish included in this study. Results of the most recent studies of the American shad support this theory. Life histories, breeding biology and other pertinent data relating to each species included in the study will be found in the appendices.« less
Ecological compensation and Environmental Impact Assessment in Spain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villarroya, Ana, E-mail: avillarroya@alumni.unav.e; Puig, Jordi, E-mail: jpbaguer@unav.e
2010-11-15
To achieve meaningful sustainable development, Environmental Impact Assessment (EIA) should avoid the net losses in the environment resource base. But EIA practice does not always avoid the losses caused by the implementation of the projects under EIA regulation. Some environmental impacts are, simply, admitted, even without enforcing any form of compensation. When applied, compensation is sometimes just a monetary payment to offset the environmental loss. This paper looks for evidence on the role that compensation is given at present in EIA practice in Spain, and for some of its conceptual and regulatory roots. Specifically, it explores how compensation is addressedmore » in 1302 records of decision (RODs) on those projects subject to the Spanish EIA regulation published during the years 2006 and 2007, to know how far Spain is from preserving the environmental resource base managed through this particular aspect of EIA practice. As a result, it is concluded that the practice of ecological compensation in EIA in Spain is much lower than it could be expected in a theoretical sustainability context committed to avoid net losses in the environment resource base, mainly due to an EIA practice focused on on-site mitigation that allows these net losses.« less
A currency for offsetting energy development impacts: horse-trading sage-grouse on the open market.
Doherty, Kevin E; Naugle, David E; Evans, Jeffrey S
2010-04-28
Biodiversity offsets provide a mechanism to compensate for unavoidable damages from new energy development as the U.S. increases its domestic production. Proponents argue that offsets provide a partial solution for funding conservation while opponents contend the practice is flawed because offsets are negotiated without the science necessary to backup resulting decisions. Missing in negotiations is a biologically-based currency for estimating sufficiency of offsets and a framework for applying proceeds to maximize conservation benefits. Here we quantify a common currency for offsets for greater sage-grouse (Centrocercus urophasianus) by estimating number of impacted birds at 4 levels of development commonly permitted. Impacts were indiscernible at 1-12 wells per 32.2 km(2). Above this threshold lek losses were 2-5 times greater inside than outside of development and bird abundance at remaining leks declined by -32 to -77%. Findings reiterated the importance of time-lags as evidenced by greater impacts 4 years after initial development. Clustering well locations enabled a few small leks to remain active inside of developments. Documented impacts relative to development intensity can be used to forecast biological trade-offs of newly proposed or ongoing developments, and when drilling is approved, anticipated bird declines form the biological currency for negotiating offsets. Monetary costs for offsets will be determined by true conservation cost to mitigate risks such as sagebrush tillage to other populations of equal or greater number. If this information is blended with landscape level conservation planning, the mitigation hierarchy can be improved by steering planned developments away from conservation priorities, ensuring compensatory mitigation projects deliver a higher return for conservation that equate to an equal number of birds in the highest priority areas, provide on-site mitigation recommendations, and provide a biologically based cost for mitigating unavoidable impacts.
20 CFR 701.101 - Scope of this subchapter and subchapter B.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Compensation Act (DCCA), 36 D.C. Code 501 et seq. That law applies to all claims for injuries or deaths based... the administration of the Black Lung Benefits Program are in subchapter B of this chapter. [70 FR...
20 CFR 701.101 - Scope of this subchapter and subchapter B.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Compensation Act (DCCA), 36 D.C. Code 501 et seq. That law applies to all claims for injuries or deaths based... the administration of the Black Lung Benefits Program are in subchapter B of this chapter. [70 FR...
20 CFR 701.101 - Scope of this subchapter and subchapter B.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Compensation Act (DCCA), 36 D.C. Code 501 et seq. That law applies to all claims for injuries or deaths based... the administration of the Black Lung Benefits Program are in subchapter B of this chapter. [70 FR...
20 CFR 701.101 - Scope of this subchapter and subchapter B.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Compensation Act (DCCA), 36 D.C. Code 501 et seq. That law applies to all claims for injuries or deaths based... the administration of the Black Lung Benefits Program are in subchapter B of this chapter. [70 FR...
CMOS analog baseband circuitry for an IEEE 802.11 b/g/n WLAN transceiver
NASA Astrophysics Data System (ADS)
Zheng, Gong; Xiaojie, Chu; Qianqian, Lei; Min, Lin; Yin, Shi
2012-11-01
An analog baseband circuit for a direct conversion wireless local area network (WLAN) transceiver in a standard 0.13-μm CMOS occupying 1.26 mm2 is presented. The circuit consists of active-RC receiver (RX) 4th order elliptic lowpass filters(LPFs), transmit (PGAs) with DC offset cancellation (DCOC) servo loops, and on-chip output buffers. The RX baseband gain can be programmed in the range of -11 to 49 dB in 2 dB steps with 50-30.2 nV/√Hz input referred noise (IRN) and a 21 to -41 dBm in-band 3rd order interception point (IIP3). The RX/TX LPF cutoff frequencies can be switched between 5 MHz, 10 MHz, and 20 MHz to fulfill the multimode 802.11b/g/n requirements. The TX baseband gain of the I/Q paths are tuned separately from -1.6 to 0.9 dB in 0.1 dB steps to calibrate TX I/Q gain mismatches. By using an identical integrator based elliptic filter synthesis method together with global compensation applied to the LPF capacitor array, the power consumption of the RX LPF is considerably reduced and the proposed chip draws 26.8 mA/8 mA by the RX/TX baseband paths from a 1.2 V supply.
Coast Guard Compensation Alternatives.
1981-12-01
private automobile to commute. Bachelor personnel were slightly more likely to use their own car or public transpor- tation than were married personnel...Command Washington, D.C. 20370 5. Director for HRM Plans and Policy (OP-150)1 Human Resource Management Division Deputy Chief of Naval Operations
Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting.
Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B
2014-01-01
Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is "biodiversity offsetting" (wherein biodiversity impacted is "replaced" through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of "linear" infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with "hub" infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km(2) across the Ustyurt (total ∼ 100,000 km(2)), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes.
Balancing Accession and Retention. Cost and Productivity Tradeoffs.
1983-03-01
Alternative ...’ i :. :- : . - :’: .-- . .:. . ,. , . -.- - - i . . . , . . -. - - .- - - . ’ ’:- LIST OF TABLES Page I Rating groups...for bonus payments and second-term pay are more than offset by reductions in recruiting and training costs and first-term pay. Alternatively , holding...discounted value using a 10 percent discount rate. Costs for AFEES processing and training are taken from the Navy Comprehensive Compensation and Supply
Galileo Spacecraft Scan Platform Celestial Pointing Cone Control Gain Redesign
NASA Technical Reports Server (NTRS)
In, C-H. C.; Hilbert, K. B.
1994-01-01
During September and October 1991, pictures of the Gaspra asteroid and neighboring stars were taken by the Galileo Optical Navigation (OPNAV) Team for the purpose of navigation the spacecraft for a successful Gaspra encounter. The star tracks in these pictures showed that the scan platform celestial pointing cone controller performed poorly in compensating for wobble-induced cone offsets.
An Ultimatum Game Approach to Billet Assignments
2015-09-01
time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed , and completing and reviewing this...treatments are needed for this investigation. To conserve the subject pool and meet the budget, we elected to pursue treatments that covered salient...across billets can be partially offset through compensating wages ( hedonic wages) and/or the potential of future superior assignments. In the
Hopkins, David James [Livermore, CA
2008-05-13
A control system and method for actively reducing vibration in a spindle housing caused by unbalance forces on a rotating spindle, by measuring the force-induced spindle-housing motion, determining control signals based on synchronous demodulation, and provide compensation for the measured displacement to cancel or otherwise reduce or attenuate the vibration. In particular, the synchronous demodulation technique is performed to recover a measured spindle housing displacement signal related only to the rotation of a machine tool spindle, and consequently rejects measured displacement not related to spindle motion or synchronous to a cycle of revolution. Furthermore, the controller actuates at least one voice-coil (VC) motor, to cancel the original force-induced motion, and adapts the magnitude of voice coil signal until this measured displacement signal is brought to a null. In order to adjust the signal to a null, it must have the correct phase relative to the spindle angle. The feedback phase signal is used to adjust a common (to both outputs) commutation offset register (offset relative to spindle encoder angle) to force the feedback phase signal output to a null. Once both of these feedback signals are null, the system is compensating properly for the spindle-induced motion.
NASA Technical Reports Server (NTRS)
Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce
1996-01-01
A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.
Performance analysis of electronic power transformer based on neuro-fuzzy controller.
Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa
2016-01-01
In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.
Sliding mode controller with modified sliding function for DC-DC Buck Converter.
Naik, B B; Mehta, A J
2017-09-01
This article presents design of Sliding Mode Controller with proportional integral type sliding function for DC-DC Buck Converter for the controlled power supply. The converter with conventional sliding mode controller results in a steady state error in load voltage. The proposed modified sliding function improves the steady state and dynamic performance of the Convertor and facilitates better choices of controller tuning parameters. The conditions for existence of sliding modes for proposed control scheme are derived. The stability of the closed loop system with proposed sliding mode control is proved and improvement in steady state performance is exemplified. The idea of adaptive tuning for the proposed controller to compensate load variations is outlined. The comparative study of conventional and proposed control strategy is presented. The efficacy of the proposed strategy is endowed by the simulation and experimental results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
1997-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2002-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2001-04-03
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with separate DC sources
Peng, F.Z.; Lai, J.S.
1997-06-24
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.
NASA Astrophysics Data System (ADS)
Kim, Hongjip; Che Tai, Wei; Zhou, Shengxi; Zuo, Lei
2017-11-01
Stochastic resonance is referred to as a physical phenomenon that is manifest in nonlinear systems whereby a weak periodic signal can be significantly amplified with the aid of inherent noise or vice versa. In this paper, stochastic resonance is considered to harvest energy from two typical vibrations in rotating shafts: random whirl vibration and periodic stick-slip vibration. Stick-slip vibrations impose a constant offset in centrifugal force and distort the potential function of the harvester, leading to potential function asymmetry. A numerical analysis based on a finite element method was conducted to investigate stochastic resonance with potential function asymmetry. Simulation results revealed that a harvester with symmetric potential function generates seven times higher power than that with asymmetric potential function. Furthermore, a frequency-sweep analysis also showed that stochastic resonance has hysteretic behavior, resulting in frequency difference between up-sweep and down-sweep excitations. An electromagnetic energy harvesting system was constructed to experimentally verify the numerical analysis. In contrast to traditional stochastic resonance harvesters, the proposed harvester uses magnetic force to compensate the offset in the centrifugal force. System identification was performed to obtain the parameters needed in the numerical analysis. With the identified parameters, the numerical simulations showed good agreement with the experiment results with around 10% error, which verified the effect of potential function asymmetry and frequency sweep excitation condition on stochastic resonance. Finally, attributed to compensating the centrifugal force offset, the proposed harvester generated nearly three times more open-circuit output voltage than its traditional counterpart.
Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers
NASA Astrophysics Data System (ADS)
Koskela, Harri; Heikkilä, Outi; Kilpeläinen, Ilkka; Heikkinen, Sami
2010-01-01
The finite RF power available on carbon channel in proton-carbon correlation experiments leads to non-uniform cross peak intensity response across carbon chemical shift range. Several classes of broadband pulses are available that alleviate this problem. Adiabatic pulses provide an excellent magnetization inversion over a large bandwidth, and very recently, novel phase-modulated pulses have been proposed that perform 90° and 180° magnetization rotations with good offset tolerance. Here, we present a study how these broadband pulses (adiabatic and phase-modulated) can improve quantitative application of the heteronuclear single quantum coherence (HSQC) experiment on high magnetic field strength NMR spectrometers. Theoretical and experimental examinations of the quantitative, offset-compensated, CPMG-adjusted HSQC (Q-OCCAHSQC) experiment are presented. The proposed experiment offers a formidable improvement to the offset performance; 13C offset-dependent standard deviation of the peak intensity was below 6% in range of ±20 kHz. This covers the carbon chemical shift range of 150 ppm, which contains the protonated carbons excluding the aldehydes, for 22.3 T NMR magnets. A demonstration of the quantitative analysis of a fasting blood plasma sample obtained from a healthy volunteer is given.
Lu, Jianing; Li, Xiang; Fu, Songnian; Luo, Ming; Xiang, Meng; Zhou, Huibin; Tang, Ming; Liu, Deming
2017-03-06
We present dual-polarization complex-weighted, decision-aided, maximum-likelihood algorithm with superscalar parallelization (SSP-DP-CW-DA-ML) for joint carrier phase and frequency-offset estimation (FOE) in coherent optical receivers. By pre-compensation of the phase offset between signals in dual polarizations, the performance can be substantially improved. Meanwhile, with the help of modified SSP-based parallel implementation, the acquisition time of FO and the required number of training symbols are reduced by transferring the complex weights of the filters between adjacent buffers, where differential coding/decoding is not required. Simulation results show that the laser linewidth tolerance of our proposed algorithm is comparable to traditional blind phase search (BPS), while a complete FOE range of ± symbol rate/2 can be achieved. Finally, performance of our proposed algorithm is experimentally verified under the scenario of back-to-back (B2B) transmission using 10 Gbaud DP-16/32-QAM formats.
33 Years of Continuous Solar Radio Flux Observations
NASA Astrophysics Data System (ADS)
Monstein, Christian
2015-10-01
In 1982, after development and testing of several analog receiver concepts, I started continuous solar radio flux observations at 230 MHz. My instruments for the observations were based on cheap commercial components out of consumer TV electronics. The main components included a TV-tuner (at that time analog), intermediate frequency (IF) amplifier and video-detector taken from used TV sets. The 5.5 MHz wide video signal was fed into an integrating circuit, in fact a low pass filter, followed by dc-offset circuit and dc-amplifier built with four ua741 and CA3140 operational amplifier integrated circuits. At that time the signal was recorded with a Heathkit stripchart recorder and ink pen; an example is shown in figure 1.
Lee, Kyoung-Ryul; Jang, Sung Hwan; Jung, Inhwa
2018-08-10
We investigated the acoustic performance of electrostatic sound-generating devices consisting of bi-layer graphene on polyimide film. The total sound pressure level (SPL) of the sound generated from the devices was measured as a function of source frequency by sweeping, and frequency spectra were measured at 1/3 octave band frequencies. The relationship between various operation conditions and total SPL was determined. In addition, the effects of changing voltage level, adding a DC offset, and using two pairs of electrodes were evaluated. It should be noted that two pairs of electrode operations improved sound generation by about 10 dB over all frequency ranges compared with conventional operation. As for the sound-generating capability, total SPL was 70 dBA at 4 kHz when an AC voltage of 100 V pp was applied with a DC offset of 100 V. Acoustic characteristics differed from other types of graphene-based sound generators, such as graphene thermoacoustic devices and graphene polyvinylidene fluoride devices. The effects of diameter and distance between electrodes were also studied, and we found that diameter greatly influenced the frequency response. We anticipate that the design information provided in this paper, in addition to describing key parameters of electrostatic sound-generating devices, will facilitate the commercial development of electrostatic sound-generating systems.
Rodenbeck, Christopher T.; Tracey, Keith J.; Barkley, Keith R.; ...
2014-08-01
This paper introduces a technique for improving the sensitivity of RF subsamplers in radar and coherent receiver applications. The technique, referred to herein as “delta modulation” (DM), feeds the time-average output of a monobit analog-to-digital converter (ADC) back to the ADC input, but with opposite polarity. Assuming pseudo-stationary modulation statistics on the sampled RF waveform, the feedback signal corrects for aggregate DC offsets present in the ADC that otherwise degrade ADC sensitivity. Two RF integrated circuits (RFICs) are designed to demonstrate the approach. One uses analog DM to create the feedback signal; the other uses digital DM to achieve themore » same result. A series of tests validates the designs. The dynamic time-domain response confirms the feedback loop’s basic operation. Measured output quantization imbalance, under noise-only input drive, significantly improves with the use of the DM circuit, even for large, deliberately induced DC offsets and wide temperature variation from -55°C to +85 °C. Examination of the corrected vs. uncorrected baseband spectrum under swept input signal-tonoise ratio (SNR) conditions demonstrates the effectiveness of this approach for realistic radar and coherent receiver applications. In conclusion, two-tone testing shows no impact of the DM technique on ADC linearity.« less
22 CFR Appendix A to Part 231 - Application for Compensation
Code of Federal Regulations, 2014 CFR
2014-04-01
... Part 231 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ARAB REPUBLIC OF EGYPT LOAN GUARANTEES ISSUED UNDER THE EMERGENCY WARTIME SUPPLEMENTAL APPROPRIATIONS ACT OF 2003, PUBLIC LAW 108-11-STANDARD... Agency for International Development Washington, DC 20523 Ref: Guarantee dated as of ___, 20__: Gentlemen...
22 CFR Appendix A to Part 231 - Application for Compensation
Code of Federal Regulations, 2011 CFR
2011-04-01
... Part 231 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ARAB REPUBLIC OF EGYPT LOAN GUARANTEES ISSUED UNDER THE EMERGENCY WARTIME SUPPLEMENTAL APPROPRIATIONS ACT OF 2003, PUBLIC LAW 108-11-STANDARD... Agency for International Development Washington, DC 20523 Ref: Guarantee dated as of ___, 20__: Gentlemen...
22 CFR Appendix A to Part 231 - Application for Compensation
Code of Federal Regulations, 2013 CFR
2013-04-01
... Part 231 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ARAB REPUBLIC OF EGYPT LOAN GUARANTEES ISSUED UNDER THE EMERGENCY WARTIME SUPPLEMENTAL APPROPRIATIONS ACT OF 2003, PUBLIC LAW 108-11-STANDARD... Agency for International Development Washington, DC 20523 Ref: Guarantee dated as of ___, 20__: Gentlemen...
22 CFR Appendix A to Part 231 - Application for Compensation
Code of Federal Regulations, 2012 CFR
2012-04-01
... Part 231 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ARAB REPUBLIC OF EGYPT LOAN GUARANTEES ISSUED UNDER THE EMERGENCY WARTIME SUPPLEMENTAL APPROPRIATIONS ACT OF 2003, PUBLIC LAW 108-11-STANDARD... Agency for International Development Washington, DC 20523 Ref: Guarantee dated as of ___, 20__: Gentlemen...
22 CFR Appendix A to Part 231 - Application for Compensation
Code of Federal Regulations, 2010 CFR
2010-04-01
... Part 231 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ARAB REPUBLIC OF EGYPT LOAN GUARANTEES ISSUED UNDER THE EMERGENCY WARTIME SUPPLEMENTAL APPROPRIATIONS ACT OF 2003, PUBLIC LAW 108-11-STANDARD... Agency for International Development Washington, DC 20523 Ref: Guarantee dated as of ___, 20__: Gentlemen...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Y.; Ekstroem, A.
1997-01-01
This study is devoted to investigating the possibility of controlling the overcurrent of a forced-commutated voltage source converter (VSC) by PWM when the ac system is undergoing large unbalanced disturbance. The converter is supposed to be used as a static var compensator at a high power level. A novel control strategy is proposed for controlling the reactive current and the dc side voltage independently. Digital simulation results are presented and compared with the results by using just the reactive current control with fundamental switching frequency.
Final Report to the Department of Energy Renewable Energy and Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaughen, Shasta
The Pala Band of Mission Indians was awarded a DOE-EERE Solar Energy Grant for FY 2016 and 2017. The project involved installing a 94.8 kW DC photovoltaic (PC) solar system on the Pala Fire Station to offset up to 95% of grid-derived energy and reduce overall CO 2 generation from the facility. Pala successfully installed rooftop and carport-mounted solar panels at the fire station, and to date has generated of 219,227 kWh of energy and offset 274,034 pounds of CO 2. The project was successfully executed, and we recommend other tribes to undertake similar projects if they are located inmore » areas with sufficient solar exposure. DOE should continue to make these funds available to tribes.« less
FBMC receiver for multi-user asynchronous transmission on fragmented spectrum
NASA Astrophysics Data System (ADS)
Doré, Jean-Baptiste; Berg, Vincent; Cassiau, Nicolas; Kténas, Dimitri
2014-12-01
Relaxed synchronization and access to fragmented spectrum are considered for future generations of wireless networks. Frequency division multiple access for filter bank multicarrier (FBMC) modulation provides promising performance without strict synchronization requirements contrary to conventional orthogonal frequency division multiplexing (OFDM). The architecture of a FBMC receiver suitable for this scenario is considered. Carrier frequency offset (CFO) compensation is combined with intercarrier interference (ICI) cancellation and performs well under very large frequency offsets. Channel estimation and interpolation had to be adapted and proved effective even for heavily fragmented spectrum usage. Channel equalization can sustain large delay spread. Because all the receiver baseband signal processing functionalities are proposed in the frequency domain, the overall architecture is suitable for multiuser asynchronous transmission on fragmented spectrum.
Lacefield, James C; Pilkington, Wayne C; Waag, Robert C
2004-12-01
The effects of aberration, time-shift compensation, and spatial compounding on the discrimination of positive-contrast lesions in ultrasound b-scan images are investigated using a two-dimensional (2-D) array system and tissue-mimicking phantoms. Images were acquired within an 8.8 x 12-mm2 field of view centered on one of four statistically similar 4-mm diameter spherical lesions. Each lesion was imaged in four planes offset by successive 45 degree rotations about the central scan line. Images of the lesions were acquired using conventional geometric focusing through a water path, geometric focusing through a 35-mm thick distributed aberration phantom, and time-shift compensated transmit and receive focusing through the aberration phantom. The views of each lesion were averaged to form sets of water path, aberrated, and time-shift compensated 4:1 compound images and 16:1 compound images. The contrast ratio and detectability index of each image were computed to assess lesion differentiation. In the presence of aberration representative of breast or abdominal wall tissue, time-shift compensation provided statistically significant improvements of contrast ratio but did not consistently affect the detectability index, and spatial compounding significantly increased the detectability index but did not alter the contrast ratio. Time-shift compensation and spatial compounding thus provide complementary benefits to lesion detection.
Nitrogen-neutrality: a step towards sustainability
NASA Astrophysics Data System (ADS)
Leip, Adrian; Leach, Allison; Musinguzi, Patrick; Tumwesigye, Trust; Olupot, Giregon; Tenywa, John Stephen; Mudiope, Joseph; Hutton, Olivia; Cordovil, Claudia M. d. S.; Bekunda, Mateete; Galloway, James
2014-11-01
We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, N-neutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66 kg N. A total of US 3050 was collected from the participants and used to offset the conference’s N footprint by supporting the UN Millennium Village cluster Ruhiira in South-Western Uganda. The concept needs further development in particular to better incorporate the spatio-temporal variability of impacts and to standardize the methods to quantify the required N offset to neutralize the Nr releases impact. Criteria for compensation projects need to be sharply defined to allow the development of a market for N offset certificates.
The stellar and solar tracking system of the Geneva Observatory gondola
NASA Technical Reports Server (NTRS)
Huguenin, D.
1974-01-01
Sun and star trackers have been added to the latest version of the Geneva Observatory gondola. They perform an image motion compensation with an accuracy of plus or minus 1 minute of arc. The structure is held in the vertical position by gravity; the azimuth is controlled by a torque motor in the suspension bearing using solar or geomagnetic references. The image motion compensation is performed by a flat mirror, located in front of the telescope, controlled by pitch and yaw servo-loops. Offset pointing is possible within the solar disc and in a 3 degree by 3 degree stellar field. A T.V. camera facilitates the star identification and acquisition.
NASA Astrophysics Data System (ADS)
Beck, C.; Reyss, J.; Feuillet, N.; Leclerc, F.; Moreno, E.
2012-12-01
Improvements of active fault surveying have shown that creep, or alternating creep and co-seismic displacements, are not rare. Nevertheless, either on land (trenching), or in subaqueous setting (seismic imaging and coring), active fault offsets, investigated for paleoseismic purpose, are sometimes assumed as co-seismic without direct evidences. At the opposite, within adequate sedimentary archives, some gravity reworking events may be attributed to earthquake triggering, but often do not permit to locate the responsible fault and the co-seismic rupture. In the here-discussed example, both types of observations could be associated: faulting offsets and specific sedimentary events "sealing" them. Several very high resolution (VHR) seismic profiles obtained during The GWADASEIS cruise (Lesser Antilles volcanic arc, February-March 2009) evidenced frequent "ponding" of reworked sediments in the deepest areas. These bodies are acoustically transparent (few ms t.w.t. thick) and often deposited on the hanging walls of dominantly normal faults, at the base of scarps, as previously observed along the North Anatolian Fault (Beck et al., 2007, doi:10.1016/j.sedgeo.2005.12.031). Their thicknesses appear sufficient to compensate (i.e. bury) successive offsets, resulting in a flat and horizontal sea floor through time. Offshore Montserrat and Nevis islands, piston coring (4 to 7 m long) was dedicated to characterize the most recent of these particular layers. An up to 2m-thick "homogenite" appears capping the RedOx water/sediment interface. 210Pb and 137Cs activities lack in the homogenite, while a normal unsupported 210Pb decrease profile and a 137Cs peak, corresponding to the Atmospheric Nuclear Experiments (1962), are present below (Beck et al. 2012, doi:10.5194/nhess-12-1-2012). This sedimentary event and the coeval scarp are post-1970 AD, and attributed either to the March 16th 1985 earthquake or to the October 8th 1974 one (respectively Mw6.3 and Mw7.4). Based on the sedimentological interpretation and their geometrical relationships with ruptures, a co-seismic origin is attributed to older homogenites. Associated co-seismic offsets could be estimated for a 45 m-thick pile. With respect to VHR imaging precision, the total observed offset equals the sum of successive co-seismic offsets, each of them compensated (sealed) by a homogenite. Using the sedimentation rate deduced from 210Pb decrease curve and taking into account minor reworking events only detected in cores, we conclude that the Redonda fault system has been responsible for five >M6 events during the last 34 000 years.
Design of a probe for two-dimensional small angle detection
NASA Astrophysics Data System (ADS)
He, Haixia; Wang, Xuanze; Zhong, Yuning; Yang, Liangen; Cao, Hongduan
2008-10-01
A novel two-dimensional small angle probe is introduced, which is based on principle of auto-collimation and utilizes quadrant Si-photoelectric detector (QPD) as detection device. AC modulation, AC magnification and absolute value demodulation are incorporated to restrain the DC excursion caused by background light and noise etc and to improve the sensitivity and stability of angle detection. To ensure that while the laser is shining, the current signal (converted into voltage signal) of QPD also is linear to the AC modulation voltage, this paper adopted AC modulation signal (5400Hz) with a DC offset. AC magnification circuit with reasonable parameters is designed to inhibit DC drift and the impact of industrial frequency noise and to ensure good amplification to signal frequency at the same time. A piezoelectric-driven micro-angle generator is designed to demarcate the angle. The calibration data are input to single chip, and the measurement of angles can be shown in SMC1602A.
NASA Astrophysics Data System (ADS)
Liou, L. L.; Jenkins, T.; Huang, C. I.
1997-06-01
The d.c. power limitation of a conventional HBT with dot geometry was studied theoretically using combined electro-thermal and transmission line models. In most cases, the thermal runaway occurs at a power level lower than that set by the intrinsic electronic property of the device. The dependence of the d.c. thermal runaway threshold power density, Pmax, on the emitter dot radius and emitter ballast resistance was calculated. Increasing emitter dot radius lowers Pmax. Although ballast resistance increases Pmax, the effect reduces as the emitter dot radius increases. This is caused by the non-uniform potential distribution in the base layer. When thermal runaway is considered, the nonuniform base-emitter potential offsets the improvement of the power handling capability by the physical ballast resistance. Conventional HBTs with a large radius (greater than 4 μm) exhibit a small Pmax caused by thermal effect. This threshold power density can be increased drastically by using the thermal shunt technique.
22 CFR Appendix A to Part 230 - Application for Compensation
Code of Federal Regulations, 2014 CFR
2014-04-01
... Part 230 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEES ISSUED UNDER THE EMERGENCY WARTIME SUPPLEMENTAL APPROPRIATIONS ACT OF 2003, PUB. L. 108-11-STANDARD TERMS AND CONDITIONS Pt... Development Washington, DC 20523 Ref: Guarantee dated as of ____, 20 __: Gentlemen: You are hereby advised...
75 FR 22187 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
... (VA) proposes to amend the existing system of records titled ``Compensation, Pension, Education, and... by adding a new system location and a new routine use regarding transfer of educational benefits... Analyst, Education Service (225C), Department of Veterans Affairs, 810 Vermont Avenue, NW., Washington, DC...
Liquid Droplet Dynamics in Gravity Compensating High Magnetic Field
NASA Technical Reports Server (NTRS)
Bojarevics, V.; Easter, S.; Pericleous, K.
2012-01-01
Numerical models are used to investigate behavior of liquid droplets suspended in high DC magnetic fields of various configurations providing microgravity-like conditions. Using a DC field it is possible to create conditions with laminar viscosity and heat transfer to measure viscosity, surface tension, electrical and thermal conductivities, and heat capacity of a liquid sample. The oscillations in a high DC magnetic field are quite different for an electrically conducting droplet, like liquid silicon or metal. The droplet behavior in a high magnetic field is the subject of investigation in this paper. At the high values of magnetic field some oscillation modes are damped quickly, while others are modified with a considerable shift of the oscillating droplet frequencies and the damping constants from the non-magnetic case.
Two high accuracy digital integrators for Rogowski current transducers.
Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua
2014-01-01
The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.
Two high accuracy digital integrators for Rogowski current transducers
NASA Astrophysics Data System (ADS)
Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua
2014-01-01
The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.
22 CFR Appendix A to Part 230 - Application for Compensation
Code of Federal Regulations, 2011 CFR
2011-04-01
... Part 230 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEES ISSUED UNDER THE EMERGENCY WARTIME SUPPLEMENTAL APPROPRIATIONS ACT OF 2003, PUB. L. 108-11-STANDARD TERMS AND CONDITIONS Pt... Development Washington, DC 20523 Ref: Guarantee dated as of , 19__: Gentlemen: You are hereby advised that...
22 CFR Appendix A to Part 230 - Application for Compensation
Code of Federal Regulations, 2013 CFR
2013-04-01
... Part 230 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEES ISSUED UNDER THE EMERGENCY WARTIME SUPPLEMENTAL APPROPRIATIONS ACT OF 2003, PUB. L. 108-11-STANDARD TERMS AND CONDITIONS Pt... Development Washington, DC 20523 Ref: Guarantee dated as of , 19__: Gentlemen: You are hereby advised that...
22 CFR Appendix A to Part 230 - Application for Compensation
Code of Federal Regulations, 2012 CFR
2012-04-01
... Part 230 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ISRAEL LOAN GUARANTEES ISSUED UNDER THE EMERGENCY WARTIME SUPPLEMENTAL APPROPRIATIONS ACT OF 2003, PUB. L. 108-11-STANDARD TERMS AND CONDITIONS Pt... Development Washington, DC 20523 Ref: Guarantee dated as of , 19__: Gentlemen: You are hereby advised that...
75 FR 42792 - Board of Governors; Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
.... 7. Tentative Agenda for the September 21-22, 2010, meeting in Washington, DC. Thursday, August 5 at 10:30 a.m. (Closed--if Needed) 1. Continuation of Wednesday's closed session agenda. Contact Person.... Personnel Matters and Compensation Issues. 5. Governors' Executive Session--Discussion of prior agenda items...
ERIC Educational Resources Information Center
Natale, Jo Anna
1993-01-01
Inside one Washington, DC, elementary school, Principal John Pannell has high hopes for his students and an expansive school vision. Malcolm X School compensates for disorder outside by clearly inculcating rules and behavior expectations. Children in school uniforms daily repeat a motto promoting Malcolm X as a school of love allowing no hitting,…
Temperature Compensation Techniques and Technologies-An Overview
1991-10-01
03801-5423 General Electric Company 1 Physics International Company Tactical Systems Department ATTN: Library, H. Wayne Wampler ATN: J. Mandzy 2700...Keilasanath Office Dr. C. Li ATN: COL D. S. Jackson Dr. J. Boris 5321 Riggs Road Dr. E. Oran Gaithersburg, MD 20882 Washington, DC 20375-5000 AFOSR/NA 1 Amtec
NASA Technical Reports Server (NTRS)
Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce
1996-01-01
A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.
DC Electric Field Measurement by the Double Probe System Aboard Geotail and its Simulation
NASA Astrophysics Data System (ADS)
Kasaba, Y.; Hayakawa, H.; Ishisaka, K.; Okada, T.; Matsuoka, A.; Mukai, T.; Okada, M.
2005-12-01
We summarize the characteristics of the DC electric field measurement by the double probe system, PANT and EFD-P, aboard Geotail. The accuracy and correction factors for the gain (effective length) and off-set, which depends on ambient plasma conditions, are provided. Accurate measurements of electric fields are essential for space plasma studies, for example, plasma convection, wave-particle interactions, violation of MHD approximation, etc. One typical measurement techniques is the 'Double Probe method', identical to that of a voltmeter: the potential difference between two top-hat probes [cf. Pedersen et al., 1984]. This method can measure electric fields passively and continuously in all plasma conditions. However, the accuracy of the measured electric field values is limited. The probe measurement is also subjected to the variable gain (effective length) of the probe antenna and the artificial offset of the measured values. Those depend on a) the disturbance from ambient plasma and b) the disturbance from the spacecraft and the probe itself. In this paper, we show the results of the characteristics of DC electric field measurement by the PANT probe and the EFD-P (Electric Field Detector - Probe technique) receiver aboard Geotail [Tsuruda et al., 1994], in order to evaluate the accuracy, gain, and offset controlled by ambient plasmas. We conclude that the Geotail electric field measurement by the double probe system has the accuracy 0.4 mV/m for Ex and 0.3 mV/m for Ey, after the correction of the gain and offset. In better conditions, accuracy of Ey is 0.2 mV/m. The potential accuracy would be better because those values are limited by the accuracy of the particle measurement especially in low density conditions. In practical use, the corrections by long-term variation and spacecraft potential are effective to refine the electric field data. The characteristics of long-term variation and the dependences on ambient plasma are not fully understood well, yet. Further works will be needed based on the calibrated LEP data after 1998. It will also cover the conditions rejected in this paper, i.e., low density regions, potential controlled period, electric field quasi-parallel to magnetic field, etc. The comparison with EFD-B (EFD - Beam technique) data will also be included in order to reject the ambiguity in particle observations. In addition, we are trying to establish the numerical model of the double probe system for the full-quantitative understanding of the effect of potential structure and photoelectron distributions. Those will be the basis for planned experiments, BepiColombo to Mercury, ERG to the inner magnetosphere, and the multi-spacecraft magnetospheric mission SCOPE.
A Currency for Offsetting Energy Development Impacts: Horse-Trading Sage-Grouse on the Open Market
Doherty, Kevin E.; Naugle, David E.; Evans, Jeffrey S.
2010-01-01
Background Biodiversity offsets provide a mechanism to compensate for unavoidable damages from new energy development as the U.S. increases its domestic production. Proponents argue that offsets provide a partial solution for funding conservation while opponents contend the practice is flawed because offsets are negotiated without the science necessary to backup resulting decisions. Missing in negotiations is a biologically-based currency for estimating sufficiency of offsets and a framework for applying proceeds to maximize conservation benefits. Methodology/Principal Findings Here we quantify a common currency for offsets for greater sage-grouse (Centrocercus urophasianus) by estimating number of impacted birds at 4 levels of development commonly permitted. Impacts were indiscernible at 1–12 wells per 32.2 km2. Above this threshold lek losses were 2–5 times greater inside than outside of development and bird abundance at remaining leks declined by −32 to −77%. Findings reiterated the importance of time-lags as evidenced by greater impacts 4 years after initial development. Clustering well locations enabled a few small leks to remain active inside of developments. Conclusions/Significance Documented impacts relative to development intensity can be used to forecast biological trade-offs of newly proposed or ongoing developments, and when drilling is approved, anticipated bird declines form the biological currency for negotiating offsets. Monetary costs for offsets will be determined by true conservation cost to mitigate risks such as sagebrush tillage to other populations of equal or greater number. If this information is blended with landscape level conservation planning, the mitigation hierarchy can be improved by steering planned developments away from conservation priorities, ensuring compensatory mitigation projects deliver a higher return for conservation that equate to an equal number of birds in the highest priority areas, provide on-site mitigation recommendations, and provide a biologically based cost for mitigating unavoidable impacts. PMID:20442770
Mining and biodiversity offsets: a transparent and science-based approach to measure "no-net-loss".
Virah-Sawmy, Malika; Ebeling, Johannes; Taplin, Roslyn
2014-10-01
Mining and associated infrastructure developments can present themselves as economic opportunities that are difficult to forego for developing and industrialised countries alike. Almost inevitably, however, they lead to biodiversity loss. This trade-off can be greatest in economically poor but highly biodiverse regions. Biodiversity offsets have, therefore, increasingly been promoted as a mechanism to help achieve both the aims of development and biodiversity conservation. Accordingly, this mechanism is emerging as a key tool for multinational mining companies to demonstrate good environmental stewardship. Relying on offsets to achieve "no-net-loss" of biodiversity, however, requires certainty in their ecological integrity where they are used to sanction habitat destruction. Here, we discuss real-world practices in biodiversity offsetting by assessing how well some leading initiatives internationally integrate critical aspects of biodiversity attributes, net loss accounting and project management. With the aim of improving, rather than merely critiquing the approach, we analyse different aspects of biodiversity offsetting. Further, we analyse the potential pitfalls of developing counterfactual scenarios of biodiversity loss or gains in a project's absence. In this, we draw on insights from experience with carbon offsetting. This informs our discussion of realistic projections of project effectiveness and permanence of benefits to ensure no net losses, and the risk of displacing, rather than avoiding biodiversity losses ("leakage"). We show that the most prominent existing biodiversity offset initiatives employ broad and somewhat arbitrary parameters to measure habitat value and do not sufficiently consider real-world challenges in compensating losses in an effective and lasting manner. We propose a more transparent and science-based approach, supported with a new formula, to help design biodiversity offsets to realise their potential in enabling more responsible mining that better balances economic development opportunities for mining and biodiversity conservation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Shiou-Ying
2004-07-01
An InGaP/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure is demonstrated and theoretically investigated. This device exhibited good performance including lower turn-on voltage, lower offset voltage and smaller collector current saturation voltage. The novel aspect of device structure design is the adoption of the compositionally linear-graded AlGaAs layer between the InGaP-emitter and GaAs-base layers. Therefore, the device studied shows better dc and ac performances than a conventional device. Consequently, this causes the substantial benefit for practical analog and digital applications especially for lower operation voltage, lower power consumption commercial and military products.
NASA Astrophysics Data System (ADS)
Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.
2017-02-01
In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.
Cox, Karina; North, Margaret; Burke, Michael; Singhal, Hemant; Renton, Sophie; Aqel, Nayef; Islam, Sabita; Knight, Stella C
2005-11-01
Plasmacytoid dendritic cells (PDC) constitute a distinct subset of DC found in human peripheral lymph nodes (LN), but little is known about their function. Cell suspensions were prepared from tumor draining LN (n=20) and control LN (n=11) of women undergoing surgical resection for primary breast cancer and elective surgery for benign conditions, respectively. Using four-color flow cytometry, human leukocyte antigen-DR+ DC subsets were identified phenotypically. The proportions and numbers of cells innately producing interleukin (IL)-4, IL-10, IL-12, and interferon-gamma (IFN-gamma) were also measured from intracellular accumulation of cytokine after blocking with monensin. All flow cytometry data were collected without compensation and were compensated off-line using the Winlist algorithm (Verity software). This package also provided the subtraction program to calculate percentage positive cells and intensity of staining. PDC (CD11c-, CD123+) expressed more cytokines than did myeloid DC (CD11c+) or CD1a+ putative "migratory" DC (P<0.001). LN PDC from patients with a good prognosis (px; n=11) demonstrated a relative increase in IL-12 and IFN-gamma expression (median IL-10:IL-12 ratio=0.78 and median IL-4:IFN-gamma ratio=0.7), and PDC from LN draining poor px cancer (n=9) showed a relative increase in IL-10 and IL-4 expression (median IL-10:IL-12 ratio=1.31 and median IL-4:IFN-gamma ratio=2.6). The difference in IL-4:IFN-gamma expression between good and poor px cancer groups was significant (P<0.05). Thus, PDC innately producing cytokines were identified in cell suspensions from human LN, and the character of PDC cytokine secretion may differ between two breast cancer prognostic groups. We speculate that a shift towards PDC IL-10 and IL-4 expression could promote tumor tolerance in LN draining poor px breast cancer.
Lucero, Jorge C.; Koenig, Laura L.; Lourenço, Kelem G.; Ruty, Nicolas; Pelorson, Xavier
2011-01-01
This paper examines an updated version of a lumped mucosal wave model of the vocal fold oscillation during phonation. Threshold values of the subglottal pressure and the mean (DC) glottal airflow for the oscillation onset are determined. Depending on the nonlinear characteristics of the model, an oscillation hysteresis phenomenon may occur, with different values for the oscillation onset and offset threshold. The threshold values depend on the oscillation frequency, but the occurrence of the hysteresis is independent of it. The results are tested against pressure data collected from a mechanical replica of the vocal folds, and oral airflow data collected from speakers producing intervocalic ∕h∕. In the human speech data, observed differences between voice onset and offset may be attributed to variations in voice pitch, with a very small or inexistent hysteresis phenomenon. PMID:21428520
Comparison of Different Attitude Correction Models for ZY-3 Satellite Imagery
NASA Astrophysics Data System (ADS)
Song, Wenping; Liu, Shijie; Tong, Xiaohua; Niu, Changling; Ye, Zhen; Zhang, Han; Jin, Yanmin
2018-04-01
ZY-3 satellite, launched in 2012, is the first civilian high resolution stereo mapping satellite of China. This paper analyzed the positioning errors of ZY-3 satellite imagery and conducted compensation for geo-position accuracy improvement using different correction models, including attitude quaternion correction, attitude angle offset correction, and attitude angle linear correction. The experimental results revealed that there exist systematic errors with ZY-3 attitude observations and the positioning accuracy can be improved after attitude correction with aid of ground controls. There is no significant difference between the results of attitude quaternion correction method and the attitude angle correction method. However, the attitude angle offset correction model produced steady improvement than the linear correction model when limited ground control points are available for single scene.
Defining International Contracting Terms
1994-09-01
compensation so that another nation or company can make a sale or export. The Coca - Cola company refused to accept offsets to break into the lucrative Soviet...Union Market. Their main competitor, Pepsi- Cola , broke into this market 15 years earlier by accepting Stolichnaya vodka as a reciprocal purchase, a... advantages over the other available alternatives (personal interviews or a telephone A-2 survey). While personal interviews offer the advantages of a high
An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters
Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao
2014-01-01
In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061
Modelling and Simulation of Grid Connected SPV System with Active Power Filtering Features
NASA Astrophysics Data System (ADS)
Saroha, Jaipal; Pandove, Gitanjali; Singh, Mukhtiar
2017-09-01
In this paper, the detailed simulation studies for a grid connected solar photovoltaic system (SPV) have been presented. The power electronics devices like DC-DC boost converter and grid interfacing inverter are most important components of proposed system. Here, the DC-DC boost converter is controlled to extract maximum power out of SPV under different irradiation levels, while the grid interfacing inverter is utilized to evacuate the active power and feed it into grid at synchronized voltage and frequency. Moreover, the grid interfacing inverter is also controlled to sort out the issues related to power quality by compensating the reactive power and harmonics current component of nearby load at point of common coupling. Besides, detailed modeling of various component utilized in proposed system is also presented. Finally, extensive simulations have been performed under different irradiation levels with various kinds of load to validate the aforementioned claims. The overall system design and simulation have been performed by using Sim Power System toolbox available in the library of MATLAB.
NASA Astrophysics Data System (ADS)
Jacquot, Jonathan; Tierens, Wouter; Zhang, Wei; Bobkov, Volodymyr; Colas, Laurent; Noterdaeme, Jean-Marie
2017-10-01
A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing). Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.
Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system
NASA Astrophysics Data System (ADS)
Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang
2018-02-01
The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.
Influence of camera parameters on the quality of mobile 3D capture
NASA Astrophysics Data System (ADS)
Georgiev, Mihail; Boev, Atanas; Gotchev, Atanas; Hannuksela, Miska
2010-01-01
We investigate the effect of camera de-calibration on the quality of depth estimation. Dense depth map is a format particularly suitable for mobile 3D capture (scalable and screen independent). However, in real-world scenario cameras might move (vibrations, temp. bend) form their designated positions. For experiments, we create a test framework, described in the paper. We investigate how mechanical changes will affect different (4) stereo-matching algorithms. We also assess how different geometric corrections (none, motion compensation-like, full rectification) will affect the estimation quality (how much offset can be still compensated with "crop" over a larger CCD). Finally, we show how estimated camera pose change (E) relates with stereo-matching, which can be used for "rectification quality" measure.
Behaviour of tetraalkylammonium ions in high-field asymmetric waveform ion mobility spectrometry.
Aksenov, Alexander A; Kapron, James T
2010-05-30
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an ion-filtering technique recently adapted for use with liquid chromatography/mass spectrometry (LC/MS) to remove interferences during analysis of complex matrices. This is the first systematic study of a series of singly charged tetraalkylammonium ions by FAIMS-MS. The compensation voltage (CV) is the DC offset of the waveform which permits the ion to emerge from FAIMS and it was determined for each member of the series under various conditions. The electrospray ionization conditions explored included spray voltage, vaporizer temperature, and sheath and auxiliary gas pressure. The FAIMS conditions explored included carrier gas flow rate, electrode temperature and composition of the carrier gas. Optimum desolvation was achieved using sufficient carrier gas (flow rate > or = 2 L/min) to ensure stable response. Low-mass ions (m/z 100-200) are more susceptible to changes in electrode temperature and gas composition than high mass ions (m/z 200-700). As a result of this study, ions are reliably analyzed using standard FAIMS conditions (dispersion voltage -5000 V, carrier gas flow rate 3 L/min, 50% helium/50%nitrogen, inner electrode temperature 70 degrees C and outer electrode temperature 90 degrees C). Variation of FAIMS conditions may be of great use for the separation of very low mass tetraalkylammonium (TAA) ions from other TAA ions. The FAIMS conditions do not appear to have a major effect on higher mass ions. Copyright 2010 John Wiley & Sons, Ltd.
Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F
2016-07-01
In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Sustaining and Enhancing the US Militarys Technology Edge
2016-01-01
www.congress . gov /bill/114th-congress/house-bill/1735/text. 14. Michael J. Sullivan, Defense Acquisitions: Observations on Whether or Not the Service Chief...Washington, DC: Gov - ernment Accountability Office, May 2010), http://www.gao.gov/new.items/d10522.pdf. 16. The first offset refers to the threat of massive...Defense Advanced Research Projects Agency and previously as a general counsel at NASA and as an USAF judge advocate. He explained the history of
Research on Battery Energy Storage System Based on User Side
NASA Astrophysics Data System (ADS)
Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di
2018-01-01
This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
... and request for comments. SUMMARY: Merit System Audit and Compliance, Office of Personnel Management... Management, Merit System Audit and Compliance, Room 6484, 1900 E Street NW., Washington, DC 20415, or sent... instructions if more room is needed to list designated beneficiaries. Analysis Agency: Merit System Audit and...
Scanning Kelvin Probe Microscopy | Materials Science | NREL
the measurement is performed under thermoequilibrium state; and it is the electrical potential when and electrical signals. The electrostatic force is zero when the CPD is completely compensated by a dc the measurement capabilities of the technique when a device sample is in the dark. Right: This
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
..., Inc., Rolls-Royce Corporation, Black & Decker (U.S.) Inc., Johns Hopkins University, Johns Hopkins University Applied Physics Laboratory, LLC, and Winter's Performance Products as defendants. The complaint... payment to: Consent Decree Library, U.S. DOJ--ENRD, P.O. Box 7611, Washington, DC 20044-7611. Please...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-26
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 1, 51, 52, 53, 63, and 64 [FCC 96-79; FCC 96-489... Communications Commission. ACTION: Final rule; announcement of effective date. SUMMARY: This document announces..., Federal Communications Commission, Room 5-C458, 445 12th Street SW., Washington, DC 20554. Please include...
Performance Analysis of a Static Synchronous Compensator (STATCOM)
NASA Astrophysics Data System (ADS)
Kambey, M. M.; Ticoh, J. D.
2018-02-01
Reactive power and voltage are some of the problems in electric power supply and A Gate Turn Off (GTO) Static Synchronous Compensator (STATCOM) is one of the type of FACTS with shunt which can supply variable reactive power and regulate the voltage of the bus where it is connected. This study only discuss about the performance characteristic of the three phase six-pulse STATCOM by analysing the current wave flowing through DC Capacitor which depend on switching current and capacitor voltage wave. Simulation methods used in this research is started with a mathematical analysis of the ac current, dc voltage and current equations that pass STATCOM from a literature. The result shows the presence of the capacitor voltage ripple also alters the ac current waveform, even though the errors to be not very significant and the constraint of the symmetry circuit is valid if the source voltages have no zero sequence components and the impedances in all the three phases are identical. There for to improve STATCOM performance it is necessary to use multi-pulse 12, 24, 36, 48 or more, and/or with a multilevel converter.
Xi, Yang; Troy, Niamh M.; Anderson, Denise; Pena, Olga M.; Lynch, Jason P.; Phipps, Simon; Bosco, Anthony; Upham, John W.
2017-01-01
Though human rhinoviruses (HRVs) are usually innocuous viruses, they can trigger serious consequences in certain individuals, especially in the setting of impaired interferon (IFN) synthesis. Plasmacytoid dendritic cells (pDCs) are key IFN producing cells, though we know little about the role of pDC in HRV-induced immune responses. Herein, we used gene expression microarrays to examine HRV-activated peripheral blood mononuclear cells (PBMCs) from healthy people, in combination with pDC depletion, to assess whether observed gene expression patterns were pDC dependent. As expected, pDC depletion led to a major reduction in IFN-α release. This was associated with profound differences in gene expression between intact PBMC and pDC-depleted PBMC, and major changes in upstream regulators: 70–80% of the HRV activated genes appeared to be pDC dependent. Real-time PCR confirmed key changes in gene expression, in which the following selected genes were shown to be highly pDC dependent: the transcription factor IRF7, both IL-27 chains (IL-27p28 and EBI3), the alpha chain of the IL-15 receptor (IL-15RA) and the IFN-related gene IFI27. HRV-induced IL-6, IFN-γ, and IL-27 protein synthesis were also highly pDC dependent. Supplementing pDC-depleted cultures with recombinant IL-15, IFN-γ, IL-27, or IL-6 was able to restore the IFN-α response, thereby compensating for the absence of pDC. Though pDC comprise only a minority population of migratory leukocytes, our findings highlight the profound extent to which these cells contribute to the immune response to HRV. PMID:29118754
No net loss of fish habitat: a review and analysis of habitat compensation in Canada.
Harper, D J; Quigley, J T
2005-09-01
The achievement of No Net Loss (NNL) through habitat compensation has rarely been assessed in Canada. Files relating to 124 Fisheries Act Section 35(2) authorizations issued by Fisheries and Oceans Canada for the harmful alteration, disruption, and destruction of fish habitat (HADD) were collected and reviewed. Data extracted from these files were pooled and analyzed to provide an indication of the types of HADDs that have been authorized in Canada, what habitats have been affected, and what habitat management approaches have been used when compensating for HADDs and monitoring and ensuring the success of the compensation. Determinations regarding the effectiveness of habitat compensation in achieving NNL were made. Impacts to 419,562 m2 of fish habitat from the 124 authorized HADDs were offset by 1,020,388 m2 of compensatory habitat. Eighty percent of the authorizations had compensation ratios (compensation area:HADD area) of 2:1 or less, and 25% of the authorizations had a compensation ratio that was less than 1:1. In-channel and riparian habitat were the most frequently impacted habitats. Urban development and roads and highways resulted in the greatest areal loss of habitat. The compensation option that was most often selected was the creation of in-kind habitat. The mean duration of post-construction monitoring programs was 3.7 years. Determinations of NNL could only be made for 17 authorizations as a result of poor proponent compliance with monitoring requirements and the qualitative assessment procedures used by the monitoring programs. Adequate resources, proper training, and standardized approaches to data management and monitoring programs are required to ensure that the conservation goal of NNL can be achieved in Canada.
Jing, Jian; Sweedler, Jonathan V; Cropper, Elizabeth C; Alexeeva, Vera; Park, Ji-Ho; Romanova, Elena V.; Xie, Fang; Dembrow, Nikolai C.; Ludwar, Bjoern C.; Weiss, Klaudiusz R; Vilim, Ferdinand S
2010-01-01
Compensatory mechanisms are often used to achieve stability by reducing variance, which can be accomplished via negative feedback during homeostatic regulation. In principle, compensation can also be implemented through feedforward mechanisms where a regulator acts to offset the anticipated output variation; however, few such neural mechanisms have been demonstrated. We provide evidence that an Aplysia neuropeptide, identified using an enhanced representational difference analysis procedure, implements feedforward compensation within the feeding network. We named the novel peptide allatotropin-related peptide (ATRP) because of its similarity to insect allatotropin. Mass spectrometry confirmed the peptide's identity, and in situ hybridization and immunostaining mapped its distribution in the Aplysia CNS. ATRP is present in the higher-order cerebral-buccal interneuron (CBI), CBI-4, but not in CBI-2. Previous work showed that CBI-4-elicited motor programs have a shorter protraction duration than those elicited by CBI-2. Here we show that ATRP shortens protraction duration of CBI-2-elicited ingestive programs, suggesting a contribution of ATRP to the parametric differences between CBI-4- and CBI-2-evoked programs. Importantly, because Aplysia muscle contractions are a graded function of motoneuronal activity, one consequence of the shortening of protraction is that it can weaken protraction movements. However, this potential weakening is offset by feedforward compensatory actions exerted by ATRP. Centrally, ATRP increases the activity of protraction motoneurons. Moreover, ATRP is present in peripheral varicosities of protraction motoneurons and enhances peripheral motoneuron-elicited protraction muscle contractions. Therefore, feedforward compensatory mechanisms mediated by ATRP make it possible to generate a faster movement with an amplitude that is not greatly reduced, thereby producing stability. PMID:21147994
The economic impacts of the tobacco settlement.
Cutler, David M; Gruber, Jonathan; Hartman, Raymond S; Landrum, Mary Beth; Newhouse, Joseph P; Rosenthal, Meredith B
2002-01-01
Recent litigation against the major tobacco companies culminated in a master settlement agreement (MSA) under which the participating companies agreed to compensate most states for Medicaid expenses. Here the terms of the settlement are outlined and its economic implications analyzed using data from Massachusetts. The financial compensation to Massachusetts (and other states) under the MSA is substantial. However, this compensation is dwarfed by the value of the health impacts induced by the settlement. Specifically, Medicaid spending will fall, but only by a modest amount. More importantly, the value of health benefits ($65 billion through 2025 in 1999 dollars) from increased longevity is an order of magnitude greater than any other impacts or payments. The net efficiency implications of the settlement turn mainly on a comparison of the value of these health benefits relative to a valuation of the foregone pleasure of smoking. To the extent that the value of the health benefits is not offset by the value of the pleasure foregone, the economic impacts of the MSA will include a share of these health benefits.
A Spherical to Plane Wave Transformation Using a Reflectarray
NASA Technical Reports Server (NTRS)
Zaman, Afroz J.; Lee, Richard Q.
1997-01-01
A reflectarray has generally been used as a replacement for a reflector antenna. Using in this capacity, different configurations (prime focus, offset etc.) and various applications (dual frequency, scanning etc.) have been demonstrated with great success. Another potential application that has not been explored previously is the use of reflectarrays to compensate for phase errors in space power combining applications such as space-fed lens and power combining amplifier. In these applications, it is required to convert a spherical wave to a plane wave with proper phase correction added to each element of the reflectarray. This paper reports an experiment to investigate the feasibility of using a reflectarray as an alternative to a lens in space power combining. The experiment involves transforming a spherical wave from a orthomode horn to a plane wave at the horn aperture. The reflcctarray consists of square patches terminated in open stubs to provide necessary phase compensation. In this paper, preliminary results will be presented and the feasibility of such compensation scheme will be discussed.
Complex adaptation-based LDR image rendering for 3D image reconstruction
NASA Astrophysics Data System (ADS)
Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik
2014-07-01
A low-dynamic tone-compression technique is developed for realistic image rendering that can make three-dimensional (3D) images similar to realistic scenes by overcoming brightness dimming in the 3D display mode. The 3D surround provides varying conditions for image quality, illuminant adaptation, contrast, gamma, color, sharpness, and so on. In general, gain/offset adjustment, gamma compensation, and histogram equalization have performed well in contrast compression; however, as a result of signal saturation and clipping effects, image details are removed and information is lost on bright and dark areas. Thus, an enhanced image mapping technique is proposed based on space-varying image compression. The performance of contrast compression is enhanced with complex adaptation in a 3D viewing surround combining global and local adaptation. Evaluating local image rendering in view of tone and color expression, noise reduction, and edge compensation confirms that the proposed 3D image-mapping model can compensate for the loss of image quality in the 3D mode.
NASA Technical Reports Server (NTRS)
Vassout, P.; Parmentier, G.
1978-01-01
The results of the study reveal that with regard to the pulmonary lesions, twice the number of exposures is compensated for by quartering the overpressure of the wave crest. With regard to the mortality rates, it reveals that halving the overpressure of the wave crest is offset by a 20-fold increase in the number of exposures.
Tools for Physiology Labs: Inexpensive Equipment for Physiological Stimulation
Land, Bruce R.; Johnson, Bruce R.; Wyttenbach, Robert A.; Hoy, Ronald R.
2004-01-01
We describe the design of inexpensive equipment and software for physiological stimulation in the neurobiology teaching laboratory. The core component is a stimulus isolation unit (SIU) that uses DC-DC converters, rather than expensive high-voltage batteries, to generate isolated power at high voltage. The SIU has no offset when inactive and produces pulses up to 100 V with moderately fast (50 μs) rise times. We also describe two methods of stimulus timing control. The first is a simplified conventional, stand-alone analog pulse generator. The second uses a digital microcontroller interfaced with a personal computer. The SIU has performed well and withstood intensive use in our undergraduate physiology laboratory. This project is part of our ongoing effort to make reliable low-cost physiology equipment available for both student teaching and faculty research laboratories. PMID:23493817
High Power mm-Wave Transmitter System for Radar or Telecommunications
NASA Technical Reports Server (NTRS)
Stride, S. L.; McMaster, R. L.; Pogorzelski, R. J.
2003-01-01
Future NASA deep space missions able to provide tens of kilo-watts of spacecraft DC power, make it feasible to employ high power RF telecommunications systems. Traditional flight systems (e.g., Cassini), constrained by limited DC power, used a single high-gain 4m Cassegrain reflector fed by a single lower power (20W) transmitter. Increased available DC power means that high power (1000 W) transmitters can be used. Rather than continue building traditional single-transmitter systems it now becomes feasible to engineer and build multi-element active arrays that can illuminate a dish. Illuminating a 2m dish with a spherical wavefront from an offset 1kW active array can provide sufficient ERP (Effective Radiated Power) when compared to a larger Cassegrain dish. Such a system has the advantage of lower mass, lower volume, improved reliability, less stringent pointing requirements, lower cost and risk. We propose to design and build a prototype Ka-band transmit antenna with an active sub-array using 125W TWTAs. The system could be applied to a telecommunications downlink or radar transmitter used for missions such as JIMO.
ac electroosmotic pumping induced by noncontact external electrodes.
Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia
2007-09-21
Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1x1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mmsec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 mulsec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps.
Lucero, Jorge C; Koenig, Laura L; Lourenço, Kelem G; Ruty, Nicolas; Pelorson, Xavier
2011-03-01
This paper examines an updated version of a lumped mucosal wave model of the vocal fold oscillation during phonation. Threshold values of the subglottal pressure and the mean (DC) glottal airflow for the oscillation onset are determined. Depending on the nonlinear characteristics of the model, an oscillation hysteresis phenomenon may occur, with different values for the oscillation onset and offset threshold. The threshold values depend on the oscillation frequency, but the occurrence of the hysteresis is independent of it. The results are tested against pressure data collected from a mechanical replica of the vocal folds, and oral airflow data collected from speakers producing intervocalic /h/. In the human speech data, observed differences between voice onset and offset may be attributed to variations in voice pitch, with a very small or inexistent hysteresis phenomenon. © 2011 Acoustical Society of America
Polynomial-interpolation algorithm for van der Pauw Hall measurement in a metal hydride film
NASA Astrophysics Data System (ADS)
Koon, D. W.; Ares, J. R.; Leardini, F.; Fernández, J. F.; Ferrer, I. J.
2008-10-01
We apply a four-term polynomial-interpolation extension of the van der Pauw Hall measurement technique to a 330 nm Mg-Pd bilayer during both absorption and desorption of hydrogen at room temperature. We show that standard versions of the van der Pauw DC Hall measurement technique produce an error of over 100% due to a drifting offset signal and can lead to unphysical interpretations of the physical processes occurring in this film. The four-term technique effectively removes this source of error, even when the offset signal is drifting by an amount larger than the Hall signal in the time interval between successive measurements. This technique can be used to increase the resolution of transport studies of any material in which the resistivity is rapidly changing, particularly when the material is changing from metallic to insulating behavior.
Independent Research and Independent Exploratory Development Programs: FY92 Annual Report
1993-04-01
transform- of an ERP provides a record of ERP energy at different times and scales. It does this by producing a set of filtered time series ai different...that the coefficients at any level are a series that measures energy within the bandwidth of that level as a function of time. For this reason it is...I to 25 Hz, and decimated to a final sampling rate of 50 Hz. The prestimulus baseline (200 ms) was adjusted to zero to remove any DC offset
Optoelectronics for Optically Controlled Phased-Array Systems
1991-11-01
Equation (1) holds for a Fabry - Perot (FP) laser as well as a DFB laser. Furthermore, gain clamping requires that hg(n)+ ( I - h)g(n,) - g,, (2) 4-2 where...and (3.) gain-lever, with a low-Q Fabry - Perot inserted before detector. Care was taken to ensure that the DC photocurrents were nearly identical in all...operating the laser cw and scanning the Fabry - Perot . The results are shown in Fig. 4(a) and (b). In these plots, the three curves are slightly offset
1993-04-01
mitigate the risks of utilizing this novel technology for spaceflight systems such as BE. The various elements of the development program include...the cylinder. The DC offset has been observed to change significantly with time or with a change in the environmental parameters. Also, a change in...in Figure 5, and immersed in an environmental vacuum chamber with the bonnet removed. In both cases, parasitic measurement confirmed that radiative
Heterodyne common-path grating interferometer with Littrow configuration.
Wu, Chyan-Chyi; Hsu, Cheng-Chih; Lee, Ju-Yi; Chen, Yan-Zou
2013-06-03
This paper presents a heterodyne common-path grating interferometer with Littrow configuration (HCGIL). The HCGIL can effectively overcome environmental disturbance effect and the DC offset and the amplitude variation of the measurement signals. Experimental results match well with the HP5529A results for long-range measurements. Results also show that the estimated measurement resolution is 0.15 ± 0.027 nm. The stability of the HCGIL is -0.41 ± 0.23 nm. Therefore, the HCGIL has potential for subnanometer resolution and long-range applications.
NASA Technical Reports Server (NTRS)
Guo, Li-Wen; Cardullo, Frank M.; Telban, Robert J.; Houck, Jacob A.; Kelly, Lon C.
2003-01-01
A study was conducted employing the Visual Motion Simulator (VMS) at the NASA Langley Research Center, Hampton, Virginia. This study compared two motion cueing algorithms, the NASA adaptive algorithm and a new optimal control based algorithm. Also, the study included the effects of transport delays and the compensation thereof. The delay compensation algorithm employed is one developed by Richard McFarland at NASA Ames Research Center. This paper reports on the analyses of the results of analyzing the experimental data collected from preliminary simulation tests. This series of tests was conducted to evaluate the protocols and the methodology of data analysis in preparation for more comprehensive tests which will be conducted during the spring of 2003. Therefore only three pilots were used. Nevertheless some useful results were obtained. The experimental conditions involved three maneuvers; a straight-in approach with a rotating wind vector, an offset approach with turbulence and gust, and a takeoff with and without an engine failure shortly after liftoff. For each of the maneuvers the two motion conditions were combined with four delay conditions (0, 50, 100 & 200ms), with and without compensation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD10-11-000] Frequency... Meeting Room at the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. All...-Federal Reporters, Inc. (202-347-3700 or 1-800-336-6646). The transcripts will be available for free on...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD10-11-000] Frequency... Meeting Room at the Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. All...-Federal Reporters, Inc. (202-347-3700 or 1-800-336-6646). The transcripts will be available for free on...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
... Decree in United States v. Exxon Mobil Corporation, et al., C.A. No. 4:11-cv-01037 (S.D. Tex.), was... as defendants Exxon Mobil Corporation, Ashland, Inc., Eurecat U.S. Incorporated, Akzo Nobel, Inc... Justice, Washington, DC 20044-7611, and should refer to United States v. Exxon Mobil Corporation, et al...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... Boone National Forest Supervisor's Office, 1700 Bypass Road, Winchester, KY 40391. This office is open 8... Consent Decree Library, P.O. Box 7611, U.S. Department of Justice, Washington, DC 20044-7611, or by faxing..., phone confirmation number (202) 514-5271. In requesting a copy from the Consent Decree Library, please...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
... Consent Decree in United States of America and District of Columbia v. Washington Gas Light Company, Civil... Gas Light Company response costs incurred or to be incurred by the National Park Service, the United... from the Washington Gas East Station Site, located in Washington, DC (the ``Site''). The Consent Decree...
76 FR 49401 - Universal Service-Intercarrier Compensation Transformation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-10
... comments. Federal Communications Commission's Web Site: http://fjallfoss.fcc.gov/ecfs2/ . Follow the... available on the Commission's Web site at http://www.fcc.gov . Pursuant to Sec. Sec. 1.415 and 1.419 of the... 12th Street, SW., Room CY-B402, Washington, DC 20554; Web site: http://www.bcpiweb.com ; phone: 1-800...
NASA Astrophysics Data System (ADS)
Wang, Jinhong; Guan, Liang; Chapman, J.; Zhou, Bing; Zhu, Junjie
2017-11-01
We present a programmable time alignment scheme used in an ASIC for the ATLAS forward muon trigger development. The scheme utilizes regenerated clocks with programmable phases to compensate for the timing offsets introduced by different detector trace lengths. Each ASIC used in the design has 104 input channels with delay compensation circuitry providing steps of ∼3 ns and a full range of 25 ns for each channel. Detailed implementation of the scheme including majority logic to suppress single-event effects is presented. The scheme is flexible and fully synthesizable. The approach is adaptable to other applications with similar phase shifting requirements. In addition, the design is resource efficient and is suitable for cost-effective digital implementation with a large number of channels.
NASA Astrophysics Data System (ADS)
Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Gruner, S. M.
2018-01-01
We studied the properties of chromium compensated GaAs when coupled to charge integrating ASICs as a function of detector temperature, applied bias and X-ray tube energy. The material is a photoresistor and can be biased to collect either electrons or holes by the pixel circuitry. Both are studied here. Previous studies have shown substantial hole trapping. This trapping and other sensor properties give rise to several non-ideal effects which include an extended point spread function, variations in the effective pixel size, and rate dependent offset shifts. The magnitude of these effects varies with temperature and bias, mandating good temperature uniformity in the sensor and very good temperature stabilization, as well as a carefully selected bias voltage.
Evens, Emily; Lanham, Michele; Murray, Kate; Rao, Samwel; Agot, Kawango; Omanga, Eunice; Thirumurthy, Harsha
2016-08-15
Interventions to increase demand for medical male circumcision are urgently needed in eastern and southern Africa. Following promising evidence that providing economic compensation can increase male circumcision uptake in Kenya, there is a need to understand the role of this intervention in individuals' decision-making regarding circumcision and explore perceptions of the intervention and concerns such as coercion. As part of a randomized controlled trial in Kenya that found compensation in the form of food vouchers worth US $8.75-US $15.00 to be effective in increasing male circumcision uptake, we conducted qualitative in-depth interviews with 45 circumcised and uncircumcised male participants and 19 female partners to explore how compensation provision influenced the decision to get circumcised. Interview transcripts were coded and an inductive thematic analysis was conducted to identify patterns in decision-making. Interviews revealed that compensation promoted circumcision uptake by addressing a major barrier to male circumcision uptake: lost wages during and after the circumcision procedure. Participants who did not get circumcised perceived the compensation amounts to be insufficient for offsetting their costs associated with getting circumcised or reported having nonfinancial barriers that were not addressed by the intervention, such as fear of pain. Participants also reported that they did not feel compelled to get circumcised for financial gain. Female partners of circumcised participants felt that the intervention helped to motivate their partners to get circumcised. The results suggest that the provision of economic compensation is an acceptable intervention that can address an important barrier to male circumcision uptake. Providing compensation to circumcision clients in the form of food vouchers warrants further consideration in voluntary medical male circumcision demand creation efforts.
Magnus, Manya; Mayer, Kenneth H.; Krakower, Douglas S.; Eldahan, Adam I.; Hawkins, Lauren A. Gaston; Underhill, Kristen; Hansen, Nathan B.; Kershaw, Trace S.; Betancourt, Joseph R.; Dovidio, John F.
2017-01-01
Abstract Despite the demonstrated effectiveness of HIV pre-exposure prophylaxis (PrEP) and evidence that most PrEP users do not engage in risk compensation (i.e., increased risk behavior due to a perceived decrease in HIV susceptibility), some healthcare providers report patient risk compensation to be a deterrent to prescribing PrEP. Overcoming this barrier is essential to supporting PrEP access and uptake among people at risk for HIV. To inform such efforts, this qualitative study explored PrEP-related risk compensation attitudes among providers with firsthand experience prescribing PrEP. US-based PrEP providers (n = 18), most of whom were HIV specialists, were recruited through direct outreach and referral from colleagues and other participants. Individual 90-min semistructured interviews were conducted by phone or in person from September 2014 through February 2015, transcribed, and thematically analyzed. Three attitudinal themes emerged: (1) providers' role is to support patients in making informed decisions, (2) risk behavior while taking PrEP does not fully offset PrEP's protective benefit (i.e., PrEP confers net protection, even with added behavioral risk), and (3) PrEP-related risk compensation is unduly stigmatized within and beyond the healthcare community. Participants were critical of other healthcare providers' negative judgment of patients and reluctance to prescribe PrEP due to anticipated risk compensation. Several providers also acknowledged an evolution in their thinking from initial ambivalence toward greater acceptance of PrEP and PrEP-related behavior change. PrEP providers' insights about risk compensation may help to address unsubstantiated concerns about PrEP-related risk compensation and challenge the acceptability of withholding PrEP on these grounds. PMID:28414261
CRISPRED: CRISP imaging spectropolarimeter data reduction pipeline
NASA Astrophysics Data System (ADS)
de la Cruz Rodríguez, J.; Löfdahl, M. G.; Sütterlin, P.; Hillberg, T.; Rouppe van der Voort, L.
2017-08-01
CRISPRED reduces data from the CRISP imaging spectropolarimeter at the Swedish 1 m Solar Telescope (SST). It performs fitting routines, corrects optical aberrations from atmospheric turbulence as well as from the optics, and compensates for inter-camera misalignments, field-dependent and time-varying instrumental polarization, and spatial variation in the detector gain and in the zero level offset (bias). It has an object-oriented IDL structure with computationally demanding routines performed in C subprograms called as dynamically loadable modules (DLMs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bo; Shi, Xiaojie M.; Li, Yalong
Hybrid ac/dc transmission extends the power transfer capacity of existing long ac lines closer to their thermal limit, by superposing the dc current onto three-phase ac lines through a zigzag transformer. However, this transformer could suffer saturation under unbalanced line impedance conditions. This paper introduces the concept of hybrid line impedance conditioner (HLIC) as a cost-effective approach to compensate for the line unbalance and therefore avoid saturation. The topology and operation principle are presented. The two-level control strategy is described, which enables autonomous adaptive regulation without the need of system-level control. Design and implementation are also analyzed, including dc-link capacitancemore » as one of the key line conditioner components, HLIC installation, and protection under fault conditions. The cost study on this HLIC-based hybrid system is also performed to reveal the benefits of the solution. In conclusion, simulation results and experimental results based on a down-scaled prototype are provided to verify the feasibility of the proposed approach.« less
Liu, Bo; Shi, Xiaojie M.; Li, Yalong; ...
2016-09-13
Hybrid ac/dc transmission extends the power transfer capacity of existing long ac lines closer to their thermal limit, by superposing the dc current onto three-phase ac lines through a zigzag transformer. However, this transformer could suffer saturation under unbalanced line impedance conditions. This paper introduces the concept of hybrid line impedance conditioner (HLIC) as a cost-effective approach to compensate for the line unbalance and therefore avoid saturation. The topology and operation principle are presented. The two-level control strategy is described, which enables autonomous adaptive regulation without the need of system-level control. Design and implementation are also analyzed, including dc-link capacitancemore » as one of the key line conditioner components, HLIC installation, and protection under fault conditions. The cost study on this HLIC-based hybrid system is also performed to reveal the benefits of the solution. In conclusion, simulation results and experimental results based on a down-scaled prototype are provided to verify the feasibility of the proposed approach.« less
A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier.
Lioe, De Xing; Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru
2016-04-13
A complementary metal-oxide semiconductor (CMOS) lock-in pixel to observe stimulated Raman scattering (SRS) using a high speed lateral electric field modulator (LEFM) for photo-generated charges and in-pixel readout circuits is presented. An effective SRS signal generated after the SRS process is very small and needs to be extracted from an extremely large offset due to a probing laser signal. In order to suppress the offset components while amplifying high-frequency modulated small SRS signal components, the lock-in pixel uses a high-speed LEFM for demodulating the SRS signal, resistor-capacitor low-pass filter (RC-LPF) and switched-capacitor (SC) integrator with a fully CMOS differential amplifier. AC (modulated) components remained in the RC-LPF outputs are eliminated by the phase-adjusted sampling with the SC integrator and the demodulated DC (unmodulated) components due to the SRS signal are integrated over many samples in the SC integrator. In order to suppress further the residual offset and the low frequency noise (1/f noise) components, a double modulation technique is introduced in the SRS signal measurements, where the phase of high-frequency modulated laser beam before irradiation of a specimen is modulated at an intermediate frequency and the demodulation is done at the lock-in pixel output. A prototype chip for characterizing the SRS lock-in pixel is implemented and a successful operation is demonstrated. The reduction effects of residual offset and 1/f noise components are confirmed by the measurements. A ratio of the detected small SRS to offset a signal of less than 10(-)⁵ is experimentally demonstrated, and the SRS spectrum of a Benzonitrile sample is successfully observed.
New approaches to provide ride-through for critical loads in electric power distribution systems
NASA Astrophysics Data System (ADS)
Montero-Hernandez, Oscar C.
2001-07-01
The extensive use of electronic circuits has enabled modernization, automation, miniaturization, high quality, low cost, and other achievements regarding electric loads in the last decades. However, modern electronic circuits and systems are extremely sensitive to disturbances from the electric power supply. In fact, the rate at which these disturbances happen is considerable as has been documented in recent years. In response to the power quality concerns presented previously, this dissertation is proposing new approaches to provide ride-through for critical loads during voltage disturbances with emphasis on voltage sags. In this dissertation, a new approach based on an AC-DC-AC system is proposed to provide ride-through for critical loads connected in buildings and/or an industrial system. In this approach, a three-phase IGBT inverter with a built in Dc-link voltage regulator is suitably controlled along with static by-pass switches to provide continuous power to critical loads. During a disturbance, the input utility source is disconnected and the power from the inverter is connected to the load. The remaining voltage in the AC supply is converted to DC and compensated before being applied to the inverter and the load. After detecting normal utility conditions, power from the utility is restored to the critical load. In order to achieve an extended ride-through capability a second approach is introduced. In this case, the Dc-link voltage regulator is performed by a DC-DC Buck-Boost converter. This new approach has the capability to mitigate voltage variations below and above the nominal value. In the third approach presented in this dissertation, a three-phase AC to AC boost converter is investigated. This converter provides a boosting action for the utility input voltages, right before they are applied to the load. The proposed Pulse Width Modulation (PWM) control strategy ensures independent control of each phase and compensates for both single-phase or poly-phase voltage sags. Algorithms capable of detecting voltage disturbances such as voltage sags, voltage swells, flicker, frequency change, and harmonics in a fast and reliable way are investigated and developed in this dissertation as an essential part of the approaches previously described. Simulation and experimental work has been done to validate the feasibility of all approaches under the most common voltage disturbances such as single-phase voltage sags and three-phase voltage sags.
Load positioning system with gravity compensation
NASA Technical Reports Server (NTRS)
Hollow, R. H.
1984-01-01
A load positioning system with gravity compensation has a servomotor, position sensing feedback potentiometer and velocity sensing tachometer in a conventional closed loop servo arrangement to cause a lead screw and a ball nut to vertically position a load. Gravity compensating components comprise the DC motor, gears, which couple torque from the motor to the lead screw, and constant current power supply. The constant weight of the load applied to the lead screw via the ball nut tend to cause the lead screw to rotate, the constant torque of which is opposed by the constant torque produced by the motor when fed from the constant current source. The constant current is preset as required by the potentiometer to effect equilibration of the load which thereby enables the positioning servomotor to see the load as weightless under both static and dynamic conditions. Positioning acceleration and velocity performance are therefore symmetrical.
Annular suspension and pointing system with controlled DC electromagnets
NASA Technical Reports Server (NTRS)
Vu, Josephine Lynn; Tam, Kwok Hung
1993-01-01
The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.
White, R G; Lawler, J P
2002-11-01
Digestion and metabolism of woody and leafy browse requires detoxification of plant secondary compounds that can incur an energy cost. Browse, however, inhibits methane (CH(4)) production and therefore could offset some costs of detoxification. We measured an index of heat increment of feeding (HIFi) and CH(4) production in muskoxen (Ovibos moschatus) given a single test meal (at 10 g/kg BM(0.75)) composed of hay mixed with one of three browse species (Willow: Salix alaxensis, S. pulchra; Birch: Betula nana). Detoxification cost was estimated as HIFi of browse diet-HIFi of hay diet and CH(4) compensation as CH(4) production of hay diet-CH(4) production of browse diet. CH(4) compensation was noted in 47% of 15 trials in which a detoxification cost was evident; six trials were with woody browse and one with leafy browse. Separate controls were responsible for the difference in CH(4) compensation for leafy browse vs. woody browse. Detoxification costs for twigs and leaves of B. nana were underestimated because of their low digestibility. In only one of six treatments was CH(4) compensation documented for B. nana. We conclude that energy saved by CH(4) suppression was small (<6%) compared with detoxification costs.
Software compensation of eddy current fields in multislice high order dynamic shimming.
Sengupta, Saikat; Avison, Malcolm J; Gore, John C; Brian Welch, E
2011-06-01
Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by eddy current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of eddy field compensation (EFC) applied to higher order shim induced eddy current fields in multislice DS. This method does not require shim shielding, extra hardware for eddy current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term eddy fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware eddy current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based eddy current compensation required in 2nd and 3rd order DS. Copyright © 2011 Elsevier Inc. All rights reserved.
A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.
Ying, Rex; Wall, Christine E
2016-12-08
Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Centering a DDR Strobe in the Middle of a Data Packet
NASA Technical Reports Server (NTRS)
Johnson, Michael; Nelson, Dave; Seefeldt, James; Roper, Weston; Passow, Craig
2014-01-01
The Orion CEV Northstar ASIC (application- specific integrated circuit) project required a DDR (double data rate) memory bus driver/receiver (DDR PHY block) to interface with external DDR memory. The DDR interface (JESD79C) is based on a source synchronous strobe (DQS\\) that is sent along with each packet of data (DQ). New data is provided concurrently with each edge of strobe and is sent irregularly. In order to capture this data, the strobe needs to be delayed and used to latch the data into a register. A circuit solves the need for training a DDR PRY block by incorporating a PVT-compensated delay element in the strobe path. This circuit takes an external reference clock signal and uses the regular clock to calibrate a known delay through a data path. The compensated delay DQS signal is then used to capture the DQ data in a normal register. This register structure can be configured as a FIFO (first in first out), in order to transfer data from the DDR domain to the system clock domain. This design is different in that it does not rely upon the need for training the system response, nor does it use a PLL (phase locked loop) or a DLL (delay locked loop) to provide an offset of the strobe signal. The circuit is created using standard ASIC building blocks, plus the PVT (process, voltage, and temperature) compensated delay line. The design uses a globally available system clock as a reference, alleviating the need to operate synchronously with the remote memory. The reference clock conditions the PVT compensated delay line to provide a pre-determined amount of delay to any data signal that passes through this delay line. The delay line is programmed in degrees of offset, so that one could think of the clock period representing 360deg of delay. In an ideal environment, delaying the strobe 1/4 of a clock cycle (90deg) would place the strobe in the middle of the data packet. This delayed strobe can then be used to clock the data into a register, satisfying setup and hold requirements of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Madhu Sudhan; Campbell, Steven L
This paper presents an analytical model for wireless power transfer system used in electric vehicle application. The equivalent circuit model for each major component of the system is described, including the input voltage source, resonant network, transformer, nonlinear diode rectifier load, etc. Based on the circuit model, the primary side compensation capacitance, equivalent input impedance, active / reactive power are calculated, which provides a guideline for parameter selection. Moreover, the voltage gain curve from dc output to dc input is derived as well. A hardware prototype with series-parallel resonant stage is built to verify the developed model. The experimental resultsmore » from the hardware are compared with the model predicted results to show the validity of the model.« less
Design of a new low-phase-noise millimetre-wave quadrature voltage-controlled oscillator
NASA Astrophysics Data System (ADS)
Kashani, Zeinab; Nabavi, Abdolreza
2018-07-01
This paper presents a new circuit topology of millimetre-wave quadrature voltage-controlled oscillator (QVCO) using an improved Colpitts oscillator without tail bias. By employing an extra capacitance between the drain and source terminations of the transistors and optimising circuit values, a low-power and low-phase-noise (PN) oscillator is designed. For generating the output signals with 90° phase difference, a self-injection coupling network between two identical cores is used. The proposed QVCO dissipates no extra dc power for coupling, since there is no dc-path to ground for the coupled transistors and no extra noise is added to circuit. The best figure-of-merit is -188.5, the power consumption is 14.98-15.45 mW, in a standard 180-nm CMOS technology, for 58.2 GHz center frequency from 59.3 to 59.6 GHz. The PN is -104.86 dBc/Hz at 1-MHz offset.
Minimizing Environmental Magnetic Field Sources for nEDM
NASA Astrophysics Data System (ADS)
Brinson, Alex; Filippone, Bradley; Slutsky, Simon; Osthelder, Charles
2017-09-01
Measurement of the neutron's Electric Dipole Moment (nEDM) could potentially explain the Baryon Asymmetry Problem, and would suggest plausible extensions to the Standard Model. We will attempt to detect the nEDM by measuring the electric-field-dependent neutron precession frequency, which is highly sensitive to magnetic field gradients. In order to produce fields with sufficiently low gradients for our experiment, we eliminate environmental effects by offsetting the ambient field with a Field Compensation System (FCS), then magnetically shielding the reduced field with a Mu-Metal cylinder. We discovered that the strongest environmental effect in our lab came from iron rebar embedded in the floor beneath the proposed experiment location. The large extent and strength of the floor's magnetization made the effect too large to offset with the FCS, forcing us to relocate our apparatus. The floor's magnetic field was mapped with a Hall probe in order to determine the most viable experiment locations. A 3-axis Fluxgate magnetometer was then used to determine the floor field's drop-off and shape at these locations, and a final apparatus position was determined which minimized the floor's effect such that it could be effectively offset and shielded by our experiment. Caltech SFP Office.
NASA Astrophysics Data System (ADS)
He, Y. F.; Zhu, W.; Zhang, Q.; Zhang, W. T.
2018-04-01
InSAR technique can measure the surface deformation with the accuracy of centimeter-level or even millimeter and therefore has been widely used in the deformation monitoring associated with earthquakes, volcanoes, and other geologic process. However, ionospheric irregularities can lead to the wavy fringes in the low frequency SAR interferograms, which disturb the actual information of geophysical processes and thus put severe limitations on ground deformations measurements. In this paper, an application of two common methods, the range split-spectrum and azimuth offset methods are exploited to estimate the contributions of the ionosphere, with the aim to correct ionospheric effects in interferograms. Based on the theoretical analysis and experiment, a performance analysis is conducted to evaluate the efficiency of these two methods. The result indicates that both methods can mitigate the ionospheric effect in SAR interferograms and the range split-spectrum method is more precise than the other one. However, it is also found that the range split-spectrum is easily contaminated by the noise, and the achievable accuracy of the azimuth offset method is limited by the ambiguous integral constant, especially with the strong azimuth variations induced by the ionosphere disturbance.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
.... South Carolina Electric & Gas Company, Case No. 2-11-cv-1110-CWH (D. S. Car. May 9, 2011). The proposed...'') against South Carolina Electric & Gas Company (``SCE&G''). The claims arise from the release of hazardous..., Washington, DC 20044-7611, and should refer to United States et al. v. South Carolina Electric & Gas Company...
Scopolamine attenuates auditory cortex response.
Deng, Anchun; Liang, Xiaojun; Sun, Yuchen; Xiang, Yanghong; Yang, Junjie; Yan, Jingjing; Sun, Wei
2015-01-01
Scopolamine, a tropane alkaloid drug that mainly acts as an antagonist of muscarinic acetylcholine receptors, was found to reduce the local field potentials (LFP) of auditory cortex (AC) evoked by tone and gap-offsets whose effects may compensate the cortical hyperexcitability related to tinnitus. To study the effects of scopolamine on the AC and the inferior colliculus (IC) of awake rats in order to understand scopolamine's effect on tinnitus and gap detection. Silent gaps (duration varied from 2-100 ms) embedded in otherwise continuous noise were used to elicit AC and IC response. Gap evoked AC and IC field potentials were recorded from awake rats before and after treatment of scopolamine (3 mg/kg, i.m.). Acute injection of scopolamine (3 mg/kg, i.m.) induced a significant reduction of the AC response, but not the IC response, to the offset of the gaps embedded in white noise. The results suggest that scopolamine may reduce AC neural synchrony.
An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Sheng, Wenjuan; Peng, G. D.; Liu, Yang; Yang, Ning
2015-08-01
An optimized strain-demodulation-method based on piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter is proposed and experimentally demonstrated. Using a parallel processing mode to drive the PZT continuously, the hysteresis effect is eliminated, and the system demodulation rate is increased. Furthermore, an AC-DC compensation method is developed to address the intrinsic nonlinear relationship between the displacement and voltage of PZT. The experimental results show that the actual demodulation rate is improved from 15 Hz to 30 Hz, the random error of the strain measurement is decreased by 95%, and the deviation between the test values after compensation and the theoretical values is less than 1 pm/με.
Nabovati, Ghazal; Ghafar-Zadeh, Ebrahim; Letourneau, Antoine; Sawan, Mohamad
2017-04-01
In this paper we present a CMOS capacitive sensor array as a compact and low-cost platform for high-throughput cell growth monitoring. The proposed biosensor, consists of an array of 8 × 8 CMOS fully differential charge-based capacitive measurement sensors. A DC-input Σ∆ modulator is used to convert the sensors' signals to digital values for reading out the biological/chemical data and further signal processing. To compensate the mismatch variations between the current mirror transistors, a calibration circuitry is proposed which removes the output voltage offset with less than 8.2% error. We validate the chip functionality using various organic solvents with different dielectric constants. Moreover, we show the response of the chip to different concentrations of Polystyrene beads that have the same electrical properties as the living cells. The experimental results show that the chip allows the detection of a wide range of Polystyrene beads concentrations from as low as 10 beads/ml to 100 k beads/ml. In addition, we present the experimental results from H1299 (human lung carcinoma) cell line where we show that the chip successfully allows the detection of cell attachment and growth over capacitive electrodes in a 30 h measurement time and the results are in consistency with the standard cell-based assays. The capability of proposed device for label-free and real-time detection of cell growth with very high sensitivity opens up the important opportunity for utilizing the device in rapid screening of living cells.
Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting
Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B
2014-01-01
Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is “biodiversity offsetting” (wherein biodiversity impacted is “replaced” through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of “linear” infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with “hub” infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km2 across the Ustyurt (total ∼ 100,000 km2), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes. PMID:24455163
Retaining U.S. Air Force Pilots When the Civilian Demand for Pilots Is Growing
2016-01-01
pilot retention and determine the changes in ARP and AP that could offset those effects. It also simulates the effects of eliminating AP for pilots...array of compensation policies for pilots, thereby providing the USAF with an empirically based analytical platform to determine the special and...greatly from the input and support of our project monitor, Maj Ryan Theiss, Chief, Rated Force Policy-Mobility Forces (HQ USAF/A1PPR), as well as Lt
NASA Astrophysics Data System (ADS)
Schaefer, Semjon; Gregory, Mark; Rosenkranz, Werner
2016-11-01
We present simulative and experimental investigations of different coherent receiver designs for high-speed optical intersatellite links. We focus on frequency offset (FO) compensation in homodyne and intradyne detection systems. The considered laser communication terminal uses an optical phase-locked loop (OPLL), which ensures stable homodyne detection. However, the hardware complexity increases with the modulation order. Therefore, we show that software-based intradyne detection is an attractive alternative for OPLL-based homodyne systems. Our approach is based on digital FO and phase noise compensation, in order to achieve a more flexible coherent detection scheme. Analytic results will further show the theoretical impact of the different detection schemes on the receiver sensitivity. Finally, we compare the schemes in terms of bit error ratio measurements and optimal receiver design.
ac electroosmotic pumping induced by noncontact external electrodes
Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia
2007-01-01
Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1×1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mm∕sec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 μl∕sec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps. PMID:19693362
Lin, Gong-Ru; Pan, Ci-Ling; Chiu, I-Hsiang
2006-03-15
A backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser (SOAFL) with a femtosecond pulse width and an ultrahigh supermode-noise suppressing ratio (SMSR) is primarily demonstrated. The mode-locked SOAFL pulse with a spectral linewidth of 0.45 nm is shortened from 15 to 8.6 ps under chirp compensation in a 420 m long dispersion-compensated fiber, corresponding to a time-bandwidth product of 0.48. The eighth-order soliton is obtained by the nonlinearly soliton's compression of the chirp-compensated SOAFL pulse in a 112 m long single-mode fiber at an input peak power of 51 W, providing the pulse width, the linewidth, and the nearly transform-limited time-bandwidth product are <200 fs, 13.8 nm, and 0.34, respectively. The phase noise and integrated timing jitter at an offset frequency below 1 MHz are -105 dBc/Hz and 0.8 ps, respectively. An ultrahigh pulse-compression ratio of 43 and a SMSR of 87 dB for the eighth-order SOAFL soliton are reported.
In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network
Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang
2014-01-01
The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948
NASA Astrophysics Data System (ADS)
Bellefleur, G.; Riedel, M.; Brent, T.; Wright, F.; Dallimore, S. R.
2007-10-01
Wave attenuation is an important physical property of hydrate-bearing sediments that is rarely taken into account in site characterization with seismic data. We present a field example showing improved images of hydrate-bearing sediments on seismic data after compensation of attenuation effects. Compressional quality factors estimated from zero-offset Vertical Seismic Profiling data acquired at Mallik, Northwest Territories, Canada, demonstrate significant wave attenuation for hydrate-bearing sediments. These results are in agreement with previous attenuation estimates obtained from sonic logs and crosshole data at different frequency intervals. The application of an inverse Q-filter to compensate attenuation effects of permafrost and hydrate-bearing sediments improved the resolution of surface 3D seismic data and its correlation with log data, particularly for the shallowest gas hydrate interval. Compensation of the attenuation effects of the permafrost likely explains most of the improvements for the shallow gas hydrate zone. Our results show that characterization of the Mallik gas hydrates with seismic data not corrected for attenuation would tend to overestimate thicknesses and lateral extent of hydrate-bearing strata and hence, the volume of hydrates in place.
Evaluation of LANDSAT-4 TM and MSS ground geometry performance without ground control
NASA Technical Reports Server (NTRS)
Bryant, N. A.; Zobrist, A.
1983-01-01
LANDSAT thematic mapper P-data of Washington, D.C., Harrisburg, PA, and Salton Sea, CA were analyzed to determine magnitudes and causes of error in the geometric conformity of the data to known earth-surface geometry. Several tests of data geometry were performed. Intra-band and inter-band correlation and registration were investigated, exclusive of map-based ground truth. Specifically, the magnitudes and statistical trends of pixel offsets between a single band's mirror scans (due to processing procedures) were computed, and the inter-band integrity of registration was analyzed.
The dependence of the anisoplanatic Strehl of a compensated beam on the beacon distribution
NASA Astrophysics Data System (ADS)
Stroud, P.
1992-02-01
There are several applications for lasers where the effect of atmospheric turbulence is strong enough to require wavefront compensation, and the compensation can be made by an adaptive optics (AO) system which processes light returned from the target itself. The distribution of the target return light produces limitations to the performance of the AO system. The primary intent of this documentation is to present the new results of an analysis of the anisoplanatic effects arising from target return beacon geometries. It will also lay out the assumptions and steps in the analysis, so that the results can be validated or extended. The intent is to provide a self-consistent notation, simple physical interpretations of the mathematical formulations, and enough detail to reduce the investment of time required to become acquainted or reacquainted with the physics of laser propagation through turbulence, at a level needed to analyze anisoplanatic effects. A general formulation has been developed to calculate the anisoplanatic Strehl of a compensated beam for any beacon distribution and turbulence profile. Numerical calculations are also shown for several beacon geometries and turbulence profiles. The key result is that the spread of the beacon distribution has a much less deleterious effect than does the offset of the beacon centroid from the aimpoint.
Liang, Kun; Yang, Cailan; Peng, Li; Zhou, Bo
2017-02-01
In uncooled long-wave IR camera systems, the temperature of a focal plane array (FPA) is variable along with the environmental temperature as well as the operating time. The spatial nonuniformity of the FPA, which is partly affected by the FPA temperature, obviously changes as well, resulting in reduced image quality. This study presents a real-time nonuniformity correction algorithm based on FPA temperature to compensate for nonuniformity caused by FPA temperature fluctuation. First, gain coefficients are calculated using a two-point correction technique. Then offset parameters at different FPA temperatures are obtained and stored in tables. When the camera operates, the offset tables are called to update the current offset parameters via a temperature-dependent interpolation. Finally, the gain coefficients and offset parameters are used to correct the output of the IR camera in real time. The proposed algorithm is evaluated and compared with two representative shutterless algorithms [minimizing the sum of the squares of errors algorithm (MSSE), template-based solution algorithm (TBS)] using IR images captured by a 384×288 pixel uncooled IR camera with a 17 μm pitch. Experimental results show that this method can quickly trace the response drift of the detector units when the FPA temperature changes. The quality of the proposed algorithm is as good as MSSE, while the processing time is as short as TBS, which means the proposed algorithm is good for real-time control and at the same time has a high correction effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Kong Ooi; Meier, Beat H., E-mail: beme@ethz.ch, E-mail: maer@ethz.ch; Ernst, Matthias, E-mail: beme@ethz.ch, E-mail: maer@ethz.ch
2016-09-07
We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function ofmore » pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.« less
Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias
2016-09-07
We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.
NASA Astrophysics Data System (ADS)
Guo, Liwen
The desire to create more complex visual scenes in modern flight simulators outpaces recent increases in processor speed. As a result, the simulation transport delay remains a problem. Because of the limitations shown in the three prominent existing delay compensators---the lead/lag filter, the McFarland compensator and the Sobiski/Cardullo predictor---new approaches of compensating the transport delay in a flight simulator have been developed. The first novel compensator is the adaptive predictor making use of the Kalman filter algorithm in a unique manner so that the predictor can provide accurately the desired amount of prediction, significantly reducing the large spikes caused by the McFarland predictor. Among several simplified online adaptive predictors it illustrates mathematically why the stochastic approximation algorithm achieves the best compensation results. A second novel approach employed a reference aircraft dynamics model to implement a state space predictor on a flight simulator. The practical implementation formed the filter state vector from the operator's control input and the aircraft states. The relationship between the reference model and the compensator performance was investigated in great detail, and the best performing reference model was selected for implementation in the final tests. Piloted simulation tests were conducted for assessing the effectiveness of the two novel compensators in comparison to the McFarland predictor and no compensation. Thirteen pilots with heterogeneous flight experience executed straight-in and offset approaches, at various delay configurations, on a flight simulator where different predictors were applied to compensate for transport delay. Four metrics---the glide slope and touchdown errors, power spectral density of the pilot control inputs, NASA Task Load Index, and Cooper-Harper rating on the handling qualities---were employed for the analyses. The overall analyses show that while the adaptive predictor results in slightly poorer compensation for short added delay (up to 48 ms) and better compensation for long added delay (up to 192 ms) than the McFarland compensator, the state space predictor is fairly superior for short delay and significantly superior for long delay to the McFarland compensator. The state space predictor also achieves better compensation than the adaptive predictor. The results of the evaluation on the effectiveness of these predictors in the piloted tests agree with those in the theoretical offline tests conducted with the recorded simulation aircraft states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, A. S.
2013-01-15
A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Madhu Sudhan; Wang, Zhiqiang
This paper presents a detailed parametric sensitivity analysis for a wireless power transfer (WPT) system in electric vehicle application. Specifically, several key parameters for sensitivity analysis of a series-parallel (SP) WPT system are derived first based on analytical modeling approach, which includes the equivalent input impedance, active / reactive power, and DC voltage gain. Based on the derivation, the impact of primary side compensation capacitance, coupling coefficient, transformer leakage inductance, and different load conditions on the DC voltage gain curve and power curve are studied and analyzed. It is shown that the desired power can be achieved by just changingmore » frequency or voltage depending on the design value of coupling coefficient. However, in some cases both have to be modified in order to achieve the required power transfer.« less
Development of Pointing Device Using DC-Coupled Electrooculogram
NASA Astrophysics Data System (ADS)
Uchitomi, Hirotaka; Hori, Junichi
A purpose of this study is to support communication of developmentally disabled individuals with motor paralysis, such as Guillain-Barre Syndrome, brain-stem infarction, having difficulty in conveying their intention. In the present paper, a pointing device controlled by DC-coupled electrooculograms (EOGs) has been developed. The optic angle of the subject was estimated from the amplitude of vertical and horizontal EOGs for determining the two dimensional pointing position on the PC screen in real time. The eye blinking artifact was reduced using a median filter. The displacement of electrode position was compensated by considering the potential gradient. Moreover, the position error caused by drift phenomenon was adjusted by using head movement. The accuracy and operating speed of the proposed method were evaluated in human experiments.
Magnetization measurements of Sr2RuO4-Ru eutectic microplates using dc-SQUIDs
NASA Astrophysics Data System (ADS)
Nago, Y.; Sakuma, D.; Ishiguro, R.; Kashiwaya, S.; Nomura, S.; Kono, K.; Maeno, Y.; Takayanagi, H.
2018-03-01
We report magnetization measurements of Sr2RuO4-Ru eutectic microplates using micro-dc-SQUIDs. Sr2RuO4 is considered as a chiral p-wave superconductor and hence Sr2RuO4-Ru eutectic becomes in an unstable state with a superconducting phase frustration between a chiral p-wave state of Sr2RuO4 and a s-wave state of Ru. To compensate the frustration, a single quantum vortex is spontaneously formed at the center of the Ru inclusion at sufficiently low temperatures. However, such a spontaneous vortex state has not been experimentally observed yet. In this study, we prepared a micro-dc-SQUID and a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion at the center of the microplate. We performed magnetization measurements down below the superconducting transition temperature of the Ru inclusion to investigate the spontaneous Ru-center vortex state.
Raghavan, Preeti; Santello, Marco; Gordon, Andrew M; Krakauer, John W
2010-06-01
Efficient grasping requires planned and accurate coordination of finger movements to approximate the shape of an object before contact. In healthy subjects, hand shaping is known to occur early in reach under predominantly feedforward control. In patients with hemiparesis after stroke, execution of coordinated digit motion during grasping is impaired as a result of damage to the corticospinal tract. The question addressed here is whether patients with hemiparesis are able to compensate for their execution deficit with a qualitatively different grasp strategy that still allows them to differentiate hand posture to object shape. Subjects grasped a rectangular, concave, and convex object while wearing an instrumented glove. Reach-to-grasp was divided into three phases based on wrist kinematics: reach acceleration (reach onset to peak horizontal wrist velocity), reach deceleration (peak horizontal wrist velocity to reach offset), and grasp (reach offset to lift-off). Patients showed reduced finger abduction, proximal interphalangeal joint (PIP) flexion, and metacarpophalangeal joint (MCP) extension at object grasp across all three shapes compared with controls; however, they were able to partially differentiate hand posture for the convex and concave shapes using a compensatory strategy that involved increased MCP flexion rather than the PIP flexion seen in controls. Interestingly, shape-specific hand postures did not unfold initially during reach acceleration as seen in controls, but instead evolved later during reach deceleration, which suggests increased reliance on sensory feedback. These results indicate that kinematic analysis can identify and quantify within-limb compensatory motor control strategies after stroke. From a clinical perspective, quantitative study of compensation is important to better understand the process of recovery from brain injury. From a motor control perspective, compensation can be considered a model for how joint redundancy is exploited to accomplish the task goal through redistribution of work across effectors.
Individualized FAC on bottom tab subassemblies to minimize adhesive gap between emitter and optics
NASA Astrophysics Data System (ADS)
Sauer, Sebastian; Müller, Tobias; Haag, Sebastian; Beleke, Andreas; Zontar, Daniel; Baum, Christoph; Brecher, Christian
2017-02-01
High Power Diode Laser (HPDL) systems with short focal length fast-axis collimators (FAC) require submicron assembly precision. Conventional FAC-Lens assembly processes require adhesive gaps of 50 microns or more in order to compensate for component tolerances (e.g. deviation of back focal length) and previous assembly steps. In order to control volumetric shrinkage of fast-curing UV-adhesives shrinkage compensation is mandatory. The novel approach described in this paper aims to minimize the impact of volumetric shrinkage due to the adhesive gap between HPDL edge emitters and FAC-Lens. Firstly, the FAC is actively aligned to the edge emitter without adhesives or bottom tab. The relative position and orientation of FAC to emitter are measured and stored. Consecutively, an individual subassembly of FAC and bottom tab is assembled on Fraunhofer IPT's mounting station with a precision of +/-1 micron. Translational and lateral offsets can be compensated, so that a narrow and uniform glue gap for the consecutive bonding process of bottom tab to heatsink applies (Figure 4). Accordingly, FAC and bottom tab are mounted to the heatsink without major shrinkage compensation. Fraunhofer IPT's department assembly of optical systems and automation has made several publications regarding active alignment of FAC lenses [SPIE LASE 8241-12], volumetric shrinkage compensation [SPIE LASE 9730-28] and FAC on bottom tab assembly [SPIE LASE 9727-31] in automated production environments. The approach described in this paper combines these and is the logical continuation of that work towards higher quality of HPDLs.
NASA Astrophysics Data System (ADS)
Panicker, Rahul Alex
Multimode fibers (MMF) are widely deployed in local-, campus-, and storage-area-networks. Achievable data rates and transmission distances are, however, limited by the phenomenon of modal dispersion. We propose a system to compensate for modal dispersion using adaptive optics. This leads to a 10- to 100-fold improvement in performance over current standards. We propose a provably optimal technique for minimizing inter-symbol interference (ISI) in MMF systems using adaptive optics via convex optimization. We use a spatial light modulator (SLM) to shape the spatial profile of light launched into an MMF. We derive an expression for the system impulse response in terms of the SLM reflectance and the field patterns of the MMF principal modes. Finding optimal SLM settings to minimize ISI, subject to physical constraints, is posed as an optimization problem. We observe that our problem can be cast as a second-order cone program, which is a convex optimization problem. Its global solution can, therefore, be found with minimal computational complexity. Simulations show that this technique opens up an eye pattern originally closed due to ISI. We then propose fast, low-complexity adaptive algorithms for optimizing the SLM settings. We show that some of these converge to the global optimum in the absence of noise. We also propose modified versions of these algorithms to improve resilience to noise and speed of convergence. Next, we experimentally compare the proposed adaptive algorithms in 50-mum graded-index (GRIN) MMFs using a liquid-crystal SLM. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations. We evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate over up to 9 wavelength-division-multiplexed (WDM) 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also show that CPSCA is able to compensate for modal dispersion over up to 2.2 km, even in the presence of mid-span connector offsets up to 4 mum (simulated in experiment by offset splices). A known non-adaptive launching technique using a fusion-spliced single-mode-to-multimode patchcord is shown to fail under these conditions. Finally, we demonstrate 10 x 10 Gb/s dense WDM transmission over 2.2 km of 50-mum GRIN MMF. We combine transmitter-based adaptive optics and receiver-based single-mode filtering, and control the launched field pattern for ten 10-Gb/s non-return-to-zero channels, wavelength-division multiplexed on a 200-GHz grid in the C band. We achieve error-free transmission through 2.2 km of 50-mum GRIN MMF for launch offsets up to 10 mum and for worst-case launched polarization. We employ a ten-channel transceiver based on parallel integration of electronics and photonics.
NASA Technical Reports Server (NTRS)
Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy
2011-01-01
A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.
Reengineering the retail/ambulatory pharmacy for provision of biotechnology pharmaceutical services.
Schneider, P J
1998-07-01
Biotechnology products offer both problems and opportunities for pharmacists. On one hand, they are expensive to purchase and keep on inventory. Typical compensation for outpatient prescriptions does not offset the cost of maintaining the inventory, or providing the education and training that patients often need to use biotechnology products properly. On the other hand, there are issues related to proper storage, preparation, and administration for which pharmacists are well prepared to address. Pharmacists are also convenient, trusted, and provide service at relatively low cost. Examples of special services that pharmacists can provide to improve the use of biotechnology products include patient education, injection clinics, provision of medical supplies, and predrawing syringes for patients. Patients are often sent to many providers for these services, resulting in inconvenience and fragmentation of care. If new compensation methods can be established to support more comprehensive pharmacy services, the use of biotechnology products by patients will improve.
Tighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein.
Wallis, Christopher P; Richman, Tara R; Filipovska, Aleksandra; Rackham, Oliver
2018-06-15
It has been widely shown that ligand-binding residues, by virtue of their orientation, charge, and solvent exposure, often have a net destabilizing effect on proteins that is offset by stability conferring residues elsewhere in the protein. This structure-function trade-off can constrain possible adaptive evolutionary changes of function and may hamper protein engineering efforts to design proteins with new functions. Here, we present evidence from a large randomized mutant library screen that, in the case of PUF RNA-binding proteins, this structural relationship may be inverted and that active-site mutations that increase protein activity are also able to compensate for impaired stability. We show that certain mutations in RNA-protein binding residues are not necessarily destabilizing and that increased ligand-binding can rescue an insoluble, unstable PUF protein. We hypothesize that these mutations restabilize the protein via thermodynamic coupling of protein folding and RNA binding.
Antenna analysis using neural networks
NASA Technical Reports Server (NTRS)
Smith, William T.
1992-01-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern shaping. The interesting thing about D-C synthesis is that the side lobes have the same amplitude. Five-element arrays were used. Again, 41 pattern samples were used for the input. Nine actual D-C patterns ranging from -10 dB to -30 dB side lobe levels were used to train the network. A comparison between simulated and actual D-C techniques for a pattern with -22 dB side lobe level is shown. The goal for this research was to evaluate the performance of neural network computing with antennas. Future applications will employ the backpropagation training algorithm to drastically reduce the computational complexity involved in performing EM compensation for surface errors in large space reflector antennas.
Antenna analysis using neural networks
NASA Astrophysics Data System (ADS)
Smith, William T.
1992-09-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary).
ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade
NASA Astrophysics Data System (ADS)
ASDEX Upgrade Team Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.
2011-08-01
Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources.Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna.Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.
ICRF antenna-plasma interactions and its influence on W sputtering in ASDEX upgrade
NASA Astrophysics Data System (ADS)
Bobkov, Vl.; Braun, F.; Colas, L.; Dux, R.; Faugel, H.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, Th.; Siegl, G.; Wolfrum, E.; ASDEX Upgrade Team
2011-08-01
Analysis of the W concentration during ICRF over AUG experimental campaigns confirms the critical role of W antenna limiters for the W content in plasma, though other structures connected to antennas along magnetic field lines cannot be neglected as W sources. Abrupt changes of spectroscopically measured W sputtering patterns are observed which correlate with step-wise changes of connection lengths at antenna limiters. Analysis of discharges with the reversed direction of toroidal magnetic field shows less W release compared to identical discharges with the normal direction. The lower W release is accompanied by lower intensity of fluctuations of reflected ICRF power in the 1-60 kHz range. The observations suggest that local magnetic geometry and density convection at the antennas are at least as important for the W sputtering as the distribution of RF near-fields at the antenna. Measurements of DC currents flowing through the antenna limiters show that the limiters at the active antenna collect predominantly negative DC currents whereas those distant from the active antenna collect predominantly positive DC currents. The latter decrease and become more negative when the intensity of the RF pickup measured at the limiters increases. The mutual compensation between the positive and negative currents can lead to lower values of the DC current than those expected from simplified theoretical models of the RF/DC circuit.
Cascaded H-bridge multilevel inverter for renewable energy generation
NASA Astrophysics Data System (ADS)
Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi
2016-04-01
In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.
NASA Astrophysics Data System (ADS)
Chen, Ye; Vidakovic, Miodrag; Fabian, Matthias; Swift, Martin; Brun, Lee; Sun, Tong; Grattan, Kenneth T. V.
2017-04-01
This paper presents the results obtained from fibre Bragg grating (FBG) sensors integrated into a railway current-collecting pantograph for accurate measurement of contact force and contact location when it is subjected to various temperature conditions. The temperature change of the pantograph is simulated, at the industrial laboratory of Brecknell Willis in the UK, by changing the DC current applied to pantograph from 0 to 1500 A. This test is primarily designed to verify the effectiveness of the temperature compensation mechanism built in the FBG sensor design. For this verification, 3 thermocouples co-located with the FBG sensor packages are used to measure the temperature change seen from 25 °C to 55 °C. The tests were repeated several times and the sensor system has shown its temperatureindependence, confirming that the intrinsic cross-sensitivity of FBGs to temperature variation for strain measurement has been fully compensated through the use of this innovative sensor design and data processing.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... Water Act, 42 U.S.C. and the Pennsylvania Clean Streams Act, 35 P.S. Sec. Sec. 691.1 et seq. alleged in... e-mail to [email protected] or regular mail to P.O. Box 7611, U.S. Department of Justice... Decree Library, P.O. Box 7611, U.S. Department of Justice, Washington, DC 20044-7611 or by faxing or e...
JPRS Report, Science & Technology, China
1992-07-24
fRuan Yingzheng, Du Huiping; DIANZI KEXUE XUEKAN, No 3, May 92] 28 System Compensation in Inverse Synthetic Aperture Radar [Meng Xiande, Cao Zhidao...324 [Article by Meng Xiande [1322 2099 1795], Cao Zhidao [2580 1807 6670], and Su Fulin [1372 1381 2651] of Harbin Institute of Technology, Harbin...Xianqing, Huang Xiaomei, Yang Caibing, and Cao Xiaoneng of the Insti- tute of Electronics, CAS, Beijing, 100080; MS received 24 Apr 91] [Text] DC
Dispersion-compensated fresnel lens
Johnson, Kenneth C.
1992-01-01
A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.
Strong-field two-photon transition by phase shaping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkyung; Lim, Jongseok; Ahn, Jaewook
2010-08-15
We demonstrate the ultrafast coherent control of a nonlinear two-photon absorption in a dynamically shifted energy level structure. We use a spectrotemporal laser-pulse shaping that is programed to preserve the resonant absorption condition during the intense laser-field interaction. Experiments carried out in the strong-field regime of two-photon absorption in the ground state of atomic cesium reveal that the analytically obtained offset and curvature of a laser spectrum compensate the effect of both static and dynamic energy shifts of the given light-atom interaction.
Dispersion-compensated Fresnel lens
Johnson, K.C.
1992-11-03
A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.
Droege, T.F.
1989-12-19
A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.
Droege, Thomas F.
1989-01-01
A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.
High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.
Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi
2015-11-01
We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.
Low speed phaselock speed control system. [for brushless dc motor
NASA Technical Reports Server (NTRS)
Fulcher, R. W.; Sudey, J. (Inventor)
1975-01-01
A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.
Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani
2014-01-01
This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems. PMID:25013854
Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani
2014-01-01
This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.
A 5 Gb/s CMOS adaptive equalizer for serial link
NASA Astrophysics Data System (ADS)
Wu, Hongbing; Wang, Jingyu; Liu, Hongxia
2018-04-01
A 5 Gb/s adaptive equalizer with a new adaptation scheme is presented here by using 0.13 μm CMOS process. The circuit consists of the combination of equalizer amplifier, limiter amplifier and adaptation loop. The adaptive algorithm exploits both the low frequency gain loop and the equalizer loop to minimize the inter-symbol interference (ISI) for a variety of cable characteristics. In addition, an offset cancellation loop is used to alleviate the offset influence of the signal path. The adaptive equalizer core occupies an area of 0.3567 mm2 and consumes a power consumption of 81.7 mW with 1.8 V power supply. Experiment results demonstrate that the equalizer could compensate for a designed cable loss with 0.23 UI peak-to-peak jitter. Project supported by the National Natural Science Foundation of China (No. 61376099), the Foundation for Fundamental Research of China (No. JSZL2016110B003), and the Major Fundamental Research Program of Shaanxi (No. 2017ZDJC-26).
Hamilton, Kyra; Hagger, Martin S
2018-04-01
Fruit and vegetable intake (FV) is insufficient in industrialized nations and there is excess of discretionary food choices (DC; foods high in fat, sugar, and salt). Long-haul truck drivers are considered a particularly at-risk group given the limited food choices and normatively reinforced eating habits at truck rest-stops. Self-efficacy and normative support are key determinants of eating behavior yet the processes underlying their effects on behavior are not well understood. We tested the direct and interactive effects of self-efficacy and normative support on healthy eating behaviors in long-haul truck drivers in a prospective correlational study. Long-haul truck drivers (N = 82) completed an initial survey containing self-report measures of behavioral intentions, perceived normative support, and self-efficacy for their FV and DC behaviors. Participants completed a follow-up survey 1 week later in which they self-reported their FV and DC behavior. A mediated moderation analysis identified an interactive effect of self-efficacy and normative support on behavior mediated by intention for FV and DC behavior. Specifically, we confirmed a compensation effect in which self-efficacy was more likely to have an effect on FV and DC behavior through intentions in participants with low normative support. Results indicate the importance of self-efficacy in predicting FV and DC intentions and behavior in the absence of a supportive normative environment. The compensatory effect of self-efficacy beliefs on behavior through intentions when normative support is low should be confirmed using experimental methods.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges
NASA Astrophysics Data System (ADS)
Elsobky, Mourad; Mahsereci, Yigit; Keck, Jürgen; Richter, Harald; Burghartz, Joachim N.
2017-09-01
Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI) substrate to form a Hybrid System-in-Foil (HySiF), which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing) of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA) in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC). The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC), a differential difference amplifier (DDA), and a 10-bit successive approximation register (SAR) ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.
Characterization of Metallic Coatings and Thin Films Produced by Railgun Deposition
1988-01-01
homopolar generators (10), and compensating alternators (11) are capable of delivering mnegajoules of energy in less than a second. This advancement...a DC motor which consists of two rigid parallel conducting electrodes (rails) and a combined movable armature placed between them (7), Figure 2. The...discharge bank or homopolar generater, and the plasma device to another. The second study then ended with a group of experiments using an exploding wire
2007-07-01
Systems , Boeing-led Airborne Laser Team Actively Tracks Airborne Target, Compensates for Atmospheric Turbulence and Fires Sur- rogate High-Energy Laser...7100 System Requirements Analysis and Technological Support for the Ballistic Missile Defense System (BMDS) FY07 Progress Report By...Office of Management and Budget , Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE July
Extended behavioural modelling of FET and lattice-mismatched HEMT devices
NASA Astrophysics Data System (ADS)
Khawam, Yahya; Albasha, Lutfi
2017-07-01
This study presents an improved large signal model that can be used for high electron mobility transistors (HEMTs) and field effect transistors using measurement-based behavioural modelling techniques. The steps for accurate large and small signal modelling for transistor are also discussed. The proposed DC model is based on the Fager model since it compensates between the number of model's parameters and accuracy. The objective is to increase the accuracy of the drain-source current model with respect to any change in gate or drain voltages. Also, the objective is to extend the improved DC model to account for soft breakdown and kink effect found in some variants of HEMT devices. A hybrid Newton's-Genetic algorithm is used in order to determine the unknown parameters in the developed model. In addition to accurate modelling of a transistor's DC characteristics, the complete large signal model is modelled using multi-bias s-parameter measurements. The way that the complete model is performed is by using a hybrid multi-objective optimisation technique (Non-dominated Sorting Genetic Algorithm II) and local minimum search (multivariable Newton's method) for parasitic elements extraction. Finally, the results of DC modelling and multi-bias s-parameters modelling are presented, and three-device modelling recommendations are discussed.
Robust adhesive precision bonding in automated assembly cells
NASA Astrophysics Data System (ADS)
Müller, Tobias; Haag, Sebastian; Bastuck, Thomas; Gisler, Thomas; Moser, Hansruedi; Uusimaa, Petteri; Axt, Christoph; Brecher, Christian
2014-03-01
Diode lasers are gaining importance, making their way to higher output powers along with improved BPP. The assembly of micro-optics for diode laser systems goes along with the highest requirements regarding assembly precision. Assembly costs for micro-optics are driven by the requirements regarding alignment in a submicron and the corresponding challenges induced by adhesive bonding. For micro-optic assembly tasks a major challenge in adhesive bonding at highest precision level is the fact, that the bonding process is irreversible. Accordingly, the first bonding attempt needs to be successful. Today's UV-curing adhesives inherit shrinkage effects crucial for submicron tolerances of e.g. FACs. The impact of the shrinkage effects can be tackled by a suitable bonding area design, such as minimal adhesive gaps and an adapted shrinkage offset value for the specific assembly parameters. Compensating shrinkage effects is difficult, as the shrinkage of UV-curing adhesives is not constant between two different lots and varies even over the storage period even under ideal circumstances as first test results indicate. An up-to-date characterization of the adhesive appears necessary for maximum precision in optics assembly to reach highest output yields, minimal tolerances and ideal beamshaping results. Therefore, a measurement setup to precisely determine the up-to-date level of shrinkage has been setup. The goal is to provide necessary information on current shrinkage to the operator or assembly cell to adjust the compensation offset on a daily basis. Impacts of this information are expected to be an improved beam shaping result and a first-time-right production.
Effect of Local TOF Kernel Miscalibrations on Contrast-Noise in TOF PET
NASA Astrophysics Data System (ADS)
Clementel, Enrico; Mollet, Pieter; Vandenberghe, Stefaan
2013-06-01
TOF PET imaging requires specific calibrations: accurate characterization of the system timing resolution and timing offset is required to achieve the full potential image quality. Current system models used in image reconstruction assume a spatially uniform timing resolution kernel. Furthermore, although the timing offset errors are often pre-corrected, this correction becomes less accurate with the time since, especially in older scanners, the timing offsets are often calibrated only during the installation, as the procedure is time-consuming. In this study, we investigate and compare the effects of local mismatch of timing resolution when a uniform kernel is applied to systems with local variations in timing resolution and the effects of uncorrected time offset errors on image quality. A ring-like phantom was acquired on a Philips Gemini TF scanner and timing histograms were obtained from coincidence events to measure timing resolution along all sets of LORs crossing the scanner center. In addition, multiple acquisitions of a cylindrical phantom, 20 cm in diameter with spherical inserts, and a point source were simulated. A location-dependent timing resolution was simulated, with a median value of 500 ps and increasingly large local variations, and timing offset errors ranging from 0 to 350 ps were also simulated. Images were reconstructed with TOF MLEM with a uniform kernel corresponding to the effective timing resolution of the data, as well as with purposefully mismatched kernels. To CRC vs noise curves were measured over the simulated cylinder realizations, while the simulated point source was processed to generate timing histograms of the data. Results show that timing resolution is not uniform over the FOV of the considered scanner. The simulated phantom data indicate that CRC is moderately reduced in data sets with locally varying timing resolution reconstructed with a uniform kernel, while still performing better than non-TOF reconstruction. On the other hand, uncorrected offset errors in our setup have a larger potential for decreasing image quality and can lead to a reduction of CRC of up to 15% and an increase in the measured timing resolution kernel up to 40%. However, in realistic conditions in frequently calibrated systems, using a larger effective timing kernel in image reconstruction can compensate uncorrected offset errors.
Benefit of cup medialization in total hip arthroplasty is associated with femoral anatomy.
Terrier, Alexandre; Levrero Florencio, Francesc; Rüdiger, Hannes A
2014-10-01
Medialization of the cup with a respective increase in femoral offset has been proposed in THA to increase abductor moment arms. Insofar as there are potential disadvantages to cup medialization, it is important to ascertain whether the purported biomechanical benefits of cup medialization are large enough to warrant the downsides; to date, studies regarding this question have disagreed. The purpose of this study was to quantify the effect of cup medialization with a compensatory increase in femoral offset compared with anatomic reconstruction for patients undergoing THA. We tested the hypothesis that there is a (linear) correlation between preoperative anatomic parameters and muscle moment arm increase caused by cup medialization. Fifteen patients undergoing THA were selected, covering a typical range of preoperative femoral offsets. For each patient, a finite element model was built based on a preoperative CT scan. The model included the pelvis, femur, gluteus minimus, medius, and maximus. Two reconstructions were compared: (1) anatomic position of the acetabular center of rotation, and (2) cup medialization compensated by an increase in the femoral offset. Passive abduction-adduction and flexion-extension were simulated in the range of normal gait. Muscle moment arms were evaluated and correlated to preoperative femoral offset, acetabular offset, height of the greater trochanter (relative to femoral center of rotation), and femoral antetorsion angle. The increase of muscle moment arms caused by cup medialization varied among patients. Muscle moment arms increase by 10% to 85% of the amount of cup medialization for abduction-adduction and from -35% (decrease) to 50% for flexion-extension. The change in moment arm was inversely correlated (R(2) = 0.588, p = 0.001) to femoral antetorsion (anteversion), such that patients with less femoral antetorsion gained more in terms of hip muscle moments. No linear correlation was observed between changes in moment arm and other preoperative parameters in this series. The benefit of cup medialization is variable and depends on the individual anatomy. Cup medialization with compensatory increase of the femoral offset may be particularly effective in patients with less femoral antetorsion. However, cup medialization must be balanced against its tradeoffs, including the additional loss of medial acetabular bone stock, and eventual proprioceptive implications of the nonanatomic center of rotation and perhaps joint reaction forces. Clinical studies should better determine the relevance of small changes of moment arms on function and joint reaction forces.
An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; LV, M.
2017-12-01
Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS/PALSAR data. The results show that the strategy can effectively improve the accuracy of velocity estimation by reducing the mean and standard deviation values from 0.32 m and 0.4 m to 0.16 m. It is proved to be highly appropriate for monitoring glacier motion over a widely varying range of ice velocities with a relatively high accuracy.
On the Transportability of Ms Versus Yield Relationships
NASA Astrophysics Data System (ADS)
Patton, H. J.; Randall, G. E.
2014-12-01
A physical basis for transporting magnitude (M) versus yield (W) relationships between test sites is essential for improved yield estimation. A case in point is an Ms relationship transported from the Nevada Test Site, which gives W estimates of North Korean tests roughly a factor of two larger than mb-based estimates. In order to test the performance of this relation, we transport it to Semipalatinsk (STS) where W and source media information are available. The transported Ms - W relation was developed for water-saturated tuff/rhyolite, and Rayleigh-wave generation was corrected for the effects of source medium compaction due to spall slapdown. Coupling variations with burial depth and the effects of compaction, both functions of W in tuff/rhyolite, are mitigated for shots in hard rock. As such, it is satisfying that Ms for STS shots are seen to scale similarly as the transported relation, ~0.8log[W]. However, they are offset downward by 0.4 - 0.5 magnitude units. A negative offset is consistent with the effects of tectonic release, but research has shown the inadequacy of double-couple (DC) mechanisms to improve correlations of moment magnitude Mw - W relations. Source medium properties are not a factor because larger amplitude Green's functions in weak rock trade off with reduced source strength relative to explosions in hard rock. In this paper, the role of late-time damage due to non-linear, free-surface interactions, modeled with an Mzz source, is explored. Combining this source with DC mechanisms, we show the non-uniqueness of models to satisfy long-period surface-wave observations, and investigate overcoming this difficulty with full waveform modeling of Borovoye seismograms.
A novel control strategy for enhancing the LVRT and voltage support capabilities of DFIG
NASA Astrophysics Data System (ADS)
Shen, Yangwu; Zhang, Bin; Liang, Liqing; Cui, Ting
2018-02-01
A novel integrated control strategy is proposed in this paper to enhance the low voltage ride through capacity for the double-fed induction generator by equipping an energy storage system. The energy storage system is installed into the DC-link capacitor of the DFIG and used to control the DC-link voltage during normal or transient operations. The energy storage device will absorb or compensate the power difference between the captured wind power and the power injected to the grid during the normal and transient period, and the grid side converter can be free from maintaining the voltage stability of the DC-link capacitor. Thus, the grid-side converter is changed to reactive power support while the rotor-side converter is used to control the maximum power production during normal operation. The grid-side converter and rotor-side converter will act as reactive power sources to further enhance the voltage support capability of double-fed induction generator during the transient period. Numerical Simulation are performed to validate the effectiveness of the proposed control designs.
Design of a pulsatile DC electromagnetic blood pump for ECMO.
Liu, Jingjing; Ge, Bin; Lu, Tong
2017-08-09
Extracorporeal membrane oxygenation (ECMO) has developed rapidly and becomes a significant treatment for emergency. Current blood pumps for ECMO have different disadvantages. To design a pulsatile DC electromagnetic blood pump for ECMO. The design is presented with a driving principle which the rectilinear reciprocation of a magnet inside energized solenoids is implemented, and with a structure of solenoids with compensation coils. Furthermore, a prototype was constructed and the performance indexes of it were measured with the experimental evaluations, where the acceleration experiment was performed without any loads, and the flows were measured in the ranges of preload and afterload are 5 to 30 mmHg and 50 to 80 mmHg respectively when the frequency of the motion is 80 beats per minute. The electromagnetic force is greater than 1.4 N when the DC reaches 2.7 A and the flow of the prototype is greater than 3.0 L/min except the differences between the preload and the afterload are greater than or equal to 70 mmHg. The design of the blood pump for ECMO meets the theoretical and clinical requirements.
Le Blanc, Alexander; Mahrhold, Stefan; Piesker, Janett; Luppa, Peter B.
2018-01-01
The exceptional toxicity of botulinum neurotoxins (BoNTs) is mediated by high avidity binding to complex polysialogangliosides and intraluminal segments of synaptic vesicle proteins embedded in the presynaptic membrane. One peculiarity is an exposed hydrophobic loop in the toxin’s cell binding domain HC, which is located between the ganglioside- and protein receptor-binding sites, and that is particularly pronounced in the serotypes BoNT/B, DC, and G sharing synaptotagmin as protein receptor. Here, we provide evidence that this HC loop is a critical component of their tripartite receptor recognition complex. Binding to nanodisc-embedded receptors and toxicity were virtually abolished in BoNT mutants lacking residues at the tip of the HC loop. Surface plasmon resonance experiments revealed that only insertion of the HC loop into the lipid-bilayer compensates for the entropic penalty inflicted by the dual-receptor binding. Our results represent a new paradigm of how BoNT/B, DC, and G employ ternary interactions with a protein, ganglioside, and lipids to mediate their extraordinary neurotoxicity. PMID:29718991
Designing of skull defect implants using C1 rational cubic Bezier and offset curves
NASA Astrophysics Data System (ADS)
Mohamed, Najihah; Majid, Ahmad Abd; Piah, Abd Rahni Mt; Rajion, Zainul Ahmad
2015-05-01
Some of the reasons to construct skull implant are due to head trauma after an accident or an injury or an infection or because of tumor invasion or when autogenous bone is not suitable for replacement after a decompressive craniectomy (DC). The main objective of our study is to develop a simple method to redesign missing parts of the skull. The procedure begins with segmentation, data approximation, and estimation process of the outer wall by a C1 continuous curve. Its offset curve is used to generate the inner wall. A metaheuristic algorithm, called harmony search (HS) is a derivative-free real parameter optimization algorithm inspired from the musical improvisation process of searching for a perfect state of harmony. In this study, data approximation by a rational cubic Bézier function uses HS to optimize position of middle points and value of the weights. All the phases contribute significantly in making our proposed technique automated. Graphical examples of several postoperative skulls are displayed to show the effectiveness of our proposed method.
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.
Fei, Juntao; Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.
1993-12-01
When Government drawings, specifications or other data are used for any purpose other than in connection with a definitely related Government...in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use , or sell any...Reduction Project(7408) WsigonDC 20503. 1. AGENCY USE ONLY (Leave SW*n) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED IDecember 1993 Final April
2009-11-01
UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Government Accountability Office,441 G Street NW,Washington,DC,20548 8... PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S...work can be found in Appendix I. We conducted this performance audit from February 2009 to November 2009, in accordance with generally accepted
NASA Astrophysics Data System (ADS)
Wang, Jun; Yi, Jia; Guo, Lijun; Liu, Peng; Hall, Trevor J.; Sun, DeGui
2017-03-01
For the most popular structure of planer lightwave circuit (PLC) 2×2 thermo-optic switches, Mach-Zehnder interferometer (MZI), a full range of splitting ratio errors of directional coupler (DC) are investigated. All the parameters determining the splitting ratio are the dimensions and the refractive indices of the waveguide core and cladding layers. In this work, the coherent relationships between the waveguide size and the refractive indices are analyzed and then the error compensation between the width and the refractive index of waveguide core, and the controllable effect of over clad layer refractive index error upon the MZI-type optical switch are all discovered with numerical calculation and BPM simulations. Then, an MZI-type 2×2 thermo-optic switch having a higher error tolerance is established with the efficient optimizations of all the 3 dB-DC parameters. As a result, for the symmetric MZI switch, an insertion loss of 1.5 dB and optical extinction ratio of over 20 dB are realized for the average tolerance of±5.0%. An asymmetric arm optical phase and unequal arm lengths is also employed to improve the uniformities of insertion loss. The agreements between the designs and the experiments are recognized, leading to a wide adoption of practical silica-PLC optical switch products.
Hannen, Jennifer C; Crews, John H; Buckner, Gregory D
2012-08-01
This paper introduces an indirect intelligent sliding mode controller (IISMC) for shape memory alloy (SMA) actuators, specifically a flexible beam deflected by a single offset SMA tendon. The controller manipulates applied voltage, which alters SMA tendon temperature to track reference bending angles. A hysteretic recurrent neural network (HRNN) captures the nonlinear, hysteretic relationship between SMA temperature and bending angle. The variable structure control strategy provides robustness to model uncertainties and parameter variations, while effectively compensating for system nonlinearities, achieving superior tracking compared to an optimized PI controller.
Bezombes, Lucie; Gaucherand, Stéphanie; Kerbiriou, Christian; Reinert, Marie-Eve; Spiegelberger, Thomas
2017-08-01
In many countries, biodiversity compensation is required to counterbalance negative impacts of development projects on biodiversity by carrying out ecological measures, called offset when the goal is to reach "no net loss" of biodiversity. One main issue is to ensure that offset gains are equivalent to impact-related losses. Ecological equivalence is assessed with ecological equivalence assessment methods taking into account a range of key considerations that we summarized as ecological, spatial, temporal, and uncertainty. When equivalence assessment methods take into account all considerations, we call them "comprehensive". Equivalence assessment methods should also aim to be science-based and operational, which is challenging. Many equivalence assessment methods have been developed worldwide but none is fully satisfying. In the present study, we examine 13 equivalence assessment methods in order to identify (i) their general structure and (ii) the synergies and trade-offs between equivalence assessment methods characteristics related to operationality, scientific-basis and comprehensiveness (called "challenges" in his paper). We evaluate each equivalence assessment methods on the basis of 12 criteria describing the level of achievement of each challenge. We observe that all equivalence assessment methods share a general structure, with possible improvements in the choice of target biodiversity, the indicators used, the integration of landscape context and the multipliers reflecting time lags and uncertainties. We show that no equivalence assessment methods combines all challenges perfectly. There are trade-offs between and within the challenges: operationality tends to be favored while scientific basis are integrated heterogeneously in equivalence assessment methods development. One way of improving the challenges combination would be the use of offset dedicated data-bases providing scientific feedbacks on previous offset measures.
Proprioceptive reaction times and long-latency reflexes in humans.
Manning, C D; Tolhurst, S A; Bawa, P
2012-08-01
The stretch of upper limb muscles results in two electromyographic (EMG) peaks, M1 and M2. The amplitude of M2 peak can generally be modified by giving prior instruction to the subject on how to react to the applied perturbation. The unresolved question is whether the amplitude modulation results from change in the gain of the reflex pathway contributing to M2, or by superposition of reaction time (RT) activity. The following study attempted to resolve this question by examining the overlap between proprioceptive RT and M2 activities. Subject's right wrist flexors were stretched, and he/she was instructed either (1) not to intervene (passive task) or (2) to react as fast as possible by simultaneously flexing both wrists (active or compensate task). Under passive and active conditions, M1 and M2 were observed from EMG of right wrist flexors, and during the active condition, RT activities were additionally observed from both sides. The onset and offset of M2 (M1(onset), M2(offset)) were measured from the passive averages, while the RT was measured from the averaged EMG response of the left wrist flexors. For between-subject correlations, the data were divided into two sets: (1) subjects with RT shorter than M2(offset) (fast group) and (2) subjects with RT more than 10 ms longer than their M2(offset) (slow group). Modulation during M2 period was large for the fast group, and it was almost zero for the slow group. These results indicate that the superimposition of RT activity mainly contributes to the instruction-dependent modulation of M2 peak.
Design of automatic leveling and centering system of theodolite
NASA Astrophysics Data System (ADS)
Liu, Chun-tong; He, Zhen-Xin; Huang, Xian-xiang; Zhan, Ying
2012-09-01
To realize the theodolite automation and improve the azimuth Angle measurement instrument, the theodolite automatic leveling and centering system with the function of leveling error compensation is designed, which includes the system solution, key components selection, the mechanical structure of leveling and centering, and system software solution. The redesigned leveling feet are driven by the DC servo motor; and the electronic control center device is installed. Using high precision of tilt sensors as horizontal skew detection sensors ensures the effectiveness of the leveling error compensation. Aiming round mark center is located using digital image processing through surface array CCD; and leveling measurement precision can reach the pixel level, which makes the theodolite accurate centering possible. Finally, experiments are conducted using the automatic leveling and centering system of the theodolite. The results show the leveling and centering system can realize automatic operation with high centering accuracy of 0.04mm.The measurement precision of the orientation angle after leveling error compensation is improved, compared with that of in the traditional method. Automatic leveling and centering system of theodolite can satisfy the requirements of the measuring precision and its automation.
B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils.
Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Frigo, Louis M; Shu, Yunhong; Frick, Matthew A; Lee, Seung-Kyun; Foo, Thomas K-F; Bernstein, Matt A
2018-03-01
Imaging gradients result in the generation of concomitant fields, or Maxwell fields, which are of increasing importance at higher gradient amplitudes. These time-varying fields cause additional phase accumulation, which must be compensated for to avoid image artifacts. In the case of gradient systems employing symmetric design, the concomitant fields are well described with second-order spatial variation. Gradient systems employing asymmetric design additionally generate concomitant fields with global (zeroth-order or B 0 ) and linear (first-order) spatial dependence. This work demonstrates a general solution to eliminate the zeroth-order concomitant field by applying the correct B 0 frequency shift in real time to counteract the concomitant fields. Results are demonstrated for phase contrast, spiral, echo-planar imaging (EPI), and fast spin-echo imaging. A global phase offset is reduced in the phase-contrast exam, and blurring is virtually eliminated in spiral images. The bulk image shift in the phase-encode direction is compensated for in EPI, whereas signal loss, ghosting, and blurring are corrected in the fast-spin echo images. A user-transparent method to compensate the zeroth-order concomitant field term by center frequency shifting is proposed and implemented. This solution allows all the existing pulse sequences-both product and research-to be retained without any modifications. Magn Reson Med 79:1538-1544, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Wang, Wei; Liu, Ying; Gao, Zhong-yue; Zhao, Xue-ru; Yang, Yi; Yang, Sen
2018-07-01
Compensation temperature Tcomp and transition temperature TC have significant applications for the experimental realization of magnetic nanotube structure in the field of thermal magnetic recording. In this work, we use the Monte Carlo simulation to investigate the phase diagrams, magnetizations, susceptibilities, internal energies, specific heats and hysteresis behaviors of a cylindrical ferrimagnetic nanotube with core-shell structure. The effects of the single-ion anisotropies (DC, DS) and the exchange couplings (Jint, JS) on the magnetic and thermodynamic properties of the system are examined. A number of characteristic behaviors are discovered in the thermal variations, depending on different physical parameters. In particular, the triple hysteresis loops behavior has been found for appropriate physical parameters. These findings are qualitatively in good agreement with related experimental and the other theoretical results.
SU-E-T-314: Dosimetric Effect of Smooth Drilling On Proton Compensators in Prostate Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyhan, M; Yue, N; Zou, J
2015-06-15
Purpose: To evaluate the dosimetric effect of smooth drilling of proton compensators in proton prostate plans when compared to typical plunge drilling settings. Methods: Twelve prostate patients were planned in Eclipse treatment planning system using three different drill settings Smooth, Plunge drill A, and Plunge drill B. The differences between A and B were: spacing X[cm]: 0.4(A), 0.1(B), spacing Y[cm]: 0.35(A), 0.1(B), row offset [cm]: 0.2(A), 0(B). Planning parameters were kept consistent between the different plans, which utilized two opposed lateral beams arrangement. Mean differences absolute dosimetry in OAR constraints are presented. Results: The smooth drilled compensator based plans yieldedmore » equivalent target coverage to the plans generated with drill settings A and B. Overall, the smooth compensators reduced dose to the majority of organs at risk compared to settings A and B. Constraints were reduced for the following OAR: Rectal V75 by 2.12 and 2.48%, V70 by 2.45 and 2.91%, V65 by 2.85 and 3.37%, V50 by 2.3 and 5.1%, Bladder V65 by 4.49 and 3.67%, Penial Bulb mean by 3.7 and 4.2Gy, and the maximum plan dose 5.3 and 7.4Gy for option A vs smooth and option B vs smooth respectively. The femoral head constraint (V50<5%) was met by all plans, but it was not consistently lower for the smooth drilling plan. Conclusion: Smooth drilled compensators provide equivalent target coverage and overall slightly cooler plans to the majority of organs at risk; it also minimizes the potential dosimetric impacts caused by patient positioning uncertainty.« less
Tetrahedral Hohlraum Visualization and Pointings
NASA Astrophysics Data System (ADS)
Klare, K. A.; Wallace, J. M.; Drake, D.
1997-11-01
In designing experiments for Omega, the tetrahedral hohlraum (a sphere with four holes) can make full use of all 60 beams. There are some complications: the beams must clear the laser entrance hole (LEH), must miss a central capsule, absolutely must not go out the other LEHs, and should distribute in the interior of the hohlraum to maximize the uniformity of irradiation on the capsule while keeping reasonable laser spot sizes. We created a 15-offset coordinate system with which an IDL program computes clearances, writes a file for QuickDraw 3D (QD3D) visualization, and writes input for the viewfactor code RAYNA IV. Visualizing and adjusting the parameters by eye gave more reliable results than computer optimization. QD3D images permitted quick live rotations to determine offsets. The clearances obtained insured safe operation and good physics. The viewfactor code computes the initial irradiation of the hohlraum and capsule or of a uniform hohlraum source with the loss through the four LEHs and shows a high degree of uniformity with both, better for lasers because this deposits more energy near the LEHs to compensate for the holes.
TH-EF-BRB-08: Robotic Motion Compensation for Radiation Therapy: A 6DOF Phantom Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belcher, AH; Liu, X; Wiersma, R
Purpose: The high accuracy of frame-based stereotactic radiosurgery (SRS), which uses a rigid frame fixed to the patient’s skull, is offset by potential drawbacks of poor patient compliance and clinical workflow restrictions. Recent research into frameless SRS has so far resulted in reduced accuracy. In this study, we investigate the use of a novel 6 degree-of-freedom (6DOF) robotic head motion cancellation system that continuously detects and compensates for patient head motions during a SRS delivery. This approach has the potential to reduce invasiveness while still achieving accuracies better or equal to traditional frame-based SRS. Methods: A 6DOF parallel kinematics roboticsmore » stage was constructed, and controlled using an inverse kinematics-based motion compensation algorithm. A 6DOF stereoscopic infrared (IR) marker tracking system was used to monitor real-time motions at sub-millimeter and sub-degree levels. A novel 6DOF calibration technique was first applied to properly orient the camera coordinate frame to match that of the LINAC and robotic control frames. Simulated head motions were measured by the system, and the robotic stage responded to these 6DOF motions automatically, returning the reflective marker coordinate frame to its original position. Results: After the motions were introduced to the system in the phantom-based study, the robotic stage automatically and rapidly returned the phantom to LINAC isocenter. When errors exceeded the compensation lower threshold of 0.25 mm or 0.25 degrees, the system registered the 6DOF error and generated a cancellation trajectory. The system responded in less than 0.5 seconds and returned all axes to less than 0.1 mm and 0.1 degree after the 6DOF compensation was performed. Conclusion: The 6DOF real-time motion cancellation system was found to be effective at compensating for translational and rotational motions to current SRS requirements. This system can improve frameless SRS by automatically returning patients to isocenter with high 6DOF accuracy.« less
Defined contribution health benefits.
Fronstin, P
2001-03-01
This Issue Brief discusses the emerging issue of "defined contribution" (DC) health benefits. The term "defined contribution" is used to describe a wide variety of approaches to the provision of health benefits, all of which have in common a shift in the responsibility for payment and selection of health care services from employers to employees. DC health benefits often are mentioned in the context of enabling employers to control their outlay for health benefits by avoiding increases in health care costs. DC health benefits may also shift responsibility for choosing a health plan and the associated risks of choosing a plan from employers to employees. There are three primary reasons why some employers currently are considering some sort of DC approach. First, they are once again looking for ways to keep their health care cost increases in line with overall inflation. Second, some employers are concerned that the public "backlash" against managed care will result in new legislation, regulations, and litigation that will further increase their health care costs if they do not distance themselves from health care decisions. Third, employers have modified not only most employee benefit plans, but labor market practices in general, by giving workers more choice, control, and flexibility. DC-type health benefits have existed as cafeteria plans since the 1980s. A cafeteria plan gives each employee the opportunity to determine the allocation of his or her total compensation (within employer-defined limits) among various employee benefits (primarily retirement or health). Most types of DC health benefits currently being discussed could be provided within the existing employment-based health insurance system, with or without the use of cafeteria plans. They could also allow employees to purchase health insurance directly from insurers, or they could drive new technologies and new forms of risk pooling through which health care services are provided and financed. DC health benefits differ from DC retirement plans. Under a DC health plan, employees may face different premiums based on their personal health risk and perhaps other factors such as age and geographic location. Their ability to afford health insurance may depend on how premiums are regulated by the state and how much money their employer provides. In contrast, under a DC retirement plan, employers' contributions are based on the same percentage of income for all employees, but employees are not subject to paying different prices for the same investment.
Optimized MPPT algorithm for boost converters taking into account the environmental variables
NASA Astrophysics Data System (ADS)
Petit, Pierre; Sawicki, Jean-Paul; Saint-Eve, Frédéric; Maufay, Fabrice; Aillerie, Michel
2016-07-01
This paper presents a study on the specific behavior of the Boost DC-DC converters generally used for powering conversion of PV panels connected to a HVDC (High Voltage Direct Current) Bus. It follows some works pointing out that converter MPPT (Maximum Power Point Tracker) is severely perturbed by output voltage variations due to physical dependency of parameters as the input voltage, the output voltage and the duty cycle of the PWM switching control of the MPPT. As a direct consequence many converters connected together on a same load perturb each other because of the output voltage variations induced by fluctuations on the HVDC bus essentially due to a not insignificant bus impedance. In this paper we show that it is possible to include an internal computed variable in charge to compensate local and external variations to take into account the environment variables.
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter
Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance. PMID:28797060
NASA Astrophysics Data System (ADS)
Baudrenghien, P.; Mastoridis, T.
2017-01-01
The interaction between beam dynamics and the radio frequency (rf) station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf) system that measures the cavity field (or beam current) and generates the rf power drive. The Large Hadron Collider (LHC) rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz) can only come from the synchrotron tune spread (Landau damping) and will be very small (time constant in the order of 0.1 s). In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC) doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters). Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.
NASA Astrophysics Data System (ADS)
Sankarasubramanian, V.; Buitenweg, J. R.; Holsheimer, J.; Veltink, P.
2011-02-01
The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (IDC) and dorsal root fiber thresholds (IDR) at various anodal current ratios. IDC and IDR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.
NASA Astrophysics Data System (ADS)
Ang, Thomas Y. L.; Png, Ching Eng; Lim, Soon Thor; Ong, Jun Rong
2018-02-01
Silicon modulators based on the carrier depletion mechanism are extensively used in recent years for high-speed data transmission. Lateral PN junctions are the most common electro-optical phase shifters for silicon Mach-Zehnder modulators (MZMs) due to its ease of fabrication. They have a relatively high DC VπLπ of around 2.5 V.cm in the Oband. An alternative approach is to design and optimize vertical PN junctions for lower DC VπLπ, which is currently lacking in the literature for silicon MZMs that operates using carrier depletion mechanism in the O-band. In this work, we look into the design and optimization of silicon phase shifters based on vertical PN junctions for high-modulationefficiency with VπLπ <= 1 V.cm, while meeting the stringent low loss budget of <= 1 dB/mm for data communication in the O-band. This is achieved by varying the offsets of the vertical PN junction with respect to different doping concentrations (2e17/cm3 - 3e18/cm3 ) near the depletion region. Different types of doping schemes are explored and optimized. Our optimized vertical PN junction designs are predicted to give low DC VπLπ of 0.26-0.5 V.cm for low DC reverse bias of >= -2V and low propagation loss of <= 1dB/mm, resulting in α.VπLπ = 1.7 for the best designs, which to the best of our knowledge, is the lowest α.VπLπ at the O-band to date. Electrical and optical modeling are based on our in-house proprietary software that is able to perform both optical and electrical simulations without loss of data fidelity.
Impacts of GNSS position offsets on global frame stability
NASA Astrophysics Data System (ADS)
Griffiths, Jake; Ray, Jim
2015-04-01
Positional offsets appear in Global Navigation Satellite System (GNSS) time series for a variety of reasons. Antenna or radome changes are the most common cause for these discontinuities. Many others are from earthquakes, receiver changes, and different anthropogenic modifications at or near the stations. Some jumps appear for unknown or undocumented reasons. Accurate determination of station velocities, and therefore geophysical parameters and terrestrial reference frames, requires that positional offsets be correctly found and compensated. Williams (2003) found that undetected offsets introduce a random walk error component in individual station time series. The topic of detecting positional offsets has received considerable attention in recent years (e.g., Detection of Offsets in GPS Experiment; DOGEx), and most research groups using GNSS have adopted a mix of manual and automated methods for finding them. The removal of a positional offset from a time series is usually handled by estimating the average station position on both sides of the discontinuity. Except for large earthquake events, the velocity is usually assumed constant and continuous across the positional jump. This approach is sufficient in the absence of time-correlated errors. However, GNSS time series contain periodic and power-law (flicker) errors. In this paper, we evaluate the impact to individual station results and the overall stability of the global reference frame from adding increasing numbers of positional discontinuities. We use the International GNSS Service (IGS) weekly SINEX files, and iteratively insert positional offset parameters. Each iteration includes a restacking of the modified SINEX files using the CATREF software from Institut National de l'Information Géographique et Forestière (IGN). Comparisons of successive stacked solutions are used to assess the impacts on the time series of x-pole and y-pole offsets, along with changes in regularized position and secular velocity for stations with more than 2.5 years of data. Our preliminary results indicate that the change in polar motion scatter is logarithmic with increasing numbers of discontinuities. The best-fit natural logarithm to the changes in scatter for x-pole has R2 = 0.58; the fit for the y-pole series has R2 = 0.99. From these empirical functions, we find that polar motion scatter increases from zero when the total rate of discontinuities exceeds 0.2 (x-pole) and 1.3 (y-pole) per station, on average (the IGS has 0.65 per station). Thus, the presence of position offsets in GNSS station time series is likely already a contributor to IGS polar motion inaccuracy and global frame instability. Impacts to station position and velocity estimates depend on noise features found in that station's positional time series. For instance, larger changes in velocity occur for stations with shorter and noisier data spans. This is because an added discontinuity parameter for an individual station time series can induce changes in average position on both sides of the break. We will expand on these results, and consider remaining questions about the role of velocity discontinuities and the effects caused by non-core reference frame stations.
An analysis of airline landing flare data based on flight and training simulator measurements
NASA Technical Reports Server (NTRS)
Heffley, R. K.; Schulman, T. M.; Clement, T. M.
1982-01-01
Landings by experienced airline pilots transitioning to the DC-10, performed in flight and on a simulator, were analyzed and compared using a pilot-in-the-loop model of the landing maneuver. By solving for the effective feedback gains and pilot compensation which described landing technique, it was possible to discern fundamental differences in pilot behavior between the actual aircraft and the simulator. These differences were then used to infer simulator fidelity in terms of specific deficiencies and to quantify the effectiveness of training on the simulator as compared to training in flight. While training on the simulator, pilots exhibited larger effective lag in commanding the flare. The inability to compensate adequately for this lag was associated with hard or inconsistent landings. To some degree this deficiency was carried into flight, thus resulting in a slightly different and inferior landing technique than exhibited by pilots trained exclusively on the actual aircraft.
NASA Technical Reports Server (NTRS)
Walton, W. T.; Wilheit, T. T.
1981-01-01
Definition studies and baseline design are summarized for the proposed, and now discontinued, LAMMR. The instrument is an offset parabolic reflector with Cassegrain feeds. The three-meter aperture reflector, to be constructed using graphite-epoxy technology, rotates continuously at 0.833 rps. The scan drive subsystem includes momentum compensation for the rotating mass which includes the reflector, the support arm and Cassegrain subreflector, feed horns and radiometer. Two total power radiometers are recommended for each frequency, one each for horizontal and vertical polarizations. The selection plan, definition study specifications, LAMMR performance specifications, and predicted accuracies and resolutions after processing are shown.
NASA Astrophysics Data System (ADS)
Kaggwa, G. B.; Kilpatrick, J. I.; Sader, J. E.; Jarvis, S. P.
2008-07-01
We present definitive interaction measurements of a simple confined liquid (octamethylcyclotetrasiloxane) using artifact-free frequency modulation atomic force microscopy. We use existing theory to decouple the conservative and dissipative components of the interaction, for a known phase offset from resonance (90° phase shift), that has been deliberately introduced into the experiment. Further we show the qualitative influence on the conservative and dissipative components of the interaction of a phase error deliberately introduced into the measurement, highlighting that artifacts, such as oscillatory dissipation, can be readily observed when the phase error is not compensated for in the force analysis.
Implementing Photodissociation in an Orbitrap Mass Spectrometer
Vasicek, Lisa A.; Ledvina, Aaron R.; Shaw, Jared; Griep-Raming, Jens; Westphall, Michael S.; Coon, Joshua J.; Brodbelt, Jennifer S.
2011-01-01
We modified a dual pressure linear ion trap Orbitrap to permit infrared multiphoton dissociation (IRMPD) in the higher energy collisional dissociation (HCD) cell for high resolution analysis. A number of parameters, including the pressures of the C-trap and HCD cell, the radio frequency (rf) amplitude applied to the C-trap, and the HCD DC offset, were evaluated to optimize IRMPD efficiency and maintain a high signal-to-noise ratio. IRMPD was utilized for characterization of phosphopeptides, supercharged peptides, and N-terminal modified peptides, as well as for top-down protein analysis. The high resolution and high mass accuracy capabilities of the Orbitrap analyzer facilitated confident assignment of product ions arising from IRMPD. PMID:21953052
Miller, A.D.; Julian, B.R.; Foulger, G.R.
1998-01-01
The volcanic and geothermal areas of Iceland are rich sources of non-double-couple (non-DC) earthquakes. A state-of-the-art digital seismometer network deployed at the Hengill-Grensdalur volcanic complex in 1991 recorded 4000 small earthquakes. We used the best recorded of these to determine 3-D VP and VP/VS structure tomographically and accurate earthquake moment tensors. The VP field is dominated by high seismic wave speed bodies interpreted as solidified intrusions. A widespread negative (-4 per cent) VP/VS anomaly in the upper 4 km correlates with the geothermal field, but is too strong to be caused solely by the effect of temperature upon liquid water or the presence of vapour, and requires in addition mineralogical or lithological differences between the geothermal reservoir and its surroundings. These may be caused by geothermal alteration. Well-constrained moment tensors were obtained for 70 of the best-recorded events by applying linear programming methods to P- and S-wave polarities and amplitude ratios. About 25 per cent of the mechanisms are, within observational error, consistent with DC mechanisms consistent with shear faulting. The other 75 per cent have significantly non-DC mechanisms. Many have substantial explosive components, one has a substantial implosive component, and the deviatoric component of many is strongly non-DC. Many of the non-DC mechanisms are consistent, within observational error, with simultaneous tensile and shear faulting. However, the mechanisms occupy a continuum in source-type parameter space and probably at least one additional source process is occurring. This may be fluid flow into newly formed cracks, causing partial compensation of the volumetric component. Studying non-shear earthquakes such as these has great potential for improving our understanding of geothermal processes and earthquake source processes in general.
Low-power low-voltage superior-order curvature corrected voltage reference
NASA Astrophysics Data System (ADS)
Popa, Cosmin
2010-06-01
A complementary metal oxide semiconductor (CMOS) voltage reference with a logarithmic curvature-correction will be presented. The first-order compensation is realised using an original offset voltage follower (OVF) block as a proportional to absolute temperature (PTAT) voltage generator, with the advantages of reducing the silicon area and of increasing accuracy by replacing matched resistors with matched transistors. The new logarithmic curvature-correction technique will be implemented using an asymmetric differential amplifier (ADA) block for compensating the logarithmic temperature dependent term from the first-order compensated voltage reference. In order to increase the circuit accuracy, an original temperature-dependent current generator will be designed for computing the exact type of the implemented curvature-correction. The relatively small complexity of the current squarer allows an important increasing of the circuit accuracy that could be achieved by increasing the current generator complexity. As a result of operating most of the MOS transistors in weak inversion, the original proposed voltage reference could be valuable for low-power applications. The circuit is implemented in 0.35 μm CMOS technology and consumes only 60μA for t = 25°C, being supplied at the minimal supply voltage V DD = 1.75V. The temperature coefficient of the reference voltage is 8.7 ppm/°C, while the line sensitivity is 0.75 mV/V for a supply voltage between 1.75 V and 7 V.
Error compensation of single-antenna attitude determination using GNSS for Low-dynamic applications
NASA Astrophysics Data System (ADS)
Chen, Wen; Yu, Chao; Cai, Miaomiao
2017-04-01
GNSS-based single-antenna pseudo-attitude determination method has attracted more and more attention from the field of high-dynamic navigation due to its low cost, low system complexity, and no temporal accumulated errors. Related researches indicate that this method can be an important complement or even an alternative to the traditional sensors for general accuracy requirement (such as small UAV navigation). The application of single-antenna attitude determining method to low-dynamic carrier has just started. Different from the traditional multi-antenna attitude measurement technique, the pseudo-attitude attitude determination method calculates the rotation angle of the carrier trajectory relative to the earth. Thus it inevitably contains some deviations comparing with the real attitude angle. In low-dynamic application, these deviations are particularly noticeable, which may not be ignored. The causes of the deviations can be roughly classified into three categories, including the measurement error, the offset error, and the lateral error. Empirical correction strategies for the formal two errors have been promoted in previous study, but lack of theoretical support. In this paper, we will provide quantitative description of the three type of errors and discuss the related error compensation methods. Vehicle and shipborne experiments were carried out to verify the feasibility of the proposed correction methods. Keywords: Error compensation; Single-antenna; GNSS; Attitude determination; Low-dynamic
NASA Astrophysics Data System (ADS)
Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas
2016-04-01
In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.
Design and control of a 3-DOF rehabilitation robot for forearm and wrist.
Lincong Luo; Liang Peng; Zengguang Hou; Weiqun Wang
2017-07-01
This paper presents a 3-DOF compact rehabilitation robot, involving mechanical structure design, control system design and gravity compensation analysis. The robot can simultaneously provide assistance for pronation/supination(P/S), flexion/extension(F/E) and adduction/abduction(A/A) joints rehabilitation training. The P/S and F/E joints are designed to be driven by cable transmission to gain a high backdrivability, and an adjustment plate is adopted to decrease the distance between the rotation axis of F/E joint of the human wrist and the robot. In addition, gravity compensation is considered to offset the impact of self-gravity on the performance of the controller. A "moving window" control strategy based on impedance control is proposed and implemented on the robot. A comparison between the "moving window" control and classical impedance control indicates that the former has more potential to stimulate the voluntary efforts of the participant, and has a less limitation moving in a fixed reference trajectory. Meanwhile, the results also validate the feasibility and safety of the wrist robot system.
Density-dependence interacts with extrinsic mortality in shaping life histories
Burger, Oskar; Kozłowski, Jan
2017-01-01
The role of extrinsic mortality in shaping life histories is poorly understood. However, substantial evidence suggests that extrinsic mortality interacts with density-dependence in crucial ways. We develop a model combining Evolutionarily Stable Strategies with a projection matrix that allows resource allocation to growth, tissue repairs, and reproduction. Our model examines three cases, with density-dependence acting on: (i) mortality, (ii) fecundity, and (iii) production rate. We demonstrate that density-independent extrinsic mortality influences the rate of aging, age at maturity, growth rate, and adult size provided that density-dependence acts on fertility or juvenile mortality. However, density-independent extrinsic mortality has no effect on these life history traits when density-dependence acts on survival. We show that extrinsic mortality interacts with density-dependence via a compensation mechanism: the higher the extrinsic mortality the lower the strength of density-dependence. However, this compensation fully offsets the effect of extrinsic mortality only if density-dependence acts on survival independently of age. Both the age-pattern and the type of density-dependence are crucial for shaping life history traits. PMID:29049399
Male-induced costs of mating for females compensated by offspring viability benefits in an insect.
Garcia-Gonzalez, F; Simmons, L W
2010-10-01
Sexual conflict facilitates the evolution of traits that increase the reproductive success of males at the expense of components of female fitness. Theory suggests that indirect benefits are unlikely to offset the direct costs to females from antagonistic male adaptations, but empirical studies examining the net fitness pay-offs of the interaction between the sexes are scarce. Here, we investigate whether matings with males that invest intrinsically more into accessory gland tissue undermine female lifetime reproductive success (LRS) in the cricket Teleogryllus oceanicus. We found that females incur a longevity cost of mating that is proportional to the partner's absolute investment into the production of accessory gland products. However, male accessory gland weight positively influences embryo survival, and harmful ejaculate-induced effects are cancelled out when these are put in the context of female LRS. The direct costs of mating with males that sire offspring with higher viability are thus compensated by direct and possibly indirect genetic benefits in this species. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.
Helmet use and risk compensation in motorcycle accidents.
Ouellet, James V
2011-02-01
The "risk compensation" hypothesis suggests that individuals offset perceived gains in safety by increasing their risk-taking behavior to maintain a stable or "homeostatic" level of risk. If this is true for motorcyclists, then helmet use, which reduces the risk of brain injury and death, may lead helmet users to take more risks when they ride. Thus, increased risk-taking by helmet users should show up as overrepresentation in crashes, and accident reconstruction should reveal risky behaviors in the seconds just before the crash. This article examines data from two separate studies involving the on-scene, in-depth investigation and reconstruction of motorcycle crashes: 900 in Los Angeles (1976-1977) and another 1082 in Thailand (1999-2000). Each crash was investigated on scene within minutes of its occurrence by teams of specially trained researchers and later reconstructed in order to identify precrash and crash events, verify helmet use/nonuse, etc. "Exposure" data on helmet use and other readily visible factors were also collected for the population-at-risk by observing riders who passed by each accident scene some time after a crash that had been investigated by the team. In this article, helmeted and unhelmeted accident-involved riders are compared to each other as well as to the population-at-risk. In Thailand, helmeted riders did not differ significantly from unhelmeted riders in alcohol use, precrash speed, being the primary or sole cause of the crash, or unsafe speed or lane positioning for the traffic conditions; they were no more likely to be in a single-vehicle accident, to crash by running off the road, or to lose control. In Los Angeles, drinking riders were half as likely to wear a helmet as nondrinkers. However, when drinkers and nondrinkers were segregated, helmeted riders were no more likely to cause their crash, run stop signs or red lights, commit other traffic code violations, or run off the road. They did not differ in speed or single-vehicle crash rates. In both studies, helmeted riders were underrepresented in crashes compared to helmet use in the population-at-risk, and helmet use was associated with greater distances traveled. The data fail to support the hypothesis that the increased safety provided by motorcycle helmet use is offset by more risk-taking while riding. The only evidence of risk compensation was that helmet use increased with greater amounts of travel.
Development by Design in Colombia: Making Mitigation Decisions Consistent with Conservation Outcomes
Saenz, Shirley; Walschburger, Tomas; González, Juan Carlos; León, Jorge; McKenney, Bruce; Kiesecker, Joseph
2013-01-01
Mitigation policy and regulatory frameworks are consistent in their strong support for the mitigation hierarchy of: (1) avoiding impacts, (2) minimizing impacts, and then (3) offsetting/compensating for residual impacts. While mitigation frameworks require developers to avoid, minimize and restore biodiversity on-site before considering an offset for residual impacts, there is a lack of quantitative guidance for this decision-making process. What are the criteria for requiring impacts be avoided altogether? Here we examine how conservation planning can guide the application of the mitigation hierarchy to address this issue. In support of the Colombian government's aim to improve siting and mitigation practices for planned development, we examined five pilot projects in landscapes expected to experience significant increases in mining, petroleum and/or infrastructure development. By blending landscape-level conservation planning with application of the mitigation hierarchy, we can proactively identify where proposed development and conservation priorities would be in conflict and where impacts should be avoided. The approach we outline here has been adopted by the Colombian Ministry of Environment and Sustainable Development to guide licensing decisions, avoid piecemeal licensing, and promote mitigation decisions that maintain landscape condition. PMID:24339972
Saenz, Shirley; Walschburger, Tomas; González, Juan Carlos; León, Jorge; McKenney, Bruce; Kiesecker, Joseph
2013-01-01
Mitigation policy and regulatory frameworks are consistent in their strong support for the mitigation hierarchy of: (1) avoiding impacts, (2) minimizing impacts, and then (3) offsetting/compensating for residual impacts. While mitigation frameworks require developers to avoid, minimize and restore biodiversity on-site before considering an offset for residual impacts, there is a lack of quantitative guidance for this decision-making process. What are the criteria for requiring impacts be avoided altogether? Here we examine how conservation planning can guide the application of the mitigation hierarchy to address this issue. In support of the Colombian government's aim to improve siting and mitigation practices for planned development, we examined five pilot projects in landscapes expected to experience significant increases in mining, petroleum and/or infrastructure development. By blending landscape-level conservation planning with application of the mitigation hierarchy, we can proactively identify where proposed development and conservation priorities would be in conflict and where impacts should be avoided. The approach we outline here has been adopted by the Colombian Ministry of Environment and Sustainable Development to guide licensing decisions, avoid piecemeal licensing, and promote mitigation decisions that maintain landscape condition.
Fu, Songnian; Xu, Zuying; Lu, Jianing; Jiang, Hexun; Wu, Qiong; Hu, Zhouyi; Tang, Ming; Liu, Deming; Chan, Calvin Chun-Kit
2018-03-19
We propose a blind and fast modulation format identification (MFI) enabled by the digital frequency-offset (FO) loading technique for hitless coherent transceiver. Since modulation format information is encoded to the FO distribution during digital signal processing (DSP) at the transmitter side (Tx), we can use the fast Fourier transformation based FO estimation (FFT-FOE) method to obtain the FO distribution of individual data block after constant modulus algorithm (CMA) pre-equalization at the receiver side, in order to realize non-data-aided (NDA) and fast MFI. The obtained FO can be also used for subsequent FO compensation (FOC), without additional complexity. We numerically investigate and experimentally verify the proposed MFI with high accuracy and fast format switching among 28 Gbaud dual-polarization (DP)-4/8/16/64QAM, time domain hybrid-4/16QAM, and set partitioning (SP)-128QAM. In particular, the proposed MFI brings no performance degradation, in term of tolerance of amplified spontaneous emission (ASE) noise, laser linewidth, and fiber nonlinearity. Finally, a hitless coherent transceiver enabled by the proposed MFI with switching-block of only 2048 symbols is demonstrated over 1500 km standard single mode fiber (SSMF) transmission.
Using Laser Scanners to Augment the Systematic Error Pointing Model
NASA Astrophysics Data System (ADS)
Wernicke, D. R.
2016-08-01
The antennas of the Deep Space Network (DSN) rely on precise pointing algorithms to communicate with spacecraft that are billions of miles away. Although the existing systematic error pointing model is effective at reducing blind pointing errors due to static misalignments, several of its terms have a strong dependence on seasonal and even daily thermal variation and are thus not easily modeled. Changes in the thermal state of the structure create a separation from the model and introduce a varying pointing offset. Compensating for this varying offset is possible by augmenting the pointing model with laser scanners. In this approach, laser scanners mounted to the alidade measure structural displacements while a series of transformations generate correction angles. Two sets of experiments were conducted in August 2015 using commercially available laser scanners. When compared with historical monopulse corrections under similar conditions, the computed corrections are within 3 mdeg of the mean. However, although the results show promise, several key challenges relating to the sensitivity of the optical equipment to sunlight render an implementation of this approach impractical. Other measurement devices such as inclinometers may be implementable at a significantly lower cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolme, David S; Mikkilineni, Aravind K; Rose, Derek C
Analog computational circuits have been demonstrated to provide substantial improvements in power and speed relative to digital circuits, especially for applications requiring extreme parallelism but only modest precision. Deep machine learning is one such area and stands to benefit greatly from analog and mixed-signal implementations. However, even at modest precisions, offsets and non-linearity can degrade system performance. Furthermore, in all but the simplest systems, it is impossible to directly measure the intermediate outputs of all sub-circuits. The result is that circuit designers are unable to accurately evaluate the non-idealities of computational circuits in-situ and are therefore unable to fully utilizemore » measurement results to improve future designs. In this paper we present a technique to use deep learning frameworks to model physical systems. Recently developed libraries like TensorFlow make it possible to use back propagation to learn parameters in the context of modeling circuit behavior. Offsets and scaling errors can be discovered even for sub-circuits that are deeply embedded in a computational system and not directly observable. The learned parameters can be used to refine simulation methods or to identify appropriate compensation strategies. We demonstrate the framework using a mixed-signal convolution operator as an example circuit.« less
Differential CMOS Sub-Terahertz Detector with Subthreshold Amplifier.
Yang, Jong-Ryul; Han, Seong-Tae; Baek, Donghyun
2017-09-09
We propose a differential-type complementary metal-oxide-semiconductor (CMOS) sub-terahertz (THz) detector with a subthreshold preamplifier. The proposed detector improves the voltage responsivity and effective signal-to-noise ratio (SNR) using the subthreshold preamplifier, which is located between the differential detector device and main amplifier. The overall noise of the detector for the THz imaging system is reduced by the preamplifier because it diminishes the noise contribution of the main amplifier. The subthreshold preamplifier is self-biased by the output DC voltage of the detector core and has a dummy structure that cancels the DC offsets generated by the preamplifier itself. The 200 GHz detector fabricated using 0.25 μm CMOS technology includes a low drop-out regulator, current reference blocks, and an integrated antenna. A voltage responsivity of 2020 kV/W and noise equivalent power of 76 pW/√Hz are achieved using the detector at a gate bias of 0.5 V, respectively. The effective SNR at a 103 Hz chopping frequency is 70.9 dB with a 0.7 W/m² input signal power density. The dynamic range of the raster-scanned THz image is 44.59 dB.
Differential CMOS Sub-Terahertz Detector with Subthreshold Amplifier
Han, Seong-Tae; Baek, Donghyun
2017-01-01
We propose a differential-type complementary metal-oxide-semiconductor (CMOS) sub-terahertz (THz) detector with a subthreshold preamplifier. The proposed detector improves the voltage responsivity and effective signal-to-noise ratio (SNR) using the subthreshold preamplifier, which is located between the differential detector device and main amplifier. The overall noise of the detector for the THz imaging system is reduced by the preamplifier because it diminishes the noise contribution of the main amplifier. The subthreshold preamplifier is self-biased by the output DC voltage of the detector core and has a dummy structure that cancels the DC offsets generated by the preamplifier itself. The 200 GHz detector fabricated using 0.25 μm CMOS technology includes a low drop-out regulator, current reference blocks, and an integrated antenna. A voltage responsivity of 2020 kV/W and noise equivalent power of 76 pW/√Hz are achieved using the detector at a gate bias of 0.5 V, respectively. The effective SNR at a 103 Hz chopping frequency is 70.9 dB with a 0.7 W/m2 input signal power density. The dynamic range of the raster-scanned THz image is 44.59 dB. PMID:28891927
Integration of offshore wind farms through high voltage direct current networks
NASA Astrophysics Data System (ADS)
Livermore, Luke
The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared..
NASA Astrophysics Data System (ADS)
Wen, Qin
2017-04-01
Using a coupled Earth climate model, freshwater experiments are performed to study the Bjerknes compensation (BJC) between meridional atmosphere heat transport (AHT) and meridional ocean heat transport (OHT). Freshwater hosing in the North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) and thus reduces the northward OHT in the Atlantic significantly, leading to a cooling (warming) in surface layer in the Northern (Southern) Hemisphere. This results in an enhanced Hadley Cell and northward AHT. Meanwhile, the OHT in the Indo-Pacific is increased in response to the Hadley Cell change, partially offsetting the reduced OHT in the Atlantic. Two compensations occur here: compensation between the AHT and the Atlantic OHT, and that between the Indo-Pacific OHT and the Atlantic OHT. The AHT change compensates the OHT change very well in the extratropics, while the former overcompensates the latter in the tropics due to the Indo-Pacific change. The BJC can be understood from the viewpoint of large-scale circulation change. However, the intrinsic mechanism of BJC is related to the climate feedback of Earth system. Our coupled model experiments confirm that the occurrence of BJC is an intrinsic requirement of local energy balance, and local climate feedback determines the extent of BJC, consistent with previous theoretical results. Even during the transient period of climate change in the model, the BJC is well established when the ocean heat storage is slowly varying and its change is weaker than the net heat flux changes at the ocean surface and the top of the atmosphere. The BJC can be deduced from the local climate feedback. Under the freshwater forcing, the overcompensation in the tropics (undercompensation in the extratropics) is mainly caused by the positive longwave feedback related to cloud (negative longwave feedback related to surface temperature change). Different dominant feedbacks determine different BJC scenarios in different regions, which are in essence constrained by local energy balance.
Power Quality Improvement Using an Enhanced Network-Side-Shunt-Connected Dynamic Voltage Restorer
NASA Astrophysics Data System (ADS)
Fereidouni, Alireza; Masoum, Mohammad A. S.; Moghbel, Moayed
2015-10-01
Among the four basic dynamic voltage restorer (DVR) topologies, the network-side shunt-connected DVR (NSSC-DVR) has a relatively poor performance and is investigated in this paper. A new configuration is proposed and implemented for NSSC-DVR to enhance its performance in compensating (un)symmetrical deep and long voltage sags and mitigate voltage harmonics. The enhanced NSSC-DVR model includes a three-phase half-bridge semi-controlled network-side-shunt-connected rectifier and a three-phase full-bridge series-connected inverter implemented with a back-to-back configuration through a bidirectional buck-boost converter. The network-side-shunt-connected rectifier is employed to inject/draw the required energy by NSSC-DVR to restore the load voltage to its pre-fault value under sag/swell conditions. The buck-boost converter is responsible for maintaining the DC-link voltage of the series-connected inverter at its designated value in order to improve the NSSC-DVR capability in compensating deep and long voltage sags/swells. The full-bridge series-connected inverter permits to compensate unbalance voltage sags containing zero-sequence component. The harmonic compensation of the load voltage is achieved by extracting harmonics from the distorted network voltage using an artificial neural network (ANN) method called adaptive linear neuron (Adaline) strategy. Detailed simulations are performed by SIMULINK/MATLAB software for six case studies to verify the highly robustness of the proposed NSSC-DVR model under various conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Masato; Maeda, Hideaki; Graduate School of Yokohama City University, Yokohama, Kanagawa 230-0045
Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb{sub 3}Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system basedmore » on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a {sup 7}Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.« less
Methods for automatic trigger threshold adjustment
Welch, Benjamin J; Partridge, Michael E
2014-03-18
Methods are presented for adjusting trigger threshold values to compensate for drift in the quiescent level of a signal monitored for initiating a data recording event, thereby avoiding false triggering conditions. Initial threshold values are periodically adjusted by re-measuring the quiescent signal level, and adjusting the threshold values by an offset computation based upon the measured quiescent signal level drift. Re-computation of the trigger threshold values can be implemented on time based or counter based criteria. Additionally, a qualification width counter can be utilized to implement a requirement that a trigger threshold criterion be met a given number of times prior to initiating a data recording event, further reducing the possibility of a false triggering situation.
BariumCopperChFluorine (Ch = Sulfur, Selenium, Tellurium) p-type transparent conductors
NASA Astrophysics Data System (ADS)
Zakutayev, Andriy
BaCuChF (Ch = S, Se, Te) materials are chalcogen-based transparent conductors with wide optical band gaps (2.9 -- 3.5 eV) and a high concentration of free holes (1018 -- 1020 cm-3 ) caused by the presence of copper vacancies. Chalcogen vacancies compensate copper vacancies in these materials, setting the Fermi level close to the valence band maximum. BaCuChF thin film solid solutions prepared by pulsed laser deposition (PLD) have tunable properties, such as lattice constants, conductivity and optical band gaps. BaCuSF and BaCuSeF materials also feature room-temperature stable 3D excitons with spin-orbit-split levels. BaCuTeF has forbidden lowest-energy optical transitions which extends its transparency range. BaCuChF surfaces oxidize when exposed to air, but can be protected using Ch capping layers. Polycrystalline BaCuSeF thin films have a 4.85 eV work function, a 0.11 eV hole injection barrier into ZnPc, and 0.00 eV valence band offset with ZnTe. BaCuSeF should have s similar band offset and similar interfacial properties with CdTe and Cu(InGa)Se2, and BaCuSF should have no valence band offset with Cu2ZnSnS4, according to the transitivity rule. Therefore, BaCuSeF is suitable for applications as a p-layer in organic light-emitting diodes, p-i-n double-heterojunction and tandem chalcogenide solar cells.
Interactions between kinematics and loading during walking for the normal and ACL deficient knee.
Andriacchi, Thomas P; Dyrby, Chris O
2005-02-01
The relationships between extrinsic forces acting at the knee and knee kinematics were examined with the purpose of identifying specific phases of the walking cycle that could cause abnormal kinematics in the anterior cruciate ligament (ACL) deficient knee. Intersegmental forces and moments in directions that would produce anterior-posterior (AP) translation, internal-external (IE) rotation and flexion-extension (FE) at the knee were compared with the respective translation and rotations of the tibia relative to the femur during four selected phases (heel strike, weight acceptance, terminal extension and swing) of the walking cycle. The kinematic changes associated with loss of the ACL occurred primarily during the terminal portion of swing phase of the walking cycle where, for the ACL deficient knee, the tibia had reduced external rotation and anterior translation as the knee extended prior to heel strike. The kinematic changes during swing phase were associated with a rotational offset relative to the contralateral knee in the average position of the tibia towards internal rotation. The offset was maintained through the entire gait cycle. The abnormal offsets in the rotational position were correlated with the magnitude of the flexion moment (balanced by a net quadriceps moment) during weight acceptance. These results suggest that adaptations to the patterns of muscle firing during walking can compensate for kinematic changes associated with the loss of the ACL. The altered rotational position would cause changes in tibiofemoral contact during walking that could cause the type of degenerative changes reported in the meniscus and the articular cartilage following ACL injury.
NASA Astrophysics Data System (ADS)
Sawicki, Jean-Paul; Saint-Eve, Frédéric; Petit, Pierre; Aillerie, Michel
2017-02-01
This paper presents results of experiments aimed to verify a formula able to compute duty cycle in the case of pulse width modulation control for a DC-DC converter designed and realized in laboratory. This converter, called Magnetically Coupled Boost (MCB) is sized to step up only one photovoltaic module voltage to supply directly grid inverters. Duty cycle formula will be checked in a first time by identifying internal parameter, auto-transformer ratio, and in a second time by checking stability of operating point on the side of photovoltaic module. Thinking on nature of generator source and load connected to converter leads to imagine additional experiments to decide if auto-transformer ratio parameter could be used with fixed value or on the contrary with adaptive value. Effects of load variations on converter behavior or impact of possible shading on photovoltaic module are also mentioned, with aim to design robust control laws, in the case of parallel association, designed to compensate unwanted effects due to output voltage coupling.
A floating-point digital receiver for MRI.
Hoenninger, John C; Crooks, Lawrence E; Arakawa, Mitsuaki
2002-07-01
A magnetic resonance imaging (MRI) system requires the highest possible signal fidelity and stability for clinical applications. Quadrature analog receivers have problems with channel matching, dc offset and analog-to-digital linearity. Fixed-point digital receivers (DRs) reduce all of these problems. We have demonstrated that a floating-point DR using large (order 124 to 512) FIR low-pass filters also overcomes these problems, automatically provides long word length and has low latency between signals. A preloaded table of finite impuls response (FIR) filter coefficients provides fast switching between one of 129 different one-stage and two-stage multrate FIR low-pass filters with bandwidths between 4 KHz and 125 KHz. This design has been implemented on a dual channel circuit board for a commercial MRI system.
Cooling and stabilization of graphene nanoplatelets in high vacuum
NASA Astrophysics Data System (ADS)
Nagornykh, Pavel
The study of 2D materials is a rapidly growing area of research, where the ability to isolate and probe an individual single-layer specimen is of high importance. The levitation approach serves as a natural solution for this problem and can be used in ways complementary to the standard techniques. Experiments, including study of properties at high or close to melting temperatures, stretching, folding, vibration and functionalization, can be conducted on levitated 2D materials. As a first step towards realization of all these ideas, one needs to develop and test a system allowing for control over the thermal state and orientation of mono-layer flakes. In this thesis, I present the results of implementation of the parametric feedback cooling scheme in a quadrupole ion trap for stabilization and cooling of graphene nanopletelets. I have tested and showed that the feedback allows to stabilize levitated graphene nanoplatelets in high vacuum conditions (<1 microTorr) to have trapped life times longer than a week. Cooling of the center of mass motion to temperatures below 20 K for all translational degrees of freedom was observed. I have also studied the coupling of DC patch potentials, which were found to be present in the high vacuum chamber. Their effect on cooling was studied and the protocol for minimizing the noise coupling created by the DC fields was designed. We have shown that by varying DC voltages on a set of auxiliary DC electrodes, placed near the trap, one can balance out the DC fields and achieve the lowest cooling temperature. The settings corresponding to this temperature were measured to have a slow drift in time. Ability to tune the settings to balance this drift without breaking the vacuum was studied and found to be a viable solution for the drift cancellation. In addition, our effort in characterization of the flakes is presented. It was shown that the flake discharge quantization observed during the initial pumping down of the high vacuum chamber allows to extract absolute values of flake mass and charge. I also mention the issues experienced with estimation of the shape of the flake, as well as its temperature based on an equipartition theorem. Finally, I discuss the preliminary data on the precession and reorientation of the flakes in the presence of circularly polarized light (CPL) and DC stray fields. The dependence of flake orientation on the offset from the nulling settings is observed and is explained in terms of basic model of a solid charged disk in the presence of two torques created by CPL and DC stray fields.
Enhanced High Performance Power Compensation Methodology by IPFC Using PIGBT-IDVR
Arumugom, Subramanian; Rajaram, Marimuthu
2015-01-01
Currently, power systems are involuntarily controlled without high speed control and are frequently initiated, therefore resulting in a slow process when compared with static electronic devices. Among various power interruptions in power supply systems, voltage dips play a central role in causing disruption. The dynamic voltage restorer (DVR) is a process based on voltage control that compensates for line transients in the distributed system. To overcome these issues and to achieve a higher speed, a new methodology called the Parallel IGBT-Based Interline Dynamic Voltage Restorer (PIGBT-IDVR) method has been proposed, which mainly spotlights the dynamic processing of energy reloads in common dc-linked energy storage with less adaptive transition. The interline power flow controller (IPFC) scheme has been employed to manage the power transmission between the lines and the restorer method for controlling the reactive power in the individual lines. By employing the proposed methodology, the failure of a distributed system has been avoided and provides better performance than the existing methodologies. PMID:26613101
PI and fuzzy logic controllers for shunt Active Power Filter--a report.
P, Karuppanan; Mahapatra, Kamala Kanta
2012-01-01
This paper presents a shunt Active Power Filter (APF) for power quality improvements in terms of harmonics and reactive power compensation in the distribution network. The compensation process is based only on source current extraction that reduces the number of sensors as well as its complexity. A Proportional Integral (PI) or Fuzzy Logic Controller (FLC) is used to extract the required reference current from the distorted line-current, and this controls the DC-side capacitor voltage of the inverter. The shunt APF is implemented with PWM-current controlled Voltage Source Inverter (VSI) and the switching patterns are generated through a novel Adaptive-Fuzzy Hysteresis Current Controller (A-F-HCC). The proposed adaptive-fuzzy-HCC is compared with fixed-HCC and adaptive-HCC techniques and the superior features of this novel approach are established. The FLC based shunt APF system is validated through extensive simulation for diode-rectifier/R-L loads. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Study on improved Ip-iq APF control algorithm and its application in micro grid
NASA Astrophysics Data System (ADS)
Xie, Xifeng; Shi, Hua; Deng, Haiyingv
2018-01-01
In order to enhance the tracking velocity and accuracy of harmonic detection by ip-iq algorithm, a novel ip-iq control algorithm based on the Instantaneous reactive power theory is presented, the improved algorithm adds the lead correction link to adjust the zero point of the detection system, the Fuzzy Self-Tuning Adaptive PI control is introduced to dynamically adjust the DC-link Voltage, which meets the requirement of the harmonic compensation of the micro grid. Simulation and experimental results verify the proposed method is feasible and effective in micro grid.
Choudhary, Pushpa; Velaga, Nagendra R
2017-09-01
This study analysed and modelled the effects of conversation and texting (each with two difficulty levels) on driving performance of Indian drivers in terms of their mean speed and accident avoiding abilities; and further explored the relationship between speed reduction strategy of the drivers and their corresponding accident frequency. 100 drivers of three different age groups (young, mid-age and old-age) participated in the simulator study. Two sudden events of Indian context: unexpected crossing of pedestrians and joining of parked vehicles from road side, were simulated for estimating the accident probabilities. Generalized linear mixed models approach was used for developing linear regression models for mean speed and binary logistic regression models for accident probability. The results of the models showed that the drivers significantly compensated the increased workload by reducing their mean speed by 2.62m/s and 5.29m/s in the presence of conversation and texting tasks respectively. The logistic models for accident probabilities showed that the accident probabilities increased by 3 and 4 times respectively when the drivers were conversing or texting on a phone during driving. Further, the relationship between the speed reduction patterns and their corresponding accident frequencies showed that all the drivers compensated differently; but, among all the drivers, only few drivers, who compensated by reducing the speed by 30% or more, were able to fully offset the increased accident risk associated with the phone use. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kracher, Daniela
2017-11-01
Increase of forest areas has the potential to increase the terrestrial carbon (C) sink. However, the efficiency for C sequestration depends on the availability of nutrients such as nitrogen (N), which is affected by climatic conditions and management practices. In this study, I analyze how N limitation affects C sequestration of afforestation and how it is influenced by individual climate variables, increased harvest, and fertilizer application. To this end, JSBACH, the land component of the Earth system model of the Max Planck Institute for Meteorology is applied in idealized simulation experiments. In those simulations, large-scale afforestation increases the terrestrial C sink in the 21st century by around 100 Pg C compared to a business as usual land-use scenario. N limitation reduces C sequestration roughly by the same amount. The relevance of compensating effects of uptake and release of carbon dioxide by plant productivity and soil decomposition, respectively, gets obvious from the simulations. N limitation of both fluxes compensates particularly in the tropics. Increased mineralization under global warming triggers forest expansion, which otherwise is restricted by N availability. Due to compensating higher plant productivity and soil respiration, the global net effect of warming for C sequestration is however rather small. Fertilizer application and increased harvest enhance C sequestration as well as boreal expansion. The additional C sequestration achieved by fertilizer application is offset to a large part by additional emissions of nitrous oxide.
Transient effects in π-pulse sequences in MAS solid-state NMR
NASA Astrophysics Data System (ADS)
Hellwagner, Johannes; Wili, Nino; Ibáñez, Luis Fábregas; Wittmann, Johannes J.; Meier, Beat H.; Ernst, Matthias
2018-02-01
Dipolar recoupling techniques that use isolated rotor-synchronized π pulses are commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological molecules. These sequences excel through their simplicity, stability towards radio-frequency (rf) inhomogeneity, and low rf requirements. For a theoretical understanding of such sequences, we present a Floquet treatment based on an interaction-frame transformation including the chemical-shift offset dependence. This approach is applied to the homonuclear dipolar-recoupling sequence Radio-Frequency Driven Recoupling (RFDR) and the heteronuclear recoupling sequence Rotational Echo Double Resonance (REDOR). Based on the Floquet approach, we show the influence of effective fields caused by pulse transients and discuss the advantages of pulse-transient compensation. We demonstrate experimentally that the transfer efficiency for homonuclear recoupling can be doubled in some cases in model compounds as well as in simple peptides if pulse-transient compensation is applied to the π pulses. Additionally, we discuss the influence of various phase cycles on the recoupling efficiency in order to reduce the magnitude of effective fields. Based on the findings from RFDR, we are able to explain why the REDOR sequence does not suffer in the recoupling efficiency despite the presence of effective fields.
NASA Astrophysics Data System (ADS)
Tsang, Sik-Ho; Chan, Yui-Lam; Siu, Wan-Chi
2017-01-01
Weighted prediction (WP) is an efficient video coding tool that was introduced since the establishment of the H.264/AVC video coding standard, for compensating the temporal illumination change in motion estimation and compensation. WP parameters, including a multiplicative weight and an additive offset for each reference frame, are required to be estimated and transmitted to the decoder by slice header. These parameters cause extra bits in the coded video bitstream. High efficiency video coding (HEVC) provides WP parameter prediction to reduce the overhead. Therefore, WP parameter prediction is crucial to research works or applications, which are related to WP. Prior art has been suggested to further improve the WP parameter prediction by implicit prediction of image characteristics and derivation of parameters. By exploiting both temporal and interlayer redundancies, we propose three WP parameter prediction algorithms, enhanced implicit WP parameter, enhanced direct WP parameter derivation, and interlayer WP parameter, to further improve the coding efficiency of HEVC. Results show that our proposed algorithms can achieve up to 5.83% and 5.23% bitrate reduction compared to the conventional scalable HEVC in the base layer for SNR scalability and 2× spatial scalability, respectively.
Shaw, W Douglass; Wlodarz, Marta
2013-09-01
Coastal and other area resources such as tidal wetlands, seagrasses, coral reefs, wetlands, and other ecosystems are often harmed by environmental damage that might be inflicted by human actions, or could occur from natural hazards such as hurricanes. Society may wish to restore resources to offset the harm, or receive compensation if this is not possible, but faces difficult choices among potential compensation projects. The optimal amount of restoration efforts can be determined by non-market valuation methods, service-to-service, or resource-to-resource approaches such as habitat equivalency analysis (HEA). HEA scales injured resources and lost services on a one-to-one trade-off basis. Here, we present the main differences between the HEA approach and other non-market valuation approaches. Particular focus is on the role of the social discount rate, which appears in the HEA equation and underlies calculations of the present value of future damages. We argue that while HEA involves elements of economic analysis, the assumption of a one-to-one trade-off between lost and restored services sometimes does not hold, and then other non-market economic valuation approaches may help in restoration scaling or in damage determination.
To fear or to feed: the effects of turbidity on perception of risk by a marine fish.
Leahy, Susannah M; McCormick, Mark I; Mitchell, Matthew D; Ferrari, Maud C O
2011-12-23
Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats.
To fear or to feed: the effects of turbidity on perception of risk by a marine fish
Leahy, Susannah M.; McCormick, Mark I.; Mitchell, Matthew D.; Ferrari, Maud C. O.
2011-01-01
Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats. PMID:21849308
Space Operations Center, Shuttle Interaction Study. Volume 2: Appendices, Book 1 of 2
NASA Technical Reports Server (NTRS)
1981-01-01
The feasibility of shuttle orbiter docking to the Space Operations Center (SOC) is studied. The in-orbit relative motion of the free flying orbiter and SOC was simulated, accounting for the Orbiter RCS and digital autopilot (DAP) systems, orbital mechanics, center of gravity offset of the orbiter docking port, aero and gravity gradient effects, and other pertinent natural and man-made phenomena. Since there is no specified flight path and procedure for docking, terminal closure sensitivities were investigated. Orbiter approach direction, Orbiter approach attitude out of plane, DAP thruster compensation mode, final ballistic docking distance and time to dock, rate and excursion attitude deadbands, and selection of various thruster combinations (differing from nominal) for translational pulses are considered.
Bazzoli, Gloria J; Thompson, Michael P; Waters, Teresa M
2018-02-08
To examine relationships between penalties assessed by Medicare's Hospital Readmission Reduction Program and Value-Based Purchasing Program and hospital financial condition. Centers for Medicare and Medicaid Services, American Hospital Association, and Area Health Resource File data for 4,824 hospital-year observations. Bivariate and multivariate analysis of pooled cross-sectional data. Safety net hospitals have significantly higher HRRP/VBP penalties, but, unlike nonsafety net hospitals, increases in their penalty rate did not significantly affect their total margins. Safety net hospitals appear to rely on nonpatient care revenues to offset higher penalties for the years studied. While reassuring, these funding streams are volatile and may not be able to compensate for cumulative losses over time. © Health Research and Educational Trust.
Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization
Peng, Michael Y.; Kalaydzhyan, Aram; Kärtner, Franz X.
2014-10-23
We demonstrate that balanced optical-microwave phase detectors (BOMPD) are capable of optical-RF synchronization with sub-femtosecond residual timing jitter for large-scale timing distribution systems. RF-to-optical synchronization is achieved with a long-term stability of < 1 fs RMS and < 7 fs pk-pk drift for over 10 hours and short-term stability of < 2 fs RMS jitter integrated from 1 Hz to 200 kHz as well as optical-to-RF synchronization with 0.5 fs RMS jitter integrated from 1 Hz to 20 kHz. Moreover, we achieve a –161 dBc/Hz noise floor that integrates well into the sub-fs regime and measure a nominal 50-dB AM-PMmore » suppression ratio with potential improvement via DC offset adjustment.« less
Interprofessional collaboration and job satisfaction of chiropractic physicians.
Konrad, Thomas R; Fletcher, Grant S; Carey, Timothy S
2004-05-01
Despite the fact that chiropractic physicians (DCs) are growing in number and legitimacy in the community of health care professionals, little recent research describes how their relationships with medical doctors (MDs) affect their job and career perceptions. This study explores interprofessional relations by identifying factors associated with variations in how DCs evaluate their interaction with MDs. It also adapts a previously validated multifaceted measure of MD job satisfaction for use with DCs. Cross-sectional survey of 311 DC physicians in North Carolina. The hypothesized multifaceted nature of DC job satisfaction was confirmed. Four distinct job facets and global career satisfaction were measured effectively in DCs. DCs' career satisfaction is related to satisfaction with compensation, intrinsic motivation of relating to patients, and having positive relationships with DC colleagues. DCs report referring patients to MDs more often than they report MDs referring patients to them. Satisfaction with relationships between DCs and MDs is relatively low and is strongly linked to the quantity of referrals from MDs and the perception that MDs practice collaboratively with DCs. However, DCs' global career satisfaction is unrelated to their relationships with MDs. Global career satisfaction of DCs is relatively high and unaffected by the low level of satisfaction DCs report having with their relationships with MDs. These findings suggest that despite increasing interaction and interdependence, DCs' relationship with MDs is of minor importance in their professional self-image.
Lee, Kenneth K C; Wu, David Bin Chia; Chow, Pui Yu; Lee, Vivian Wing Yan; Li, Hong
2012-07-01
Tremendous healthcare resources have been spent on the management of chronic hepatitis B (CHB) and its related complications. Therefore, a proper evaluation of the cost-effectiveness of pharmacotherapy is vital in aid of decision-making. The aim of the present study was to examine the long-term economic and clinical influence if lamivudine was replaced by entecavir in a group of CHB patients. A recently published decision analytic model was adapted to study the cost-effectiveness of 2 years of treatment of entecavir in a hypothetical cohort of 1000 hepatitis B e antigen (HBeAg)-negative CHB patients from a public hospital perspective. Compensated cirrhosis (CC) and de-compensated cirrhosis (DC) and hepatocellular carcinoma (HCC) events were projected to 10 years. Hong Kong-specific health care costs were used. Quality Adjusted Life Years (QALYs) were calculated using the utility values obtained from a local study. In the base case analysis, compared with lamivudine, the use of entecavir was expected to reduce the incidences of CC, DC and HCC by 41.8%, 57.1% and 49.3%, respectively, and lead to a saving of $US 1.17 million in medical cost. The overall disease management cost for entecavir, which was 67.7% higher than lamivudine for 2 years treatment was reduced to 17.2% after projecting 2-year treatment duration to 10 years. The incremental cost per QALY gained for entecavir compared with lamivudine was $US 13 759. Based on the recommended cost-effectiveness threshold of the World Health Organization, entecavir is considered cost-effective compared with lamivudine in treating CHB in Hong Kong when long term medical consequences were considered. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.
NASA Astrophysics Data System (ADS)
Wang, Fang; Lu, Heng; Wang, Xu; Liu, Yufang
2018-03-01
Fiber-loop ring-down spectroscopy (FLRDS) technique can be used for measurement by indirectly measuring the ring-down time. This is advantageous because it is free from fluctuations of the light source and has a high sensitivity. A novel sensing system for measuring the concentration and temperature based on the FLRDS technique and Mach-Zehnder interferometer (MZI) is proposed in this work. The intra-cavity losses were compensated, which depended on the erbium-doped fiber amplifier. The sensor head was a section of 4 cm single-mode fiber that was spliced into the fiber loop ring cavity in a core-offset way, and its characteristics were tested by experimenting with different solution concentrations and temperatures. The experimental results showed that the detection limit of this system is 0.0014 g/ml, in the range of 0.010-0.400 g/ml. In the temperature sensing experiment, when the temperature varied from 30-200 °C, a sensitivity of 1.83 μs/°C was achieved. This research demonstrated that the MZI-based FLRDS sensing system has a clear response to the solution and temperature; therefore, it provides a reference for the measurement of stress, pressure, curvature, and other physical quantities.
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.
Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco
2016-05-19
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording
Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco
2016-01-01
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382
NASA Astrophysics Data System (ADS)
An, Youngseo; Mahata, Chandreswar; Lee, Changmin; Choi, Sungho; Byun, Young-Chul; Kang, Yu-Seon; Lee, Taeyoon; Kim, Jiyoung; Cho, Mann-Ho; Kim, Hyoungsub
2015-10-01
Amorphous Ti1-x Al x O y films in the Ti-oxide-rich regime (x < 0.5) were deposited on p-type GaAs via atomic layer deposition with titanium isopropoxide, trimethylaluminum, and H2O precursor chemistry. The electrical properties and energy band alignments were examined for the resulting materials with their underlying substrates, and significant frequency dispersion was observed in the accumulation region of the Ti-oxide-rich Ti1-x Al x O y films. Although a further reduction in the frequency dispersion and leakage current (under gate electron injection) could be somewhat achieved through a greater addition of Al-oxide in the Ti1-x Al x O y film, the simultaneous decrease in the dielectric constant proved problematic in finding an optimal composition for application as a gate dielectric on GaAs. The spectroscopic band alignment measurements of the Ti-oxide-rich Ti1-x Al x O y films indicated that the band gaps had a rather slow increase with the addition of Al-oxide, which was primarily compensated for by an increase in the valance band offset, while a nearly-constant conduction band offset with a negative electron barrier height was maintained.
Luoma, Pekka; Natschläger, Thomas; Malli, Birgit; Pawliczek, Marcin; Brandstetter, Markus
2018-05-12
A model recalibration method based on additive Partial Least Squares (PLS) regression is generalized for multi-adjustment scenarios of independent variance sources (referred to as additive PLS - aPLS). aPLS allows for effortless model readjustment under changing measurement conditions and the combination of independent variance sources with the initial model by means of additive modelling. We demonstrate these distinguishing features on two NIR spectroscopic case-studies. In case study 1 aPLS was used as a readjustment method for an emerging offset. The achieved RMS error of prediction (1.91 a.u.) was of similar level as before the offset occurred (2.11 a.u.). In case-study 2 a calibration combining different variance sources was conducted. The achieved performance was of sufficient level with an absolute error being better than 0.8% of the mean concentration, therefore being able to compensate negative effects of two independent variance sources. The presented results show the applicability of the aPLS approach. The main advantages of the method are that the original model stays unadjusted and that the modelling is conducted on concrete changes in the spectra thus supporting efficient (in most cases straightforward) modelling. Additionally, the method is put into context of existing machine learning algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.
An important step forward in continuous spectroscopic imaging of ionising radiations using ASICs
NASA Astrophysics Data System (ADS)
Fessler, P.; Coffin, J.; Eberlé, H.; de Raad Iseli, C.; Hilt, B.; Huss, D.; Krummenacher, F.; Lutz, J. R.; Prévot, G.; Renouprez, A.; Sigward, M. H.; Schwaller, B.; Voltolini, C.
1999-01-01
Characterization results are given for an original ASIC allowing continuous acquisition of ionising radiation images in spectroscopic mode. Ionising radiation imaging in general and spectroscopic imaging in particular must primarily be guided by the attempt to decrease statistical noise, which requires detection systems designed to allow very high counting rates. Any source of dead time must therefore be avoided. Thus, the use of on-line corrections of the inevitable dispersion of characteristics between the large number of electronic channels of the detection system, shall be precluded. Without claiming to achieve ultimate noise levels, the work described is focused on how to prevent good individual acquisition channel noise performance from being totally destroyed by the dispersion between channels without introducing dead times. With this goal, we developed an automatic charge amplifier output voltage offset compensation system which operates regardless of the cause of the offset (detector or electronic). The main performances of the system are the following: the input equivalent noise charge is 190 e rms (input non connected, peaking time 500 ns), the highest gain is 255 mV/fC, the peaking time is adjustable between 200 ns and 2 μs and the power consumption is 10 mW per channel. The agreement between experimental data and theoretical simulation results is excellent.
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.
1995-08-08
A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.
1995-01-01
A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.
Dc microgrid stabilization through fuzzy control of interleaved, heterogeneous storage elements
NASA Astrophysics Data System (ADS)
Smith, Robert David
As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.
Tectonic analysis of mine tremor mechanisms from the Upper Silesian Coal Basin
NASA Astrophysics Data System (ADS)
Sagan, Grzegorz; Teper, Lesław; Zuberek, Waclaw M.
1996-07-01
Fault network of the Upper Silesian Coal Basin (USCB) is built of sets of strike-slip, oblique-slip and dip-slip faults. It is a typical product of force couple which acts evenly with the parallel of latitude, causing horizontal and anti-clockwise movement of rock-mass. Earlier research of focal mechanisms of mine tremors, using a standard fault plane solution, has shown that some events are related to tectonic directions in main structural units of the USCB. An attempt was undertaken to analyze the records of mine tremors from the period 1992 1994 in the selected coal fields. The digital records of about 200 mine tremors with energy larger than 1×104 J ( M L >1.23) were analyzed with SMT software for seismic moment tensor inversion. The decomposition of seismic moment tensor of mine tremors was segmented into isotropic (I) part, compensated linear vector dipole (CLVD) part and double-couple (DC) part. The DC part is prevalent (up to 70%) in the majority of quakes from the central region of the USCB. A group of mine tremors with large I element (up to 50%) can also be observed. The spatial orientation of the fault and auxiliary planes were obtained from the computations for the seismic moment DC part. Study of the DC part of the seismic moment tensor made it possible for us to separate the group of events which might be acknowledged to have their origin in unstable energy release on surfaces of faults forming a regional structural pattern. The possible influence of the Cainozoic tectonic history of the USCB on the recent shape of stress field is discussed.
Low Emittance Guns for the ILC Polarized Electron Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.
Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressedmore » by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {>=}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {>=}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.« less
Low Emittance Guns for the ILC Polarized Electron Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.
Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressedmore » by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {ge}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {ge}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.« less
Sayiner, Mehmet; Otgonsuren, Munkhzul; Cable, Rebecca; Younossi, Issah; Afendy, Mariam; Golabi, Pegah; Henry, Linda; Younossi, Zobair M
2017-03-01
Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease worldwide with tremendous clinical burden. The economic burden of NAFLD is not well studied. To assess the economic burden of NAFLD. Medicare beneficiaries (January 1, 2010 to December 31, 2010) with NAFLD diagnosis by International Classification of Diseases, Ninth Revision codes in the absence of other liver diseases were selected. Inpatient and outpatient resource utilization parameters were total charges and total provider payments. NAFLD patients with compensated cirrhosis (CC) were compared with decompensated cirrhosis (DC). A total of 976 inpatients and 4742 outpatients with NAFLD were included-87% were white, 36% male, 30% had cardiovascular disease (CVD) or metabolic syndrome conditions, and 12% had cirrhosis. For inpatients, median total hospital charge was $36,289. NAFLD patients with cirrhosis had higher charges and payments than noncirrhotic NAFLD patients ($61,151 vs. $33,863 and $18,804 vs. $10,146, P<0.001). Compared with CC, NAFLD patients with DC had higher charges and payments (P<0.02). For outpatients, median total charge was $9,011. NAFLD patients with cirrhosis had higher charges and payments than noncirrhotic NAFLD patients ($12,049 vs. $8,830 and $2,586 vs. $1,734, P<0.001). Compared with CC, DC patients had higher total charges ($15,187 vs. $10,379, P=0.04). In multivariate analysis, variables associated with increased inpatient resource utilization were inpatient mortality, DC, and CVD; for outpatients, having CVD, obesity, and hypertension (all P<0.001). NAFLD is associated with significant economic burden to Medicare. Presence of cirrhosis and CVD are associated with increased resource utilization.
Sayiner, Mehmet; Otgonsuren, Munkhzul; Cable, Rebecca; Younossi, Issah; Afendy, Mariam; Golabi, Pegah; Henry, Linda
2017-01-01
Background: Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease worldwide with tremendous clinical burden. The economic burden of NAFLD is not well studied. Goal: To assess the economic burden of NAFLD. Study: Medicare beneficiaries (January 1, 2010 to December 31, 2010) with NAFLD diagnosis by International Classification of Diseases, Ninth Revision codes in the absence of other liver diseases were selected. Inpatient and outpatient resource utilization parameters were total charges and total provider payments. NAFLD patients with compensated cirrhosis (CC) were compared with decompensated cirrhosis (DC). Results: A total of 976 inpatients and 4742 outpatients with NAFLD were included—87% were white, 36% male, 30% had cardiovascular disease (CVD) or metabolic syndrome conditions, and 12% had cirrhosis. For inpatients, median total hospital charge was $36,289. NAFLD patients with cirrhosis had higher charges and payments than noncirrhotic NAFLD patients ($61,151 vs. $33,863 and $18,804 vs. $10,146, P<0.001). Compared with CC, NAFLD patients with DC had higher charges and payments (P<0.02). For outpatients, median total charge was $9,011. NAFLD patients with cirrhosis had higher charges and payments than noncirrhotic NAFLD patients ($12,049 vs. $8,830 and $2,586 vs. $1,734, P<0.001). Compared with CC, DC patients had higher total charges ($15,187 vs. $10,379, P=0.04). In multivariate analysis, variables associated with increased inpatient resource utilization were inpatient mortality, DC, and CVD; for outpatients, having CVD, obesity, and hypertension (all P<0.001). Conclusions: NAFLD is associated with significant economic burden to Medicare. Presence of cirrhosis and CVD are associated with increased resource utilization. PMID:27332747
Health-related quality of life, employment and disability in patients with Sjogren's syndrome.
Meijer, Jiska M; Meiners, Petra M; Huddleston Slater, James J R; Spijkervet, Fred K L; Kallenberg, Cees G M; Vissink, Arjan; Bootsma, Hendrika
2009-09-01
To compare health-related quality of life (HR-QOL), employment and disability of primary and secondary SS (pSS and sSS, respectively) patients with the general Dutch population. HR-QOL, employment and disability were assessed in SS patients regularly attending the University Medical Center Groningen (n = 235). HR-QOL, employment and disability were evaluated with the Short Form-36 questionnaire (SF-36) and an employment and disability questionnaire. Results were compared with Dutch population data (matched for sex and age). Demographical and clinical data associated with HR-QOL, employment and disability were assessed. Response rate was 83%. SS patients scored lower on HR-QOL than the general Dutch population. sSS patients scored lower on physical functioning, bodily pain and general health than pSS patients. Predictors for reduced HR-QOL were fatigue, tendomyalgia, articular involvement, use of artificial saliva, use of anti-depressants, comorbidity, male sex and eligibility for disability compensation (DC). Employment was lower and DC rates were higher in SS patients compared with the Dutch population. SS has a large impact on HR-QOL, employment and disability.
Zolper, John C.; Sherwin, Marc E.; Baca, Albert G.
2000-01-01
A method for making compound semiconductor devices including the use of a p-type dopant is disclosed wherein the dopant is co-implanted with an n-type donor species at the time the n-channel is formed and a single anneal at moderate temperature is then performed. Also disclosed are devices manufactured using the method. In the preferred embodiment n-MESFETs and other similar field effect transistor devices are manufactured using C ions co-implanted with Si atoms in GaAs to form an n-channel. C exhibits a unique characteristic in the context of the invention in that it exhibits a low activation efficiency (typically, 50% or less) as a p-type dopant, and consequently, it acts to sharpen the Si n-channel by compensating Si donors in the region of the Si-channel tail, but does not contribute substantially to the acceptor concentration in the buried p region. As a result, the invention provides for improved field effect semiconductor and related devices with enhancement of both DC and high-frequency performance.
Impact of Dispersion Slope on SPM Degradation in WDM Systems With High Channel Count
NASA Astrophysics Data System (ADS)
Luí; S, Ruben S.; Cartaxo, Adolfo V. T.
2005-11-01
Dispersion management design in wavelength division multiplexing (WDM) intensity modulation-direct detection (IM-DD) systems is often difficult due to the complex relation between the dispersion-management parameters (inline and total residual dispersion) and nonlinear impairments, such as cross-phase modulation (XPM). In this paper, we investigate the dependence of the XPM degradation on the dispersion-management parameters of a two-channel system. Afterwards, the XPM degradation on systems with high channel count (161 channels) is analytically evaluated, and the observed behaviors are explained using the results obtained with a two-channel system. In the absence of dispersion-slope compensation (DSC), significant differences in the XPM degradation of different channels in the same system are shown. Such differences result mainly from the strong dependence of the phase-modulation-to-intensity-modulation conversion of the XPM on the dispersion-management parameters of each channel. Due to this dependence, numerical results show that, unlike systems without dispersion compensation (DC), the XPM degradation may increase steadily with the channel count, and the worst-case channel may not be the center channel of the transmitted band. DSC allows a remarkable equalization of the XPM degradation along the transmitted band, facilitating dispersion-management planning. However, variations of the dispersion parameter and excessive residual dispersion that is not compensated may still induce a tilt of the XPM degradation along the transmitted band.
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R.; Lin, John C.
2006-01-01
This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan-face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan-face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3- Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCP(sub avg), the circumferential distortion level at the engine fan-face.
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R., Jr.; Lin, John C.
2006-01-01
This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCPavg, the circumferential distortion level at the engine fan face.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Armed Services.
These congressional hearings contain testimony given in Washington, D.C., in June 1981 pertaining to seven bills dealing with new educational assistance programs for military recruitment (H.R. 1400, H.R. 2579, H.R. 2399, H.R. 2790, H.R. 3340, H.R. 3713, and H.R. 3997). Included among those agencies/organizations represented at the hearings were…
Tunnel ionization of atoms and molecules: How accurate are the weak-field asymptotic formulas?
NASA Astrophysics Data System (ADS)
Labeye, Marie; Risoud, François; Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard
2018-05-01
Weak-field asymptotic formulas for the tunnel ionization rate of atoms and molecules in strong laser fields are often used for the analysis of strong field recollision experiments. We investigate their accuracy and domain of validity for different model systems by confronting them to exact numerical results, obtained by solving the time dependent Schrödinger equation. We find that corrections that take the dc-Stark shift into account are a simple and efficient way to improve the formula. Furthermore, analyzing the different approximations used, we show that error compensation plays a crucial role in the fair agreement between exact and analytical results.
Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation
NASA Technical Reports Server (NTRS)
Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.
2006-01-01
Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.
NASA Astrophysics Data System (ADS)
Poklonski, N. A.; Vyrko, S. A.; Zabrodskii, A. G.
2010-08-01
Expressions for the pre-exponential factor σ3 and the thermal activation energy ɛ3 of hopping electric conductivity of electrons via hydrogen-like donors in n-type gallium arsenide are obtained in the quasiclassical approximation. Crystals with the donor concentration N and the acceptor concentration KN at the intermediate compensation ratio K (approximately from 0.25 to 0.75) are considered. We assume that the donors in the charge states (0) and (+1) and the acceptors in the charge state (-1) form a joint nonstoichiometric simple cubic 'sublattice' within the crystalline matrix. In such sublattice the distance between nearest impurity atoms is Rh = [(1 + K)N]-1/3 which is also the length of an electron hop between donors. To take into account orientational disorder of hops we assume that the impurity sublattice randomly and smoothly changes orientation inside a macroscopic sample. Values of σ3(N) and ɛ3(N) calculated for the temperature of 2.5 K agree with known experimental data at the insulator side of the insulator-metal phase transition.
Taheri, Asghar; Zhalebaghi, Mohammad Hadi
2017-11-01
This paper presents a new control strategy based on finite-control-set model-predictive control (FCS-MPC) for Neutral-point-clamped (NPC) three-level converters. Containing some advantages like fast dynamic response, easy inclusion of constraints and simple control loop, makes the FCS-MPC method attractive to use as a switching strategy for converters. However, the large amount of required calculations is a problem in the widespread of this method. In this way, to resolve this problem this paper presents a modified method that effectively reduces the computation load compare with conventional FCS-MPC method and at the same time does not affect on control performance. The proposed method can be used for exchanging power between electrical grid and DC resources by providing active and reactive power compensations. Experiments on three-level converter for three Power Factor Correction (PFC), inductive and capacitive compensation modes verify the good and comparable performance. The results have been simulated using MATLAB/SIMULINK software. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Investigations into the use of energy storage in power system applications
NASA Astrophysics Data System (ADS)
Leung, Ka Kit
This thesis embodies research work on the design and implementation of novel fast responding battery energy storage systems, which, with sufficient capacity and rating, could remove the uncertainty in forecasting the annual peak demand. They would also benefit the day to day operation by curtailing the fastest demand variations, particularly at the daily peak periods. Energy storage that could curtail peak demands, when the most difficult operational problems occur offers a promising approach. Although AC energy cannot be stored, power electronic developments offer a fast responding interface between the AC network and DC energy stored in batteries. The attractive feature of the use of this energy storage could most effectively be located near the source of load variations, i.e. near consumers in the distribution networks. The proposed, three phase multi-purpose, Battery Energy Storage System will provide active and reactive power independent of the supply voltage with excellent power quality in terms of its waveform. Besides the above important functions applied at the distribution side of the utility, several new topologies have been developed to provide both Dynamic Voltage Regulator (DVR) and Unified Power Flow Controller (UPFC) functions for line compensation. These new topologies can provide fast and accurate control of power flow along a distribution corridor. The topologies also provide for fast damping of system oscillation due to transient or dynamic disturbances. Having demonstrated the various functions that the proposed Battery Energy Storage System can provide, the final part of the thesis investigates means of improving the performance of the proposed BESS. First, there is a need to reduce the switching losses by using soft switching instead of hard switching. A soft switching inverter using a parallel resonant dc-link (PRDCL) is proposed for use with the proposed BESS. The proposed PRDCL suppresses the dc-link voltage to zero for a very short time to allow zero voltage switching of inverter main switches without imposing excessive voltage and current stresses. Finally, in practice the battery terminal voltage fluctuates significantly as large current is being drawn or absorbed by the battery bank. When a hysteresis controller is used to control the supply line current, the ripple magnitude and frequency of the controlled current is highly dependent on the battery voltage, line inductance and the band limits of the controller. Even when these parameters are constant, the switching frequency can vary over quite a large range. A novel method is proposed to overcome this problem by controlling the dc voltage level by means of a dc-dc converter to provide a controllable voltage at the inverter dc terminal irrespective of the battery voltage variations. By proper control of the magnitude and frequency of the output of the DC-DC converter, the switching frequency can be made close to constant. A mathematical proof has been formulated and results from the simulation confirm that using the proposed technique, the frequency band has been significantly reduced and for the theoretical case, a single switching frequency is observed. The main disadvantage is the need to have an extra dc-dc converter, but this is relatively cheap and easy to obtain.
Applications of spectral band adjustment factors (SBAF) for cross-calibration
Chander, Gyanesh
2013-01-01
To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface acquired from multiple spaceborne imaging sensors. However, an integrated global observation framework requires an understanding of how land surface processes are seen differently by various sensors. This is particularly true for sensors acquiring data in spectral bands whose relative spectral responses (RSRs) are not similar and thus may produce different results while observing the same target. The intrinsic offsets between two sensors caused by RSR mismatches can be compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of the two sensors. The motivation of this work comes from the need to compensate the spectral response differences of multispectral sensors in order to provide a more accurate cross-calibration between the sensors. In this paper, radiometric cross-calibration of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors was performed using near-simultaneous observations over the Libya 4 pseudoinvariant calibration site in the visible and near-infrared spectral range. The RSR differences of the analogous ETM+ and MODIS spectral bands provide the opportunity to explore, understand, quantify, and compensate for the measurement differences between these two sensors. The cross-calibration was initially performed by comparing the top-of-atmosphere (TOA) reflectances between the two sensors over their lifetimes. The average percent differences in the long-term trends ranged from $-$5% to $+$6%. The RSR compensated ETM+ TOA reflectance (ETM+$^{ast}$) measurements were then found to agree with MODIS TOA reflectance to within 5% for all bands when Earth Observing-1 Hy- erion hyperspectral data were used to produce the SBAFs. These differences were later reduced to within 1% for all bands (except band 2) by using Environmental Satellite Scanning Imaging Absorption Spectrometer for Atmospheric Cartography hyperspectral data to produce the SBAFs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naim; Barbose, Galen; Wiser, Ryan
2010-03-30
Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods aremore » under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.« less
A low-noise delta-sigma phase modulator for polar transmitters.
Zhou, Bo
2014-01-01
A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μ m CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of -104 dBc/Hz and -120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively.
The contribution of occupation to health inequality
Ravesteijn, Bastian; van Kippersluis, Hans; van Doorslaer, Eddy
2014-01-01
Health is distributed unequally by occupation. Workers on a lower rung of the occupational ladder report worse health, have a higher probability of disability and die earlier than workers higher up the occupational hierarchy. Using a theoretical framework that unveils some of the potential mechanisms underlying these disparities, three core insights emerge: (i) there is selection into occupation on the basis of initial wealth, education, and health, (ii) there will be behavioural responses to adverse working conditions, which can have compensating or reinforcing effects on health, and (iii) workplace conditions increase health inequalities if workers with initially low socioeconomic status choose harmful occupations and don’t offset detrimental health effects. We provide empirical illustrations of these insights using data for the Netherlands and assess the evidence available in the economics literature. PMID:24899789
NASA Astrophysics Data System (ADS)
Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin
2017-04-01
We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.
Adaptive control system for line-commutated inverters
NASA Technical Reports Server (NTRS)
Dolland, C. R.; Bailey, D. A. (Inventor)
1983-01-01
A control system for a permanent magnet motor driven by a multiphase line commutated inverter is provided with integration for integrating the back EMF of each phase of the motor. This is used in generating system control signals for an inverter gate logic using a sync and firing angle (alpha) control generator connected to the outputs of the integrators. A precision full wave rectifier provides a speed control feedback signal to a phase delay rectifier via a gain and loop compensation circuit and to the integrators for adaptive control of the attenuation of low frequencies by the integrators as a function of motor speed. As the motor speed increases, the attenuation of low frequency components by the integrators is increased to offset the gain of the integrators to spurious low frequencies.
Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator
NASA Astrophysics Data System (ADS)
Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.
2016-12-01
Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.
Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu
2017-01-01
We present an approach for both efficient generation and amplification of 4–12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8–4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of Terawatt-level 4–12 μm pulses with an available large-aperture ZGP. Furthermore, the 4–12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4–4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4–12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser. PMID:28367966
NASA Astrophysics Data System (ADS)
Bora, B.; Soto, L.
2014-08-01
Capacitively coupled radio frequency (CCRF) plasmas are widely studied in last decades due to the versatile applicability of energetic ions, chemically active species, radicals, and also energetic neutral species in many material processing fields including microelectronics, aerospace, and biology. A dc self-bias is known to generate naturally in geometrically asymmetric CCRF plasma because of the difference in electrode sizes known as geometrical asymmetry of the electrodes in order to compensate electron and ion flux to each electrode within one rf period. The plasma series resonance effect is also come into play due to the geometrical asymmetry and excited several harmonics of the fundamental in low pressure CCRF plasma. In this work, a 13.56 MHz CCRF plasma is studied on the based on the nonlinear global model of asymmetric CCRF discharge to understand the influences of finite geometrical asymmetry of the electrodes in terms of generation of dc self-bias and plasma heating. The nonlinear global model on asymmetric discharge has been modified by considering the sheath at the grounded electrode to taking account the finite geometrical asymmetry of the electrodes. The ion density inside both the sheaths has been taken into account by incorporating the steady-state fluid equations for ions considering that the applied rf frequency is higher than the typical ion plasma frequency. Details results on the influences of geometrical asymmetry on the generation of dc self-bias and plasma heating are discussed.
Self-Calibration Approach for Mixed Signal Circuits in Systems-on-Chip
NASA Astrophysics Data System (ADS)
Jung, In-Seok
MOSFET scaling has served industry very well for a few decades by proving improvements in transistor performance, power, and cost. However, they require high test complexity and cost due to several issues such as limited pin count and integration of analog and digital mixed circuits. Therefore, self-calibration is an excellent and promising method to improve yield and to reduce manufacturing cost by simplifying the test complexity, because it is possible to address the process variation effects by means of self-calibration technique. Since the prior published calibration techniques were developed for a specific targeted application, it is not easy to be utilized for other applications. In order to solve the aforementioned issues, in this dissertation, several novel self-calibration design techniques in mixed-signal mode circuits are proposed for an analog to digital converter (ADC) to reduce mismatch error and improve performance. These are essential components in SOCs and the proposed self-calibration approach also compensates the process variations. The proposed novel self-calibration approach targets the successive approximation (SA) ADC. First of all, the offset error of the comparator in the SA-ADC is reduced using the proposed approach by enabling the capacitor array in the input nodes for better matching. In addition, the auxiliary capacitors for each capacitor of DAC in the SA-ADC are controlled by using synthesized digital controller to minimize the mismatch error of the DAC. Since the proposed technique is applied during foreground operation, the power overhead in SA-ADC case is minimal because the calibration circuit is deactivated during normal operation time. Another benefit of the proposed technique is that the offset voltage of the comparator is continuously adjusted for every step to decide one-bit code, because not only the inherit offset voltage of the comparator but also the mismatch of DAC are compensated simultaneously. Synthesized digital calibration control circuit operates as fore-ground mode, and the controller has been highly optimized for low power and better performance with simplified structure. In addition, in order to increase the sampling clock frequency of proposed self-calibration approach, novel variable clock period method is proposed. To achieve high speed SAR operation, a variable clock time technique is used to reduce not only peak current but also die area. The technique removes conversion time waste and extends the SAR operation speed easily. To verify and demonstrate the proposed techniques, a prototype charge-redistribution SA-ADCs with the proposed self-calibration is implemented in a 130nm standard CMOS process. The prototype circuit's silicon area is 0.0715 mm 2 and consumers 4.62mW with 1.2V power supply.
Multimedia transmission in MC-CDMA using adaptive subcarrier power allocation and CFO compensation
NASA Astrophysics Data System (ADS)
Chitra, S.; Kumaratharan, N.
2018-02-01
Multicarrier code division multiple access (MC-CDMA) system is one of the most effective techniques in fourth-generation (4G) wireless technology, due to its high data rate, high spectral efficiency and resistance to multipath fading. However, MC-CDMA systems are greatly deteriorated by carrier frequency offset (CFO) which is due to Doppler shift and oscillator instabilities. It leads to loss of orthogonality among the subcarriers and causes intercarrier interference (ICI). Water filling algorithm (WFA) is an efficient resource allocation algorithm to solve the power utilisation problems among the subcarriers in time-dispersive channels. The conventional WFA fails to consider the effect of CFO. To perform subcarrier power allocation with reduced CFO and to improve the capacity of MC-CDMA system, residual CFO compensated adaptive subcarrier power allocation algorithm is proposed in this paper. The proposed technique allocates power only to subcarriers with high channel to noise power ratio. The performance of the proposed method is evaluated using random binary data and image as source inputs. Simulation results depict that the bit error rate performance and ICI reduction capability of the proposed modified WFA offered superior performance in both power allocation and image compression for high-quality multimedia transmission in the presence of CFO and imperfect channel state information conditions.
Characteristics of individuals with integrated pensions.
Bender, K A
1999-01-01
Employer pensions that integrate benefits with Social Security have been the focus of relatively little research. Since changes in Social Security benefit levels and other program characteristics can affect the benefit levels and other features of integrated pension plans, it is important to know who is covered by these plans. This article examines the characteristics of workers covered by integrated pension plans, compared to those with nonintegrated plans and those with no pension coverage. Integrated pension plans are those that explicitly adjust their benefit structure to help compensate for the employer's contributions to the Social Security program. There are two basic integration methods used by defined benefit (DB) plans. The offset method causes a reduction in employer pension benefits by up to half of the Social Security retirement benefit; the excess rate method is characterized by an accrual rate that is lower for earnings below the Social Security taxable maximum than above it. Defined contribution (DC) pension plans can be integrated along the lines of the excess rate method. To date, research on integrated pensions has focused on plan characteristics, as reported to the Bureau of Labor Statistics (BLS) through its Employee Benefits Survey (EBS). This research has examined the prevalence of integration among full-time, private sector workers by industry, firm size, and broad occupational categories. However, because the EBS provides virtually no data on worker characteristics, analyses of the effects of pension integration on retirement benefits have used hypothetical workers, varying according to assumed levels of earnings and job tenure. This kind of analysis is not particularly helpful in examining the potential effects of changes in the Social Security program on workers' pension benefits. However, data on pension integration at the individual level are available, most recently from the Health and Retirement Study (HRS), a nationally representative survey of individuals aged 51-61 in 1992. This dataset provides the basis for the analysis presented here. The following are some of the major findings from this analysis. The incidence of pension integration in the HRS sample is 32 percent of all workers with a pension (14 percent of all workers). The HRS can also identify integrated DC plans, a statistic that is not available from BLS data. The rate of integration for workers with only DC plans is 8 percent. After controlling for other variables, several socio-demographic characteristics are significantly related to the incidence of integration. The probability of having an integrated pension is 4.6 percentage points less for men compared to women. Non-Hispanic blacks are 6.4 percentage points less likely than non-Hispanic whites to have integrated pensions. Union members are 14 percentage points less likely to have integrated pensions, while workers with less than a graduate level education are at least 15 percentage points more likely to have a pension that is integrated. Some earnings and pension characteristics are also significantly correlated with pension integration. Earnings are positively related, with the probability of having an integrated pension increasing by 2 percentage points for an increase of $1,000 in annual pay. An even larger effect comes from earning at or above the Social Security taxable maximum. Workers at or above this income level are 10 percentage points more likely to have an integrated plan, but for those with more than one plan the probability of pension integration goes up by 13 percentage points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen
The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and furthermore » rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer adoption of PV (from -14% to -61%, depending on the design). Moving towards time-varying rates, on the other hand, may accelerate near- and medium-term deployment (through 2030), but is found to slow adoption in the longer term (-22% in 2050).« less
American Pharmacists Association; Bough, Marcie
2011-01-01
To develop an improved risk evaluation and mitigation strategies (REMS) system for maximizing effective and safe patient medication use while minimizing burden on the health care delivery system. 34 stakeholders gathered October 6-7, 2010, in Arlington, VA, for the REMS Stakeholder Meeting, convened by the American Pharmacists Association (APhA). Participants included national health care provider associations, including representatives for physicians, physician assistants, nurses, nurse practitioners, and pharmacists, as well as representatives for patient advocates, drug distributors, community pharmacists (chain and independent), drug manufacturer associations (brand, generic, and biologic organizations), and health information technology, standards, and safety organizations. Staff from the Food and Drug Administration (FDA) Center for Drug Evaluation and Research participated as observers. The meeting built on themes from the APhA's 2009 REMS white paper. The current REMS environment presents many challenges for health care providers due to the growing number of REMS programs and the lack of standardization or similarities among various REMS programs. A standardized REMS process that focuses on maximizing patient safety and minimizing impacts on patient access and provider implementation could offset these challenges. A new process that includes effective provider interventions and standardized tools and systems for implementing REMS programs may improve patient care and overcome some of the communication issues providers and patients currently face. Metrics could be put in place to evaluate the effectiveness of REMS elements. By incorporating REMS program components into existing technologies and data infrastructures, achieving REMS implementation that is workflow neutral and minimizes administrative burden may be possible. An appropriate compensation model could ensure providers have adequate resources for patient care and REMS implementation. Overall, stakeholders should continue to work collaboratively with FDA and manufacturers to improve REMS program design and implementation issues. A workable REMS system will require effective patient interventions, standardized elements that limit barriers to implementation for both patients and providers, standardized yet flexible implementation strategies, use of existing technologies in practice settings, increased opportunities for provider input early in REMS design processes, improved communication strategies and awareness of program requirements, and viable provider compensation models needed to offset costs to implement and comply with REMS program requirements.
Mechanisms for Adjusting Interaural Time Differences to Achieve Binaural Coincidence Detection
Seidl, Armin H.; Rubel, Edwin W; Harris, David M.
2010-01-01
Understanding binaural perception requires detailed analyses of the neural circuitry responsible for the computation of interaural time differences (ITDs). In the avian brainstem, this circuit consists of internal axonal delay lines innervating an array of coincidence detector neurons that encode external ITDs. Nucleus magnocellularis (NM) neurons project to the dorsal dendritic field of the ipsilateral nucleus laminaris (NL) and to the ventral field of the contralateral NL. Contralateral-projecting axons form a delay line system along a band of NL neurons. Binaural acoustic signals in the form of phase-locked action potentials from NM cells arrive at NL and establish a topographic map of sound source location along the azimuth. These pathways are assumed to represent a circuit similar to the Jeffress model of sound localization, establishing a place code along an isofrequency contour of NL. Three-dimensional measurements of axon lengths reveal major discrepancies with the current model; the temporal offset based on conduction length alone makes encoding of physiological ITDs impossible. However, axon diameter and distances between Nodes of Ranvier also influence signal propagation times along an axon. Our measurements of these parameters reveal that diameter and internode distance can compensate for the temporal offset inferred from axon lengths alone. Together with other recent studies these unexpected results should inspire new thinking on the cellular biology, evolution and plasticity of the circuitry underlying low frequency sound localization in both birds and mammals. PMID:20053889
A Fully Integrated Sensor SoC with Digital Calibration Hardware and Wireless Transceiver at 2.4 GHz
Kim, Dong-Sun; Jang, Sung-Joon; Hwang, Tae-Ho
2013-01-01
A single-chip sensor system-on-a-chip (SoC) that implements radio for 2.4 GHz, complete digital baseband physical layer (PHY), 10-bit sigma-delta analog-to-digital converter and dedicated sensor calibration hardware for industrial sensing systems has been proposed and integrated in a 0.18-μm CMOS technology. The transceiver's building block includes a low-noise amplifier, mixer, channel filter, receiver signal-strength indicator, frequency synthesizer, voltage-controlled oscillator, and power amplifier. In addition, the digital building block consists of offset quadrature phase-shift keying (OQPSK) modulation, demodulation, carrier frequency offset compensation, auto-gain control, digital MAC function, sensor calibration hardware and embedded 8-bit microcontroller. The digital MAC function supports cyclic redundancy check (CRC), inter-symbol timing check, MAC frame control, and automatic retransmission. The embedded sensor signal processing block consists of calibration coefficient calculator, sensing data calibration mapper and sigma-delta analog-to-digital converter with digital decimation filter. The sensitivity of the overall receiver and the error vector magnitude (EVM) of the overall transmitter are −99 dBm and 18.14%, respectively. The proposed calibration scheme has a reduction of errors by about 45.4% compared with the improved progressive polynomial calibration (PPC) method and the maximum current consumption of the SoC is 16 mA. PMID:23698271
The Master Settlement Agreement and Its Impact on Tobacco Use 10 Years Later
Jones, Walter J.
2010-01-01
The issue of tobacco industry responsibility for population health problems and compensation for their treatment has been growing since the 1960s. In 1999, the state attorneys general collectively launched the largest class action lawsuit in US history and sued the tobacco industry to recover the costs of caring for smokers. In what became known as the Master Settlement Agreement (MSA), states were rewarded billions of dollars and won concessions regarding how cigarettes could be advertised and targeted to minors. Ten years after this settlement, much is known about how MSA monies were distributed and how states have used the money. There is some understanding about how much of the money went toward offsetting the health-care costs attributable to smoking and whether resources were allocated to efforts to reduce smoking in a particular state. However, there are few data on what effect, if any, the MSA had on tobacco control locally and nationally. This commentary explores these issues, as well as how the tobacco industry has evolved to offset the losses incurred by the settlement. Finally, an analysis of the complexities of current tobacco policy making is provided so that physicians and other health-care advocacy groups can more completely understand the present-day political dynamics and be more effective in shaping tobacco control policy in the future. PMID:20202950
NASA Astrophysics Data System (ADS)
Chu, Enhui; Gamage, Laknath; Ishitobi, Manabu; Hiraki, Eiji; Nakaoka, Mutsuo
The A variety of switched-mode high voltage DC power supplies using voltage-fed type or current-fed type high-frequency transformer resonant inverters using MOS gate bipolar power transistors; IGBTs have been recently developed so far for a medical-use X-ray high power generator. In general, the high voltage high power X-ray generator using voltage-fed high frequency inverter with a high voltage transformer link has to meet some performances such as (i) short rising period in start transient of X-ray tube voltage (ii) no overshoot transient response in tube voltage, (iii) minimized voltage ripple in periodic steady-state under extremely wide load variations and filament heater current fluctuation conditions of the X-ray tube. This paper presents two lossless inductor snubber-assisted series resonant zero current soft switching high-frequency inverter using a diode-capacitor ladder type voltage multiplier called Cockcroft-Walton circuit, which is effectively implemented for a high DC voltage X-ray power generator. This DC high voltage generator which incorporates pulse frequency modulated series resonant inverter using IGBT power module packages is based on the operation principle of zero current soft switching commutation scheme under discontinuous resonant current and continuous resonant current transition modes. This series capacitor compensated for transformer resonant power converter with a high frequency transformer linked voltage boost multiplier can efficiently work a novel selectively-changed dual mode PFM control scheme in order to improve the start transient and steady-state response characteristics and can completely achieve stable zero current soft switching commutation tube filament current dependent for wide load parameter setting values with the aid of two lossless inductor snubbers. It is proved on the basis of simulation and experimental results in which a simple and low cost control implementation based on selectively-changed dual-mode PFM for high-voltage X-ray DC-DC power converter with a voltage multiplier strategy has some specified voltage pattern tracking voltage response performances under rapid rising time and no overshoot in start transient tube voltage as well as the minimized steady-state voltage ripple in tube voltage.
Non-Double-Couple Component Analysis of Induced Microearthquakes in the Val D'Agri Basin (Italy)
NASA Astrophysics Data System (ADS)
Roselli, P.; Improta, L.; Saccorotti, G.
2017-12-01
In recent years it has become accepted that earthquake source can attain significant Non-Double-Couple (NDC) components. Among the driving factors of deviation from normal double-couple (DC) mechanisms there is the opening/closing of fracture networks and the activation of pre-existing faults by pore fluid pressure perturbations. This observation makes the thorough analysis of source mechanism of key importance for the understanding of withdrawal/injection induced seismicity from geothermal and hydrocarbon reservoirs, as well as of water reservoir induced seismicity. In addition to the DC component, seismic moment tensor can be decomposed into isotropic (ISO) and compensated linear vector dipole (CLVD) components. In this study we performed a careful analysis of the seismic moment tensor of induced microseismicity recorded in the Val d'Agri (Southern Apennines, Italy) focusing our attention on the NDC component. The Val d'Agri is a Quaternary extensional basin that hosts the largest onshore European oil field and a water reservoir (Pertusillo Lake impoundment) characterized by severe seasonal level oscillations. Our input data-set includes swarm-type induced micro-seismicity recorded between 2005-2006 by a high-performance network and accurately localized by a reservoir-scale local earthquake tomography. We analyze two different seismicity clusters: (i) a swarm of 69 earthquakes with 0.3 ≤ ML ≤ 1.8 induced by a wastewater disposal well of the oilfield during the initial daily injection tests (10 days); (ii) 526 earthquakes with -0.2 ≤ ML ≤ 2.7 induced by seasonal volume changes of the artificial lake. We perform the seismic moment tensor inversion by using HybridMT code. After a very accurate signal-to-noise selection and hand-made picking of P-pulses, we obtain %DC, %ISO, %CLVD for each event. DC and NDC components are analyzed and compared with the spatio-temporal distribution of seismicity, the local stress field, the injection parameters and the water level in the impoundment. We find significant NDC components and abrupt temporal variations in the %DC and %ISO components that appear linked to the extremely variable parameters of the injection tests into the disposal well.
Fiber optic and laser sensors IV; Proceedings of the Meeting, Cambridge, MA, Sept. 22-24, 1986
NASA Technical Reports Server (NTRS)
De Paula, Ramon P. (Editor); Udd, Eric (Editor)
1987-01-01
The conference presents papers on industrial uses of fiber optic sensors, point and distributed polarimetric optical fiber sensors, fiber optic electric field sensor technology, micromachined resonant structures, single-mode fibers for sensing applications, and measurement techniques for magnetic field gradient detection. Consideration is also given to electric field meter and temperature measurement techniques for the power industry, the calibration of high-temperature fiber-optic microbend pressure transducers, and interferometric sensors for dc measurands. Other topics include the recognition of colors and collision avoidance in robotics using optical fiber sensors, the loss compensation of intensity-modulating fiber-optic sensors, and an embedded optical fiber strain tensor for composite structure applications.
Enzor, Laura A.; Hunter, Evan M.
2017-01-01
Abstract The adaptations used by notothenioid fish to combat extreme cold may have left these fish poorly poised to deal with a changing environment. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly affect the energetic demands and subsequent cellular processes necessary for survival. Despite recent lines of evidence demonstrating that notothenioid fish retain the ability to acclimate to elevated temperatures, the underlying mechanisms responsible for temperature acclimation in these fish remain largely unknown. Furthermore, little information exists on the capacity of Antarctic fish to respond to changes in multiple environmental variables. We have examined the effects of increased temperature and pCO2 on the rate of oxygen consumption in three notothenioid species, Trematomus bernacchii, Pagothenia borchgrevinki, and Trematomus newnesi. We combined these measurements with analysis of changes in aerobic and anaerobic capacity, lipid reserves, fish condition, and growth rates to gain insight into the metabolic cost associated with acclimation to this dual stress. Our findings indicated that temperature is the major driver of the metabolic responses observed in these fish and that increased pCO2 plays a small, contributing role to the energetic costs of the acclimation response. All three species displayed varying levels of energetic compensation in response to the combination of elevated temperature and pCO2. While P. borchgrevinki showed nearly complete compensation of whole animal oxygen consumption rates and aerobic capacity, T. newnesi and T. bernacchii displayed only partial compensation in these metrics, suggesting that at least some notothenioids may require physiological trade-offs to fully offset the energetic costs of long-term acclimation to climate change related stressors. PMID:28852515
Enzor, Laura A; Hunter, Evan M; Place, Sean P
2017-01-01
The adaptations used by notothenioid fish to combat extreme cold may have left these fish poorly poised to deal with a changing environment. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly affect the energetic demands and subsequent cellular processes necessary for survival. Despite recent lines of evidence demonstrating that notothenioid fish retain the ability to acclimate to elevated temperatures, the underlying mechanisms responsible for temperature acclimation in these fish remain largely unknown. Furthermore, little information exists on the capacity of Antarctic fish to respond to changes in multiple environmental variables. We have examined the effects of increased temperature and p CO 2 on the rate of oxygen consumption in three notothenioid species, Trematomus bernacchii , Pagothenia borchgrevinki , and Trematomus newnesi . We combined these measurements with analysis of changes in aerobic and anaerobic capacity, lipid reserves, fish condition, and growth rates to gain insight into the metabolic cost associated with acclimation to this dual stress. Our findings indicated that temperature is the major driver of the metabolic responses observed in these fish and that increased p CO 2 plays a small, contributing role to the energetic costs of the acclimation response. All three species displayed varying levels of energetic compensation in response to the combination of elevated temperature and p CO 2 . While P. borchgrevinki showed nearly complete compensation of whole animal oxygen consumption rates and aerobic capacity, T. newnesi and T. bernacchii displayed only partial compensation in these metrics, suggesting that at least some notothenioids may require physiological trade-offs to fully offset the energetic costs of long-term acclimation to climate change related stressors.
Motor control for a brushless DC motor
NASA Technical Reports Server (NTRS)
Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)
1985-01-01
This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.
NASA Astrophysics Data System (ADS)
Gajewski, Juliusz B.; Glogowski, Marek J.
2008-12-01
The former research [1] was carried out on the influence of tribocharging in a system: metal rotating shaft-oil-lip seal on its work, especially on changes in the shaft braking torque with the increasing angular shaft velocity and oil temperature. The results obtained suggested that there be a possibility of reducing the braking torque by an external electric field. The compensation for the electric field generated in the system by natural tribocharging was proposed. The reduction in the braking torque seemed possible while applying an external DC electric field to the system. In general, the torque tended to increase with the increasing DC electric field for a variety of the oils and lip seals used and for different shaft angular velocities (rotational speeds) and oil temperatures. The braking torque reduction was achieved only for one lip seal and some different oils, which was and is a promising, expected result. The research results were yet presented elsewhere [1-3] and here some novel attempt has been made to interpret the results obtained in their physical—tribological and especially electrostatic—aspects since there has been a lack of such an interpretation in the literature of the subject.
Fuzzy logic control of stand-alone photovoltaic system with battery storage
NASA Astrophysics Data System (ADS)
Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.
Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Sampriti; Pilipenko, Roman; /Fermilab
2010-01-01
Superconducting accelerators, such as the International Linear Collider (ILC), rely on very high Q accelerating cavities to achieve high electric fields at low RF power. Such cavities have very narrow resonances: a few kHz with a 1.3GHz resonance frequency for the ILC. Several mechanical factors cause tune shifts much larger than this: pressure variations in the liquid helium bath; microphonics from pumps and other mechanical devices; and for a pulsed machine such as the ILC, Lorentz force detuning (pressure from the contained RF field). Simple passive stiffening is limited by many manufacturing and material considerations. Therefore, active tuning using piezomore » actuators is needed. Here we study a supply for their operation. Since commercial power amplifiers are expensive, we analyzed the characteristics of four power amplifiers: (iPZD) built by Istituto Nazionale di Fisica Nucleare (Sezione di Pisa); and a DC-DC converter power supply built in Fermilab (Piezo Master); and two commercial amplifiers, Piezosystem jena and Piezomechanik. This paper presents an analysis and characterization of these amplifiers to understand the cost benefit and reliability when using in a large scale, pulsed beam accelerator like the ILC.« less
A Low-Noise Delta-Sigma Phase Modulator for Polar Transmitters
Zhou, Bo
2014-01-01
A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μm CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of −104 dBc/Hz and −120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively. PMID:24719578
Analysis of the possibility of a PGA309 integrated circuit application in pressure sensors
NASA Astrophysics Data System (ADS)
Walendziuk, Wojciech; Baczewski, Michal; Idzkowski, Adam
2016-09-01
This article present the results of research concerning the analysis of the possibilities of applying a PGA309 integrated circuit in transducers used for pressure measurement. The experiments were done with the use of a PGA309EVM-USB evaluation circuit with a BD|SENSORS pressure sensor. A specially prepared MATLAB script was used in the process of the calibration setting choice and the results analysis. The article discusses the worked out algorithm that processes the measurement results, i.e. the algorithm which calculates the desired gain and the offset adjustment voltage of the transducer measurement bridge in relation to the input signal range of the integrated circuit and the temperature of the environment (temperature compensation). The checking procedure was conducted in a measurement laboratory and the obtained result were analyzed and discussed.
Label inspection of approximate cylinder based on adverse cylinder panorama
NASA Astrophysics Data System (ADS)
Lin, Jianping; Liao, Qingmin; He, Bei; Shi, Chenbo
2013-12-01
This paper presents a machine vision system for automated label inspection, with the goal to reduce labor cost and ensure consistent product quality. Firstly, the images captured from each single-camera are distorted, since the inspection object is approximate cylindrical. Therefore, this paper proposes an algorithm based on adverse cylinder projection, where label images are rectified by distortion compensation. Secondly, to overcome the limited field of viewing for each single-camera, our method novelly combines images of all single-cameras and build a panorama for label inspection. Thirdly, considering the shake of production lines and error of electronic signal, we design the real-time image registration to calculate offsets between the template and inspected images. Experimental results demonstrate that our system is accurate, real-time and can be applied for numerous real- time inspections of approximate cylinders.
Declining fertility and economic well-being: do education and health ride to the rescue?
Prettner, Klaus; Bloom, David E.; Strulik, Holger
2015-01-01
It is widely argued that declining fertility slows the pace of economic growth in industrialized countries through its negative effect on labor supply. There are, however, theoretical arguments suggesting that the effect of falling fertility on effective labor supply can be offset by associated behavioral changes. We formalize these arguments by setting forth a dynamic consumer optimization model that incorporates endogenous fertility as well as endogenous education and health investments. The model shows that a fertility decline induces higher education and health investments that are able to compensate for declining fertility under certain circumstances. We assess the theoretical implications by investigating panel data for 118 countries over the period 1980 to 2005 and show that behavioral changes partly mitigate the negative impact of declining fertility on effective labor supply. PMID:26388677
Calorimetric thermal-vacuum performance characterization of the BAe 80 K space cryocooler
NASA Technical Reports Server (NTRS)
Kotsubo, V. Y.; Johnson, D. L.; Ross, R. G., Jr.
1992-01-01
A comprehensive characterization program is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80 K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precise individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heatsink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stroke, drive frequency, and piston-displacer dc offset.
Wakes from submerged obstacles in an open channel flow
NASA Astrophysics Data System (ADS)
Smith, Geoffrey B.; Marmorino, George; Dong, Charles; Miller, W. D.; Mied, Richard
2015-11-01
Wakes from several submerged obstacles are examined via airborne remote sensing. The primary focus will be bathymetric features in the tidal Potomac river south of Washington, DC, but others may be included as well. In the Potomac the water depth is nominally 10 m with an obstacle height of 8 m, or 80% of the depth. Infrared imagery of the water surface reveals thermal structure suitable both for interpretation of the coherent structures and for estimating surface currents. A novel image processing technique is used to generate two independent scenes with a known time offset from a single overpass from the infrared imagery, suitable for velocity estimation. Color imagery of the suspended sediment also shows suitable texture. Both the `mountain wave' regime and a traditional turbulent wake are observed, depending on flow conditions. Results are validated with in-situ ADCP transects. A computational model is used to further interpret the results.
Precise frequency calibration using television video carriers
NASA Technical Reports Server (NTRS)
Burkhardt, Edward E.
1990-01-01
The availability of inexpensive and quick precise frequency calibration methods is limited. VLF and GPS do offer precise calibration. However, antenna placement, cost of equipment, and calibration time place many restrictions on the user. The USNO maintained line-10 television Time of Coincidence (TOC) of station WTTG, channel 5, Washington, DC requires a frequency stable video carrier. This video carrier, 77.24 MHz is controlled by the same cesium beam standard controlling the TOC of line-10. Excellent frequency comparisons against this video carrier have been accomplished at 95 miles (153 km). With stable propagation and a three foot wire antenna, a part in 10(exp 9) can be determined in a few minutes. Inexpensive field equipment with a synthesized 1 kHz offset from the video carrier offers parts in 10(exp 11) calibrations in a few minutes using an oscilloscope as a phase comparator.
Design, production, and testing of field effect transistors. [cryogenic MOSFETS
NASA Technical Reports Server (NTRS)
Sclar, N.
1982-01-01
Cryogenic MOSFETS (CRYOFETS), specifically designed for low temperature preamplifier application with infrared extrinsic detectors were produced and comparatively tested with p-channel MOSFETs under matched conditions. The CRYOFETs exhibit lower voltage thresholds, high source-follower gains at lower bias voltage, and lower dc offset source voltage. The noise of the CRYOFET is found to be 2 to 4 times greater than the MOSFET with a correspondingly lower figure of merit (which is established for source-follower amplifiers). The device power dissipation at a gain of 0.98 is some two orders of magnitude lower than for the MOSFET. Further, CRYOFETs are free of low temperature I vs V character hysteresis and balky conduction turn-on effects and operate effectively in the 2.4 to 20 K range. These devices have promise for use on long term duration sensor missions and for on-focal-plane signal processing at low temperatures.
A low power low noise analog front end for portable healthcare system
NASA Astrophysics Data System (ADS)
Yanchao, Wang; Keren, Ke; Wenhui, Qin; Yajie, Qin; Ting, Yi; Zhiliang, Hong
2015-10-01
The presented analog front end (AFE) used to process human bio-signals consists of chopping instrument amplifier (IA), chopping spikes filter and programmable gain and bandwidth amplifier. The capacitor-coupling input of AFE can reject the DC electrode offset. The power consumption of current-feedback based IA is reduced by adopting capacitor divider in the input and feedback network. Besides, IA's input thermal noise is decreased by utilizing complementary CMOS input pairs which can offer higher transconductance. Fabricated in Global Foundry 0.35 μm CMOS technology, the chip consumes 3.96 μA from 3.3 V supply. The measured input noise is 0.85 μVrms (0.5-100 Hz) and the achieved noise efficient factor is 6.48. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 13511501100), the State Key Laboratory Project of China (No. 11MS002), and the State Key Laboratory of ASIC & System, Fudan University.
Assessment of GPS carrier-phase stability for time-transfer applications.
Larson, K M; Levine, J; Nelson, L M; Parker, T E
2000-01-01
We have conducted global positioning system (GPS) carrier-phase time-transfer experiments between the master clock (MC) at the U.S. Naval Observatory (USNO) in Washington, DC and the alternate master clock (AMC) at Schriever Air Force Base near Colorado Springs, Colorado. These clocks are also monitored on an hourly basis with two-way satellite time-transfer (TWSTT) measurements. We compared the performance of the GPS carrier phase and TWSTT systems over a 236-d period. Because of power problems and data outages during the carrier-phase experiment, the longest continuous time span is 96 d. The data from this period show agreement with TWSTT within +/-1 ns, apart from an overall constant time offset (caused by unknown delays in the GPS hardware at both ends). For averaging times of a day, the carrier-phase and TWSTT systems have a frequency uncertainty of 2.5 and 5.5 parts in 10(15), respectively.
Precise frequency calibration using television video carriers
NASA Astrophysics Data System (ADS)
Burkhardt, Edward E.
1990-05-01
The availability of inexpensive and quick precise frequency calibration methods is limited. VLF and GPS do offer precise calibration. However, antenna placement, cost of equipment, and calibration time place many restrictions on the user. The USNO maintained line-10 television Time of Coincidence (TOC) of station WTTG, channel 5, Washington, DC requires a frequency stable video carrier. This video carrier, 77.24 MHz is controlled by the same cesium beam standard controlling the TOC of line-10. Excellent frequency comparisons against this video carrier have been accomplished at 95 miles (153 km). With stable propagation and a three foot wire antenna, a part in 10(exp 9) can be determined in a few minutes. Inexpensive field equipment with a synthesized 1 kHz offset from the video carrier offers parts in 10(exp 11) calibrations in a few minutes using an oscilloscope as a phase comparator.
Case Study Analyses of the SUCCESS DC-8 Scanning Lidar Database
NASA Technical Reports Server (NTRS)
Uthe, Edward E.
2000-01-01
Under project SUCCESS (Subsonic Aircraft Contrail and Cloud Effects Special Study) funded by the Atmospheric Effects of Aviation Program, SRI International (SRI) developed an angular scanning backscatter lidar for operation on the NASA DC-8 research aircraft and deployed the scanning lidar during the SUCCESS field campaign. The primary purpose of the lidar was to generate real-time video displays of clouds and contrails above, ahead of, and below the DC-8 as a means to help position the aircraft for optimum cloud and contrail sampling by onboard in situ sensors, and to help extend the geometrical domain of the in situ sampling records. A large, relatively complex lidar database was collected and several data examples were processed to illustrate the value of the lidar data for interpreting the other data records collected during SUCCESS. These data examples were used to develop a journal publication for the special SUCCESS Geophysical Research Letters issue. The data examples justified data analyses of a larger part of the DC-8 lidar database and is the objective of the current study. Efficient processing of the SUCCESS DC-8 scanning lidar database required substantial effort to enhance hardware and software components of the data system that was used for the initial analyses. MATLAB instructions are used to generate altitude and distance color-coded lidar displays corrected for effects introduced by aircraft pitch and forward movement during an angular scan time interval. Onboard in situ sensor atmospheric measurements are propagated to distances ahead of the DC-8 using recorded aircraft velocity so that they can be plotted on the lidar displays for comparison with lidar remotely observed aerosol distributions. Resulting lidar and in situ sensor polar scan displays over extended sampling intervals are integrated into a time series movie format for 36 case studies. Contrails and clouds were detected to ranges of 15 km by the forward-viewing angular scanning lidar and were progressively mapped as the aircraft approached and penetrated them. Near aircraft lidar observations were much better correlated with in situ sensor observations than lidar observations at greater distances ahead of the aircraft. The major cause of this difference was thought to be the about 2 deg. offset of the lidar viewing direction from the flight direction. Contrail spatial distributions were not of the quality obtainable from ground-based lidar observations. This results because contrails tend to become horizontally stratified, vertical distance between angular lidar observations increases with increased distance from the aircraft, and erratic aircraft motions during an angular scan. The most useful lidar observations were made with lidar viewing directions of vertically upward or vertically downward. These provided real-time information on aircraft altitudes to achieve optimum in situ cloud and contrail sampling. At sampling altitudes, the forward viewing angular scanning observations were useful for fine-tuning the aircraft altitude for cloud and contrail penetration. Best information on cloud and contrail properties were obtained from vertically directed lidar observations as the aircraft performed a series of upward and downward penetrations of contrails. This operational mode was especially well suited for lidar and radiometric evaluation of cloud and contrail optical and radiative properties. The vertical viewing lidar detected ice crystals thought to be precipitating from an aircraft contrail and their scavenging by a cirrus cloud layer. The lidar display indicates that the crystals are effective for increasing cirrus cloud density. Vertical angular scanning observations can evaluate the sharp decrease in lidar backscatter for small off-vertical viewing directions that result from horizontally aligned ice crystals and perhaps can provide additional information on crystal shapes. The about 2 deg. offset of the lidar viewing direction from the flight direction is thought to have greatly degraded the forward-viewing angular scanning observations and this mode of operation was not fully evaluated. However, the reasoning for this capability remains valid and the angular scan presentations collected during this program justifies modification of the lidar pod for true forward direction lidar viewing during future cloud and contrail studies.
UDOF direct improvement by modulating mask absorber thickness
NASA Astrophysics Data System (ADS)
Yu, Tuan-Yen; Lio, En Chuan; Chen, Po Tsang; Wei, Chih I.; Chen, Yi Ting; Peng, Ming Chun; Chou, William; Yu, Chun Chi
2016-10-01
As the process generation migrate to advanced and smaller dimension or pitch, the mask and resist 3D effects will impact the lithography focus common window severely because of both individual depth-of-focus (iDOF) range decrease and center mismatch. Furthermore, some chemical or thermal factors, such as PEB (Post Exposure Bake) also worsen the usable depth-of-focus (uDOF) performance. So the mismatch of thru-pitch iDOF center should be considered as a lithography process integration issue, and more complicated to partition the 3D effects induced by optical or chemical factors. In order to reduce the impact of 3D effects induced by both optical and chemical issues, and improve iDOF center mismatch, we would like to propose a mask absorber thickness offset approach, which is directly to compensate the iDOF center bias by adjusting mask absorber thickness, for iso, semi-iso or dense characteristics in line, space or via patterns to enlarge common process window, i.e uDOF, which intends to provide similar application as Flexwave[1] (ASML trademark). By the way, since mask absorber thickness offset approach is similar to focus tuning or change on wafer lithography process, it could be acted as the process tuning method of photoresist (PR) profile optimization locally, PR scum improvement in specific patterns or to modulate etching bias to meet process integration request. For mass production consideration, and available material, current att-PSM blank, quartz, MoSi with chrome layer as hard-mask in reticle process, will be implemented in this experiment, i.e. chrome will be kept remaining above partial thru-pitch patterns, and act as the absorber thickness bias in different patterns. And then, from the best focus offset of thru-pitch patterns, the iDOF center shifts could be directly corrected and to enlarge uDOF by increasing the overlap of iDOF. Finally, some negative tone development (NTD) result in line patterns will be demonstrated as well.
Effect of Target Location on Dynamic Visual Acuity During Passive Horizontal Rotation
NASA Technical Reports Server (NTRS)
Appelbaum, Meghan; DeDios, Yiri; Kulecz, Walter; Peters, Brian; Wood, Scott
2010-01-01
The vestibulo-ocular reflex (VOR) generates eye rotation to compensate for potential retinal slip in the specific plane of head movement. Dynamic visual acuity (DVA) has been utilized as a functional measure of the VOR. The purpose of this study was to examine changes in accuracy and reaction time when performing a DVA task with targets offset from the plane of rotation, e.g. offset vertically during horizontal rotation. Visual acuity was measured in 12 healthy subjects as they moved a hand-held joystick to indicate the orientation of a computer-generated Landolt C "as quickly and accurately as possible." Acuity thresholds were established with optotypes presented centrally on a wall-mounted LCD screen at 1.3 m distance, first without motion (static condition) and then while oscillating at 0.8 Hz (DVA, peak velocity 60 deg/s). The effect of target location was then measured during horizontal rotation with the optotypes randomly presented in one of nine different locations on the screen (offset up to 10 deg). The optotype size (logMar 0, 0.2 or 0.4, corresponding to Snellen range 20/20 to 20/50) and presentation duration (150, 300 and 450 ms) were counter-balanced across five trials, each utilizing horizontal rotation at 0.8 Hz. Dynamic acuity was reduced relative to static acuity in 7 of 12 subjects by one step size. During the random target trials, both accuracy and reaction time improved proportional to optotype size. Accuracy and reaction time also improved between 150 ms and 300 ms presentation durations. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements when acquiring vertical targets. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of motion. Both reaction time and accuracy are functionally relevant DVA parameters of VOR function.
Aquarius Digital Processing Unit
NASA Technical Reports Server (NTRS)
Forgione, Joshua; Winkert, George; Dobson, Norman
2009-01-01
Three documents provide information on a digital processing unit (DPU) for the planned Aquarius mission, in which a radiometer aboard a spacecraft orbiting Earth is to measure radiometric temperatures from which data on sea-surface salinity are to be deduced. The DPU is the interface between the radiometer and an instrument-command-and-data system aboard the spacecraft. The DPU cycles the radiometer through a programmable sequence of states, collects and processes all radiometric data, and collects all housekeeping data pertaining to operation of the radiometer. The documents summarize the DPU design, with emphasis on innovative aspects that include mainly the following: a) In the radiometer and the DPU, conversion from analog voltages to digital data is effected by means of asynchronous voltage-to-frequency converters in combination with a frequency-measurement scheme implemented in field-programmable gate arrays (FPGAs). b) A scheme to compensate for aging and changes in the temperature of the DPU in order to provide an overall temperature-measurement accuracy within 0.01 K includes a high-precision, inexpensive DC temperature measurement scheme and a drift-compensation scheme that was used on the Cassini radar system. c) An interface among multiple FPGAs in the DPU guarantees setup and hold times.
Static and dynamic parasitic magnetizations and their control in superconducting accelerator dipoles
NASA Astrophysics Data System (ADS)
Collings, E. W.; Sumption, M. D.
2001-05-01
Long dipole magnets guide the particle beams in synchrotron-type high energy accelerators. In principal Cu-wound DC-excited dipoles could be designed to deliver a very uniform transverse bore field, i.e. with small or negligible harmonic (multipolar) distortion. But if the Cu is replaced by (a) superconducting strand that is (b) wound into a Rutherford cable carrying a time-varying transport current, extra magnetizations present within the windings cause distortions of the otherwise uniform field. The static (persistent-current) strand magnetization can be reduced by reducing the filament diameter, and the residue compensated or corrected by strategically placed active or passive components. The cable’s interstrand coupling currents can be controlled by increasing the interstrand contact resistance by: adjusting the level of native oxidation of the strand, coating it, or by inserting a ribbon-like core into the cable itself. Methods of locally compensating the magnetization of NbTi and Nb 3Sn strand and cable are discussed, progress in coupling-current suppression through the use of coatings and cores is reviewed, and a method of simultaneously reducing both the static and dynamic magnetizations of a NbTi cable by means of a thin Ni core is suggested.
Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu‐Jung; Oh, Seung Kyu; You, Shin‐Jae; Ryou, Jae‐Hyun
2017-01-01
Abstract The origin of plasma‐induced damage on a p‐type wide‐bandgap layer during the sputtering of tin‐doped indium oxide (ITO) contact layers by using radiofrequency‐superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light‐emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p‐GaN surface can reduce plasma‐induced damage to the p‐GaN. Furthermore, electron‐beam irradiation on p‐GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma‐induced damage to the p‐GaN. The plasma electrons can increase the effective barrier height at the ITO/deep‐level defect (DLD) band of p‐GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage‐free sputtered‐ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e‐beam‐evaporated ITO TCE. PMID:29619312
Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop
2018-02-01
The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie; Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17; Gahan, David, E-mail: david.gahan@impedans.com
A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this researchmore » work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.« less
Myoelectric hand prosthesis force control through servo motor current feedback.
Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini
2009-10-01
This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.
Three-Level 48-Pulse STATCOM with Pulse Width Modulation
NASA Astrophysics Data System (ADS)
Singh, Bhim; Srinivas, Kadagala Venkata
2016-03-01
In this paper, a new control strategy of a three-level 48-pulse static synchronous compensator (STATCOM) is proposed with a constant dc link voltage and pulse width modulation at fundamental frequency switching. The proposed STATCOM is realized using eight units of three-level voltage source converters (VSCs) to form a three-level 48-pulse STATCOM. The conduction angle of each three-level VSC is modulated to control the ac converter output voltage, which controls the reactive power of the STATCOM. A fuzzy logic controller is used to control the STATCOM. The dynamic performance of the STATCOM is studied for the control of the reference reactive power, the reference terminal voltage and under the switching of inductive and capacitive loads.
Effects of voltage control in utility interactive dispersed storage and generation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkham, H.; Das, R.
1983-03-15
When a small generator is connected to the distribution system, the voltage at the point of interconnection is determined largely by the system and not the generator. This report examines the effect on the generator, on the load voltage and on the distribution system of a number of different voltage control strategies in the generator. Synchronous generators with three kinds of exciter control are considered, as well as induction generators and dc/ac inverters, with and without capacitor compensation. The effect of varying input power during operation (which may be experienced by generators based on renewable resources) is explored, as wellmore » as the effect of connecting and disconnecting the generator at ten percent of its rated power.« less
Low Reynolds Number Bacterial Robots
NASA Astrophysics Data System (ADS)
Giesbrecht, Grant; Ni, Katha; Vock, Isaac; Rodenborn, Bruce
The dynamics of prokaryotic motility in a fluid is important in a wide range of fields. Our experiment models the locomotion of bacteria with a robotic swimmer made using a computer controlled DC motor that drives a helical flagellum formed from welding wire. Because of its small size, a bacterium swimming in water is like our robot swimming in corn syrup. We compensate for the size difference by placing the robot in highly viscous silicone oil. Previous research measured helical propulsion of a swimmer far from a boundary. However proximity to a boundary strongly affects bacterial swimming. We have designed a system to precisely control the distance from the flagellum to the tank wall, and have made some of the first macroscopic measurements of boundary effects on helical propulsion.
The Value of Forest and Pasture to Water Supply in Kona, HI
NASA Astrophysics Data System (ADS)
Brauman, K. A.; Daily, G. C.; Freyberg, D. L.
2007-12-01
By quantifying the supply and value of ecosystem services flowing from private land, we can provide a mechanism for sustaining ecosystem services by compensating landowners for their supply. In order for compensation to occur, however, both suppliers and users of ecosystem services require information about the way different land management scenarios will affect ecosystem service flows. This case study in Kona, HI, takes advantage of the direct link between upland water source areas and municipal drinking water users in Kailua-Kona to explore the value of one type of hydrologic service. By quantifying the difference in aquifer recharge under paired forest and pasture sites, we assess the impact of each land-cover type on the volume of water potentially available to municipal water users. We use a water balance approach - measuring rainfall interception and water use by plants, then calculating the balance to be aquifer recharge because of the absence of surface runoff. We aim to integrate these biophysical measurements with information, including costs of pumping, well construction, and land-cover maintenance, provided by the water utility and landowners to ascertain the value of forest and pasture to water supply. By determining the value to water users in Kailua-Kona of the increase or decrease in water quantity that would result from upland land-cover change, we aim both to protect drinking water quantity and to help landowners offset financial pressure to convert their land.