Science.gov

Sample records for dc reactive magnetron

  1. Studies on optoelectronic properties of DC reactive magnetron sputtered chromium doped CdO thin films

    SciTech Connect

    Hymavathi, B. Rao, T. Subba; Kumar, B. Rajesh

    2014-10-15

    Cr doped CdO thin films were deposited on glass substrates by DC reactive magnetron sputtering method and subsequently annealed from 200 °C to 500 °C. X-ray diffraction analysis showed that the films exhibit (1 1 1) preferred orientation. The optical transmittance of the films increases from 64% to 88% with increasing annealing temperature. The optical band gap values were found to be decreased from 2.77 to 2.65 eV with the increase of annealing temperature. The decrease in optical band gap energy with increasing annealing temperature can be attributed to improvement in the crystallinity of the films and may also be due to quantum confinement effect. A minimum resistivity of 2.23 × 10{sup −4} Ω.cm and sheet resistance of 6.3 Ω/sq is obtained for Cr doped CdO film annealed at 500 °C.

  2. Reactive DC magnetron sputtered zirconium nitride (ZrN) thin film and its characterization

    NASA Astrophysics Data System (ADS)

    Subramanian, B.; Ashok, K.; Sanjeeviraja, C.; Kuppusami, P.; Jayachandran, M.

    2008-05-01

    Zirconium nitride (ZrN) thin films were prepared by using reactive direct current (DC) magnetron sputtering onto different substrates. A good polycrystalline nature with face centered cubic structure was observed from X-ray Diffraction for ZrN thin films. The observed 'd' values from the X-ray Diffraction pattern were found to be in good agreement with the standard 'd' values (JCPDS-89-5269). An emission peak is observed at 587nm from Photoluminescence studies for the excitation at 430nm. The resistivity value (ρ) of 2.1798 (μΩ cm) was observed. ZrN has high wear resistance and low coefficient of friction. A less negative value of Ecorr and lower value of Icorr observed for ZrN / Mild Steel (MS) clearly confirm the better corrosion resistance than the bare substrate. Also the higher Rct value and lower Cdl value was observed for ZrN / MS from Nyquist - plot.

  3. Synthesizing mixed phase titania nanocomposites with enhanced photoactivity and redshifted photoresponse by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Le

    Recent work points out the importance of the solid-solid interface in explaining the high photoactivity of mixed phase TiO2 catalysts. The goal of this research was to probe the synthesis-structure-function relationships of the solid-solid interfaces created by the reactive direct current (DC) magnetron sputtering of titanium dioxide. I hypothesize that the reactive DC magnetron sputtering is a useful method for synthesizing photo-catalysts with unique structure including solid-solid interfaces and surface defects that are associated with enhanced photoreactivity as well as a photoresponse shifted to longer wavelengths of light. I showed that sputter deposition provides excellent control of the phase and interface formation as well as the stoichiometry of the films. I explored the effects exerted by the process parameters of pressure, oxygen partial pressure, target power, substrate bias (RF), deposition incidence angle, and post annealing treatment on the structural and functional characteristics of the catalysts. I have successfully made pure and mixed phase TiO2 films. These films were characterized with UV-Vis, XPS, AFM, SEM, TEM, XRD and EPR, to determine optical properties, elemental stoichiometry, surface morphology, phase distribution and chemical coordination. Bundles of anatase-rutile nano-columns having high densities of dual-scale of interfaces among and within the columns are fabricated. Photocatalytic performance of the sputtered films as measured by the oxidation of the pollutant, acetaldehyde, and the reduction of CO2 for fuel (CH4) production was compared (normalized for surface area) to that of mixed phase TiO2 fabricated by other methods, including flame hydrolysis powders, and solgel deposited TiO 2 films. The sputtered mixed phase materials were far superior to the commercial standard (Degussa P25) and solgel TiO2 based on gas phase reaction of acetaldehyde oxidation under UV light and CO2 reduction under both UV and visible illuminations. The

  4. Structural and optical properties of DC reactive magnetron sputtered zinc aluminum oxide thin films

    SciTech Connect

    Kumar, B. Rajesh; Rao, T. Subba

    2014-10-15

    Highly transparent conductive Zinc Aluminum Oxide (ZAO) thin films have been deposited on glass substrates using DC reactive magnetron sputtering method. The thin films were deposited at 200 °C and post-deposition annealing from 15 to 90 min. XRD patterns of ZAO films exhibit only (0 0 2) diffraction peak, indicating that they have c-axis preferred orientation perpendicular to the substrate. Scanning electron microscopy (SEM) is used to study the surface morphology of the films. The grain size obtained from SEM images of ZAO thin films are found to be in the range of 20 - 26 nm. The minimum resistivity of 1.74 × 10{sup −4} Ω cm and an average transmittance of 92% are obtained for the thin film post annealed for 30 min. The optical band gap of ZAO thin films increased from 3.49 to 3.60 eV with the increase of annealing time due to Burstein-Moss effect. The optical constants refractive index (n) and extinction coefficient (k) were also determined from the optical transmission spectra.

  5. DC reactive magnetron sputtering, annealing, and characterization of CuAlO{sub 2} thin films

    SciTech Connect

    Stevens, Blake L.; Hoel, Cathleen A.; Swanborg, Carolyn; Tang Yang; Zhou Chuanle; Grayson, Matthew; Poeppelmeier, Kenneth R.; Barnett, Scott A.

    2011-01-15

    CuAlO{sub x} thin films were prepared at three substrate temperatures (T{sub S}=60, 300, and 600 deg. C) and two oxygen partial pressures (P{sub O{sub 2}}=0.5 and 2 mTorr) via dc reactive magnetron sputtering from Cu-Al 50-50 at. % alloy targets and subsequent annealing. As-deposited films with P{sub O{sub 2}}=0.5 mTorr were oxygen deficient; although the delafossite structure formed upon annealing, electrical properties were poor. Films deposited with P{sub O{sub 2}}=2 mTorr transformed into the delafossite structure and exhibited p-type conductivity after annealing under N{sub 2} at temperatures T{sub A}{>=}750 deg. C. Conductivity generally increased with increasing T{sub S} and decreasing T{sub A}. A special case of P{sub O{sub 2}}=2 mTorr and low T{sub S} (60 deg. C) resulted in a partially crystalline oxide phase that transformed into the delafossite structure at T{sub A}=700 deg. C and yielded the highest conductivity of 1.8 S cm{sup -1}. In general, a T{sub A} near the phase formation boundary led to an increase in conductivity. Low-temperature hydrothermal annealing was also investigated and shown to produce mixed phase films exhibiting the delafossite structure along with CuO, AlOOH, and Al{sub 2}O{sub 3}.

  6. Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films

    SciTech Connect

    Kumar, B. Rajesh; Hymavathi, B.; Rao, T. Subba

    2014-01-28

    Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2θ = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (ΔE) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, λ. The value of n and k increases with the increase of substrate temperature.

  7. Pulsed dc self-sustained magnetron sputtering

    SciTech Connect

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-09-15

    The magnetron sputtering has become one of the commonly used techniques for industrial deposition of thin films and coatings due to its simplicity and reliability. At standard magnetron sputtering conditions (argon pressure of {approx}0.5 Pa) inert gas particles (necessary to sustain discharge) are often entrapped in the deposited films. Inert gas contamination can be eliminated during the self-sustained magnetron sputtering (SSS) process, where the presence of the inert gas is not a necessary requirement. Moreover the SSS process that is possible due to the high degree of ionization of the sputtered material also gives a unique condition during the transport of sputtered particles to the substrate. So far it has been shown that the self-sustained mode of magnetron operation can be obtained using dc powering (dc-SSS) only. The main disadvantage of the dc-SSS process is its instability related to random arc formation. In such case the discharge has to be temporarily extinguished to prevent damaging both the magnetron source and power supply. The authors postulate that pulsed powering could protect the SSS process against arcs, similarly to reactive pulsed magnetron deposition processes of insulating thin films. To put this concept into practice, (i) the high enough plasma density has to be achieved and (ii) the type of pulsed powering has to be chosen taking plasma dynamics into account. In this article results of pulsed dc self-sustained magnetron sputtering (pulsed dc-SSS) are presented. The planar magnetron equipped with a 50 mm diameter and 6 mm thick copper target was used during the experiments. The maximum target power was about 11 kW, which corresponded to the target power density of {approx}560 W/cm{sup 2}. The magnetron operation was investigated as a function of pulse frequency (20-100 kHz) and pulse duty factor (50%-90%). The discharge (argon) extinction pressure level was determined for these conditions. The plasma emission spectra (400-410 nm range

  8. Morphology of TiN thin films grown on MgO(001) by reactive dc magnetron sputtering

    SciTech Connect

    Ingason, A. S.; Magnus, F.; Olafsson, S.; Gudmundsson, J. T.

    2010-07-15

    Thin TiN films were grown by reactive dc magnetron sputtering on single-crystalline MgO(001) substrates at a range of temperatures from room temperature to 600 deg. C. Structural characterization was carried out using x-ray diffraction and reflection methods. TiN films grow epitaxially on the MgO substrates at growth temperatures of 200 deg. C and above. The crystal coherence length determined from Laue oscillations and the Scherrer method agrees with x-ray reflection thickness measurements to 6% and within 3% for growth temperatures of 200 and 600 deg. C, respectively. For lower growth temperatures the films are polycrystalline but highly textured and porous.

  9. Decorative black TiCxOy film fabricated by DC magnetron sputtering without importing oxygen reactive gas

    NASA Astrophysics Data System (ADS)

    Ono, Katsushi; Wakabayashi, Masao; Tsukakoshi, Yukio; Abe, Yoshiyuki

    2016-02-01

    Decorative black TiCxOy films were fabricated by dc (direct current) magnetron sputtering without importing the oxygen reactive gas into the sputtering chamber. Using a ceramic target of titanium oxycarbide (TiC1.59O0.31), the oxygen content in the films could be easily controlled by adjustment of total sputtering gas pressure without remarkable change of the carbon content. The films deposited at 2.0 and 4.0 Pa, those are higher pressure when compared with that in conventional magnetron sputtering, showed an attractive black color. In particular, the film at 4.0 Pa had the composition of TiC1.03O1.10, exhibited the L* of 41.5, a* of 0.2 and b* of 0.6 in CIELAB color space. These values were smaller than those in the TiC0.29O1.38 films (L* of 45.8, a* of 1.2 and b* of 1.2) fabricated by conventional reactive sputtering method from the same target under the conditions of gas pressure of 0.3 Pa and optimized oxygen reactive gas concentration of 2.5 vol.% in sputtering gas. Analysis of XRD and XPS revealed that the black film deposited at 4.0 Pa was the amorphous film composed of TiC, TiO and C. The adhesion property and the heat resisting property were enough for decorative uses. This sputtering process has an industrial advantage that the decorative black coating with color uniformity in large area can be easily obtained by plain operation because of unnecessary of the oxygen reactive gas importing which is difficult to be controlled uniformly in the sputtering chamber.

  10. Process-structure-property correlations in pulsed dc reactive magnetron sputtered vanadium oxide thin films

    SciTech Connect

    Venkatasubramanian, Chandrasekaran; Cabarcos, Orlando M.; Drawl, William R.; Allara, David L.; Ashok, S.; Horn, Mark W.; Bharadwaja, S. S. N.

    2011-11-15

    Cathode hysteresis in the reactive pulsed dc sputtering of a vanadium metal target was investigated to correlate the structural and electrical properties of the resultant vanadium oxide thin films within the framework of Berg's model [Berg et al., J. Vac. Sci. Technol. A 5, 202 (1987)]. The process hysteresis during reactive pulsed dc sputtering of a vanadium metal target was monitored by measuring the cathode (target) current under different total gas flow rates and oxygen-to-argon ratios for a power density of {approx}6.6.W/cm{sup 2}. Approximately 20%-25% hysteretic change in the cathode current was noticed between the metallic and oxidized states of the V-metal target. The extent of the hysteresis varied with changes in the mass flow of oxygen as predicted by Berg's model. The corresponding microstructure of the films changed from columnar to equiaxed grain structure with increased oxygen flow rates. Micro-Raman spectroscopy indicates subtle changes in the film structure as a function of processing conditions. The resistivity, temperature coefficient of resistance, and charge transport mechanism, obeying the Meyer-Neldel relation [Meyer and Neldel, Z. Tech. Phys. (Leipzig) 12, 588 (1937)], were correlated with the cathode current hysteric behavior.

  11. Effects of Ti addiction in WO 3 thin film ammonia gas sensor prepared by dc reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hu, Ming; Yong, Cholyun; Feng, Youcai; Lv, Yuqiang; Han, Lei; Liang, Jiran; Wang, Haopeng

    2006-11-01

    WO 3 sensing films (1500 Å) were deposited using dc reactive magnetron sputtering method on alumina substrate on which patterned interdigital Pt electrodes were previously formed. The additive Ti was sputtered with different thickness (100-500 Å) onto WO 3 thin films and then the films as-deposited were annealed at 400°C in air for 3h. The crystal structure and chemical composition of the films were characterized by XRD and XPS analysis. The effect of Ti addition on sensitive properties of WO 3 thin film to the NH 3 gas was then discussed. WO 3 thin films added Ti revealed excellent sensitivity and response characteristics in the presence of low concentration of NH 3 (5-400 ppm) gas in air at 200°C operating temperature. Especially,in case 300 Å thickness of additive Ti, WO 3 thin films have a promotional effect on the response speed to NH 3 and selectivity enhanced with respect to other gases (CO, C IIH 5OH, CH 4). The influence of different substrates, including alumina, silicon and glass, on sensitivity to NH 3 gas has also been investigated.

  12. AlN thin films deposited by DC reactive magnetron sputtering: effect of oxygen on film growth

    NASA Astrophysics Data System (ADS)

    García Molleja, Javier; José Gómez, Bernardo; Ferrón, Julio; Gautron, Eric; Bürgi, Juan; Abdallah, Bassam; Abdou Djouadi, Mohamed; Feugeas, Jorge; Jouan, Pierre-Yves

    2013-11-01

    Aluminum nitride is a ceramic compound with many technological applications in many fields, for example optics, electronics and resonators. Contaminants play a crucial role in the AlN performance. This paper focuses mainly in the effect of oxygen when AlN, with O impurities in its structure, is grown on oxidized layers. In this study, AlN thin films have been deposited at room temperature and low residual vacuum on SiO2/Si (1 0 0) substrates. AlN films were grown by DC reactive magnetron sputtering (aluminum target) and atmosphere composed by an argon/nitrogen mixture. Working pressure was 3 mTorr. Film characterization was performed by AES, XRD, SEM, EDS, FTIR, HRTEM, SAED and band-bending method. Our results show that oxidized interlayer imposes compressive stresses to AlN layer, developing a polycrystalline deposition. Indeed, when film thickness is over 900 nm, influence of oxidized interlayer diminishes and crystallographic orientation changes to the (0 0 0 2) one, i.e., columnar structure, and stress relief is induced (there is a transition from compressive to tensile stress). Also, we propose a growth scenario to explain this behaviour.

  13. Reactive dc magnetron sputtering of (GeO{sub x}-SiO{sub 2}) superlattices for Ge nanocrystal formation

    SciTech Connect

    Zschintzsch, M.; Jeutter, N. M.; Borany, J. von; Krause, M.; Muecklich, A.

    2010-02-15

    The motivation of this work is the tailored growth of Ge nanocrystals for photovoltaic applications. The use of superlattices provides a reliable method to control the Ge nanocrystal size after phase separation. In this paper, we report on the deposition of (GeO{sub x}-SiO{sub 2}) superlattices via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation during subsequent annealing. Attention is directed mainly to define proper deposition conditions for tuning the GeO{sub x} composition between elemental Ge (x=0) and GeO{sub 2} (x=2) by the variation in the deposition temperature and the oxygen partial pressure. A convenient process window has been found which allows sequential GeO{sub x}-SiO{sub 2} deposition without changing the oxygen partial pressure during deposition. The phase separation and Ge nanocrystal formation after subsequent annealing were investigated with in situ x-ray scattering, Raman spectroscopy, and electron microscopy. By these methods the existence of 2-5 nm Ge nanocrystals at annealing temperatures of 600-750 deg. C has been confirmed which is within the superlattice stability range. The technique used allows the fabrication of superlattice stacks with very smooth interfaces (roughness<1 nm); thus the Ge nanocrystal layers could be separated by very thin SiO{sub 2} films (d<3 nm) which offers interesting possibilities for charge transport via direct tunneling.

  14. Structure and mechanical properties of Ti-Si-N films deposited by combined DC/RF reactive unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ding, X. Z.; Zeng, X. T.; Liu, Y. C.; Yang, Q.; Zhao, L. R.

    2004-11-01

    Ti-Si-N nanocomposite films with Si content between 0 and 13.5 at. % were deposited by combined DC/RF reactive unbalanced magnetron sputtering. The composition, structure, and mechanical properties of the as-deposited Ti-Si-N films were measured by energy dispersive analysis of x rays, x-ray diffraction (XRD), and nanoindentation experiments, respectively. All of the Ti-Si-N films exhibited a higher hardness than pure TiN films deposited under similar conditions. The highest hardness (~41 GPa) was obtained in the film with Si content of about 8 at. %. Ti-Si-N films also exhibited a higher resistance to plastic deformation (i.e., higher ratio H3/E*2) than pure TiN. XRD patterns revealed that the as-deposited films were composed of cubic TiN crystallites with a preferential orientation of (111). With increase of RF power applied to the Si targets, the TiN (111) peak intensity or TiN crystallite size increased in the lower RF power range but decreased in the higher RF power range, showing a maximum at an RF power of 500 W (power density ~1.14 W/cm2), corresponding to a Si content of about 5 at. % in the film.

  15. Native target chemistry during reactive dc magnetron sputtering studied by ex-situ x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.

    2017-07-01

    We report x-ray photoelectron spectroscopy (XPS) analysis of native Ti target surface chemistry during magnetron sputtering in an Ar/N2 atmosphere. To avoid air exposure, the target is capped immediately after sputtering with a few-nm-thick Al overlayers; hence, information about the chemical state of target elements as a function of N2 partial pressure pN2 is preserved. Contrary to previous reports, which assume stoichiometric TiN formation, we present direct evidence, based on core-level XPS spectra and TRIDYN simulations, that the target surface is covered by TiNx with x varying in a wide range, from 0.27 to 1.18, depending on pN2. This has far-reaching consequences both for modelling of the reactive sputtering process and for everyday thin film growth where detailed knowledge of the target state is crucial.

  16. Structure and properties of Al-doped ZnO transparent conductive thin-films prepared by asymmetric bipolar pulsed DC reactive magnetron sputtering.

    PubMed

    Hsu, Fu-Yung; Chen, Tse-Hao; Peng, Kun-Cheng

    2009-07-01

    Transparent conductive thin-films of aluminum-doped zinc oxide (AZO) were deposited on STN-glass substrates by an asymmetric bipolar pulsed DC (ABPDC) reactive magnetron sputtering system. Two different alloys, Zn-1.6 wt% Al and Zn-3.0 wt% Al, were used as the sputtering targets. The films consist of columnar grains with a preferred orientation of c-axis. Strong crystal distortion and high density stacking faults were observed in high resolution TEM micrographs. The full-width at half-maximum (FWHM) of the (002) rocking curve has a close relationship with the resistivity of the films; the smaller the FWHM, the lower the resistivity. The lowest resistivity of 7.0 x 10(-4) omega-cm was obtained from the film deposited with Zn-1.6 wt% Al target at 200 degrees C.

  17. Simulation of sputter deposition in dc magnetrons

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Cluggish, Brian

    2010-11-01

    Material sputter deposition has a multitude of industrial applications. Our goal at FAR-TECH, Inc., is a complete numerical simulation of a dc magnetron device. We intend to modify existing FAR-TECH, Inc. code to include flexible geometry manipulation, the most current atomic physics data, add transport of neutral atoms across the device, and model deposition on the substrate. Currently, dc magnetron simulation codes have limited geometry manipulation capabilities; however, this is important if design optimization is intended. Another uncommon feature in dc magnetron simulation codes is parallel performance. Since PIC simulations may take extremely long times (weeks), we are parallelizing our codes to achieve shorter run times. (Codes based on hybrid models perform faster, but have the disadvantage of having to know accurately the diffusion coefficients of electrons across the magnetic field lines.) We report preliminary results of this effort.

  18. Potential for reactive pulsed-dc magnetron sputtering of nanocomposite VO{sub x} microbolometer thin films

    SciTech Connect

    Jin, Yao O. Ozcelik, Adem; Horn, Mark W.; Jackson, Thomas N.

    2014-11-01

    Vanadium oxide (VO{sub x}) thin films were deposited by reactive pulsed-dc sputtering a metallic vanadium target in argon/oxygen mixtures with substrate bias. Hysteretic oxidation of the vanadium target surface was assessed by measuring the average cathode current during deposition. Nonuniform oxidization of the target surface was analyzed by Raman spectroscopy. The VO{sub x} film deposition rate, resistivity, and temperature coefficient of resistance were correlated to oxygen to argon ratio, processing pressure, target-to-substrate distance, and oxygen inlet positions. To deposit VO{sub x} in the resistivity range of 0.1–10 Ω-cm with good uniformity and process control, lower processing pressure, larger target-to-substrate distance, and oxygen inlet near the substrate are useful.

  19. Influence of absolute argon and oxygen flow values at a constant ratio on the growth of Zn/ZnO nanostructures obtained by DC reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Masłyk, M.; Borysiewicz, M. A.; Wzorek, M.; Wojciechowski, T.; Kwoka, M.; Kamińska, E.

    2016-12-01

    In the present work we analyze the growth mechanism of Zn/ZnO nanostructured thin films obtained by DC reactive magnetron sputtering with variable absolute gas flow values. Zn target was sputtered at 80 W DC power with variable absolute Ar:O2 flow values at a set ratio, in sccm: 3:0.3, 6:0.6, 8:0.8, 10:1, 15:1.5, 20:2 and 30:3. We obtained unique Zn/ZnO nanoflowers with morphology and properties changing as a function of gas flow values from dendritic/nanopetal structures for low flow to dense porous films for high flow. Zn core/ZnO shell composition results from surface oxidation of Zn crystallites to 4 nm thick ZnO after exposure to atmospheric air that causes an increase in resistivity especially for denser, more porous films. Taking into account that the plasma properties measures using the Langmuir probe and optical emission spectroscopy remain constant as a function of gas flow values, we put forward that the structural evolution of films is influenced by oxygen incorporating into the film surface acting as an inhibitor - incorporating into the films and decreasing crystallite sizes and amorphizing the film structure.

  20. The influence of substrate temperature on the electrical and optical properties of titanium oxide thin films prepared by d.c. reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ju, Yongfeng; Wu, Zhiming; Qiu, Yonglong; Li, Lin; Jiang, Yadong

    2010-10-01

    In this investigation, a novel heat-sensitive material titanium oxide (TiOx) thin film was deposited on well cleaned K9 glass substrates by d.c. reactive magnetron sputtering from a metallic titanium target in an Ar + O2 gas mixture. In order to obtain proper TiOx thin films, deposition parameters should be properly controlled. In our system, TiOx thin films were obtained at different substrate temperature while total pressure and oxygen partial pressure were kept at 1 Pa and 0.6 Pa, d.c. power of 100 W, and the deposition time was adjusted in order to deposit thin films with a constant thickness close to 200 nm. The crystalline structure was characterized by X-ray diffraction (XRD) analysis and the results show that all the deposited films have an amorphous structure. In this paper, we have mainly investigated the dependence of electrical and optical properties of the reactively sputtered TiOx thin films on the different substrate temperature during the sputtering process, i.e., as the K9 glass substrate temperature increases from 100 °C to 250°C, the sheet resistance Rs of TiOx thin films is ranged from 305 kΩ/square to 36 kΩ/square, temperature coefficient of resistance (TCR) value up to -2.12 %/K is obtained, optical band gap decreases from 3.34 eV to 3.28 eV. Through the analysis and discussion of the above experimental data, we could obtain the conclusion that the variation in substrate temperature during the sputtering deposition plays a considerable important role in the electrical and optical properties of all the deposited films.

  1. Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.

    2014-05-01

    The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.

  2. Effect of annealing treatment on the photocatalytic activity of TiO2 thin films deposited by dc reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Arias, L. M. Franco; Arias Duran, A.; Cardona, D.; Camps, E.; Gómez, M. E.; Zambrano, G.

    2015-07-01

    Titanium dioxide (TiO2) thin films have been deposited by DC reactive magnetron sputtering on silicon and quartz substrates with different Ar/O2 ratios in the gas mixture. Substrate temperature was kept constant at 400 °C during the deposition process, and the TiO2 thin films were later annealed at 700 °C for 3 h. The effect of the Ar/O2 ratio in the gas flow and the annealing treatment on the phase composition, deposition rate, crystallinity, surface morphology and the resulting photocatalytic properties were investigated. For photocatalytic measurements, the variation of the concentration of the methylene blue (MB) dye under UV irradiation was followed by a change in the intensity of the characteristic MB band in the UV- Vis transmittance spectra. We report here that the as-grown TiO2 films showed only the anatase phase, whereas after annealing, the samples exhibited both the anatase and rutile phases in proportions that varied with the Ar/O2 ratio in the mixture of gases used during growth. In particular, the annealed TiO2 thin film deposited at a 50/50 ratio of Ar/O2, composed of both anatase (80%) and rutile phases (20%), exhibited the highest photocatalytic activity (30% of MB degradation) compared with the samples without annealing and composed of only the anatase phase.

  3. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Kaur, Davinder

    2016-05-01

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with different deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.

  4. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    SciTech Connect

    Prakash, Ravi; Kaur, Davinder

    2016-05-06

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with different deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.

  5. Reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Magnus, F.; Tryggvason, T. K.; Sveinsson, O. B.; Olafsson, S.

    2012-10-01

    Here we discuss reactive high power impulse magnetron sputtering sputtering (HiPIMS) [1] of Ti target in an Ar/N2 and Ar/O2 atmosphere. The discharge current waveform is highly dependent on both the pulse repetition frequency and discharge voltage. The discharge current increases with decreasing frequency or voltage. This we attribute to an increase in the secondary electron emission yield during the self-sputtering phase of the pulse, as nitride [2] or oxide [3] forms on the target. We also discuss the growth of TiN films on SiO2 at temperatures of 22-600 ^oC. The HiPIMS process produces denser films at lower growth temperature and the surface is much smoother and have a significantly lower resistivity than dc magnetron sputtered films on SiO2 at all growth temperatures due to reduced grain boundary scattering [4].[4pt] [1] J. T. Gudmundsson, N. Brenning, D. Lundin and U. Helmersson, J. Vac. Sci. Technol. A, 30 030801 (2012)[0pt] [2] F. Magnus, O. B. Sveinsson, S. Olafsson and J. T. Gudmundsson, J. Appl. Phys., 110 083306 (2011)[0pt] [3] F. Magnus, T. K. Tryggvason, S. Olafsson and J. T. Gudmundsson, J. Vac. Sci. Technol., submitted 2012[0pt] [4] F. Magnus, A. S. Ingason, S. Olafsson and J. T. Gudmundsson, IEEE Elec. Dev. Lett., accepted 2012

  6. Lateral variation of target poisoning during reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Güttler, D.; Grötzschel, R.; Möller, W.

    2007-06-01

    The reactive gas incorporation into a Ti sputter target has been investigated using laterally resolving ion beam analysis during dc magnetron deposition of TiN in an Ar /N2 atmosphere. At sufficiently low reactive gas flow, the nitrogen incorporation exhibits a pronounced lateral variation, with a lower areal density in the target racetrack compared to the target center and edge. The findings are reproduced by model calculations. In the racetrack, the balance of reactive gas injection and sputter erosion is shifted toward erosion. The injection of nitrogen is dominated by combined molecular adsorption and recoil implantation versus direct ion implantation.

  7. Reactive high power impulse magnetron sputtering: combining simulation and experiment

    NASA Astrophysics Data System (ADS)

    Kozak, Tomas; Vlcek, Jaroslav

    2016-09-01

    Reactive high-power impulse magnetron sputtering (HiPIMS) has recently been used for preparation of various oxide films with high application potential, such as TiO2, ZrO2, Ta2O5, HfO2, VO2. Using our patented method of pulsed reactive gas flow control with an optimized reactive gas inlet, we achieved significantly higher deposition rates compared to typical continuous dc magnetron depositions. We have developed a time-dependent model of the reactive HiPIMS. The model includes a depth-resolved description of the sputtered target (featuring sputtering, implantation and knock-on implantation processes) and a parametric description of the discharge plasma (dissociation of reactive gas, ionization and return of sputtered atoms and gas rarefaction). The model uses a combination of experimental and simulation data as input. We have calculated the composition of the target and substrate for several deposition conditions. The simulations predict a reduced compound coverage of the target in HiPIMS compared to the continuous dc sputtering regime which explains the increased deposition rate. The simulations show that an increased dissociation of oxygen in a HiPIMS discharge is beneficial to achieve stoichiometric films on the substrate at high deposition rates.

  8. The effect of the oxygen ratio control of DC reactive magnetron sputtering on as-deposited non stoichiometric NiO thin films

    NASA Astrophysics Data System (ADS)

    Wang, Mengying; Thimont, Yohann; Presmanes, Lionel; Diao, Xungang; Barnabé, Antoine

    2017-10-01

    Non-stoichiometric Ni1-xO thin films were prepared on glass substrate by direct current reactive magnetron sputtering in a large range of oxygen partial pressure (0 ≤ pO2 ≤ 1 Pa). The dependence of the deposited film structure and properties on oxygen stoichiometry were systematically analyzed by X-ray diffraction, X-ray reflectivity, X-ray photoemission spectroscopy, Raman spectroscopy, atomic force microscopy, UV-vis measurements and electrical transport properties measurements. The deposition rates, surface morphology and opto-electrical properties are very sensitive to the oxygen partial pressure lower than 0.05 Pa due to the presence of metallic nickel cluster phase determined by X-ray diffraction, X-ray reflectivity and XPS spectroscopy. Presence of nanocrystallized NiO phase was highlighted even for pO2 = 0 Pa. For pO2 > 0.05 Pa, only the NiO phase was detected. Progressive appearance of Ni3+ species is characterized by a fine increase of the lattice parameter and (111) preferred orientation determined by grazing angle X-ray diffraction, fine increase of the X-ray reflectivity critical angle, displacement of the Ni 2p3/2 signal towards lower energy, significant increase of the electrical conductivity and decrease of the total transmittance. Quantification of Ni3+ by XPS method is discussed. We also showed that the use of Raman spectroscopy was relevant for demonstrating the presence of Ni3+ in the Ni1-xO thin films.

  9. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    NASA Astrophysics Data System (ADS)

    Anders, André

    2017-05-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. By applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films. Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become "poisoned," i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.

  10. Electrochromic properties and performance of NiOx films and their corresponding all-thin-film flexible devices preparedby reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dong, Dongmei; Wang, Wenwen; Dong, Guobo; Zhang, Fan; He, Yingchun; Yu, Hang; Liu, Famin; Wang, Mei; Diao, Xungang

    2016-10-01

    Nickel oxide (NiOx) thin films were deposited by direct current magnetron sputtering technique onto flexible substrates with various oxygen (O2) partial pressures. The influence of O2 contents during deposition process on film structure, morphology, composition, optical and electrochromic (EC) characteristics of the films were investigated. The EC response for nonstoichiometric NiOx films shows a strong dependence on grain size variations and surface morphology. Finally, the multiple-layer stacks ITO/NiOx/Ta2O5:H/WO3/ITO were sequentially vacuum deposited over flexible polyethylene terephthalate plates based on the optimization of NiOx single layers. A large optical contrast up to 60% and a good durability are obtained for full device. To perform preliminary research on the mechanical properties within flexible devices, we introduced nontrivial changes to the interfacial properties by replacing the glass with flexible polymers. The effects were studied through static bending and the nano-scratch test.

  11. Hysteresis behavior during reactive magnetron sputtering of Al{sub 2}O{sub 3} using a rotating cylindrical magnetron

    SciTech Connect

    Depla, D.; Haemers, J.; Buyle, G.; Gryse, R. de

    2006-07-15

    Rotating cylindrical magnetrons are used intensively on industrial scale. A rotating cylindrical magnetron on laboratory scale makes it possible to study this deposition technique in detail and under well controlled conditions. Therefore, a small scale rotating cylindrical magnetron was designed and used to study the influence of the rotation speed on the hysteresis behavior during reactive magnetron sputtering of aluminum in Ar/O{sub 2} in dc mode. This study reveals that the hysteresis shifts towards lower oxygen flows when the rotation speed of the target is increased, i.e., target poisoning occurs more readily when the rotation speed is increased. The shift is more pronounced for the lower branch of the hysteresis loop than for the upper branch of the hysteresis. This behavior can be understood qualitatively. The results also show that the oxidation mechanism inside the race track is different from the oxidation mechanism outside the race track. Indeed, outside the race track the oxidation mechanism is only defined by chemisorption while inside the race track reactive ion implantation will also influence the oxidation mechanism.

  12. Ionized Magnetron Sputtering with a Coupled DC and Microwave Plasma

    NASA Astrophysics Data System (ADS)

    Hayden, D. B.; Green, K. M.; Juliano, D. R.; Ruzic, D. N.; Weiss, C. A.; Lantsman, A.; Ishii, J.

    1996-10-01

    A DC magnetron sputtering system is enhanced via an antenna microwave source. The ability of the microwaves to ionize the metal atoms from the aluminum target though electron impact and Penning ionization is studied as a function of microwave power, magnetron power, and pressure. A bias in the tens of volts (negative) is applied to the substrate and sample. This creates an electric field between the plasma and the substrate which is designed to draw the metal ions into the sample orthogonally for filling increased aspect ratio trenches. A quartz crystal oscillator is placed behind a gridded energy analyzer and embedded in the substrate. It determines the ion-to-neutral ratio and the deposition rate, and the gridded energy analyzer determines the energy spectrum of the ions, the ion current density, and the uniformity. These quantities are compared to the results of a computer simulation.

  13. The role of Ohmic heating in dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Brenning, N.; Gudmundsson, J. T.; Lundin, D.; Minea, T.; Raadu, M. A.; Helmersson, U.

    2016-12-01

    Sustaining a plasma in a magnetron discharge requires energization of the plasma electrons. In this work, Ohmic heating of electrons outside the cathode sheath is demonstrated to be typically of the same order as sheath energization, and a simple physical explanation is given. We propose a generalized Thornton equation that includes both sheath energization and Ohmic heating of electrons. The secondary electron emission yield {γ\\text{SE}} is identified as the key parameter determining the relative importance of the two processes. For a conventional 5 cm diameter planar dc magnetron, Ohmic heating is found to be more important than sheath energization for secondary electron emission yields below around 0.1.

  14. Heteroepitaxial Ge-on-Si by DC magnetron sputtering

    SciTech Connect

    Steglich, Martin; Schrempel, Frank; Füchsel, Kevin; Kley, Ernst-Bernhard; Patzig, Christian; Berthold, Lutz; Höche, Thomas; Tünnermann, Andreas

    2013-07-15

    The growth of Ge on Si(100) by DC Magnetron Sputtering at various temperatures is studied by Spectroscopic Ellipsometry and Transmission Electron Microscopy. Smooth heteroepitaxial Ge films are prepared at relatively low temperatures of 380°C. Typical Stransky-Krastanov growth is observed at 410°C. At lower temperatures (320°C), films are essentially amorphous with isolated nanocrystallites at the Si-Ge interface. A minor oxygen contamination at the interface, developing after ex-situ oxide removal, is not seen to hinder epitaxy. Compensation of dislocation-induced acceptors in Ge by sputtering from n-doped targets is proposed.

  15. Investigation of Optical and Electrochromic Properties of Tungsten Oxide Deposited with Horizontal DC and DC Pulse Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Jan, Der-Jun; Chen, Chien-Han

    2012-04-01

    The proposal of this research was to compare the optical and electrochromic properties of tungsten oxide (WO3) thin films deposited with a horizontal direct current (DC) and DC pulse magnetron sputtering. These WO3 thin films were deposited onto indium tin oxide (ITO) glass and p-type silicon substrate at different gas ratios of oxygen and argon. The variation in the transmittance between the coloring and bleaching was important for the smart window. WO3 thin films have good electrochromic properties at gas ratios of oxygen/argon (O2/Ar) of 0.7 and 0.6 for DC and DC pulse magnetron sputtering, respectively. However, WO3 thin films deposited by DC pulse magnetron sputtering have better optical and electrochromic properties than the films deposited by DC magnetron sputtering.

  16. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    DOE PAGES

    Anders, André

    2017-03-21

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. Furthermore, by applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films.more » Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron

  17. Formation of dielectric silicon compounds by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Veselov, D. S.; Voronov, Yu A.

    2016-09-01

    The paper is devoted to the study of reactive magnetron sputtering of the silicon target in the ambient of inert argon gas with reactive gas, nitrogen or oxygen. The magnetron was powered by two mid-frequency generators of a rectangular pulse of opposite polarity. The negative polarity pulse provides the sputtering of the target. The positive polarity pulse provides removal of accumulated charge from the surface of the target. This method does not require any special devices of resistances matching and provides continuous sputtering of the target.

  18. Time resolved ion energy distribution functions of non-reactive and reactive high power impulse magnetron sputtering of titanium

    NASA Astrophysics Data System (ADS)

    Grosse, Katharina; Breilmann, Wolfgang; Maszl, Christian; Benedikt, Jan; von Keudell, Achim

    2016-09-01

    High power impulse magnetron sputtering (HiPIMS) is a technique for thin film deposition and can be operated in reactive and non-reactive mode. The growth rate of HiPIMS in non-reactive mode reduces to 30% compared to direct current magnetron sputtering (dcMS) at same average power. However, the quality of the coatings produced with HiPIMS is excellent which makes these plasmas highly appealing. In reactive mode target poisoning is occurring which changes the plasma dynamics. An advantage of reactive HiPIMS is that it can be operated hysteresis-free which can result in a higher growth rate compared to dcMS. In this work thin films are deposited by a HiPIMS plasma which is generated by short pulses of 100 μs with high power densities in the range of 1 kW/cm2. Ar and Ar/N2 admixtures are used as a working gas to sputter a 2'' titanium target. The particle transport is analysed with time resolved ion energy distribution functions which are measured by a mass spectrometer with a temporal resolution of 2 μs. Phase resolved optical emission spectroscopy is executed to investigate the particle dynamics of different species. The time and energy resolved particle fluxes in non-reactive and reactive mode are compared and implications on the sputter process are discussed.

  19. Continuous and nanostructured TiO2 films grown by dc sputtering magnetron.

    PubMed

    Sánchez, O; Vergara, L; Font, A Climent; de Melo, O; Sanz, R; Hernández-Vélez, M

    2012-12-01

    The growth of Anatase nanostructured films using dc reactive magnetron sputtering and post-annealing treatment is reported. TiO2 has been deposited on Porous Anodic Alumina Films used as templates which were previously grown in phosphoric acid solution and etched to modify their pore diameters. This synthesis via results in the formation of vertically aligned and spatially ordered TiO2 nanostructures replicating the underlying template. Previously, the growth optimization of TiO2 thin films deposited by dc magnetron sputtering on flat silicon substrates was done. The crystalline structure and Ti in-depth concentration profile were determined by grazing incidence X-ray diffraction and Rutherford backscattering spectrometry, respectively. The surface morphology of the samples was explored by mean of a Field Emission Gun scanning electron microscope. Optical properties of the nanostructured samples were studied by using the reflectance spectra received in the UV-visible range. In these spectra different band gap values and complex light absorption features were observed.

  20. Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.; Corbella, C.; Maszl, C.; Breilmann, W.; von Keudell, A.

    2017-05-01

    Spokes, localised ionisation zones, are commonly observed in magnetron sputtering plasmas, appearing either with a triangular shape or with a diffuse shape, exhibiting self-organisation patterns. In this paper, we investigate the spoke properties (shape and emission) in a high power impulse magnetron sputtering (HiPIMS) discharge when reactive gas (N2 or O2) is added to the Ar gas, for three target materials; Al, Cr, and Ti. Peak discharge current and total pressure were kept constant, and the discharge voltage and mass flow ratios of Ar and the reactive gas were adjusted. The variation of the discharge voltage is used as an indication of a change of the secondary electron yield. The optical emission spectroscopy data demonstrate that by addition of reactive gas, the HiPIMS plasma exhibits a transition from a metal dominated plasma to the plasma dominated by Ar ions and, at high reactive gas partial pressures, to the plasma dominated by reactive gas ions. For all investigated materials, the spoke shape changed to the diffuse spoke shape in the poisoned mode. The change from the metal to the reactive gas dominated plasma and increase in the secondary electron production observed as the decrease of the discharge voltage corroborate our model of the spoke, where the diffuse spoke appears when the plasma is dominated by species capable of generating secondary electrons from the target. Behaviour of the discharge voltage and maximum plasma emission is strongly dependant on the target/reactive gas combination and does not fully match the behaviour observed in DC magnetron sputtering.

  1. Electronic-grade GaN(0001)/Al{sub 2}O{sub 3}(0001) grown by reactive DC-magnetron sputter epitaxy using a liquid Ga target

    SciTech Connect

    Junaid, M.; Hsiao, C.-L.; Palisaitis, J.; Jensen, J.; Persson, P. O. A.; Hultman, L.; Birch, J.

    2011-04-04

    Electronic-grade GaN (0001) epilayers have been grown directly on Al{sub 2}O{sub 3} (0001) substrates by reactive direct-current-magnetron sputter epitaxy (MSE) using a liquid Ga sputtering target in an Ar/N{sub 2} atmosphere. The as-grown GaN epitaxial films exhibit low threading dislocation density on the order of {<=}10{sup 10} cm{sup -2} determined by transmission electron microscopy and modified Williamson-Hall plot. X-ray rocking curve shows narrow full-width at half maximum (FWHM) of 1054 arc sec of the 0002 reflection. A sharp 4 K photoluminescence peak at 3.474 eV with a FWHM of 6.3 meV is attributed to intrinsic GaN band edge emission. The high structural and optical qualities indicate that MSE-grown GaN epilayers can be used for fabricating high-performance devices without the need of any buffer layer.

  2. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    SciTech Connect

    Panda, Padmalochan; Ramaseshan, R. Dash, S.; Krishna, Nanda Gopala

    2016-05-23

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N{sub 2} concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (H{sub IT}) of around 28.2 GPa for a nitrogen concentration of 25%.

  3. Elementary surface processes during reactive magnetron sputtering of chromium

    SciTech Connect

    Monje, Sascha; Corbella, Carles Keudell, Achim von

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  4. Elementary surface processes during reactive magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Monje, Sascha; Corbella, Carles; von Keudell, Achim

    2015-10-01

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400-800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O2 of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  5. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    SciTech Connect

    Verma, M.; Gupta, V. K.; Gautam, Y. K.; Dave, V.; Chandra, R.

    2014-01-28

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al{sub 2}O{sub 3}, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  6. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Verma, M.; Gupta, V. K.; Gautam, Y. K.; Dave, V.; Chandra, R.

    2014-01-01

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al2O3, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  7. Comparative analysis of Cr-B coatings deposited by magnetron sputtering in DC and HIPIMS modes

    NASA Astrophysics Data System (ADS)

    Kiryukhantsev-Korneev, Ph. V.; Horwat, D.; Pierson, J. F.; Levashov, E. A.

    2014-07-01

    Surface coatings of the Cr-B system have been obtained by magnetron sputtering in the DC and high-power impulse (HIPIMS) regimes. It is established that the passage from the DC regime to HIPIMS leads to suppression of the columnar grain growth and a twofold increase in the resistance of coatings to plastic deformation, while the plasticity index and hardness of coatings increase by 29 and 18%, respectively.

  8. Modular deposition chamber for in situ X-ray experiments during RF and DC magnetron sputtering.

    PubMed

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Gräfe, Hans Hellmuth; Ulrich, Sven; Mantilla, Miguel; Weigel, Ralf; Rembold, Steffen; Baumbach, Tilo

    2012-03-01

    A new sputtering system for in situ X-ray experiments during DC and RF magnetron sputtering is described. The outstanding features of the system are the modular design of the vacuum chamber, the adjustable deposition angle, the option for plasma diagnostics, and the UHV sample transfer in order to access complementary surface analysis methods. First in situ diffraction and reflectivity measurements during RF and DC deposition of vanadium carbide demonstrate the performance of the set-up.

  9. Perspective: Is there a hysteresis during reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)?

    NASA Astrophysics Data System (ADS)

    Strijckmans, K.; Moens, F.; Depla, D.

    2017-02-01

    This paper discusses a few mechanisms that can assist to answer the title question. The initial approach is to use an established model for DC magnetron sputter deposition, i.e., RSD2013. Based on this model, the impact on the hysteresis behaviour of some typical HiPIMS conditions is investigated. From this first study, it becomes clear that the probability to observe hysteresis is much lower as compared to DC magnetron sputtering. The high current pulses cannot explain the hysteresis reduction. Total pressure and material choice make the abrupt changes less pronounced, but the implantation of ionized metal atoms that return to the target seems to be the major cause. To further substantiate these results, the analytical reactive sputtering model is coupled with a published global plasma model. The effect of metal ion implantation is confirmed. Another suggested mechanism, i.e., gas rarefaction, can be ruled out to explain the hysteresis reduction. But perhaps the major conclusion is that at present, there are too little experimental data available to make fully sound conclusions.

  10. Rapidly switched wettability of titania films deposited by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shirolkar, Mandar; Kazemian Abyaneh, Majid; Singh, Akanksha; Tomer, Anju; Choudhary, Ram; Sathe, Vasant; Phase, Deodatta; Kulkarni, Sulabha

    2008-08-01

    Rapid switching (5-15 minutes) in the wettability of titania (TiO2) thin films in the anatase phase has been observed after UV irradiation. The film surface becomes superhydrophilic when exposed to UV radiation. The relationship between wettability, thickness and crystallinity of TiO2 films has been investigated. Amorphous and anatase TiO2 thin films have been deposited by varying the argon to oxygen gas ratio, using the reactive dc magnetron sputtering technique. It was found that the gas ratio primarily affects thickness, crystallinity, morphology and wettability of the films. The highest contact angle that has been reported so far, namely, 170°-176°, has been observed for film thickness varying from 112-500 nm in the case of pristine anatase TiO2 films. On the other hand, amorphous films show a variation in the contact angle from 120° to 140° as the thickness varied from 70 to 145 nm. The deposition is extremely robust and has an ultralow hysteresis in the contact angle. The films exhibit a morphology similar to the lotus leaf and the water hyacinth.

  11. Reactive pulsed magnetron-sputtered tantalum oxide thin films

    NASA Astrophysics Data System (ADS)

    Nielsen, Matthew Christian

    Current high speed, advanced packaging applications require the use of integrated capacitors. Tantalum oxide is one material currently being considered for use in the capacitors; however, the deposition technique used to make the thin film dielectric can alter its performance. Pulsed magnetron reactive sputtering was investigated in this thesis as it offers a robust, clean, and low temperature deposition alternative. This is a new deposition technique created to control the negative effects of target poisoning; however, to understand the relationships between the deposition variables and the resultant film properties a thorough investigation is needed. The instantaneous voltage at the target was captured using a high speed digital oscilloscope. Three target oxidation states were imaged and identified to be that of the metallic and oxidized states with an abrupt transition region separating the two. Using high resolution X-ray photoelectron spectroscopy the bonding present in the deposited films was correlated to the oxidation state of the target. While operating the target in the metallic mode, a mix of oxidized, sub-oxide and metallic states were discovered. Alternatively, the bonding present in the films deposited when the target was in the oxidized state were that of fully oxidized tantalum pentoxide. The films deposited above the critical partial pressure demonstrated excellent leakage current densities. The exact magnitude of the leakage current density inversely scaled to the relative amount of oxygen included into the sputtering atmosphere. Detailed plot analysis showed that there were two different conduction mechanisms controlling the current flow in the capacitors. High frequency test vehicles were measured up to 10 GHz in order to determine the frequency response of the dielectric material. A circuit equivalent model describing the testing system and samples was created and utilized to fit the collected data. Overall, the technique of pulsed magnetron

  12. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering

    SciTech Connect

    Lee, Yun Seog; Winkler, Mark T.; Siah, Sin Cheng; Brandt, Riley; Buonassisi, Tonio

    2011-05-09

    Cuprous oxide (Cu{sub 2}O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu{sub 2}O thin films deposited by reactive dc magnetron sputtering. High substrate growth temperature enhances film grain structure and Hall mobility. Temperature-dependent Hall mobilities measured on these films are comparable to monocrystalline Cu{sub 2}O at temperatures above 250 K, reaching 62 cm{sup 2}/V s at room temperature. At lower temperatures, the Hall mobility appears limited by carrier scattering from ionized centers. These observations indicate that sputtered Cu{sub 2}O films at high substrate growth temperature may be suitable for thin-film photovoltaic applications.

  13. Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rafieian, Damon; Ogieglo, Wojciech; Savenije, Tom; Lammertink, Rob G. H.

    2015-09-01

    We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering. The oxygen concentration during sputtering proved to be a crucial parameter with respect to the final film structure and properties. The initial deposition provided amorphous films that crystallise upon annealing to anatase or rutile, depending on the initial sputtering conditions. Substoichiometric films (TiOx<2), obtained by sputtering at relatively low oxygen concentration, formed rutile upon annealing in air, whereas stoichiometric films formed anatase. This route therefore presents a formation route for rutile films via lower (<500 °C) temperature pathways. The dynamics of the annealing process were followed by in situ ellipsometry, showing the optical properties transformation. The final crystal structures were identified by XRD. The anatase film obtained by this deposition method displayed high carriers mobility as measured by time-resolved microwave conductance. This also confirms the high photocatalytic activity of the anatase films.

  14. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering

    SciTech Connect

    Belkerk, B. E.; Soussou, A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.

    2012-10-08

    This Letter reports the thermal conductivity of aluminium nitride (AlN) thin-films deposited by reactive DC magnetron sputtering on single-crystal silicon substrates (100) with varying plasma and magnetic conditions achieving different crystalline qualities. The thermal conductivity of the films was measured at room temperature with the transient hot-strip technique for film thicknesses ranging from 100 nm to 4000 nm. The thermal conductivity was found to increase with the thickness depending on the synthesis conditions and film microstructure. The conductivity in the bulk region of the films, so-called intrinsic conductivity, and the boundary resistance were in the range [120-210] W m{sup -1} K{sup -1} and [2-30 Multiplication-Sign 10{sup -9}] K m{sup 2} W{sup -1}, respectively, in good agreement with microstructures analysed by x-ray diffraction, high-resolution-scanning-electron-microscopy, and transmission-electron-microscopy.

  15. Deposition of vanadium oxide films by direct-current magnetron reactive sputtering

    NASA Technical Reports Server (NTRS)

    Kusano, E.; Theil, J. A.; Thornton, John A.

    1988-01-01

    It is demonstrated here that thin films of vanadium oxide can be deposited at modest substrate temperatures by dc reactive sputtering from a vanadium target in an O2-Ar working gas using a planar magnetron source. Resistivity ratios of about 5000 are found between a semiconductor phase with a resistivity of about 5 Ohm cm and a metallic phase with a resistivity of about 0.001 Ohm cm for films deposited onto borosilicate glass substrates at about 400 C. X-ray diffraction shows the films to be single-phase VO2 with a monoclinic structure. The VO2 films are obtained for a narrow range of O2 injection rates which correspond to conditions where cathode poisoning is just starting to occur.

  16. Comparison of DC and RF magnetron sputtering systems for Electrochromic W/Ti Thin Film Deposition

    NASA Astrophysics Data System (ADS)

    Teke, Erdogan; Kiristi, Melek; Uygun Oksuz, Aysegul; Bozduman, Ferhat; Gulec, Ali; Oksuz, Lutfi; Hala, Ahmed M.

    2013-10-01

    In this study electrochromic tungsten-titanium thin films were deposited on ITO (indium thin oxide) glasses by using both DC and RF magnetron sputtering techniques. The discharges have been operated in same discharge power, geometry and argon/oxygen mixture pressure for comparison. The voltage and current characteristics and optical emission spectrums of both plasma systems will be given. The plasma parameters are determined by a double probe. ITO thin films coating electrical, optical and morphological characteristics will be compared.

  17. Synthesis of Alumina Thin Films Using Reactive Magnetron Sputtering Method

    NASA Astrophysics Data System (ADS)

    Angarita, G.; Palacio, C.; Trujillo, M.; Arroyave, M.

    2017-06-01

    Alumina (Al2O3) thin films were deposited on Si (100) by Magnetron Sputtering in reactive conditions between an aluminium target and oxygen 99.99% pure. The plasma was formed employing Argon with an R.F power of 100 W, the dwelling time was 3 hours. 4 samples were produced with temperatures between 350 and 400 ºC in the substrate by using an oxygen flow of 2 and 8 sccm, the remaining parameters of the process were fixed. The coatings and substrates were characterized using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) in order to compare their properties before and after deposition. The films thicknesses were between 47 and 70 nm. The results show that at high oxygen flow the alumina structure prevails in the coatings while at lower oxygen flow only aluminum is deposited in the coatings. It was shown that the temperature increases grain size and roughness while decreasing the thicknesses of the coatings.

  18. Study of cobalt mononitride thin films prepared using DC and high power impulse magnetron sputtering

    SciTech Connect

    Gupta, Rachana; Pandey, Nidhi; Behera, Layanta; Gupta, Mukul

    2016-05-23

    In this work we studied cobalt mononitride (CoN) thin films deposited using dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). A Co target was sputtered using pure N{sub 2} gas alone as the sputtering medium. Obtained long-range structural ordering was studies using x-ray diffraction (XRD), short-range structure using Co L{sub 2,3} and N K absorption edges using soft x-ray absorption spectroscopy (XAS) and the surface morphology using atomic force microscopy (AFM). It was found that HiPIMS deposited films have better long-range ordering, better stoichiometric ratio for mononitride composition and smoother texture as compared to dcMS deposited films. In addition, the thermal stability of HiPIMS deposited CoN film seems to be better. On the basis of different type of plasma conditions generated in HiPIMS and dcMS process, obtained results are presented and discussed.

  19. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2016-11-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  20. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2017-01-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  1. Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature

    NASA Astrophysics Data System (ADS)

    Majumdar, Abhijit; Köpp, Daniel; Ganeva, Marina; Datta, Debasish; Bhattacharyya, Satyaranjan; Hippler, Rainer

    2009-09-01

    A simple and cost effective nanocluster ion source for the deposition of size selected metal nanocluster has been developed based on the dc magnetron discharge (including pulsed dc discharge). The most important and interesting feature of this cluster source is that it is working at room temperature, cooled by chilled water during the experiment. There is no extraction unit in this device and the cluster streams flow only due to the pressure gradient from source chamber to substrate via quadrupole mass filter. It has provision of multiple substrate holders in the deposition chamber, which can be controlled manually. The facility consists of quadrupole mass filter (QMF 200), which can select masses in the range of 2-125 000 atoms depending on the target materials, with a constant mass resolution (M /ΔM˜25). The dc magnetron discharge at a power of about 130 W with Ar as feed/buffer gas was used to produce the Cu nanocluster in an aggregation tube and deposited on Si (100) wafer temperature.

  2. Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature.

    PubMed

    Majumdar, Abhijit; Köpp, Daniel; Ganeva, Marina; Datta, Debasish; Bhattacharyya, Satyaranjan; Hippler, Rainer

    2009-09-01

    A simple and cost effective nanocluster ion source for the deposition of size selected metal nanocluster has been developed based on the dc magnetron discharge (including pulsed dc discharge). The most important and interesting feature of this cluster source is that it is working at room temperature, cooled by chilled water during the experiment. There is no extraction unit in this device and the cluster streams flow only due to the pressure gradient from source chamber to substrate via quadrupole mass filter. It has provision of multiple substrate holders in the deposition chamber, which can be controlled manually. The facility consists of quadrupole mass filter (QMF 200), which can select masses in the range of 2-125 000 atoms depending on the target materials, with a constant mass resolution (M/DeltaM approximately 25). The dc magnetron discharge at a power of about 130 W with Ar as feed/buffer gas was used to produce the Cu nanocluster in an aggregation tube and deposited on Si (100) wafer temperature.

  3. Use of Multiple DC Magnetron Deposition Sources for Uniform Coating of Large Areas (Preprint)

    DTIC Science & Technology

    2009-06-01

    2005- 1 June 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9451-04-C-0067 DF297548 Use of multiple DC magnetron deposition sources for...thickness at some point on the substrate plane to yield a relative thickness distribution or it can be used to find the ratio Mlm which will be useful... Mlm of the material deposited in each area, is shown in columns 3 though 5, for the three sources.. For example, within the area from the center of the

  4. Pulsed DC magnetron sputtered piezoelectric thin film aluminum nitride – Technology and piezoelectric properties

    SciTech Connect

    Stoeckel, C. Kaufmann, C.; Hahn, R.; Schulze, R.; Billep, D.; Gessner, T.

    2014-07-21

    Pulsed DC magnetron sputtered aluminum nitride (AlN) thin films are prepared on several seed layers and at different sputtering conditions. The piezoelectric c-axis (002) orientation of the AlN is analyzed with X-ray diffraction method. The transverse piezoelectric coefficient d{sub 31} is determined with a Laser-Doppler-Vibrometer at cantilevers and membranes by analytical calculations and finite element method. Additionally, thin film AlN on bulk silicon is used to characterize the longitudinal piezoelectric charge coefficient d{sub 33}.

  5. Evolution of sputtering target surface composition in reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kubart, T.; Aijaz, A.

    2017-05-01

    The interaction between pulsed plasmas and surfaces undergoing chemical changes complicates physics of reactive High Power Impulse Magnetron Sputtering (HiPIMS). In this study, we determine the dynamics of formation and removal of a compound on a titanium surface from the evolution of discharge characteristics in an argon atmosphere with nitrogen and oxygen. We show that the time response of a reactive process is dominated by surface processes. The thickness of the compound layer is several nm and its removal by sputtering requires ion fluence in the order of 1016 cm-2, much larger than the ion fluence in a single HiPIMS pulse. Formation of the nitride or oxide layer is significantly slower in HiPIMS than in dc sputtering under identical conditions. Further, we explain very high discharge currents in HiPIMS by the formation of a truly stoichiometric compound during the discharge off-time. The compound has a very high secondary electron emission coefficient and leads to a large increase in the discharge current upon target poisoning.

  6. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Tosheva, Lubomira; Edge, Michele

    2017-01-01

    Titanium dioxide - bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO2 evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO2 nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these tests confirmed that such enhancement of the photocatalytic properties is due to more efficient photogenerated charge carrier separation, as well as to the contribution of the intrinsic photocatalytic properties of Bi2WO6.

  7. Non-uniform plasma distribution in dc magnetron sputtering: origin, shape and structuring of spokes

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Loquai, Simon; Ewa Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2015-12-01

    Non-homogeneous plasma distribution in the form of organized patterns called spokes was first observed in high power impulse magnetron sputtering (HiPIMS). In the present work we investigate the spoke phenomenon in non-pulsed low-current dc magnetron sputtering (DCMS). Using a high-speed camera the spokes were systematically studied with respect to discharge current, pressure, target material and magnetic field strength. Increase in the discharge current and/or gas pressure resulted in the sequential formation of two, then three and more spokes. The observed patterns were reproducible for the same discharge conditions. Spokes at low currents and pressures formed an elongated arrowhead-like shape and were commonly arranged in symmetrical patterns. Similar spoke patterns were observed for different target materials. When using a magnetron with a weaker magnetic field, spokes had an indistinct and diffuse shape, whereas in stronger magnetic fields spokes exhibited an arrowhead-like shape. The properties of spokes are discussed in relation to the azimuthally dependent electron-argon interactions. It is suggested that a single spoke is formed due to local gas breakdown and subsequent electron drift in the azimuthal direction. The spoke is self-sustained by electrons drifting in complex electric and magnetic fields that cause and govern azimuthally dependent processes: ionization, sputtering, and secondary electron emission. In this view plasma evolves from a single spoke into different patterns when discharge conditions are changed either by the discharge current, pressure or magnetic field strength. The azimuthal length of the spoke is associated with the electron-Ar collision frequency which increases with pressure and results in shortening of spoke until an additional spoke forms at a particular threshold pressure. It is proposed that the formation of additional spokes at higher pressures and discharge currents is, in part, related to the increased transport of

  8. Thin film transistor based on TiOx prepared by DC magnetron sputtering.

    PubMed

    Chung, Sung Mook; Shin, Jae-Heon; Hong, Chan-Hwa; Cheong, Woo-Seok

    2012-07-01

    This paper reports on the thin film transistor (TFT) based on TiOx prepared by direct current (DC) magnetron sputtering for the application of n-type channel transparent TFTs. A ceramic TiOx target was prepared for the sputtering of the TiO2 films. The structural, optical, and electrical properties of the TiO2 films were investigated after their heat treatment. It is observed from XRD measurement that the TiO2 films show anatase structure having (101), (004), and (105) planes after heat treatment. The anatase-structure TiO2 films show a band-gap energy of approximately 3.20 eV and a transmittance of approximately 91% (@550 nm). The bottom-gate TFTs fabricated with the TiO2 film as an n-type channel layer. These devices exhibit the on-off ratio, the field-effect mobility, and the threshold voltage of about 10(4), 0.002 cm2/Vs, and 6 V, respectively. These results indicate the possibility of applying TiO2 films depositied by DC magnetron sputtering to TiO2-based opto-electronic devices.

  9. Electrical and structural properties of the Ta/Ag thin films prepared by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Moghri Moazzen, M. A.; Taiebyzadeh, P.; Borghei, S. M.

    2017-07-01

    Tantalum on silver (Ta/Ag) thin films have quickly increased into high research for applied science with the promise of suitable for high temperatures environments and microsystems for electronics applications. Ag and Ta/Ag thin films were deposited on silicon substrates by dc magnetron sputtering method. We choose the dc magnetron sputtering method because it has many advantages, such as high growth rate, the possibility of large area deposition, and low cost. X-ray diffraction (XRD) analysis and four point probe (FPP) were used for determining the prepared samples. For Ag thin film deposited in room temperature, there are no peaks corresponding to Ag in the XRD pattern which demonstrates amorphous structure. Also, the XRD pattern of Ta/Ag thin film illustrates that the peak of Ta has grown to the crystal direction (002), which shows that the structure of deposited Ta layer on Ag thin film becomes a crystalline state from amorphous state. The relationship between thin film resistivity and Ta/Ag film thicknesses are investigated in this paper.

  10. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction.

    PubMed

    Bürgi, J; Neuenschwander, R; Kellermann, G; García Molleja, J; Craievich, A F; Feugeas, J

    2013-01-01

    The purpose of the designed reactor is (i) to obtain polycrystalline and∕or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, θ-2θ scanning, fixed α-2θ scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer.

  11. Modeling of the Reactive High Power Impulse Magnetron Sputtering (HiPIMS) process

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Jon Tomas; Lundin, Daniel; Raadu, Michael; Brenning, Nils; Minea, Tiberiu

    2015-09-01

    Reactive high power impulse magnetron sputtering (HiPIMS) provides both a high ionization fraction of the sputtered material and a high dissociation fraction of the molecular gas. We demonstrate this through an ionization region model (IRM) of the reactive Ar/O2 HiPIMS discharge with a titanium target. We explore the influence of oxygen dilution on the discharge properties such as electron density, the ionization fraction of the sputtered vapor and the oxygen dissociation fraction. We discuss the important processes and challenges for more detailed modeling of the reactive HiPIMS discharge. Furthermore, we discuss experimental observations during reactive high power impulse magnetron sputtering sputtering (HiPIMS) of Ti target in Ar/N2 and Ar/O2 atmosphere. The discharge current waveform is highly dependent on the reactive gas flow rate, pulse repetition frequency and discharge voltage. The discharge current increases with decreasing repetition frequency and increasing flowrate of the reactive gas.

  12. A study of the transient plasma potential in a pulsed bi-polar dc magnetron discharge

    NASA Astrophysics Data System (ADS)

    Bradley, J. W.; Karkari, S. K.; Vetushka, A.

    2004-05-01

    The temporal evolution of the plasma potential, Vp, in a pulsed dc magnetron plasma has been determined using the emissive probe technique. The discharge was operated in the 'asymmetric bi-polar' mode, in which the discharge voltage changes polarity during part of the pulse cycle. The probe measurements, with a time-resolution of 20 ns or better, were made along a line above the racetrack, normal to the plane of the cathode target, for a fixed frequency (100 kHz), duty cycle (50%), argon pressure (0.74 Pa) and discharge power (583 W). At all the measured positions, Vp was found to respond to the large and rapid changes in the cathode voltage, Vd, during the different phases of the pulse cycle, with Vp always more positive than Vd. At a typical substrate position (>80 mm from the target), Vp remains a few volts above the most positive surface in the discharge at all times. In the 'on' phase of the pulse, the measurements show a significant axial electric field is generated in the plasma, with the plasma potential dropping by a total of about 30 V over a distance of 70 mm, from the bulk plasma to a position close to the beginning of the cathode fall. This is consistent with measurements made in the dc magnetron. During the stable 'reverse' phase of the discharge, for distances greater than 18 mm from the target, the axial electric field is found to collapse, with Vp elevated uniformly to about 3 V above Vd. Between the target and this field-free region an ion sheath forms, and the current flowing to the target is still an ion current in this 'reverse' period. During the initial 200 ns of the voltage 'overshoot' phase (between 'on' and 'reverse' phases), Vd reached a potential of +290 V; however, close to the target, Vp was found to attain a much higher value, namely +378 V. Along the line of measurement, the axial electric field reverses in direction in this phase, and an electron current of up to 9 A flows to the target. The spatial and temporal measurements of Vp

  13. Magnetic field strength influence on the reactive magnetron sputter deposition of Ta2O5

    NASA Astrophysics Data System (ADS)

    Hollerweger, R.; Holec, D.; Paulitsch, J.; Rachbauer, R.; Polcik, P.; Mayrhofer, P. H.

    2013-08-01

    Reactive magnetron sputtering enables the deposition of various thin films to be used for protective as well as optical and electronic applications. However, progressing target erosion during sputtering results in increased magnetic field strengths at the target surface. Consequently, the glow discharge, the target poisoning, and hence the morphology, crystal structure and stoichiometry of the prepared thin films are influenced. Therefore, these effects were investigated by varying the cathode current Im between 0.50 and 1.00 A, the magnetic field strength B between 45 and 90 mT, and the O2/(Ar + O2) flow rate ratio Γ between 0% and 100%. With increasing oxygen flow ratio a substoichiometric TaOx oxide forms at the metallic Ta target surface which further transfers to a non-conductive tantalum pentoxide Ta2O5, impeding a stable dc glow discharge. These two transition zones (from Ta to TaOx and from TaOx to Ta2O5) shift to higher oxygen flow rates for increasing target currents. In contrast, increasing the magnetic field strength (e.g., due to sputter erosion) mainly shifts the TaOx to Ta2O5 transition to lower oxygen flow rates while marginally influencing the Ta to TaOx transition. To allow for a stable dc glow discharge (and to suppress the formation of non-conductive Ta2O5 at the target) even at Γ = 100% either a high target current (Im ⩾ 1 A) or a low magnetic field strength (B ⩽ 60 mT) is necessary. These conditions are required to prepare stoichiometric and fully crystalline Ta2O5 films.

  14. Magnetic interaction intensity in cobalt samarium thin films fabricated using DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Erwin

    2017-01-01

    Magnetic interaction intensity between magnetic grains was studied for as deposited cobalt samarium alloys in the form of thin films. The films were deposited onto silicon substrates using dc magnetron sputtering technique. The results showed that the magnitude of interaction intensity between magnetic grains in the films was reduced as samarium content increased until 20 at.% Sm. However, the coercivity of the films decreases with further increase in samarium concentration above 20 at. % Sm.. Thus the increase of coercivity in this range of composition (up to 20 at % of samarium) is due to the initial increase in size magnetic grains as well increase in grain separation, which reduces interaction intensity between grains. The effect of samarium content on interaction intensity between magnetic grains in the films is studied.

  15. Synthesis and characterization of DC magnetron sputtered nano structured molybdenum thin films

    NASA Astrophysics Data System (ADS)

    Rondiya, S. R.; Rokade, A. V.; Jadhavar, A. A.; Pandharkar, S. M.; Kulkarni, R. R.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Molybdenum (Mo) thin films were deposited on corning glass (#7059) substrates using DC magnetron sputtering system. The effect of substrate temperature on the structural, morphology and topological properties have been investigated. Films were characterized by variety of techniques such as low angle x-ray diffraction (low angle XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM). The low angle XRD analysis revealed that the synthesized Mo films are nanocrystalline having cubic crystal structure with (110) preferential orientation. The microstructure of the deposited Mo thin films observed with FE-SEM images indicated that films are homogeneous and uniform with randomly oriented leaf shape morphology. The AFM analysis shows that with increase in substrate temperature the rms roughness of Mo films increases. The obtained results suggest that the synthesized nanostructured Mo thin films have potential application as a back contact material for high efficiency solar cells like CdTe, CIGS, CZTS etc.

  16. Synthesis and characterization of DC magnetron sputtered nano structured molybdenum thin films

    SciTech Connect

    Rondiya, S. R.; Rokade, A. V.; Jadhavar, A. A.; Pandharkar, S. M.; Kulkarni, R. R.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-13

    Molybdenum (Mo) thin films were deposited on corning glass (#7059) substrates using DC magnetron sputtering system. The effect of substrate temperature on the structural, morphology and topological properties have been investigated. Films were characterized by variety of techniques such as low angle x-ray diffraction (low angle XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM). The low angle XRD analysis revealed that the synthesized Mo films are nanocrystalline having cubic crystal structure with (110) preferential orientation. The microstructure of the deposited Mo thin films observed with FE-SEM images indicated that films are homogeneous and uniform with randomly oriented leaf shape morphology. The AFM analysis shows that with increase in substrate temperature the rms roughness of Mo films increases. The obtained results suggest that the synthesized nanostructured Mo thin films have potential application as a back contact material for high efficiency solar cells like CdTe, CIGS, CZTS etc.

  17. A study of dc discharge in cylindrical magnetron - comparison of experiment and PIC model

    NASA Astrophysics Data System (ADS)

    Behnke, J. F.; Csambal, C.; Tichy, M.; Kudrna, P.; Rusz, J.

    2000-10-01

    We present experimental and numerical study of the DC discharge in cylindrical magnetron in argon. The grounded discharge chamber-anode has 110 mm in length and 60 mm inner diameter. The co-axially placed cathode has 10 mm in diameter. The magnetic field is created by couple of coils. Experimental results have been obtained by radially movable planar Langmuir probe with its plane perpendicular to the magnetic field lines. The radial profiles of the floating and plasma potential, plasma density, and the electron energy distribution function have been measured. Numerical results were obtained using the modified 1D PIC code (Berkeley). The comparison between experiment and model results computed at similar conditions shows reasonable agreement in plasma density and electron mean energy. The computed electric field is usually higher than the experimental one. This difference we explain by the end effects that are not taken into account in 1D model.

  18. Current-pressure dependencies of dc magnetron discharge in inert gases

    NASA Astrophysics Data System (ADS)

    Serov, A. O.; Mankelevich, Yu A.; Pal, A. F.; Ryabinkin, A. N.

    2016-11-01

    The current-pressure (I-P) characteristics of dc magnetron discharge in inert gases (Ar, Kr and Xe) for various constant discharge voltages were measured. Under certain conditions on I-P characteristic, the nonmonotonic region of local maximum followed by a minimum is observed. It is found that increasing mass of the working gas ions results in a shift of the local maximum to lower pressures. The spatial distribution of ions in the plasma was studied by optical emission spectroscopy. Transformation of the discharge spatial structure with pressure was observed. A qualitative model of the observed trends is presented. It takes into account the pressure dependence of the discharge spatial structure, the capturing of secondary electrons by the cathode and charge exchange effects.

  19. Structural and nanomechanical characterization of niobium films deposited by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, X.; Cao, W. H.; Tao, X. F.; Ren, L. L.; Zhou, L. Q.; Xu, G. F.

    2016-05-01

    Nb thin films were deposited onto Si wafers by direct current (DC) magnetron sputtering at different deposition pressures. The microstructure and nanomechanical properties of Nb films were investigated by scanning electron microscope, X-ray diffractometer, transmission electron microscope, atomic force microscope and nanoindenter. The results revealed that the grain size, thickness, surface roughness, the reduced elastic modulus ( Er) and hardness ( H) values of Nb thin films increased at the pressure range of 0.61-0.68 Pa. Meanwhile, the porosity of Nb films decreased with the increase in deposition pressure. The lattice deformation of Nb thin films changed from negative to positive with the increase in deposition pressure. It is concluded that deposition pressure influences the microstructure and nanomechanical properties of Nb films.

  20. Characterization of DC magnetron plasma in Ar/Kr/N2 mixture during deposition of (Cr,Al)N coating

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Bagcivan, N.; Theiß, S.; Brugnara, R.; Bibinov, N.; Awakowicz, P.

    2017-02-01

    Reactive sputter deposition of (Cr,Al)N coatings in DC magnetron plasmas containing Ar/Kr/N2 mixtures is characterized by applying a combination of voltage–current measurement, optical emission spectroscopy (OES) and numerical simulation. Theoretical and experimental methods supplement each other and their combination permits us to obtain the most reliable information about the processes by physical vapor deposition. Gas temperature (T g) and plasma parameters, namely electron density n e and electron temperature T e are determined by spatial resolved measurements of molecular nitrogen photoemission. Steady-state densities of Cr and Al atoms are measured using OES. The sputtering of Cr and Al atoms is simulated using the TRIDYN code, measured electric current and applied voltage. Transport of sputtered atoms through the plasma volume is simulated by adopting a Monte-Carlo code. In order to quantify the ‘poisoning’ of the target surface with nitrogen, simulated steady state densities of Al and Cr atoms at different states of poisoning and at different distances from the target are compared with the measured densities. In addition, simulated fluxes of Cr and Al atoms to the substrate are compared with the measured deposition rates of the (Cr,Al)N coating.

  1. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Aji, A. S.; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y.

    2015-04-01

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  2. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    SciTech Connect

    Aji, A. S. Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y.

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  3. Structure and properties of uranium oxide thin films deposited by pulsed dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Dahan, Isaac; Valderrama, Billy; Manuel, Michele V.

    2014-05-01

    Crystalline uranium oxide thin films were deposited in an unbalanced magnetron sputtering system by sputtering from a depleted uranium target in an Ar + O2 mixture using middle frequency pulsed dc magnetron sputtering. The substrate temperature was constantly maintained at 500 °C. Different uranium oxide phases (including UO2-x, UO2, U3O7 and U3O8) were obtained by controlling the percentage of the O2 flow rate to the total gas flow rate (f) in the chamber. The crystal structure of the films was characterized using X-ray diffraction and the microstructure of the films was studied using transmission electron microscopy and atom probe tomography. When the f was below 10%, the film contains a mixture of metallic uranium and UO2-x phases. As the f was controlled in the range of 10-13%, UO2 films with a (2 2 0) preferential orientation were obtained. The oxide phase rapidly changed to a mixture of U3O7 and U3O8 as the f was increased to the range of 15-18%. Further increasing the f to 20% and above, polycrystalline U3O8 thin films with a (0 0 1) preferential orientation were formed. The hardness and Young's modulus of the uranium oxide films were evaluated using nanoindentation. The film containing a single UO2 phase exhibited the maximum hardness of 14.3 GPa and a Young's modulus of 195 GPa. The UO2 thin film also exhibited good thermal stability in that no phase change was observed after annealing at 600 °C in vacuum for 104 h.

  4. Multi-wave coupling and non-linear interactions in DC planar magnetron microdischarges

    NASA Astrophysics Data System (ADS)

    Gascon, Nicolas; Young, Christopher; Ito, Tsuyohito; Cappelli, Mark

    2016-10-01

    We study azimuthal wave structures in two planar DC magnetron microdicharges ( 1-10W) operated with argon. Segmented anode/electrodes and high frame rate camera imaging of plasma emission are used to characterize azimuthal modes and transitions as evidenced in the spatial and temporal variation in the discharge current. The dominant stable mode structure varies with discharge voltage and electrode distance, and is observed rotating in the negative E x B direction. This negative drift direction is attributed to a local field reversal arising from strong density gradients that drive excess ions towards the anode. Observed mode transitions are shown to be consistent with models of gradient drift-wave dispersion in such a field reversal when the fluid representation includes ambipolar diffusion parallel to the magnetic field direction. Azimuthal wave dispersion (f- k) spectra obtained from two-point signal analysis (f = 100 kHz-100 MHz and k = 0-200 m-1) , reveal rich and complex waves and transient structures, and in some operating conditions, multi-wave coupling and nonlinear interactions. Preliminary analysis of these structures point to energy transfer mechanisms consistent with classic turbulence models, such as described by the Hasegawa-Mima equations. This work was supported by the Air Force Office of Scientific Research.

  5. Deposition and characterization of TiZrV-Pd thin films by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Zhang, Bo; Xu, Yan-Hui; Wei, Wei; Fan, Le; Pei, Xiang-Tao; Hong, Yuan-Zhi; Wang, Yong

    2015-12-01

    TiZrV film is mainly applied in the ultra-high vacuum pipes of storage rings. Thin film coatings of palladium, which are added onto the TiZrV film to increase the service life of nonevaporable getters and enhance H2 pumping speed, were deposited on the inner face of stainless steel pipes by dc magnetron sputtering using argon gas as the sputtering gas. The TiZrV-Pd film properties were investigated by atomic force microscope (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and X-Ray Diffraction (XRD). The grain size of TiZrV and Pd films were about 0.42-1.3 nm and 8.5-18.25 nm respectively. It was found that the roughness of TiZrV films is small, about 2-4 nm, but for Pd film it is large, about 17-19 nm. The PP At. % of Pd in TiZrV/Pd films varied from 86.84 to 87.56 according to the XPS test results. Supported by National Natural Science Funds of China (11205155) and Fundamental Research Funds for the Central Universities (WK2310000041)

  6. Titanium density analysed by optical absorption and emission spectroscopy in a dc magnetron discharge

    NASA Astrophysics Data System (ADS)

    Gaillard, M.; Britun, N.; Kim, Yong M.; Han, Jeon G.

    2007-02-01

    This paper presents an optical diagnostic examination of dc planar magnetron discharge used for titanium deposition at 30 mTorr in argon bulk gas. The results were obtained by optical absorption (OAS) and emission (OES) spectroscopy for two distances from the target without substrate. The absolute density of titanium in the ground and metastable states at 4 cm from the target ranged, respectively, between 8 × 1010 cm-3 and 1012 cm-3 and between 6 × 1010 cm-3 and 3 × 1011 cm-3, in the range 0.2-1.0 A. OES results were used to prepare an assumed interpretation in terms of differences in loss mechanisms, mainly by either diffusion towards the walls for all particles at 8 cm from the target or collision losses for non-radiative species at 4 cm from the target, except for the titanium ground state. This was confirmed by our results of the argon metastable density measurement at 4 cm which was constant at around 7 × 1010 cm-3 with discharge current.

  7. Development of hierarchical layered nanostructured α-MoO3 thin films using dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dayal, Saurabh; Sasi Kumar, C.

    2016-10-01

    The synthesis of environmentally friendly, catalyst free, hierarchical molybdenum oxide nanostructured thin films of different morphologies by a DC magnetron sputtering technique is reported. With increase in the annealing temperature, the spherical molybdenum nanoparticles arrange themselves in the form of vertically aligned nanorods and platelets stacked over one another. The preliminary phase analysis was carried out using x-ray diffraction. The sample annealed at 600 °C shows the formation of highly crystalline orthorhombic α-MoO3. Field emission scanning electron microscopy and transmission electron microscopy images confirm the formation of a layered structure at higher annealing temperatures, while the Raman spectroscopy revealed the stretching vibration modes of Mo-O bonds in the formation of the orthorhombic α-MoO3 layered structure. The Raman peaks at 667, 820 and 995 cm-1 correspond to the layered structure of orthorhombic α-MoO3. The electrical properties and possible growth mechanism of the as-prepared samples at different annealing temperatures are also discussed.

  8. Microstructure and tribological properties of Ti-contained amorphous carbon film deposited by DC magnetron sputtering

    SciTech Connect

    Li, R. L.; Tu, J. P.; Hong, C. F.; Liu, D. G.; Zhou, D. H.; Sun, H. L.

    2009-12-15

    Pure amorphous carbon (a-C) film and that with a small amount of Ti were deposited on high speed steel (W18Cr4V) substrates by means of dc closed field unbalanced magnetron sputtering. The chemical composition and microstructure of the a-C films were performed using x-ray photoelectron spectroscopy, x-ray diffraction, Raman spectra, and transmission electron microscopy. The mechanical and tribological properties were evaluated using a nanoindentor, Rockwell and scratch tests, and a conventional ball-on-disk tribometer, respectively. The pure a-C film showed the high hardness (53 GPa), elastic modulus (289 GPa), but the poor adhesive strength. When adding a small amount of Ti to the a-C film, both the adhesive strength and the tribological properties were improved. The Ti contained a-C film had the low wear rate (1.9x10{sup -17} m{sup 3} N{sup -1} m{sup -1}) and friction coefficient in humid air.

  9. GMR in DC magnetron sputtered Ni{sub 81}Fe{sub 19}/Cu multilayers

    SciTech Connect

    Mao, M.; Cerjan, C.; Gibbons, M.; Law, B.; Grabner, F.; Vernon, S.P.; Wall, M.

    1998-07-01

    In this paper, the authors present results of a study on Ni{sub 81}Fe{sub 19}/Cu magnetic multilayers (MLs) deposited using a four-source DC magnetron sputtering system operated in planetary mode. A significant change of GMR value with deposition conditions, especially base pressure and deposition pressure, has been observed for Ni{sub 81}Fe{sub 19}/Cu MLs. With an optimized process, they have obtained a GMR response of 9.5% with a field sensitivity of 0.44%/Oe for Si/ [(Ni{sub 81}Fe{sub 19})17{angstrom}/Cu20{angstrom}]{sub 20} MLs without an Fe buffer layer. The insertion of a very thin layer of a second magnetic species at nonmagnetic/magnetic interfaces in the ML stack makes GMR response either sensitive or less sensitive to deposition conditions depending on the species selected. They believe that the key to obtaining large GMR values in Ni{sub 81}Fe{sub 19}/Cu MLs lies in the control of layered structure and interfacial chemistry. In addition, these Ni{sub 81}Fe{sub 19}/Cu MLs survive high temperature annealing up to 250 C, retaining a GMR value of 8.5%.

  10. Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering

    SciTech Connect

    Aryanto, Didik; Marwoto, Putut; Sugianto; Sudiro, Toto; Birowosuto, Muhammad D.

    2016-04-19

    Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtained at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.

  11. Carbon film deposition on SnO2/Si(111) using DC unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Aji, A. S.; Darma, Y.

    2013-09-01

    In this paper, carbon deposition on SnO2 layer using DC unbalanced magnetron-sputtering technique at low temperature has been systematically studied. Sputtering process were carried out at pressure of 4.6×10-2 Torr by keeping the substrate temperature at 300 °C. SnO2 were growth on silicon (111) substrate using thermal evaporation and continuing with dry oxidation of Sn at 225 °C. Thermal evaporation for high purity Sn was conducted by maintain the current source as high as 40 ampere. The quality of SnO2 on Si(111) and the characteristic of carbon thin film on SnO2 were analized by mean XRD, FTIR and Raman spectra. XRD analysis shows that SnO2 film is growth uniformly on Si(111). FTIR and Raman spectra confirm the formation of thin film carbon on SnO2. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by Raman and XRD spectra.

  12. Studies on Nanostructure Aluminium Thin Film Coatings Deposited using DC magnetron Sputtering Process

    NASA Astrophysics Data System (ADS)

    Singh M, Muralidhar; G, Vijaya; MS, Krupashankara; Sridhara, B. K.; Shridhar, T. N.

    2016-09-01

    Nanostructured thin film metallic coatings has become an area of intense research particularly in applications related solar, sensor technologies and many other optical applications such as laser windows, mirrors and reflectors. Thin film metallic coatings were deposited using DC magnetron sputtering process. The deposition rate was varied to study its influence on optical behavior of Aluminum thin films at a different argon flow rate. Studies on the optical response of these nanostructure thin film coatings were characterized using UV-VIS-NIR spectrophotometer with integrating sphere in the wavelength range of (250-2500nm) and Surface morphology were carried out using atomic force microscope with roughness ranging from 2 to 20nm and thickness was measured using Dektak measuring instrument. The reflection behavior of aluminium coatings on polycarbonate substrates has been evaluated. UV-VIS-NIR Spectrophotometer analysis indicates higher reflectance of 96% for all the films in the wavelength range of 250 nm to 2500 nm. Nano indentation study revealed that there was a considerable change in hardness values of the films prepared at different conditions.

  13. Carbon film deposition on SnO{sub 2}/Si(111) using DC unbalanced magnetron sputtering

    SciTech Connect

    Aji, A. S.; Darma, Y.

    2013-09-09

    In this paper, carbon deposition on SnO{sub 2} layer using DC unbalanced magnetron-sputtering technique at low temperature has been systematically studied. Sputtering process were carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature at 300 °C. SnO{sub 2} were growth on silicon (111) substrate using thermal evaporation and continuing with dry oxidation of Sn at 225 °C. Thermal evaporation for high purity Sn was conducted by maintain the current source as high as 40 ampere. The quality of SnO{sub 2} on Si(111) and the characteristic of carbon thin film on SnO{sub 2} were analized by mean XRD, FTIR and Raman spectra. XRD analysis shows that SnO{sub 2} film is growth uniformly on Si(111). FTIR and Raman spectra confirm the formation of thin film carbon on SnO{sub 2}. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by Raman and XRD spectra.

  14. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    SciTech Connect

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-07-15

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H{sub 2} gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H{sub 2} (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10{sup -4} {omega} cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H{sub 2} gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films.

  15. Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Rani, D. Jhansi; Kumar, A. GuruSampath; Sarmash, T. Sofi; Chandra Babu Naidu, K.; Maddaiah, M.; Rao, T. Subba

    2016-06-01

    High transmitting, non absorbent, nano crystalline zirconium titanate (ZT) thin films suitable for anti reflection coatings (ARC) were deposited on to glass substrates by direct current (DC) magnetron reactive sputtering technique, under distinct Argon to Oxygen (Ar/O2) gas flow rate ratios of 31/1, 30/2, 29/3 and 28/4, with a net gas flow (Ar + O2) of 32sccm, at an optimum substrate temperature of 250°C. The influence of the gas mixture ratio on the film properties has been investigated by employing x-ray diffraction (XRD), ultra violet visible (UV-vis) spectroscopy, atomic force microscopy (AFM), energy dispersive x-ray analysis (EDX) and four point probe methods. The films showed a predominant peak at 30.85° with (111) orientation. The crystallite size reduced from 22.94 nm to 13.5 nm and the surface roughness increased from 11.53 nm to 50.58 nm with increase in oxygen content respectively. The films deposited at 31/1 and 30/2 showed almost similar chemical composition. Increased oxygen content results an increase in electrical resistivity from 3.59 × 103 to 2.1 × 106 Ωm. The film deposited at Ar/O2 of 28/4 exhibited higher average optical transmittance of 91%, but its refractive index is higher than that of what is required for ARC. The films deposited at 31/1 and 30/2 of Ar/O2 possess higher transmittance (low absorbance) apart from suitable refractive index. Thus, these films are preferable candidates for ARC.

  16. Origin of particles during reactive sputtering of oxides using planar and cylindrical magnetrons.

    PubMed

    Rademacher, Daniel; Fritz, Benjamin; Vergöhl, Michael

    2012-03-01

    Particles generated during reactive magnetron sputtering cause defects in optical thin films, which may lead to losses in optical performance, pinholes, loss of adhesion, decreased laser-induced damage thresholds and many more negative effects. Therefore, it is important to reduce the particle contamination during the manufacturing process. In the present paper, the origin of particles during the deposition of various oxide films by midfrequency pulsed reactive magnetron sputtering was investigated. Several steps have been undertaken to decrease the particle contamination during the complete substrate handling procedure. It was found that conditioning of the vacuum chamber can help to decrease the defect level significantly. This level remains low for several hours of sputtering and increases after 100 hours of process time. Particle densities of SiO(2) films deposited with cylindrical and planar dual magnetrons at different process parameters as well as different positions underneath the target were compared. It was observed that the process power influences the particle density significantly in case of planar targets while cylindrical targets have no such strong dependence. In addition, the particle contamination caused by different cylindrical target materials was analyzed. No major differences in particle contamination of different cylindrical target types and materials were found.

  17. Deposition and characterization of molybdenum thin films using dc-plasma magnetron sputtering

    SciTech Connect

    Khan, Majid; Islam, Mohammad

    2013-12-15

    Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thin films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ∼550 nm and electrical resistivity value of 0.57 × 10{sup −4} Ω cm.

  18. Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering

    SciTech Connect

    Oezer, D.; Sanjines, R.; Ramirez, G.; Rodil, S. E.

    2012-12-01

    The electrical and optical properties of Ta{sub x}Si{sub y}N{sub z} thin films deposited by reactive magnetron sputtering from individual Ta and Si targets were studied in order to investigate the effects of nitrogen and silicon contents on both properties and their correlation to the film microstructure. Three sets of fcc-Ta{sub x}Si{sub y}N{sub z} thin films were prepared: sub-stoichiometric Ta{sub x}Si{sub y}N{sub 0.44}, nearly stoichiometric Ta{sub x}Si{sub y}N{sub 0.5}, and over-stoichiometric Ta{sub x}Si{sub y}N{sub 0.56}. The optical properties were investigated by near-normal-incidence reflectivity and ellipsometric measurements in the optical energy range from 0.375 eV to 6.8 eV, while the d.c. electrical resistivity was measured in the van der Pauw configuration from 20 K to 300 K. The optical and electrical measurements were interpreted using the standard Drude-Lorentz model and the so-called grain boundary scattering model, respectively. The electronic properties were closely correlated with the compositional and structural modifications of the Ta{sub x}Si{sub y}N{sub z} films due to variations in the stoichiometry of the fcc-TaN{sub z} system and the addition of Si atoms. According to the nitrogen and silicon contents, fcc-Ta{sub x}Si{sub y}N{sub z} films can exhibit room temperature resistivity values ranging from 10{sup 2} {mu}{Omega} cm to about 6 Multiplication-Sign 10{sup 4} {mu}{Omega} cm. The interpretation of the experimental temperature-dependent resistivity data within the Grain Boundary Scattering model, combined with the results from optical investigations, showed that the mean electron transmission probability G and the free carriers concentration, N, are the main parameters that control the transport properties of these films. The results indicated that the correlation between electrical and optical measurements with the chemical composition and the nanostructure of the Ta{sub x}Si{sub y}N{sub z} thin films provides a pertinent and

  19. ZnO thin film synthesis by reactive radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Aydoğmuş, Tuna; Elmas, Saliha; Özen, Soner; Ekem, Naci; Balbağ, M. Zafer

    2014-11-01

    In this study, ZnO thin films were deposited on glass substrates by reactive RF magnetron sputtering method at argon-oxygen gas mixing (1:1) atmosphere. Some properties of the synthesized films were investigated by interferometry, UV-vis spectrophotometer, atomic force microscopy, and tensiometer. Tauc method was adopted to estimate the optical band gaps. The band gaps of the deposited films were affected by film thickness. We concluded that the surface composition plays a substantial role in the values of the band gaps. Nanocrystalline structures were detected in all produced samples.

  20. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    SciTech Connect

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  1. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu

    2016-03-01

    Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

  2. Effects of the duty ratio on the niobium oxide film deposited by pulsed-DC magnetron sputtering methods.

    PubMed

    Eom, Ji Mi; Oh, Hyun Gon; Cho, Il Hwan; Kwon, Sang Jik; Cho, Eou Sik

    2013-11-01

    Niobium oxide (Nb2O5) films were deposited on p-type Si wafers and sodalime glasses at a room temperature using in-line pulsed-DC magnetron sputtering system with various duty ratios. The different duty ratio was obtained by varying the reverse voltage time of pulsed DC power from 0.5 to 2.0 micros at the fixed frequency of 200 kHz. From the structural and optical characteristics of the sputtered NbOx films, it was possible to obtain more uniform and coherent NbOx films in case of the higher reverse voltage time as a result of the cleaning effect on the Nb2O5 target surface. The electrical characteristics from the metal-insulator-semiconductor (MIS) fabricated with the NbOx films shows the leakage currents are influenced by the reverse voltage time and the Schottky barrier diode characteristics.

  3. Influences of annealing temperature on microstructure and properties for TiO2 films deposited by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shang, Jie-Ting; Chen, Chih-Ming; Cheng, Ta-Chih; Lee, Ying-Chieh

    2015-12-01

    Titanium dioxide films were deposited at 100 °C of substrate temperature with a DC magnetron sputtering system. The crystalline structures, morphological features, and photocatalytic activity of the TiO2 films were systematically studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and ultraviolet spectrophotometry. To obtain the crystalline structure of TiO2 film at a low annealing temperature, high-level DC power (600 W) was applied. The effect of the annealing treatments on the microstructure of the TiO2 films was investigated. The results indicated that the annealing process at 200 °C clearly caused the formation of a nanocrystalline anatase phase that directly affected photocatalytic activity. The dye removal efficiency of the nanostructured anatase attained 53 and 31% for UV and visible light radiation, respectively.

  4. Preparation, characterization and post-deposition modification of pulsed-dc magnetron sputtered Vanadium Oxide thin films for microbolometer applications

    NASA Astrophysics Data System (ADS)

    Venkatasubramanian, Chandrasekaran

    Vanadium Oxide (VOx) thin films have been at the heart of uncooled microbolometers for several years, however very little is known about their structure and material properties. Also, process control remains an issue because the films are formed under oxygen-starved conditions resulting in films with "x" less than 2.0 in VOx. Hence it is desirable to optimize the film deposition conditions so as to obtain the required properties (high temperature coefficient of resistance [TCR], low resistivity and low noise) for the microbolometer application. In this work, the parameter space for pulsed-dc magnetron sputtering was explored to arrive at optimum deposition conditions. A metallic vanadium target was used in a reactive environment under different Ar/O2 ratios. The gas flow rates and oxygen partial pressures were varied systematically, and the corresponding changes in the cathode (target) current were monitored. The cathode current was found to exhibit a hysteresis behavior between forward and reverse directions for changes in the oxygen percentage as well as the total flow rate. The width and position of the hysteresis curve depended on the relative values of the gas flow rates and the oxygen partial pressures. Films were deposited along various points in the hysteresis curve, and their structural and electrical properties were evaluated. The resistivity and the TCR of the films were also found to exhibit a hysteretic behavior similar to that of the cathode current. The film microstructure changed from columnar at low flow rates to multi-grained features at higher flow rates. Also, the TCR of the films exhibited a linear relation with log of resistivity -- the higher the resistivity, the higher the TCR. The current read-out circuitry for VOx microbolometer arrays requires a material with high TCR but low resistivity. Post-deposition modification was investigated to see if the combination of resistivity and TCR could be improved from the as-deposited properties. The

  5. Role of nitrogen in the formation of hard and elastic CNx thin films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hellgren, Niklas; Johansson, Mats P.; Broitman, Esteban; Hultman, Lars; Sundgren, Jan-Eric

    1999-02-01

    Carbon nitride films, deposited by reactive dc magnetron sputtering in Ar/N2 discharges, were studied with respect to composition, structure, and mechanical properties. CNx films, with 0<=x<=0.35, were grown onto Si (001) substrates at temperatures between 100 and 550 °C. The total pressure was kept constant at 3.0 mTorr with the N2 fraction varied from 0 to 1. As-deposited films were studied by Rutherford-backscattering spectroscopy, x-ray photoelectron spectroscopy, electron-energy loss spectroscopy, Raman and Fourier transform infrared spectroscopy, and nanoindentation. Three characteristic film structures could be identified: For temperatures below ~150 °C, an amorphous phase forms, the properties of which are essentially unaffected by the nitrogen concentration. For temperatures above ~200 °C, a transition from a graphitelike phase to a ``fullerenelike'' phase is observed when the nitrogen concentration increases from ~5 to ~15 at. %. This fullerenelike phase exhibits high hardness values and extreme elasticity, as measured by nanoindentation. A ``defected-graphite'' model, where nitrogen atoms goes into substitutional graphite sites, is suggested for explaining this structural transformation. When a sufficient number of nitrogen atoms is incorporated, formation of pentagons is promoted, leading to curving of the basal planes. This facilitates cross-linking between the planes and a distortion of the graphitic structure, and a strong three-dimensional covalently bonded network is formed.

  6. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CNx multilayer grown by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Alemón, B.; Flores, M.; Canto, C.; Andrade, E.; de Lucio, O. G.; Rocha, M. F.; Broitman, E.

    2014-07-01

    A novel TiAlCN/CNx multilayer coating, consisting of nine TiAlCN/CNx periods with a top layer 0.5 μm of CNx, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti0.5Al0.5 and C targets respectively in a N2/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.

  7. Effect of duty cycle on the electrical and optical properties of VOx film deposited by pulsed reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dong, Xiang; Wu, Zhiming; Xu, Xiangdong; Wei, Xiongbang; Jiang, Yadong

    2013-12-01

    Vanadium oxide (VOx) films were deposited onto well cleaned glass substrates by bipolar pulsed reactive magnetron sputtering at room temperature. Dependence of the structure, composition, optical and electrical properties of the films on the pulsed power's duty cycle has been investigated. The results from the X-ray diffraction (XRD) analysis show that there was no remarkable change in the amorphous structure in the films with duty cycle can be observed. But chemical analysis of the surface evaluated with x-ray photoelectron spectroscopy (XPS) indicates that decrease the duty cycle favors to enhance the oxidation of the vanadium. The optical and electrical properties of the films were characterized by spectroscopic ellipsometry and temperature dependent resistivity measurements, respectively. The evolution of the transmittance, optical band gap, optical constants, resistivity and temperature coefficient of resistance (TCR) of the deposited films with duty cycle was analyzed and discussed. In comparison with conventional DC sputtering, under the same discharge atmosphere and power level, these parameters of the VOx films can be modified over a broad range by duty cycle. Therefore adjusting the duty cycle during deposition, which is an effective way to control and optimize the performances of the VOx film for various optoelectronic devices applications.

  8. Modeling of plasma-target interaction during reactive magnetron sputtering of TiN

    NASA Astrophysics Data System (ADS)

    Möller, W.; Güttler, D.

    2007-11-01

    The nitrogen incorporation at the target during reactive magnetron sputtering of TiN is described by a simple stationary global model of the magnetron plasma, in combination with an analytical two-layer stationary surface model or dynamic collisional computer simulation (TRIDYN) of the surface processes. Results are shown for different nitrogen gas additions in Ar /N2 and Xe /N2 gas mixtures at a total pressure of 0.3Pa and a magnetron current of 0.3A. The nitrogen incorporation predicted by the analytical model is significantly less than obtained from computer simulation. The computer simulation yields nitrogen depth profiles which extend to about 2.5nm, exhibiting a quasirectangular shape in case of stoichiometric saturation with an integrated nitrogen areal density of ˜1.25×1016N/cm2. The stationary-state nitrogen incorporation results from the balance of surface adsorption in connection with recoil implantation, direct ion implantation, and resputtering. The most relevant species are nitrogen gas molecules for adsorption, molecular nitrogen ions for implantation, and inert gas ions for recoil implantation and sputtering. The model results are in good agreement with experiment provided that nonzero sticking of nitrogen gas molecules is assumed on the unsaturated surface. The analytical surface model is preferable, which favors the picture of a continuous transition to bulk and surface saturation rather than discrete local saturation which is inherent in TRIDYN. Also the relative nitrogen incorporation for Xe /N2 versus Ar /N2 gas mixtures is well described.

  9. Nanoscale and macroscale aluminum nitride deposition via reactive magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghai

    The growth of group III nitrides is receiving a great deal of attention due to their potential as materials for optoelectronic devices in the blue to ultraviolet spectral range. This dissertation is primarily focused on deposition of aluminum nitride thin films on both nanofibers and macroscale silicon substrates via reactive magnetron sputtering. The objectives include investigating the feasibility of coating nanofibers to prepare high quality (smooth and crystalline) nanotubes, nanofiber hetero structures and using buffer layers to improve the quality of macroscale AlN thin films. To satisfy the need of nanoscale semiconductor materials, deposition of AlN on poly (meta-phenylene isophthalamide) MPD-I nano-fiber (template) was investigated via reactive magnetron sputtering. The electrospun high-temperature nanofibers with uniform dimensions were heated up to 300°C or higher. The coatings on the fibers were continuous and their morphology and crystal structure (either hexagonal wurtzite structure or cubic zinc-blende structure) were controlled by changing the deposition conditions. After removing the fiber core with organic solvent or by pyrolysis, AlN nanotubes (hollow structures) with inner diameter of 50--100 nm were achieved. As the nanoscale building blocks, nanoscale semiconductor heterostructures with modulated composition can facilitate the generation of devices with various functions. In this work, SiO2-AlN core-shell nanofiber heterostructures with SiO2 core and AlN shell were created by electro-spinning and reactive magnetron sputtering methods. Also the AlN coating (shell) was designed with different morphologies and crystalline properties by controlling the deposition conditions. The critical operating parameters for the formation of different morphologies of AlN shells were investigated. In practice, AlN thin film materials are still widely used for microelectronic and optoelectronic devices. To investigate and develop semiconducting AlN films, the

  10. Optical and electrical properties of thin NiO films deposited by reactive magnetron sputtering and spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Parkhomenko, H. P.; Solovan, M. N.; Mostovoi, A. I.; Orletskii, I. G.; Parfenyuk, O. A.; Maryanchuk, P. D.

    2017-06-01

    Thin NiO films are deposited by reactive magnetron sputtering and spray pyrolysis. The main optical constants, i.e., refractive index n(λ), absorption coefficient α(λ), extinction coefficient k(λ), and thickness d, are determined. The temperature dependence of the resistance of thin films is found, and the activation energy of films deposited by different methods is determined.

  11. Charge Build-Up in Magnetron-Enhanced Reactive Ion Etching

    NASA Astrophysics Data System (ADS)

    Hoga, Hiroshi; Orita, Toshiyuki; Yokoyama, Takashi; Hayashi, Toshio

    1991-11-01

    Charge build-up in magnetron-enhanced reactive ion etching (MERIE) was evaluated with metal nitride oxide semiconductor (MNOS) capacitors. In static magnetic field, negative flat band voltage (Vfb) shifts of more than -1.5 V were observed in the area under high-density plasma, and more than 2-V Vfb shifts were observed at the edge of the wafer near the N and S poles. This distributed Vfb shift was considered to result from nonuniform plasma potential caused by secondary electron E× B drift motion. In rotated magnetic field, Vfb shifts were reduced. No significant Vfb shifts were observed when the magnet was rotated at 120 rpm. The Vfb shift reduction in rotated magnetic field was supposed to result from charge neutralization by alternate charge build-up.

  12. HRTEM Microstructural Characterization of β-WO3 Thin Films Deposited by Reactive RF Magnetron Sputtering

    PubMed Central

    Faudoa-Arzate, A.; Arteaga-Durán, A.; Saenz-Hernández, R.J.; Botello-Zubiate, M.E.; Realyvazquez-Guevara, P.R.; Matutes-Aquino, J.A.

    2017-01-01

    Though tungsten trioxide (WO3) in bulk, nanosphere, and thin film samples has been extensively studied, few studies have been dedicated to the crystallographic structure of WO3 thin films. In this work, the evolution from amorphous WO3 thin films to crystalline WO3 thin films is discussed. WO3 thin films were fabricated on silicon substrates (Si/SiO2) by RF reactive magnetron sputtering. Once a thin film was deposited, two successive annealing treatments were made: an initial annealing at 400 °C for 6 h was followed by a second annealing at 350 °C for 1 h. Film characterization was carried out by X-ray diffraction (XRD), high-resolution electron transmission microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. The β-WO3 final phase grew in form of columnar crystals and its growth plane was determined by HRTEM. PMID:28772559

  13. Physical properties of erbium implanted tungsten oxide filmsdeposited by reactive dual magnetron sputtering

    SciTech Connect

    Mohamed, Sodky H.; Anders, Andre

    2006-11-08

    Amorphous and partially crystalline WO3 thin films wereprepared by reactive dual magnetron sputtering and successively implantedby erbium ions with a fluence in the range from 7.7 x 1014 to 5 x 1015ions/cm2. The electrical and optical properties were studied as afunction of the film deposition parameters and the ion fluence. Ionimplantation caused a strong decrease of the resistivity, a moderatedecrease of the index of refraction and a moderate increase of theextinction coefficient in the visible and near infrared, while theoptical band gap remained almost unchanged. These effects could belargely ascribed to ion-induced oxygen deficiency. When annealed in air,the already low resistivities of the implanted samples decreased furtherup to 70oC, whereas oxidation, and hence a strong increase of theresistivity, was observed at higher annealing temperatures.

  14. HRTEM Microstructural Characterization of β-WO3 Thin Films Deposited by Reactive RF Magnetron Sputtering.

    PubMed

    Faudoa-Arzate, A; Arteaga-Durán, A; Saenz-Hernández, R J; Botello-Zubiate, M E; Realyvazquez-Guevara, P R; Matutes-Aquino, J A

    2017-02-17

    Though tungsten trioxide (WO3) in bulk, nanosphere, and thin film samples has been extensively studied, few studies have been dedicated to the crystallographic structure of WO3 thin films. In this work, the evolution from amorphous WO3 thin films to crystalline WO3 thin films is discussed. WO3 thin films were fabricated on silicon substrates (Si/SiO2) by RF reactive magnetron sputtering. Once a thin film was deposited, two successive annealing treatments were made: an initial annealing at 400 °C for 6 h was followed by a second annealing at 350 °C for 1 h. Film characterization was carried out by X-ray diffraction (XRD), high-resolution electron transmission microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. The β-WO3 final phase grew in form of columnar crystals and its growth plane was determined by HRTEM.

  15. Characteristics of DLC containing Ti and Zr films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ma, Guojia; Lin, Guoqiang; Sun, Gang; Zhang, Huafang; Wu, Hongchen

    The purpose of this paper is to investigate metal doping effects on micro-structural, mechanical and corrosive behavior of the DLC film. Ti and Zr doped DLC films were prepared on NiTi alloys by reactive magnetron sputtering combined with plasma source ion implantation (PSII) technology used to improve the coherent strength, respectively. The mechanical properties of the doped DLC films were investigated by means of nano-indentation technique, microscratch and frictional wear testing. The potentiodynamic polarization measurement was employed to value the corrosion resistance of DLC with Ti and Zr films in Hank's simulated body fluid. It was found that Ti-doped DLC films embraced higher nano-hardness, somewhat lower coefficient of friction and better corrosion resistance than Zr-doped DLC films.

  16. Manufacturing of HfOxNy films using reactive magnetron sputtering for ISFET application

    NASA Astrophysics Data System (ADS)

    Firek, Piotr; Wysokiński, Piotr

    2016-12-01

    Hafnium Oxide-Nitride films were deposited using reactive magnetron sputtering in O2/N2/Ar gas mixture. Deposition was planned according to Taguchi optimization method. Morphology of fabricated layers was tested using AFM technique (Ra=0.2÷1,0 nm). Thickness of HfOXNY films was measured using spectroscopic ellipsometry (t=45÷54 nm). Afterwards MIS structures were created by Al metallization process then layers were electrically characterised using I-V and C-V measurements. This allowed to calculate the electrical parameters of layers such as: flat-band voltage UFB, dielectric constant Ki, interface state trap density Dit and effective charge Qeff. Subsequently, deposited HfOxNy layers were annealed in PDA process (40 min 400 °C 100% N2) after which the electrical characterization was performed again.

  17. Plasma potential of a moving ionization zone in DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Anders, André

    2017-02-01

    Using movable emissive and floating probes, we determined the plasma and floating potentials of an ionization zone (spoke) in a direct current magnetron sputtering discharge. Measurements were recorded in a space and time resolved manner, which allowed us to make a three-dimensional representation of the plasma potential. From this information we could derive the related electric field, space charge, and the related spatial distribution of electron heating. The data reveal the existence of strong electric fields parallel and perpendicular to the target surface. The largest E-fields result from a double layer structure at the leading edge of the ionization zone. We suggest that the double layer plays a crucial role in the energization of electrons since electrons can gain several 10 eV of energy when crossing the double layer. We find sustained coupling between the potential structure, electron heating, and excitation and ionization processes as electrons drift over the magnetron target. The brightest region of an ionization zone is present right after the potential jump, where drifting electrons arrive and where most local electron heating occurs. The ionization zone intensity decays as electrons continue to drift in the Ez × B direction, losing energy by inelastic collisions; electrons become energized again as they cross the potential jump. This results in the elongated, arrowhead-like shape of the ionization zone. The ionization zone moves in the -Ez × B direction from which the to-be-heated electrons arrive and into which the heating region expands; the zone motion is dictated by the force of the local electric field on the ions at the leading edge of the ionization zone. We hypothesize that electron heating caused by the potential jump and physical processes associated with the double layer also apply to magnetrons at higher discharge power, including high power impulse magnetron sputtering.

  18. Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Treverrow, B.; Murdoch, B.; Xie, D.; Ross, A. E.; Partridge, J. G.; Falconer, I. S.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2016-06-01

    Instabilities in reactive sputtering have technological consequences and have been attributed to the formation of a compound layer on the target surface (‘poisoning’). Here we demonstrate how the duty cycle of high power impulse magnetron sputtering (HiPIMS) can be used to control the surface conditions of Hf and Nb targets. Variations in the time resolved target current characteristics as a function of duty cycle were attributed to gas rarefaction and to the degree of poisoning of the target surface. As the operation transitions from Ar driven sputtering to metal driven sputtering, the secondary electron emission changes and reduces the target current. The target surface transitions smoothly from a poisoned state at low duty cycles to a quasi-metallic state at high duty cycles. Appropriate selection of duty cycle increases the deposition rate, eliminates the need for active regulation of oxygen flow and enables stable reactive deposition of stoichiometric metal oxide films. A model is presented for the reactive HIPIMS process in which the target operates in a partially poisoned mode with different degrees of oxide layer distribution on its surface that depends on the duty cycle. Finally, we show that by tuning the pulse characteristics, the refractive indices of the metal oxides can be controlled without increasing the absorption coefficients, a result important for the fabrication of optical multilayer stacks.

  19. Post Magnetron Sputter And Reactive Sputter Coating Of Contoured Glass, Acrylic And Polycarbonate Substrates

    NASA Astrophysics Data System (ADS)

    Wright, Michael P.

    1985-12-01

    A Post Magnetron Sputter concept employing a cylindrical internally cooled target (cathode) is described. The use of an internal, rotating, permanent magnetic field resulting in 360° utilisation of the target material is outlined. Computer controlled horizontal and vertical movement of the cathode assembly facilitates the coating of contoured substrates which may be glass, acrylic or polycarbonate. Deposition of different metals is easily achieved by changing the cathode or covering it with a suitable sheath material. The design of the cathode results in economic utilisation of the target material, which is particularly important when sputtering expensive metals such as gold. In addition to the deposition of metallic films, such as stainless steel or chrome, reactive sputtering may be undertaken by the introduction of a reactive gas into the vacuum chamber. In this way metal oxide, sulphide or nitride layers may be deposited according to the requirements of the layer structure. Specific optically-active oxides such as indium tin oxide are easily deposited in a uniform film and the formation of multilayer coatings for sun protective and heat rejecting applications is practicable. Indeed, a complete process may be undertaken without removing the substrate from the chamber; merely by adding or changing the reactive gas present.

  20. Indium tin oxide films deposited by thermionic-enhanced DC magnetron sputtering on unheated polyethylene terephthalate polymer substrate

    SciTech Connect

    Lan, Y.F.; Peng, W.C.; Lo, Y.H.; He, J.L.

    2009-08-05

    Indium tin oxide thin films were deposited onto polyethylene terephthalate substrates via thermionic enhanced DC magnetron sputtering at low substrate temperatures. The structural, optical and electrical properties of these films are methodically investigated. The results show that compared with traditional sputtering, the films deposited with thermionic emission exhibit higher crystallinity, and their optical and electrical properties are also improved. Indium tin oxide films deposited by utilizing thermionic emission exhibit an average visible transmittance of 80% and an electrical resistivity of 4.5 x 10{sup -4} {Omega} cm, while films made without thermionic emission present an average visible transmittance of 74% and an electrical resistivity of 1.7 x 10{sup -3} {Omega} cm.

  1. Vanadium oxide thin films for bolometric applications deposited by reactive pulsed dc sputtering

    SciTech Connect

    Fieldhouse, N.; Pursel, S. M.; Carey, R.; Horn, M. W.; Bharadwaja, S. S. N.

    2009-07-15

    Vanadium oxide (VO{sub x}) thin films were deposited by reactive pulse dc magnetron sputtering process using a pure vanadium metal target. The structural, microstructure, and electrical properties were correlated as a function of processing parameters such as substrate temperature, Ar:O partial pressures ratios, and pulsed dc power to fabricate these films. The VO{sub x} films deposited at various substrate temperatures between 30 and 300 degree sign C using a range of oxygen to argon partial pressure ratios exhibited huge variation in their microstructure even though most of them are amorphous to x-ray diffraction technique. In addition, the electrical properties such as temperature coefficient of resistance (TCR), resistivity, and noise levels were influenced by film microstructure. The TCRs of the VO{sub x} films were in the range of -1.1% to -2.4% K{sup -1} having resistivity values of 0.1-100 {Omega} cm. In particular, films grown at lower substrate temperatures with higher oxygen partial pressures have shown finer columnar grain structure and exhibited larger TCR and resistivity.

  2. Influence of oxygen flow rate on structural, optical and electrical properties of copper oxide thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gaewdang, Thitinai; Wongcharoen, Ngamnit

    2017-06-01

    In this research, copper oxide thin films were prepared by reactive dc magnetron sputtering method on glass substrates with oxygen flow rate in the range of 1-10 sccm. From XRD patterns, formation of Cu2O cubic structure or CuO monoclinic structure was controlled by adjusting oxygen flow rate. Nanocrystallite size of the as-grown films was observed by AFM. From transmittance spectra, direct energy gap varied between 1.97 and 2.55 eV. Electrical conductivity and Hall effect measurements were performed on the films with van der Pauw configuration. The positive sign of the Hall coefficient confirmed the p-type conductivity in all studied films. Important electrical parameters of films as a function of oxygen flow rate were observed. With low resistivity and high mobility values, the films prepared at oxygen flow rate of 8 sccm are identified as suitable candidates for fabrication as absorber layer in solar cell devices.

  3. Structural, electrical, and optical properties of diamondlike carbon films deposited by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Broitman, E.; Lindquist, O. P. A.; Hellgren, N.; Hultman, L.; Holloway, B. C.

    2003-11-01

    The electrical and optical properties of diamondlike carbon films deposited by direct current magnetron sputtering on Si substrates at room temperature have been measured as a function of the ion energy (Eion) and ion-to-carbon flux (Jion/JC). The results show that, in the ranges of 5 eV<=Eion<=85 eV and 1.1<=Jion/JC<=6.8, the presence of defective graphite formed by subplanted C and Ar atoms, voids, and the surface roughness, are the dominant influences on the resistivity and optical absorption.

  4. Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering: Model

    NASA Astrophysics Data System (ADS)

    Kadlec, Stanislav; Čapek, Jiří

    2017-05-01

    A tendency to disappearing hysteresis in reactive High Power Impulse Magnetron Sputtering (HiPIMS) has been reported previously without full physical explanation. An analytical model of reactive pulsed sputtering including HiPIMS is presented. The model combines a Berg-type model of reactive sputtering with the global HiPIMS model of Christie-Vlček. Both time and area averaging is used to describe the macroscopic steady state, especially the reactive gas balance in the reactor. The most important effect in the presented model is covering of reacted parts of target by the returning ionized metal, effectively lowering the target coverage by reaction product at a given partial pressure. The return probability of ionized sputtered metal has been selected as a parameter to quantify the degree of HiPIMS effects. The model explains the reasons for reduced hysteresis in HiPIMS. The critical pumping speed was up to a factor of 7 lower in reactive HiPIMS compared to the mid-frequency magnetron sputtering. The model predicts reduced hysteresis in HiPIMS due to less negative slope of metal flux to substrates and of reactive gas sorption as functions of reactive gas partial pressure. Higher deposition rate of reactive HiPIMS compared to standard reactive sputtering is predicted for some parameter combinations. Comparison of the model with experiment exhibits good qualitative and quantitative agreement for three material combinations, namely, Ti-O2, Al-O2, and Ti-N2.

  5. Antibacterial Cr-Cu-O films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Musil, J.; Blažek, J.; Fajfrlík, K.; Čerstvý, R.; Prokšová, Š.

    2013-07-01

    The paper reports on the effect of Cu content in the Cr-Cu-O film and its structure on its antibacterial activity and mechanical properties. The Cr-Cu-O films were prepared by reactive magnetron sputtering from composed Cr/Cu targets using a dual magnetron. The antibacterial activity of Cr-Cu-O films was tested on the killing of Escheria coli bacteria. Correlations between the structure of the Cr-Cu-O film, the content of Cu in the film and its (i) antibacterial efficiency and (ii) mechanical properties were investigated in detail. It was found that the 100% efficiency of the killing of E. coli bacteria on the surface of the Cr-Cu-O film is achieved if (1) the Cu content in the film is ≥15 at.% and (2) the film is either X-ray amorphous or crystalline with the CuCrO2 delafossite structure. These Cr-Cu-O films need no excitation and very effectively kill E. coli bacteria in the daylight as well as in the dark. The X-ray amorphous Cr-Cu-O films with ~20 at.% Cu exhibit a higher (i) hardness H ≈ 4 GPa, (ii) effective Young's modulus E* ≈ 72 GPa and (iii) elastic recovery We ≈ 37% compared with the crystalline Cr-Cu-O film with the CuCrO2 delafossite structure exhibiting H ≈ 1.2 GPa, E* ≈ 21 GPa and We ≈ 21%. Both films very effectively kill the E. coli bacteria, however, exhibit a low ratio H/E* < 0.1.

  6. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect

    Saikia, Partha Saikia, Bipul Kumar; Goswami, Kalyan Sindhu; Phukan, Arindam

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  7. Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N

    SciTech Connect

    Abadias, G.; Koutsokeras, L. E.; Dub, S. N.; Tolmachova, G. N.; Debelle, A.; Sauvage, T.; Villechaise, P.

    2010-07-15

    Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by either Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.

  8. Tribological Testing, Analysis and Characterization of D.C. Magnetron Sputtered Ti-Nb-N Thin Film Coatings on Stainless Steel

    NASA Astrophysics Data System (ADS)

    Joshi, Prathmesh

    To enhance the surface properties of stainless steel, the substrate was coated with a 1μm thick coating of Ti-Nb-N by reactive DC magnetron sputtering at different N2 flow rates, substrate biasing and Nb-Ti ratio. The characterization of the coated samples was performed by the following techniques: hardness by Knoop micro-hardness tester, phase analysis by X-ray Diffraction (XRD), compositional analysis by Energy Dispersive X-ray Spectroscopy (EDS) and adhesion by scratch test. The tribology testing was performed on linearly reciprocating ball-on-plate wear testing machine and wear depth and wear volume were evaluated by white light interferometer. The micro-hardness test yielded appreciable enhancement in the surface hardness with the highest value being 1450 HK. Presence of three prominent phases namely NbN, Nb2N3 and TiN resulted from the XRD analysis. EDS analysis revealed the presence of Ti, Nb and Nitrogen. Adhesion was evaluated on the basis of critical loads for cohesive (Lc1) and adhesive (Lc2) failures with values varying between 7-12 N and 16-25 N respectively, during scratch test for coatings on SS substrates.

  9. Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Javid, Amjed; Kumar, Manish; Han, Jeon Geon

    2017-01-01

    Electrically-conductive nanocrystalline carbon films, having non-toxic and non-immunogenic characteristics, are promising candidates for reusable medical devices. Here, the pure and N- doped nanocrystalline carbon films are deposited by the assistance of inductively coupled plasma (ICP) in an unbalanced facing target pulsed-DC magnetron sputtering process. Through the optical emission spectroscopy study, the role of ICP assistance and N-doping on the reactive components/radicals during the synthesis is presented. The N-doping enhances the three fold bonding configurations by increasing the ionization and energies of the plasma species. Whereas, the ICP addition increases the plasma density to control the deposition rate and film structure. As a result, sputtering-throughput (deposition rate: 31-55 nm/min), electrical resistivity (4-72 Ωcm) and water contact angle (45.12°-54°) are significantly tailored. Electric transport study across the surface microchannel confirms the superiority of N-doped carbon films for sterilization stability over the undoped carbon films.

  10. Electrochromic properties of NiOx:H films deposited by DC magnetron sputtering for ITO/NiOx:H/ZrO2/WO3/ITO device

    NASA Astrophysics Data System (ADS)

    Dong, Dongmei; Wang, Wenwen; Dong, Guobo; Zhou, Yuliang; Wu, Zhonghou; Wang, Mei; Liu, Famin; Diao, Xungang

    2015-12-01

    NiOx:H thin films were deposited on ITO-coated glass by DC reactive magnetron sputtering at room temperature. The effects of the hydrogen content on the structure, morphologies, electrochemical properties, the stoichiometry and chemical states of NiOx:H thin films were systematically studied. In X-ray diffraction and atomic force microscopy analysis, the crystallinity of the films tends to be weakened when the flow amount ratio of Ar:O2:H2 equals 19:1:3 and as confirmed in electrochemical analysis, such relatively weak crystallinity is the main contributing factor to ion transportation. X-ray photoelectron spectroscopy reveals that the increase of the hydrogen contents results in a relatively lower binding energy exhibited in the Ni 2p spectra. The proportion of Ni2O3 in NiOx:H films increases from 22% at bleached state to 33% at colored state. A monolithic all-thin-film inorganic electrochromic device was fabricated with complementary configuration as ITO/NiOx:H/ZrO2/WO3/ITO. The electrochromic device with optimized NiOx:H thin films acting both as ion storage layer and proton-providing source displays high modulation efficiency of 68% at a fixed wavelength 550 nm.

  11. Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering.

    PubMed

    Horprathum, M; Srichaiyaperk, T; Samransuksamer, B; Wisitsoraat, A; Eiamchai, P; Limwichean, S; Chananonnawathorn, C; Aiempanakit, K; Nuntawong, N; Patthanasettakul, V; Oros, C; Porntheeraphat, S; Songsiriritthigul, P; Nakajima, H; Tuantranont, A; Chindaudom, P

    2014-12-24

    In this work, we report an ultrasensitive hydrogen (H2) sensor based on tungsten trioxide (WO3) nanorods decorated with platinum (Pt) nanoparticles. WO3 nanorods were fabricated by dc magnetron sputtering with a glancing angle deposition (GLAD) technique, and decorations of Pt nanoparticles were performed by normal dc sputtering on WO3 nanorods with varying deposition time from 2.5 to 15 s. Crystal structures, morphologies, and chemical information on Pt-decorated WO3 nanorods were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of WO3 nanorods was investigated over a low concentration range of 150-3000 ppm of H2 at 150-350 °C working temperatures. The results showed that the H2 response greatly increased with increasing Pt-deposition time up to 10 s but then substantially deteriorated as the deposition time increased further. The optimally decorated Pt-WO3 nanorod sensor exhibited an ultrahigh H2 response from 1530 and 214,000 to 150 and 3000 ppm of H2, respectively, at 200 °C. The outstanding gas-sensing properties may be attributed to the excellent dispersion of fine Pt nanoparticles on WO3 nanorods having a very large effective surface area, leading to highly effective spillover of molecular hydrogen through Pt nanoparticles onto the WO3 nanorod surface.

  12. 2-D experimental study of DC discharge parameters in the cylindrical magnetron.

    NASA Astrophysics Data System (ADS)

    Behnke, J. F.; Holik, M.; Kudrna, P.; Bilyk, O.; Rusz, J.; Tichý, M.

    2002-10-01

    In this paper we present a study of the variations of plasma parameters in both the axial as well as in radial directions in the novel construction of cylindrical magnetron. Six evenly distributed coils create the axial magnetic field with the homogeneity 0.2 % over the whole discharge vessel length 300 mm (vessel diameter 58 mm). The system is equipped with three cylindrical Langmuir probes movable in radial direction, placed in ports located in between each couple of coils in distance 60 mm from each other. In order to measure the axial variations of the discharge current, one half of the cathode length is segmented into 14 segments, i.e. one segment has a length of about 10 mm. We present measurements of the axial distribution of the discharge current in argon at different pressures and magnetic fields. We demonstrate measurements of the radial variations of the electron density measured simultaneously by probes at three different axial positions.

  13. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    SciTech Connect

    Malau, Viktor Ilman, Mochammad Noer Iswanto, Priyo Tri Jatisukamto, Gaguk

    2016-03-29

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressure of 7.6 x 10{sup −2} torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10{sup −6} mbar, a fluence of 2 x 10{sup 17} ions/cm{sup 2}, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.

  14. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Malau, Viktor; Ilman, Mochammad Noer; Iswanto, Priyo Tri; Jatisukamto, Gaguk

    2016-03-01

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressure of 7.6 x 10-2 torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10-6 mbar, a fluence of 2 x 1017 ions/cm2, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.

  15. Electrical and optical properties of molybdenum doped zinc oxide films prepared by reactive RF magnetron sputtering

    SciTech Connect

    Reddy, R. Subba; Sreedhar, A.; Uthanna, S.

    2015-08-28

    Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was in the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.

  16. Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.

    2016-08-01

    The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.

  17. Influence of substrate temperature on growth of nanocrystalline silicon carbide by reactive magnetron sputtering

    SciTech Connect

    Colder, H.; Rizk, R.; Morales, M.; Marie, P.; Vicens, J.; Vickridge, I.

    2005-07-15

    Hydrogenated nanocrystalline silicon carbide were grown at various deposition temperatures T{sub d} from 200 to 600 deg. C by means of reactive magnetron sputtering in a plasma of 80% H{sub 2} and 20% Ar mixture. A detailed investigation of the structural, compositional, phase nature, and morphology was carried out by complementary sophisticated techniques, such as Fourier transform infrared spectroscopy, x-ray diffraction (XRD), Rutherford backscattering, nuclear reaction, and elastic recoil detection analysis techniques, in addition to conventional and high-resolution transmission electron microscopy (HRTEM) observations. A crystallization onset with a fraction of 35% was observed for T{sub d}=300 deg. C, which improved to 80% for T{sub d}=600 deg. C, reflected by an increasing density of the SiC nanocrystals which kept an average size of about 5 nm. The observed fiber textures present <102> and <11l> texture components, with l larger than 2, while SiC nanocrystals elongated along the [111] direction are also evidenced. These latter are supported by the careful analyses of the HRTEM images which show evidence of faulted growing cubic SiC, as the origin of the very close hexagonal 6H-SiC structure taken into account in the XRD refinement. These various features were found quite consistent with the optical properties of the layers, and, in particular, the evolutions of both optical gap and static refractive index.

  18. Nanocharacterization of titanium nitride thin films obtained by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Merie, V. V.; Pustan, M. S.; Bîrleanu, C.; Negrea, G.

    2014-08-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-microelectromechanical systems (Bio-MEMS) and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, the obtaining was realized when the substrates were at room temperature, and second, the obtaining was realized when the substrates were previously heated at 250 °C. The elaborated samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, roughness, friction force are some of the determined characteristics. The results marked out that the substrate which was previously heated at 250 °C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature.

  19. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering.

    PubMed

    Ratova, Marina; Kelly, Peter J; West, Glen T; Xia, Xiaohong; Gao, Yun

    2016-01-22

    Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD). Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS). Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating.

  20. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering

    PubMed Central

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Xia, Xiaohong; Gao, Yun

    2016-01-01

    Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD). Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS). Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating. PMID:28787867

  1. Nanocharacterization of Titanium Nitride Thin Films Obtained by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Merie, Violeta Valentina; Pustan, Marius Sorin; Bîrleanu, Corina; Negrea, Gavril

    2015-05-01

    Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants, etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-micro-electromechanical systems, and so on. This work is a comparative study concerning the influence of substrate temperature on some mechanical and tribological characteristics of titanium nitride thin films. The researched thin films were obtained by the reactive magnetron sputtering method. The experiments employed two kinds of substrates: a steel substrate and a silicon one. The elaboration of titanium nitride thin films was done at two temperatures. First, when the substrates were at room temperature, and second, when the substrates were previously heated at 250°C. The temperature of 250°C was kept constant during the deposition of the films. The samples were then investigated by atomic force microscopy in order to establish their mechanical and tribological properties. The nanohardness, Young's modulus, roughness, and friction force were some of the determined characteristics. The results demonstrated that the substrate which was previously heated at 250°C led to the obtaining of more adherent titanium nitride thin films than the substrate used at room temperature. The preheating of both substrates determined the decrease of thin films roughness. The friction force, nanohardness and Young's modulus of the tested samples increased when the substrates were preheated at 250°C.

  2. Structural, optical and electrical properties of WOxNy filmsdeposited by reactive dual magnetron sputtering

    SciTech Connect

    Mohamed, Sodky H.; Anders, Andre

    2006-06-05

    Thin films of tungsten oxynitride were prepared by dual magnetron sputtering of tungsten using argon/oxygen/nitrogen gas mixtures with various nitrogen/oxygen ratios. The presence of even small amounts of oxygen had a great effect not only on the composition but on the structure of WOxNy films, as shown by Rutherford backscattering and x-ray diffraction, respectively. Significant incorporation of nitrogen occurred only when the nitrogen partial pressure exceeded 89 percent of the total reactive gas pressure. Sharp changes in the stoichiometry, deposition rate, room temperature resistivity, electrical activation energy and optical band gap were observed when the nitrogen/oxygen ratio was high.The deposition rate increased from 0.31 to 0.89 nm/s, the room temperature resistivity decreased from 1.65 x 108 to 1.82 x 10-2 ?cm, the electrical activation energy decreased from 0.97 to 0.067 eV, and the optical band gap decreased from 3.19 to 2.94 eV upon nitrogen incorporation into the films. WOxNy films were highly transparent as long as the nitrogen incorporation was low, and were brownish (absorbing) and partially reflecting as nitrogen incorporation became significant.

  3. Thermal stability of tungsten sub-nitride thin film prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Wu, Y. Z.; Mu, B.; Qiao, L.; Li, W. X.; Li, J. J.; Wang, P.

    2017-03-01

    Tungsten sub-nitride thin films deposited on silicon samples by reactive magnetron sputtering were used as a model system to study the phase stability and microstructural evolution during thermal treatments. XRD, SEM&FIB, XPS, RBS and TDS were applied to investigate the stability of tungsten nitride films after heating up to 1473 K in vacuum. At the given experimental parameters a 920 nm thick crystalline film with a tungsten and nitrogen stoichiometry of 2:1 were achieved. The results showed that no phase and microstructure change occurred due to W2N film annealing in vacuum up to 973 K. Heating up to 1073 K led to a partial decomposition of the W2N phase and the formation of a W enrichment layer at the surface. Increasing the annealing time at the same temperature, the further decomposition of the W2N phase was negligible. The complete decomposition of W2N film happened as the temperature reached up to 1473 K.

  4. Synthesis of copper nitride films doped with Fe, Co, or Ni by reactive magnetron sputtering

    SciTech Connect

    Yang, Jianbo; Huang, Saijia; Wang, Zhijiao; Hou, Yuxuan; Shi, Yuyu; Zhang, Jian; Yang, Jianping Li, Xing'ao

    2014-09-01

    Copper nitride (Cu{sub 3}N) and Fe-, Co-, and Ni-doped Cu{sub 3}N films were prepared by reactive magnetron sputtering. The films were deposited on silicon substrates at room temperature using pure Cu target and metal chips. The molar ratio of Cu to N atoms in the as-prepared Cu{sub 3}N film was 2.7:1, which is comparable with the stoichiometry ratio 3:1. X-ray diffraction measurements showed that the films were composed of Cu{sub 3}N crystallites with anti-ReO{sub 3} structure and adopted different preferred orientations. The reflectance of the four samples decreased in the wavelength range of 400–830 nm, but increased rapidly within wavelength range of 830–1200 nm. Compared with the Cu{sub 3}N films, the resistivity of the doped Cu{sub 3}N films decreased by three orders of magnitude. These changes have great application potential in optical and electrical devices based on Cu{sub 3}N films.

  5. Characteristic corrosion resistance of nanocrystalline TiN films prepared by high density plasma reactive magnetron sputtering.

    PubMed

    Kim, J H; Kang, C G; Kim, Y T; Cheong, W S; Song, P K

    2013-07-01

    Nanocytalline TiN films were deposited on non-alkali glass and Al substrates by reactive DC magnetron sputtering (DCMS) with an electromagnetic field system (EMF). The microstructure and corrosion resistance of the TiN-coated Al substrates were estimated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. All the TiN films shows that they have a (111) preferred orientation at room temperature. TiN films deposited on Al substrate using only DCMS 400 W showed a sheet resistance of 3.22 x 10-1 omega/symbol see texts (resistivity, 3.22 x 10-5 omegacm). On the other hand, a relatively low sheet resistance of 1.91 x 10-1 omega/symbol see text (1.91 x 10-5 omegacm) was obtained for the dense nanocrystalline TiN film deposited on Al substrate using DCMS 375 W+ EMF 25 W, indicating that the introduction of an EMF system enhanced the electrical properties of the TiN film. TiN films deposited on Al substrate at 400 degreesC had a (200) preferred orientation with the lowest sheet resistance of 1.28x10-1 omega/symbol see texts (1.28 x 10-5 omegacm) which was attributed to reduced nano size defects and an improvement of the crystallinity. Potentiostatic and Potentiodynamic tests with a TiN-coated Al showed good corrosion resistance (l/corr, = 2.03 microA/cm2, Ecorr = -348 mV) compared to the uncoated Al substrate (/corr = 4.45 microA/cm2, Ecorr = -650 mV). Furthermore, EMF system showed that corrosion resistance of the TiN film also was enhanced compared to DCMS only. For the TiN film deposited on Al substrate at 400 degreesC, corrosion current and potential was 0.63 micro/cm2 and -1.5 mV, respectively. This improved corrosion resistance of the TiN film could be attributed to the densification of the film caused by enhancement of nitrification with increasing high reactive nitrogen radicals.

  6. Influence of the composition of BCN films deposited by reactive magnetron sputtering on their properties.

    PubMed

    Martínez, C; Kyrsta, S; Cremer, R; Neuschütz, D

    2002-10-01

    Compounds of the B--C--N system are very promising to produce superhard coatings with good tribological, chemical, and thermal properties. To investigate the influence of the composition of BCN films on their properties, films with five different compositions at nearly constant nitrogen content were deposited on silicon wafers by magnetron sputtering from hexagonal boron nitride and graphite targets operated in RF and DC mode, respectively. The compositions and binding states of the films were determined by XPS. The nitrogen content was found to be almost constant for all films at about a 40 at-%, whereas boron and carbon compositions ranged between 15-35 and 25-50 at-%, respectively. The electronic and bonding structure of the coatings were analyzed by REELS using three different electron beam energies to obtain information at different depths. An increase of the carbon content of the films resulted in a significant shift of the pi-pi* interband transition with respect to the energy loss corresponding to h-BN. The absence of the pi-pi* transition in the energy loss spectra acquired at a beam energy of 1900 eV indicates the existence of a very thin overlayer mostly sp(2) bonded and probably with a distorted hexagonal structure. The position of the bulk plasmon losses corresponded to the hexagonal phase for the overlayer and presented a shift of more than 1.5 eV to the higher energy loss direction for the spectra obtained at 1900 eV beam energy. This shift and the absence of the sp(2)-bond fingerprint induced the possibility of an underlying disordered structure with a majority of sp(3) bonds.

  7. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  8. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    PubMed Central

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  9. Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.

    1988-01-01

    Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.

  10. Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding

    NASA Astrophysics Data System (ADS)

    Cubillos, G. I.; Bethencourt, M.; Olaya, J. J.

    2015-02-01

    ZrOxNy/ZrO2 thin films were deposited on stainless steel using two different methods: ultrasonic spray pyrolysis-nitriding (SPY-N) and the DC unbalanced magnetron sputtering technique (UBMS). Using the first method, ZrO2 was initially deposited and subsequently nitrided in an anhydrous ammonia atmosphere at 1023 K at atmospheric pressure. For UBMS, the film was deposited in an atmosphere of air/argon with a Φair/ΦAr flow ratio of 3.0. Structural analysis was carried out through X-ray diffraction (XRD), and morphological analysis was done through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Chemical analysis was carried out using X-ray photoelectron spectroscopy (XPS). ZrOxNy rhombohedral polycrystalline film was produced with spray pyrolysis-nitriding, whereas using the UBMS technique, the oxynitride films grew with cubic Zr2ON2 crystalline structures preferentially oriented along the (2 2 2) plane. Upon chemical analysis of the surface, the coatings exhibited spectral lines of Zr3d, O1s, and N1s, characteristic of zirconium oxynitride/zirconia. SEM analysis showed the homogeneity of the films, and AFM showed morphological differences according to the deposition technique of the coatings. Zirconium oxynitride films enhanced the stainless steel's resistance to corrosion using both techniques. The protective efficacy was evaluated using electrochemical techniques based on linear polarization (LP). The results indicated that the layers provide good resistance to corrosion when exposed to chloride-containing media.

  11. Effects of argon pressure on the properties of ZnO:Ga thin films deposited by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Marwoto, Putut; Fatiatun, Sulhadi, Sugianto, Aryanto, Didik

    2016-03-01

    Gallium (Ga)-doped zinc oxide (ZnO:Ga) thin films were deposited on corning glass substrates by homemade DC magnetron sputtering. Effects of argon gas pressure on the structural and optical properties of ZnO:Ga thin films were investigated by XRD, SEM and UV-Vis spectroscopy. The argon gas pressure was adjusted at 450, 500 and 550 mtorr. All the films exhibit a strong (002) peak and a weak (004) peaks. The XRD pattern demonstrated that crystallinity of the film improved with increasing of the argon pressure. ZnO:Ga thin films deposited have polycrystalline structure. It was shown that the argon pressure has a great influence on ZnO:Ga film surface structures. The grain size of the films was increased with the increases of argon pressure. The grains shape of the film change from an equiaxed rough grain to a longish grain with the argon pressure. The average of transmittance of the films is about 80% in the visible range. It is shown that the argon pressure has no effect significantly on optical bandgap of ZnO:Ga, but in general it can be explained that increasing of the argon pressure can reduce the bandgap. The optical bandgap of ZnO:Ga thin films in the range of 3.25 - 3.3 eV.

  12. Illumination effects on the ferroelectric properties of zinc oxide films grown by DC-unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kurniawan, R.; Willy, F.; Nurfani, E.; Muhammady, S.; Sutjahja, I. M.; Winata, T.; Darma, Y.

    2017-02-01

    We study the illumination effect on the ferroelectric properties of zinc oxide (ZnO) film grown by DC-unbalanced magnetron sputtering. We focus on the P–E hysteresis response of the as-grown ZnO (ag-ZnO) and annealed-ZnO (ann-ZnO) films under dark and light conditions. The measurement of ferroelectric properties is performed by driving a positive voltage on the top-side of the films. Under the dark condition, a strong P–E response is observable on the ann-ZnO film due to the structural enhancement. The value of electrical coercivity for ferroelectric polarization is strongly related to the light illumination. The illumination treatment changed the P–E hysteresis of the ZnO films from symmetric to asymmetric. We found that higher energy illumination promotes a higher electric coercivity. These results confirmed that ferroelectric properties could be effectively tailored by tuning the energy of the light source. This interrelated electrical and optical properties is an important phenomenon to design a new light-induced non-volatile device application.

  13. Synthesis and characterization of MoB{sub 2−x} thin films grown by nonreactive DC magnetron sputtering

    SciTech Connect

    Malinovskis, Paulius Lewin, Erik; Jansson, Ulf; Palisaitis, Justinas; Persson, Per O. Å.

    2016-05-15

    DC magnetron sputtering was used to deposit molybdenum boride thin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB{sub 2−x} (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB{sub 2} structure (AlB{sub 2}-type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB{sub 2} phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissue phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.

  14. Study of Electrical and Optical Properties of Cu-ASSISTED Amorphous Carbon Thin Films Deposition by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Hassannia, Sara; Elahi, Seyed Mohammad; Boochani, Arash

    2013-09-01

    Cu incorporated amorphous carbon thin films have been prepared by DC-magnetron sputtering using a bi-component Cu-C composite target. The properties of the films have been investigated by X-ray diffraction, energy dispersive X-ray analysis, atomic force microscopy, FTIR, Raman and UV-vis spectroscopies. The results show that the films are amorphous with major distorted sp2 graphite bonds as well as carbon nanotubes. Sputtering simulation shows that the chemical composition of the films is Cu0.066C0.934. Cu addition results in the formation of new type of carbon nanotubes (CNT) with new radial Breathing mode located at 236 cm-1. Cu induces an increase in the density of defects due to bundles of CNT's. Moreover the films are transparent in visible range and highly reflective in mid-infrared region. Electrical characterization shows that the pure carbon deposited films are semiconductor while the copper assisted thin films behave like metal and their sheet resistance is comparable with sheet resistance of conventional conductive electrodes.

  15. Mechanical and tribological properties of a-GeC{sub x} films deposited by dc-magnetron sputtering

    SciTech Connect

    Jacobsohn, L.G.; Reigada, D.C.; Freire, F.L. Jr.; Prioli, R.; Zanette, S.I.; Caride, A.O.; Nascimento, F.C.; Lepienski, C.M.

    1998-12-31

    Amorphous carbon-germanium films were grown by dc-magnetron sputtering at different argon plasma pressures ranging from 0.17 and 1.4 Pa. The water-cooled sample holder was grounded. The film thickness were typically 0.5 {micro}m. The ratio between germanium and carbon atomic concentration ranges up to 2.8, as measured by Rutherford backscattering spectrometry (RBS). Elastic recoil detection technique was used to measure hydrogen contamination. The film hardness was measured by nanoindentation techniques and the internal stress was determined by the bending of the substrate. The incorporation of Ge reduces both the film hardness and the internal stress. Hardness and internal stress increases when the films are deposited in lower pressures. Atomic Force Microscopy (AFM) was used to measure the surface roughness, which was found to be insensitive to the pressure and to the Ge content. A possible influence of the thickness on the morphology of pure carbon films is discussed. The friction coefficient measured by AFM is independent on the film composition within experimental errors.

  16. Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.

    1988-01-01

    Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.

  17. Time dependence of carbon film deposition on SnO{sub 2}/Si using DC unbalanced magnetron sputtering

    SciTech Connect

    Alfiadi, H. Aji, A. S. Darma, Y.

    2014-02-24

    Carbon deposition on SnO{sub 2} layer has been demonstrated at low temperature using DC unbalanced magnetron-sputtering technique for various time depositions. Before carbon sputtering process, SnO{sub 2} thin layer is grown on silicon substrate by thermal evaporation method using high purity Sn wire and then fully oxidizes by dry O{sub 2} at 225°C. Carbon sputtering process was carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature of 300 °C for sputtering deposition time of 1 to 4 hours. The properties of SnO{sub 2}/Si structure and carbon thin film on SnO{sub 2} is characterized using SEM, EDAX, XRD, FTIR, and Raman Spectra. SEM images and XRD spectra show that SnO2 thin film has uniformly growth on Si substrate and affected by annealing temperature. Raman and FTIR results confirm the formation of carbon-rich thin film on SnO{sub 2}. In addition, XRD spectra indicate that some structural change occur by increasing sputtering deposition time. Furthermore, the change of atomic structure due to the thermal annealing is analized by XRD spectra and Raman spectroscopy.

  18. Growth of fullerene-like carbon nitride thin solid films by reactive magnetron sputtering; role of low-energy ion irradiation in determining microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Neidhardt, J.; Czigány, Zs.; Brunell, I. F.; Hultman, L.

    2003-03-01

    Fullerene-like (FL) carbon nitride (CNx) films were deposited on Si (100) substrates by dc reactive, unbalanced, magnetron sputtering in a N2/Ar mixture from a high-purity pyrolythic graphite cathode in a dual-magnetron system with coupled magnetic fields. The N2 fraction in the discharge gas (0%-100%) and substrate bias (-25 V; -40 V) was varied, while the total pressure (0.4 Pa) and substrate temperature (450 °C) was kept constant. The coupled configuration of the magnetrons resulted in a reduced ion flux density, leading to a much lower average energy per incorporated particle, due to a less focused plasma as compared to a single magnetron. This enabled the evolution of a pronounced FL microstructure. The nitrogen concentration in the films saturated rapidly at 14-18 at. %, as determined by elastic recoil analysis, with a minor dependence on the discharge conditions. No correlations were detected between the photoelectron N1s core level spectra and the different microstructures, as observed by high-resolution electron microscopy. A variety of distinct FL structures were obtained, ranging from structures with elongated and aligned nitrogen-containing graphitic sheets to disordered structures, however, not exclusively linked to the total N concentration in the films. The microstructure evolution has rather to be seen as in equilibrium between the two competing processes of adsorption and desorption of nitrogen-containing species at the substrate. This balance is shifted by the energy and number of arriving species as well as by the substrate temperature. The most exceptional structure, for lower N2 fractions, consists of well-aligned, multi-layered circular features (nano-onions) with an inner diameter of approximately 0.7 nm and successive shells at a distance of ˜0.35 nm up to a diameter of 5 nm. It is shown that the intrinsic stress formation is closely linked with the evolution and accommodation of the heavily bent fullerene-like sheets. The FL CNx

  19. Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering: Experiment

    NASA Astrophysics Data System (ADS)

    Čapek, Jiří; Kadlec, Stanislav

    2017-05-01

    Titanium and aluminum targets have been reactively sputtered in Ar +O2 or Ar +N2 gas mixtures in order to systematically investigate the effect of reduced hysteresis in reactive high power impulse magnetron sputtering (HiPIMS) as compared to other sputtering techniques utilizing low discharge target power density (e.g., direct current or pulsed direct current mid-frequency magnetron sputtering) operated at the same average discharge power. We found that the negative slope of the flow rate of the reactive gas gettered by the sputtered target material as a function of the reactive gas partial pressure is clearly lower in the case of HiPIMS. This results in a lower critical pumping speed, which implies a reduced hysteresis. We argue that the most important effect explaining the observed behavior is covering of the reacted areas of the target by the returning ionized metal, effectively lowering the target coverage at a given partial pressure. This explanation is supported by a calculation using an analytical model of reactive HiPIMS with time and space averaging (developed by us).

  20. Study of transparent conducting ZnO:Al films deposited on organic substrate by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, Z. Y.

    2009-03-01

    A Zn-Al metallic target (Al 2 wt.%)has been used to prepare conductive and transparent aluminium-doped Zinc oxide(ZnOAl) films on PI substrate by direct current reactive magnetron sputtering.The structure, crystallinity, optical properties, electrical properties and adhesion were investigated using a range of techniques, including AFM, XRD, spectrophotometry, four-point probe and adhesion tester.The optimal films were prepared with a substrate temperature of 150°C, O2/Ar ration of 2:38 and sputtering power of 80W.The infrared emission properties of films and the feasibility for military application were also discussed in this paper. All the results to date demonstrate that magnetron sputtering is a cost-effective and easy to fabricating technique.

  1. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    SciTech Connect

    Hänninen, Tuomas Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  2. Current-voltage-time characteristics of the reactive Ar/N{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect

    Magnus, F.; Sveinsson, O. B.; Olafsson, S.; Gudmundsson, J. T.

    2011-10-15

    The discharge current and voltage waveforms have been measured in a reactive high power impulse magnetron sputtering (HiPIMS) Ar/N{sub 2} discharge with a Ti target for 400 {mu}s long pulses. We observe that the current waveform in the reactive Ar/N{sub 2} HiPIMS discharge is highly dependent on the pulse repetition frequency, unlike the non-reactive Ar discharge. The current is found to increase significantly as the frequency is lowered. This is attributed to an increase in the secondary electron emission yield during the self-sputtering phase, when the nitride forms on the target at low frequencies. In addition, self-sputtering runaway occurs at lower discharge voltages when nitrogen is added to the discharge. This illustrates the crucial role of self-sputtering in the behavior of the reactive HiPIMS discharge.

  3. Properties of Cr2AlC MAX phase thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Buck, Zachary; Donato, Tyler; Rotella, Christopher; Lunk, Carl; Lofland, S. E.; Hettinger, J. D.

    2012-02-01

    Mn+ 1AXn (MAX) phases, where n is 1, 2, and 3, M is an early transition metal, A is an A-group element, and X is either C or N, are ternary carbides with unique properties such as low density, easy machinability, and good oxidation resistance. The MAX phase Cr2AlC is of particular interest for industrial applications to its excellent high-temperature oxidation resistance and relatively low synthesis temperature. We prepared Cr2AlC thin films on c-axis oriented single crystal Al2O3, glassy carbon and Si thermal oxide substrates using reactive magnetron sputtering as precursor materials for carbide-derived carbon (CDC) films for ``on-chip'' supercapacitors. Film deposition was optimized using elemental composition data obtained by WDXRF. Optimized films were characterized using XRD and scanning electron microscopy. It was found that textured Cr2AlC films only form when the composition was Al-rich allowing the formation of a Cr5Al8 interfacial layer. As film composition was optimized, the interfacial layer did not form but the XRD peaks associated with the Cr2AlC also decreased in magnitude. Extremely high-textured films were grown when a thin buffer layer of CrAl2 was deposited on the substrate before depositing the Cr2AlC films. This result suggests that Cr2AlC films may not be ideal for CDC applications since the films may ``lift-off'' during conversion due to the existence of the naturally occurring buffer-layer.

  4. Effect of Nitrogen Content on Physical and Chemical Properties of TiN Thin Films Prepared by DC Magnetron Sputtering with Supported Discharge

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Kannan, R.; Gunasekhar, K. R.; Rajashabala, S.

    2017-06-01

    Amorphous titanium nitride (TiN) thin films have been prepared on silicon (Si) and glass substrates by direct-current (DC) reactive magnetron sputtering with a supported discharge (triode). Nitrogen gas (N2) at partial pressure of 0.3 Pa, 0.4 Pa, 0.5 Pa, and 0.6 Pa was used to prepare the TiN thin films, maintaining total pressure of argon and N2 of about 0.7 Pa. The chemical, microstructural, optical, and electrical properties of the TiN thin films were systematically studied. Presence of different phases of Ti with nitrogen (N), oxygen (O2), and carbon (C) elements was revealed by x-ray photoelectron spectroscopy characterization. Increase in the nitrogen pressure from 0.3 Pa to 0.6 Pa reduced the optical bandgap of the TiN thin film from 2.9 eV to 2.7 eV. Photoluminescence study showed that TiN thin film deposited at N2 partial pressure of 0.3 Pa exhibited three shoulder peaks at 330 nm, 335 nm, and 340 nm, which disappeared when the sample was deposited with N2 partial pressure of 0.6 Pa. Increase in the nitrogen content decreased the electrical resistivity of the TiN thin film from 3200 μΩ cm to 1800 μΩ cm. Atomic force microscopy studies of the TiN thin films deposited with N2 partial pressure of 0.6 Pa showed a uniform surface pattern associated with accumulation of fine grains. The results and advantages of this method of preparing TiN thin films are also reported.

  5. Effect of Nitrogen Content on Physical and Chemical Properties of TiN Thin Films Prepared by DC Magnetron Sputtering with Supported Discharge

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Kannan, R.; Gunasekhar, K. R.; Rajashabala, S.

    2017-10-01

    Amorphous titanium nitride (TiN) thin films have been prepared on silicon (Si) and glass substrates by direct-current (DC) reactive magnetron sputtering with a supported discharge (triode). Nitrogen gas (N2) at partial pressure of 0.3 Pa, 0.4 Pa, 0.5 Pa, and 0.6 Pa was used to prepare the TiN thin films, maintaining total pressure of argon and N2 of about 0.7 Pa. The chemical, microstructural, optical, and electrical properties of the TiN thin films were systematically studied. Presence of different phases of Ti with nitrogen (N), oxygen (O2), and carbon (C) elements was revealed by x-ray photoelectron spectroscopy characterization. Increase in the nitrogen pressure from 0.3 Pa to 0.6 Pa reduced the optical bandgap of the TiN thin film from 2.9 eV to 2.7 eV. Photoluminescence study showed that TiN thin film deposited at N2 partial pressure of 0.3 Pa exhibited three shoulder peaks at 330 nm, 335 nm, and 340 nm, which disappeared when the sample was deposited with N2 partial pressure of 0.6 Pa. Increase in the nitrogen content decreased the electrical resistivity of the TiN thin film from 3200 μΩ cm to 1800 μΩ cm. Atomic force microscopy studies of the TiN thin films deposited with N2 partial pressure of 0.6 Pa showed a uniform surface pattern associated with accumulation of fine grains. The results and advantages of this method of preparing TiN thin films are also reported.

  6. [Preparation of large area Al-ZnO thin film by DC magnetron sputtering].

    PubMed

    Jiao, Fei; Liao, Cheng; Han, Jun-Feng; Zhou, Zhen

    2009-03-01

    Solar cells of p-CIS/n-buffer/ZnO type, where CIS is (CuInS2, CuInSe2 or intermediates, are thin-film-based devices for the future high-efficiency and low-cost photovoltaic devices. As important thin film, the properties of Al-doped ZnO (AZO) directly affect the parameter of the cell, especially for large volume. In the present paper, AZO semiconductor transparent thin film on soda-lime glass was fabricated using cylindrical zinc-aluminum target, which can not only lower the cost of the target but also make the preparation of large area AZO thin film more easily. Using the DC magnet sputtering techniques and rolling target, high utilization efficiency of target was achieved and large area uniform and directional film was realized. An introduction to DC magnet sputtering techniques for large area film fabrication is given. With different measurement methods, such as X-ray diffraction (XRD) and scan electron microscope (SEM), we analyzed large size film's structure, appearance, and electrical and optical characteristics. The XRD spectrum indicated that the AZO film shows well zinc-blende structure with a preferred (002) growth and the c-axis is oriented normal to the substrate plane. The lattice constant is 5.603 9 nm and the mismatch with CdS thin film is only 2 percent. It absolutely satisfied the demand of the GIGS solar cell. The cross-section of the AZO thin film indicates the columnar structure and the surface morphology shows that the crystal size is about 50 nm that is consistent with the result of XRD spectrum. By the optical transmission curve, not only the high transmission rate over 85 percent in the visible spectrum between 400 nm and 700 nm was showed but also the band gap 3.1 eV was estimated. And all these parameters can meet the demand of the large area module of GIGS solar cell. The result is that using alloy target and Ar gas, and controlling the appropriate pressure of oxygen, we can get directional, condensed, uniform, high transmitting rate, low

  7. Indium-tin oxide films obtained by DC magnetron sputtering for improved Si heterojunction solar cell applications

    NASA Astrophysics Data System (ADS)

    Gu, Jin-Hua; Si, Jia-Le; Wang, Jiu-Xiu; Feng, Ya-Yang; Gao, Xiao-Yong; Lu, Jing-Xiao

    2015-11-01

    The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current (DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate, pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4×10-4 Ω·m and average transmittance of 89% in the wavelength range of 380-780 nm were obtained under the optimized conditions: oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage (Voc) of 0.626 V, a filling factor (FF) of 0.50, and a short circuit current density (Jsc) of 36.4 mA/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The Voc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the (p) a-Si:H and (n) c-Si layer. The higher Voc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H. Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA050501).

  8. Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering

    SciTech Connect

    Mei, A. B.; Zhang, C.; Sardela, M.; Eckstein, J. N.; Rockett, A.; Howe, B. M.; Hultman, L.; Petrov, I.; Greene, J. E.

    2013-11-15

    Single-crystal ZrN films, 830 nm thick, are grown on MgO(001) at 450 °C by magnetically unbalanced reactive magnetron sputtering. The combination of high-resolution x-ray diffraction reciprocal lattice maps, high-resolution cross-sectional transmission electron microscopy, and selected-area electron diffraction shows that ZrN grows epitaxially on MgO(001) with a cube-on-cube orientational relationship, (001){sub ZrN}‖(001){sub MgO} and [100]{sub ZrN}‖[100]{sub MgO}. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm, in good agreement with reported results for bulk ZrN crystals. X-ray reflectivity results reveal that the films are completely dense with smooth surfaces (roughness = 1.3 nm, consistent with atomic-force microscopy analyses). Based on temperature-dependent electronic transport measurements, epitaxial ZrN/MgO(001) layers have a room-temperature resistivity ρ{sub 300K} of 12.0 μΩ-cm, a temperature coefficient of resistivity between 100 and 300 K of 5.6 × 10{sup −8}Ω-cm K{sup −1}, a residual resistivity ρ{sub o} below 30 K of 0.78 μΩ-cm (corresponding to a residual resistivity ratio ρ{sub 300Κ}/ρ{sub 15K} = 15), and the layers exhibit a superconducting transition temperature of 10.4 K. The relatively high residual resistivity ratio, combined with long in-plane and out-of-plane x-ray coherence lengths, ξ{sub ‖} = 18 nm and ξ{sub ⊥} = 161 nm, indicates high crystalline quality with low mosaicity. The reflectance of ZrN(001), as determined by variable-angle spectroscopic ellipsometry, decreases slowly from 95% at 1 eV to 90% at 2 eV with a reflectance edge at 3.04 eV. Interband transitions dominate the dielectric response above 2 eV. The ZrN(001) nanoindentation hardness and modulus are 22.7 ± 1.7 and 450 ± 25 GPa.

  9. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    SciTech Connect

    Jagannadham, Kasichainula

    2015-05-15

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr{sub 2}N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W{sub 2}N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W{sub 2}N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films.

  10. Observation of a periodic runaway in the reactive Ar/O{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect

    Shayestehaminzadeh, Seyedmohammad E-mail: shayesteh@mch.rwth-aachen.de; Arnalds, Unnar B.; Magnusson, Rögnvaldur L.; Olafsson, Sveinn

    2015-11-15

    This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti) with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide) mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O{sub 2} discharge in order to sustain the plasma in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.

  11. Preparation of high-oriented molybdenum thin films using DC reactive magnetronsputtering

    NASA Astrophysics Data System (ADS)

    Shang, Zhengguo; Li, Dongling; Yin, She; Wang, Shengqiang

    2017-03-01

    Since molybdenum (Mo) thin film has been used widely recently, it attracts plenty of attention, like it is a good candidate of back contact material for CuIn1‑xGaxSe2‑ySy (CIGSeS) solar cells development; thanks to its more conductive and higher adhesive property. Besides, molybdenum thin film is an ideal material for aluminum nitride (AlN) thin film preparation and attributes to the tiny (‑1.0%) lattice mismatch between Mo and AlN. As we know that the quality of Mo thin film is mainly dependent on process conditions, it brings a practical significance to study the influence of process parameters on Mo thin film properties. In this work, various sputtering conditions are employed to explore the feasibility of depositing a layer of molybdenum film with good quality by DC reactive magnetron sputtering. The influence of process parameters such as power, gas flow, substrate temperature and process time on the crystallinity and crystal orientation of Mo thin films is investigated. X-ray diffraction (XRD) measurements and atomic force microscope (AFM) are used to characterize the properties and surface roughness, respectively. According to comparative analysis on the results, process parameters are optimized. The full width at half maximum (FWHM) of the rocking curves of the (110) Mo is decreased to 2.7∘, and the (110) Mo peaks reached 1.2 × 105 counts. The grain size and the surface roughness have been measured as 20 Å and 3.8 nm, respectively, at 200∘C.

  12. Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films

    NASA Astrophysics Data System (ADS)

    Marikkannan, M.; Subramanian, M.; Mayandi, J.; Tanemura, M.; Vishnukanthan, V.; Pearce, J. M.

    2015-01-01

    Sputtering has been well-developed industrially with singular ambient gases including neutral argon (Ar), oxygen (O2), hydrogen (H2) and nitrogen (N2) to enhance the electrical and optical performances of indium tin oxide (ITO) films. Recent preliminary investigation into the use of combined ambient gases such as an Ar+O2+H2 ambient mixture, which was suitable for producing high-quality (low sheet resistance and high optical transmittance) of ITO films. To build on this promising preliminary work and develop deeper insight into the effect of ambient atmospheres on ITO film growth, this study provides a more detailed investigation of the effects of ambient combinations of Ar, O2, H2 on sputtered ITO films. Thin films of ITO were deposited on glass substrates by DC magnetron sputtering using three different ambient combinations: Ar, Ar+O2 and Ar+O2+H2. The structural, electrical and optical properties of the three ambient sputtered ITO films were systematically characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectroscopy, four probe electrical conductivity and optical spectroscopy. The XRD and Raman studies confirmed the cubic indium oxide structure, which is polycrystalline at room temperature for all the samples. AFM shows the minimum surface roughness of 2.7 nm for Ar+O2+H2 sputtered thin film material. The thickness of the films was determined by the cross sectional SEM analysis and its thickness was varied from 920 to 817 nm. The columnar growth of ITO films was also discussed here. The electrical and optical measurements of Ar+O2+H2 ambient combinations shows a decreased sheet resistance (5.06 ohm/□) and increased optical transmittance (69%) than other samples. The refractive index and packing density of the films were projected using optical transmission spectrum. From the observed results the Ar+O2+H2 ambient is a good choice to enhance the total optoelectronic properties of the ITO films

  13. Control of the stabilization of cubic boron nitride thin films deposited by unbalanced magnetron sputtering and dc pulsed substrate biasing

    NASA Astrophysics Data System (ADS)

    Otano-Rivera, Wilfredo

    The formation of cubic boron nitride (cBN) thin films deposited by unbalanced magnetron sputtering and dc pulsed substrate biasing has been studied. Thin films were deposited at different pressures and negative bias voltages to study the effect of the energetic bombardment on the stabilization conditions of the cubic phase of BN thin films. It is shown that it is possible to clearly define a stabilization window for cBN by controlling the sputtering deposition process parameters of pressure and negative substrate bias. It is also shown that at higher deposition pressures charge exchange and momentum transfer collisions in the plasma sheath reduce the bombardment energy of the particles. These collisional processes result in the use of a higher substrate bias voltages for increasing gas pressures in order to maintain the momentum per arriving boron atom, P/a, imparted to the growing film inside the stabilization window for the cubic phase. The end result is a trend where the substrate bias voltage for the formation of cBN increases negatively as a function of pressure times sheath thickness. A series of films were also deposited on different types of substrates in order to study the effects of chemistry and epitaxy on the nucleation of cBN. It was possible to nucleate the BN cubic phase on a wide variety of substrates. Diamond coated silicon substrates were the only ones that showed a marked effect on the nucleation of the cBN, where the FWHM of the FTIR signal was reduced two-fold as compared to the FTIR signal of films deposited on silicon under similar deposition conditions. The experimental results suggest that there is a threshold energy for the bombarding ions below which it is not possible to nucleate cBN. This result, in combination with the fact that P/a controls the cBN stabilization during the nucleation stage and other reported observations pertinent to the cBN thin film formation, leads to a proposed mechanism for the nucleation and growth stages of cBN.

  14. Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films

    SciTech Connect

    Marikkannan, M.; Subramanian, M.; Tanemura, M.; Mayandi, J. E-mail: jeyanthinath@yahoo.co.in; Vishnukanthan, V.; Pearce, J. M. E-mail: jeyanthinath@yahoo.co.in

    2015-01-15

    Sputtering has been well-developed industrially with singular ambient gases including neutral argon (Ar), oxygen (O{sub 2}), hydrogen (H{sub 2}) and nitrogen (N{sub 2}) to enhance the electrical and optical performances of indium tin oxide (ITO) films. Recent preliminary investigation into the use of combined ambient gases such as an Ar+O{sub 2}+H{sub 2} ambient mixture, which was suitable for producing high-quality (low sheet resistance and high optical transmittance) of ITO films. To build on this promising preliminary work and develop deeper insight into the effect of ambient atmospheres on ITO film growth, this study provides a more detailed investigation of the effects of ambient combinations of Ar, O{sub 2}, H{sub 2} on sputtered ITO films. Thin films of ITO were deposited on glass substrates by DC magnetron sputtering using three different ambient combinations: Ar, Ar+O{sub 2} and Ar+O{sub 2}+H{sub 2}. The structural, electrical and optical properties of the three ambient sputtered ITO films were systematically characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectroscopy, four probe electrical conductivity and optical spectroscopy. The XRD and Raman studies confirmed the cubic indium oxide structure, which is polycrystalline at room temperature for all the samples. AFM shows the minimum surface roughness of 2.7 nm for Ar+O{sub 2}+H{sub 2} sputtered thin film material. The thickness of the films was determined by the cross sectional SEM analysis and its thickness was varied from 920 to 817 nm. The columnar growth of ITO films was also discussed here. The electrical and optical measurements of Ar+O{sub 2}+H{sub 2} ambient combinations shows a decreased sheet resistance (5.06 ohm/□) and increased optical transmittance (69%) than other samples. The refractive index and packing density of the films were projected using optical transmission spectrum. From the observed results the Ar+O{sub 2}+H

  15. Influence of film thickness on the morphological and electrical properties of epitaxial TiC films deposited by reactive magnetron sputtering on MgO substrates

    NASA Astrophysics Data System (ADS)

    Zoita, N. C.; Braic, V.; Danila, M.; Vlaicu, A. M.; Logofatu, C.; Grigorescu, C. E. A.; Braic, M.

    2014-03-01

    Epitaxial TiC films were deposited on MgO (001) by DC magnetron sputtering in a reactive atmosphere of Ar and CH4 at 800 °C. The films elemental composition and chemical bonding was investigated by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The crystallographic structure, investigated by X-ray diffraction, exhibited an increased degree of (001) orientation with the film thickness, with a cube-on-cube epitaxial relationship with the substrate. The films morphology and electrical properties were determined by atomic force microscopy (AFM) and Hall measurements in Van der Pauw geometry. The influences of the film thickness (57-545 nm) on the morphological and electrical properties were investigated. The thinnest film presented the lowest resistivity, 160 μΩ cm, showing an atomically flat surface, while higher values were obtained for the thicker films, explained by their different morphology dominated by low aspect ratio nanoislands/nanocolumns.

  16. Reactive pulsed-DC sputtered Nb-doped VO2 coatings for smart thermochromic windows with active solar control.

    PubMed

    Batista, C; Carneiro, J; Ribeiro, R M; Teixeira, V

    2011-10-01

    Thermochromic VO2 thin films have successfully been grown on SiO2-coated float glass by reactive pulsed-DC magnetron sputtering. Different Nb doping amounts were introduced in the VO2 solid solution during the film growing which resulted in films with distinct semiconducting-metal phase transition temperatures. Pure VO2 showed improved thermochromic behavior as compared with VO2 films prepared by conventional DC sputtering. The transition temperatures were linearly decreased from 59 down to 34 degrees C with the increase in Nb content. However, the luminous transmittance and the infrared modulation efficiency were markedly affected. The surface morphology of the films was examined by scanning electron microscopy (SEM) and showed a tendency for grain sized reduction due to Nb addition. Moreover, the films were found to be very dense with no columnar microstructure. Structural analyses carried out by X-ray diffractometry (XRD) revealed that Nb introduces significant amount of defects in the crystal lattice which clearly degrade the optical properties.

  17. BiVO{sub 4} photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    SciTech Connect

    Gong, Haibo; Freudenberg, Norman; Nie, Man; Krol, Roel van de; Ellmer, Klaus

    2016-04-15

    Photoactive bismuth vanadate (BiVO{sub 4}) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO{sub 4} films were investigated. Phase-pure monoclinic BiVO{sub 4} films, which are more photoactive than the tetragonal BiVO{sub 4} phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO{sub 4} films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO{sub 4} film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger) exceeded 1.2 mA/cm{sup 2} at a potential of 1.23 V{sub RHE} under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO{sub 4} films opens new possibilities for the fabrication of large-scale devices for water splitting.

  18. BiVO4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Gong, Haibo; Freudenberg, Norman; Nie, Man; van de Krol, Roel; Ellmer, Klaus

    2016-04-01

    Photoactive bismuth vanadate (BiVO4) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO4 films were investigated. Phase-pure monoclinic BiVO4 films, which are more photoactive than the tetragonal BiVO4 phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO4 films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO4 film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger) exceeded 1.2 mA/cm2 at a potential of 1.23 VRHE under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO4 films opens new possibilities for the fabrication of large-scale devices for water splitting.

  19. () preferential orientation of polycrystalline AlN grown on SiO2/Si wafers by reactive sputter magnetron technique

    NASA Astrophysics Data System (ADS)

    Bürgi, Juan; García Molleja, Javier; Bolmaro, Raúl; Piccoli, Mattia; Bemporad, Edoardo; Craievich, Aldo; Feugeas, Jorge

    2016-04-01

    Aluminum nitride (AlN) is a ceramic compound that could be used as a processing material for semiconductor industry. However, the AlN crystalline structure plays a crucial role in its performance. In this paper, polycrystalline AlN films have been grown onto Si(1 1 1) and Si(1 0 0) (with an oxide native coverage of SiO2) wafers by RSM (reactive sputter magnetron) technique using a small (5 L) reactor. The development of polycrystalline AlN films with a good texture along () planes, i.e., semi-polar structure, was shown. Analyses were done using X-ray diffraction in the Bragg-Brentano mode and in the GIXRD (grazing incidence X-ray diffraction) one, and the texture was determined through pole figures. The structure and composition of these films were also studied by TEM and EDS techniques. Nevertheless, the mapping of the magnetic field between the magnetron and the substrate has shown a lack of symmetry at the region near the substrate. This lack of symmetry can be attributable to the small dimensions of the chamber, and the present paper suggests that this phenomenon is the responsible for the unusual () texture developed.

  20. Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Breilmann, W.; Maszl, C.; Hecimovic, A.; von Keudell, A.

    2017-04-01

    Reactive high power impulse magnetron sputtering (HiPIMS) of metals is of paramount importance for the deposition of various oxides, nitrides and carbides. The addition of a reactive gas such as nitrogen to an argon HiPIMS plasma with a metal target allows the formation of the corresponding metal nitride on the substrate. The addition of a reactive gas introduces new dynamics into the plasma process, such as hysteresis, target poisoning and the rarefaction of two different plasma gases. We investigate the dynamics for the deposition of chromium nitride by a reactive HiPIMS plasma using energy- and time-resolved ion mass spectrometry, fast camera measurements and temporal and spatially resolved optical emission spectroscopy. It is shown that the addition of nitrogen to the argon plasma gas significantly changes the appearance of the localized ionization zones, the so-called spokes, in HiPIMS plasmas. In addition, a very strong modulation of the metal ion flux within each HiPIMS pulse is observed, with the metal ion flux being strongly suppressed and the nitrogen molecular ion flux being strongly enhanced in the high current phase of the pulse. This behavior is explained by a stronger return effect of the sputtered metal ions in the dense plasma above the racetrack. This is best observed in a pure nitrogen plasma, because the ionization zones are mostly confined, implying a very high local plasma density and consequently also an efficient scattering process.

  1. Development of mid-frequency AC reactive magnetron sputtering for fast deposition of Y2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Xiong, Jie; Xia, Yudong; Xue, Yan; Zhang, Fei; Guo, Pei; Zhao, Xiaohui; Tao, Bowan

    2014-02-01

    A reel-to-reel magnetron sputtering system with mid-frequency alternating current (AC) power supply was used to deposit double-sided Y2O3 seed layer on biaxially textured Ni-5 at.%W tape for YBa2Cu3O7-δ coated conductors. A reactive sputtering process was carried out using two opposite symmetrical sputtering guns with metallic yttrium targets and water vapor for oxidizing the sputtered metallic atoms. The voltage control mode of the power supply was used and the influence of the cathode voltage and ArH2 pressure were systematically investigated. Subsequently yttrium-stabilized zirconia (YSZ) barrier and CeO2 cap layers were deposited on the Y2O3 buffered substrates in sequence, indicating high quality and uniform double-sided structure and surface morphology of such the architecture.

  2. Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2011-06-01

    Thin films of copper oxides were prepared by reactive magnetron sputtering and structural, morphological, chemical, and electronic properties were analyzed using x-ray diffraction, atomic force microscopy, in situ photoelectron spectroscopy, and electrical resistance measurements. The deposition conditions for preparation of Cu(I)-oxide (Cu2O) are identified. In addition, the interface formation between Cu2O and Sn-doped In2O3 (ITO) was studied by stepwise deposition of Cu2O onto ITO and vice versa. A type II (staggered) band alignment with a valence band offset ΔEVB = 2.1-2.6 eV depending on interface preparation is observed. The band alignment explains the nonrectifying behavior of p-Cu2O/n-ITO junctions, which have been investigated for thin film solar cells.

  3. Bimodal substrate biasing to control γ-Al{sub 2}O{sub 3} deposition during reactive magnetron sputtering

    SciTech Connect

    Prenzel, Marina; Kortmann, Annika; Stein, Adrian; Keudell, Achim von; Nahif, Farwah; Schneider, Jochen M.

    2013-09-21

    Al{sub 2}O{sub 3} thin films have been deposited at substrate temperatures between 500 °C and 600 °C by reactive magnetron sputtering using an additional arbitrary substrate bias to tailor the energy distribution of the incident ions. The films were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The film structure being amorphous, nanocrystalline, or crystalline was correlated with characteristic ion energy distributions. The evolving crystalline structure is connected with different levels of displacements per atom (dpa) in the growing film as being derived from TRIM simulations. The boundary between the formation of crystalline films and amorphous or nanocrystalline films was at 0.8 dpa for a substrate temperature of 500 °C. This threshold shifts to 0.6 dpa for films grown at 550 °C.

  4. Magnetron theory

    NASA Astrophysics Data System (ADS)

    Riyopoulos, Spilios

    1996-03-01

    A guiding center fluid theory is applied to model steady-state, single mode, high-power magnetron operation. A hub of uniform, prescribed density, feeds the current spokes. The spoke charge follows from the continuity equation and the incompressibility of the guiding center flow. Included are the spoke self-fields (DC and AC), obtained by an expansion around the unperturbed (zero-spoke charge) flow in powers of ν/V1, ν, and V1 being the effective charge density and AC amplitude. The spoke current is obtained as a nonlinear function of the detuning from the synchronous (Buneman-Hartree, BH) voltage Vs; the spoke charge is included in the self-consistent definition of Vs. It is shown that there is a DC voltage region of width ‖V-Vs‖˜V1, where the spoke width is constant and the spoke current is simply proportional to the AC voltage. The magnetron characteristic curves are ``flat'' in that range, and are approximated by a linear expansion around Vs. The derived formulas differ from earlier results [J. F. Hull, in Cross Field Microwave Devices, edited by E. Okress (Academic, New York, 1961), pp. 496-527] in (a) there is no current cutoff at synchronism; the tube operates well below as well above the BH voltage; (b) the characteristics are single valued within the synchronous voltage range; (c) the hub top is not treated as virtual cathode; and (d) the hub density is not equal to the Brillouin density; comparisons with tube measurements show the best agreement for hub density near half the Brillouin density. It is also shown that at low space charge and low power the gain curve is symmetric relative to the voltage (frequency) detuning. While symmetry is broken at high-power/high space charge magnetron operation, the BH voltage remains between the current cutoff voltages.

  5. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Jon Tomas; Lundin, Daniel; Brenning, Nils; Raadu, Michel A.; Huo, Chunqing; Minea, Tiberiu

    2016-09-01

    A reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with titanium target. We compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we find that when the discharge is operated in the metal mode Ar+ and Ti+-ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+-ions contribute most significantly to the discharge current while the contribution of O+-ions and secondary electron emission is much smaller. Furthermore, we find that recycling of ionized atoms coming from the target are required for the current generation in both modes of operation. In the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates, and it is concluded that the dominating type of recycling determines the discharge current waveform.

  6. Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Villamayor, M.; Lundin, D.; Helmersson, U.

    2016-02-01

    A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar-N2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf-N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail.

  7. New monoclonal anti-mouse DC-SIGN antibodies reactive with acetone-fixed cells

    PubMed Central

    Cheong, Cheolho; Matos, Ines; Choi, Jae-Hoon; Schauer, Joseph D.; Dandamudi, Durga Bhavani; Shrestha, Elina; Makeyeva, Jessy A.; Li, Xiaojun; Li, Pingwei; Steinman, Ralph M.; Park, Chae Gyu

    2010-01-01

    Mouse DC-SIGN CD209a is a type II transmembrane protein, one of a family of C-type lectin genes syntenic and homologous to human DC-SIGN. Current anti-mouse DC-SIGN monoclonal antibodies (MAbs) are unable to react with DC-SIGN in acetone fixed cells, limiting the chance to visualize DC-SIGN in tissue sections. We first produced rabbit polyclonal PAb-DSCYT14 against a 14-aa peptide in the cytosolic domain of mouse DC-SIGN, and it specifically detected DC-SIGN and not the related lectins, SIGN-R1 and SIGN-R3 expressed in transfected CHO cells. MAbs were generated by immunizing rats and DC-SIGN knockout mice with the extracellular region of mouse DC-SIGN.. Five rat IgG2a or IgM MAbs, named BMD10, 11, 24, 25, and 30, were selected and each MAb specifically detected DC-SIGN by FACS and Western blots, although BMD25 was cross-reactive to SIGN-R1. Two mouse IgG2c MAbs MMD2 and MMD3 interestingly bound mouse DC-SIGN but at 10 fold higher levels than the rat MAbs. When the binding epitopes of the new BMD and two other commercial rat anti-DC-SIGN MAbs, 5H10 and LWC06, were examined by competition assays, the epitopes of BMD11, 24, and LWC06 were identical or closely overlapping while BMD10, 30, and 5H10 were shown to bind different epitopes. MMD2 and MMD3 epitopes were on a 3rd noncompeting region of mouse DC-SIGN. DC-SIGN expressed on the cell surface was sensitive to collagenase treatment, as monitored by polyclonal and MAb. These new reagents should be helpful to probe the biology of DC-SIGN in vivo. PMID:20558171

  8. The TCR of Ni24.9Cr72.5Si2.6 thin films deposited by DC and RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cheng, Bing; Yin, Yijun; Han, Jianqiang; Zhang, Jie

    2017-06-01

    The temperature coefficient of resistance (abbreviated as TCR) of thin film resistors on some sensor chips, such as thermal converters, should be less than several ppm/°C. However, the TCR of reported thin films is larger than 5 ppm/°C. In this paper, Ni24.9Cr72.5Si2.6 films are deposited on silicon dioxide film by DC and RF magnetron sputtering. Then as-deposited films are annealed at 450 °C under different durations in N2 atmosphere. The sheet resistance of thin films with various thickness and annealing time are measured by the four probe resistivity test system at temperature of 20, 50, 100, 150, and 200 °C and then the TCR of thin films are calculated. Experimental results show that the film with the TCR of only -0.86 ppm/°C can be achieved by RF magnetron sputtering and appropriate annealing conditions. Project supported by the National Natural Science Foundation of China (Nos. 51377025, 61376114)

  9. Spatial resistivity distribution of transparent conducting impurity-doped ZnO thin films deposited on substrates by dc magnetron sputtering

    SciTech Connect

    Minami, Tadatsugu; Oda, Jun-ichi; Nomoto, Jun-ichi; Miyata, Toshihiro

    2010-07-15

    In transparent conducting impurity-doped ZnO thin films prepared by a conventional dc magnetron sputtering deposition (dc-MSD), the key factors in the deposition conditions that are necessary for practical use in transparent electrode applications were investigated. It was found that impurity-doped ZnO targets with a resistivity higher than approximately 3 m{Omega} cm are unsuitable for practical use in the preparation of transparent conducting Al-doped ZnO and Ga-doped ZnO thin films by conventional dc-MSD. Improvements of both the resulting resistivity distribution and resistivity can be sufficiently obtained only by using targets with a resistivity lower than about 0.5 m{Omega} cm. Using a low oxygen content target having a lower resistivity was found to reduce both the amount of oxygen in the chamber and the amount of oxygen reaching the substrate surface. As a result, it was demonstrated that sintered impurity-doped ZnO targets optimized for the preparation of thin films with lower resistivity as well as more uniform resistivity distribution on the substrate surface tended to exhibit a resistivity lower than about 0.5 m{Omega} cm.

  10. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    PubMed

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  11. Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room-Temperature DC Magnetron Sputtered TiO2 Electron Extraction Layer.

    PubMed

    Huang, Aibin; Lei, Lei; Zhu, Jingting; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Cao, Xun; Jin, Ping

    2017-01-25

    The short circuit current density of perovskite solar cell (PSC) was boosted by modulating the dominated plane facets of TiO2 electron transport layer (ETL). Under optimized condition, TiO2 with dominant {001} facets showed (i) low incident light loss, (ii) highly smooth surface and excellent wettability for precursor solution, (iii) efficient electron extraction, and (iv) high conductivity in perovskite photovoltaic application. A current density of 24.19 mA cm(-2) was achieved as a value near the maximum limit. The power conversion efficiency was improved to 17.25%, which was the record value of PSCs with DC magnetron sputtered carrier transport layer. What is more, the room-temperature process had a great significance for the cost reduction and flexible application of PSCs.

  12. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    SciTech Connect

    Sharma, Shailesh; Gahan, David Scullin, Paul; Doyle, James; Lennon, Jj; Hopkins, M. B.; Vijayaraghavan, Rajani K.; Daniels, Stephen

    2016-04-15

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  13. Deposition and characterization of high temperature superconducting YBa2Cu3O7-δ films obtained by DC magnetron sputtering and thermal annealing modification

    NASA Astrophysics Data System (ADS)

    Beshkova, M.; Blagoev, B.; Kovacheva, D.; Mladenov, G.; Nurgaliev, T.

    2008-05-01

    C-axis oriented 100-nm thick YBCO films were deposited on LaAlO3 (100) substrates at substrate temperature of 780°C in a mixed oxygen/argon atmosphere (1:3) of 0.3 Torr by DC off-axis magnetron sputtering. The samples deposited were thermally annealed in oxygen ambient of 600 Torr at 530°C for 40 min. Superconductivity with zero resistance 89.1K was observed for the YBCO films after annealing. These results show that thermal annealing is an important technique for improving the parameters of thin superconducting films. A correlation between the YBCO layers properties before and after annealing was established.

  14. A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.

    2017-05-01

    A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure

  15. Nitrogen doping on NiO by reactive magnetron sputtering: A new pathway to dynamically tune the optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Keraudy, Julien; Ferrec, Axel; Richard-Plouet, Mireille; Hamon, Jonathan; Goullet, Antoine; Jouan, Pierre-Yves

    2017-07-01

    N-doped nickel oxide (NiO:N) thin films were deposited on glass and silicon substrates by reactive DC magnetron sputtering in Ar/O2/N2 gas atmosphere with a series of N2/O2 gas ratio ranging from 0 to 80%. X-ray diffraction measurements have revealed that the films are constituted of Ni1-xO grains and showed enhanced polycrystalline features with increasing N-doping concentration. For the first time, we report here that N-doping in the Ni-deficient NiO (Ni1-xO) film leads to a band-gap narrowing from 3.6 to 2.3 eV. X-ray photoelectron spectroscopy (XPS) measurements proved that up to 4 atomic percent (at.%) nitrogen can be incorporated at least at the surface of the NiO:N samples. In addition, XPS valence band spectra and UV-vis transmission measurements have demonstrated that the band-gap narrowing may originates from the contribution of an intermediate band (IB) ∼2.4 eV just above the valence band maximum and the up-shifting of the valence band edge (∼0.3 eV) due to the introduction of occupied N 2p states. Local I-V measurements, carried out by conductive AFM (C-AFM), have revealed that the extrinsic doping of N atoms within the oxide can be a good way to precisely control the electrical conductivity of such p-type materials.

  16. Effects of pulse frequency on the microstructure, composition and optical properties of pulsed dc reactively sputtered vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Dong, Xiang; Wu, Zhiming; Jiang, Yadong; Xu, Xiangdong; Yu, He; Gu, Deen; Wang, Tao

    2014-09-01

    Vanadium oxide (VOx) thin films were prepared on unheated glass substrate by pulsed dc reactive magnetron sputtering using different pulse frequency. Field emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry (SE) measurements were made on the deposited VOx films to characterize the microstructure, composition and optical properties, respectively. It was found that under the same discharge power and argon-oxygen atmosphere, with the increase of pulse frequency, the vertical column-like structure in the films will gradually disappear and the ratio of high-valent VOx to low-valent VOx will obviously elevate. Optical parameters of the VOx films have been obtained by fitting the ellipsometric data (Ψ andΔ) using the Tauc-Lorentz dispersion relation and a multilayer model (air/roughness layer/VOx/glass). The results demonstrated that pulse frequency plays a critical role in determining the transmittance, refractive index, extinction coefficient and optical band gap etc. The correlations between the microstructure, composition, optical properties and pulse frequency are also given by our experiment results. And the mechanisms for the evolution of the microstructure, composition and optical properties with pulse frequency have been discussed. Overall, due to the pulse frequency had a great effect not only on the growth characteristics but also on the optical properties of the VOx films, thus through variation of the pulse frequency during deposition which provide a convenient and efficient approach to control and optimize the performances of the VOx films.

  17. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lundin, D.; Brenning, N.; Raadu, M. A.; Huo, Chunqing; Minea, T. M.

    2016-12-01

    A new reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with a titanium target. It is then applied to study the temporal behavior of the discharge plasma parameters such as electron density, the neutral and ion composition, the ionization fraction of the sputtered vapor, the oxygen dissociation fraction, and the composition of the discharge current. We study and compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we explore the current increase and find that when the discharge is operated in the metal mode Ar+ and Ti+ -ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+ -ions contribute most significantly to the discharge current and the contribution of O+ -ions, Ti+ -ions, and secondary electron emission is much smaller. Furthermore, we find that recycling of atoms coming from the target, that are subsequently ionized, is required for the current generation in both modes of operation. From the R-IRM results it is found that in the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates. We also show that working gas recycling can lead to very high discharge currents but never to a runaway. It is concluded that the dominating type of recycling determines the discharge current waveform.

  18. Influence of annealing treatment on electric polarization behaviour of zinc oxide films grown by low-power dc- unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kurniawan, R.; Nurfani, E.; Muhammady, S.; Sutjahja, I. M.; Winata, T.; Darma, Y.

    2016-11-01

    We study the annealing effect of highly oriented zinc oxide (ZnO) films grown by low-power dc-unbalanced magnetron sputtering (DC-UBMS). In this study, we compare the structural and electrical properties of thermal-annealed ZnO films (ann-ZnO) and as-growth ZnO films (ag-ZnO) by using x-ray diffraction (XRD), scanning electron microscopy (SEM) and RT66A standardized ferroelectric test system. We found that the ag-ZnO films and the ann-ZnO films show a high orientation in (101) plane. SEM images indicate that annealing treatment at 600°C in nitrogen ambient promote the surface atomics arrangement and convert a non-uniform ag-ZnO surface to relatively flat ann-ZnO film surface. Also confirm that the ag- ZnO and the ann-ZnO films have strong ferroelectric characteristics, while the values of remnant polarization and polarization saturation are almost similar. The electric coercivity (Ec ) of the ann-ZnO film is larger than ag-ZnO films as an indication of structural defects elimination. Our results are beneficial for high energy electric-based storage devices with less depolarized structural systems.

  19. Process monitoring during AlN{sub x}O{sub y} deposition by reactive magnetron sputtering and correlation with the film's properties

    SciTech Connect

    Borges, Joel Vaz, Filipe; Marques, Luis; Martin, Nicolas

    2014-03-15

    In this work, AlN{sub x}O{sub y} thin films were deposited by reactive magnetron sputtering, using an aluminum target and an Ar/(N{sub 2}+O{sub 2}) atmosphere. The direct current magnetron discharge parameters during the deposition process were investigated by optical emission spectroscopy and a plasma floating probe was used. The discharge voltage, the electron temperature, the ion flux, and the optical emission lines were recorded for different reactive gas flows, near the target and close to the substrate. This information was correlated with the structural features of the deposits as a first step in the development of a system to control the structure and properties of the films during reactive magnetron sputtering. As the target becomes poisoned, the discharge voltage suffers an important variation, due to the modification of the secondary electron emission coefficient of the target, which is also supported by the evolution of the electron temperature and ion flux to the target. The sputtering yield of the target was also affected, leading to a reduction of the amount of Al atoms arriving to the substrate, according to optical emission spectroscopy results for Al emission line intensity. This behavior, together with the increase of nonmetallic elements in the films, allowed obtaining different microstructures, over a wide range of compositions, which induced different electrical and optical responses of films.

  20. Influence of temperature and hydrogen rate on silicon incorporation in silica films by reactive magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Chausserie, S.; Khalfaoui, N.; Dufour, C.; Vicens, J.; Marie, P.; Gourbilleau, F.

    2005-02-01

    Silicon-rich silicon oxide layers were deposited by reactive magnetron sputtering of a pure silica target. The main purpose was to understand how the different deposition parameters affect the silicon incorporation, in order to control the fabrication of efficient light emitting Si/SiO 2 multilayers. The silicon excess incorporated in the films was monitored by two main parameters: (i) the hydrogen partial pressure ( PH) introduced in the plasma, owing to the ability of hydrogen to reduce the oxygen released by the sputtered silica target, and (ii) the substrate temperature ( TS). The silicon excess estimated from the refractive index contrast with respect to silica, as determined by spectroscopic ellipsometry and optical transmission, was found to increase from 2.1 to 3.1 when TS and PH are increased. The evolution of the infrared absorption spectroscopy spectra reflects the incorporation of silicon excess, while microstructural studies allowed the determination of the nature (crystalline or amorphous) of Si aggregates. Studies using atomic force microscopy on tapping mode revealed that the surface roughness deteriorate for high PH, leading to the adoption of low values of hydrogen partial pressure for the fabrication of efficiently luminescent multilayers.

  1. Microstructure evolution of Al-doped zinc oxide films prepared by in-line reactive mid-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hong, R. J.; Jiang, X.

    2006-07-01

    Aluminium-doped zinc oxide (ZnO:Al or AZO) thin films were deposited on glass substrates by reactive mid-frequency (MF) magnetron sputtering from Zn/Al metallic targets. Strong (002) preferred orientation was detected by X-ray diffraction (XRD). It was observed by plan-view transmission electron microscopy (TEM) that an AZO film deposited at low substrate temperature was composed of irregular large grains; but the film prepared at high temperature was composed of moderate sized grains with a regular shape. A secondary phase of ZnO2 was also observed for the film deposited at low substrate temperature. The cross-sectional TEM study of the AZO film showed that prior to the well-aligned columnar growth an initial interfacial zone with nano crystallites were formed. The nano crystallites formed initially with a large tilt angle normal to the substrate surface and during the growth of the transition zone, the tilt angle decreased until it vanished. The evolution of the film structure is discussed in terms of evolutionary selection model and the dynamic deposition process.

  2. Formation of hydrogenated amorphous carbon films by reactive high power impulse magnetron sputtering containing C2H2 gas

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2015-09-01

    Diamond-like carbon (DLC) films have attracted interest for material industries, because they have unique properties. Hydrogenated amorphous carbon films are prepared by reactive high power impulse magnetron sputtering (HiPIMS) containing C2H2 gas and the properties of the films produced in Ar/C2H2 and Ne/C2H2 HiPIMS are compared. Production of hydrocarbon radicals and their ions strongly depends on both electron temperature and electron density in HiPIMS. Therefore, the influence of the difference in buffer gas (Ar and Ne) on the film properties is also valuable to investigate. The film preparation is performed at an average power of 60 W and a repetition frequency of 110 Hz. Total pressure ranges between 0.3 and 2 Pa. The maximum of instantaneous power is about 20-25 kW, and the magnitude of the current is 35 A. A negative pulse voltage is applied to the substrates for about 15 μs after the target voltage changed from about -500 V to 0 V. Hardness of the films prepared by Ar/C2H2 HiPIMS monotonically decreases with increasing the total pressure, whereas that of the films prepared by Ne/C2H2 HiPIMS does not strongly depend on the total pressure. This work is partially supported by JSPS KAKENHI Grant Number 26420230.

  3. Electrical and optical properties of CNx(0<=x<=0.25) films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Broitman, E.; Hellgren, N.; Järrendahl, K.; Johansson, M. P.; Olafsson, S.; Radnóczi, G.; Sundgren, J.-E.; Hultman, L.

    2001-01-01

    The electrical and optical properties of carbon-nitride CNx films (0⩽x⩽0.25) deposited by unbalanced reactive magnetron sputtering from a graphite target in mixed Ar/N2 discharges at a substrate temperature of 350 °C have been investigated. Pure C films exhibit a dark conductivity at room temperature of 25 Ω-1 cm-1, which grows up to 250 Ω-1 cm-1 for CNx films with N content of 20%. For CNx films, temperature-dependent conductivity measurements suggest that two electron conduction processes exist in the investigated temperature range 130

  4. The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core.

    PubMed

    Külünk, Tolga; Külünk, Safak; Baba, Seniha; Oztürk, Ozgür; Danişman, Sengül; Savaş, Soner

    2013-11-01

    Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 µm aluminum oxide particles (Al2O3), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 µm Al2O3 + Al coating and air particle abrasion with 50 µm Al2O3 + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (α=.05). The highest bond strengths were obtained by air abrasion with 50 µm Al2O3, the lowest bond strengths were obtained in polishing + Al coating group (P<.05). Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core.

  5. The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core

    PubMed Central

    Külünk, Şafak; Baba, Seniha; Öztürk, Özgür; Danişman, Şengül; Savaş, Soner

    2013-01-01

    PURPOSE Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. MATERIALS AND METHODS Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 µm aluminum oxide particles (Al2O3), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 µm Al2O3 + Al coating and air particle abrasion with 50 µm Al2O3 + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (α=.05). RESULTS The highest bond strengths were obtained by air abrasion with 50 µm Al2O3, the lowest bond strengths were obtained in polishing + Al coating group (P<.05). CONCLUSION Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core. PMID:24353874

  6. Structural and electrical properties of AlN layers grown on silicon by reactive RF magnetron sputtering

    SciTech Connect

    Bazlov, N. Pilipenko, N. Vyvenko, O.; Petrov, Yu.; Mikhailovskii, V.; Ubyivovk, E.; Kotina, I.; Zharinov, V.

    2016-06-17

    AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained traps of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.

  7. The characterization of Cu-doped ZnO thin films prepared by using radio-frequency reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cai, Chaoqun; Zhang, Hongqiang; Xie, Jun; Ma, Ligang

    2017-05-01

    Textured zinc-oxide (ZnO) thin films and Cu-doped ZnO (ZnO:Cu) thin films are deposited on glass substrates by using radio-frequency reactive magnetron sputtering. The effect of Cu-doping concentration on the crystallization behavior, surface morphology, transmission spectrum, and luminescence properties of the ZnO thin films are systematically investigated by using X-ray diffraction, scanning probe microscopy and photoluminescence spectra. The results indicate that the crystallization quality, morphology, transmission, and luminescence of the ZnO films is affected by Cu-element doping. A stronger preferred orientation toward the c-axis is obtained after Cu doping at an appropriate concentration (3%). The transmittance rate gradually decreases with increasing Cu doping concentration. In the photoluminescence spectra of the samples measured at room temperature, four main emission peaks are observed: a violet peak located at about 390 nm, two blue peaks, one located at about 445 nm and the other at about 485 nm, and a green peak located at about 527 nm. The origins of these emissions are discussed in detail.

  8. Low-temperature growth of gallium nitride films by inductively coupled-plasma-enhanced reactive magnetron sputtering

    SciTech Connect

    Ni, Chih-Jui; Chau-Nan Hong, Franklin

    2014-05-15

    Gallium nitride (GaN) films were grown on sapphire substrate by reactive magnetron sputtering. Inductively coupled-plasma (ICP) source was installed between the substrate holder and the sputtering target to increase the plasma density and the degree of ionization of nitrogen gas. Liquid Ga and Ar/N{sub 2} were used as the sputtering target and sputtering gases, respectively. X-ray diffraction measurements confirmed that the authors could grow high quality GaN crystallites at 500 °C. However, the crystalline GaN (0002) peak remained even by lowering the growth temperature down to 300 °C. The N:Ga ratio of the film grown at 500 °C was almost 1:1, and the nitrogen composition became higher toward the 1:1 N:Ga ratio with increasing the growth temperature. The high degree of ionization induced by ICP source was essential to the growth of high crystalline quality GaN films.

  9. Cross sectional TEM analysis of duplex HIPIMS and DC magnetron sputtered Mo and W doped carbon coatings

    NASA Astrophysics Data System (ADS)

    Sharp, J.; Castillo Muller, I.; Mandal, P.; Abbas, A.; West, G.; Rainforth, W. M.; Ehiasarian, A.; Hovsepian, P.

    2015-10-01

    A FIB lift-out sample was made from a wear-resistant carbon coating deposited by high power impulse magnetron sputtering (HIPIMS) with Mo and W. TEM analysis found columnar grains extending the whole ∼1800 nm thick film. Within the grains, the carbon was found to be organised into clusters showing some onion-like structure, with amorphous material between them; energy dispersive X-ray spectroscopy (EDS) found these clusters to be Mo- and W-rich in a later, thinner sample of the same material. Electron energy-loss spectroscopy (EELS) showed no difference in C-K edge, implying the bonding type to be the same in cluster and matrix. These clusters were arranged into stripes parallel to the film plane, of spacing 7-8 nm; there was a modulation in spacing between clusters within these stripes that produced a second, coarser set of striations of spacing ∼37 nm.

  10. The nanocrystalline structure of TiO2 film deposited by DC magnetron sputtering at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jindong; Ding, Wanyu; Wang, Hualin; Liu, Shimin; Jiang, Weiwei; Liu, Chaoqian; Wang, Nan; Chai, Weiping

    2014-10-01

    At room temperature, titanium dioxide (TiO2) films were deposited by the direct current pulse magnetron sputtering technique. Varying O2/Ar flow ratio, TiO2 films with different nanocrystalline structures were obtained. The high resolution transmission electron microscopy results show that with O2/Ar = 6/14, the nanocrystalline in rutile phase appears in as-deposited film. Then X-ray diffraction patterns of annealed films revealed that with O2/Ar = 6/14, the higher weight fractions of rutile TiO2 appear in films. The optical emission spectroscopy results show that with O2/Ar < 6/14, O element was mainly existed as O-/O+ ions, instead of excited state of O atoms.

  11. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shi, Zhifeng; Wang, Yingjun; Du, Chang; Huang, Nan; Wang, Lin; Ning, Chengyun

    2011-12-01

    Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties.

  12. Fabrication of porous noble metal thin-film electrode by reactive magnetron sputtering.

    PubMed

    Cho, Tae-Shin; Choi, Heonjin; Kim, Joosun

    2013-06-01

    Porous platinum films have been fabricated by reactive sputtering combined with subsequent thermal annealing. Using the SEM, XRD, XPS, and polarization resistance measurement techniques, the microstructural development of the film and its resultant electrochemical properties have been characterized. Pore evolution was understood as a result of the thermal grooving of platinum during annealing process. We demonstrated that crystallization should be followed by agglomeration for the evolution of porous microstructures. Furthermore, reaction sputtering affected the adhesion enhancement between the film and substrate compared to the film deposited by non-reactive sputtering. The polarization resistance of the porous platinum film was five times lower than that of the dense platinum film. At 600 degrees C the resistance of the porous film was 5.67 omega x cm2, and that of the dense film was 38 omega x cm2.

  13. Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi

    2009-05-01

    Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.

  14. SiNx coatings deposited by reactive high power impulse magnetron sputtering: Process parameters influencing the residual coating stress

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Hänninen, T.; Wissting, J.; Hultman, L.; Goebbels, N.; Santana, A.; Tobler, M.; Högberg, H.

    2017-05-01

    The residual coating stress and its control is of key importance for the performance and reliability of silicon nitride (SiNx) coatings for biomedical applications. This study explores the most important deposition process parameters to tailor the residual coating stress and hence improve the adhesion of SiNx coatings deposited by reactive high power impulse magnetron sputtering (rHiPIMS). Reactive sputter deposition and plasma characterization were conducted in an industrial deposition chamber equipped with pure Si targets in N2/Ar ambient. Reactive HiPIMS processes using N2-to-Ar flow ratios of 0 and 0.28-0.3 were studied with time averaged positive ion mass spectrometry. The coatings were deposited to thicknesses of 2 μm on Si(001) and to 5 μm on polished CoCrMo disks. The residual stress of the X-ray amorphous coatings was determined from the curvature of the Si substrates as obtained by X-ray diffraction. The coatings were further characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and nanoindentation in order to study their elemental composition, morphology, and hardness, respectively. The adhesion of the 5 μm thick coatings deposited on CoCrMo disks was assessed using the Rockwell C test. The deposition of SiNx coatings by rHiPIMS using N2-to-Ar flow ratios of 0.28 yield dense and hard SiNx coatings with Si/N ratios <1. The compressive residual stress of up to 2.1 GPa can be reduced to 0.2 GPa using a comparatively high deposition pressure of 600 mPa, substrate temperatures below 200 °C, low pulse energies of <2.5 Ws, and moderate negative bias voltages of up to 100 V. These process parameters resulted in excellent coating adhesion (ISO 0, HF1) and a low surface roughness of 14 nm for coatings deposited on CoCrMo.

  15. High-rate reactive magnetron sputtering of zirconia films for laser optics applications

    NASA Astrophysics Data System (ADS)

    Juškevičius, K.; Audronis, M.; Subačius, A.; Drazdys, R.; Juškėnas, R.; Matthews, A.; Leyland, A.

    2014-09-01

    ZrO2 exhibits low optical absorption in the near-UV range and is one of the highest laser-induced damage threshold (LIDT) materials; it is, therefore, very attractive for laser optics applications. This paper reports explorations of reactive sputtering technology for deposition of ZrO2 films with low extinction coefficient k values in the UV spectrum region at low substrate temperature. A high deposition rate (64 % of the pure metal rate) process is obtained by employing active feedback reactive gas control which creates a stable and repeatable deposition processes in the transition region. Substrate heating at 200 °C was found to have no significant effect on the optical ZrO2 film properties. The addition of nitrogen to a closed-loop controlled process was found to have mostly negative effects in terms of deposition rate and optical properties. Open-loop O2 gas-regulated ZrO2 film deposition is slow and requires elevated (200 °C) substrate temperature or post-deposition annealing to reduce absorption losses. Refractive indices of the films were distributed in the range n = 2.05-2.20 at 1,000 nm and extinction coefficients were in the range k = 0.6 × 10-4 and 4.8 × 10-3 at 350 nm. X-ray diffraction analysis showed crystalline ZrO2 films consisted of monoclinic + tetragonal phases when produced in Ar/O2 atmosphere and monoclinic + rhombohedral or a single rhombohedral phase when produced in Ar/O2 + N2. Optical and physical properties of the ZrO2 layers produced in this study are suitable for high-power laser applications in the near-UV range.

  16. Formation of pyrite (FeS{sub 2}) thin films by thermal sulfurization of dc magnetron sputtered iron

    SciTech Connect

    Soukup, R. J.; Prabukanthan, P.; Ianno, N. J.; Sarkar, A.; Kamler, C. A.; Sekora, D. G.

    2011-01-15

    Iron films deposited by direct current magnetron sputtering onto glass substrates were converted into FeS{sub 2} films by thermal sulfurization. Experiments were carried out to optimize the sulfurization process, and the formation of FeS{sub 2} thin films was investigated under different annealing temperatures and times. High quality FeS{sub 2} films were fabricated using this process, and single phase pyrite films were obtained after sulfurization in a sulfur and nitrogen atmosphere at 450 deg. C for 1 h. Film crystallinity and phase identification were determined by using x-ray diffraction. The cubic phase pyrite films prepared were p-type, and scanning electron microscopy studies exhibited a homogeneous surface of pyrite. The authors have found that the best Ohmic contact for their pyrite thin films, using inexpensive metals, was Ni. The following were chosen for the study: Al, Mo, Fe, and Ni, and the one that led to the lowest resistance, 333 {Omega}, was Ni.

  17. Microstructural Properties of NC-Si/SiO2 Films IN SITU Grown by Reactive Magnetron Co-Sputtering

    NASA Astrophysics Data System (ADS)

    Lu, Wanbing; Guo, Shaogang; Wang, Jiantao; Li, Yun; Wang, Xinzhan; Yu, Gengxi; Fan, Shanshan; Fu, Guangsheng

    2012-01-01

    Nanocrystalline silicon embedded in silicon oxide (nc-Si/SiO2) films have been in situ grown at a low substrate temperature of 300°C by reactive magnetron co-sputtering of Si and SiO2 targets in a mixed Ar/H2 discharge. The influences of H2 flow rate (FH) on the microstructural properties of the deposited nc-Si/SiO2 films were investigated. The results of XRD and the deposition rate of nc-Si/SiO2 films show that the introduction of H2 contributes to the growth of nc-Si grains in silicon oxide matrix. With further increasing FH, the average size of nc-Si grains increases and the deposition rate of nc-Si/SiO2 films decreases gradually. Fourier transform infrared spectra analyses reveal that introduction of hydrogen contributes to the phase separation of nc-Si and SiOx in the deposited films. Moreover, the Si-O4-nSin(n = 0, 1) concentration of the deposited nc-Si/SiO2 films reduces with the increase of FH, while that of Si-O4-nSin(n = 2, 3) concentration increases. These results can be explained by that active hydrogen atoms increase the probability of reducing oxygen from precursor in the plasma and prompting oxygen desorption from the growing surface. This low-temperature procedure for preparing nc-Si/SiO2 films opens up the possibility of fabricating the silicon-based thin-film solar cells onto low-cost glass substrates using nc-Si/SiO2 films.

  18. High-rate deposition of MgO by reactive ac pulsed magnetron sputtering in the transition mode

    SciTech Connect

    Kupfer, H.; Kleinhempel, R.; Richter, F.; Peters, C.; Krause, U.; Kopte, T.; Cheng, Y.

    2006-01-15

    A reactive ac pulsed dual magnetron sputtering process for MgO thin-film deposition was equipped with a closed-loop control of the oxygen flow rate (F{sub O2}) using the 285 nm magnesium radiation as input. Owing to this control, most of the unstable part of the partial pressure versus flowrate curve became accessible. The process worked steadily and reproducible without arcing. A dynamic deposition rate of up to 35 nm m/min could be achieved, which was higher than in the oxide mode by about a factor of 18. Both process characteristics and film properties were investigated in this work in dependence on the oxygen flow, i.e., in dependence on the particular point within the transition region where the process is operated. The films had very low extinction coefficients (<5x10{sup -5}) and refractive indices close to the bulk value. They were nearly stoichiometric with a slight oxygen surplus (Mg/O=48/52) which was independent of the oxygen flow. X-ray diffraction revealed a prevailing (111) orientation. Provided that appropriate rf plasma etching was performed prior to deposition, no other than the (111) peak could be detected. The intensity of this peak increased with increasing F{sub O{sub 2}}, indicating an even more pronounced (111) texture. The ion-induced secondary electron emission coefficient (iSEEC) was distinctly correlated with the markedness of the (111) preferential orientation. Both refractive index and (111) preferred orientation (which determines the iSEEC) were found to be improved in comparison with the MgO growth in the fully oxide mode. Consequently, working in the transition mode is superior to the oxide mode not only with respect to the growth rate, but also to most important film properties.

  19. Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kuschel, Thomas; von Keudell, Achim

    2010-05-01

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with this microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.

  20. Process- and optoelectronic-control of NiOx thin films deposited by reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Keraudy, Julien; Delfour-Peyrethon, Brice; Ferrec, Axel; Garcia Molleja, Javier; Richard-Plouet, Mireille; Payen, Christophe; Hamon, Jonathan; Corraze, Benoît; Goullet, Antoine; Jouan, Pierre-Yves

    2017-05-01

    In this contribution, based on the analyses of the discharge behavior as well as final properties of the deposited Ni-O films during reactive high power impulse magnetron sputtering discharge, we have demonstrated that monitoring the oxygen flow rate leads to 4 different regimes of discharge. Tuning the oxygen partial pressure allows deposition of a large range of chemical compositions from pure nickel to nickel-deficient NiOx (x > 1) in the poisoned mode. Investigation of the plasma dynamics by time-resolved optical emission spectroscopy suggests that the discharge behavior in the poisoned mode principally comes from the higher contribution of both oxygen and argon ions in the total ionic current, leading to a change in the ion induced secondary electron emission coefficient. Additionally, material characterizations have revealed that optoelectronic properties of NiOx films can be easily tuned by adjusting the O/Ni ratio, which is influenced by the change of the oxygen flow rate. Stoichiometric NiO films (O/Ni ratio ˜ 1) are transparent in the visible range with a transmittance ˜80% and insulating as expected with an electrical resistivity ˜106 Ω cm. On the other hand, increasing the O/Ni > 1 leads to the deposition of more conductive coating (ρ ˜ 10 Ω cm) films with a lower transmittance ˜ 50%. These optoelectronic evolutions are accompanied by a band-gap narrowing 3.65 to 3.37 eV originating from the introduction of acceptor states between the Fermi level and the valence band maximum. In addition, our analysis has demonstrated that nickel vacancies are homogeneously distributed over the film thickness, explaining the p-type of the films.

  1. Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties

    NASA Astrophysics Data System (ADS)

    Cebulla, R.; Wendt, R.; Ellmer, K.

    1998-01-01

    A new technique of the simultaneous excitation of a magnetron sputtering discharge by rf and dc was used for the deposition of undoped ZnO- and Al-doped ZnO (ZnO:Al) films. By this technique, it was possible to change the ion-to-neutral ratio ji/jn on the substrates during the film growth by more than a factor of ten, which was revealed by plasma monitor and Langmuir probe measurements. While for a pure dc discharge the ions impinging onto a floating substrate have energies of about Ei≈17 eV, the rf discharge is characterized by Ar-ion energies of about 35 eV. Furthermore, the ion current density for the rf excitation is higher by a factor of about five, which is caused by the higher plasma density in front of the substrate. This leads to a much higher ion-to-neutral ratio ji/jn on the growing film in the case of the rf discharge, which strongly influences the structural and electrical properties of the ZnO(:Al) films. The rf-grown films exhibit about the three times lower specific resistances (ρ≈6×10-4 Ω cm), due to lower mechanical stress, leading to higher charge carrier concentrations and mobilities. Undoped ZnO films exhibited the largest compressive stress values up to 2.8 GPa. The aluminium-doped films have a better (001) texture and larger grains (dg≈38 nm), which can be attributed to the beneficial role of Al as a surfactant. The better crystalline film quality of the ZnO:Al films is the reason for the much lower compressive stress of <0.5 GPa in these layers.

  2. Influences of the RF power ratio on the optical and electrical properties of GZO thin films by DC coupled RF magnetron sputtering at room temperature

    NASA Astrophysics Data System (ADS)

    Peng, Shou; Yao, Tingting; Yang, Yong; Zhang, Kuanxiang; Jiang, Jiwen; Jin, Kewu; Li, Gang; Cao, Xin; Xu, Genbao; Wang, Yun

    2016-12-01

    Ga-doped zinc oxide (GZO) thin films were deposited by closed field unbalanced DC coupled RF magnetron sputtering system at room temperature. The RF sputtering power ratio was adjusted from 0% to 100%. The crystal structure, surface morphology, transmittance and electrical resistivity of GZO films mainly influenced by RF sputtering power ratio were investigated by X-ray diffractometer, scanning electronic microscope, ultraviolet-visible spectrophotometer and Hall effect measurement. The research results indicate that the increasing RF power ratio can effectively reduce the discharge voltage of system and increase the ionizing rate of particles. Meanwhile, the higher RF power ratio can increase the carrier mobility in GZO thin film and improve the optical and electrical properties of GZO thin film significantly. Within the optimal discharge voltage window, the film deposits at 80% RF power ratio exhibits the lowest resistivity of 2.6×10-4 Ω cm. We obtain the GZO film with the best average optical transmittance is approximately 84% in the visible wavelength. With the increasing RF power ratio, the densification of GZO film is enhanced. The densification of GZO film is decrease when the RF power ratio is 100%.

  3. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zubizarreta, C.; Berasategui, E. G.; Bayón, R.; Escobar Galindo, R.; Barros, R.; Gaspar, D.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E.; Barriga, J.

    2014-12-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al2O3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10-4 Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 107 Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation.

  4. Properties of transparent conductive boron-doped ZnO thin films deposited by pulsed DC magnetron sputtering from Zn1- x B x O targets

    NASA Astrophysics Data System (ADS)

    Wen, B.; Liu, C. Q.; Wang, N.; Wang, H. L.; Liu, S. M.; Ren, Y. H.; Chai, W. P.

    2017-03-01

    Transparent conducting B-doped ZnO thin films were deposited on normal soda-lime glass substrate by pulsed DC magnetron sputtering from homemade Zn1- x B x O ceramic targets. All the Zn1- x B x O targets are single-phase hexagonal wurtzite structure. After introducing B dopant into ZnO, the targets have a slight c-axis orientation and show more compact than the undoped target. The effect of B doping concentration on the crystallization behaviors, morphological, electrical, and optical properties of the Zn1- x B x O films was systematically investigated. XRD patterns reveal that both the B-doped and undoped films exhibit hexagonal wurtzite structure with strong c-axis orientation. With increasing the B doping concentration, the c-axis orientation and the calculated grain size of the Zn1- x B x O films based on the XRD data decrease. The surface morphologies of the films are very flat, and the transmittance spectra of the films show mean values higher than 90% in the visible range. The B-doped ZnO film with the lowest resistivity of 2.1 × 10-3 Ω cm was achieved by sputtering the Zn0.99B0.01O ceramic target.

  5. Analysis of the properties of functional titanium dioxide thin films deposited by pulsed DC magnetron sputtering with various O2:Ar ratios

    NASA Astrophysics Data System (ADS)

    Mazur, Michal

    2017-07-01

    For the purpose of thin film preparation, pulsed DC magnetron sputtering process was performed and various O2:Ar gas ratios were applied during deposition. Structural properties of thin films deposited with various sputtering atmospheres were determined based on the results of the x-ray diffraction method and Raman spectroscopy, which revealed that all coatings were nanocrystalline and had anatase or rutile structure. The surface morphology of the coatings were investigated with the aid of a scanning electron microscopy and atomic force microscopy. Surface properties were evaluated by x-ray photoelectron spectroscopy and wettability measurements. It was revealed that an increase of Ar amount in the sputtering gas atmosphere caused as a result an increase of thin film water contact angle and enhanced ability of the surface to adsorb water molecules and hydroxyl radicals. Optical properties evaluated on the basis of transmission and reflection measurements showed that all coatings were transparent in the visible wavelength range, but had different refractive index, porosity and packing density. The mechanical properties of the obtained coatings were determined on the basis of nanoindentation tests. Prepared TiO2 thin films had different surface, optical and mechanical properties depending on the gas atmosphere during deposition.

  6. Effects of target angle on the properties of aluminum doped zinc oxide films prepared by DC magnetron sputtering for thin film solar cell applications.

    PubMed

    Park, Hyeongsik; Iftiquar, S M; Thuy, Trinh Than; Jang, Juyeon; Ahn, Shihyun; Kim, Sunbo; Lee, Jaehyeong; Jung, Junhee; Shin, Chonghoon; Kim, Minbum; Yi, Junsin

    2014-10-01

    An aluminum doped zinc oxide (AZO) films for front contacts of thin film solar cells, in this work, were prepared by DC magnetron sputtering with different target angles. Effects of target angles on the structural and electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. The surface became more irregular with increasing the target angle due to larger grains. The self-surface textured morphology, which is a favorable property as front layer of solar cell, exhibited at target angle of 72.5 degrees. We obtained the films with various opto-electronic properties by controlling target angle from 32.5 degrees to 72.5 degrees. The spectral haze increased substantially with the target angle, whereas the electrical resistivity was increased. The conversion efficiency of amorphous silicon solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density and fill factor, compared to cell with relatively flat AZO films.

  7. Structural and optical properties of Zn-doped SnO2 films prepared by DC and RF magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Ren, Xiao-Guang; Gu, Guang-Rui; Lan, Lei-Lei; Wu, Bao-Jia

    2016-01-01

    In the present work, the Zn-doped SnO2 (SnO2:Zn) thin films, with different Zn-doping concentration, were successfully prepared on Si (100) and glass substrates by direct current (DC) and radio frequency (RF) magnetron co-sputtering. The effects of dopant concentration, determined by the sputtering power applied on Zn target, on the structural, photoluminescent and optical performances of Zn-doped SnO2 films were investigated by X-ray diffraction(XRD), scanning electron microscope(SEM), energy dispersive X-ray (EDX),high-resolution transmission electron microscopy(HRTEM) and Ultraviolet-Visible-Near IR spectroscopy. The results show all these films exhibited excellent crystalline quality with tetragonal rutile structure. Two photoluminescence (PL) peaks related to Zn-doping were detected at about 351 nm (3.53 eV) and 369 nm (3.36 eV). Moreover, the average transmittance and the band gap energy of the films continuously decreased from 85% to 75% and from 3.52 eV to 3.34 eV, respectively, with the increase of the doping level. The excellent properties of Zn-doped SnO2 films make them capable for wider applications.

  8. Effect of substrate temperature on the magnetic properties and internal stresses of CoPt/AlN multilayer deposited by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    An, Hongyu; Takada, Susumu; Sannomiya, Takumi; Muraishi, Shinji; Shi, Ji; Nakamura, Yoshio

    2013-10-01

    Magnetic properties and internal stresses of AlN(20 nm)/[CoPt(2 nm)/AlN(20 nm)]5 multilayer structure deposited at different substrate temperatures by dc magnetron sputtering have been studied. It is found that with increasing the substrate temperature from room temperature to 400 °C, in-plane magnetic anisotropy field of the film becomes smaller, and the out-of-plane magnetization becomes stronger. Especially when the film is deposited at substrate temperature of 400 °C, the out-of-plane magnetization becomes as strong as the in-plane magnetization. On the other hand, the total in-plane residual stress of the film changes gradually from compressive to tensile. The compressive intrinsic stress is generated during deposition process and decreases with increasing the substrate temperature. After annealing at high temperatures, the films show strong perpendicular magnetic anisotropy. With increasing the annealing temperature, the in-plane thermal stress also increases and becomes dominant, which is considered to result in the perpendicular magnetic anisotropy of the films.

  9. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    SciTech Connect

    Kavitha, A.; Kannan, R.; Subramanian, N. Sankara; Loganathan, S.

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  10. Highly oriented {delta}-Bi{sub 2}O{sub 3} thin films stable at room temperature synthesized by reactive magnetron sputtering

    SciTech Connect

    Lunca Popa, P.; Kerdsongpanya, S.; Lu, J.; Eklund, P.; Sonderby, S.; Bonanos, N.

    2013-01-28

    We report the synthesis by reactive magnetron sputtering and structural characterization of highly (111)-oriented thin films of {delta}-Bi{sub 2}O{sub 3}. This phase is obtained at a substrate temperature of 150-200 Degree-Sign C in a narrow window of O{sub 2}/Ar ratio in the sputtering gas (18%-20%). Transmission electron microscopy and x-ray diffraction reveal a polycrystalline columnar structure with (111) texture. The films are stable from room temperature up to 250 Degree-Sign C in vacuum and 350 Degree-Sign C in ambient air.

  11. Nanostructural and mechanical properties of nanocomposite nc-TiC/a-C:H films deposited by reactive unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zehnder, T.; Schwaller, P.; Munnik, F.; Mikhailov, S.; Patscheider, J.

    2004-04-01

    Thin films of nc-TiC/a-C:H nanocomposite have been deposited by reactive magnetron sputtering at substrate bias values of -240 and -91 V. The grain size and grain separation, which together define the nanostructure, are correlated to the amount of the amorphous phase. From the size of the TiC grains measured by x-ray diffraction and the amorphous hydrogenated carbon (a-C:H) phase content determined by x-ray photoelectron spectroscopy, the mean grain separation is estimated using a simple model for the nanostructure. Films deposited at -240 V show a hardness enhancement for a-C:H phase contents in the range 10% to 30% with TiC grain sizes around 5 nm. The mean grain separation for such films was estimated to be 0.3 nm. Films with higher a-C:H phase contents still have 5 nm small grains, but their mean grain separation is larger than 0.5 nm; their hardness is thus determined by the properties of the amorphous matrix. A less pronounced hardness enhancement is observed for films deposited at -91 V. They have larger grains and larger mean gain separations and show smaller hardness values. The hardness of the films, among other mechanical properties, is controlled by the nanostructure. Raman measurements have shown that a-C:H is present in films with mean grain separation down to 0.2 nm. Coefficients of friction against steel lower than 0.3, independent of the substrate bias, are found for films with mean grain separations as low as 0.15 nm. Self-lubrication due to a-C:H can explain the observed friction behavior, although the presence of a-C:H cannot be proved by Raman spectroscopy for films with mean grain separations smaller than 0.2 nm. It is shown that the substrate bias is crucial in obtaining increased hardness of nc-TiC/a-C:H nanocomposite thin films. In contrast to the hardness of the coatings, their friction behavior is not affected by the substrate bias.

  12. Studies on the room temperature growth of nanoanatase phase TiO2 thin films by pulsed dc magnetron with oxygen as sputter gas

    NASA Astrophysics Data System (ADS)

    Karuppasamy, A.; Subrahmanyam, A.

    2007-03-01

    The anatase phase titanium dioxide (TiO2) thin films were deposited at room temperature by pulsed dc magnetron sputtering using pure oxygen as sputter gas. The structural, optical, electrical, and electrochromic properties of the films have been studied as a function of oxygen pressure in the chamber. The x-ray diffraction results indicate that the films grown above 4.5×10-2mbar are nanocrystalline (grain size of 28-43nm) with anatase phase. The films deposited at the chamber pressure of 7.2×10-2mbar are found to be highly crystalline with a direct optical band gap of 3.40eV, refractive index of 2.54 (at λ =400nm), and work function of 4.77eV (determined by the Kelvin probe measurements). From the optical emission spectra of the plasma and transport of ions in matter calculations, we find that the crystallization of TiO2 at room temperature is due to the impingement of electrons and ions on the growing films. Particularly, the negative oxygen ions reflected from the target by "negative ion effects" and the enhanced density of TiO, TiO +, TiO2+, and O2+ particles in the plasma are found to improve the crystallization even at a relatively low temperature. From an application point of view, the film grown at 7.2×10-2mbar was studied for its electrochromic properties by protonic intercalation. It showed good electrochromic behavior with an optical modulation of ˜45%, coloration efficiency of 14.7 cm2C-1, and switching time (tc) of 50s for a 2×2 cm2 device at λ =633nm.

  13. TiO2 thin films with rutile phase prepared by DC magnetron co-sputtering at room temperature: Effect of Cu incorporation

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Yujie; Ba, Xin; Huang, Lin; Yu, Ying

    2015-08-01

    The thin films for pure TiO2 and that incorporated with Cu ion were deposited by DC magnetron co-sputtering with Ar gas. The crystal texture, surface morphology, energy gap and optical properties of the prepared films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectrometer (XPS), UV-vis spectrophotometer, and Raman spectroscopy. The results show that as-deposited TiO2 film mainly possesses anatase structure at room temperature with pure Ar gas, but the introduction of Cu can alter the phase structure of crystallite TiO2. XRD patterns and Raman spectra indicate that the Cu incorporation with high concentration (ACu/ATi + ACu ≈ 20%) favors the formation of rutile phase. Moreover, the Cu incorporation into TiO2 lattice induces band gap narrowing. Band structures and density of states have been analyzed based on density functional theory (DFT) and periodic models in order to investigate the influence of the Cu incorporation on the electronic structure of TiO2. Both experimental data and electronic structure calculations evidence the fact that the change in film structure from the anatase to the rutile phase can be ascribed to the possible incorporation of Cu1+ in the sites previously occupied by Ti4+, and the presence of Cu results in important effect on the electronic states, which is mainly related to the 3d Cu orbitals in the gap and in the vicinity of the valence band edges for TiO2.

  14. Investigation on the electrical properties and inhomogeneous distribution of ZnO:Al thin films prepared by dc magnetron sputtering at low deposition temperature

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Pei, Z. L.; Gong, J.; Sun, C.

    2007-01-01

    A study of the electrical properties and spatial distribution of the ZnO:Al (AZO) thin films prepared by dc magnetron sputtering at low deposition temperature was presented, with emphasis on the origin of the resistivity inhomogeneity across the substrate. Various growth conditions were obtained by manipulating the growth temperature TS, total pressure PT, and ion-to-neutral ratio Ji/Jn. The plasma characteristics such as radial ion density and floating/plasma potential distribution over the substrate were measured by Langmuir probe, while the flux and energy distribution of energetic species were estimated through Monte Carlo simulations. The crystalline, stress and electrical properties of the films were found to be strongly dependent on TS and Ji/Jn. Under the low Ji/Jn (<0.3) conditions, the TS exerted a remarkable influence on film quality. The films prepared at 90°C were highly compressed, exhibiting poor electrical properties and significant spatial distribution. High quality films with low stress and resistivity were produced at higher TS (200°C). Similarly, at lower TS (90°C), higher Ji/Jn (˜2) dramatically improved the film resistivity as well as its lateral distribution. Moreover, it indicated that the role of ion bombardment is dependent on the mechanism of dissipation of incident species. Ion bombardment is beneficial to the film growth if the energy of incident species Ei is below the penetration threshold Epet (˜33eV for ZnO); on the other hand, the energy subimplant mechanism would work, and the bombardment degrades the film quality when Ei is over the Epet. The energetic bombardment of negative oxygen ions rather than the positives dominated the resistivity distribution of AZO films, while the nonuniform distribution of active oxygen played a secondary role which was otherwise more notable under conditions of lower TS and Ji/Jn.

  15. Optical properties of nanocrystalline WO{sub 3} and WO{sub 3-x} thin films prepared by DC magnetron sputtering

    SciTech Connect

    Johansson, Malin B. Niklasson, Gunnar A.; Österlund, Lars; Zietz, Burkhard

    2014-06-07

    The optical properties of tungsten trioxide thin films prepared by DC magnetron sputtering, with different oxygen vacancy (V{sub o}) concentration, have been studied by spectrophotometry and photoluminescence (PL) emission spectroscopy. Absorption and PL spectra show that the films exhibit similar band gap energies, E{sub g} ≈ 2.9 eV. The absorption spectra of the films show two pronounced absorption bands in the near-infrared region. One peak (P1) is located at approximately 0.7 eV, independent of V{sub o} concentration. A second peak (P2) shifts from 0.96 eV to 1.16 eV with decreasing V{sub o} concentration. Peak P1 is assigned to polaron absorption due to transitions between tungsten sites (W{sup 5+} → W{sup 6+}), or an optical transition from a neutral vacancy state to the conduction band, V{sub o}{sup 0} → W{sup 6+}. The origin of peak P2 is more uncertain but may involve +1 and +2 charged vacancy sites. The PL spectra show several emission bands in the range 2.07 to 3.10 eV in the more sub-stoichiometric and 2.40 to 3.02 eV in the less sub-stoichiometric films. The low energy emission bands agree well with calculated optical transition energies of oxygen vacancy sites, with dominant contribution from neutral and singly charged vacancies in the less sub-stoichiometric films, and additional contributions from doubly charged vacancy sites in the more sub-stoichiometric films.

  16. Spectroscopy analysis of graphene like deposition using DC unbalanced magnetron sputtering on γ‐Al{sub 2}O{sub 3} buffer layer

    SciTech Connect

    Aji, A. S. Darma, Y.

    2014-02-24

    In this work, graphene-like deposition using DC unbalanced magnetron-sputtering technique on γ‐Al{sub 2}O{sub 3} layer at low temperature has been systematically studied. The γ‐Al{sub 2}O{sub 3} was growth on silicon substrate using thermal evaporation of Al wire and continuing with dry oxidation of Al at 550 °C. Sputtering process were carried out using Fe-doped carbon pellet as a target by maintain the chamber pressure of 4.6×10{sup −2} Torr at substrate temperature of 300 °C for time deposition range of 1 to 4 hours. The quality of Al{sub 2}O{sub 3} on Si(100) and the characteristic of carbon thin film on γ‐Al{sub 2}O{sub 3} were analized by mean XRD, opctical microscopy, EDAX, FTIR, and Raman spectra. XRD and optical microscopy analysis shows that Al{sub 2}O{sub 3} film is growth uniformly on Si substrate and forming the γ phase of Al{sub 2}O{sub 3}. Raman and FTIR spectra confirm the formation of graphene like carbon layer on Al{sub 2}O{sub 3}. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by XRD spectra. The quality and the number of graphene layers are investigated by using Raman spectra peaks analysis.

  17. Reactive magnetron sputtering of highly (001)-textured WS2-x films: Influence of Ne+, Ar+ and Xe+ ion bombardment on the film growth

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Seeger, S.; Sieber, I.; Bohne, W.; Röhrich, J.; Strub, E.; Mientus, R.

    2006-02-01

    Tungsten disulfide WS2 is a layer-type semi-conductor with an energy band gap and an absorption coefficient making it suitable as an absorber for thin film solar cells. In the article [1] WS2-x films were pre-pared by reactive magnetron sputtering from a metallic tungsten target in Ar-H2S atmospheres.The cover figure shows in situ energy-dispersive X-ray diffraction patterns for films deposited at different substrate potentials, i.e. for deposition conditions with ion assistance at different ion energies. These spectra and the corresponding SEM photographs of the film morphology show the strong influence of the ion energy on the film growth. The crystallographic struc-ture of WS2-x is shown between the two SEM pictures.The first author, Klaus Ellmer, is working at the Hahn-Meitner-Institut Berlin, Dept. of Solar Energy Research. His research fields are thin film deposition by reactive magnetron sputtering for solar cells, plasma characterization, in situ energy-dispersive X-ray diffraction and electronic transport in transpar-ent conductive oxides.

  18. Effect of Al content, substrate temperature and nitrogen flow on the reactive magnetron co-sputtered nanostructure in TiAlN thin films intended for use as barrier material in DRAMs

    NASA Astrophysics Data System (ADS)

    Jalali, Reza; Parhizkar, Mojtaba; Bidadi, Hasan; Naghshara, Hamid; Hosseini, Seyd Reza; Jafari, Majid

    2015-03-01

    TiAlN thin films were deposited by using the reactive magnetron co-sputtering method whit individual Ti and Al targets, where the Ti and the Al targets were simultaneously powered by using DC and RF sources, respectively. the electrical resistivity and the structural and microstructural properties of the deposited TiAlN thin films and the effects of Al content, substrate temperature and nitrogen gas flow rate on those properties were investigated. At a low flow rate of nitrogen gas (0.51 sccm), the electrical resistivity of the films was found to increase with increasing AC power, but at a high flow rate of nitrogen gas, it was found to decrease. The structural and microstructural analyses performed by using X-ray diffraction and scanning electron microscopy (SEM) showed that with increasing substrate temperature from room temperature to 400 ℃, the films prepared at 400 ℃ have a crystalline structure while those prepared at room temperature had an amorphous nature. Also, the SEM analysis revealed that with decreasing AC power and increasing nitrogen flow rate, the size of the grains in the prepared films become larger.

  19. The effect of Al content, substrate temperature and nitrogen flow rate on optical band gap and optical features of nanostructured TiAlN thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jalali, Reza; Parhizkar, Mojtaba; Bidadi, Hassan; Naghshara, Hamid; Hosseini, Seyd Reza; Jafari, Majid

    2016-11-01

    In the present work, TiAlN thin films were prepared by using a dual reactive magnetron sputtering system on fused quartz substrates kept at room temperature and 400 °C; keeping nitrogen flow at 0.51 and 2.78 sccm, various DC and RF powers and the effect of these factors have been studied on the optical properties of the layers. The optical properties including absorption and transmission were studied by a UV-Visible spectrophotometer in the wavelength region (200-1100) nm. By plotting ( αhν)2 and ( αhν)1/2 versus the photon energy hυ, the optical band gap was evaluated. Experimental results show that layers with high percentage of aluminum and nitrogen have higher gap with respect to layers having high titanium percentage. TiAlN thin films deposited with 2.78 sccm nitrogen flow rate possess optical direct band gap in the range of 3.8-5.1 eV and optical indirect band gap in the range of 1.1-3.4 eV. The variation of optical band gap of the films that deposited on the substrate with 400 °C and nitrogen flow rate of 2.78 sccm was different from other layers.

  20. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  1. Investigation on the electrical properties and inhomogeneous distribution of ZnO:Al thin films prepared by dc magnetron sputtering at low deposition temperature

    SciTech Connect

    Zhang, X. B.; Pei, Z. L.; Gong, J.; Sun, C.

    2007-01-01

    A study of the electrical properties and spatial distribution of the ZnO:Al (AZO) thin films prepared by dc magnetron sputtering at low deposition temperature was presented, with emphasis on the origin of the resistivity inhomogeneity across the substrate. Various growth conditions were obtained by manipulating the growth temperature T{sub S}, total pressure P{sub T}, and ion-to-neutral ratio J{sub i}/J{sub n}. The plasma characteristics such as radial ion density and floating/plasma potential distribution over the substrate were measured by Langmuir probe, while the flux and energy distribution of energetic species were estimated through Monte Carlo simulations. The crystalline, stress and electrical properties of the films were found to be strongly dependent on T{sub S} and J{sub i}/J{sub n}. Under the low J{sub i}/J{sub n} (<0.3) conditions, the T{sub S} exerted a remarkable influence on film quality. The films prepared at 90 deg. C were highly compressed, exhibiting poor electrical properties and significant spatial distribution. High quality films with low stress and resistivity were produced at higher T{sub S} (200 deg. C). Similarly, at lower T{sub S} (90 deg. C), higher J{sub i}/J{sub n} ({approx}2) dramatically improved the film resistivity as well as its lateral distribution. Moreover, it indicated that the role of ion bombardment is dependent on the mechanism of dissipation of incident species. Ion bombardment is beneficial to the film growth if the energy of incident species E{sub i} is below the penetration threshold E{sub pet} ({approx}33 eV for ZnO); on the other hand, the energy subimplant mechanism would work, and the bombardment degrades the film quality when E{sub i} is over the E{sub pet}. The energetic bombardment of negative oxygen ions rather than the positives dominated the resistivity distribution of AZO films, while the nonuniform distribution of active oxygen played a secondary role which was otherwise more notable under conditions of

  2. Investigation of structural, optical and electrical properties of (Ti,Nb)Ox thin films deposited by high energy reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Kaczmarek, Danuta; Prociow, Eugeniusz; Domaradzki, Jaroslaw; Wojcieszak, Damian; Bocheński, Jakub

    2014-09-01

    In this work the results of investigations of the titanium-niobium oxides thin films have been reported. The thin films were manufactured with the aid of a modified reactive magnetron sputtering process. The aim of the research was the analysis of structural, optical and electrical properties of the deposited thin films. Additionally, the influence of post-process annealing on the properties of studied coatings has been presented. The as-deposited coatings were amorphous, while annealing at 873 K caused a structural change to the mixture of TiO2 anatase-rutile phases. The prepared thin films exhibited good transparency with transmission level of ca. 50 % and low resistivity varying from 2 Ωcm to 5×10-2 Ωcm, depending on the time and temperature of annealing. What is worth to emphasize, the sign of Seebeck coefficient changed after the annealing process from the electron to hole type electrical conduction.

  3. Comparative study of RF reactive magnetron sputtering and sol-gel deposition of UV induced superhydrophilic TiOx thin films

    NASA Astrophysics Data System (ADS)

    Vrakatseli, V. E.; Amanatides, E.; Mataras, D.

    2016-03-01

    TiOx and TiOx-like thin films were deposited on PEEK (Polyether ether ketone) substrates by low-temperature RF reactive magnetron sputtering and the sol-gel method. The resulting films were compared in terms of their properties and photoinduced hydrophilicity. Both techniques resulted in uniform films with good adhesion that can be switched to superhydrophilic after exposure to UVA radiation for similar time periods. In addition, the sputtered films can also be activated and switched to superhydrophilic by natural sunlight due to the higher absorption in the visible spectrum compared to the sol-gel films. On the other hand, the as deposited sol-films remain relatively hydrophilic for a longer time in dark compared to the sputtered film due to the differences in the morphology and the porosity of the two materials. Thus, depending on the application, either method can be used in order to achieve the desirable TiOx properties.

  4. Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tsai, Du-Cheng; Huang, Yen-Lin; Lin, Sheng-Ru; Liang, Shih-Chang; Shieu, Fuh-Sheng

    2010-12-01

    This study reports the influence of growth conditions on the characteristics of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering at various N 2-to-total (N 2 + Ar) flow ratio, which is R N. The crystal structures, microstructure, and mechanical properties for different R N were characterized by electron spectroscopy for chemical analysis, X-ray diffraction, atomic force microscopy, field-emission-scanning electron microscopy, transmission electron microscopy, and nanoindentation. The results indicate that the TiVCrZrY alloy and nitride coatings have hexagonal close-packed (hcp)-type and sodium chloride (NaCl)-type solid-solution structures, respectively. The voids in the coatings are eliminated and the growth of the columnar crystal structures is inhibited along with an increasing R N. As a consequence, highly packed equiaxed amorphous structures with smooth surfaces are formed. The coatings accordingly achieved a pronounce hardness of 17.5 GPa when R N = 100%.

  5. [Effect of oxygen partial pressure on the band-gap of the TiO2 films prepared by DC reactive sputtering].

    PubMed

    Zhao, Qing-nan; Li, Chun-ling; Liu, Bao-shun; Zhao, Xiu-jian

    2004-05-01

    TiO2 films have been deposited on glass substrates using DC reactive magnetron sputtering at different oxygen partial pressures from 0.10 to 0.65 Pa. The photoluminescence (PL) spectra of the films were recorded. The results of the PL spectra showed that there were three emission peaks at 370, 472 and 514 nm for the films sputtered at 0.35 and 0.65 Pa, and there were two peaks at 370 and 490 nm for the films sputtered at 0.10 and 0.15 Pa. The band-gap for the films was 3.35 eV. For the films sputtered at 0.35 and 0.65 Pa there were two defect energy levels at 2.63 and 2.41 eV, corresponding to 0.72 and 0.94 eV below conduction band for the band-gap, respectively. For the films sputtered at 0.10 and 0.15 Pa, there was an energy band formed between 3.12 and 2.06 eV, corresponding to 0.23 and 1.29 eV below the conduction band. With increasing the oxygen partial pressure, the defect energy band changed to two energy levels, and the energy levels nearly disappeared for the film sputtered at 0.65 Pa of oxygen partial pressure.

  6. Optical and Chemical Properties of Mixed-valent Rhenium Oxide Films Synthesized by Reactive DC Magnetron Sputtering

    DTIC Science & Technology

    2015-04-03

    and thus, were selected for detailed ex situ characterization. Chemical analysis via X - ray photoelectron spectroscopy confirmed that all films...Chemical analysis via X - ray photoelectron spectroscopy confirmed that all films consisted largely of ReO3, but had some con- tributions from Re2O3... X cm)1 [9,12] and minimal optical absorption are a direct consequence of the electronic configuration of ReO3, which contains a single free

  7. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    SciTech Connect

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki

    2015-01-12

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for the performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.

  8. A study of the oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge using an ionization region model

    NASA Astrophysics Data System (ADS)

    Lundin, D.; Gudmundsson, J. T.; Brenning, N.; Raadu, M. A.; Minea, T. M.

    2017-05-01

    The oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge has been studied using a new reactive ionization region model. The aim has been to identify the dominating physical and chemical reactions in the plasma and on the surfaces of the reactor affecting the oxygen plasma chemistry. We explore the temporal evolution of the density of the ground state oxygen molecule O 2 ( X 1 Σg - ) , the singlet metastable oxygen molecules O 2 ( a 1 Δ g ) and O 2 ( b 1 Σ g ) , the oxygen atom in the ground state O(3P), the metastable oxygen atom O(1D), the positive ions O2 + and O+, and the negative ion O-. We furthermore investigate the reaction rates for the gain and loss of these species. The density of atomic oxygen increases significantly as we move from the metal mode to the transition mode, and finally into the compound (poisoned) mode. The main gain rate responsible for the increase is sputtering of atomic oxygen from the oxidized target. Both in the poisoned mode and in the transition mode, sputtering makes up more than 80% of the total gain rate for atomic oxygen. We also investigate the possibility of depositing stoichiometric TiO2 in the transition mode.

  9. [Effects of Temperature on the Preparation of Al/Zn3N2 Thin Films Using Magnetron Reactive Sputtering].

    PubMed

    Feng, Jun-qin; Chen, Jun-fang

    2015-08-01

    The effects of substrate temperature on the plasma active species were investigated by plasma optical emission spectroscopy. With increasing substrate temperature, the characteristic spectroscopy intensity of the first positive series of N2* (B(3)Πg-->A(3)Σu(+)), the second positive N2* (C(3)Πu-->B(3)Πg), the first negative series N2(+)* (B(2)Σu(+)-->X(2)Σg(+)) and Zn* are increased. Due to the substrate temperature, each ion kinetic energy is increased and the collision ionization intensified in the chamber. That leading to plasma ion density increase. These phenomenons's show that the substrate temperature raises in a certain range was conducive to zinc nitride thin films growth. Zn3N2 thin films were prepared on Al films using ion sources-assisted magnetron sputtering deposition method. The degree of crystalline of the films was examined with X-ray diffraction (XRD). The results show that has a dominant peak located at 34.359° in room temperature, which was corresponding to the (321) plane of cubic anti-bixbyite zinc nitride structure (JCPDS Card No35-0762). When the substrate temperature was 100 °C, in addition to the (321) reflection, more diffraction peaks appeared corresponding to the (222), (400) and (600) planes, which were located at 31.756°, 36.620° and 56.612° respectively. When the substrate temperature was 200 °C, in addition to the (321), (222), (400) and (600) reflection, more new diffraction peaks also appeared corresponding to the (411), (332), (431) and (622) planes, which were located at 39.070, 43.179°, 47.004° and 62.561° respectively. These results show the film crystalline increased gradually with raise the substrate temperature. XP-1 profilometer were used to analyze the thickness of the Zn3N2 films. The Zn3N2 films deposited on Al films in mixture gas plasma had a deposition rate of 2.0, 2.2, and 2.7 nm · min(-1). These results indicate that the deposition rate was gradually enhanced as substrate temperature increased

  10. Transparent conductive F-doped SnO2 films prepared by RF reactive magnetron sputtering at low substrate temperature

    NASA Astrophysics Data System (ADS)

    Zhu, B. L.; Yang, Y. T.; Hu, W. C.; Wu, J.; Gan, Z. H.; Liu, J.; Zeng, D. W.; Xie, C. S.

    2017-04-01

    To obtain highly transparent conductive F-doped SnO2 films by magnetron sputtering at low substrate temperatures, a new method of sputtering high-density SnF2-Sn target in Ar + O2 atmosphere was adopted in the present study. The structural, electrical, and optical properties of the films prepared were investigated as a function of O2 flux. The results indicate that the films shows SnO2 phase only at O2 flux above a critical value (0.8 sccm), and the crystallinity of SnO2 phase is improved with increasing O2 flux. The resistivity of the films steeply decreases once O2 flux is above the critical value, but it greatly increases as O2 flux is too high. Only in intermediate range of O2 flux, the films with low resistivity can be obtained. As O2 flux is above the critical value, both the transmittances in visible light range and E g of the films show steeply increase, and the PL spectra of the film show distinct emission characteristics. Furthermore, the position and intensity of PL emission peaks are similar when O2 flux is above the critical value, and the emission mechanism can be attributed to electron transitions mediated by defect levels in the bandgap, such as V O and F O. Just because of formation of SnO2 phase in the films and existence of relatively larger amount of V O and F O, the films show low resistivity and high transmittance at suitable O2 fluxes.

  11. Structure Evolution and Electric Properties of TaN Films Deposited on Al2O3-BASED Ceramic and Glass Substrates by Magnetron Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Zhou, Yan Ming; Ma, Yang Zhao; Xie, Zhong; He, Ming Zhi

    2014-03-01

    Structure evolution and electric properties of tantalum nitride (TaN) films deposited on Al2O3-based ceramic and glass substrates by magnetron reactive sputtering were carried out as a function of the N2-to-Ar flow ratio. The TaN thin films on Al2O3-based ceramic substrates grow with micronclusters composed of numerous nanocrystallites, contains from single-phase of Ta2N grains to TaN, and exhibits high defect density, sheet resistance and negative TCR as the N2-to-Ar flow ratio continuously increases. However, the films on the glass substrates grow in the way of sandwich close-stack, contains from single-phase of Ta2N grains to TaN and Ta3N5 phases with the increase of N2-to-Ar flow ratio. These results indicate that the N2-to-Ar flow ratio and surface characteristic difference of substrates play a dominant effect on the structure and composition of the TaN films, resulting in different electrical properties for the films on Al2O3-based ceramic and the samples on glass substrates.

  12. Synthesis and properties of CS x F y thin films deposited by reactive magnetron sputtering in an Ar/SF6 discharge.

    PubMed

    Lai, Chung-Chuan; Goyenola, Cecilia; Broitman, Esteban; Näslund, Lars-Åke; Högberg, Hans; Hultman, Lars; Gueorguiev, Gueorgui K; Rosen, Johanna

    2017-05-17

    A theoretical and experimental study on the growth and properties of a ternary carbon-based material, CS x F y , synthesized from SF6 and C as primary precursors is reported. The synthetic growth concept was applied to model the possible species resulting from the fragmentation of SF6 molecules and the recombination of S-F fragments with atomic C. The possible species were further evaluated for their contribution to the film growth. Corresponding solid CS x F y thin films were deposited by reactive direct current magnetron sputtering from a C target in a mixed Ar/SF6 discharge with different SF6 partial pressures ([Formula: see text]). Properties of the films were determined by x-ray photoelectron spectroscopy, x-ray reflectivity, and nanoindentation. A reduced mass density in the CS x F y films is predicted due to incorporation of precursor species with a more pronounced steric effect, which also agrees with the low density values observed for the films. Increased [Formula: see text] leads to decreasing deposition rate and increasing density, as explained by enhanced fluorination and etching on the deposited surface by a larger concentration of F/F2 species during the growth, as supported by an increment of the F relative content in the films. Mechanical properties indicating superelasticity were obtained from the film with lowest F content, implying a fullerene-like structure in CS x F y compounds.

  13. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering.

    PubMed

    Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz

    2010-06-15

    We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu(2+) and Eu(3+) into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn(2+) as Eu(2+) into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu(2)O(3) oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the (5)D(0)-->(7)F(2) Eu(3+) transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu(3+) ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films.

  14. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering

    PubMed Central

    Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz

    2010-01-01

    We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657

  15. Effect of various nitrogen flow ratios on the optical properties of (Hf:N)-DLC films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Qi, Meng; Xiao, Jianrong; Cheng, Yong; Wang, Zhiyong; Jiang, Aihua; Guo, Yafang; Tao, Zengren

    2017-08-01

    Hf and N co-doped diamond-like carbon [(Hf:N)-DLC] films were deposited on 316L stainless steel and glass substrates through reactive magnetron sputtering of hafnium and carbon targets at various nitrogen flow ratios (R=N2/[N2+CH4+Ar]). The effects of chemical composition and crystal structure on the optical properties of the (Hf:N)-DLC films were studied. The obtained films consist of uniform HfN nanocrystallines embedded into the DLC matrix. The size of the graphite clusters with sp2 bonds (La) and the ID/IG ratio increase to 2.47 nm and 3.37, respectively, with increasing R. The optical band gap of the films decreases from 2.01 eV to 1.84 eV with increasing R. This finding is consistent with the trends of structural transformations and could be related to the increase in the density of π-bonds due to nitrogen incorporation. This paper reports the influence of nitrogen flow ratio on the correlation among the chemical composition, crystal structure, and optical properties of (Hf:N)-DLC films.

  16. Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)-Six-N coatings by reactive RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cheng, Keng-Hao; Tsai, Che-Wei; Lin, Su-Jien; Yeh, Jien-Wei

    2011-05-01

    Multi-component (AlCrTaTiZr)-Six-N films were deposited on silicon wafers by reactive RF magnetron co-sputtering. The effect of silicon content on the structure, morphology and mechanical properties of the nitride films was investigated. Nitride films with lower silicon content remained as a simple NaCl-type face-centred cubic (FCC) structure. As the silicon content reached 7.9 at%, thermodynamically driven phase separation occurred, leading to a nanocomposite structure consisting of an FCC solid-solution nitride and an amorphous SiNx phase. These nitride films exhibited a high hardness of 34 GPa and remained at a constant level up to 7.9 at% Si. The reduced hardness at a silicon content of 10.2 at% was attributed to the appreciable amounts of softer amorphous segregation. The silicon incorporation significantly improved the oxidation resistance of (AlCrTaTiZr)N films. The film containing 7.9 at% Si annealed at 1000 °C for 2 h in air only had a 330 nm-thick oxide layer. The optimum Si content is 7.9 at% since it gives the best combination of hardness and oxidation resistance.

  17. Optimization of the optical properties of Er-doped Si-rich SiO 2/SiO 2 multilayers obtained by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gourbilleau, F.; Dufour, C.; Madelon, R.; Rizk, R.

    2006-05-01

    The effects of annealing time and of Si nanocluster (Si-nc) size on the coupling rate to Er ions were investigated through studies made on multilayers (MLs) consisting in about 20 periods of Er-doped Si-rich SiO 2/SiO 2. These MLs were deposited by reactive magnetron sputtering at 650 °C and subsequently annealed at 900 °C. A steep increase of the PL emission is observed for short annealing time while a trend of some saturation occurs for longer treatment time. Besides, the Er lifetime continuously increases with the annealing time. For Si-rich layer thickness or Si-nc larger than about 5 nm, the rate of energy transfer is lowered because of the weak confinement of carriers and the loss of resonant excitation of Er through the upper levels (second, third, etc.). The latter is liable to prevent the energy back transfer process, while the weak confinement reduces strongly the probability of no phonon radiative recombination that governs the transfer excitation rate from Si-nc to Er ions.

  18. The photoactivity of titanium dioxide coatings with silver nanoparticles prepared by sol-gel and reactive magnetron sputtering methods - comparative studies

    NASA Astrophysics Data System (ADS)

    Kądzioła, Kinga; Piwoński, Ireneusz; Kisielewska, Aneta; Szczukocki, Dominik; Krawczyk, Barbara; Sielski, Jan

    2014-01-01

    Titanium dioxide coatings were deposited on silicon substrates using two different methods: sol-gel dip-coating (SG) and reactive magnetron sputtering (MS). In order to obtain anatase phase, as-prepared coatings were calcined at 500 °C in air. Subsequently, silver nanoparticles (AgNPs) were grown on the surface of TiO2 coatings by photoreduction of silver ions, initiated by illumination of the UV lamp operated at λ = 365 nm. The concentrations of silver ions were 0.1 mmol dm-3 and 1.0 mmol dm-3. Coatings immersed in these solutions were illuminated during 5 min and 30 min. The coating thicknesses, evaluated by ellipsometry, were 118 nm and 147 nm for SG and MS methods, respectively. Atomic force microscopy (AFM) imaging revealed that the surface roughness of TiO2 coating prepared by MS is about 6 times larger as compared to coatings prepared by SG method. The size of AgNPs deposited on SG and MS coatings were in the range of 17-132 nm and 54-103 nm respectively. The photoactivity of AgNPs/TiO2 coatings was determined by the measurement of the decomposition rate of bisphenol A (BPA). The concentration of BPA before and after illumination under UV light (λ = 365 nm) was monitored by high-performance liquid chromatography (HPLC). It was found that AgNPs enhance the photoactivity of the TiO2 coatings.

  19. Synthesis and properties of CS x F y thin films deposited by reactive magnetron sputtering in an Ar/SF6 discharge

    NASA Astrophysics Data System (ADS)

    Lai, Chung-Chuan; Goyenola, Cecilia; Broitman, Esteban; Näslund, Lars-Åke; Högberg, Hans; Hultman, Lars; Gueorguiev, Gueorgui K.; Rosen, Johanna

    2017-05-01

    A theoretical and experimental study on the growth and properties of a ternary carbon-based material, CS x F y , synthesized from SF6 and C as primary precursors is reported. The synthetic growth concept was applied to model the possible species resulting from the fragmentation of SF6 molecules and the recombination of S-F fragments with atomic C. The possible species were further evaluated for their contribution to the film growth. Corresponding solid CS x F y thin films were deposited by reactive direct current magnetron sputtering from a C target in a mixed Ar/SF6 discharge with different SF6 partial pressures ({{P}\\text{S{{\\text{F}}\\text{6}}}} ). Properties of the films were determined by x-ray photoelectron spectroscopy, x-ray reflectivity, and nanoindentation. A reduced mass density in the CS x F y films is predicted due to incorporation of precursor species with a more pronounced steric effect, which also agrees with the low density values observed for the films. Increased {{P}\\text{S{{\\text{F}}\\text{6}}}} leads to decreasing deposition rate and increasing density, as explained by enhanced fluorination and etching on the deposited surface by a larger concentration of F/F2 species during the growth, as supported by an increment of the F relative content in the films. Mechanical properties indicating superelasticity were obtained from the film with lowest F content, implying a fullerene-like structure in CS x F y compounds.

  20. Transmission photocathodes based on stainless steel mesh and quartz glass coated with N-doped DLC thin films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Arbet, J.

    2016-03-01

    The influence was investigated of N-doped diamond-like carbon (DLC) films properties on the quantum efficiency of a prepared transmission photocathode. N-doped DLC thin films were deposited on a silicon substrate, a stainless steel mesh and quartz glass (coated with 5 nm thick Cr adhesion film) by reactive magnetron sputtering using a carbon target and gas mixture Ar, 90%N2+10%H2. The elements' concentration in the films was determined by RBS and ERD. The quantum efficiency was calculated from the measured laser energy and the measured cathode charge. For the study of the vectorial photoelectric effect, the quartz type photocathode was irradiated by intensive laser pulses to form pin-holes in the DLC film. The quantum efficiency (QE), calculated at a laser energy of 0.4 mJ, rose as the nitrogen concentration in the DLC films was increased and rose dramatically after the micron-size perforation in the quartz type photocathodes.

  1. Exclusive examples of high-performance thin-film optical filters for fluorescence spectroscopy made by plasma-assisted reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lappschies, M.; Schallenberg, U.; Jakobs, S.

    2011-09-01

    For more than four decades band-pass filters are important components of microscopes used for the fluorescence spectroscopy. During all the time this special field of application has been one of the main drivers for research and development in thin-film optics, particularly for the thin-film design software and the coating technology. With a shortwave pass filter, a multi-notch filter, and a classical band-pass filter as examples of such filters provided for the latest generation of fluorescence microscopes we present the state-of-the-art in coating design and technology. Manufacturing these filters is a great challenge because the required spectral characteristics need necessarily multilayers with up to 300 layers and overall thicknesses up to 30 μm. In addition, the designs require also 3 to 5 nm as thinnest layers and all the layers are completely of non-quarterwave type. The filters were manufactured in a rapid-prototyping regime by a Leybold Helios plant using plasma-assisted reactive magnetron sputtering of thin films of different metal oxides. Designed and real spectra are compared and differences are discussed. Measurement results of other optical and non-optical characteristics as film stress, total integrated scattering, and micro roughness are presented.

  2. Measurement and modeling of plasma parameters in reactive high-power impulse magnetron sputtering of Ti in Ar/O2 mixtures

    NASA Astrophysics Data System (ADS)

    Čada, M.; Lundin, D.; Hubička, Z.

    2017-05-01

    A reactive high-power impulse magnetron sputtering (HiPIMS) process using a titanium target in a mixture of Ar/O2 has been investigated for different modes of operation including pure argon, metallic, transition, and compound mode. The trends and changes in the plasma density ne and the effective electron temperature Teff, have been measured by the time-resolved Langmuir probe technique. The same experimental process conditions have also been studied using a recently developed reactive ionization region model (R-IRM), making it possible to compare the acquired experimental results with the model results. It was found that trends in the plasma density and mean electron energy as measured by the Langmuir probe are in good agreement with the results obtained from the R-IRM model for different pulse discharge current densities. The effective electron temperature generally increases with an increasing oxygen flow rate. It is likely due to a reduction of sputtered Ti, due to compound formation on the target, which forces the discharge to increase the electron energy to increase the ionization rate of the process gas (Ar/O2) to maintain a high HiPIMS discharge current. Small variations in the plasma density were detected between the middle part of the plasma pulse as compared to the end of the plasma pulse, when transitioning from the metal mode to the poisoned mode. It is found that the time-evolution of the electron density is rather well correlated with the discharge current waveform. On the other hand, the mean electron energy did not change significantly between the middle and the end of the plasma pulse. For the lower pulse discharge current, both the model and experimental data have shown a slight increase in the plasma density with increasing O2 mass flow rate.

  3. Experimental radiation cooled magnetrons for space

    NASA Technical Reports Server (NTRS)

    Brown, W. C.; Pollock, M.

    1991-01-01

    The heat disposal problem that occurs in the microwave generator of the Solar Power Satellite when it converts dc power from solar photovoltaic arrays into microwave power for transmission to earth is examined. A theoretical study is made of the radiation cooling of a magnetron directional amplifier, and some experimental data obtained from the QKH 2244 magnetron are presented. This instrument is an unpackaged microwave oven magnetron to which an anodized aluminum radiator has been attached and whose magnetic field is supplied by special samarium cobalt magnets.

  4. Experimental radiation cooled magnetrons for space

    NASA Astrophysics Data System (ADS)

    Brown, W. C.; Pollock, M.

    The heat disposal problem that occurs in the microwave generator of the Solar Power Satellite when it converts dc power from solar photovoltaic arrays into microwave power for transmission to earth is examined. A theoretical study is made of the radiation cooling of a magnetron directional amplifier, and some experimental data obtained from the QKH 2244 magnetron are presented. This instrument is an unpackaged microwave oven magnetron to which an anodized aluminum radiator has been attached and whose magnetic field is supplied by special samarium cobalt magnets.

  5. Spatial distribution of electrical properties for Al-doped ZnO films deposited by dc magnetron sputtering using various inert gases

    SciTech Connect

    Sato, Yasushi; Ishihara, Keita; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Spatial distribution of electrical properties of Al-doped ZnO (AZO) films deposited by magnetron sputtering was investigated. To adjust the intensity of bombardment by high-energy particles, the AZO films were deposited using Ar, Kr, or Xe gas with varying plasma impedance. The spatial distribution of the electrical properties clearly depends on the sputtering gas. In the case of using Kr or Xe, the resistivity of the films in front of the target center and erosion areas was significantly enhanced, in contrast with Ar. This was attributed to an enhancement in bombardment damage due to the increased sputtering voltages required for Kr or Xe discharges. The increase in plasma impedance was due to the smaller coefficients for secondary-electron emission of the target surface by Kr or Xe impingements, which leads to the larger sputtering voltage.

  6. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  7. Ion implantation studies on VO x films prepared by pulsed dc reactive sputtering

    NASA Astrophysics Data System (ADS)

    Venkatasubramanian, Chandrasekaran; Horn, Mark W.; Ashok, S.

    2009-05-01

    Vanadium oxide (VOx) thin films find extensive use in room-temperature bolometers for IR imaging. It is desirable to control and modify the electronic properties of this temperature-sensitive material with treatments such as ion implantation and thermal annealing. In this work, we report on the modification of structural and electrical properties of VOx thin films of varying compositions, deposited by pulsed dc reactive sputtering using a vanadium target under different oxygen flow rates. The as-deposited resistivities of the films ranged from 0.1 Ω cm to 100 Ω cm and the temperature coefficient of resistance (TCR) values varied from -1.1% to -2.7%. VOx films used in microbolometers need to have a high TCR (>2%) and low resistivity values (1-10 Ω cm) in order to maximize sensitivity in conjunction with the read-out integrated circuit (ROIC). However, one usually finds a high TCR associated with high resistivity. Hence ion implantation followed by annealing was performed with the goal of improving the trade-off between TCR and resistivity. Two species - hydrogen (active) and helium (inert) - were chosen for implantation. Hydrogen is strongly electroactive and is well known for passivating defect states in a wide variety of electronic materials. As inert species, helium was chosen mainly to study the effects of bombardment on the film. The implanted films were annealed in an inert atmosphere to allow defect control and redistribution of atoms, and then characterized by current-voltage measurements over a wide temperature range. An order of magnitude change in resistance, and significant variations in TCR were observed. Further characterization has been done by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) to correlate these resistivity changes with the structure of the films.

  8. Effect of N doping on hole density of Cu2O:N films prepared by the reactive magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Li, B. B.; Lin, L.; Shen, H. L.; Boafo, F. E.; Chen, Z. F.; Liu, B.; Zhang, R.

    2012-05-01

    N-doped Cu2O thin films have been deposited on glass substrate by reactive magnetron sputtering method under various N2/O2 flow ratios from 0 to 1.0. The structural and electronic properties of Cu2O:N films were investigated by X-ray diffraction (XRD), four-point probe and Hall effect measurements. XRD pattern showed that crystalline structures of all the samples retained single phase of Cu2O with the increase of N2/O2 flow ratio from 0 to 1.0. However, the crystalline quality of Cu2O:N films reduced with the increase of the N2/O2 flow ratio. The phenomenon of peak shift of Cu2O(1 1 1) implied that N atoms have been doped into Cu2O film. The square resistance of Cu2O:N films linearly decreased from 28.1 to 1.5 (104 Ω/☐) with the increase of N2/O2 flow ratio from 0.2 to 0.6 initially, and then it changed slowly with the increase of N2/O2 flow ratio from 0.8 to 1.0. Hole density of Cu2O:N films with various N2/O2 flow ratios from 0 to 0.6 was measured using the Van der Pauw method. All the samples are p-type, and the hole density of Cu2O:N films was enhanced from 1.2 × 1016 cm-3 to 3.1 × 1019 cm-3 with the increase of N2/O2 flow ratio from 0 to 0.6. The experimental results demonstrated that N doping was an effective method to enhance hole density of p-type Cu2O film.

  9. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    NASA Astrophysics Data System (ADS)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  10. Dynamics of processes during the deposition of ZrO2 films by controlled reactive high-power impulse magnetron sputtering: A modelling study

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš; Vlček, Jaroslav

    2017-07-01

    A time-dependent parametric model was applied to controlled reactive high-power impulse magnetron sputtering (HiPIMS) depositions of stoichiometric ZrO2 films, carried out in our laboratories, (i) to clarify the complicated dynamics of the processes on the target and substrate surfaces during voltage pulses, and (ii) to corroborate the importance of the O2 inlet configuration (position and direction) which strongly affects the O2 dissociation in the discharge and the chemisorption flux of oxygen atoms and molecules onto the substrate. The repetition frequency was 500 Hz at the deposition-averaged target power densities of 25 Wcm-2, being close to a target power density applicable in industrial HiPIMS systems, and 50 Wcm-2 with a pulse-averaged target power density up to 2 kWcm-2. The pulse duration was 50 μs. For the experimental conditions with the to-substrate O2 inlets, the deposition-averaged target power density of 50 Wcm-2, and the oxygen partial pressure of 0.05 Pa (being close to the mean value during controlled depositions), our model predicts a low compound fraction, changing between 8% and 12%, in the target surface layer at an almost constant high compound fraction, changing between 92% and 93%, in the substrate surface layer during the pulse period (2000 μs). The calculated deposition rate of 89 nm/min for these films is in good agreement with the measured value of 80 nm/min achieved for optically transparent stoichiometric ZrO2 films prepared under these conditions.

  11. Epitaxial Ti1- xWxN alloys grown on MgO(001) by ultrahigh vacuum reactive magnetron sputtering: Electronic properties and long-range cation ordering

    NASA Astrophysics Data System (ADS)

    Tian, F.; D'Arcy-Gall, J.; Lee, T.-Y.; Sardela, M.; Gall, D.; Petrov, I.; Greene, J. E.

    2003-01-01

    Epitaxial Ti1- xWxN alloys with 0<=x<=0.6 were grown on MgO(001) substrates at 500 °C by ultrahigh vacuum reactive magnetron sputtering from Ti and W targets in pure N2. X-ray diffraction, transmission electron microscopy (TEM), and cross-sectional TEM show that the 0.3-μm-thick Ti1- xWxN(001) alloys are single crystals with the B1-NaCl structure. Rutherford backscattering spectroscopy investigations indicate that alloys with x>=0.05 are slightly overstoichiometric with N/(Ti+W)=1.06+/-0.05. The alloy lattice parameter a⊥ along the film growth direction is 4.251 Å, irrespective of the WN concentration, for x<=0.41 and decreases slightly at higher concentrations. TEM analyses show that Ti0.5W0.5N(001) alloys have long-range CuPt-type atomic ordering on the cation sublattice. The room-temperature resistivity increases linearly from 13 μΩ cm for TiN to 287 μΩ cm for Ti0.42W0.58N due primarily to alloy scattering while the temperature coefficient of resistivity is positive in Ti1- xWxN alloys with x<=0.21 and negative for x>0.21 due to weak charge carrier localization. The superconducting critical temperature Tc of Ti1- xWxN alloys initially increases with x, due to a larger density of states at the Fermi level, consistent with valence band x-ray photoelectron spectroscopy measurements. Tc reaches a maximum of 6.67 K at x=0.21 and decreases for larger x values.

  12. Morphology and structure evolution of Cu(In,Ga)S{sub 2} films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance

    SciTech Connect

    Nie, Man Ellmer, Klaus

    2014-02-28

    Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). All 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.

  13. Microstructure and chemical wet etching characteristics of AlN films deposited by ac reactive magnetron sputtering

    SciTech Connect

    Tanner, S. M.; Felmetsger, V. V.

    2010-01-15

    The influence of the surface morphology of a molybdenum underlayer on the crystallinity and etchability of reactively sputtered c-axis oriented aluminum nitride thin films was investigated. Atomic force microscopy, scanning electron microscopy, transmission electron microscopy, high resolution x-ray diffraction, and defect selective chemical etching were used to characterize the microstructure of the Mo and AlN films. 1000 nm thick films of AlN with a full width at half maximum (FWHM) of the x-ray rocking curve ranging from 1.1 deg. to 1.9 deg. were deposited on 300 nm thick Mo underlayers with a FWHM of around 1.5 deg. The Ar pressure during the Mo deposition had a critical effect on the Mo film surface morphology, affecting the structure of the subsequently deposited AlN films and, hence, their wet etching characteristics. AlN films deposited on Mo sputtered at a relatively high pressure could not be etched completely, while AlN films deposited on low pressure Mo etched more easily. Postdeposition etching of the Mo surface in Ar rf discharge prior to deposition of the AlN film was found to influence the formation of AlN residuals that were difficult to etch. Optimal rf plasma etching conditions were found, which minimized the formation of these residuals.

  14. Optical properties and environmental stability of oxide coatings deposited by reactive sputtering.

    PubMed

    Edlou, S M; Smajkiewicz, A; Al-Jumaily, G A

    1993-10-01

    Refractory metal-oxide coatings are deposited by reactive dc magnetron sputtering in an oxygen environment. The optical constants and the environmental stability of silicon oxide, aluminium oxide, hafnium oxide, zirconium oxide, tantalum oxide, titanium oxide, and a blend of hafnium oxide with silicon oxide are investigated. Properties of both single-layer and multilayer interference filters are examined.

  15. Low-temperature growth of dense and hard Ti0.41Al0.51Ta0.08N films via hybrid HIPIMS/DC magnetron co-sputtering with synchronized metal-ion irradiation

    NASA Astrophysics Data System (ADS)

    Fager, H.; Tengstrand, O.; Lu, J.; Bolz, S.; Mesic, B.; Kölker, W.; Schiffers, Ch.; Lemmer, O.; Greene, J. E.; Hultman, L.; Petrov, I.; Greczynski, G.

    2017-05-01

    Hard Ti1-xAlxN thin films are of importance for metal-cutting applications. The hardness, thermal stability, and oxidation resistance of these coatings can be further enhanced by alloying with TaN. We use a hybrid high-power pulsed and dc magnetron co-sputtering (HIPIMS/DCMS) technique to grow dense and hard Ti0.41Al0.51Ta0.08N alloys without external heating (Ts < 150 °C). Separate Ti and Al targets operating in the DCMS mode maintain a deposition rate of ˜50 nm/min, while irradiation of the growing film by heavy Ta+/Ta2+ ions from the HIPIMS-powered Ta target, using dc bias synchronized to the metal-ion-rich part of each HIPIMS pulse, provides effective near-surface atomic mixing resulting in densification. The substrate is maintained at floating potential between the short bias pulses to minimize Ar+ bombardment, which typically leads to high compressive stress. Transmission and scanning electron microscopy analyses reveal dramatic differences in the microstructure of the co-sputtered HIPIMS/DCMS films (Ta-HIPIMS) compared to films with the same composition grown at floating potential with all targets in the DCMS mode (Ta-DCMS). The Ta-DCMS alloy films are only ˜70% dense due to both inter- and intra-columnar porosity. In contrast, the Ta-HIPIMS layers exhibit no inter-columnar porosity and are essentially fully dense. The mechanical properties of Ta-HIPIMS films are significantly improved with hardness and elastic modulus values of 28.0 and 328 GPa compared to 15.3 and 289 GPa for reference Ta-DCMS films.

  16. A reactive magnetron sputtering route for attaining a controlled core-rim phase partitioning in Cu2O/CuO thin films with resistive switching potential

    NASA Astrophysics Data System (ADS)

    Ogwu, A. A.; Darma, T. H.

    2013-05-01

    The achievement of a reproducible and controlled deposition of partitioned Cu2O/CuO thin films by techniques compatible with ULSI processing like reactive magnetron sputtering has been reported as an outstanding challenge in the literature. This phase partitioning underlies their performance as reversible resistive memory switching devices in advanced microelectronic applications of the future. They are currently fabricated by thermal oxidation and chemical methods. We have used a combination of an understanding from plasma chemistry, thermo-kinetics of ions, and rf power variation during deposition to successfully identify a processing window for preparing partitioned Cu2O/CuO films. The production of a core rich Cu2O and surface rich Cu2O/CuO mixture necessary for oxygen migration during resistive switching is confirmed by XRD peaks, Fourier transform infra red Cu (I)-O vibrational modes, XPS Cu 2P3/2 and O 1S peak fitting, and a comparison of satellite peak ratio's in Cu 2P3/2 fitted peaks. We are proposing based on the findings reported in this paper that an XPS satellite peak intensity(Is) to main peak intensity ratio (Im) ≤ 0.45 as an indicator of a core rich Cu2O and surface rich Cu2O/CuO formation in our prepared films. CuO is solely responsible for the satellite peaks. This is explained on the basis that plasma dissociation of oxygen will be limited to the predominant formation of Cu2O under certain plasma deposition conditions we have identified in this paper, which also results in a core-rim phase partitioning. The deposited films also followed a Volmer-Weber columnar growth mode, which could facilitate oxygen vacancy migration and conductive filaments at the columnar interfaces. This is further confirmed by optical transmittance and band-gap measurements using spectrophotometry. This development is expected to impact on the early adoption of copper oxide based resistive memory electronic switching devices in advanced electronic devices of the future

  17. Influence of vanadium incorporation on the microstructure, mechanical and tribological properties of Nb–V–Si–N films deposited by reactive magnetron sputtering

    SciTech Connect

    Ju, Hongbo; Xu, Junhua

    2015-09-15

    Composite Nb–V–Si–N films with various V contents (3.7–13.2 at.%) were deposited by reactive magnetron sputtering and the effects of V content on the microstructure, mechanical and tribological properties of Nb–V–Si–N films were investigated. The results revealed that a three-phase structure, consisting of face-centered cubic (fcc) Nb–V–Si–N, hexagonal close-packed (hcp) Nb–V–Si–N and amorphous Si{sub 3}N{sub 4}, co-exists in the Nb–V–Si–N films and the cubic phase is dominant. The hardness and critical load (L{sub c}) of Nb–V–Si–N films initially increased gradually and reached a summit, then decreased with the increasing V content in the films and the maximum values were 35 GPa and 9.8 N, respectively, at 6.4 at.% V. The combination of V into Nb–Si–N film led to the fracture toughness linearly increasing from 1.11 MPa·m{sup 1/2} at 3.7 at.% V to 1.67 MPa·m{sup 1/2} at 13.2 at.% V. At room temperature (RT), the average friction coefficient decreased from 0.80 at 3.7 at.% V to 0.55 at 13.2 at.% V for the Nb–V–Si–N films. The wear rate of Nb–V–Si–N films initially decreased and then increased after reaching a minimum value of about 6.35 × 10{sup −} {sup 7} mm{sup 3}/N·mm at 6.4 at.% V. As the rise of testing temperature from 200 °C to 600 °C, the average friction coefficient of Nb–V–Si–N films decreased with the increase of the testing temperature regardless of V content. However, the wear rate gradually increased for all films. The average friction coefficient and wear rate at RT and elevated temperatures were mainly influenced by the vanadium oxides with weakly bonded lattice planes. - Highlight: • Fcc-Nb–V–Si–N, hcp-Nb–V–Si–N and amorphous Si{sub 3}N{sub 4} co-existed in the films. • The amount of Si{sub 3}N{sub 4} decreased with increasing V content in the films. • Hardness of Nb–V–Si–N film (6.4 at.%) reached a maximum value of 35 GPa. • Addition of V led to the

  18. Gp120 binding with DC-SIGN induces reactivation of HIV-1 provirus via the NF-κB signaling pathway.

    PubMed

    Jin, Changzhong; Li, Jie; Cheng, Linfang; Liu, Fumin; Wu, Nanping

    2016-03-01

    The reactivation mechanism of latent human immunodeficiency virus type 1 (HIV-1) infection is unclear, especially in dendritic cells (DC). DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds with HIV-1 and other pathogens to activate the extracellular regulated protein kinase (ERK) and nuclear factor-kappa B (NF-κB) pathways and regulate cytokine expression. We hypothesized that DC-SIGN-induced signaling pathways may activate HIV-1 provirus. To investigate this hypothesis, we generated a model by transfecting 293T cells with a DC-SIGN expression plasmid and an HIV-1 5' long terminal repeat (LTR) reporter plasmid, and then stimulated the 293T cells with HIV-1 gp120 protein, wild-type HIV-1 or VSV-G-pNL4.3 pseudotype virus (without gp120 protein). It was found that the HIV-1 5'LTR was reactivated by HIV-1 gp120 in DC-SIGN-expressing 293T cells. Then the HIV-1 chronically infected CEM-Bru cells were transfected with DC-SIGN expression plasmid and stimulated by HIV-1 gp120 protein. It was found that early and late HIV-1 provirus replication was reactivated by the HIV-1 gp120/DC-SIGN stimulation. We then investigated the involvement of the ERK, p38 mitogen-activated protein kinases and NF-κB signaling pathways in HIV-1 gp120/DC-SIGN-induced activation of HIV-1 provirus by inhibiting the pathways specifically. Our results indicated that HIV-1 gp120/DC-SIGN stimulation reactivates latent HIV-1 provirus via the NF-κB signal pathway.

  19. Gp120 binding with DC-SIGN induces reactivation of HIV-1 provirus via the NF-κB signaling pathway

    PubMed Central

    Jin, Changzhong; Li, Jie; Cheng, Linfang; Liu, Fumin; Wu, Nanping

    2016-01-01

    The reactivation mechanism of latent human immunodeficiency virus type 1 (HIV-1) infection is unclear, especially in dendritic cells (DC). DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds with HIV-1 and other pathogens to activate the extracellular regulated protein kinase (ERK) and nuclear factor-kappa B (NF-κB) pathways and regulate cytokine expression. We hypothesized that DC-SIGN-induced signaling pathways may activate HIV-1 provirus. To investigate this hypothesis, we generated a model by transfecting 293T cells with a DC-SIGN expression plasmid and an HIV-1 5′ long terminal repeat (LTR) reporter plasmid, and then stimulated the 293T cells with HIV-1 gp120 protein, wild-type HIV-1 or VSV-G-pNL4.3 pseudotype virus (without gp120 protein). It was found that the HIV-1 5′LTR was reactivated by HIV-1 gp120 in DC-SIGN-expressing 293T cells. Then the HIV-1 chronically infected CEM-Bru cells were transfected with DC-SIGN expression plasmid and stimulated by HIV-1 gp120 protein. It was found that early and late HIV-1 provirus replication was reactivated by the HIV-1 gp120/DC-SIGN stimulation. We then investigated the involvement of the ERK, p38 mitogen-activated protein kinases and NF-κB signaling pathways in HIV-1 gp120/DC-SIGN-induced activation of HIV-1 provirus by inhibiting the pathways specifically. Our results indicated that HIV-1 gp120/DC-SIGN stimulation reactivates latent HIV-1 provirus via the NF-κB signal pathway. PMID:26837416

  20. The effect of magnetron pulsing on the structure and properties of tribological Cr-Al-N coatings.

    PubMed

    Lin, Jianliang; Moore, John J; Mishra, Brajendra; Sproul, Williams D; Rees, John A

    2010-02-01

    The paper will discuss the effect of pulsing single or two unbalanced magnetrons in a closed magnetic field configuration on the structure and properties of tribological Cr-Al-N coatings. Nanocrystalline Cr-Al-N coatings were reactively deposited from Cr and Al elemental targets using two unbalanced magnetrons, which were powered in both dc, pulsing only Al target and asynchronously pulsing both Cr and Al targets at 100 kHz and 50% duty cycle conditions. The ion energy distributions of these deposition and pulsing conditions were characterized using a Hiden Electrostatic QuadruPole Plasma Analyzer. It was found that pulsing two magnetrons asynchronously at 100 kHz and 50% duty cycle produced higher ion energies and significant increased ion fluxes than pulsing none or pulsing only one (Al) target. The structure and properties of Cr-Al-N coatings synthesized under different dc and pulsing conditions were investigated using X-ray diffraction, scanning electron microscopy, nanoindentation and ball-on-disk wear test, and were correlated with the effects of ion energies and ion flux regimes observed in the plasma diagnostics. The advantages of using pulsed magnetron sputtering producing different energetic ion regimes to enhance the ion bombardment on the growing films and therefore achieving the improved density, refinement of grain size and properties are illustrated.

  1. Thin-film TiPbO3 varistors obtained by two-source magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ziaja, J.; Lewandowski, M.

    2016-02-01

    The paper presents the method of obtaining thin films of TiPbO3 by two-source magnetron sputtering DC-M. The films were obtained in a reactive process of sputtering metallic targets of titanium (Ti) and lead (Pb). The research involved the impact of the time of sputtering of the respective targets on voltage-dependent resistance of the obtained films for different power conditions, pressures of process gases and the powers provided on the targets. The obtained nonlinearity coefficients and the current-voltage I(U) characteristics were within the following range.

  2. On the evolution of film roughness during magnetron sputtering deposition

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; De Hosson, J. Th. M.

    2010-11-15

    The effect of long-range screening on the surface morphology of thin films grown with pulsed-dc (p-dc) magnetron sputtering is studied. The surface evolution is described by a stochastic diffusion equation that includes the nonlocal shadowing effects in three spatial dimensions. The diffusional relaxation and the angular distribution of the incident particle flux strongly influence the transition to the shadowing growth regime. In the magnetron sputtering deposition the shadowing effect is essential because of the configuration of the magnetron system (finite size of sputtered targets, rotating sample holder, etc.). A realistic angular distribution of depositing particles is constructed by taking into account the cylindrical magnetron geometry. Simulation results are compared with the experimental data of surface roughness evolution during 100 and 350 kHz p-dc deposition, respectively.

  3. Anisotropies in magnetron sputtered carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Hellgren, Niklas; Johansson, Mats P.; Broitman, Esteban; Hultman, Lars; Sundgren, Jan-Eric

    2001-04-01

    Carbon nitride CNx (0⩽x⩽0.35) thin films, deposited by reactive dc magnetron sputtering in Ar/N2 discharges have been studied with respect to microstructure using electron microscopy, and elastic modulus using nanoindentation and surface acoustic wave analyses. For growth temperature of 100 °C, the films were amorphous, and with an isotropic Young's modulus of ˜170-200 GPa essentially unaffected by the nitrogen fraction. The films grown at elevated temperatures (350-550 °C) show anisotropic mechanical properties due to a textured microstructure with standing basal planes, as observed from measuring the Young's modulus in different directions. The modulus measured in the plane of the film was ˜60-80 GPa, while in the vertical direction the modulus increased considerably from ˜25 to ˜200 GPa as the nitrogen content was increased above ˜15 at. %.

  4. Review of Magnetron Developments

    NASA Astrophysics Data System (ADS)

    Vyas, Sandeep Kumar; Verma, Rajendra Kumar; Maurya, Shivendra; Singh, V. V. P.

    2016-09-01

    Magnetrons have been the most efficient high power microwave sources for decades. In the twenty-first century, many of the development works are headed towards the performance improvement of CW industrial magnetrons. In this review article, the development works and techniques, used on different types of magnetrons, for the performance enhancement in the past two decades have been discussed. The article focuses on the state of the art of CW magnetron and the direction it will take in foreseeable future. In addition it also glimpses some of the major variants of magnetron which have further opened up scope in mm-THz spectrum of electromagnetism.

  5. Mechanical properties, chemical analysis and evaluation of antimicrobial response of Si-DLC coatings fabricated on AISI 316 LVM substrate by a multi-target DC-RF magnetron sputtering method for potential biomedical applications

    NASA Astrophysics Data System (ADS)

    Bociaga, Dorota; Sobczyk-Guzenda, Anna; Szymanski, Witold; Jedrzejczak, Anna; Jastrzebska, Aleksandra; Olejnik, Anna; Jastrzebski, Krzysztof

    2017-09-01

    In this study silicon doped diamond-like carbon (Si-DLC) coatings were synthesized on two substrates: silicon and AISI 316LVM stainless steel using a multi-target DC-RF magnetron sputtering method. The Si content in the films ranged between 4 and 16 at.%, and was controlled by the electrical power applied in RF regime to Si cathode target. The character of the chemical bonds was revealed by FTIR analysis. With the addition of silicon the hydroxyl absorption (band in the range of 3200-3600 cm-1) increased what suggests more hydrophilic character of the coating. There were also observed significant changes in bonding of Si atoms. For low content of dopant, Si-O-Si bond system is predominant, while for the highest content of silicon there is an evidence of the shift to Si-C bonds in close proximity to methyl groups. The Raman spectroscopy revealed that the G peak position is shifted to a lower wavenumber and the ID/IG ratio decreased with increasing Si content, which indicates an increase in the C-sp3 content. Regardless of the coatings' composition, the improvement of hardness in comparison to pure substrate material (AISI 316 LVM) was observed. Although the reduction of the level of hardness from the level of 10.8 GPa for pure DLC to about 9.4 GPa for the silicon doped coatings was observed, the concomitant improvement of films adhesion with higher amount of Si was revealed. Although incorporation of the dopant to DLC coatings increases the number of E. coli cells which adhered to the examined surfaces, the microbial colonisation remains on the level of substrate material. The presented results prove the potential of Si-DLC coatings in biomedical applications from the point of view of their mechanical properties.

  6. Dependence of annealing temperature on microstructure and photoelectrical properties of vanadium oxide thin films prepared by DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhang, Dongping; Wang, Bo; Liang, Guangxing; Zheng, Zhuanghao; Luo, Jingting; Cai, Xingmin; Fan, Ping

    2013-12-01

    Vanadium oxide thin films were prepared by DC reactive sputtering method, and the samples were annealed in Ar atmosphere under different temperature for 2 hours. The microstructure, optical and electrical properties of the as-grown and treated samples were characterized by XRD, spectrophotometer, and four-probe technique, respectively. XRD results investigated that the main content of the annealed sample are VO2 and V2O5. With annealing temperature increasing, the intensity of the VO2 phase diffraction peak strengthened. The electrical properties reveal that the annealed samples exhibit semiconductor-to-metal transition characteristic at about 40°C. Comparison of transmission spectra of the samples at room temperature and 100°C, a drastic drop in IR region is found.

  7. Study of optical properties of asymmetric bipolar pulse DC magnetron sputtered Ta{sub 2}O{sub 5} thin film as a function of oxygen content in deposition ambient

    SciTech Connect

    Haque, S. Maidul Shinde, D. D. Misal, J. S.; Bhattacharyya, D.; Sahoo, N. K.

    2014-04-24

    Tantalum penta-oxide thin films have been deposited by reactive sputtering technique using asymmetric bipolar pulsed DC source at various oxygen percentage viz. 0 to 50 %. The optical properties of the films have been studied by spectroscopic ellipsometry measurements. It has been observed that compact films with low void fraction, high refractive index and band gap can be obtained by the above technique with oxygen percentage in the range of 30–40%. The films deposited with zero or very low oxygen content have high deposition rate and yield metal rich films with large voids, defects, low band gap and high refractive index. Similarly films deposited with >40% oxygen content again contain voids and defects due to the presence of large amount of gas molecules in the sputtering ambient.

  8. Direct observation of spoke evolution in magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Yang, Yuchen

    2017-08-01

    Ionization zones, also known as spokes, are plasma instabilities manifested as locations of intensified excitation and ionization over a sputtering magnetron's racetrack. Using a linear magnetron and a streak camera, we were able to observe and quantify spoke dynamics. The technique allows us to image the onset and changes for both direct current magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). Spokes in dcMS exhibit substructures. Spokes in HiPIMS are not stable as they shift along the racetrack; rather, they tend to grow or diminish, and they may split and merge. Their evolution can be interpreted in the context of localized electric fields and associated electron heating.

  9. Structural, chemical and nanomechanical investigations of SiC/polymeric a-C:H films deposited by reactive RF unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tomastik, C.; Lackner, J. M.; Pauschitz, A.; Roy, M.

    2016-03-01

    Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.

  10. Tailoring the refractive index of ITO thin films by genetic algorithm optimization of the reactive DC-sputtering parameters

    NASA Astrophysics Data System (ADS)

    Afshari Pour, Elnaz; Shafai, Cyrus

    2017-02-01

    The variation of oxygen concentration in the Indium Tin Oxide (ITO) structure highly impacts its electrical and optical characteristics. In this work, we investigated the effect of oxygen partial flow (O2/O2+Ar) and deposition pressure (p) on the refractive index (n) of reactive sputtered ITO thin films. A statistical study with a Genetic Algorithm (GA) optimization was implemented to find optimal deposition conditions for obtaining particular refractive indices. Several samples of ITO thin films with refractive indices ranging from 1.69 - 2.1 were deposited by DC sputtering technique at various oxygen concentrations and deposition pressures, in order to develop the statistical database. A linear polynomial surface was locally fitted to the data of O2/O2+Ar, p, and n of deposited films. This surface was then used as the fitness function of the GA. By defining the desired n as the objective value of the GA, the optimized deposition conditions can be found. Two cases were experimentally demonstrated, with the GA determining the needed process parameters to deposit ITO with n=2.2 and n=1.6. Measured results were very close to desired values, with n=2.25 and n=1.62, demonstrating the effectiveness of this method for predicting needed reactive sputtering conditions to enable arbitrary refractive indices.

  11. Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Benqin; Tao, Haizheng; Zhao, Xiujian

    2016-03-01

    As a well-developed industrial fabricating method, magnetron sputtering technique has its distinct advantages for the large-scale production. In order to investigate the effect of buffer layer on the formation and thermochromic performances of VO2 films, using RF magnetron sputtering method, we fabricated three kinds of buffer layers SiO2, TiO2 and SnO2 on soda lime float-glass. Then according to the reactive DC magnetron sputtering method, VO2 films were deposited. Due to the restriction of heat treatment temperature when using soda lime float-glass as substrates, dense rutile phase TiO2 cannot be formed, leading to the formation of vanadium oxide compounds containing Na ions. When using SnO2 as buffer layer, we found that relatively high pure VO2 can be deposited more easily. In addition, compared with the effect of SiO2 buffer layer, we observed an enhanced visible transparency, a decreased infrared emissivity, which should be mainly originated from the modified morphology and/or the hetero-structured VO2/SnO2 interface.

  12. Room Temperature Growth of Al-Doped ZnO Thin Films by Reactive DC Sputtering Technique with Metallic Target

    NASA Astrophysics Data System (ADS)

    Hasuike, Noriyuki; Nishio, Koji; Kisoda, Kenji; Harima, Hiroshi

    2013-01-01

    We prepared Al-deopd ZnO (AZO) films by reactive DC sputtering method using metallic target at room temperature. All the tested AZO films (0<[Al]<8.9%) with the transmittance above 85% in visible region were successfully grown on quartz substrate. All the AZO films have wurtzite structure with no impurity phase. The AZO films with [Al]<2.9% have the preferential orientation in c-axis direction, and the orientation became indistinct as increasing in Al content. In the optical measurement, the absorption edge was shifted from 3.30 to 3.66 eV due to Burstein-Moss effect, and the electron densities were roughly estimated at 2.5×1019 to 1.5×1021 cm-3, respectively. On the other hand, the high transmittance in infrared region suggested low electron mobility. Since this gives rise to the high electric resistivity, the further improvements and optimization of the growth conditions are required for the realization of AZO based transparent conductive.

  13. Magnetron sputtering source

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.

    1994-08-02

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.

  14. Magnetron sputtering source

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.; Grabner, R. Fred; Ramsey, Philip B.

    1994-01-01

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

  15. High power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Brenning, N.; Lundin, D.; Helmersson, U.

    2012-05-15

    The high power impulse magnetron sputtering (HiPIMS) discharge is a recent addition to plasma based sputtering technology. In HiPIMS, high power is applied to the magnetron target in unipolar pulses at low duty cycle and low repetition frequency while keeping the average power about 2 orders of magnitude lower than the peak power. This results in a high plasma density, and high ionization fraction of the sputtered vapor, which allows better control of the film growth by controlling the energy and direction of the deposition species. This is a significant advantage over conventional dc magnetron sputtering where the sputtered vapor consists mainly of neutral species. The HiPIMS discharge is now an established ionized physical vapor deposition technique, which is easily scalable and has been successfully introduced into various industrial applications. The authors give an overview of the development of the HiPIMS discharge, and the underlying mechanisms that dictate the discharge properties. First, an introduction to the magnetron sputtering discharge and its various configurations and modifications is given. Then the development and properties of the high power pulsed power supply are discussed, followed by an overview of the measured plasma parameters in the HiPIMS discharge, the electron energy and density, the ion energy, ion flux and plasma composition, and a discussion on the deposition rate. Finally, some of the models that have been developed to gain understanding of the discharge processes are reviewed, including the phenomenological material pathway model, and the ionization region model.

  16. Reactive sputter deposition of boron nitride

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied {minus}300 V dc bias.

  17. Magnetron sputtered nanostructured cadmium oxide films for ammonia sensing

    SciTech Connect

    Dhivya, P.; Prasad, A.K.; Sridharan, M.

    2014-06-01

    Nanostructured cadmium oxide (CdO) films were deposited on to glass substrates by reactive dc magnetron sputtering technique. The depositions were carried out for different deposition times in order to obtain films with varying thicknesses. The CdO films were polycrystalline in nature with cubic structure showing preferred orientation in (1 1 1) direction as observed by X-ray diffraction (XRD). Field-emission scanning electron microscope (FE-SEM) micrographs showed uniform distribution of grains of 30–35 nm size and change in morphology from spherical to elliptical structures upon increasing the film thickness. The optical band gap value of the CdO films decreased from 2.67 to 2.36 eV with increase in the thickness. CdO films were deposited on to interdigitated electrodes to be employed as ammonia (NH{sub 3}) gas sensor. The fabricated CdO sensor with thickness of 294 nm has a capacity to detect NH{sub 3} as low as 50 ppm at a relatively low operating temperature of 150 °C with quick response and recovery time. - Highlights: • Nanostructured CdO films were deposited on to glass substrates using magnetron sputtering. • Deposition time was varied in order to obtain films with different thicknesses. • The CdO films were polycrystalline in nature with preferred orientation along (1 1 1) direction. • The optical bandgap values of the films decreased on increasing the thickness of the films. • CdO films with different thickness such as 122, 204, 294 nm was capable to detect NH{sub 3} down to 50 ppm at operating temperature of 150 °C.

  18. Magnetron injection gun scaling

    SciTech Connect

    Lawson, W.

    1988-04-01

    Existing analytic design equations for magnetron injection guns (MIG's) are approximated to obtain a set of scaling laws. The constraints are chosen to examine the maximum peak power capabilities of MIG's. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations.

  19. BN coatings deposition by magnetron sputtering of B and BN targets in electron beam generated plasma

    NASA Astrophysics Data System (ADS)

    Kamenetskikh, A. S.; Gavrilov, N. V.; Koryakova, O. V.; Cholakh, S. O.

    2017-05-01

    Boron nitride coatings were deposited by reactive pulsed magnetron sputtering of B and BN targets (50 kHz, 10 µs for B; 13.56 MHz for BN) at 2-20 mA/cm2 ion current density on the substrate. The effect of electron beam generated plasma on characteristics of magnetron discharge and phase composition of coatings was studied.

  20. Optical Properties of Magnetron sputtered Nickel Thin Films

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Fidele; Geerts, Wilhelmus J.; Cui, Yubo

    2015-03-01

    The study of optical properties of Nickel (Ni) is important, given the pivotal role it plays in the semiconductor and nano-electronics technology. Ni films were made by DC and RF magnetron sputtering in an ATC Orion sputtering system of AJA on various substrates. The optical properties were studied ex situ by variable angle spectroscopic (220-1000 nm) ellipsometry at room temperature. The data were modeled and analyzed using the Woollam CompleteEase Software fitting ellipsometric and transmission data. Films sputtered at low pressure have optical properties similar to that of Palik. Films sputtered at higher pressure however have a lower refraction index and extinction coefficient. It is expected from our results that the density of the sputtered films can be determined from the ellipsometric quantities. Our experiments also revealed that Ni is susceptible to a slow oxidation changing its optical properties over the course of several weeks. The optical properties of the native oxide differ from those of reactive sputtered NiO similar as found by. Furthermore the oxidation process of our samples is characterized by at least two different time constants.

  1. Effect of alloy formation processes in the Co-Cu system on the magnetic and magnetoresistance properties of multilayer Co/Cu films with ultrathin Co layers prepared by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Khalyapin, D. L.; Kim, P. D.; Kim, J.; Turpanov, I. A.; Beten'kova, A. Ya.; Bondarenko, G. V.; Isaeva, T. N.; Kim, I.

    2010-09-01

    This paper reports on a study of multilayer Co/Cu films with an effective thickness of the Co layer of ˜3.5 Å, which were prepared by magnetron sputtering. The samples prepared have been found to have a metastable multiphase structure. An analysis of the data obtained by structural and, primarily, by magnetic methods has revealed that the main phases are the Co/Cu supersaturated solid solution (alloy) with a Co concentration of about 30 at %, the superparamagnetic phase, and the paramagnetic phase, which is accounted for by the presence of small (a few atoms at most) Co clusters embedded in the Cu matrix. A clearly pronounced maximum in the temperature dependences of the low-field magnetoresistance has been found, which is associated with the temperature of the magnetic phase transition of the supersaturated Co-Cu alloy.

  2. Modified DSTATCOM Topology with Reduced DC Link Voltage for Reactive and Harmonic Power Compensation of Unbalanced Nonlinear Load in Distribution System

    NASA Astrophysics Data System (ADS)

    Geddada, Nagesh; Karanki, Srinivas B.; Mishra, Mahesh K.

    2014-06-01

    This paper proposes a modified four-leg distribution static compensator (DSTATCOM) topology for compensation of unbalanced and nonlinear loads in three-phase four-wire distribution system. DSTATCOM, connected in parallel to the load, supplies reactive and harmonic powers demanded by unbalanced nonlinear loads. In this proposed topology, the voltage source inverter (VSI) of DSTATCOM is connected to point of common coupling (point of interconnection of source, load, DSTATCOM) through interface inductor and series capacitance, unlike the conventional topology which consists of interface inductor alone. Load compensation with a lower value of input DC link voltage of VSI is possible in this modified topology compared to conventional topology. A comparative study on modified and conventional topologies in terms of voltage rating of inverter power switches, switching losses in VSI and power rating of input DC capacitor of VSI is presented. The detailed design aspects of DC link capacitor and interface series capacitor are also presented. The reference filter currents are generated using instantaneous symmetrical component theory and are tracked using hysteresis current control technique. A detailed simulation study is carried out, to compare the compensation performances of conventional, modified topologies using PSCAD simulator and experimental studies are done to validate the simulation results.

  3. Codeposition of amorphous zinc tin oxide using high power impulse magnetron sputtering: characterisation and doping

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Mayes, E. L. H.; Murdoch, B. J.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.; Holland, A. S.; Partridge, J. G.

    2017-04-01

    Thin film zinc tin oxide (ZTO) has been energetically deposited at 100 °C using high power impulse magnetron sputtering (HiPIMS). Reactive co-deposition from Zn (HiPIMS mode) and Sn (DC magnetron sputtering mode) targets yielded a gradient in the Zn:Sn ratio across a 4-inch diameter sapphire substrate. The electrical and optical properties of the film were studied as a function of composition. As-deposited, the films were amorphous, transparent and semi-insulating. Hydrogen was introduced by post-deposition annealing (1 h, 500 °C, 100 mTorr H2) and resulted in significantly increased conductivity with no measurable structural alterations. After annealing, Hall effect measurements revealed n-type carrier concentrations of ˜1 × 1017 cm-3 and mobilities of up to 13 cm2 V-1 s-1. These characteristics are suitable for device applications and proved stable. X-ray photoelectron spectroscopy was used to explore the valence band structure and to show that downward surface band-bending resulted from OH attachment. The results suggest that HiPIMS can produce dense, high quality amorphous ZTO suitable for applications including transparent thin film transistors.

  4. A regulated magnetron pulser

    SciTech Connect

    Rose, C.R.

    1997-09-01

    This paper describes and analysis of a 4.5-kV, 500-mA, regulated current pulser used to drive a Hitachi ZM130 magnetron in a particle-accelerator injector. In this application, precise beam from the injector. A high-voltage triode vacuum tube with active feedback is used to control the magnetron current. Current regulation and accuracy is better than 1%. The pulse width may be varied from as little as 5 {mu}m to cw by varying the width of a gate pulse. The current level can be programmed between 10 and 500 mA. Design of the pulser including circuit simulations, power calculations, and high-voltage issues are discussed.

  5. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  6. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  7. Magnetron injection gun scaling

    NASA Astrophysics Data System (ADS)

    Lawson, W.

    1988-04-01

    A set of tradeoff equations was simplified to obtain scaling laws for magnetron injection guns (MIGs). The constraints are chosen to examine the maximum-peak-power capabilities of MIGs. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations in which each MIG is designed to double the beam power of an existing design by adjusting one of the four fundamental parameters.

  8. A reactive magnetron sputtering route for attaining a controlled core-rim phase partitioning in Cu{sub 2}O/CuO thin films with resistive switching potential

    SciTech Connect

    Ogwu, A. A.; Darma, T. H.

    2013-05-14

    The achievement of a reproducible and controlled deposition of partitioned Cu{sub 2}O/CuO thin films by techniques compatible with ULSI processing like reactive magnetron sputtering has been reported as an outstanding challenge in the literature. This phase partitioning underlies their performance as reversible resistive memory switching devices in advanced microelectronic applications of the future. They are currently fabricated by thermal oxidation and chemical methods. We have used a combination of an understanding from plasma chemistry, thermo-kinetics of ions, and rf power variation during deposition to successfully identify a processing window for preparing partitioned Cu{sub 2}O/CuO films. The production of a core rich Cu{sub 2}O and surface rich Cu{sub 2}O/CuO mixture necessary for oxygen migration during resistive switching is confirmed by XRD peaks, Fourier transform infra red Cu (I)-O vibrational modes, XPS Cu 2P{sub 3/2} and O 1S peak fitting, and a comparison of satellite peak ratio's in Cu 2P{sub 3/2} fitted peaks. We are proposing based on the findings reported in this paper that an XPS satellite peak intensity(I{sub s}) to main peak intensity ratio (I{sub m}) {<=} 0.45 as an indicator of a core rich Cu{sub 2}O and surface rich Cu{sub 2}O/CuO formation in our prepared films. CuO is solely responsible for the satellite peaks. This is explained on the basis that plasma dissociation of oxygen will be limited to the predominant formation of Cu{sub 2}O under certain plasma deposition conditions we have identified in this paper, which also results in a core-rim phase partitioning. The deposited films also followed a Volmer-Weber columnar growth mode, which could facilitate oxygen vacancy migration and conductive filaments at the columnar interfaces. This is further confirmed by optical transmittance and band-gap measurements using spectrophotometry. This development is expected to impact on the early adoption of copper oxide based resistive memory

  9. Metal-AlN cermet solar selective coatings deposited by direct current magnetron sputtering technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Chu

    1998-02-01

    A series of metal-aluminium nitride (M-AlN) cermet materials for solar selective coatings was deposited by a novel direct current (d.c.) magnetron sputtering technology. Aluminium nitride was used as the ceramic component in the cermets, and stainless steel (SS), nickel-based alloy 0022-3727/31/4/003/img1 (NiCr), molybdenum-based alloy 0022-3727/31/4/003/img2 (TZM) and tungsten were used as the metallic components. The aluminium nitride ceramic and metallic components of the cermets were deposited by simultaneously running both an aluminium target and another metallic target in a gas mixture of argon and nitrogen. The ceramic component was deposited by d.c. reactive sputtering and the metallic component by d.c. non-reactive sputtering. The total sputtering gas pressure was 0.8-1.0 Pa and the partial pressure of reactive nitrogen gas was set at 0.020-0.025 Pa which is sufficiently high to ensure that a nearly pure AlN ceramic sublayer was deposited by d.c. reactive sputtering. Because of the excellent nitriding resistance of stainless steel and the other alloys and metal, a nearly pure metallic sublayer was deposited by d.c. sputtering at this low nitrogen partial pressure. A multilayered system, consisting of alternating metallic and AlN ceramic sublayers, was deposited by substrate rotation. This multisublayer system can be considered as a macrohomogeneous cermet layer with metal volume fraction determined by controlling the thicknesses of metallic and ceramic sublayers. Following this procedure, M-AlN cermet solar selective coatings with a double cermet layer structure were deposited. The films of these selective surfaces have the following structure: a low metal volume fraction cermet layer is placed on a high metal volume fraction cermet layer which in turn is placed on an aluminium metal infrared reflection layer. The top surface layer consists of an aluminium nitride antireflection layer. A solar absorptance of 0.92-0.96 and a normal emittance of 0.03-0.05 at

  10. Oleophobic optical coating deposited by magnetron PVD

    NASA Astrophysics Data System (ADS)

    Bernt, D.; Ponomarenko, V.; Pisarev, A.

    2016-09-01

    Thin oxinitride films of Zn-Sn-O-N and Si-Al-O-N were deposited on glass by reactive magnetron sputtering at various nitrogen-to-oxygen ratios. Nitrogen added to oxygen led to decrease of the surface roughness and increase of oleophobic properties studied by the oil-drop test. The best oleophobity was obtained for Zn-Sn-O-N oxinitride at Zn:Sn=1:1 and N:O=1:2. Improved oleophobic properties were also demonstrated if the oxinitride film was deposited on top of the multilayer coating as the final step in the industrial cycle of production of energy efficient glass.

  11. Magic-T-Coupled Magnetrons

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1985-01-01

    Outputs of two magnetrons added coherently in scheme based on resonant waveguide coupling and injection phase locking. In addition, filaments are turned off after starting. Overall effect is relatively-inexpensive, lowpower, noisy magnetrons generate clean carrier signals of higher power that ordinarily require more expensive klystrons.

  12. Magic-T-Coupled Magnetrons

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1985-01-01

    Outputs of two magnetrons added coherently in scheme based on resonant waveguide coupling and injection phase locking. In addition, filaments are turned off after starting. Overall effect is relatively-inexpensive, lowpower, noisy magnetrons generate clean carrier signals of higher power that ordinarily require more expensive klystrons.

  13. Deposition and characterization of magnetron sputtered bcc tantalum

    NASA Astrophysics Data System (ADS)

    Patel, Anamika

    The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum

  14. Comprehensive study of the conditions for obtaining hydrogenated amorphous erbium- and oxygen-doped silicon suboxide films, a-SiO{sub x}:H Left-Pointing-Angle-Bracket Er,O Right-Pointing-Angle-Bracket , by dc-magnetron deposition

    SciTech Connect

    Undalov, Yu. K. Terukov, E. I.; Gusev, O. B.; Lebedev, V. M.; Trapeznikova, I. N.

    2011-12-15

    The results of a comprehensive study of the conditions for growing a-SiO{sub x}:H Left-Pointing-Angle-Bracket Er,O Right-Pointing-Angle-Bracket films are presented. The effect of the composition of various erbium-containing targets (a-SiO{sub x}:H , ErO{sub x}, Er{sub 2}SiO{sub 5}, Er{sub 2}O{sub 3}, and Er), substrate temperature, and annealing temperatures in argon, air, and under conditions of SiH{sub 4} + Ar + O{sub 2} plasma glow is studied. In order to obtain a-SiO{sub x}:H Left-Pointing-Angle-Bracket Er,O Right-Pointing-Angle-Bracket films with the highest photoluminescence intensity of erbium ions, it is recommended for the following technological conditions to be used: the substrate holder should be insulated from dc-magnetron electrodes and the working gas mixture should include silane, argon, and oxygen. Single-crystal silicon and metal erbium should be used as targets. The erbium target should be placed only in the Si-target erosion zone.

  15. Tracking the Magnetron Motion in FT-ICR Mass Spectrometry.

    PubMed

    Jertz, Roland; Friedrich, Jochen; Kriete, Claudia; Nikolaev, Evgeny N; Baykut, Gökhan

    2015-08-01

    In Fourier transform ion cyclotron resonance spectrometry (FT-ICR MS) the ion magnetron motion is not usually directly measured, yet its contribution to the performance of the FT-ICR cell is important. Its presence is manifested primarily by the appearance of even-numbered harmonics in the spectra. In this work, the relationship between the ion magnetron motion in the ICR cell and the intensities of the second harmonic signal and its sideband peak in the FT-ICR spectrum is studied. Ion motion simulations show that during a cyclotron motion excitation of ions which are offset to the cell axis, a position-dependent radial drift of the cyclotron center takes place. This radial drift can be directed outwards if the ion is initially offset towards one of the detection electrodes, or it can be directed inwards if the ion is initially offset towards one of the excitation electrodes. Consequently, a magnetron orbit diameter can increase or decrease during a resonant cyclotron excitation. A method has been developed to study this behavior of the magnetron motion by acquiring a series of FT-ICR spectra using varied post-capture delay (PCD) time intervals. PCD is the delay time after the capture of the ions in the cell before the cyclotron excitation of the ion is started. Plotting the relative intensity of the second harmonic sideband peak versus the PCD in each mass spectrum leads to an oscillating "PCD curve". The position and height of minima and maxima of this curve can be used to interpret the size and the position of the magnetron orbit. Ion motion simulations show that an off-axis magnetron orbit generates even-numbered harmonic peaks with sidebands at a distance of one magnetron frequency and multiples of it. This magnetron offset is due to a radial offset of the electric field axis versus the geometric cell axis. In this work, we also show how this offset of the radial electric field center can be corrected by applying appropriate DC correction voltages to the

  16. Nonsputtering impulse magnetron discharge

    SciTech Connect

    Khodachenko, G. V.; Mozgrin, D. V.; Fetisov, I. K.; Stepanova, T. V.

    2012-01-15

    Experiments with quasi-steady high-current discharges in crossed E Multiplication-Sign B fields in various gases (Ar, N{sub 2}, H{sub 2}, and SF{sub 6}) and gas mixtures (Ar/SF{sub 6} and Ar/O{sub 2}) at pressures from 10{sup -3} to 5 Torr in discharge systems with different configurations of electric and magnetic fields revealed a specific type of stable low-voltage discharge that does not transform into an arc. This type of discharge came to be known as a high-current diffuse discharge and, later, a nonsputtering impulse magnetron discharge. This paper presents results from experimental studies of the plasma parameters (the electron temperature, the plasma density, and the temperature of ions and atoms of the plasma-forming gas) of a high-current low-pressure diffuse discharge in crossed E Multiplication-Sign B fields.

  17. Research and Development for an Alternative RF Source Using Magnetrons in CEBAF

    NASA Astrophysics Data System (ADS)

    Jacobs, Andrew

    2016-09-01

    At Jefferson Lab, klystrons are currently used as a radiofrequency (RF) power source for the 1497 MHz Continuous Electron Beam Accelerator Facility (CEBAF) Continuous Wave (CW) system. A drop-in replacement for the klystrons in the form of a system of magnetrons is being developed. The klystron DC-RF efficiency at CEBAF is 35-51% while the estimated magnetron efficiency is 80-90%. Thus, the introduction of magnetrons to CEBAF will have enormous benefits in terms of electrical power saving. The primary focus of this project was to characterize a magnetron's frequency pushing and pulling curves at 2.45 GHz with stub tuner and anode current adjustments so that a Low Level RF controller for a new 1.497 GHz magnetron can be built. A Virtual Instrument was created in LabVIEW, and data was taken. The resulting data allowed for the creation of many constant lines of frequency and output power. Additionally, the results provided a characterization of magnetron oven temperature drift over the operation time and the relationship between anode current and frequency. Using these results, the control model of different variables and their feedback or feedforward that affect the frequency pushing and pulling of the magnetron is better developed. Department of Energy, Science Undergraduate Laboratory Internships, and Jefferson Lab.

  18. Ion distribution measurements to probe target and plasma processes in electronegative magnetron discharges. II. Positive ions

    SciTech Connect

    Welzel, Th.; Ellmer, K.; Naumov, S.

    2011-04-01

    Spectra of the ion mass and energy distributions of positive ions in reactive (Ar/O{sub 2}) and nonreactive (Ar) dc magnetron sputtering discharges have been investigated by energy-resolved mass spectrometry. The results of three sputter target materials, i.e., Cu, In, and W are compared to each other. Besides the main gas constituents, mass spectra reveal a variety of molecular ions which are dependent on the target material. In reactive mode, ArO{sup +} is always observed in Ar/O{sub 2} but molecules containing Ar and the metal were exclusively found for the Cu target. The occurrence of the different ions is explained in the context of their bond strengths obtained from density functional theory calculations. The energy spectra generally contain the known low-energy peak corresponding to the plasma potential. Differently extended high-energy tails due to sputtered material were observed for the different targets. Besides these, high-energetic ions were detected with up to several 100 eV. Their energies are significantly different for Ar{sup +} and O{sup +} with Ar{sup +} strongly depending on the target material. The spectra are discussed together with results from transport of ions in matter (TRIM) calculation to elucidate the origin of these energetic ions.

  19. AES Studies on the Ti/N Compositionally Gradient Film Deposited onto Ti-6Al-4V Alloy by Reactive DC Sputtering

    NASA Astrophysics Data System (ADS)

    Sonoda, Tsutomu; Watazu, Akira; Katou, Kiyotaka; Asahina, Tadashi

    2006-07-01

    Deposition of Ti/N compositionally gradient film onto Ti-6Al-4V alloy substrates was carried out by reactive DC sputtering, not only to improve the blood compatibility of the alloy but also to relax the stress concentrated at the interface between the film and the alloy substrate. The compositional gradient was realized by varying continuously the nitrogen content in Ar-N2 sputter gas during deposition. In Auger electron spectroscopy (AES) analysis, Auger spectra were acquired in the N(E) mode using the beam brightness modulation (BBM) method to overcome the problem of the peak overlap of the principal Auger nitrogen transition peak (N-KLL) with one of titanium peaks (Ti-LMM). The deposited film appeared to be uniform and adhesive. TiN formation at the surface of the film was assumed, because of its yellow gold color and the X-ray diffraction (XRD) pattern for it. Under scanning electron microscopy, it was found that the surface had fine particles dispersed on a smooth accumulated deposit and that this depositing method improved the structural property of the film at the surface. According to AES in-depth profiles, the nitrogen (N) concentration in the film gradually decreased in the depth direction from the surface toward the alloy, confirming that a Ti/N compositionally gradient film had formed on the alloy substrate.

  20. Double-sided Relativistic Magnetron

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Krastelev, E. G.

    1997-05-01

    A new scheme of a symmetricaly powered relativistic magnetron and several methods of localised electron flow forming in an interaction region are proposed to increase an efficiency of relativistic magnetrons. As will be shown, a very important reason is the effect of nonsymmetric feeding of power from one side of a magnetron, which is typical for experiments. One-sided powering leads to the axial drift of electrons, to the transformation of transverse velocities of electrons to longitudinal one and to the generation of a parasitic e-beam which does not take part in energy exchange between electrons and waves at all. A special driver was designed for double-sided powering of relativistic magnetrons. The proposed system is compact, rigid and capable of reliable operation at high repetition rates, which is advantageous for many applications. Several smooth-bore magnetrons were tested by means of computer simulations using PIC code KARAT. The results showed a dramatical difference between the dynamics of electron flow for one- and two-sided power feeding of a structure under test. Design of a driver and computer simulation results are presented.

  1. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target

    NASA Astrophysics Data System (ADS)

    Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.

    2016-12-01

    Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.

  2. Structure, age, and tectonic setting of a multiply reactivated shear zone in the piedmont in Washington, D.C., and vicinity

    USGS Publications Warehouse

    Fleming, A.H.; Drake, A.A.

    1998-01-01

    The Rock Creek shear zone is the dominant tectonic feature in the Piedmont in Washington, D.C. and adjacent parts of Maryland, has an exposed length of 25 km, and a width of up to 3 km. The shear zone is characterized by a complicated composite fabric produced by the imposition of both ductile and brittle structures as well as the reactivation, transposition, and folding of older structures during subsequent antithetic displacement. At least five main types of structural elements are discernible and include: 1) relict, medium- to coarse-grained mylonitic foliation and related structures produced by sinistral shearing under at least middle amphibolite facies conditions; 2) a ductile fault zone having an apparent sinistral displacement of at least several km and an unknown, but possibly significant component of upward throw of the east wall; 3) pervasive, fine-grained ultramylonitic foliation associated with quartz ribbons and late oblique shear bands, generated by dextral shearing under thermal conditions that appear to have progressed from middle greenschist to sub-greenschist (semi-brittle); 4) a system of oblique-(west wall up) and dextralship faults localized chiefly within a tectonic me??lange at the junction of two major strands, and whose motion spanned the ductile-brittle transition; and 5) a system of post-Cretaceous thrust faults that cut Coastal Plain rocks as young as Quaternary as well as the previously deformed crystalline rocks. The first two sets of structures are of probable Ordovician age and are thus believed to coincide with the Taconic event, which produced regional middle to upper amphibolite facies metamorphism, widespread plutonism, and extensive southwest-vergent fold phases in this area. In contrast, the dextral shearing and faulting were generated during final thermal cooling and represent the latest Paleozoic penetrative deformation that affected this area. They are very likely Alleghanian because of their great similarity to other better

  3. Simulation of the velocity spread in magnetron injection guns

    SciTech Connect

    Liu, C.; Antonsen, T.M. Jr.; Levush, B.

    1996-06-01

    The velocity spread associated with phase mixing due to dc space charge in a magnetron injection gun (MIG) is investigated. A simple model is introduced to describe the mixing process. Simulations are performed by using the results of the EGUN trajectory calculation for initial conditions at the entrance of the drift region. Results for a 170 GHz gun are obtained and compared with EGUN simulations. This new model provides a more accurate and efficient approach for analyzing the velocity spread due to mixing in MIG`s.

  4. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    SciTech Connect

    Gudmundsson, J. T.; Lundin, D.; Minea, T. M.; Stancu, G. D.; Brenning, N.

    2015-11-15

    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization is always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.

  5. Gas-phase clusterization of zinc during magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Abduev, A. Kh.; Akhmedov, A. K.; Asvarov, A. Sh.; Alikhanov, N. M.-R.; Emirov, R. M.; Muslimov, A. E.; Belyaev, V. V.

    2017-01-01

    The processes of gas-phase clusterization of zinc during dc magnetron sputtering of a zinc target in an argon atmosphere have been investigated. The influence of the working gas pressure and magnetron discharge current on the morphology and structure of the precipitates formed on substrates previously cooled to-50°C is studied. It is shown that dense textured (002)Zn layers with a columnar structure are formed at relatively low argon pressures in the chamber ( P = 0.5 Pa) and low discharge currents (100 mA). X-ray amorphous deposits with a fractal coral-like structure arise on substrates at an extremely high argon pressure in the chamber ( P = 5 Pa). An increase in the magnetron discharge current at an operating gas pressure of 5 Pa leads to the formation of polycrystalline layers on substrates; the intensity of the XRD peaks related to crystalline zinc increases with an increase in the discharge current. Possible mechanisms of the structural transformation of Zn deposits are considered.

  6. Studies on Magnetron Sputtered ZnO-Ag Films: Adhesion Activity of S. aureus

    NASA Astrophysics Data System (ADS)

    Geetha, S. R.; Dhivya, P.; Raj, P. Deepak; Sridharan, M.; Princy, S. Adline

    Zinc oxide (ZnO) thin films have been deposited onto thoroughly cleaned stainless steel (AISI SS 304) substrates by reactive direct current (dc) magnetron sputtering and the films were doped with silver (Ag). The prepared thin films were analyzed using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) to investigate the structural and morphological properties. The thickness values of the films were in the range of 194 to 256nm. XRD results revealed that the films were crystalline with preferred (002) orientation. Grain size values of pure ZnO films were found to be 19.82-23.72nm. On introducing Ag into ZnO film, the micro-structural properties varied. Adhesion test was carried out with Staphylococcus aureus (S. aureus) in order to know the adherence property of the deposited films. Colony formation units (CFU) were counted manually and bacterial adhesion inhibition (BAI) was calculated. We observed a decrease in the CFU on doping Ag in the ZnO films. BAI of the film deposited at - 100 V substrate bias was found to be increased on Ag doping from 69 to 88%.

  7. Nanostructured phothocatalytic TiO2 thin film fabricated by magnetron sputtering on glass

    NASA Astrophysics Data System (ADS)

    Abdollahi Nejand, Bahram; Sanjabi, Sohrab; Ahmadi, Vahid

    TiO2 thin film was deposited by a DC reactive magnetron sputtering on ZnO/soda-lime glass substrate and single crystal SiO2 below 200 °C. ZnO layer was used as a buffer layer. Deposition was performed at Ar + O2 gas mixture with a pressure of 1.0 Pa and oxygen with a constant pressure of 0.2 Pa. The TiO2 / ZnO thicknesses were approximately 1000 nm and 80 nm, respectively. As-deposited films were annealed at 400 °C. The structure and morphology of deposited layers were evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The transmittance of the films was measured using ultraviolet-visible light (UV-vis) spectrophotometer. Photocatalytic activities of the samples were evaluated by the degradation of 2-propanol. The microstructure of annealed films was anatase, having improved photocatalytic activity. The surface grain size of TiO2 thin film after annealing was found about 25-35 nm and crystal size was approximately 8 nm. By using ZnO thin film as buffer layer, the photocatalytic property of TiO2 films was improved.

  8. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  9. Thick beryllium coatings by magnetron sputtering

    SciTech Connect

    Wu, H; Nikroo, A; Youngblood, K; Moreno, K; Wu, D; Fuller, T; Alford, C; Hayes, J; Detor, A; Wong, M; Hamza, A; van Buuren, T; Chason, E

    2011-04-14

    Thick (>150 {micro}m) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility (NIF). As an added complication, the coatings are deposited on mm-scale spherical substrates, as opposed to flats. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. We used ultra small angle x-ray spectroscopy (USAXS) to characterize the void fraction and distribution along the spherical surface. We investigated the void structure using a combination focused ion beam (FIB) and scanning electron microscope (SEM), along with transmission electron microscopy (TEM). Our results show a few volume percent of voids and a typical void diameter of less than two hundred nanometers. Understanding how the stresses in the deposited material develop with thickness is important so that we can minimize film cracking and delamination. To that end, an in-situ multiple optical beam stress sensor (MOSS) was used to measure the stress behavior of thick Beryllium coatings on flat substrates as the material was being deposited. We will show how the film stress saturates with thickness and changes with pressure.

  10. Investigation of promoter variations in dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN) (CD209) and their relevance for human cytomegalovirus reactivation and disease after allogeneic stem-cell transplantation.

    PubMed

    Mezger, M; Steffens, M; Semmler, C; Arlt, E-M; Zimmer, M; Kristjanson, G-I; Wienker, T F; Toliat, M R; Kessler, T; Einsele, H; Loeffler, J

    2008-03-01

    Promoter variations in Toll-like receptor genes (n = 7) and genes encoding pathogen recognition and virus entry receptors (n = 7) were screened to detect any association with human cytomegalovirus (hCMV) reactivation and disease in patients following allogeneic stem-cell transplantation. Two single nucleotide polymorphisms (rs735240, G>A; rs2287886, C>T) in the promoter region of the dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN) showed a significant association with an increased risk of development of hCMV reactivation and disease. Furthermore, these genetic markers influenced the expression levels of DC-SIGN on immature dendritic cells, as well as the infection efficiency of immature dendritic cells by hCMV, as determined by hCMV immediate-early antigen staining. Screening of patients following allogeneic stem-cell transplantation for the presence of these defined genetic polymorphisms might help to predict the individual risk of hCMV reactivation and disease.

  11. Numerical simulation of oscillating magnetrons

    NASA Astrophysics Data System (ADS)

    Palevsky, A.; Bekefi, G.; Drobot, A. T.

    1981-08-01

    The temporal evolution of the current, voltage, and RF fields in magnetron-type devices is simulated by a two-dimensional, electromagnetic, fully relativistic particle-in-cell code. The simulation allows for the complete geometry of the anode vane structure, space-charge-limited cathode emission and the external power source, and is applied to a 54-vane inverted relativistic magnetron at a voltage of 300 kV and a magnetic field of 0.17 T. Fields in the RF structure and the anode-cathode gap are solved from Maxwell's equations so that results contain all the two-dimensional resonances of the system, and the numerical solution yields a complete space-time history of the particle momenta. In the presence of strong RF fields, the conventional definition of voltages is found to be inappropriate, and a definition is developed to reduce to the conventional results.

  12. Asymmetric particle fluxes from drifting ionization zones in sputtering magnetrons

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Franz, Robert; Anders, André

    2014-04-01

    Electron and ion fluxes from direct current and high-power impulse magnetron sputtering (dcMS and HiPIMS) plasmas were measured in the plane of the target surface. Biased collector probes and a particle energy and mass analyzer showed asymmetric emission of electrons and of singly and doubly charged ions. For both HiPIMS and dcMS discharges, higher fluxes of all types of particles were observed in the direction of the electrons' E × B drift. These results are put in the context with ionization zones that drift over the magnetron's racetrack. The measured currents of time-resolving collector probes suggest that a large fraction of the ion flux originates from drifting ionization zones, while energy-resolving mass spectrometry indicates that a large fraction of the ion energy is due to acceleration by an electric field. This supports the recently proposed hypothesis that each ionization zone is associated with a negative-positive-negative space charge structure, thereby producing an electric field that accelerates ions from the location where they were formed.

  13. Hematopoietic stem cell-derived myeloid and plasmacytoid DC-based vaccines are highly potent inducers of tumor-reactive T cell and NK cell responses ex vivo.

    PubMed

    Thordardottir, Soley; Schaap, Nicolaas; Louer, Elja; Kester, Michel G D; Falkenburg, J H Frederik; Jansen, Joop; Radstake, Timothy R D; Hobo, Willemijn; Dolstra, Harry

    2017-01-01

    Because of the potent graft-versus-tumor (GVT) effect, allogeneic stem cell transplantation (alloSCT) can be a curative therapy for hematological malignancies. However, relapse remains the most frequent cause of treatment failure, illustrating the necessity for development of adjuvant post-transplant therapies to boost GVT immunity. Dendritic cell (DC) vaccination is a promising strategy in this respect, in particular, where distinct biologic functions of naturally occurring DC subsets, i.e. myeloid DCs (mDCs) and plasmacytoid DCs (pDCs), are harnessed. However, it is challenging to obtain high enough numbers of primary DC subsets from blood for immunotherapy due to their low frequencies. Therefore, we present here an ex vivo GMP-compliant cell culture protocol for generating different DC subsets from CD34(+) hematopoietic stem and progenitor cells (HSPCs) of alloSCT donor origin. High numbers of BDCA1(+) mDCs and pDCs could be generated, sufficient for multiple vaccination cycles. These HSPC-derived DC subsets were highly potent in inducing antitumor immune responses in vitro. Notably, HSPC-derived BDCA1(+) mDCs were superior in eliciting T cell responses. They efficiently primed naïve T cells and robustly expanded patient-derived minor histocompatibility antigen (MiHA)-specific T cells. Though the HSPC-pDCs also efficiently induced T cell responses, they exhibited superior capacity in activating NK cells. pDC-primed NK cells highly upregulated TRAIL and possessed strong cytolytic capacity against tumor cells. Collectively, these findings indicate that HSPC-derived DC vaccines, comprising both mDCs and pDCs, may possess superior potential to boost antitumor immunity post alloSCT, due to their exceptional T cell and NK cell stimulatory capacity.

  14. Peripheral blood CD4 T-cell and plasmacytoid dendritic cell (pDC) reactivity to herpes simplex virus 2 and pDC number do not correlate with the clinical or virologic severity of recurrent genital herpes.

    PubMed

    Moss, Nicholas J; Magaret, Amalia; Laing, Kerry J; Kask, Angela Shaulov; Wang, Minna; Mark, Karen E; Schiffer, Joshua T; Wald, Anna; Koelle, David M

    2012-09-01

    Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals.

  15. A study of TiMoN nano-multilayer coatings deposited by CFUBMSIP using DC and HIPIMS power

    NASA Astrophysics Data System (ADS)

    Yang, Shicai; Li, Xiaoying; Cooke, K. E.; Teer, D. G.

    2012-01-01

    TiMoN nano-multilayer hard coatings have been deposited using the closed field unbalanced magnetron sputter ion plating (CFUBMSIP) technique. In one set of experiments, standard DC power supplies were used on four magnetrons in the CFUBMSIP system (4DC magnetrons). The second set of experiments was also in the same magnetic field configuration of CFUBMSIP, but three magnetrons were as again powered with standard DC whilst one magnetron with Ti target was supplied by a high power impulse magnetron sputtering (HIPIMS) power generator (3DC + 1HIPIMS magnetrons). Two elemental titanium sputtering targets and two of molybdenum were used to produce the TiMoN nano-multilayer coatings. Analysis of the coatings was carried out to investigate the differences in terms of properties, compositions and microstructures of the coatings deposited by these two sets of experiments. It was found that the coatings deposited by both sets of the experiments exhibited similar properties of high hardness, good adhesion and exceptional wear resistance, with a lower sliding friction than more commonly used hard coatings including TiN, CrN, TiAlN, CrTiAlN etc. Although the initial TiN coating as formed at the coating-substrate interface using the process of 3DC + 1HIPIMS magnetrons appeared to show a less oriented microstructure in comparison with that of the coating produced by the process using 4DC magnetrons, the compositions and cross sectional microstructures of the bulk of the coatings did not show significant differences, as observed by the cross sectional Transmission Electron Microscopy microstructures of these two types of TiMoN coatings.

  16. Bidirectional DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  17. Extended metastable Al solubility in cubic VAlN by metal-ion bombardment during pulsed magnetron sputtering: film stress vs subplantation

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Mráz, S.; Ruess, H.; Hans, M.; Lu, J.; Hultman, L.; Schneider, J. M.

    2017-07-01

    Dynamic ion-recoil mixing of near-film-surface atomic layers is commonly used to increase the metastable solubility limit xmax in otherwise immiscible thin film systems during physical vapor deposition. Recently, Al subplantation achieved by irradiating the film growth surface with Al+ metal-ion flux was shown to result in an unprecedented xmax for VAlN, far above values obtained with gas ion irradiation. However, it is reasonable to assume that ion irradiation necessary for subplantation also leads to a compressive stress σ buildup. In order to separate the effects of Al+ bombardment on σ and xmax, and realize low-stress high-xmax nitride alloys, we grow metastable cubic V1-xAlxN (0.17 ≤ x ≤ 0.74) films using reactive magnetron sputtering under different ion irradiation conditions. Al and V targets are operated in Ar/N2 discharges employing (i) conventional DC (Ar+, N2+), (ii) hybrid High-power pulsed magnetron sputtering (HIPIMS)/DC processing with one type of metal ion present (Al+ or V+/V2+), and (iii) HIPIMS with concurrent Al+ and V+/V2+ fluxes. Comparison to the ab initio calculated Al solubility limit reveals that xmax = 0.55 achieved with V+/V2+ irradiation is entirely accountable for by stress. In contrast, Al+ fluxes provide a substantial increase in xmax to 0.63, which is 12% higher than that expected based on the stress-induced increase in metastable solubility. Correlative stress and atom probe tomography data confirm that the metastable Al solubility enhancement is enabled by Al+ subplantation. The here proposed processing strategy allows for growth of single-phase cubic nitride alloys with significantly increased Al concentrations embodying tremendous promise for substantial improvements in high temperature oxidation resistance and mitigates the risk of stress-induced adhesive or cohesive coating failure.

  18. An efficient magnetron transmitter for superconducting accelerators

    DOE PAGES

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; ...

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less

  19. Model for designing planar magnetron cathodes

    SciTech Connect

    Garcia, M.

    1997-09-30

    This report outlines an analytical model of the distribution of plasma in the cathode fall of a planar magnetron cathode. Here I continue commentary on previous work, and introduce an ion sheath model to describe the discharge dark space below the magnetron halo.

  20. An efficient magnetron transmitter for superconducting accelerators

    SciTech Connect

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; Pavlov, V.

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron power in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.

  1. An efficient magnetron transmitter for superconducting accelerators

    SciTech Connect

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; Pavlov, V.

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron power in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.

  2. An efficient magnetron transmitter for superconducting accelerators

    NASA Astrophysics Data System (ADS)

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; Pavlov, V.

    2016-12-01

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injection-locked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage in free run. This realizes control of the magnetron power in an extended range (up to 10 dB) by control of the magnetron current. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and the required range of power control at a low noise level. An analysis of the kinetics of the drifting charge within the framework of the presented model of phase focusing in magnetrons substantiates the concept and the experimental results.

  3. Magnetic properties of thin films of samarium-cobalt alloy prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panchal, Gyanendra; Gupta, Mukul; Choudhary, R. J.; Phase, D. M.

    2016-10-01

    We examine the magnetic properties of samarium-cobalt thin films on quartz and Si(111) substrates grown by dc magnetron sputtering. Both films are deposited on Cr buffer layer and subsequently a capping layer of Cr was also deposited. Secondary ion mass spectroscopy results reveal that Cr diffused in to Sm-Co layer.This lead to local change in magnetocrystalline anisotropy. As the result of this we observed the two coercive behaviors in magnetization of thin film.

  4. Multi-cathode unbalanced magnetron sputtering systems

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1991-01-01

    Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.

  5. Effect of SiNx diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol–gel dip coating and reactive magnetron sputtering

    PubMed Central

    Aubry, Eric; Chaoui, Nouari; Robert, Didier

    2015-01-01

    Summary We investigate the effect of the thickness of the silicon nitride (SiNx) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol–gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiNx diffusion barrier. Increasing the thickness of the SiNx diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol–gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiNx barrier diffusion. The SiNx barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed. PMID:26665074

  6. Effect of SiN x diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol-gel dip coating and reactive magnetron sputtering.

    PubMed

    Ghazzal, Mohamed Nawfal; Aubry, Eric; Chaoui, Nouari; Robert, Didier

    2015-01-01

    We investigate the effect of the thickness of the silicon nitride (SiN x ) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol-gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiN x diffusion barrier. Increasing the thickness of the SiN x diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol-gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiN x barrier diffusion. The SiN x barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed.

  7. Milliwatt dc/dc Inverter

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  8. Influence of c-axis orientation and scandium concentration on infrared active modes of magnetron sputtered Sc{sub x}Al{sub 1−x}N thin films

    SciTech Connect

    Mayrhofer, P. M.; Bittner, A.; Schmid, U.; Eisenmenger-Sittner, C.; Euchner, H.

    2013-12-16

    Doping of wurtzite aluminium nitride (AlN) with scandium (Sc) significantly enhances the piezoelectric properties of AlN. Sc{sub x}Al{sub 1−x}N thin films with different Sc concentrations (x = 0 to 0.15) were deposited by DC reactive magnetron sputtering. Infrared (IR) absorbance spectroscopy was applied to investigate the Sc concentration dependent shift of the IR active modes E{sub 1}(TO) and A{sub 1}(TO). These results are compared to ab initio simulations, being in excellent agreement with the experimental findings. In addition, IR spectroscopy is established as an economical and fast method to distinguish between thin films with a high degree of c-axis orientation and those exhibiting mixed orientations.

  9. EMI shielding using composite materials with two sources magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ziaja, J.; Jaroszewski, M.; Lewandowski, M.

    2016-02-01

    In this study, the preparation composite materials for electromagnetic shields using two sources magnetron sputtering DC-M is presented. A composite material was prepared by coating a nonwoven polypropylene metallic layer in sputtering process of targets Ti (purity 99%) and brass alloy MO58 (58%Cu, 40%Zn, 2%Pb) and ϕ diameter targets = 50 mm, under argon atmosphere. The system with magnetron sputtering sources was powered using switch-mode power supply DPS (Dora Power System) with a maximum power of 16 kW and a maximum voltage of 1.2 kV with group frequency from 50 Hz to 5 kHz. The influence of sputtering time of individual targets on the value of the EM field attenuation SE [dB] was investigated for the following supply conditions: pressure pp = 2x10-3 Torr, sputtering power P = 750 W, the time of applying a layer t = 5 min, group frequency fg = 2 kHz, the frequency of switching between targets fp = 1 Hz.

  10. Closed field unbalanced magnetron sputtering ion plating of Ni/Al thin films: influence of the magnetron power.

    PubMed

    Said, R; Ahmed, W; Gracio, J

    2010-04-01

    In this study NiAl thin films have been deposited using closed field unbalanced magnetron sputtering Ion plating (CFUBMSIP). The influence of magnetron power has been investigated using dense and humongous NiAl compound targets onto stainless steel and glass substrates. Potential applications include tribological, electronic media and bond coatings in thermal barrier coatings system. Several techniques has been used to characterise the films including surface stylus profilometry, energy dispersive spectroscopy (EDAX), X-Ray diffraction (XRD) Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) and Atomic force microscopy (AFM). Scratch tester (CSM) combined with acoustic emission singles during loading in order to compare the coating adhesion. The acoustic emission signals emitted during the indentation process were used to determine the critical load, under which the film begins to crack and/or break off the substrate. The average thickness of the films was approximately 1 um. EDAX results of NiAl thin films coating with various magnetron power exhibited the near equal atomic% Ni:Al. The best result being obtained using 300 W and 400 W DC power for Ni and Al targets respectively. XRD revealed the presence of beta NiAl phase for all the films coatings. AFM analysis of the films deposited on glass substrates exhibited quite a smooth surface with surface roughness values in the nanometre range. CSM results indicate that best adhesion was achieved at 300 W for Ni, and 400 W for Al targets compared to sample other power values. SIMS depth profile showed a uniform distribution of the Ni and Al component from the surface of the film to the interface.

  11. RF magnetron sputtering of thick platinum coatings on glass microspheres

    SciTech Connect

    Meyer, S.F.; Hsieh, E.J.; Burt, R.J.

    1980-05-28

    Thick platinum coatings on glass microspheres are needed for proposed Laser Fusion targets. The spherical nature of these substrates coupled with the small dimensions (approx. 100 ..mu..m OD) make it difficult to achieve a smooth and uniform coating. Coating problems encountered include a rough surface and porous microstructure from the oblique incidence and lack of temperature and bias control, clumping of the microspheres causing non-uniformities, and particle accumulation causing cone defects. Sputtering parameters significantly affecting the coatings include total pressure, DC substrate bias, and the addition of doping gases. Using an ultrasonic vibrating screened cage and RF magnetron Sputtergun, we have successfully batch coated microspheres with up to 6 ..mu..m of Pt, with a surface roughness of 200 nm, thickness non-concentricity of 300 nm, and density greater than 98% of bulk Pt.

  12. Orthogonal optimization for room temperature magnetron sputtering of ZnO:Al films for all-solid electrochromic devices

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Diao, Xungang; Ding, Peng

    2011-02-01

    In order to obtain competent and quality (high transparency, conductivity and stability) aluminium-doped zinc oxide (ZnO:Al, ZAO) films for all solid electrochromic devices, ZAO films were prepared by direct current (D.C.) reactive magnetron sputtering at room temperature based on orthogonal design. Optical and electrical property dependences of the films on the four dominant sputtering parameters: sputtering time, target-substrate distance, sputtering power and O2 flow ratio were simultaneously investigated with measured results using mathematical and statistical method. Optimal Parameters to fabricate ZAO films with optimum comprehensive performances were obtained ultimately. Resistivity and carrier concentration of ZAO film deposited with optimized parameters were 3.89 × 10-4 Ω cm and 1.09 × 1021 cm-3, respectively. ZAO films with these superior properties were employed as transparent electrodes eventually in a WO3 based all-solid electrochromic device which displayed good electrochromic performance. The regulation range for transmittance in the visible region of the device was more than 50%, which was comparable to that of the device adopting indium tin oxide (ITO) films as electrodes.

  13. Flexible electrochromics: magnetron sputtered tungsten oxide (WO3-x) thin films on Lexan (optically transparent polycarbonate) substrates

    NASA Astrophysics Data System (ADS)

    Uday Kumar, K.; Murali, Dhanya S.; Subrahmanyam, A.

    2015-06-01

    Tungsten oxide (WO3-x) based electrochromics on flexible substrates is a topic of recent interest. The present communication reports the electrochromic properties of WO3-x thin films grown on lexan, an optically transparent polycarbonate thermoplastic substrate. The WO3-x films are prepared at room temperature (300 K) by the reactive DC magnetron sputtering technique. The physical properties of metal oxide thin films are known to be controlled by the oxygen stoichiometry of the film. In the present work, the WO3-x thin films are prepared by varying the oxygen flow rates. All the WO3-x thin films are amorphous in nature. The electrochromic performance of the WO3-x thin films is evaluated by cyclic voltammetry measurements on tin doped indium oxide (ITO) coated lexan and glass substrates. The optical band gap of WO3-x thin films grown on lexan substrates (at any given oxygen flow rate) is significantly higher than those grown on glass substrates. The coloration efficiency of WO3-x thin films (at an oxygen flow rate of 10 sccm) on lexan substrates is: 143.9 cm2 C-1 which is higher compared to that grown on glass: 90.4 cm2 C-1.

  14. Effect of negative bias on the composition and structure of the tungsten oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Meihan; Lei, Hao; Wen, Jiaxing; Long, Haibo; Sawada, Yutaka; Hoshi, Yoichi; Uchida, Takayuki; Hou, Zhaoxia

    2015-12-01

    Tungsten oxide thin films were deposited at room temperature under different negative bias voltages (Vb, 0 to -500 V) by DC reactive magnetron sputtering, and then the as-deposited films were annealed at 500 °C in air atmosphere. The crystal structure, surface morphology, chemical composition and transmittance of the tungsten oxide thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer. The XRD analysis reveals that the tungsten oxide films deposited at different negative bias voltages present a partly crystallized amorphous structure. All the films transfer from amorphous to crystalline (monoclinic + hexagonal) after annealing 3 h at 500 °C. Furthermore, the crystallized tungsten oxide films show different preferred orientation. The morphology of the tungsten oxide films deposited at different negative bias voltages is consisted of fine nanoscale grains. The grains grow up and conjunct with each other after annealing. The tungsten oxide films deposited at higher negative bias voltages after annealing show non-uniform special morphology. Substoichiometric tungsten oxide films were formed as evidenced by XPS spectra of W4f and O1s. As a result, semi-transparent films were obtained in the visible range for all films deposited at different negative bias voltages.

  15. Surface modification of 316L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications.

    PubMed

    Subramanian, B; Ananthakumar, R; Kobayashi, Akira; Jayachandran, M

    2012-02-01

    Nanoscale multilayered TiN/VN coatings were developed by reactive dc magnetron sputtering on 316L stainless steel substrates. The coatings showed a polycrystalline cubic structure with (111) preferential growth. XPS analysis indicated the presence of peaks corresponding to Ti2p, V2p, N1s, O1s, and C1s. Raman spectra exhibited the characteristic peaks in the acoustic range of 160-320 cm(-1) and in the optic range between 480 and 695 cm(-1). Columnar structure of the coatings was observed from TEM analysis. The number of adherent platelets on the surface of the TiN/VN multilayer, VN, TiN single layer coating exhibit fewer aggregation and pseudopodium than on substrates. The wear resistance of the multilayer coatings increases obviously as a result of their high hardness. Tafel plots in simulated bodily fluid showed lower corrosion rate for the TiN/VN nanoscale multilayer coatings compared to single layer and bare 316L SS substrate.

  16. Comparative study of reference currents and DC bus voltage control for Three-Phase Four-Wire Four-Leg SAPF to compensate harmonics and reactive power with 3D SVM.

    PubMed

    Chebabhi, A; Fellah, M K; Kessal, A; Benkhoris, M F

    2015-07-01

    In this paper the performances of three reference currents and DC bus voltage control techniques for Three-Phase Four-Wire Four-Leg SAPF are compared for balanced and unbalanced load conditions. The main goals are to minimize the harmonics, reduce the magnitude of neutral current, eliminate the zero-sequence current components caused by single-phase nonlinear loads and compensate the reactive power, and on the other hand improve performances such as robustness, stabilization, trajectory pursuit, and reduce time response. The three techniques are analyzed mathematically and simulation results are compared. The techniques considered for comparative study are the PI Control, Sliding Mode Control and the Backstepping Control. Synchronous reference frame theory (SRF) in the dqo-axes is used to generate the reference currents, of the inverter.

  17. A Plasma Lens for Magnetron Sputtering

    SciTech Connect

    Anders, Andre; Brown, Jeff

    2010-11-30

    A plasma lens, consisting of a solenoid and potential-defining ring electrodes, has been placed between a magnetron and substrates to be coated. Photography reveals qualitative information on excitation, ionization, and the transport of plasma to the substrate.

  18. Microstructural evolution of thin film vanadium oxide prepared by pulsed-direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Motyka, M. A.; Gauntt, B. D.; Horn, M. W.; Dickey, E. C.; Podraza, N. J.

    2012-11-01

    Vanadium oxide (VOx) thin films have been deposited by pulsed-DC magnetron sputtering using a metallic vanadium target in a reactive argon and oxygen environment. While the process parameters (power, total pressure, oxygen-to-argon ratio) remained constant, the deposition time was varied to produce films between 75 ± 6 and 2901 ± 30 Å thick, which were then optically and electrically characterized. The complex dielectric function spectra (ɛ = ɛ1 + iɛ2) of the films from 0.75 to 5.15 eV were extracted by ex situ, multiple-angle spectroscopic ellipsometry (SE) measurements for the series of varied thickness VOx samples. Significant changes in ɛ and resistivity occur as a function of thickness, indicating the correlations exist between the electrical and the optical properties over this spectral range. In addition, in situ measurements via real time SE (RTSE) were made on the film grown to the largest thickness to track optical property and structural variations during growth. RTSE was also used to characterize changes in the film occurring after growth was completed, namely during post sputtering in the presence of argon and oxygen while the sample is shielded, and atmospheric exposure. RTSE indicates that the exposure of the film to the argon and oxygen environment, regardless of the shutter isolating the target, causes up to 200 Å of the top surface of the deposited film to become more electrically resistive as evidenced by variations in ɛ. Exposure of the VOx thin film to atmospheric conditions introduces a similar change in ɛ, but this change occurs throughout the bulk of the film. A combination of these observations with RTSE results indicates that thinner, less ordered VOx films are more susceptible to drastic changes due to atmospheric exposure and that microstructural variations in this material ultimately control its environmental stability.

  19. A high power impulse magnetron sputtering model to explain high deposition rate magnetic field configurations

    NASA Astrophysics Data System (ADS)

    Raman, Priya; Weberski, Justin; Cheng, Matthew; Shchelkanov, Ivan; Ruzic, David N.

    2016-10-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is one of the recent developments in the field of magnetron sputtering technology that is capable of producing high performance, high quality thin films. Commercial implementation of HiPIMS technology has been a huge challenge due to its lower deposition rates compared to direct current Magnetron Sputtering. The cylindrically symmetric "TriPack" magnet pack for a 10 cm sputter magnetron that was developed at the Center for Plasma Material Interactions was able to produce higher deposition rates in HiPIMS compared to conventional pack HiPIMS for the same average power. The "TriPack" magnet pack in HiPIMS produces superior substrate uniformity without the need of substrate rotation in addition to producing higher metal ion fraction to the substrate when compared to the conventional pack HiPIMS [Raman et al., Surf. Coat. Technol. 293, 10 (2016)]. The films that are deposited using the "TriPack" magnet pack have much smaller grains compared to conventional pack DC and HiPIMS films. In this paper, the reasons behind the observed increase in HiPIMS deposition rates from the TriPack magnet pack along with a modified particle flux model is discussed.

  20. Peer-to-Peer Magnetron Locking

    NASA Astrophysics Data System (ADS)

    Cruz, Edward Jeffrey

    The viability of coherent power combination of multiple high-efficiency, moderate power magnetrons requires a thorough understanding of frequency and phase control. Injection locking of conventional magnetrons, and other types of oscillators, employing a master-to-slave configuration has been studied theoretically and experimentally. This dissertation focuses on the peer-to-peer locking, where each oscillator acts as a master of and slave to all others, between two conventional magnetrons, where the general condition for locking was recently derived. The experiments performed on peer-to-peer locking of two 1-kW magnetrons verify the recently developed theory on the condition under which the two nonlinear oscillators may be locked to a common frequency and relative phase. This condition reduces to Adler's classical locking condition (master-slave) if the coupling is one way. Dependent on the degree of coupling, the frequency of oscillation when locking occurs was found to not necessarily lie between the two magnetrons' free running frequencies. Likewise, when the locking condition was violated, the beat of the spectrum was not necessarily found to be equal to the difference between the free running frequencies. The frequency of oscillation and relative phase between the two magnetrons when locking did occur were found to correspond to one of two solution modes given by the recent theory. The accessibility of the two possible modes is yet to be determined. This work was supported by ONR, AFRL, AFOSR, L-3 Communications Electron Devices Division and Northrop-Grumman Corporation.

  1. Phased Array Technology with Phase and Amplitude Controlled Magnetron for Microwave Power Transmission

    NASA Astrophysics Data System (ADS)

    Shinohara, N.; Matsumoto, H.

    2004-12-01

    We need a microwave power transmitter with light weight and high DC-RF conversion efficiency for an economical SSPS (Space Solar Power System). We need a several g/W for a microwave power transmission (MPT) system with a phased array with 0.0001 degree of beam control accuracy (=tan-1 (100m/36,000km)) and over 80 % of DC-RF conversion efficiency when the weight of the 1GW-class SPS is below a several thousand ton - a several tens of thousand ton. We focus a microwave tube, especially magnetron by economical reason and by the amount of mass-production because it is commonly used for microwave oven in the world. At first, we have developed a phase controlled magnetron (PCM) with different technologies from what Dr. Brown developed. Next we have developed a phase and amplitude controlled magnetron (PACM). For the PACM, we add a feedback to magnetic field of the PCM with an external coil to control and stabilize amplitude of the microwave. We succeed to develop the PACM with below 10-6 of frequency stability and within 1 degree of an error in phase and within 1% of amplitude. We can control a phase and amplitude of the PACM and we have developed a phased array the PCMs. With the PCM technology, we have developed a small light weight MPT transmitter COMET (Compact Microwave Energy Transmitter) with consideration of heat radiation for space use and with consideration of mobility to space.

  2. Characterization of high power impulse magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Hala, Matej

    Paper I: In the first paper, we present a new approach in the characterization of the high power pulsed magnetron sputtering (HiPIMS) discharge evolution—time- and species-resolved plasma imaging—employing a set of band-pass optical interference filters suitable for the isolation of the emission originating from different species populating the plasma. We demonstrate that the introduction of such filters can be used to distinguish different phases of the discharge, and to visualize numerous plasma effects including background gas excitations during the discharge ignition, gas shock waves, and expansion of metal-rich plasmas. In particular, the application of this technique is shown on the diagnostics of the 200 µs long non-reactive HiPIMS discharges using a Cr target. Paper II: In order to gain further information about the dynamics of reactive HiPIMS discharges, both fast plasma imaging and time- and space-resolved optical emission spectroscopy (OES) are used for a systematic investigation of the 200 µs long HiPIMS pulses operated in Ar, N2 and N 2/Ar mixtures and at various pressures. It is observed that the dense metal plasma created next to the target propagates in the reactor at a speed ranging from 0.7 to 3.5 km s-1, depending on the working gas composition and the pressure. In fact, it increases with higher N 2 concentration and with lower pressure. The visible form of the propagating plasma wave changes from a hemispherical shape in Ar to a drop-like shape extending far from the target with increasing N2 concentration, owing to the significant emission from molecular N2. Interestingly, the evidence of the target self-sputtering is found for all investigated conditions, including pure N2 atmosphere. Paper III: Here, we report on the time- and species-resolved plasma imaging analysis of the dynamics of the 200 µs long HiPIMS discharges above a Cr target ignited in pure O2. It is shown that the discharge emission is dominated solely by neutral and

  3. Deposition and characterization of titania-silica optical multilayers by asymmetric bipolar pulsed dc sputtering of oxide targets

    NASA Astrophysics Data System (ADS)

    Sagdeo, P. R.; Shinde, D. D.; Misal, J. S.; Kamble, N. M.; Tokas, R. B.; Biswas, A.; Poswal, A. K.; Thakur, S.; Bhattacharyya, D.; Sahoo, N. K.; Sabharwal, S. C.

    2010-02-01

    Titania-silica (TiO2/SiO2) optical multilayer structures have been conventionally deposited by reactive sputtering of metallic targets. In order to overcome the problems of arcing, target poisoning and low deposition rates encountered there, the application of oxide targets was investigated in this work with asymmetric bipolar pulsed dc magnetron sputtering. In order to evaluate the usefulness of this deposition methodology, an electric field optimized Fabry Perot mirror for He-Cd laser (λ = 441.6 nm) spectroscopy was deposited and characterized. For comparison, this mirror was also deposited by the reactive electron beam (EB) evaporation technique. The mirrors developed by the two complementary techniques were investigated for their microstructural and optical reflection properties invoking atomic force microscopy, ellipsometry, grazing incidence reflectometry and spectrophotometry. From these measurements the layer geometry, optical constants, mass density, topography, surface and interface roughness and disorder parameters were evaluated. The microstructural properties and spectral functional characteristics of the pulsed dc sputtered multilayer mirror were found to be distinctively superior to the EB deposited mirror. The knowledge gathered during this study has been utilized to develop a 21-layer high-pass edge filter for radio photoluminescence dosimetry.

  4. Analytic model of the energy distribution function for highly energetic electrons in magnetron plasmas

    SciTech Connect

    Gallian, Sara Trieschmann, Jan; Mussenbrock, Thomas; Brinkmann, Ralf Peter; Hitchon, William N. G.

    2015-01-14

    This paper analyzes a situation which is common for magnetized technical plasmas such as dc magnetron discharges and high power impulse magnetron sputtering (HiPIMS) systems, where secondary electrons enter the plasma after being accelerated in the cathode fall and encounter a nearly uniform bulk. An analytic calculation of the distribution function of hot electrons is presented; these are described as an initially monoenergetic beam that slows down by Coulomb collisions with a Maxwellian distribution of bulk (cold) electrons, and by inelastic collisions with neutrals. Although this analytical solution is based on a steady-state assumption, a comparison of the characteristic time-scales suggests that it may be applicable to a variety of practical time-dependent discharges, and it may be used to introduce kinetic effects into models based on the hypothesis of Maxwellian electrons. The results are verified for parameters appropriate to HiPIMS discharges, by means of time-dependent and fully kinetic numerical calculations.

  5. Microstructural evaluation of NiTi-based films deposited by magnetron sputtering

    SciTech Connect

    Crăciunescu, Corneliu M. Mitelea, Ion Budău, Victor; Ercuţa, Aurel

    2014-11-24

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related to the interfacial stress developed on cooling from deposition temperature.

  6. The microstructure and properties of titanium dioxide films synthesized by unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Leng, Y. X.; Chen, J. Y.; Yang, P.; Sun, H.; Huang, N.

    2007-04-01

    In this work, titanium oxide films were deposited on Ti6Al4V and Si (1 0 0) by DC unbalanced magnetron sputtering method at different oxygen pressure. X-ray diffraction (XRD), microhardness tests, pin-on-disk wear experiments, surface contact angle tests and platelet adhesion investigation were conducted to evaluate the properties of the films. The corrosion behavior of titanium dioxide films was characterized by potentiodynamic polarization. The results showed that titanium oxide films deposited by unbalance magnetron sputtering were compact and could obviously enhance microhardness, wear resistance of titanium alloy substrate. Potentiodynamic polarization curves showed that Ti-6Al-4V deposited with titanium dioxide films had lower dissolution currents than that of the uncoated one. The results of in vitro hemocompatibility analyses indicated that the blood compatibility of the titanium dioxide films with bandgap 3.2 eV have better blood compatibility.

  7. Development of a 14-vane, double-strapped, 5.8-GHz magnetron oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Jin Joo; Lee, Han Seoul; Jang, Kwang Ho; Sim, Sung Hun; Choi, Heung Sik

    2016-08-01

    Experiments on a 14-vane, double-strapped magnetron oscillator were performed to demonstrate high-power, high-efficiency coherent radiation at 5.8 GHz. The double-strapped magnetron was designed by using the Buneman-Hatree resonance condition, electromagnetic simulations and non-linear three-dimensional particle-in-cell (PIC) simulations. Experiments showed an oscillation output power of 5.3 kW at 5.79 GHz, corresponding to a DC-RF conversion efficiency of 57%. The cathode voltage was 9.2 kV, the collected anode current was 1 A, and the external magnetic field is 7.5 kG. Experimental results for the RF power, oscillation frequency, and efficiency were in good agreement with the corresponding values from non-linear three-dimensional PIC simulations.

  8. Measuring the energy flux at the substrate position during magnetron sputter deposition processes

    SciTech Connect

    Cormier, P.-A.; Thomann, A.-L.; Dussart, R.; Semmar, N.; Mathias, J.; Balhamri, A.; Snyders, R.; Konstantinidis, S.

    2013-01-07

    In this work, the energetic conditions at the substrate were investigated in dc magnetron sputtering (DCMS), pulsed dc magnetron sputtering (pDCMS), and high power impulse magnetron sputtering (HiPIMS) discharges by means of an energy flux diagnostic based on a thermopile sensor, the probe being set at the substrate position. Measurements were performed in front of a titanium target for a highly unbalanced magnetic field configuration. The average power was always kept to 400 W and the probe was at the floating potential. Variation of the energy flux against the pulse peak power in HiPIMS was first investigated. It was demonstrated that the energy per deposited titanium atom is the highest for short pulses (5 {mu}s) high pulse peak power (39 kW), as in this case, the ion production is efficient and the deposition rate is reduced by self-sputtering. As the argon pressure is increased, the energy deposition is reduced as the probability of scattering in the gas phase is increased. In the case of the HiPIMS discharge run at moderate peak power density (10 kW), the energy per deposited atom was found to be lower than the one measured for DCMS and pDCMS discharges. In these conditions, the HiPIMS discharge could be characterized as soft and close to a pulsed DCMS discharge run at very low duty cycle. For the sake of comparison, measurements were also carried out in DCMS mode with a balanced magnetron cathode, in the same working conditions of pressure and power. The energy flux at the substrate is significantly increased as the discharge is generated in an unbalanced field.

  9. Stability of Brillouin flow in planar, conventional, and inverted magnetrons

    SciTech Connect

    Simon, D. H.; Lau, Y. Y.; Greening, G.; Wong, P.; Gilgenbach, R. M.; Hoff, B. W.

    2015-08-15

    The Brillouin flow is the prevalent flow in crossed-field devices. We systematically study its stability in the conventional, planar, and inverted magnetron geometry. To investigate the intrinsic negative mass effect in Brillouin flow, we consider electrostatic modes in a nonrelativistic, smooth bore magnetron. We found that the Brillouin flow in the inverted magnetron is more unstable than that in a planar magnetron, which in turn is more unstable than that in the conventional magnetron. Thus, oscillations in the inverted magnetron may startup faster than the conventional magnetron. This result is consistent with simulations, and with the negative mass property in the inverted magnetron configuration. Inclusion of relativistic effects and electromagnetic effects does not qualitatively change these conclusions.

  10. Effect of Reactive Sputtering Parameters on TiAlN Nanocoating Structure and Morphology

    SciTech Connect

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2010-10-24

    The effect of substrate bias and nitrogen flow rate on the TiAlN nanocoating structure and morphology has been investigated by using reactive unbalance DC magnetron sputtering. TiAlN nanocoating was deposited on the tungsten carbide insert tool and the structure and morphology were characterized by using XRD and AFM, respectively. The substrate bias was varied between 0 to -221 V and the nitrogen flow rate was varied between 30 to 72 sccm. The results showed that the structure of TiAlN nanocoating consisted of mainly (111) and (200) plane. The structure was significatly influenced by substrate bias in promoting finer crystal size and increased crystal plane spacing while the rms roughness of nanocoating was influenced by substrate bias and nitrogen flow rate.

  11. Effect of Reactive Sputtering Parameters on TiAlN Nanocoating Structure and Morphology

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2010-10-01

    The effect of substrate bias and nitrogen flow rate on the TiAlN nanocoating structure and morphology has been investigated by using reactive unbalance DC magnetron sputtering. TiAlN nanocoating was deposited on the tungsten carbide insert tool and the structure and morphology were characterized by using XRD and AFM, respectively. The substrate bias was varied between 0 to -221 V and the nitrogen flow rate was varied between 30 to 72 sccm. The results showed that the structure of TiAlN nanocoating consisted of mainly (111) and (200) plane. The structure was significatly influenced by substrate bias in promoting finer crystal size and increased crystal plane spacing while the rms roughness of nanocoating was influenced by substrate bias and nitrogen flow rate.

  12. Analysis of peer-to-peer locking of magnetrons

    SciTech Connect

    Pengvanich, P.; Lau, Y. Y.; Cruz, E.; Gilgenbach, R. M.; Hoff, B.; Luginsland, J. W.

    2008-10-15

    The condition for mutual, or peer-to-peer, locking of two magnetrons is derived. This condition reduces to Adler's classical phase-locking condition in the limit where one magnetron becomes the 'master' and the other becomes the 'slave.' The formulation is extended to the peer-to-peer locking of N magnetrons, under the assumption that the electromagnetic coupling among the N magnetrons is modeled by an N-port network.

  13. Magnetron surface coil for brain MR imaging.

    PubMed

    Rodríguez, Alfredo O

    2006-08-01

    A resonator surface coil was developed for magnetic resonance imaging of the brain and tested on a clinical imager. This resonator design was based on the cavity magnetron with an 8 slot-and-hole configuration. High-resolution brain images were obtained from a water-filled phantom and from a healthy volunteer brain. To compare coil performance, SNR-vs.-depth plots were computed for a single-loop coil and the magnetron prototype from phantom images. These experimentally acquired profiles show an important improvement in SNR. Thus, the magnetron surface coil can generate brain images with a high resolution and penetration capacity. The high sensitivity of this coil makes it a good candidate to be used in multicoil imaging sequences.

  14. Compact Relativistic Magnetron with Output Mode Converter

    NASA Astrophysics Data System (ADS)

    Andreev, Andrey; Fuks, Mikhail; Schamiloglu, Edl

    2003-10-01

    We consider a relativistic magnetron in which all of the resonators of the anode block are smoothly continued onto a conical antenna up to the radius corresponding to the cutoff frequency of the radiated wave in a cylindrical waveguide. Such a magnetron is capable of high output power, is compact, has a high resistance to microwave breakdown, is able to work with extremely high currents, and has the possibility of forming desirable output radiation patterns. The magnetic field can be provided by a small solenoid over the resonant system, which is a much smaller volume than is required for the Helmholtz coils used in traditional relativistic magnetrons. The maximum size of this magnetron is the aperture of the horn antenna. The unique aspect of such a design is the possibility of using the horn antenna for conversion of the operating mode to lower order modes, including the TE_11 mode, which is radiated as a narrow wave beam. For a magnetron operating in π-mode, the mode converter comprises a continuation of the resonantor blocks onto the horn for those resonators that correspond to the symmetry of the output mode. For example, in order to provide Gaussian mode output only two diametrically opposite resonators of even-numbered resonators must be continued onto the horn. In this case the aperture of the horn antenna can be close to the cut-off diameter for the TE_11 mode, and the output power is limited only by breakdown of the output window. In this presentation results of preliminary calculations of the magnetron with output mode converters are presented.

  15. The effect of substrate bias on the characteristics of CrN coatings deposited by DC-superimposed HiPIMS system

    NASA Astrophysics Data System (ADS)

    Zuo, X.; Xia, F.; Zhang, D.; Ke, P. L.; Wang, Q. M.; Wang, A. Y.

    2017-07-01

    Chromium nitride coatings were prepared by reactive DC-superimposed high-power-impulse magnetron sputtering (HiPIMS) system. The influence of substrate bias on the microstructure and mechanical properties of CrN coatings was investigated. XRD and cross-sectional SEM were utilized to characterize the film structures. Mechanical properties were characterized by nanoindentation and Vickers indentation test. The results revealed that the microstructure and mechanical properties of CrN coatings were affected by bias voltage. The CrN coatings exhibited dense and fine columnar grain structure with the hardness of about 18.7 GPa. The fracture toughness of CrN coatings was around 3.16 MPa ṡ m1/2. However, further increase of the bias voltage from -250 V to -300 V led to the degradation of coating properties.

  16. Velocity distribution of neutral species during magnetron sputtering by Fabry-Perot interferometry

    SciTech Connect

    Britun, N.; Han, J. G.; Oh, S.-G.

    2008-04-07

    The velocity distribution of a metallic neutral species sputtered in a dc magnetron discharge was measured using a planar Fabry-Perot interferometer and a hollow cathode lamp as a reference source. The measurement was performed under different angles of view relative to the target surface. The velocity distribution function in the direction perpendicular to the target becomes asymmetrical as the Ar pressure decreases, whereas it remains nearly symmetrical when the line of sight is parallel to the target surface. The average velocity of the sputtered Ti atoms was measured to be about 2 km/s.

  17. Magnetron sputtering system for fabrication of X-ray multilayer optics

    SciTech Connect

    Nayak, M.; Rao, P. N.; Lodha, G. S.

    2012-06-25

    A specially designed DC/RF magnetron sputtering system has been installed for the development of large area x-ray multilayer (ML) optics at Indus synchrotron radiation facility. A brief description of the system configuration, automation and operating conditions are presented. The system has the capability of fabricating large area (300 Multiplication-Sign 100-mm{sup 2}) X-ray MLs with required accuracy, uniformity and reproducibility. Thin film growth suitable for fabrication of X-ray ML optics has achieved by optimizing the sputtering process parameters. The representative results are presented.

  18. Studies of PMMA sintering foils with and without coating by magnetron sputtering Pd

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Mackova, A.; Torrisi, L.; Vad, K.; Csik, A.; Ando', L.; Svecova, B.

    2017-09-01

    Polymethylmethacrylate thin foils were prepared by using physical and chemical processes aimed at changing certain properties. The density and the optical properties were changed obtaining clear and opaque foils. DC magnetron sputtering method was used to cover the foils with thin metallic palladium layers. The high optical absorbent foils were obtained producing microstructured PMMA microbeads with and without thin metallic coatings. Rutherford Backscattering Spectroscopy, optical investigation and microscopy were employed to characterize the prepared foils useful in the field study of laser-matter interaction.

  19. Direct-current magnetron fabrication of indium tin oxide/InP solar cells

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Wu, X.; Gessert, T. A.; Li, X.

    1988-01-01

    Efficient solar cells of indium tin oxide (ITO)/InP have been fabricated using dc magnetron deposition of the ITO into single-crystal InP substrates. Efficiencies of over 16.5 percent have been achieved, the highest ever recorded for devices of this construction. The results of studies of the annealing behavior of the cells and observations of interfacial changes using Raman spectroscopy and secondary ion mass spectroscopy, together with measurements of light and dark current/voltage and quantum efficiency characteristics, are used to model the behavior of the cells and explain their lack of sensitivity to fabrication conditions.

  20. Direct-current magnetron fabrication of indium tin oxide/InP solar cells

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Wu, X.; Gessert, T. A.; Li, X.

    1988-01-01

    Efficient solar cells of indium tin oxide (ITO)/InP have been fabricated using dc magnetron deposition of the ITO into single-crystal InP substrates. Efficiencies of over 16.5 percent have been achieved, the highest ever recorded for devices of this construction. The results of studies of the annealing behavior of the cells and observations of interfacial changes using Raman spectroscopy and secondary ion mass spectroscopy, together with measurements of light and dark current/voltage and quantum efficiency characteristics, are used to model the behavior of the cells and explain their lack of sensitivity to fabrication conditions.

  1. The Development and Application of the Magnetron,

    DTIC Science & Technology

    1982-03-31

    of *medicine. The power of the magnetron used is from several tens of watts to several hundred watts. Microwave physiotherapy has been used in...clinical practice for the fast cure of arthritis , rheumatism and the subsidence of swelling. Therapeutic results have been excellent. In recent years

  2. Power Supply to Drive a Magnetron for PFC Gas Resolution

    NASA Astrophysics Data System (ADS)

    Iwabuki, Hiroyasu; Iwata, Akihiko; Yoshiyasu, Hajimu

    A power supply to drive a magnetron for a PFC gas resolution has been developed. The power supply (ratings 5kV, 1A) is composed of a full bridge inverter and a voltage doubler rectifier circuit. The characteristics of the current and electric power of a magnetron with the non-linear load were analyzed. As a result, it was found that the magnetron power and the magnetron peak current are approximately linear to the pulse width when the reactor, which controls the current of magnetron, was inserted in the inverter output. We constructed a trial power supply to drive magnetron. It was confirmed that the trial power supply could continuously control the magnetron output up to 3.5kW. The PFC gas resolution efficiency with microwave plasma is larger than the silent discharge method. Therefore we can expect the realization of a small, highly efficient gas resolution device using microwave plasma.

  3. Adaptable DC offset correction

    NASA Technical Reports Server (NTRS)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  4. The mechanism of growth of ZnO nanorods by reactive sputtering

    NASA Astrophysics Data System (ADS)

    Nandi, R.; Major, S. S.

    2017-03-01

    DC reactive magnetron sputtering of zinc target in argon-oxygen sputtering atmosphere has been used to grow ZnO thin films/nanorods on Si in a wide substrate temperature range of 300-750 °C and under different sputtering conditions, namely, DC power, sputtering pressure and oxygen percentage in the sputtering atmosphere. Powder X-ray diffraction, Raman spectroscopy and a combination of top-down and cross-sectional scanning electron microscopy studies of ZnO films and nanorods grown under different conditions, have shown that substrate temperature critically controls their growth behavior and morphology, eventually resulting in the growth of vertically c-axis oriented, highly aligned and separated ZnO nanorods at substrate temperatures of 700-750 °C. The strongly substrate temperature dependent growth of nanorods is explained by considering that the growth above 600 °C, takes place in the 'desorption regime', in which, the surface diffusion length decreases exponentially with temperature. The diameter of nanorods increases with increase of DC power or decrease of sputtering pressure, which is attributed to the increase of surface diffusion length at higher deposition flux. The morphology of ZnO nanorods is not significantly affected by oxygen percentage in the sputtering atmosphere, since it does not influence the deposition flux.

  5. Study on the effect of target on plasma parameters of magnetron sputtering discharge plasma

    SciTech Connect

    Saikia, P.; Kakati, B.; Saikia, B. K.

    2013-10-15

    In this study, the effect of magnetron target on different plasma parameters of Argon/Hydrogen (Ar - H{sub 2}) direct current (DC) magnetron discharge is examined. Here, Copper (Cu) and Chromium (Cr) are used as magnetron targets. The value of plasma parameters such as electron temperature (kT{sub e}), electron density (N{sub e}), ion density (N{sub i}), degree of ionization of Ar, and degree of dissociation of H{sub 2} for both the target are studied as a function of input power and hydrogen content in the discharge. The plasma parameters are determined by using Langmuir probe and Optical emission spectroscopy. On the basis of the different reactions in the gas phase, the variation of plasma parameters and sputtering rate are explained. The obtained results show that electron and ion density decline with gradual addition of Hydrogen in the discharge and increase with rising input power. It brings significant changes on the degree of ionization of Ar and dissociation of H{sub 2}. The enhanced value of electron density (N{sub e}), ion density (N{sub i}), degree of Ionization of Ar, and degree of dissociation of H{sub 2} for Cr compared to Cu target is explained on the basis of it's higher Ion Induced Secondary Electron Emission Coefficient (ISEE) value.

  6. Simulation of the electric potential and plasma generation coupling in magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Krueger, Dennis; Schmidt, Frederik; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2016-09-01

    Magnetron sputtering typically operated at low pressures below 1 Pa is a widely applied deposition technique. For both, high power impulse magnetron sputtering (HiPIMS) as well as direct current magnetron sputtering (dcMS) the phenomenon of rotating ionization zones (also referred to as spokes) has been observed. A distinct spatial profile of the electric potential has been associated with the latter, giving rise to low, mid, and high energy groups of ions observed at the substrate. The adherent question of which mechanism drives this process is still not fully understood. This query is approached using Monte Carlo simulations of the heavy particle (i.e., ions and neutrals) transport consistently coupled to a pre-specified electron density profile via the intrinsic electric field. The coupling between the plasma generation and the electric potential, which establishes correspondingly, is investigated. While the system is observed to strive towards quasi-neutrality, distinct mechanisms governing the shape of the electric potential profile are identified. This work is supported by the German Research Foundation (DFG) in the frame of the transregional collaborative research centre TRR 87.

  7. id="content" class="area">

    < Previous Issue | Next Issue >

    Volume 201, Issue14 (November 2004)

    Articles in the Current Issue:

    Rapid Research Note

    Highly (001)-textured WS2-x films prepared by reactive radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Mientus, R.; Seeger, S.; Weiß, V.

    2004-11-01

    Highly (001)-oriented WS2-x films were grown onto oxidized silicon substrates by reactive magnetron sputtering from a metallic tungsten target in argon-hydrogen sulfide mixtures. The best films with respect to the van-der-Waals orientation, i.e. with the (001) planes parallel to the substrate surface, were grown by excitation of the plasma with radio frequency of 27.12 MHz. These films exhibit the largest grains and the lowest film strain. It is shown that this effect is not due to the lower deposition rate at this high excitation frequency. Instead it was found that the lower DC voltage at the sputtering target is advantageous for the film growth since the bombardment of the growing film by highly energetic particles is avoided by this type of plasma excitation.

  8. Structural formation and photocatalytic activity of magnetron sputtered titania and doped-titania coatings.

    PubMed

    Kelly, Peter J; West, Glen T; Ratova, Marina; Fisher, Leanne; Ostovarpour, Soheyla; Verran, Joanna

    2014-10-13

    Titania and doped-titania coatings can be deposited by a wide range of techniques; this paper will concentrate on magnetron sputtering techniques, including "conventional" reactive co-sputtering from multiple metal targets and the recently introduced high power impulse magnetron sputtering (HiPIMS). The latter has been shown to deliver a relatively low thermal flux to the substrate, whilst still allowing the direct deposition of crystalline titania coatings and, therefore, offers the potential to deposit photocatalytically active titania coatings directly onto thermally sensitive substrates. The deposition of coatings via these techniques will be discussed, as will the characterisation of the coatings by XRD, SEM, EDX, optical spectroscopy, etc. The assessment of photocatalytic activity and photoactivity through the decomposition of an organic dye (methylene blue), the inactivation of E. coli microorganisms and the measurement of water contact angles will be described. The impact of different deposition technologies, doping and co-doping strategies on coating structure and activity will be also considered.

  9. Colored and transparent oxide thin films prepared by magnetron sputtering: the glass blower approach.

    PubMed

    Gil-Rostra, Jorge; Chaboy, Jesús; Yubero, Francisco; Vilajoana, Antoni; González-Elipe, Agustín R

    2013-03-01

    This work describes the reactive magnetron sputtering processing at room temperature of several mixed oxide MxSiyOz thin films (M: Fe, Ni, Co, Mo, W, Cu) intended for optical, coloring, and aesthetic applications. Specific colors can be selected by adjusting the plasma gas composition and the Si-M ratio in the magnetron target. The microstructure and chemistry of the films are characterized by a large variety of techniques including X-ray photoemission spectroscopy, X-ray absorption spectroscopy (XAS), and infrared spectroscopy, while their optical properties are characterized by UV-vis transmission and reflection analysis. Particularly, XAS analysis of the M cations in the amorphous thin films has provided valuable information about their chemical state and local structure. It is concluded that the M cations are randomly distributed within the SiO2 matrix and that both the M concentration and its chemical state are the key parameters to control the final color of the films.

  10. Facility for combined in situ magnetron sputtering and soft x-ray magnetic circular dichroism

    SciTech Connect

    Telling, N. D.; Laan, G. van der; Georgieva, M. T.; Farley, N. R. S.

    2006-07-15

    An ultrahigh vacuum chamber that enables the in situ growth of thin films and multilayers by magnetron sputtering techniques is described. Following film preparation, x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements are performed by utilizing an in vacuum electromagnet. XMCD measurements on sputtered thin films of Fe and Co yield spin and orbital moments that are consistent with those obtained previously on films measured in transmission geometry and grown in situ by evaporation methods. Thin films of FeN prepared by reactive sputtering are also examined and reveal an apparent enhancement in the orbital moment for low N content samples. The advantages of producing samples for in situ XAS and XMCD studies by magnetron sputtering are discussed.

  11. Bioactivity and hemocompatibility study of amorphous hydrogenated carbon coatings produced by pulsed magnetron discharge.

    PubMed

    Lopez-Santos, C; Colaux, J L; Laloy, J; Fransolet, M; Mullier, F; Michiels, C; Dogné, J-M; Lucas, S

    2013-06-01

    Literature contains very few data about the potential biomedical application of amorphous hydrogenated carbon (a-C:H) thin films deposited by reactive pulsed magnetron discharge even so it is one of the most scalable plasma deposition technique. In this article, we show that such a C2H2 pulsed magnetron plasma produces high quality coating with good hemocompatibility and bioactive response: no effect on hemolysis and hemostasis were observed, and proliferation of various cell types such as endothelial, fibroblast, and osteoblast-like cells was not affected when the deposition conditions were varied. Cell growth on a-C:H coatings is proposed to take place by a two-step process: the initial cell contact is affected by the smooth topography of the a-C:H coatings, whereas the polymeric-like structure, together with a moderate hydrophilicity and a high hydrogen content, directs the posterior cell spreading while preserving the hemocompatible behavior.

  12. Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC

    NASA Astrophysics Data System (ADS)

    Solovyev, A. A.; Shipilova, A. V.; Ionov, I. V.; Kovalchuk, A. N.; Rabotkin, S. V.; Oskirko, V. O.

    2016-08-01

    Reactive magnetron sputtering has been used for deposition of yttria-stabilized ZrO2 (YSZ) and gadolinium-doped CeO2 (CGO) layers on NiO-YSZ commercial anodes for solid oxide fuel cells. To increase the deposition rate and improve the quality of the sputtered thin oxide films, asymmetric bipolar pulse magnetron sputtering was applied. Three types of anode-supported cells, with single-layer YSZ or CGO and YSZ/CGO bilayer electrolyte, were prepared and investigated. Optimal thickness of oxide layers was determined experimentally. Based on the electrochemical characteristics of the cells, it is shown that, at lower operating temperatures of 650°C to 700°C, the cells with single-layer CGO electrolyte are most effective. The power density of these fuel cells exceeds that of the cell based on YSZ single-layer electrolyte at the same temperature. Power densities of 650 mW cm-2 and 500 mW cm-2 at 700°C were demonstrated by cells with single-layer YSZ and CGO electrolyte, respectively. Significantly enhanced maximum power density was achieved in a bilayer-electrolyte single cell, as compared with cells with a single electrolyte layer. Maximum power density of 1.25 W cm-2 at 800°C and 1 W cm-2 at 750°C under voltage of 0.7 V were achieved for the YSZ/CGO bilayer electrolyte cell with YSZ and CGO thickness of about 4 μm and 1.5 μm, respectively. This signifies that the YSZ thin film serves as a blocking layer to prevent electrical current leakage in the CGO layer, leading to the overall enhanced performance. This performance is comparable to the state of the art for cells based on YSZ/CGO bilayer electrolyte.

  13. Langmuir probe measurements in the Hollow Cathode Magnetron

    NASA Astrophysics Data System (ADS)

    Vukovic, Mirko; Lai, Kwok-Fai

    1997-10-01

    The Hollow Cathode Magnetron (HCM) is a new kind of a high density plasma device which has been proposed as an ionized physical vapor deposition source for semiconductor device fabrication(John C. Helmer, Kwok F. Lai, Robert L. Anderson US Patent 5,482,661, Jan. 9, 1996). The target is of high purity metal machined to resemble a hollow cathode (id. 4cm, depth 6cm). It resides in a cooled metal housing. The magnetic field (several hundred Gauss) is generated by permanent magnets stacked on the outside of the metal housing, aligned parallel to the HCM axis. At the mouth of the HCM, a magnetic cusp traps a high density plasma. Beyond the cusp, a slowly diverging magnetic field produces a low temperature (T_e ~ 2-3eV), high density (n_e ~ 10^12-10^13cm-3∝ P_DC) plume. The HCM serves to both sputter and ionize metal atoms from the target. These ions may deposit onto a silicon device wafer, enabling metal deposition into the bottom of very small (<0.5μm) high aspect ratio (>=6:1) features. The unique properties of the films deposited using the HCM will be presented and related to the plasma parameters obtained from Langmuir probe data and magnetic field modeling. discharge is on the inside wall

  14. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  15. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  16. Metamaterial Cathodes in Multi-Cavity Magnetrons

    DTIC Science & Technology

    2011-06-01

    P.S. Campbell , R.R. Lentz, W.T. Main, S.G. Tantawi, K.G. Kato, H.K. Beutel, K.W. Brown, D.D. Crouch, G.K. Jones, and R.B. McDonald, “Develop- ment...14] G.A. Mesyats, Explosive Electron Emission, URO Press, 1998. [15] R.B. Miller, “The relativistic microwave magnetron,” in An Introduction to

  17. Recirculating planar magnetrons: simulations and experiment

    SciTech Connect

    Franzi, Matthew; Gilgenbach, Ronald; French, David; Lau, Y.Y.; Simon, David; Hoff, Brad; Luginsland, John W.

    2011-07-01

    The Recirculating Planar Magnetron (RPM) is a novel crossed-field device whose geometry is expected to reduce thermal load, enhance current yield as well as ease the geometric limitations in scaling to high RF frequencies as compared to the conventional cylindrical magnetrons. The RPM has two different adaptations: A. Axial B field and radial E field; B. Radial B field and axial E field. The preliminary configuration (A) to be used in experiments at the University of Michigan consists of two parallel planar sections which join on either end by cylindrical regions to form a concentric extruded ellipse. Similar to conventional magnetrons, a voltage across the AK gap in conjunction with an axial magnetic field provides the electrons with an ExB drift. The device is named RPM because the drifting electrons recirculate from one planar region to the other. The drifting electrons interact with the resonantly tuned slow wave structure on the anode causing spoke formation. These electron spokes drive a RF electric field in the cavities from which RF power may be extracted to Waveguides. The RPM may be designed in either a conventional configuration with the anode on the outside, for simplified extraction, or as an inverted magnetron with the anode at the inner conductor, for fast start-up. Currently, experiments at the Pulsed Power and Microwave Laboratory at the University of Michigan are in the setup and design phase. A conventional RPM with planar cavities is to be installed on the Michigan Electron Long Beam Accelerator (MELBA) and is anticipated to operate at -200kV, 0.2T with a beam current of 1-10 kA at 1GHz. The conventional RPM consists of 12 identical planar cavities, 6 on each planar side, with simulated quality factor of 20.

  18. Fuzzy tungsten in a magnetron sputtering device

    NASA Astrophysics Data System (ADS)

    Petty, T. J.; Khan, A.; Heil, T.; Bradley, J. W.

    2016-11-01

    Helium ion induced tungsten nanostructure (tungsten fuzz) has been studied in a magnetron sputtering device. Three parameters were varied, the fluence from 3.4 × 1023-3.0 × 1024 m-2, the He ion energy from 25 to 70 eV, and the surface temperature from 900 to 1200 K. For each sample, SEM images were captured, and measurements of the fuzz layer thickness, surface roughness, reflectivity, and average structure widths are provided. A cross-over point from pre-fuzz to fully formed fuzz is found at 2.4 ± 0.4 × 1024 m-2, and a temperature of 1080 ± 60 K. No significant change was observed in the energy sweep. The fuzz is compared to low fluence fuzz created in the PISCES-A linear plasma device. Magnetron fuzz is less uniform than fuzz created by PISCES-A and with generally larger structure widths. The thicknesses of the magnetron samples follow the original Φ1/2 relation as opposed to the incubation fluence fit.

  19. Particle contamination formation in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Sequeda, F.; Huang, C.

    1997-07-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique which provides real-time, {ital in situ} imaging of particles {gt}0.3 {mu}m on the target, substrate, or in the plasma. Using this technique, we demonstrate that the mechanisms for particle generation, transport, and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes, due to the inherent spatial nonuniformity of magnetically enhanced plasmas. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. There, film redeposition induces filament or nodule growth. Sputter removal of these features is inhibited by the dependence of sputter yield on angle of incidence. These features enhance trapping of plasma particles, which then increases filament growth. Eventually the growths effectively {open_quotes}short-circuit{close_quotes} the sheath, causing high currents to flow through these features. This, in turn, causes mechanical failure of the growth resulting in fracture and ejection of the target contaminants into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests it may be universal to many sputter processes. {copyright} {ital 1997 American Vacuum Society.}

  20. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    SciTech Connect

    Zhang, Xiaozhi; Yue, Zhenxing Meng, Siqin; Yuan, Lixin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)

  1. Method and apparatus for improved high power impulse magnetron sputtering

    DOEpatents

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  2. Drastic improvement in the S-band relativistic magnetron operation

    NASA Astrophysics Data System (ADS)

    Sayapin, A.; Hadas, Y.; Krasik, Ya. E.

    2009-08-01

    The superior operation of a S-band relativistic magnetron powered by a Linear Induction Accelerator with ≤400 kV, ≤4 kA, and ˜150 ns output pulses was revealed when the magnetron was coupled with a resonance load and a part of the generated microwave power stored in the resonator was reflected back to the magnetron. It is shown that, under optimal conditions, the efficiency of the magnetron operation increases by ˜40% and the generated microwave power reaches the power of the electron beam.

  3. Satellite Power System (SPS) magnetron tube assessment study

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1981-01-01

    The data base was extended with respect to the magnetron directional amplifier and its operating parameters that are pertinent to its application in the solar power satellite. On the basis of the resulting extended data base the design of a magnetron was outlined that would meet the requirements of the SPS application and a technology program was designed that would result in its development. The proposed magnetron design for the SPS is a close scale of the microwave oven magnetron, and resembles it closely physically and electrically.

  4. Evaluation of DC-sputtered Glassy TaCoN Thin Film for Copper Metallization

    NASA Astrophysics Data System (ADS)

    Fang, Jau-Shiung; Ke, Min-Li; Chen, Hui-Chien

    2007-11-01

    The failure mechanism of the TaCoN barrier for copper metallization was examined using films by direct current (dc) magnetron reactive sputtering at various nitrogen flow rates. The as-deposited TaCoN films had a glassy structure and were free from intermetallic compounds. Optimizing the nitrogen flow rate during sputtering maximized the thermal stability of the Si/Ta66.8Co11.4N21.8/Cu metallization system up to an annealing temperature of 750°C when the film was deposited using a nitrogen flow rate of 1 sccm, as revealed by using X-ray diffraction, a scanning electron microscope, a four-point probe and a transmission electron microscope. Structural analysis indicated that the failure mechanisms of the studied Si/TaCoN/Cu stacked films involved the initial dissociation of the barrier layer that was annealed at a specific temperature, and the subsequent formation of diffusion paths along which the copper penetrates through the TaCoN barrier layer to react with underlying Si. The high formation temperature of the Cu3Si phase demonstrated that the studied film was highly stable, indicating that the TaCoN thin film is highly promising for use as a diffusion barrier for Cu metallization.

  5. In situ stress evolution during magnetron sputtering of transition metal nitride thin films

    SciTech Connect

    Abadias, G.; Guerin, Ph.

    2008-09-15

    Stress evolution during reactive magnetron sputtering of TiN, ZrN, and TiZrN layers was studied using real-time wafer curvature measurements. The presence of stress gradients is revealed, as the result of two kinetically competing stress generation mechanisms: atomic peening effect, inducing compressive stress, and void formation, leading to a tensile stress regime predominant at higher film thickness. No stress relaxation is detected during growth interrupt in both regimes. A change from compressive to tensile stress is evidenced with increasing film thickness, Ti content, sputtering pressure, and decreasing bias voltage.

  6. Study on mixed vanadium oxide thin film deposited by RF magnetron sputtering and its application

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Jianhui, Tu; Hao, Feng; Jingzhong, Cui

    Vanadium oxide (VOx) thin films were deposited on fused quartz using a pure metal vanadium target by RF reactive magnetron sputtering technique. Film microstructure, valence state, optical transmittance properties were studied. The mixed valence VOx thin films deposited with different thickness were found to be amorphous. And the optical transmittance curves are flatness in certain wavelength region. These films can be used to control the relative light intensity of the rubidium light beam between the rubidium lamp and the vapor cell, in order to optimize the working parameters of the rubidium frequency standard (RAFS).

  7. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  8. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  9. Efficient dc-to-dc converter

    NASA Technical Reports Server (NTRS)

    Black, J. M.

    1978-01-01

    Circuit consists of chopper section which converts input dc to square wave, followed by bridge-rectifier stage. Chopper gives nearly-ideal switching characteristics, and bridge uses series of full-wave stages rather than less-efficient half-wave rectifiers found in previous circuits. Special features of full-wave circuit allow redundant components to be eliminated, lowering parts count. Circuit can also be adapted for use as dc-to-dc converter or as combination dc-and-ac source.

  10. Magnetron-Sputtered Amorphous Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Mehra, M.; Khanna, S. K.

    1985-01-01

    Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.

  11. Relativistic Magnetron Priming Experiments and Theory

    DTIC Science & Technology

    2010-03-29

    THEORY Grant/Contract Number: FA9550-05-1-0087 Personnel Supported Faculty: R.M. Gilgenbach and Y.Y. Lau Graduate Students and Postdocs: Brad ... Hoff , PhD, (Now Employed at AFRL, Kirtland AFB, NM) Wilkin Tang, PhD, (Now Employed at AFRL, Kirtland AFB. NM) Will White, PhD, (Now Employed at...Relativistic Magnetron B.W. Hoff , R.M. Gilgenbach, N.M. Jordan, Y.Y. Lau, E. Cruz, D. French, M.R. Gomez, J.C. Zier., T.A. Spencera), D. Priceb) Plasma

  12. c-axis inclined ZnO films for shear-wave transducers deposited by reactive sputtering using an additional blind

    SciTech Connect

    Link, M.; Schreiter, M.; Weber, J.; Gabl, R.; Pitzer, D.; Primig, R.; Wersing, W.; Assouar, M.B.; Elmazria, O.

    2006-03-15

    This article reports on the growth and characterization of polycrystalline ZnO films having c axis inclined up to 16 deg. with respect to the substrate normal. These films allow the excitation of shear and longitudinal waves with comparable electromechanical coupling constants and are of significant interest for thin film bulk acoustic resonators (FBARs). The films are deposited on silicon substrates covered by Al{sub 2}O{sub 3} and SiO{sub 2} buffer layers under low pressure using a modified reactive dc-pulsed magnetron sputtering system. A blind has been positioned between target and substrate, allowing oblique particle incidence without tilting the wafer. The study of structural properties of the deposited ZnO films by x-ray diffraction and scanning electron microscopy has permitted to show the presence of the inclined structure. Electromechanical coupling constants K up to 13% have been extracted for shear-mode excitation using highly overmoded FBARs.

  13. The influence of N2 flow rate on Ar and Ti Emission in high-pressure magnetron sputtering system plasma

    NASA Astrophysics Data System (ADS)

    How, Soo Ren; Nayan, Nafarizal; Lias, Jais

    2017-03-01

    For ionized physical vapor deposition (known as IPVD) technique, investigation on the ionization mechanism of titanium atoms is very important during the deposition of titanium nitride (TiN) thin film using reactive magnetron sputtering plasma. The introduction of nitrogen gas into the chamber discharge leads to modifications of plasma parameters and ionization mechanism of transition species. In this work, an investigation on the influence of nitrogen flow rate on spectrum properties of argon and titanium during the deposition process have been carried out. The experimental configuration consists of OES and structure of magnetron sputtering device with the turbo molecular pump. A high-pressure magnetron sputtering plasma was used as plasma discharge chamber with various flow rate of nitrogen gas. Optical emission spectroscopy (OES) measurements were employed as plasma diagnostics tool in magnetron sputtering plasma operated at relatively high pressure. OES is a non-invasive plasma diagnostics method and that can detect the atomic and ionic emission during plasma discharge. The flow rate of the Ar and N2 gas are controlled by mass flow controller. The changes of relative emission for both neutral and ionic of argon as well as titanium were observed using optical spectrometer when the nitrogen gas is introduced into the discharged chamber. We found that the titanium emission decreased very rapidly with the flow rate of nitrogen. In addition, the argon emission slightly decreased with the flow rate of nitrogen.

  14. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Liang, SONG; Xianping, WANG; Le, WANG; Ying, ZHANG; Wang, LIU; Weibing, JIANG; Tao, ZHANG; Qianfeng, FANG; Changsong, LIU

    2017-04-01

    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (∼17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  15. Reactively sputtered thermochromic tungsten doped VO{sub 2} films

    SciTech Connect

    Sobhan, M.A.; Kivaisi, R.T.; Stjerna, B.; Granqvist, C.G.

    1994-12-31

    Tungsten-doped vanadium oxide (V{sub 1{minus}x}W{sub x}O{sub 2}) films were prepared by concurrent reactive dc magnetron sputtering of vanadium and tungsten in an Ar + O{sub 2} plasma with a controlled oxygen partial pressure. Films were deposited onto glass substrates at 400 C. The films had a metal-semiconductor transition at a temperatures {tau}{sub t} that was depressed when x was increased. Rutherford Back Scattering was used to determine x. X-ray diffraction was employed to confirm the monoclinic low-temperature VO{sub 2} phase. The relation between x and {tau}{sub t} was studied and compared with results from the literature. It was shown that {tau}{sub t} could be set to a value between 17 and 65 C by proper choice of x. The optical and electrical properties of the films were investigated around the metal-semiconductor phase transition. The luminous transmittance was rather unaffected by the temperature, whereas the near infrared transmittance showed lower values above {tau}{sub t}. The degree of thermochromic modulation decreased for increased x. Electrical measurements showed that the ratio of the resistance above and below {tau}{sub t} decreased with increasing x.

  16. Indium oxide-based transparent conductive films deposited by reactive sputtering using alloy targets

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yusuke; Maruyama, Eri; Jia, Junjun; Machinaga, Hironobu; Shigesato, Yuzo

    2017-04-01

    High-quality transparent conductive oxide (TCO) films, Sn-doped In2O3 (ITO) and In2O3–ZnO (IZO), were successfully deposited on either synthetic silica or polyethylene terephthalate (PET) substrates in the “transition region” by reactive dc magnetron sputtering using In–Zn and In–Sn alloy targets, respectively, with a specially designed plasma emission feedback system. The composition, crystallinity, surface morphology, and electrical and optical properties of the films were analyzed. All of the IZO films were amorphous, whereas the ITO films were polycrystalline over a wide range of deposition conditions. The minimum resistivities of the IZO and ITO films deposited on the heated PET substrates at 150 °C were 3.3 × 10‑4 and 5.4 × 10‑4 Ω·cm, respectively. By applying rf bias to unheated PET substrates, ITO films with a resistivity of 4.4 × 10‑4 Ω·cm were deposited at a dc self-bias voltage of ‑60 V.

  17. HOx Photochemistry during DC3

    NASA Astrophysics Data System (ADS)

    Ren, X.; Mao, J.; Zhang, L.; Miller, D.; Brune, W. H.

    2013-12-01

    Measurements of OH, HO2 and OH reactivity were made as part of a much larger measurement suite from the NASA DC-8 aircraft during the Deep Convective Clouds and Chemistry (DC3) study in summer 2012. This mission, which was conducted over central North American region to investigate the impact of deep convection on upper tropospheric composition and chemistry, provides us an excellent opportunity to test oxidation chemistry in convection throughout the troposphere. Measured HOx are compared with the calculations using a box model that was constrained to in-situ measurements of long-lived chemicals. In general both measured OH and HO2 agree well with the model calculations within the measurement uncertainties. On average, the model tends to under-predict HO2 at low altitudes. No significant NO dependence was found for the observed-to-modeled OH and HO2 ratios, except the ratios are slightly less than unity when NO levels were greater than 1 ppbv indicating model over-prediction. The measured OH reactivity agrees generally well with the calculated OH reactivity using the measured OH reactants, with the measured OH reactivity higher than the calculated OH reactivity by about a factor of 1.2. We attribute this to possible missing OH reactants in the measurements. HOx budget analysis shows that the main HOx production was dominated by the ozone photolysis followed by the O(1D)+H2O reaction throughout the troposphere with small contributions from the photolysis of formaldehyde and hydrogen peroxide. The main HOx loss was the HO2+HO2 and HO2+RO2 reactions. The calculated net ozone production rates were observed to be about 1 ppb/h-1 between 10-12 km and 5 ppb h-1 below 1.5 km and were close to zero between 4-8 km. HOx behaviors under different conditions are is discussed.

  18. Ionized magnetron sputtering of aluminum(,2)oxygen(,3)

    NASA Astrophysics Data System (ADS)

    Gonzalez, Patrick Fernando

    2000-10-01

    This dissertation shows a detailed study of the conditions necessary for sputtering alumina using a novel variant of ionized magnetron sputtering (IMS) first demonstrated by Yamashita et. al. The study presented herein leverages concurrent research at our laboratory on high density plasmas, plasma characterization and charged particle beams research to demonstrate a new source capable of sputtering hydrated alumina films at high rates. High quality ceramics such as Al2O3 find uses in a variety of applications, and in particular, for mass storage applications. Consequently, there exists an ever-growing need to provide and improve the capability of growing thick insulating films. Ideally, the insulating film should be stoichiometric and able to be grown at rates high enough to be easily manufacturable. Alumina is a particularly attractive due to its high density, Na barrier properties, and stability and radiation resistance. However, high quality films are often difficult to achieve with conventional RF plasma due to extremely slow deposition rates and difficulties associated with system cooling. The preferred method is to reactively sputter Al from a solid target in an O2 ambient. Nevertheless, this process is inherently unstable and leads to arcing and uneven target wear when magnetrons are used. In this study, we build the sputtering source, evaluate, and maximize the deposition characteristics of alumina films sputtered from a solid target in an Ar/O2 ambient. Semi-crystalline (kappa + theta) alumina has been reported using a similar technique at temperatures as low 370 C. The difference in the system used herein is that RF power is used for both, the inductive and capacitive components. Additionally, we use a solid target made of sintered alumina throughout the experiment. A model is developed using regression analysis and compared to results obtained. Because plasma parameters can interact with each other, we explore ICP/CCP power interactions and gas influence

  19. Model predictive control of bidirectional isolated DC-DC converter for energy conversion system

    NASA Astrophysics Data System (ADS)

    Akter, Parvez; Uddin, Muslem; Mekhilef, Saad; Tan, Nadia Mei Lin; Akagi, Hirofumi

    2015-08-01

    Model predictive control (MPC) is a powerful and emerging control algorithm in the field of power converters and energy conversion systems. This paper proposes a model predictive algorithm to control the power flow between the high-voltage and low-voltage DC buses of a bidirectional isolated full-bridge DC-DC converter. The predictive control algorithm utilises the discrete nature of the power converters and predicts the future nature of the system, which are compared with the references to calculate the cost function. The switching state that minimises the cost function is selected for firing the converter in the next sampling time period. The proposed MPC bidirectional DC-DC converter is simulated with MATLAB/Simulink and further verified with a 2.5 kW experimental configuration. Both the simulation and experimental results confirm that the proposed MPC algorithm of the DC-DC converter reduces reactive power by avoiding the phase shift between primary and secondary sides of the high-frequency transformer and allow power transfer with unity power factor. Finally, an efficiency comparison is performed between the MPC and dual-phase-shift-based pulse-width modulation controlled DC-DC converter which ensures the effectiveness of the MPC controller.

  20. Magnetron sputtering for the production of EUV mask blanks

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick; Ngai, Tat; Karumuri, Anil; Yum, Jung; Lee, Hojune; Gilmer, David; Vo, Tuan; Goodwin, Frank

    2015-03-01

    Ion Beam Deposition (IBD) has been the primary technique used to deposit EUV mask blanks since 1995 when it was discovered it could produce multilayers with few defects. Since that time the IBD technique has been extensively studied and improved and is finally approaching usable defectivities. But in the intervening years, the defectivity of magnetron sputtering has been greatly improved. This paper evaluates the suitability of a modern magnetron tool to produce EUV mask blanks and the ability to support HVM production. In particular we show that the reflectivity and uniformity of these tools are superior to current generation IBD tools, and that the magnetron tools can produce EUV films with defect densities comparable to recent best IBD tool performance. Magnetron tools also offer many advantages in manufacturability and tool throughput; however, challenges remain, including transitioning the magnetron tools from the wafer to mask formats. While work continues on quantifying the capability of magnetron sputtering to meet the mask blank demands of the industry, for the most part the remaining challenges do not require any fundamental improvements to existing technology. Based on the recent results and the data presented in this paper there is a clear indication that magnetron deposition should be considered for the future of EUV mask blank production.

  1. Deposition Rates of High Power Impulse Magnetron Sputtering: Physics and Economics

    SciTech Connect

    Anders, Andre

    2009-11-22

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase of the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes to due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes of the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction of the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits considered.

  2. Deposition rates of high power impulse magnetron sputtering: Physics and economics

    SciTech Connect

    Anders, Andre

    2010-07-15

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase in the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes in the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction in the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits are considered.

  3. Structure and morphology of magnetron sputter deposited ultrathin ZnO films on confined polymeric template

    NASA Astrophysics Data System (ADS)

    Singh, Ajaib; Schipmann, Susanne; Mathur, Aakash; Pal, Dipayan; Sengupta, Amartya; Klemradt, Uwe; Chattopadhyay, Sudeshna

    2017-08-01

    The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (<10 nm) were grown on confined polystyrene with ∼2Rg film thickness, where Rg ∼ 20 nm (Rg is the unperturbed radius of gyration of polystyrene, defined by Rg = 0.272 √M0, and M0 is the molecular weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2-7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.

  4. Electrostatic quadrupole plasma mass spectrometer measurements during thin film depositions using simultaneous matrix assisted pulsed laser evaporation and magnetron sputtering

    SciTech Connect

    Hunter, C. N.; Check, M. H.; Muratore, C.; Voevodin, A. A.

    2010-05-15

    A hybrid plasma deposition process, combining matrix assisted pulsed laser evaporation (MAPLE) of carbon nanopearls (CNPs) with magnetron sputtering of gold was investigated for growth of composite films, where 100 nm sized CNPs were encapsulated into a gold matrix. Composition and morphology of such composite films was characterized with x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM) analysis. Carbon deposits on a gold magnetron sputter target and carbon impurities in the gold matrices of deposited films were observed while codepositing from gold and frozen toluene-CNP MAPLE targets in pure argon. Electrostatic quadrupole plasma analysis was used to determine that a likely mechanism for generation of carbon impurities was a reaction between toluene vapor generated from the MAPLE target and the argon plasma originating from the magnetron sputtering process. Carbon impurities of codeposited films were significantly reduced by introducing argon-oxygen mixtures into the deposition chamber; reactive oxygen species such as O and O+ effectively removed carbon contamination of gold matrix during the codeposition processes. Increasing the oxygen to argon ratio decreased the magnetron target sputter rate, and hence hybrid process optimization to prevent gold matrix contamination and maintain a high sputter yield is needed. High resolution TEM with energy dispersive spectrometry elemental mapping was used to study carbon distribution throughout the gold matrix as well as embedded CNP clusters. This research has demonstrated that a hybrid MAPLE and magnetron sputtering codeposition process is a viable means for synthesis of composite thin films from premanufactured nanoscale constituents, and that cross-process contaminations can be overcome with understanding of hybrid plasma process interaction mechanisms.

  5. Phase and Frequency Locked Magnetrons for SRF Sources

    SciTech Connect

    Neubauer, M.; Johnson, R.P.; Popovic, M.; Moretti, A.; /Fermilab

    2009-05-01

    Magnetrons are low-cost highly-efficient microwave sources, but they have several limitations, primarily centered about the phase and frequency stability of their output. When the stability requirements are low, such as for medical accelerators or kitchen ovens, magnetrons are the very efficient power source of choice. But for high energy accelerators, because of the need for frequency and phase stability - proton accelerators need 1-2 degrees source phase stability, and electron accelerators need .1-.2 degrees of phase stability - they have rarely been used. We describe a novel variable frequency cavity technique which will be utilized to phase and frequency lock magnetrons.

  6. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  7. Zinc Oxide Thin Films Fabricated with Direct Current Magnetron Sputtering Deposition Technique

    SciTech Connect

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong

    2011-03-30

    Zinc oxide (ZnO) is a very promising material for emerging large area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 100 nm to 1020 nm were deposited on silicon (Si) substrate. The deposition pressure was varied from 12 mTorr to 25 mTorr. The influences of the film thickness and the deposition pressure on structural properties of the ZnO films were investigated using Mahr surface profilometer and atomic force microscopy (AFM). The experimental results reveal that the film thickness and the deposition pressure play significant role in the structural formation of the deposited ZnO thin films. ZnO films deposited on Si substrates are promising for variety of thin-film sensor applications.

  8. Research on the optical and electrical properties of ITO thin film using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cai, Changlong; Zhai, Yujia; Huang, Jing; Yang, Xu; Liu, Weiguo; Gao, Aihua

    2009-12-01

    Due to excellent photoelectrical properties, ITO thin films become the indispensable flat transparent electrode for their practical applications in the flat-panel displays, touch screens, solar cells and electrochromic devices. Therefore, it's very necessary to study photoelectrical properties of ITO films. In this paper, ITO thin films were prepared on the glass substrates by DC magnetron sputtering technology, and measured the transmittance of ITO thin films in the visible region using the spectrophotometer; the resistivities were measured with the four-probe instrument. The effects of sputtering pressure, oxygen-argon flow ratio and sputtering power was researched on photoelectrical performance of ITO thin films. The results show that, the optimum parameters of ITO films prepared are: sputtering pressure 0.6Pa, oxygen-argon flow ratio 1:40, sputtering power 108W. The average transmittance in the visible area is 81.18%, resistivity is 8.9197 × 10-3Ω.cm.

  9. Research on the optical and electrical properties of ITO thin film using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cai, Changlong; Zhai, Yujia; Huang, Jing; Yang, Xu; Liu, Weiguo; Gao, Aihua

    2010-03-01

    Due to excellent photoelectrical properties, ITO thin films become the indispensable flat transparent electrode for their practical applications in the flat-panel displays, touch screens, solar cells and electrochromic devices. Therefore, it's very necessary to study photoelectrical properties of ITO films. In this paper, ITO thin films were prepared on the glass substrates by DC magnetron sputtering technology, and measured the transmittance of ITO thin films in the visible region using the spectrophotometer; the resistivities were measured with the four-probe instrument. The effects of sputtering pressure, oxygen-argon flow ratio and sputtering power was researched on photoelectrical performance of ITO thin films. The results show that, the optimum parameters of ITO films prepared are: sputtering pressure 0.6Pa, oxygen-argon flow ratio 1:40, sputtering power 108W. The average transmittance in the visible area is 81.18%, resistivity is 8.9197 × 10-3Ω.cm.

  10. Metal negative ion production by a planar magnetron sputter type radio frequency ion source

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Kanda, S.; Kasuya, T.; Wada, M.

    2017-08-01

    A planar magnetron sputter type ion source has been operated to investigate metal negative ion production. Radio frequency power at 13.56 MHz was directly supplied to the planar target made of 2 mm thick Cu disk to maintain plasma discharge and induce DC self-bias to the target for sputtering. Beam profile was obtained and the peak of negative ion beam profile was shifted to 6 mm as the beam traversed the 32 mT magnetic field in the region of the plasma grid. Extraction of Cu- beam was performed and the Cu- beam current was found consisted of two components: Cu-(surface) and Cu-(volume). Negative ion spectra were observed to measure the ratio of the surface component to the volume component. The surface component of Cu- occupied 67% of the total beam at the maximum, while it decreased the fraction down to about 50% as the source pressure was increased.

  11. Structural and mechanical properties of magnetron-sputtered Al-Au thin films

    NASA Astrophysics Data System (ADS)

    Azadmanjiri, Jalal; Wang, James; Berndt, Christopher C.; Wen, Cuie; Srivastava, Vijay K.; Kapoor, Ajay

    2017-01-01

    There is global interest in improving the mechanical properties of light metals such as aluminum (Al)-based alloys by tailoring their microstructures at the nanometer scale. On the other hand, gold (Au) has been widely applied as a wire bonding material due to its prominent ductility and conductivity. In this study, the microstructure, hardness and elastic modulus of DC magnetron-sputtered aluminum/gold (Al/Au) composite thin films of different thicknesses were investigated. It is shown that in addition to the formation of AlAu2 phase, additional Al and Au nanosegregated phases also formed. The Al/Au thin films of 600 and 800 nm thickness exhibit the maximum hardness ( 5.40 GPa) and elastic modulus ( 97.00 GPa). However, film thicknesses of 1000 and 1200 nm demonstrate a reduction in hardness and elastic modulus due to different growth mechanisms and the formation of voids that can be attributed to the Kirkendall phenomenon.

  12. Effect of sputtering power on the growth of Ru films deposited by magnetron sputtering

    SciTech Connect

    Jhanwar, Prachi; Kumar, Arvind; Rangra, K. J.; Verma, Seema

    2016-04-13

    Ruthenium is deposited by DC magnetron sputtering at different powers and is characterized. The effect of sputtering power on the electrical and structural properties of the film is investigated experimentally. High resolution X-ray diffraction is used to characterize the microstructure of Ru films deposited on SiO{sub 2} surface. The peak (002) is more sharp and intense with full width at half maximum (FWHM) of 0.37° at 250W. The grain size increases with increase in sputtering power improving the crystallinity of the film. The film deposited at high sputtering power also showed lower resistivity (12.40 µΩ-cm) and higher mobility (4.82 cm{sup 2}/V.s) as compared to the film deposited at low power. The surface morphology of the film is studied by atomic force microscopy (AFM).

  13. Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source

    SciTech Connect

    Ayesh, A. I.; Qamhieh, N.; Ghamlouche, H.; Thaker, S.; El-Shaer, M.

    2010-02-15

    We report on the fabrication of palladium (Pd) nanoclusters using a dc magnetron sputtering source. Plasma sputtering vaporizes the target's material forming nanoclusters by inert gas condensation. The sputtering source produces ionized nanoclusters that enable the study of the nanoclusters' size distribution using a quadrupole mass filter. In this work, the dependence of Pd nanoclusters' size distribution on various source parameters, such as the sputtering discharge power, inert gas flow rate, and aggregation length have been investigated. This work demonstrates the ability of tuning the palladium nanoclusters' size by proper optimization of the source operation conditions. The experimental nanocluster sizes are compared with a theoretical model that reveals the growth of large nanoclusters from 'embryos' by a two-body collision. The model is valid for a specific range of deposition parameters (low inert gas flow rates and aggregation lengths equal or below 70 mm).

  14. Growth and properties of YBaCu-oxide superconducting thin films prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Xi, X. X.; Li, H. C.; Geerk, J.; Linker, G.; Meyer, O.; Obst, B.; Ratzel, F.; Smithey, R.; Weschenfelder, F.

    1988-06-01

    Thin superconducting YBaCuO films have been reproducibly deposited by dc-magnetron sputtering from sintered targets in an oxygen-argon atmosphere. The growth has been studied on different single crystalline substrates like ZrO, Al2O3 and SrTiO3 as a function of Ts. Best zero resistance values on the different substrates were 87 K and 89 K, respectively with transition widths <2 K achieved at optimized temperatures (760

  15. YBCO and LSMO nano-films and sandwiches prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Nurgaliev, T.; Mateev, E.; Blagoev, B.; Miteva, S.; Neshkov, L.; Strbik, V.; Uspenskaya, L. S.; Benacka, S.; Chromik, S.; Nedkov, I.

    2010-06-01

    DC and RF magnetron sputtering techniques were used for growing nano-films (t<100 nm) of high temperature superconducting (HTS) YBa2Cu3O7 (YBCO) and ferromagnetic (FM) manganite La0.7Sr0.3Mn03 (LSMO) materials on LaAlO3 (LAO) and Al2O3 (ALO) substrates as well as for preparing of single-, double- and three-layer structures in different areas of the same substrates. The procedure allowed growing of structures on LAO substrates where the critical temperature of YBCO thin film components was more than 84 K. The LSMO films grown ALO substrates were ferromagnetic while the YBCO films grown on LSMO/ALO did not demonstrate superconductivity.

  16. Effect of sputtering power on the growth of Ru films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jhanwar, Prachi; Kumar, Arvind; Verma, Seema; Rangra, K. J.

    2016-04-01

    Ruthenium is deposited by DC magnetron sputtering at different powers and is characterized. The effect of sputtering power on the electrical and structural properties of the film is investigated experimentally. High resolution X-ray diffraction is used to characterize the microstructure of Ru films deposited on SiO2 surface. The peak (002) is more sharp and intense with full width at half maximum (FWHM) of 0.37° at 250W. The grain size increases with increase in sputtering power improving the crystallinity of the film. The film deposited at high sputtering power also showed lower resistivity (12.40 µΩ-cm) and higher mobility (4.82 cm2/V.s) as compared to the film deposited at low power. The surface morphology of the film is studied by atomic force microscopy (AFM).

  17. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    NASA Astrophysics Data System (ADS)

    Wang, Min-Chuan; Chen, Yung-Chih; Hsieh, Ming-Hao; Li, Yu-Chen; Wang, Jen-Yuan; Wu, Jin-Yu; Tsai, Wen-Fa; Jan, Der-Jun

    2016-11-01

    The all-solid-state electrochromic device (ECD) with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS) and cathodic vacuum arc plasma (CVAP) technology has been developed for smart electrochromic (EC) glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (Δ T ) of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  18. The impact of argon admixture on the c-axis oriented growth of direct current magnetron sputtered Sc{sub x}Al{sub 1−x}N thin films

    SciTech Connect

    Mayrhofer, P. M.; Bittner, A.; Schmid, U.; Eisenmenger-Sittner, C.; Stöger-Pollach, M.

    2014-05-21

    The piezoelectric properties of wurtzite aluminium nitride (w-AlN) are enhanced by alloying with scandium (Sc), thus offering superior properties for applications in micro electro-mechanical systems devices. Sc{sub x}Al{sub 1−x}N thin films have been prepared by DC reactive magnetron sputtering on Si (100) substrates from a single target. When targeting a concentration range from x = 0 up to x = 0.15, the preparation conditions have been optimized by varying the Ar/N{sub 2} ratio in the sputtering gas. To incorporate an increasing Sc concentration, a higher Ar/N{sub 2} ratio has to be applied during the deposition process. Hence, the argon concentration in the sputtering gas becomes a crucial parameter for microstructure-related parameters. To determine phase purity, degree of c-axis orientation, lattice parameter, and grain size, the Sc{sub x}Al{sub 1−x}N thin films were investigated by techniques, such as scanning electron microscopy, transmission electron microscopy, and X-ray diffraction.

  19. Spoke rotation reversal in magnetron discharges of aluminium, chromium and titanium

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.; Maszl, C.; Schulz-von der Gathen, V.; Böke, M.; von Keudell, A.

    2016-06-01

    The rotation of localised ionisation zones, i.e. spokes, in magnetron discharge are frequently observed. The spokes are investigated by measuring floating potential oscillations with 12 flat probes placed azimuthally around a planar circular magnetron. The 12-probe setup provides sufficient temporal and spatial resolution to observe the properties of various spokes, such as rotation direction, mode number and angular velocity. The spokes are investigated as a function of discharge current, ranging from 10 mA (current density 0.5 mA cm-2) to 140 A (7 A cm-2). In the range from 10 mA to 600 mA the plasma was sustained in DC mode, and in the range from 1 A to 140 A the plasma was pulsed in high-power impulse magnetron sputtering mode. The presence of spokes throughout the complete discharge current range indicates that the spokes are an intrinsic property of a magnetron sputtering plasma discharge. The spokes may disappear at discharge currents above 80 A for Cr, as the plasma becomes homogeneously distributed over the racetrack. Up to discharge currents of several amperes (the exact value depends on the target material), the spokes rotate in a retrograde \\mathbf{E}× \\mathbf{B} direction with angular velocity in the range of 0.2-4 km s-1. Beyond a discharge current of several amperes, the spokes rotate in a \\mathbf{E}× \\mathbf{B} direction with angular velocity in the range of 5-15 km s-1. The spoke rotation reversal is explained by a transition from Ar-dominated to metal-dominated sputtering that shifts the plasma emission zone closer to the target. The spoke itself corresponds to a region of high electron density and therefore to a hump in the electrical potential. The electric field around the spoke dominates the spoke rotation direction. At low power, the plasma is further away from the target and it is dominated by the electric field to the anode, thus retrograde \\mathbf{E}× \\mathbf{B} rotation. At high power, the plasma is closer to the target and it is

  20. Performance and test results of a regulated magnetron pulser

    SciTech Connect

    Rose, C.R.; Warren, D.S.

    1998-12-31

    This paper describes the test results and performance of a 5.0-kV, 750-mA, regulated current pulser used to drive an Hitachi model 2M130 2,425-MHz magnetron. The magnetron is used to modulate the plasma in a particle accelerator injector. In this application, precise and stable rf power is crucial to extract a stable and accurate particle beam. A 10-kV high-voltage triode vacuum tube with active feedback is used to control the magnetron current and output rf power. The pulse width may be varied from as little as ten microseconds to continuous duty by varying the width of a supplied gate pulse. The output current level can be programmed between 10 and 750 mA. Current regulation and accuracy are better than 1%. The paper discusses the overall performance of the pulser and magnetron including anode current and rf power waveforms, linearity compliance, and vacuum tube performance.

  1. Ordering of Fine Particles in a Planar Magnetron Plasma

    SciTech Connect

    Hayashi, Y.; Takahashi, K.; Totsuji, H.; Ishihara, O.; Sato, N.; Watanabe, Y.; Adachi, S.

    2008-09-07

    Fine particles injected in a planar magnetron were pushed upward by diffusible plasma, leading to being suspended by the force balance with the gravity and forming three-dimensional structures on the two-dimensional structure formed by particle strings.

  2. Satellite power system (SPS) magnetron tube assessment study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Taks performed to extend the data base and to define a technology development program for the magnetron directional amplifier for the SPS are reviewed. These include: (1) demonstrating the tracking of phase and amplitude of the microwave output to phase and amplitude references; (2) expanding the range of power over which the directional amplifier will operate; (3)recognizing the importance of amplitude control in overall system design and in simplifying power conditioning; (4) developing a preliminary design for the overall architecture of the power module; (5) demonstrating magnetron starting using the amplitude control system; (6) mathematically modelling and performing a computerized study of the pyrolytic graphite radiating fin; (7) defining the mass of the magnetic circuit for the SPS tube; (8) noise measurement; (9) achieving harmonic suppression by notch reflection filters; (10) estimating the mass of the transmitting antenna; (11) developing a magnetron package with power generation, phase control, and power condition functions; and (12) projecting magnetron package characteristics.

  3. Effect of space charge on the negative oxygen flux during reactive sputtering

    NASA Astrophysics Data System (ADS)

    Moens, F.; Kalvas, T.; Van Steenberge, S.; Depla, D.

    2017-03-01

    Negative ions often play a distinctive role in the phase formation during reactive sputter deposition. The path of these high energetic ions is often assumed to be straight. In this paper, it is shown that in the context of reactive magnetron sputtering space charge effects are decisive for the energetic negative ion trajectories. To investigate the effect of space charge spreading, reactive magnetron sputter experiments were performed in compound mode with target materials that are expected to have a high secondary ion emission yield (MgO and CeO2). By the combination of energy flux measurements, and simulations, a quantitative value for the negative oxygen ion yield can be derived.

  4. Magnetron sputtering system for coatings deposition with activation of working gas mixture by low-energy high-current electron beam

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. V.; Kamenetskikh, A. S.; Men'shakov, A. I.; Bureyev, O. A.

    2015-11-01

    For the purposes of efficient decomposition and ionization of the gaseous mixtures in a system for coatings deposition using reactive magnetron sputtering, a low-energy (100-200 eV) high-current electron beam is generated by a grid-stabilized plasma electron source. The electron source utilizes both continuous (up to 20 A) and pulse-periodic mode of discharge with a self-heated hollow cathode (10-100 A; 0.2 ms; 10-1000 Hz). The conditions for initiation and stable burning of the high-current pulse discharge are studied along with the stable generation of a low-energy electron beam within the gas pressure range of 0.01 - 1 Pa. It is shown that the use of the electron beam with controllable parameters results in reduction of the threshold values both for the pressure of gaseous mixture and for the fluxes of molecular gases. Using such a beam also provides a wide range (0.1-10) of the flux density ratios of ions and sputtered atoms over the coating surface, enables an increase in the maximum pulse density of ion current from plasma up to 0.1 A, ensures an excellent adhesion, optimizes the coating structure, and imparts improved properties to the superhard nanocomposite coatings of (Ti,Al)N/a-Si3N4 and TiC/-a-C:H. Mass-spectrometric measurements of the beam-generated plasma composition proved to demonstrate a twofold increase in the average concentration of N+ ions in the Ar-N2 plasma generated by the high-current (100 A) pulsed electron beam, as compared to the dc electron beam.

  5. 3D Magnetron simulation with CST STUDIO SUITE

    SciTech Connect

    Balk, Monika C.

    2011-07-01

    The modeling of magnetrons compared to other tubes is more difficult since it requires 3D modeling rather than a 2D investigation. This is not only due to the geometry which can include complicated details to be modeled in 3D but also due to the interaction process itself. The electric field, magnetic field and particle movement span a 3D space. In this paper 3D simulations of a strapped magnetron with CSTSTUDIO SUITE{sup TM} are presented. (author)

  6. Numerical simulation of the magnetron operation with resonance load

    NASA Astrophysics Data System (ADS)

    Sayapin, A.; Krasik, Y. E.

    2010-04-01

    The results of numerical simulations and a comparison with experimental data obtained in recent experiments with the relativistic S-band magnetron by Sayapin et al. [Appl. Phys. Lett. 95, 074101 (2009)], having a resonance load and without special measures being taken to suppress the microwaves reflected from the load, are presented. The numerical simulations were based on the model which considers a magnetron as a traveling wave resonator coupled with external resonator. In these simulations, experimentally determined parameters of the magnetron and resonator and their coupling coefficient were used. It was found that, under certain conditions, the electromagnetic wave reflected from the resonator leads to an increase in the efficiency of the magnetron operation. Taking into account microwave energy compression in the resonator, one obtains a microwave power comparable with the power of the electron beam in the magnetron. Also, it was shown that the magnetron traveling wave acquires a phase shift due to its interaction with the amplified wave of the resonator. This phase shift can be comparable with the phase of the electron spoke with respect to the maximum of the decelerating phase of the microwave electric field. The latter could be a reason for the quenching of the microwave generation and the fast decay of the microwave power in the resonator found in experiments.

  7. DC sputtered W-doped VO2 thermochromic thin films for smart windows with active solar control.

    PubMed

    Batista, C; Ribeiro, R; Carneiro, J; Teixeira, V

    2009-07-01

    Doped VO2 thin films, with different W at.% and consequent dissimilar transition temperatures, were successfully deposited onto SiO2-coated float-glass substrates by reactive direct current (DC) magnetron sputtering. Structural analyses have shown, for undoped films, single phase VO2(M) films with c-axis (002) direction as the preferred crystal orientation. The addition of tungsten into the VO2 solid solution favored the crystallization in the (011) direction which became dominant above a critical level of dopant concentration. The surface morphology of pure VO2 films revealed elongated grains oriented within the film plane. The doped films evidenced an increased tendency to be oriented out of the film plane which has resulted in increased roughness levels. The doping methodology associated with optimized processing conditions allowed the production of W-doped VO2 films with reduced transition temperatures, from 63 down to 28 degrees C, and maximum transmittances at the visible region ranging 40%. The relationship between tungsten content in the film and consequent transition temperature expressed a linear behavior.

  8. 75 FR 61989 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-8-31, DC-8-32, DC-8-33, DC-8-41...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Corporation Model DC- 8-31, DC-8-32, DC-8-33, DC-8-41, DC-8-42, and DC-8-43 Airplanes; Model DC-8-50 Series Airplanes; Model DC-8F-54 and DC-8F-55 Airplanes; Model DC-8-60 Series Airplanes; Model DC-8-60F Series Airplanes; Model DC-8- 70 Series Airplanes; and Model DC-8-70F Series Airplanes AGENCY:......

  9. DC-to-DC switching converter

    NASA Technical Reports Server (NTRS)

    Cuk, Slobodan M. (Inventor); Middlebrook, Robert D. (Inventor)

    1980-01-01

    A dc-to-dc converter having nonpulsating input and output current uses two inductances, one in series with the input source, the other in series with the output load. An electrical energy transferring device with storage, namely storage capacitance, is used with suitable switching means between the inductances to DC level conversion. For isolation between the source and load, the capacitance may be divided into two capacitors coupled by a transformer, and for reducing ripple, the inductances may be coupled. With proper design of the coupling between the inductances, the current ripple can be reduced to zero at either the input or the output, or the reduction achievable in that way may be divided between the input and output.

  10. 3-D Printed High Power Microwave Magnetrons

    NASA Astrophysics Data System (ADS)

    Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad

    2015-11-01

    The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.

  11. Model for designing planar magnetron cathodes

    SciTech Connect

    Garcia, M.

    1997-05-30

    Planar magnetron cathodes have arching magnetic field lines which concentrate plasma density to enhance ion bombardment and sputtering. Typical parameters are: helium at 1 to 300 milli-torr, 200 to 2000 gauss at the cathode, 200 to 800 volts, and plasma density decreasing by up to ten times within 2 to 10 cm from the cathode. A 2D, quasineutral, fluid model yields formulas for the plasma density: n(x,y), current densities: j(x,y), j{sub e}(x,y), j{sub +}(x,y), the electric field: E{sub y}(y), and the voltage between the cathode surface and a distant plasma. An ion sheath develops between the cathode and the quasineutral flow. The thickness of this sheath depends on processes in the quasineutral flow. Experiments shows that T{sub e} (3 {yields} 8 eV) adjusts to ensure that {alpha}{sub 0}{tau} {approx} 2.5 in helium, for ionization rate {alpha}{sub 0} (10{sup 4} {yields} 10{sup 5} s{sup -1}), and electron transit time to the unmagnetized plasma {tau} (10 {yields} 100 {micro}s). Helium glow discharge cathode fall {alpha}{sub 0}{tau} is about 2.5, though this occurs at much higher voltage.

  12. Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature.

    PubMed

    Stan, G E; Pasuk, I; Husanu, M A; Enculescu, I; Pina, S; Lemos, A F; Tulyaganov, D U; El Mabrouk, K; Ferreira, J M F

    2011-12-01

    Thin (380-510 nm) films of a low silica content bioglass with MgO, B(2)O(3), and CaF(2) as additives were deposited at low-temperature (150°C) by radio-frequency magnetron sputtering onto titanium substrates. The influence of sputtering conditions on morphology, structure, composition, bonding strength and in vitro bioactivity of sputtered bioglass films was investigated. Excellent pull-out adherence (~73 MPa) was obtained when using a 0.3 Pa argon sputtering pressure (BG-a). The adherence declined (~46 MPa) upon increasing the working pressure to 0.4 Pa (BG-b) or when using a reactive gas mixture (~50 MPa). The SBF tests clearly demonstrated strong biomineralization features for all bioglass sputtered films. The biomineralization rate increased from BG-a to BG-b, and yet more for BG-c. A well-crystallized calcium hydrogen phosphate-like phase was observed after 3 and 15 days of immersion in SBF in all bioglass layers, which transformed monotonously into hydroxyapatite under prolonged SBF immersion. Alkali and alkali-earth salts (NaCl, KCl and CaCO(3)) were also found at the surface of samples soaked in SBF for 30 days. The study indicated that features such as composition, structure, adherence and bioactivity of bioglass films can be tailored simply by altering the magnetron sputtering working conditions, proving that this less explored technique is a promising alternative for preparing implant-type coatings.

  13. Characteristics of end Hall ion source with magnetron hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Tang, Deli; Wang, Lisheng; Pu, Shihao; Cheng, Changming; Chu, Paul K.

    2007-04-01

    An end Hall ion source with magnetron hollow cathode discharge is described. The source is suitable for high current, low energy ion beam applications such as Hall current plasma accelerators. The end Hall ion source is based on an anode layer thruster with closed drift electrons that move in a closed path in the E × B field. Only a simple magnetron power supply is used in the ion source. The special configuration enables uninterrupted and expanded operation with oxygen as well as other reactive gases because of the absence of an electron source in the ion source. In our evaluation, the ion beam current was measured by a circular electrostatic probe and the energy distribution of the ion beam was measured by a retarding potential analyzer (RPA). An ion beam current density of up to 10 mA/cm2 was obtained at a mean ion energy of 100-250 eV using Ar or O2. The ion source can be operated in a stable fashion at a discharge voltage between 200 and 500 V and without additional electron triggering. The discharge power of the ion source can be easily changed by adjusting the gas flow rate and anode voltage. No water cooling is needed for power from 500 W to 2 kW. The simple and rugged ion source is suitable for industrial applications such as deposition of thin films with enhanced adhesion. The operational characteristics of the ion source are experimentally determined and discussed.

  14. Determination of flux ionization fraction using a quartz crystal microbalance and a gridded energy analyzer in an ionized magnetron sputtering system

    NASA Astrophysics Data System (ADS)

    Green, K. M.; Hayden, D. B.; Juliano, D. R.; Ruzic, D. N.

    1997-12-01

    A diagnostic which combines a quartz crystal microbalance (QCM) and a gridded energy analyzer has been developed to measure the metal flux ionization fraction in a modified commercial dc magnetron sputtering device. The sensor is mounted on a linear motion feedthrough and embedded in a slot in the substrate plane to allow for measuring the uniformity in deposition and ionization throughout the plane of the wafer. Radio-frequency (rf) power is introduced through a coil to ionize the Al atoms. The metal flux ionization fraction at the QCM is determined by comparing the total deposition rate with and without a bias that screens out the ions, but that leaves the plasma undisturbed. By varying the voltage applied to the grids, the plasma potential is determined. At a pressure of 35 mTorr, a magnetron power of 2 kW, and a net rf power of 310±5 W, 78±5% ionization was found.

  15. Multilevel DC link inverter

    DOEpatents

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  16. Titania, silicon dioxide, and tantalum pentoxide waveguides and optical resonant filters prepared with radio-frequency magnetron sputtering and annealing.

    PubMed

    Rabady, Rabi; Avrutsky, Ivan

    2005-01-20

    Mixing dielectric materials in solid-thin-film deposition allows the engineering of thin films' optical constants to meet specific thin-film-device requirements, which can be significantly useful for optoelectronics devices and photonics technologies in general. In principle, by use of radio-frequency (rf) magnetron sputtering, it would be possible to mix any two, or more, materials at different molar ratios as long as the mixed materials are not chemically reactive in the mixture. This freedom in material mixing by use of magnetron sputtering has an advantage by providing a wide range of the material optical constants, which eventually enables the photonic-device designer to have the flexibility to achieve optimal device performance. We deposited three combinations from three different oxides by using rf magnetron sputtering and later investigated them for their optical constants. Each two-oxide mixture was done at different molar ratio levels. Moreover, postdeposition annealing was investigated and was shown to reduce the optical losses and to stabilize the film composition against environmental effects such as aging and humidity exposure. These investigations were supported by the fabricated planar waveguides and optical resonant filters.

  17. Evolution of film temperature during magnetron sputtering

    SciTech Connect

    Shaginyan, L.R.; Han, J.G.; Shaginyan, V.R.; Musil, J.

    2006-07-15

    We report on the results of measurements of the temperature T{sup F}{sub surf} which developed on the surface of films deposited by magnetron sputtering of chromium and copper targets on cooling and non-cooling silicon substrates. The T{sup F}{sub surf} and substrate temperature (T{sub s}) were simultaneously measured using high-resolution IR camera and thermocouple, respectively. We revealed that the T{sup F}{sub surf} steeply grows, keeps constant when it achieves saturation level, and rapidly drops to the value of the T{sub s} after stopping the deposition. At the same time, the T{sub s} either does not change for the case of cooling substrate or increases to a certain level for noncooling substrate. However, in both cases the T{sub s} remains several times lower than the T{sup F}{sub surf}. The T{sup F}{sub surf} is proportional to the flux of energy delivered to the growth surface by sputtered atoms and other fast particles, weakly depends on the depositing metal and can achieve several hundreds of deg. C. This phenomenon is explained by a model assuming formation of a hot thin surface layer (HTSL) on the top of the growing film, which exists only during film deposition and exhibits extremely low thermal conductivity. Due to this unique property the temperature T{sup F}{sub surf} of HTSL is several times higher than the T{sub s}. Variations in the T{sup F}{sub surf} fairly correlate with structure changes of Cr films along thickness investigated in detail previously.

  18. Optical properties study of silicon oxynitride films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Gu, Peifu; Ye, Hui; Shen, Weidong

    2004-12-01

    Graded refractive index Silicon Oxy-nitride thin films were deposited by RF magnetron reactive sputtering at different N2/O2 flow ratio. The effects of gas flow ratio on the refractive index, extinction coefficient and composition were studied using UV-VIS spectrophotometer, XPS and FTIR characterization methods. A simple and accurate method is presented for determination of the optical constants and physical thickness of thin films. Which was consisted in fitting the experimental transmission curve with the help of the physical model. The relationship between composition and optical gap and dispersion energy was analyzed using Wemple DiDomenico single-oscillator model. As a result, the samples" refractive index can be controlled from 1.92 to 1.46 by adjusting the gas flow ratio, and the optical gap lies between 5eV~6.5eV.

  19. A Complementary Type of Electrochromic Device by Radio Frequency Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change their optical properties reversibly in the visible region (400-800 nm) upon charge insertion/extraction reactions according to the applied voltage. A complementary type of EC device composes of two electrochromic layers, which is separated by an ionic conduction layer (electrolyte). In this work, the EC device was fabricated using vanadium oxide (V2O5) and titanium doped tungsten oxide (WO3-TiO2) electrodes. The EC electrodes were deposited as thin film structures by a reactive RF magnetron sputtering system in a medium of gas mixture of argon and oxygen. surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Electrochemical property and durability of the EC device was investigated by a potentiostat system. Optical measurement was examined under applied voltages of +/- 2.5 V by a computer-controlled system, constantly.

  20. Light-induced changes in photocarrier transport in magnetron sputtered a-Si:H

    NASA Astrophysics Data System (ADS)

    Doyle, J. R.; Maley, N.; Abelson, J. R.

    1991-08-01

    The effect of light soaking on the steady-state reverse bias collection efficiency has been studied for hydrogenated amorphous silicon films produced by reactive magnetron sputtering. Films with optical gaps of 1.63 and 1.74 eV both showed considerable degradation in the collection efficiency, correlating with increases in sub-gap absorption and decreases in the spectral response quantum efficiency. The collection efficiency data have been fitted with the two-field Hecht expression, and effective mobility-life-time products have been extracted. These results indicate that straightforward measurements on Schottky barriers can be utilized as sensitive monitors of light induced degradation in a-Si:H

  1. Morphology of epitaxial TiN(001) grown by magnetron sputtering

    SciTech Connect

    Karr, B.W.; Petrov, I.; Cahill, D.G.; Greene, J.E.

    1997-03-01

    The evolution of surface morphology and microstructure during growth of single crystal TiN(001) is characterized by {ital in situ} scanning tunneling microscopy and postdeposition plan-view transmission electron microscopy. The TiN layers are grown on MgO at 650{lt}T{lt}750{degree}C using reactive magnetron sputter deposition in pure N{sub 2}. The surface morphology is dominated by growth mounds with an aspect ratio of {approx_equal}0.006; both the roughness amplitude and average separation between mounds approximately follow a power law dependence on film thickness, t{sup {alpha}}, with {alpha}=0.25{plus_minus}0.07. Island edges show dendritic geometries characteristic of limited step-edge mobility at the growth temperature. {copyright} {ital 1997 American Institute of Physics.}

  2. Direct current magnetron sputtering deposition of InN thin films

    NASA Astrophysics Data System (ADS)

    Cai, Xing-Min; Hao, Yan-Qing; Zhang, Dong-Ping; Fan, Ping

    2009-10-01

    In this paper, InN thin films were deposited on Si (1 0 0) and K9 glass by reactive direct current magnetron sputtering. The target was In metal with the purity of 99.999% and the gases were Ar (99.999%) and N 2 (99.999%). The properties of InN thin films were studied. Scanning electron microscopy (SEM) shows that the film surface is very rough and energy dispersive X-ray spectroscopy (EDX) shows that the film contains In, N and very little O. X-ray diffraction (XRD) and Raman scattering reveal that the film mainly contains hexagonal InN. The four-probe measurement shows that InN film is conductive. The transmission measurement demonstrates that the transmission of InN deposited on K9 glass is as low as 0.5% from 400 nm to 800 nm.

  3. Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering.

    PubMed

    Stan, G E; Pina, S; Tulyaganov, D U; Ferreira, J M F; Pasuk, I; Morosanu, C O

    2010-04-01

    Radiofrequency magnetron sputtering deposition at low temperature (150 degrees C) was used to deposit bioactive glass coatings onto titanium substrates. Three different working atmospheres were used: Ar 100%, Ar + 7%O(2), and Ar + 20%O(2). The preliminary adhesion tests (pull-out) produced excellent adhesion values (approximately 75 MPa) for the as-deposited bio-glass films. Bioactivity tests in simulated body fluid were carried out for 30 days. SEM-EDS, XRD and FTIR measurements were performed. The tests clearly showed strong bioactive features for all the prepared films. The best biomineralization capability, expressed by the thickest chemically grown carbonated hydroxyapatite layer, was obtained for the bio-glass coating sputtered in a reactive atmosphere with 7% O(2).

  4. Very low pressure high power impulse triggered magnetron sputtering

    DOEpatents

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  5. The role of pulse length in target poisoning during reactive HiPIMS: application to amorphous HfO2

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Murdoch, B. J.; Treverrow, B.; Ross, A. E.; Falconer, I. S.; Kondyurin, A.; McCulloch, D. G.; Partridge, J. G.; McKenzie, D. R.; Bilek, M. M. M.

    2015-06-01

    In conventional reactive magnetron sputtering, target poisoning frequently leads to an instability that requires the reactive gas flow rate to be actively regulated to maintain a constant composition of the deposited layers. Here we demonstrate that the pulse length in high power impulse magnetron sputtering (HiPIMS) is important for determining the surface conditions on the target that lead to poisoning. By increasing the pulse length, a smooth transition can be achieved from a poisoned target condition (short pulses) to a quasi-metallic target condition (long pulses). Appropriate selection of pulse length eliminates the need for active regulation, enabling stable reactive magnetron sputter deposition of stoichiometric amorphous hafnium oxide (HfO2) from a Hf target. A model is presented for the reactive HiPIMS process in which the target operates in a partially poisoned mode with a distribution of oxide on its surface that depends on the pulse length.

  6. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  7. RF Magnetron Sputtering Deposited W/Ti Thin Film For Smart Window Applications

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change reversible and persistent their optical properties in the visible region (400-800 nm) upon charge insertion/extraction according to the applied voltage. A complementary type EC is a device containing two electrochromic layers, one of which is anodically colored such as vanadium oxide (V2 O5) while the other cathodically colored such as tungsten oxide (WO3) which is separated by an ionic conduction layer (electrolyte). The use of a solid electrolyte such as Nafion eliminates the need for containment of the liquid electrolyte, which simplifies the cell design, as well as improves safety and durability. In this work, the EC device was fabricated on a ITO/glass slide. The WO3-TiO2 thin film was deposited by reactive RF magnetron sputtering using a 2-in W/Ti (9:1%wt) target with purity of 99.9% in a mixture gas of argon and oxygen. As a counter electrode layer, V2O5 film was deposited on an ITO/glass substrate using V2O3 target with the same conditions of reactive RF magnetron sputtering. Modified Nafion was used as an electrolyte to complete EC device. The transmittance spectra of the complementary EC device was measured by optical spectrophotometry when a voltage of +/-3 V was applied to the EC device by computer controlled system. The surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) (Fig. 2). The cyclic voltammetry (CV) for EC device was performed by sweeping the potential between +/-3 V at a scan rate of 50 mV/s.

  8. Influence of plasma parameters on the growth and properties of magnetron sputtered CNx thin films

    NASA Astrophysics Data System (ADS)

    Hellgren, Niklas; Macák, Karol; Broitman, Esteban; Johansson, Mats P.; Hultman, Lars; Sundgren, Jan-Eric

    2000-07-01

    Carbon nitride CNx thin films were grown by unbalanced dc magnetron sputtering from a graphite target in a pure N2 discharge, and with the substrate temperature Ts kept between 100 and 550 °C. A solenoid coil positioned in the vicinity of the substrate was used to support the magnetic field of the magnetron, so that the plasma could be increased near the substrate. By varying the coil current and gas pressure, the energy distribution and fluxes of N2+ ions and C neutrals could be varied independently of each other over a wide range. An array of Langmuir probes in the substrate position was used to monitor the radial ion flux distribution over the 75-mm-diam substrate, while the flux and energy distribution of neutrals was estimated through Monte Carlo simulations. The structure, surface roughness, and mechanical response of the films are found to be strongly dependent on the substrate temperature, and the fluxes and energies of the deposited particles. By controlling the process parameters, the film structure can thus be selected to be amorphous, graphite-like or fullerene-like. When depositing at 3 mTorr N2 pressure, with Ts>200 °C, a transition from a disordered graphite-like to a hard and elastic fullerene-like structure occurred when the ion flux was increased above ˜0.5-1.0 mA/cm2. The nitrogen-to-carbon concentration ratio in the films ranged from ˜0.1 to 0.65, depending on substrate temperature and gas pressure. The nitrogen film concentration did, however, not change when varying the nitrogen ion-to-carbon atom flux ratios from ˜1 to 20.

  9. Forback DC-to-DC converter

    NASA Technical Reports Server (NTRS)

    Lukemire, Alan T. (Inventor)

    1993-01-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  10. Forback DC-to-DC converter

    NASA Technical Reports Server (NTRS)

    Lukemire, Alan T. (Inventor)

    1995-01-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  11. rf mode switching in a relativistic magnetron with diffraction output

    SciTech Connect

    Liu Meiqin; Michel, Cedric; Prasad, Sarita; Fuks, Mikhail I.; Schamiloglu, Edl; Liu Chunliang

    2010-12-20

    The relativistic magnetron with diffraction output (RMDO) has demonstrated nearly 70% efficiency in recent simulations. This letter reports a rapid mode switching technique in the RMDO using a low power, short-pulse, external single frequency signal. The MAGIC electromagnetic finite-difference-time-domain particle-in-cell code used in simulations demonstrated that an input signal of 300 kW is sufficient to switch neighboring modes in a gigawatt output power A6 RMDO with a transparent cathode, whereas for the original A6 magnetron configuration with radial extraction driven by a transparent cathode 30 MW is required. This frequency agility adds additional versatility to this high power microwave source.

  12. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  13. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  14. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  15. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  16. dc electric invisibility cloak.

    PubMed

    Yang, Fan; Mei, Zhong Lei; Jin, Tian Yu; Cui, Tie Jun

    2012-08-03

    We present the first experimental demonstration of a dc electric cloak for steady current fields. Using the analogy between electrically conducting materials and resistor networks, a dc invisibility cloak is designed, fabricated, and tested using the circuit theory. We show that the dc cloak can guide electric currents around the cloaked region smoothly and keep perturbations only inside the cloak. Outside the cloak, the current lines return to their original directions as if nothing happens. The measurement data agree exceptionally well with the theoretical prediction and simulation result, with nearly perfect cloaking performance. The proposed method can be directly used to realize other dc electric devices with anisotropic conductivities designed by the transformation optics. Manipulation of steady currents with the control of anisotropic conductivities has a lot of potential applications, such as electric impedance tomography, graphene, natural resource exploration, and military camouflage.

  17. Intelligent dc-dc Converter Technology Developed and Tested

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2001-01-01

    The NASA Glenn Research Center and the Cleveland State University have developed a digitally controlled dc-dc converter to research the benefits of flexible, digital control on power electronics and systems. Initial research and testing has shown that conventional dc-dc converters can benefit from improved performance by using digital-signal processors and nonlinear control algorithms.

  18. Plasma kinetics of Ar/O{sub 2} magnetron discharge by two-dimensional multifluid modeling

    SciTech Connect

    Costin, C.; Minea, T. M.; Popa, G.; Gousset, G.

    2010-03-15

    Multifluid two-dimensional model was developed to describe the plasma kinetics of the direct current Ar/O{sub 2} magnetron, coupling two modules: charged particles and neutrals. The first module deals with three positive ions - Ar{sup +}, O{sub 2}{sup +}, and O{sup +} - and two negative species - e{sup -} and O{sup -} - treated by the moments of Boltzmann's equation. The second one follows seven neutral species (Ar, O{sub 2}, O, O{sub 3}, and related metastables) by the multicomponent diffusion technique. The two modules are self-consistently coupled by the mass conservation and kinetic coefficients taking into account more than 100 volume reactions. The steady state is obtained when the overall convergence is achieved. Calculations for 10%O{sub 2} in Ar/O{sub 2} mixture at 2.67 and 4 Pa show that the oxygen excited species are mainly created by electron collisions in the negative glow of the discharge. Decreasing the pressure down to 0.67 Pa, the model reveals the nonlocal behavior of the reactive species. The density gradient of O{sub 2} ground state is reversed with respect to all gradients of the other reactive species, since the latter ones originate from the molecular ground state of oxygen. It is also found that the wall reactions drastically modify the space gradient of neutral reactive species, at least as much as the pressure, even if the discharge operates in compound mode.

  19. Origin of stress in radio frequency magnetron sputtered zinc oxide thin films

    SciTech Connect

    Menon, Rashmi; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2011-03-15

    Highly c-axis oriented ZnO thin films have been deposited on silicon substrates by planar rf magnetron sputtering under varying pressure (10-50 mTorr) and oxygen percentage (50-100%) in the reactive gas (Ar + O{sub 2}) mixture. The as-grown films were found to be stressed over a wide range from -1 x 10{sup 11} to -2 x 10{sup 8} dyne/cm{sup 2} that in turn depends strongly on the processing conditions, and the film becomes stress free at a unique combination of sputtering pressure and reactive gas composition. Raman spectroscopy and photoluminescence (PL) analyses identified the origin of stress as lattice distortion due to defects introduced in the ZnO thin film. FTIR study reveals that Zn-O bond becomes stronger with the increase in oxygen fraction in the reactive gas mixture. The lattice distortion or stress depends on the type of defects introduced during deposition. PL spectra show the formation of a shoulder in band emission with an increase in the processing pressure and are related to the presence of stress. The ratio of band emission to defect emission decreases with the increase in oxygen percentage from 50 to 100%. The studies show a correlation of stress with the structural, vibrational, and photoluminescence properties of the ZnO thin film. The systematic study of the stress will help in the fabrication of efficient devices based on ZnO film.

  20. On the target surface cleanness during magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Schelfhout, R.; Strijckmans, K.; Boydens, F.; Depla, D.

    2015-11-01

    The thickness of the chemisorbed oxide layer on a tantalum target surface was determined from sputter cleaning experiments. These measurements show a clear logarithmic growth behaviour as a function of the oxygen exposure. By extrapolating this result towards other sputter conditions, the target cleanness during magnetron sputter deposition can be estimated.

  1. Modeling and experimental studies of a side band power re-injection locked magnetron

    NASA Astrophysics Data System (ADS)

    Ye, Wen-Jun; Zhang, Yi; Yuan, Ping; Zhu, Hua-Cheng; Huang, Ka-Ma; Yang, Yang

    2016-12-01

    A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum’s peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron. Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).

  2. Enhanced oxidation of TiO2 films prepared by high power impulse magnetron sputtering running in metallic mode

    NASA Astrophysics Data System (ADS)

    Stranak, V.; Kratochvil, J.; Olejnicek, J.; Ksirova, P.; Sezemsky, P.; Cada, M.; Hubicka, Z.

    2017-05-01

    A method is introduced that allows suppressing unwanted effects of target poisoning during reactive high-power impulse magnetron sputtering (R-HiPIMS) employed for deposition of oxide films. The method, based on higher reactivity of excited/activated oxygen species, is studied and demonstrated on TiO2 films deposited in R-HiPIMS discharge running very close to the metallic mode with a high deposition rate. An external source of energetic plasma that activates oxygen gas, delivered to the vicinity of the substrate, is combined with conventional R-HiPIMS of the Ti target. The activated oxygen species enable reducing the total flow rate, which simultaneously results in suppression of the target poisoning effect. On the other hand, sufficient oxidation and growth of transparent crystalline TiO2 films were observed.

  3. Synthesis and characterization of pure anatase phase nanocrystalline TiO2 thin film by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Pawar, Nimisha; Bhargava, Ankita; Dayal, Saurabh; Kumar, C. Sasi

    2016-05-01

    In present work, our focus is to deposit anatase phase nanocrystalline TiO2 thin films. In order to prepare Titanium oxide films we first deposited Titanium thin films using DC magnetron sputtering and then the substrates were annealed in a muffle furnace at different temperatures. Further the samples were characterized for analysis of phase, morphology and optical properties using XRD, SEM, AFM and photoluminescence spectroscopy respectively. XRD shows the formation of tetragonal phase TiO2 with lattice parameters values a= 3.8 Å and c=9.6 Å. The surface roughness value of the films were found to vary from 1.6 nm to 15.9 nm. The grain size as estimated from AFM varies from 48 nm to 125 nm at different temperatures. Thus, the results revealed the formation of ultra-smooth anatase phase pure nanocrystalline TiO2 spherical particles.

  4. RISK D/C

    NASA Technical Reports Server (NTRS)

    Dias, W. C.

    1994-01-01

    RISK D/C is a prototype program which attempts to do program risk modeling for the Space Exploration Initiative (SEI) architectures proposed in the Synthesis Group Report. Risk assessment is made with respect to risk events, their probabilities, and the severities of potential results. The program allows risk mitigation strategies to be proposed for an exploration program architecture and to be ranked with respect to their effectiveness. RISK D/C allows for the fact that risk assessment in early planning phases is subjective. Although specific to the SEI in its present form, RISK D/C can be used as a framework for developing a risk assessment program for other specific uses. RISK D/C is organized into files, or stacks, of information, including the architecture, the hazard, and the risk event stacks. Although predefined, all stacks can be upgraded by a user. The architecture stack contains information concerning the general program alternatives, which are subsequently broken down into waypoints, missions, and mission phases. The hazard stack includes any background condition which could result in a risk event. A risk event is anything unfavorable that could happen during the course of a specific point within an architecture, and the risk event stack provides the probabilities, consequences, severities, and any mitigation strategies which could be used to reduce the risk of the event, and how much the risk is reduced. RISK D/C was developed for Macintosh series computers. It requires HyperCard 2.0 or later, as well as 2Mb of RAM and System 6.0.8 or later. A Macintosh II series computer is recommended due to speed concerns. The standard distribution medium for this package is one 3.5 inch 800K Macintosh format diskette. RISK D/C was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Macintosh and HyperCard are trademarks of Apple Computer, Inc.

  5. RISK D/C

    NASA Technical Reports Server (NTRS)

    Dias, W. C.

    1994-01-01

    RISK D/C is a prototype program which attempts to do program risk modeling for the Space Exploration Initiative (SEI) architectures proposed in the Synthesis Group Report. Risk assessment is made with respect to risk events, their probabilities, and the severities of potential results. The program allows risk mitigation strategies to be proposed for an exploration program architecture and to be ranked with respect to their effectiveness. RISK D/C allows for the fact that risk assessment in early planning phases is subjective. Although specific to the SEI in its present form, RISK D/C can be used as a framework for developing a risk assessment program for other specific uses. RISK D/C is organized into files, or stacks, of information, including the architecture, the hazard, and the risk event stacks. Although predefined, all stacks can be upgraded by a user. The architecture stack contains information concerning the general program alternatives, which are subsequently broken down into waypoints, missions, and mission phases. The hazard stack includes any background condition which could result in a risk event. A risk event is anything unfavorable that could happen during the course of a specific point within an architecture, and the risk event stack provides the probabilities, consequences, severities, and any mitigation strategies which could be used to reduce the risk of the event, and how much the risk is reduced. RISK D/C was developed for Macintosh series computers. It requires HyperCard 2.0 or later, as well as 2Mb of RAM and System 6.0.8 or later. A Macintosh II series computer is recommended due to speed concerns. The standard distribution medium for this package is one 3.5 inch 800K Macintosh format diskette. RISK D/C was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Macintosh and HyperCard are trademarks of Apple Computer, Inc.

  6. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  7. DC Breakdown Experiments

    SciTech Connect

    Calatroni, S.; Descoeudres, A.; Levinsen, Y.; Taborelli, M.; Wuensch, W.

    2009-01-22

    In the context of the CLIC (Compact Linear Collider) project investigations of DC breakdown in ultra high vacuum are carried out in parallel with high power RF tests. From the point of view of saturation breakdown field the best material tested so far is stainless steel, followed by titanium. Copper shows a four times weaker breakdown field than stainless steel. The results indicate clearly that the breakdown events are initiated by field emission current and that the breakdown field is limited by the cathode. In analogy to RF, the breakdown probability has been measured in DC and the data show similar behaviour as a function of electric field.

  8. Power Sharing Control between Load-Side Inverters in DC Microgrid for Super High Quality Electric Power Distribution System

    NASA Astrophysics Data System (ADS)

    Kakigano, Hiroaki; Nada, Kaho; Miura, Yushi; Ise, Toshifumi; Uchida, Ryohei

    DC microgrid is a novel power system using dc distribution in order to provide a super high quality electric power. The dc distribution system is suitable for dc output type distributed generations such as photovoltaic and fuel cells, and energy storages such as batteries and electric double layer capacitors. Power is distributed through dc distribution line and converted to required ac or dc voltage by converters placed near loads. Load-side single phase inverters are connected through transformers in order to share active and reactive power. In this paper, a power sharing control scheme was proposed, and the power sharing characteristics were demonstrated by experimental results.

  9. 76 FR 13926 - Airworthiness Directives; The Boeing Company Model DC-8-11, DC-8-12, DC-8-21, DC-8-31, DC-8-32...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Model DC-8-11, DC-8- 12, DC-8-21, DC-8-31, DC-8-32, DC-8-33, DC-8-41, DC-8-42, and DC-8-43 Airplanes; DC-8-50 Series Airplanes; DC-8F-54 and DC-8F-55 Airplanes; DC-8-60 Series Airplanes; DC-8-60F Series Airplanes; DC-8-70 Series Airplanes; and DC-8-70F Series Airplanes AGENCY: Federal Aviation Administration...

  10. Measured density of copper atoms in the ground and metastable states in argon magnetron discharge correlated with the deposition rate

    NASA Astrophysics Data System (ADS)

    Naghshara, H.; Sobhanian, S.; Khorram, S.; Sadeghi, N.

    2011-01-01

    In a dc-magnetron discharge with argon feed gas, densities of copper atoms in the ground state Cu(2S1/2) and metastable state Cu*(2D5/2) were measured by the resonance absorption technique, using a commercial hollow cathode lamp as light source. The operating conditions were 0.3-14 µbar argon pressure and 10-200 W magnetron discharge power. The deposition rate of copper in a substrate positioned at 18 cm from the target was also measured with a quartz microbalance. The gas temperature, in the range 300-380 K, was deduced from the emission spectral profile of N2(C 3Πu - B 3Πg) 0-0 band at 337 nm when trace of nitrogen was added to the argon feed gas. The isotope-shifts and hyperfine structures of electronic states of Cu have been taken into account to deduce the emission and absorption line profiles, and hence for the determination of atoms' densities from the measured absorption rates. To prevent error in the evaluation of Cu density, attributed to the line profile distortion by auto-absorption inside the lamp, the lamp current was limited to 5 mA. Density of Cu(2S1/2) atoms and deposition rate both increased with the enhanced magnetron discharge power. But at fixed power, the copper density augmented with argon pressure whereas the deposition rate followed the opposite trend. Whatever the gas pressure, the density of Cu*(2D5/2) metastable atoms remained below the detection limit of 1 × 1010 cm-3 for magnetron discharge powers below 50 W and hence increased much more rapidly than the density of Cu(2S1/2) atoms, over passing this later at some discharge power, whose value decreases with increasing argon pressure. This behaviour is believed to result from the enhancement of plasma density with increasing discharge power and argon pressure, which would increase the excitation rate of copper into metastable states. At fixed pressure, the deposition rate followed the same trend as the total density of copper atoms in the ground and metastable states. Two important

  11. Phase and Frequency Locked Magnetrons for SRF Sources

    SciTech Connect

    Neubauer, Michael; Johnson, Rolland

    2014-09-12

    There is great potential for a magnetron power source that can be controlled both in phase and frequency. Such a power source could revolutionize many particle accelerator systems that require lower capital cost and/or higher power efficiency. Beyond the accelerator community, phase and frequency locked magnetons could improve radar systems around the world and make affordable phased arrays for wireless power transmission for solar powered satellites. This joint project of Muons, Inc., Fermilab, and L-3 CTL was supported by an STTR grant monitored by the Nuclear Physics Office of the DOE Office of Science. The object of the program was to incorporate ferrite materials into the anode of a magnetron and, with appropriate biasing of the ferrites, to maintain frequency lock and to allow for frequency adjustment of the magnetron without mechanical tuners. If successful, this device would have a dual use both as a source for SRF linacs and for military applications where fast tuning of the frequency is a requirement. In order to place the materials in the proper location, several attributes needed to be modeled. First the impact of the magnetron’s magnetic field needed to be shielded from the ferrites so that they were not saturated. And second, the magnetic field required to change the frequency of the magnetron at the ferrites needed to be shielded from the region containing the circulating electrons. ANSYS calculations of the magnetic field were used to optimize both of these parameters. Once the design for these elements was concluded, parts were fabricated and a complete test assembly built to confirm the predictions of the computer models. The ferrite material was also tested to determine its compatibility with magnetron tube processing temperatures. This required a vacuum bake out of the chosen material to determine the cleanliness of the material in terms of outgassing characteristics, and a subsequent room temperature test to verify that the characteristics of

  12. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  13. DYLOS DC110

    EPA Science Inventory

    The Dylos DC1100 air quality monitor measures particulate matter (PM) to provide a continuous assessment of indoor air quality. The unit counts particles in two size ranges: large and small. According to the manufacturer, large particles have diameters between 2.5 and 10 micromet...

  14. DYLOS DC110

    EPA Science Inventory

    The Dylos DC1100 air quality monitor measures particulate matter (PM) to provide a continuous assessment of indoor air quality. The unit counts particles in two size ranges: large and small. According to the manufacturer, large particles have diameters between 2.5 and 10 micromet...

  15. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  16. Characterization and Performance of Magnetron-Sputtered Zirconium Coatings Deposited on 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Singh, Akash; Murugesan, Somasundaram; Parameswaran, P.; Priya, R.; Thirumurugessan, R.; Muthukumar, N.; Mohandas, E.; Kamachi Mudali, U.; Krishnamurthi, J.

    2016-11-01

    Zirconium coatings of different thicknesses have been deposited at 773 K on 9Cr-1Mo steel substrate using pulsed DC magnetron sputtering. These coatings were heat treated in vacuum at two different temperatures (1173 and 1273 K) for one hour. X-ray diffraction (XRD) analysis of Zr-coated samples revealed the formation of α-phase (HCP structure) of Zr. XRD analysis of heat-treated samples show the presence of Zr3Fe and Zr2Fe intermetallics. The lattice parameter of these coatings was calculated, and it matches with the bulk values when the thickness reached 2µm. In order to understand this, crystallite size and strain values of these coatings were calculated from XRD plots employing Williamson-Hall method. In order to assess the performance of the coatings, systematic corrosion tests were carried out. The corrosion current density calculated from the polarization behavior showed that the corrosion current density of the uncoated 9Cr-1Mo steel was higher than the coated sample before and after the heat treatment. Studies using electrochemical impedance spectroscopy confirmed that the coated steel has higher impedance than the uncoated steel. The corrosion resistance of 9Cr1Mo steel had improved after Zr coating. However, the corrosion resistance of the coating after heat treatment decreased when compared to the as-deposited coating. The microstructure and composition of the surface oxide film influence the corrosion resistance of the Zr-coated 9Cr1Mo steel.

  17. Strain mediated coupling in magnetron sputtered multiferroic PZT/Ni-Mn-In/Si thin film heterostructure

    SciTech Connect

    Singh, Kirandeep; Kaur, Davinder; Singh, Sushil Kumar

    2014-09-21

    The strain mediated electrical and magnetic properties were investigated in PZT/Ni-Mn-In heterostructure deposited on Si (100) by dc/rf magnetron sputtering. X-ray diffraction pattern revealed that (220) orientation of Ni-Mn-In facilitate the (110) oriented tertragonal phase growth of PZT layer in PZT/Ni-Mn-In heterostructure. A distinctive peak in dielectric constant versus temperature plots around martensitic phase transformation temperature of Ni-Mn-In showed a strain mediated coupling between Ni-Mn-In and PZT layers. The ferroelectric measurement taken at different temperatures exhibits a well saturated and temperature dependent P-E loops with a highest value of P{sub sat}~55 μC/cm² obtained during martensite-austenite transition temperature region of Ni-Mn-In. The stress induced by Ni-Mn-In layer on upper PZT film due to structural transformation from martensite to austenite resulted in temperature modulated Tunability of PZT/Ni-Mn-In heterostructure. A tunability of 42% was achieved at 290 K (structural transition region of Ni-Mn-In) in these heterostructures. I-V measurements taken at different temperatures indicated that ohmic conduction was the main conduction mechanism over a large electric field range in these heterostructures. Magnetic measurement revealed that heterostructure was ferromagnetic at room temperature with a saturation magnetization of ~123 emu/cm³. Such multiferroic heterostructures exhibits promising applications in various microelectromechanical systems.

  18. Magnetron Plasma Sputtered Nanocomposite Thin Films: Structural Surface Studies by In Vacuo Photoelectron Spectroscopy

    SciTech Connect

    Videnovic, Ivan R.

    2004-12-01

    The experimental system that enables thin film deposition by chemical vapor deposition combined with magnetron sputtering and sample surface characterization by photoelectron spectroscopy (PES), without breaking the vacuum between the deposition and the characterization stage, is described. The particular goal of this work was study of the surface arrangement of embedded metallic nanoclusters of 1B group (Au, Ag, and Cu) in amorphous hydrogenated carbon (a-C:H). From the range of applied material characterization tools, we present here the results of several PES-based experiments used to reveal cluster properties at the surface: as-deposited sample PES measurements, off-normal take-off angle XPS, and in situ in-depth XPS profiling by Ar+ ion etching. Clear distinction in all PES results of the samples deposited on the grounded substrates from those deposited on -150 V dc biased ones is obtained, revealing that keeping the substrate grounded during deposition results in topmost metallic clusters covered with a very thin layer of a-C:H, while applying negative bias voltage to the substrate results in partially bald clusters on the surface.

  19. Comprehensive computer model for magnetron sputtering. II. Charged particle transport

    SciTech Connect

    Jimenez, Francisco J. Dew, Steven K.; Field, David J.

    2014-11-01

    Discharges for magnetron sputter thin film deposition systems involve complex plasmas that are sensitively dependent on magnetic field configuration and strength, working gas species and pressure, chamber geometry, and discharge power. The authors present a numerical formulation for the general solution of these plasmas as a component of a comprehensive simulation capability for planar magnetron sputtering. This is an extensible, fully three-dimensional model supporting realistic magnetic fields and is self-consistently solvable on a desktop computer. The plasma model features a hybrid approach involving a Monte Carlo treatment of energetic electrons and ions, along with a coupled fluid model for thermalized particles. Validation against a well-known one-dimensional system is presented. Various strategies for improving numerical stability are investigated as is the sensitivity of the solution to various model and process parameters. In particular, the effect of magnetic field, argon gas pressure, and discharge power are studied.

  20. Microwave beamed power technology improvement. [magnetrons and slotted waveguide arrays

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1980-01-01

    The magnetron directional amplifier was tested for (1) phase shift and power output as a function of gain, anode current, and anode voltage, (2) background noise and harmonics in the output, (3) long life potential of the magnetron cathode, and (4) high operational efficiency. Examples of results were an adequate range of current and voltage over which 20 dB of amplification could be obtained, spectral noise density 155 dB below the carrier, 81.7% overall efficiency, and potential cathode life of 50 years in a design for solar power satellite use. A fabrication method was used to fabricate a 64 slot, 30 in square slotted waveguide array module from 0.020 in thick aluminum sheet. The test results on the array are discussed.