Science.gov

Sample records for de-fg02-02er45964 electromagnetic properties

  1. Final Report, DOE Award Number DE-FG02-02ER45964, Electromagnetic Properties of Matter at X-ray Wavelengths

    SciTech Connect

    Smith, David Y

    2007-02-28

    We report results of a collaborative study of photon and charged-particle interactions with matter between the University of Vermont and Argonne and Brookhaven National Laboratories. A major goal was to extend the study of electromagnetic properties of selected materials to as wide a spectral range as possible. This broad approach discloses systematic trends not apparent in isolated measurements and exploits the power of dispersion analysis and sum-rule constraints. Emphasis was largely on UV and X-ray processes and capitalized on the wide range of photon energies available at NSLS. A key finding is that, under favorable circumstances, dispersion theory relates dispersive processes (e.g. refractive index, dielectric constant) to spectral moments of absorptive processes. This appears to be a new method in optics; it yields significant simplifications and provides a precise, model-independent characterization of optical materials. Problems addressed included a) x-ray magnetooptics; b) UV/soft-x-ray processes in insulators and their contribution to visible dispersion; c) demonstration of moments/dispersion analysis in glasses and applications to fiber-optic systems; d) the optical constants of silicon and their application to the stopping power of silicon for charged-particles. Results include; Resolution of a long-standing conflict over the relation between x-ray Faraday rotation and x-ray magnetic circular dichroism. Specifically, the Kramers-Kronig relations must be generalized to account for the breaking of time-reversal symmetry by magnetic fields. Experimental reports to the contrary were shown to be inconclusive. Reanalysis of x-ray Faraday rotation data supports the generalization; Demonstration that the optical properties of dielectrics in their region of transparency are determined by a series expansion in spectral moments of the dielectric’s infrared and ultraviolet absorption spectra. Application of this to silicate glasses clarifies the role of glass

  2. Electromagnetic properties of baryons

    SciTech Connect

    Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M.; Martin-Camalich, J.

    2011-10-21

    We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.

  3. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,

    DTIC Science & Technology

    ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA

  4. Properties of dynamical electromagnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Padilla, Willie J.; Averitt, Richard D.

    2017-08-01

    Electromagnetic metamaterials consist of two or three dimensional arrays of tailored metallic and/or dielectric inclusions and provide unprecedented sub-wavelength control over light-matter interactions. Metamaterials are fashioned to yield a specific response to the electric and magnetic components of light and may be treated as effective media, described by effective optical constants {μ }{{eff}} and {{ɛ }}{{eff}}, and have realized a multitude of exotic properties difficult to achieve with natural materials. An inductive-capacitive unit cell geometry provides enhanced values of optical constants, as well as the ability to dynamically control the novel responses exhibited by electromagnetic metamaterials. The ability of metamaterials to achieve real-time dynamic properties has realized novel applications and has made them relevant for the next revolution in advanced materials and related devices.

  5. Disentanglement of Electromagnetic Baryon Properties

    NASA Astrophysics Data System (ADS)

    Sadasivan, Daniel; Doring, Michael

    2017-01-01

    Through recent advances in experimental techniques, the precise extraction of the spectrum of baryonic resonances and their properties becomes possible. Helicity couplings at the resonance pole are fundamental parameters describing the electromagnetic properties of resonances and enabling the comparison of theoretical models with data. We have extracted them from experiments carried out at Jefferson Lab and other facilities using a multipole analysis within the Julich-Bonn framework. Special attention has been paid to the uncertainties and correlations of helicity couplings. Using the world data on the reaction γp -> ηp , we have calculated, for the first time, the covariance matrix. Our results are useful in several ways. They quantify uncertainties but also correlations of helicity couplings. Second, they can tell us quantitatively how useful a given polarization measurement is. Third, they can tell us how the measurement of a new observable would constrain and disentangle the resonance properties which could be helpful in the design of new experiments. Finally, on the subject of the missing resonance problem, model selection techniques and statistical tests allow us to quantify the significance of whether a resonance exists. Supported by NSF CAREER Grant No. PHY-1452055, NSF PIF Grant No. 1415459, by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by Research Center Julich through the HPC grant jikp07.

  6. Electromagnetic properties of massive neutrinos

    SciTech Connect

    Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  7. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  8. Dielectric property measurements in the Electromagnetic Properties Measurement Laboratory

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Tiemsin, Pacita I.; Bussell, Kerri; Dudley, Kenneth L.

    1995-01-01

    The capability to measure the dielectric properties of various materials has been developed in the Electromagnetic Properties Measurement Laboratory (EPML) of the Electromagnetics Research Branch (ERB). Two measurement techniques which have been implemented in the EPML to characterize materials are the dielectric probe and waveguide techniques. Several materials, including some for which the dielectric properties are well known, have been measured in an attempt to establish the capabilities of the EPML in determining dielectric properties. Brief descriptions of the two techniques are presented in this report, along with representative results obtained during these measurements.

  9. Electromagnetic properties of viscous charged fluids

    NASA Astrophysics Data System (ADS)

    Forcella, Davide; Zaanen, Jan; Valentinis, Davide; van der Marel, Dirk

    2014-07-01

    We provide a general theoretical framework to describe the electromagnetic properties of viscous charged fluids, consisting, for example, of electrons in certain solids or plasmas. We confirm that finite viscosity leads to multiple modes of evanescent electromagnetic waves at a given frequency, one of which is characterized by a negative index of refraction, as previously discussed in a simplified model by one of the authors. In particular, we explain how optical spectroscopy can be used to probe the viscosity. We concentrate on the impact of this on the coefficients of refraction and reflection at the sample-vacuum interface. Analytical expressions are obtained relating the viscosity parameter to the reflection and transmission coefficients of light. We demonstrate that finite viscosity has the effect to decrease the reflectivity of a metallic surface, while the electromagnetic field penetrates more deeply. While on a phenomenological level there are similarities to the anomalous skin effect, the model presented here requires no particular assumptions regarding the corpuscular nature of the charge liquid. A striking consequence of the branching phenomenon into two degenerate modes is the occurrence in a half-infinite sample of oscillations of the electromagnetic field intensity as a function of distance from the interface.

  10. Models of electromagnetic properties of composite media

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    Electromagnetic composite materials have attracted much interest in recent years, due to their desirable microwave and optical applications. One class of these is negative refractive index materials, or double negative materials, in which both permittivity and permeability of materials are simultaneously negative. Many exciting potential applications of double negative materials have been proposed, such as the perfect lens and the cloaking device. Here, a simple-cubic lattice of identical, homogeneous or coated non-metallic spherical particles embedded in a matrix is analyzed. One contribution of this work is the derivation of an analytical formula for the threshold dielectric loss angle of spherical inclusions, above which DNG behavior of the system is extinguished. In addition, analytical formulas are derived from which double negative bandwidth of a simple-cubic lattice of identical, magnetodielectric homogeneous or coated spheres can be determined. Another case of interest is nanocomposites, which commonly consist of nanoparticles embedded in a polymer matrix. These materials show superior dielectric or mechanical performance by taking advantage of the merits of their individual non-hybrid components. In one manifestation, diblock copolymers can be utilized to spatially separate nanoparticles by incorporating them in one block, preferentially, to form a long-range ordered structure. By designing this structure, the electromagnetic properties can be tailored for potential applications in novel devices. Here, molecular dynamics of polymer matrices and nanocomposites is analyzed by parametric modeling of their dielectric spectra, supporting design of a composite with desired electromagnetic properties.

  11. Properties of electromagnetic field focusing probe.

    PubMed

    Yamanashi, W S; Yassa, N A; Hill, D L; Patil, A A; Lester, P D

    1988-11-01

    The electromagnetic field focusing (EFF) apparatus consists of a radio frequency generator, solenoidal coil, and a hand-held or catheter probe. Applications such as aneurysm treatment, angioplasty, and neurosurgery in various models have been reported. The probe is operated in the near field (within one wavelength of an electromagnetic field source) of a coil inducing eddy currents in biological tissues, producing maximal convergence of the induced current at the probe tip. The probe produces very high temperatures depending on the wattage selected for the given radio frequency of output power. The high temperature can be used in cutting, cauterizing, or vaporizing. The EFF probe is comparable to different types of lasers and to bipolar and monopolar cautery. The EFF probe can be used with catheters or endoscopes. Objectives of this study were to determine what the thermal properties of the EFF probe are and how instrument parameters can be varied to obtain different temperatures in the tissue near the probe tip. In this study an F2 catheter was used as an insulated sheath and the tip of the guide wire was used as the probe tip. Different powers, wave forms, coil-to-probe distances, and probe-tip lengths were tested on a phantom that simulates tissue electrical properties. Some of the experiments were conducted under normal saline to simulate treatment of tissue with body fluids such as blood vessels or brain tissue under normal physiologic conditions. It is concluded that the EFF probe has the advantages of easy manipulation, relative safety, cost effectiveness, and a high degree of spatial control.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Statistical properties of ionospheric stimulated electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Karlsson, R. L.; Carozzi, T. D.; Norin, L.; Bergman, J. E. S.; Thidé, B.

    2006-08-01

    We have analysed the statistical properties of the stimulated electromagnetic emissions (SEE) spectral features in the steady state, reached after a long period of continuous HF pumping of the ionosphere in experiments performed at the Sura ionospheric radio research facility in Russia. Using a digital filter bank method, we have been able to analyse complex valued signals within narrow frequency bands. Each of the SEE spectral features are thereby separated into a number of narrow spectral components. Statistical tests were performed for all these spectral components and the distributions of the spectral amplitudes and phases were evaluated. Also, a test for sinusoidal components was performed. These tests showed that all observed SEE features were indistinguishable from coloured Gaussian noise. The test results exclude that the SEE features can be the result of a single isolated coherent process, but does not rule out that there could be many statistically independent parametric wave-wave processes taking place simultaneously at various parts of the HF-pumped ionosphere, as long as the superposition from all these is incoherent. Furthermore, from the test results, we cannot exclude the possibility that the waveforms of some, or all, of the SEE features may be chaotic.

  13. Metamaterial Composites with Tunable Electromagnetic Properties

    NASA Astrophysics Data System (ADS)

    Wheeland, Sara Ruth

    A broadening application range has increased demand for advanced RF control. Recent research has identified several metamaterials to provide this control. This work seeks to expand this idea through several novel metamaterials with enhanced electromagnetic properties. First copper wires braided with Kevlar and nylon to form conductive coils are woven among structural fiber to create a fabric. This yielded a composite with all coils possessing the same handedness, producing a chiral material. The measured scattering parameters showed considerable chirality within the 5.5-8GHz frequency band, agreeing with simulation results. Electronic chirality tuning is investigated by integrating varactor diodes into an array of helical elements on a printed circuit board. Applying a varied reverse bias voltage across the sample effectively tunes the chiral behavior of the material. The measurements demonstrate the feasibility of creating a rigid helix composite with tuned chirality in the 5.5-12.4GHz frequency band. Chirality can be further tuned mechanically through the deformation of an array of conductive coils. Parallel, metallic helices embedded in a polyurethane matrix are subjected to mechanical stretching for pitch adjustment. This change in pitch directly affects the overall chirality of the composite. Repeatable elastic deformation is achieved up to 50% axial strain. Over the 5.5-12.5GHz frequency range, an increase of 30% axial strain yields an ˜18% change in axial chirality. Hyperbolic microwave focusing is explored through an indefinite medium with anisotropic permittivity. An array of 12-gauge brass wires is embedded in Styrofoam and scanned over the 7-9GHz frequency band to establish focusing patterns. A soft-focusing spot is observed at 7.6GHz with a relative gain of ˜7dB over averaged background. Applying an axial refractive gradient to a coil composite creates a lens capable of fine adjustment in the microwave range. The gradient required to achieve sharp

  14. Electromagnetic properties of ice coated surfaces

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Walton, E.; Wang, N.; Beard, L.

    1989-01-01

    The electromagnetic scattering from ice coated structures is examined. The influence of ice is shown from a measurement standpoint and related to a simple analytical model. A hardware system for the realistic measurement of ice coated structures is also being developed to use in an existing NASA Lewis icing tunnel. Presently, initial measurements have been performed with a simulated tunnel to aid in the development.

  15. Electromagnetic absorption properties of spacecraft and space debris

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Santoni, F.; Giusti, A.; Delfini, A.; Pastore, R.; Vricella, A.; Albano, M.; Arena, L.; Piergentili, F.; Marchetti, M.

    2017-04-01

    Aim of the work is to present a method to evaluate the electromagnetic absorption properties of spacecraft and space debris. For these objects, the radar detection ability depends mainly on volume, shape, materials type and other electromagnetic reflecting behaviour of spacecraft surface components, such as antennas or thermal blankets, and of metallic components in space debris. The higher the electromagnetic reflection coefficient of such parts, the greater the radar detection possibility. In this research an electromagnetic reverberation chamber is used to measure the absorption cross section (ACS) of four objects which may represent space structure operating components as well as examples of space debris: a small satellite, a composite antenna dish, a Thermal Protection System (TPS) tile and a carbon-based composite missile shell. The ACS mainly depends on geometrical characteristics like apertures, face numbers and bulk porosity, as well as on the type of the material itself. The ACS, which is an electromagnetic measurement, is expressed in squared meters and thus can be compared with the objects geometrical cross section. A small ACS means a quite electromagnetic reflective tendency, which is beneficial for radar observations; on the contrary, high values of ACS indicate a strong absorption of the electromagnetic field, which in turn can result a critical hindering of radar tracking.

  16. Electromagnetic properties of the early universe

    SciTech Connect

    Takahashi, Keitaro; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2008-06-15

    Detailed physical processes of magnetic field generation from density fluctuations in the prerecombination era are studied. Solving Maxwell equations and the generalized Ohm's law, the evolutions of the net charge density, the electric current, and the electromagnetic field are solved. Unlike most of the previous works, we treat electrons and photons as separate components under the assumption of tight coupling. We find that generation of the magnetic field due to density fluctuations takes place only from the second order of both perturbation theory and the tight coupling approximation.

  17. Design and fabrication of planar structures with graded electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Good, Brandon Lowell

    Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.

  18. Aerodynamic and Electromagnetic Properties of Plasmas.

    DTIC Science & Technology

    1981-10-01

    function theorem on topological spaces . To appear in Applicable Mathematics. 50. Shui-Hung Hou, On property (Q) and other semicontinuity properties... topological spaces . The author proves here Filippov type implicit function theorems for Carathgodory mappings in general topological spaces . The author...separation in topological spaces . Connection between separation properties of spaces and measurability of graphs of multifunctions are established. - 11

  19. Study on the electromagnetic properties of a coated radar absorbent

    NASA Astrophysics Data System (ADS)

    Zhang, Shuan-Qin

    2012-06-01

    The sol-gel method is used to fabricate Fe crystalline powders coated with SiO2. By controlling the molar ratio R of diluted water to tetraethoxysilane (TEOS), Fe powders coated with SiO2 with different morphological characteristics are fabricated. The influence of the core diameter on electromagnetic parameters is investigated. The effect of the amount of the coating material SiO2 on electromagnetic parameters is given. Radar wave absorbing properties of Fe coated with SiO2 and TiO2 respectively are compared.

  20. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes

    PubMed Central

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-01-01

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783

  1. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-07-01

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.

  2. Electromagnetic wave absorbing properties of amorphous carbon nanotubes.

    PubMed

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-07-10

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.

  3. Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes.

    PubMed

    Rutherglen, Chris; Burke, Peter

    2009-04-01

    This Review presents a discussion of the electromagnetic properties of nanoscale electrical conductors, which are quantum mechanical one-dimensional systems. Of these, carbon nanotubes are the most technologically advanced example, and are discussed mainly in this paper. The properties of such systems as transmission electron microscopy waveguides for on-chip signal propagation and also the radiation properties of such systems are discussed. This work is primarily aimed at microwave, nanometer-wave, and THz electronics. However, the use of nanotubes as antennas in the IR and optical frequency range is not precluded on first principles and remains an open research area.

  4. Electromagnetic sinc Schell-model beams and their statistical properties.

    PubMed

    Mei, Zhangrong; Mao, Yonghua

    2014-09-22

    A class of electromagnetic sources with sinc Schell-model correlations is introduced. The conditions on source parameters guaranteeing that the source generates a physical beam are derived. The evolution behaviors of statistical properties for the electromagnetic stochastic beams generated by this new source on propagating in free space and in atmosphere turbulence are investigated with the help of the weighted superposition method and by numerical simulations. It is demonstrated that the intensity distributions of such beams exhibit unique features on propagating in free space and produce a double-layer flat-top profile of being shape-invariant in the far field. This feature makes this new beam particularly suitable for some special laser processing applications. The influences of the atmosphere turbulence with a non-Kolmogorov power spectrum on statistical properties of the new beams are analyzed in detail.

  5. Controlling the Casimir force via the electromagnetic properties of materials

    SciTech Connect

    Yang Yaping; Chen Hong; Zeng Ran; Zhu Shiyao; Zubairy, M. Suhail

    2010-02-15

    The control of the Casimir force between two parallel plates can be achieved through adjusting the frequency-dependent electromagnetic properties of materials of the two plates. We show that, for different plate separations, the main contribution to the Casimir force comes from different frequency regions: For smaller (larger) separation, it comes from the higher (lower) frequency region. When the separation of the plates increases, the Casimir force can vary from attractive to repulsive and/or vice versa, by selecting the two plates with suitable electromagnetic properties. We discuss how a restoring Casimir force, which varies from repulsive to attractive by increasing the separation, can be realized and that the stable equilibrium is formed at zero Casimir force.

  6. Electromagnetic absorption properties of graphene/Fe nanocomposites

    SciTech Connect

    Chen, Yujin; Lei, Zhenyu; Wu, Hongyu; Zhu, Chunling; Gao, Peng; Ouyang, Qiuyun; Qi, Li-Hong; Qin, Wei

    2013-09-01

    Graphical abstract: - Highlights: • Graphene/Fe nanocomposites were prepared by a facile and green method. • 10 nm Fe nanoparticles were uniformly dispersed over the surface of the graphene sheets. • The nanocomposites exhibited strong electromagnetic wave absorption properties. - Abstract: Graphene (G)/Fe nanocomposites with ferromagnetic properties at room temperature were fabricated by a facile and green method. Transmission electron microscope (TEM) and atomic force microscopy (AFM) amylases reveal that the α-Fe nanoparticles with a diameter of only about 10 nm were uniformly dispersed over the surface of the graphene sheets. Compared with other magnetic materials and the graphene, the nanocomposites exhibited significantly enhanced electromagnetic absorption properties. The maximum reflection loss to electromagnetic wave was up to −31.5 dB at a frequency of 14.2 GHz for G/Fe nanocomposites with a thickness of 2.5 mm. Importantly, the addition of the nanocomposites is only about 20 wt.% in the matrix. The enhanced mechanism is discussed and it is related to high surface areas of G/Fe nanocomposites, interfacial polarizations between graphene and iron, synergetic effect and efficient dispersity of magnetic NPs.

  7. Topologically nontrivial Fermi regions and their novel electromagnetic response properties

    NASA Astrophysics Data System (ADS)

    Lee, Ching Hua; Zhang, Xiao

    In the last decade, there has been a surge of interest in the application of topology to condensed matter physics. So far, most studies have been concerned with the novel properties that arise due to nontrivial band topology, i.e Quantum Anomalous Hall and Z2 topological insulators (TIs). In this talk, I shall describe another context where nontrivial topology also leads to interesting, measurable effects. Within the semi-classical Boltzmann approach, it can be shown that a topologically nontrivial Fermi sea region generically exhibits a non-monotonic nonlinear electromagnetic response in the limit of low chemical potential. Such topologically nontrivial regions of filled states can arise in experimentally realized TI heterostructures or materials with large Rashba splitting, i.e. BiTeI, where the Fermi sea is not simply connected. A non-monotonic electromagnetic response implies regimes of negative differential resistance, which have important applications in technologies involving microwave generation, like motion sensing and radio astronomy. We hope that nontrivial Fermi sea topology will hence provide another route for the realization of such technologies.

  8. Intrinsic left-handed electromagnetic properties in anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Chen, Hou-Tong

    2017-04-01

    Left-handed materials usually are realized in artificial subwavelength structures. Here, we show that some anisotropic superconductors such as Bi 2 Sr 2 CaCu 2 O 8 + δ , YBa 2 Cu x O y , and La 2 - x Sr x CuO 4 , are intrinsic left-handed materials. The condition is that the plasma frequency in the c axis, ωc, and in the ab plane, ωab, and the operating angular frequency, ω, satisfy ω c < ω < ω a b . In addition, ω should be smaller than the superconducting energy gap to sustain superconductivity. We study the reflection and transmission of electromagnetic waves and reveal negative refraction and the backward wave with the phase velocity opposite to the direction of energy flux propagation. We also discuss possible approaches for improvement, making these properties feasible for experimental validation. Being intrinsic left-hand materials, the anisotropic superconductors are promising for applications in functional electromagnetic devices in the terahertz frequency band.

  9. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    NASA Astrophysics Data System (ADS)

    Phillips, D. R.; Hammer, H.-W.

    2010-04-01

    We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1) strength of the 1/2+ to 1/2- transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also indicate how higher-order corrections that affect both s-wave and p-wave 10 Be-neutron interactions will affect our results.

  10. Electromagnetic Properties of Impact-Generated Plasma, Vapor and Debris

    SciTech Connect

    Crawford, D.A.; Schultz, P.H.

    1998-11-02

    Plasma, vapor and debris associated with an impact or explosive event have been demonstrated in the laboratory to produce radiofrequency and optical electromagnetic emissions that can be diagnostic of the event. Such effects could potentially interfere with communications or remote sensing equipment if an impact occurred, for example, on a satellite. More seriously, impact generated plasma could end the life of a satellite by mechanisms that are not well understood and not normally taken into account in satellite design. For example, arc/discharge phenomena resulting from highly conductive plasma acting as a current path across normally shielded circuits may have contributed to the loss of the Olympus experimental communications satellite on August 11, 1993. The possibility of significant storm activity during the Leonid meteor showers of November 1998, 1999 and 2000 (impact velocity, 72 km/s) has heightened awareness of potential vulnerabilities from hypervelocity electromagnetic effects to orbital assets. The concern is justified. The amount of plasma, electrostatic charge and the magnitude of the resulting currents and electric fields scale nearly as the cube of the impact velocity. Even for microscopic Leonid impacts, the amount of plasma approaches levels that could be dangerous to spacecraft electronics. The degree of charge separation that occurs during hypervelocity impacts scales linearly with impactor mass. The resulting magnetic fields increase linearly with impactor radius and could play a significant role in our understanding of the paleomagnetism of planetary surfaces. The electromagnetic properties of plasma produced by hypervelocity impact have been exploited by researchers as a diagnostic tool, invoked to potentially explain the magnetically jumbled state of the lunar surface and blamed for the loss of the Olympus experimental communications satellite. The production of plasma in and around an impact event can lead to several effects: (1) the

  11. Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films

    NASA Astrophysics Data System (ADS)

    Kenanakis, G.; Vasilopoulos, K. C.; Viskadourakis, Z.; Barkoula, N.-M.; Anastasiadis, S. H.; Kafesaki, M.; Economou, E. N.; Soukoulis, C. M.

    2016-09-01

    Modern electronics have nowadays evolved to offer highly sophisticated devices. It is not rare; however, their operation can be affected or even hindered by the surrounding electromagnetic radiation. In order to provide protection from undesired external electromagnetic sources and to ensure their unaffected performance, electromagnetic shielding is thus necessary. In this work, both the electromagnetic and mechanical properties of graphite-based polymeric films are studied. The investigated films show efficient electromagnetic shielding performance along with good mechanical stiffness for a certain graphite concentration. To the best of our knowledge, the present study illustrates for the first time both the electromagnetic shielding and mechanical properties of the polymer composite samples containing graphite filler at such high concentrations (namely 60-70 %). Our findings indicate that these materials can serve as potential candidates for several electronics applications.

  12. Investigation of mechanical properties of pavement through electromagnetic techniques

    NASA Astrophysics Data System (ADS)

    Benedetto, Andrea; Tosti, Fabio; D'Amico, Fabrizio

    2014-05-01

    Ground-penetrating radar (GPR) is considered as one of the most flexible geophysical tools that can be effectively and efficiently used in many different applications. In the field of pavement engineering, GPR can cover a wide range of uses, spanning from physical to geometrical inspections of pavements. Traditionally, such inferred information are integrated with mechanical measurements from other traditional (e.g. plate bearing test) or non-destructive (e.g. falling weight deflectometer) techniques, thereby resulting, respectively, in time-consuming and low-significant measurements, or in a high use of technological resources. In this regard, the new challenge of retrieving mechanical properties of road pavements and materials from electromagnetic measurements could represent a further step towards a greater saving of economic resources. As far as concerns unpaved and bound layers it is well-known that strength and deformation properties are mostly affected, respectively, by inter-particle friction and cohesion of soil particles and aggregates, and by bitumen adhesion, whose variability is expressed by the Young modulus of elasticity. In that respect, by assuming a relationship between electromagnetic response (e.g. signal amplitudes) and bulk density of materials, a reasonable correlation between mechanical and electric properties of substructure is therefore expected. In such framework, a pulse GPR system with ground-coupled antennae, 600 MHz and 1600 MHz centre frequencies was used over a 4-m×30-m test site composed by a flexible pavement structure. The horizontal sampling resolution amounted to 2.4×10-2 m. A square regular grid mesh of 836 nodes with a 0.40-m spacing between the GPR acquisition tracks was surveyed. Accordingly, a light falling weight deflectometer (LFWD) was used for measuring the elastic modulus of pavement at each node. The setup of such instrument consisted of a 10-kg falling mass and a 100-mm loading plate so that the influence domain

  13. EDITORIAL: The electromagnetic properties of iron-based superconductors The electromagnetic properties of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Prozorov, Ruslan; Gurevich, Alex; Luke, Graeme

    2010-05-01

    Iron-based superconductors, discovered just a few years ago, are members of a diverse family of pnictides and chalcogenides which may potentially contain hundreds of superconducting compounds. The unconventional, multiband superconductivity in these materials most likely emerges from the quintessential magnetic Fe ions. Along with many similarities to the high-Tc cuprates, the proximity of antiferromagnetism to superconductivity in these semi-metallic materials has attracted much attention. The massive effort aimed at understanding superconductivity in the high-Tc cuprates has stimulated the development of numerous state-of-the-art experimental techniques, improved crystal growth methods and a variety of new theoretical insights. These tools and models were already available and readily applied to the new iron-based superconductors for which lots of high quality new results are being reported literally every day. The current special section represents only a snapshot of these extensive studies performed in the second half of 2009, less than two years after the discovery of 26 K superconductivity in the LaFeAsO compound. The range of various experiments is impressive and this issue is mostly focused on the electromagnetic properties of these iron-based materials. The electromagnetic response is sensitive to the microscopic electronic behavior and therefore can be used to probe the mechanism of superconductivity. On the other hand, it is the electromagnetic response that determines many possible applications of these superconductors, particularly given their extremely high upper critical fields. At this point it is already quite clear that the iron-based superconductors cannot unambiguously fit into any known type of superconductor class and have been placed in one of their own. The metallic ground state of the parent compounds is different from the insulating state of the cuprates and generally exhibits a lower electromagnetic anisotropy. However, similar to the

  14. Measurement of Electromagnetic Properties of Lightning with 10 Nanosecond Resolution

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Oneill, J. P.; Moore, C. B.; Hall, D. L.

    1980-01-01

    Electromagnetic data recorded from lightning strikes are presented. The data analysis reveals general characteristics of fast electromagnetic fields measured at the ground including rise times, amplitudes, and time patterns. A look at the electromagnetic structure of lightning shows that the shortest rise times in the vicinity of 30 ns are associated with leader leader streamers. Lightning location is based on electromagnetic field characteristics and is compared to a nearby sky camera. The fields from both leaders and return strokes were measured and are discussed. The data were obtained during 1978 and 1979 from lightning strikes occuring within 5 kilometers of an underground metal instrumentation room located on South Baldy peak near Langmuir Laboratory, New Mexico. The computer controlled instrumentation consisted of sensors previously used for measuring the nuclear electromagnetic pulse (EMP) and analog-digital recorders with 10 ns sampling, 256 levels of resolution, and 2 kilobytes of internal memory.

  15. Synthesis and Properties of Polymer Nanocomposites with Tunable Electromagnetic Response

    NASA Astrophysics Data System (ADS)

    Stojak, Kristen L.

    Multifunctional polymer nanocomposites (PNCs) are attractive for the design of tunable RF and microwave components such as flexible electronics, attenuators, and antennas due to cost-effectiveness and durability of polymeric matrices. In this work, three separate PNCs were synthesized. Magnetite (Fe 3O4) and cobalt ferrite (CFO) nanoparticles, synthesized by thermal decomposition, were used as PNC fillers. Polymers used in this work were a commercial polymer provided by the Rogers Corporation (RP) and polyvinylidene fluoride (PVDF). PNCs in this thesis consist of Fe3O 4 in RP, CFO in RP, and Fe3O4 in PVDF. Characterization techniques for determining morphology of the nanoparticles, and their resulting PNCs, include x-ray diffraction, transmission electron microscopy and magnetometry. All magnetometry measurements were taken using a Quantum Design Physical Property Measurement System with a superconducting magnet. Temperature and external magnetic field magnetization measurements revealed that all samples exhibit superparamagnetic behavior at room temperature. Blocking temperature, coercivity and reduced remnant magnetization do not vary with concentration. Tunable saturation magnetization, based on nanoparticle loading, was observed across all PNCs, regardless of polymer or nanoparticle choice, indicating that this is an inherent property in all similar PNC materials. Tunability studies of the magneto-dielectric PNCs were carried out by adding the PNC to cavity and microstrip linear resonator devices, and passing frequencies of 1-6 GHz through them in the presence of transverse external magnetic fields of up to 4.5 kOe, provided by an electromagnet. Microwave characteristics were extracted from scattering parameters of the PNCs. In all cases, losses were reduced, quality factor was increased, and tunability of the resonance frequency was demonstrated. Strong magnetic field dependence was observed across all samples measured in this study.

  16. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials

    NASA Astrophysics Data System (ADS)

    Savinov, V.; Fedotov, V. A.; Zheludev, N. I.

    2014-05-01

    The toroidal dipole is a peculiar electromagnetic excitation that can not be presented in terms of standard electric and magnetic multipoles. A static toroidal dipole has been shown to lead to violation of parity in atomic spectra and many other unusual electromagnetic phenomena. The existence of electromagnetic resonances of toroidal nature was experimentally demonstrated only recently, first in the microwave metamaterials, and then at optical frequencies, where they could be important in spectroscopy analysis of a wide class of media with constituents of toroidal symmetry, such as complex organic molecules, fullerenes, bacteriophages, etc. Despite the experimental progress in studying toroidal resonances, no direct link has yet been established between microscopic toroidal excitations and macroscopic scattering characteristics of the medium. To address this essential gap in the electromagnetic theory, we have developed an analytical approach for calculating the transmissivity and reflectivity of thin slabs of materials that exhibit toroidal dipolar excitations.

  17. Electromagnetic breast imaging: average tissue property values in women with negative clinical findings.

    PubMed

    Poplack, Steven P; Paulsen, Keith D; Hartov, Alexander; Meaney, Paul M; Pogue, Brian W; Tosteson, Tor D; Grove, Margaret R; Soho, Sandra K; Wells, Wendy A

    2004-05-01

    Representative data are provided for three electromagnetic breast imaging techniques-near-infrared spectroscopy, electrical impedance spectroscopy, and microwave imaging spectroscopy-to serve as potential benchmarks for future investigation. The breasts of 23 women without clinical or mammographic findings of disease were imaged in the coronal plane with nonionizing radiation of varying frequencies. Average electromagnetic property values were reconstructed at each frequency on the basis of computational models of light diffusion, current flow, and microwave propagation. Electromagnetic properties were correlated with subject characteristics and between techniques. Each technique yielded information on breast tissue features (eg, conductivity, permittivity, light scattering, and absorption) that had not previously all been measured in the same individuals.

  18. Effects of microstructure and filling ratio on electromagnetic properties of Co microspheres

    NASA Astrophysics Data System (ADS)

    Chen, N.; Jiang, J. T.; Yuan, Y.; Liu, C.; Xu, C. Y.; Zhen, L.

    2017-01-01

    Cobalt microspheres with diameters of 1.5-3.5 μm were synthesized by a liquid phase reduction method. The effects of hydrogen annealing on microstructure evolution and electromagnetic properties of Co microspheres were investigated. The influence of filling ratio on the electromagnetic properties of specimens containing Co microspheres as fillers was also examined. The results indicated that the annealing leads to increase in Co microspheres' permittivity as the improved conductivity that developed during annealing contributes to enhanced dielectric relaxation. High filling ratio is found to be favorable for achieving high electromagnetic properties and thus higher electromagnetic absorbing performances, which is of technical significant for application in low frequency band. Coatings containing 30, 45 and 50 vol% Co particles as fillers present excellent EMA performance, even very thin thickness is applied. High electromagnetic wave absorbing efficiency of -10 dB was observed at thickness of 1.5 mm in C band and the electromagnetic wave absorption bandwidth reaches up to 6.3 GHz (6.7-13 GHz) when the filling volume is 45 vol%.

  19. Dispersion properties of compressional electromagnetic waves in quantum dusty magnetoplasmas

    SciTech Connect

    Ali, S.; Shukla, P.K.

    2006-05-15

    A new dispersion relation for low-frequency compressional electromagnetic waves is derived by employing quantum magnetohydrodynamic model and Maxwell equations in cold quantum dusty magnetoplasmas. The latter is composed of inertialess electrons, mobile ions, and immobile charged dust particulates. The dispersion relation for the low-frequency compressional electromagnetic modes is further analyzed for the waves propagating parallel, perpendicular, and oblique to the external magnetic field direction. It is found theoretically and numerically that the quantum parameter {alpha}{sub q}=(n{sub i0}/n{sub e0})({Dirac_h}/2{pi}){sup 2}/(4m{sub e}m{sub i}) affects the real angular frequencies and the phase speeds of the compressional electromagnetic modes. Here, n{sub i0} (n{sub e0}) is the equilibrium number density of the ions (electrons), m{sub e} (m{sub i}) is the electron (ion) mass, and ({Dirac_h}/2{pi}) is the Plank constant divided by 2{pi}.

  20. Electromagnetic properties of metal-dielectric media and their applications

    NASA Astrophysics Data System (ADS)

    Animilli, Shravan Rakesh

    The main objective of this dissertation is to investigate nano-structured random composite materials, which exhibit anomalous phenomena, such as the extraordinary enhancements of linear and non-linear optical processes due to excitation of collective electronic states, surface plasmons (SP). The main goal is to develop a time and memory efficient novel numerical method to study the properties of these random media in three dimensions (3D) by utilization of multi core processing and packages such as MPI for parallel execution. The developed numerical studies are then utilized to provide a comprehensive characterization and optimization of a surface plasmon enhanced solar cell (SPESC) and to serve as a test bed for enhanced bio and chemical sensing. In this context, this thesis work develops an efficient and exact numerical algorithm here referred to as Block Elimination Method (BE) which provides the unique capability of modeling extremely large scale composite materials (with up to 1 million strongly interacting metal or dielectric particles). This capability is crucial in order to study the electromagnetic response of large scale inhomogeneous (fractal) films and bulk composites at critical concentrations (percolation). The developed numerical method is used to accurately estimate parameters that describe the composite materials, including the effective conductivity and correlation length scaling exponents, as well as density of states and localization length exponents at the band center. This works reveals, for a first time, a unique de-localization mechanism that plays an important role in the excitation of charge-density waves, i.e. surface plasmons (SP), in metal-dielectric composites. It also shows that in 3D metal-dielectric percolation systems the local fields distribution function for frequencies close to the single particle plasmon resonance is log-normal which is a signature of a metal-dielectric phase transition manifested in the optical response of the

  1. ELECTROMAGNETIC MICROWAVE PROPERTIES OF Fe82B17Cu1 BALL MILLED ALLOY

    NASA Astrophysics Data System (ADS)

    Tian, N.; Fan, X. D.; Wang, J. W.; You, C. Y.; Lu, Z. X.; Ge, L. L.

    2013-07-01

    High saturation magnetization and magnetic anisotropy are helpful for getting a high frequency electromagnetic microwave absorption performance. The α-Fe possesses a high saturation magnetization. Fe-B phases exhibit a relatively higher magnetic anisotropy and higher resistivity than α-Fe simultaneously. In this work, we made nanocrystalline powders of Fe82B17Cu1, mainly consisting of α-Fe and Fe2B phases, by ball milling and post-annealing. Electromagnetic microwave characterization shows that Fe82B17Cu1 powders possess a relative high permeability and considerable permittivity. Due to a good electromagnetic impedance matching, a good electromagnetic microwave absorption property (RL < -35 dB) has been achieved at 3.6 GHz. The experimental frequency and the matching thickness are coincident with the quarter wavelength matching condition.

  2. Electromagnetic field properties in the vicinity of a massive wormhole

    SciTech Connect

    Novikov, I. D.; Shatskiy, A. A.

    2011-12-15

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  3. Dielectric properties of glassy disaccharides for electromagnetic interference shielding application

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Hawelek, L.; Paluch, M.; Wlodarczyk, A.; Wojnarowska, Z.; Kolano-Burian, A.

    2015-11-01

    Three amorphous disaccharides (sucrose, trehalose, and lactulose) and their mixtures were studied in order to evaluate their ability to absorb a high frequency (>1 MHz) electromagnetic wave. The materials were characterized by a dielectric loss tangent. It was found out that the highest tan(δ) value is observed in pure amorphous sucrose (tan(δ) = 0.17 at f = 1 MHz at T = 293 K). Moreover, the best Tg/tan(δ) ratio is observed in binary mixtures of sucrose and trehalose. A high glass transition temperature is advantageous as it increases operational temperatures of the material. The high tangent delta in microwave frequencies of sugars is connected with the mobility of sugar groups (possibly -CH2OH). The energy of the electromagnetic wave is converted into rotational movements of side groups and in consequence it is dissipated in the form of heat. It was proven that the polar low molecular glasses such as sugars may form dielectric components of composite microwave absorbers.

  4. Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys

    NASA Astrophysics Data System (ADS)

    Yang, Chubin; Pan, Fusheng; Chen, Xianhua; Luo, Ning

    2017-06-01

    The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement.

  5. Fabrication and electromagnetic properties of fe nanofibers composites

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Bok; Hong, Sung-Jin; Yi, Jin-Woo; Lee, Sang-Kwan; Choa, Yong-Ho; Kim, Jin-Bong

    2012-02-01

    In order to develop electromagnetic (EM) wave absorbing materials in the giga-hertz (GHz) frequency range, Fe nanofibers have been prepared by multi-nozzle electrospinning process (ESP) and heat treatments. The effects of applied voltage and feed rate on the morphology of electrospun PVP/Fe salt nanofibers have been studied in the electrospinning process. The average diameter and the standard deviation of electrospun nanofibers tend to decrease with the increase of the applied voltage and the decrease of the feed rate, respectively. Through the heat treatments of calcination and H2 reduction, as-spun PVP/Fe salt has been stepwise transformed into Fe2O3, Fe3O4, and Fe phases. To evaluate the EM characteristic of the prepared Fe nanofibers, epoxy matrix composites containing Fe nanofibers of 10 and 30 wt% have been fabricated. The Fe nanofibers have improved the EM characteristics of composites as compared to those of nano-sized metallic particles.

  6. Electro-magnetically controlled acoustic metamaterials with adaptive properties.

    PubMed

    Malinovsky, Vladimir S; Donskoy, Dimitri M

    2012-10-01

    A design of actively controlled metamaterial is proposed and discussed. The metamaterial consists of layers of electrically charged nano or micro particles exposed to external magnetic field. The particles are also attached to compliant layers in a way that the designed structure exhibits two resonances: mechanical spring-mass resonance and electro-magnetic cyclotron resonance. It is shown that if the cyclotron frequency is greater than the mechanical resonance frequency, the designed structure could be highly attenuative (40-60 dB) for vibration and sound waves in very broad frequency range even for wavelength much greater than the thickness of the metamaterial. The approach opens up wide range of opportunities for design of adaptively controlled acoustic metamaterials by controlling magnetic field and/or electrical charges.

  7. Changes in electromagnetic properties of a low-alloy steel caused by neutron irradiation

    SciTech Connect

    Goto, Toru; Kamimura, Takeo; Kumano, Shintaro; Takeuchi, Iwao; Maeda, Noriyoshi; Yamaguchi, Atsunori

    1999-10-01

    In order to develop a method for the nondestructive evaluation of material deterioration in nuclear pressure vessels, changes in the electromagnetic properties of the low-alloy steel A533B, Class 1 and its weld metal caused by neutron irradiation up to {approximately}3 {times} 10{sup 23} n/m{sup 2} of neutron fluence at 561 K were measured. Electrical resistance, coercivity and Barkhausen noise were selected as the electromagnetic properties to measure. It was found that decreases of several percent in the readings of electrical resistance and coercivity, and an increase of several percent in the Barkhausen noise occurred due to neutron irradiation. Good correlations between the changes in the electromagnetic properties and those in the mechanical properties were confirmed. Furthermore, an equation using the results of the three tests was found to estimate well the transition temperature and yield strength. From this, the authors conclude that the electromagnetic tests have potential as methods for nondestructive evaluation of material deterioration in the reactor vessels of nuclear power plants.

  8. Nondestructive identification of material properties of fibre concrete: A time-harmonic electromagnetic field

    NASA Astrophysics Data System (ADS)

    Hobst, L.; Bílek, P.

    2016-06-01

    The magnetic approach to the identification of mechanical properties of fibre concrete, using permanent magnets, has its electromagnetic alternative, more suitable to the nondestructive detection of orientation of fibres, in addition to the evaluation of their volume fraction. This paper sketches related approaches to both experimental settings and computational simulations.

  9. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals.

    PubMed

    Zhu, Weimo; Wang, Lei; Zhao, Rui; Ren, Jiawen; Lu, Guanzhong; Wang, Yanqin

    2011-07-01

    The electromagnetic and microwave absorbing properties of nickel ferrite nanocrystals were investigated for the first time. There were two frequencies corresponding to the maximum reflection loss in a wide thickness range from 3.0 to 5.0 mm, which may be bought by the nanosize effect and the good crystallization of the nanocrystals.

  10. [Interaction of oxytocin, laser and electromagnetic radiation on the persistence properties of Staphylococcus aureus].

    PubMed

    Kurlaev, P P; Chernova, O L; Kirgizova, S B

    2000-01-01

    The suppressive action of oxytocin, heliumneon radiation and ultrahigh-frequency electromagnetic waves (UHF-therapy) on the persistence properties of S. aureus has been experimentally established. The effectiveness of the therapeutic actions under study in the treatment of patients with the prognosticated unfavorable course of purulent inflammatory diseases of soft tissues has been shown.

  11. Electromagnetic properties of Bi-2223/Ag concentric tapes

    SciTech Connect

    Majoros, M.; Polak, M.; Kvitkovic, J.; Suchon, D.; Martini, L.; Ottoboni, V.; Zannella, S.

    1996-07-01

    It is well established that near the silver interface highly textured Bi-2223 layers compared to the inner ceramic core may be obtained. Thus Bi-2223 multilayered concentric tapes with silver matrix are very promising in increasing transport critical current densities. In the present work the authors report on the electromagnetic characterization of short tapes having in their cross-section a very thin HTS flattened ring with Ag inside and outside of it. The samples were prepared by the powder in tube method and have self-field critical current densities J{sub c} of the order of 3 {times} 10{sup 4} A/cm{sup 2} at 77 K. Transport and SQUID magnetization measurements revealed weak link nature of the samples in low magnetic fields. Large transport J{sub c}(B) hysteresis was observed at 4.2 K and magnetic fields up to 20 T. Magnetic field profiles measurements with miniature Hall sensors are in qualitative accordance with model calculations supposing homogeneous current density distribution across the superconducting core.

  12. Electromagnetic method for analyzing the property of steel casing

    SciTech Connect

    Lee, K.H.; Kim, H.J.; Song, Y.

    1998-02-01

    It has been shown that electromagnetic (EM) imaging, in particular in borehole applications, can be effective in characterizing and monitoring subsurface processes involved in improved oil recovery operations and production management. In this report the authors present an innovative EM method for extracting information about a steel casing in terms of its electrical conductivity, magnetic permeability, and the casing thickness. The method is based on accurate evaluation of magnetic fields near the transmitting loop in a steel-cased borehole, and the least squares inversion of thus measured data. The need to make measurements close to the source stems from the two related considerations. One reason is that by making measurements close to the transmitter one can keep the formation response from entering the measurement to a minimum. The other reason concerns with the practical consideration involved in fabricating a borehole tool. The measurement accuracy in terms of PPM to the primary field can best be achieved when the transmitter and receiver are close to each other. To facilitate this requirement one can consider a single loop acting as the source and the receiver operating in time domain, or a closely coupled frequency-domain system with the source-receiver separation of just a few inches apart. Results are discussed.

  13. Structure and electromagnetic properties of FeSiAl particles coated by MgO

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhou, Ting-dong

    2017-03-01

    FeSiAl particles with a layer of MgO surface coating have excellent soft magnetic and electromagnetic properties. In order to obtain the FeSiAl/MgO composites, Mg(OH)2 sol prepared by sol-gel process was well-mixed with FeSiAl flake particles, and then treated by calcination at 823 K in vacuum. The microstructural, morphological and electromagnetic parameters of FeSiAl/MgO particles were tested. Accordingly, the electromagnetic wave reflection loss in the frequency range of 0.5-18 GHz was calculated. The results show that the surface coating increases coercivity Hc and decreases complex permittivity, leading to a good impedance matching. When the coating amount was 7.5%, reflection loss of the composite particles can reach to -33 dB.

  14. Double negative electromagnetic property of granular composite materials in the microwave range

    NASA Astrophysics Data System (ADS)

    Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2015-06-01

    The double negative (DNG) electromagnetic property, i.e. the simultaneous negative permittivity and permeability, of granular composite materials has been studied in the microwave frequency range. The negative permittivity spectrum can be realized by the low frequency plasma oscillation which is generated in the percolated metal particle chain as well as the dielectric resonance of the induced dipole in the isolated metal particle clusters. Meanwhile, the negative permeability spectrum can be obtained by the magnetic resonance of the embedded ferromagnetic particles in the granular composite structure. By combining these negative electromagnetic properties, the DNG characteristics can be produced in the granular composite material. The DNG properties of the Cu/Yttrium Iron Garnet (Cu/YIG) granular composite materials under external magnetic field will be presented; the negative refractive index of the Cu/YIG composite material will also be discussed.

  15. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  16. Electromagnetic properties of ice-coated iron whiskers

    NASA Astrophysics Data System (ADS)

    Jazbi, B.; Hoyle, F.; Wickramasinghe, N. C.

    1990-12-01

    In their recent papers, Hoyle and Wickramasinghe (1988, 1989) and Hoyle et al. (1990) argued that iron whiskers condensing in supernovae could be expelled from entire galaxies to become dispersed over cosmological distance scales and to generate a cosmic microwave background by thermalizing optical and NIR radiation from stellar sources. In this paper, the effect of H2O-ice mantles on infinitely long cylindrical metallic whiskers is investigated using the rigorous Kerker-Matijevic (1961) formulae. It is shown that ice coating does not significantly alter the cosmologically relevant properties of uncoated metallic whiskers.

  17. Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites

    NASA Astrophysics Data System (ADS)

    Kanygin, M. A.; Sedelnikova, O. V.; Asanov, I. P.; Bulusheva, L. G.; Okotrub, A. V.; Kuzhir, P. P.; Plyushch, A. O.; Maksimenko, S. A.; Lapko, K. N.; Sokol, A. A.; Ivashkevich, O. A.; Lambin, Ph.

    2013-04-01

    Nitrogen-doped and pure carbon nanotube (CNT) based composites were fabricated for investigating their dielectric properties in static regime as well as electromagnetic response properties in microwave frequency range (Ka-band). Two classes of host matrix—polystyrene and phosphate unfired ceramics—have been used for composites fabrication. The study reveals miscellaneous effect of nitrogen doping on the dielectric permittivity, dc conductivity and electromagnetic interference shielding efficiency of CNT-based composites, produced with both polymer and ceramic matrices. The high-frequency polarizability, estimated for different-length CNTs, and static polarizability, calculated for nitrogen-containing CNT models using a quantum-chemical approach, show that this effect results from a decrease of the nanotube defect-free-length and deterioration of the polarizability with incorporation of nitrogen in pyridinic form.

  18. Influence analysis of structural parameters on electromagnetic properties of HTS linear induction motor

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Zheng, T. Q.; Zhang, W.; Fang, J.; Liu, Y. M.

    2011-11-01

    A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.

  19. Electromagnetic properties of impure superconductors with pair-breaking processes

    NASA Astrophysics Data System (ADS)

    Herman, František; Hlubina, Richard

    2017-07-01

    Recently, a generic model was proposed for the single-particle properties of gapless superconductors with simultaneously present pair-conserving and pair-breaking impurity scatterings (the so-called Dynes superconductors). Here we calculate the optical conductivity of the Dynes superconductors. Our approach is applicable for all disorder strengths from the clean limit up to the dirty limit and for all relative ratios of the two types of scattering; nevertheless, the complexity of our description is equivalent to that of the widely used Mattis-Bardeen theory. We identify two optical fingerprints of the Dynes superconductors: (i) the presence of two absorption edges and (ii) finite absorption at vanishing frequencies even at the lowest temperatures. We demonstrate that the recent anomalous optical data on thin MoN films can be reasonably fitted by our theory.

  20. Study of Electromagnetic Wave Absorption Properties of Carbon Nanotubes-Based Composites

    DTIC Science & Technology

    2012-11-29

    Arredondo of Coe College in Iowa from June 1 to July 31, 2012, under the supervising of Dr. Guang-Lin Zhao. III. Project Activities and New Insights...MWCNTs)-epoxy composite samples, using MWCNTs with an average outer diameter (OD) less than 8 nm. The weight fraction of MWCNTs in the CNT-epoxy... in the first time in the research. We further analyzed the absorption properties of Carbon nanotubes polymer composites; Electromagnetic wave

  1. The Electromagnetic and Mechanical Properties of Structural Composites: A Theoretical and Experimental Design Study

    DTIC Science & Technology

    2014-08-22

    presented. unidirectional glass fiber bundles polymer stitching thread elliptical fiber bundle cross section Az, _^%i Unidirectional fabrics...Figure 2a shows a typical unidirectional composite fabric. It also shows the thin polymer stitching thread used to hold the fiber bundles in place. The...stitching thread takes up less than 2% of the total fabric volume and, as a result, its contribution to the fabric’s electromagnetic properties

  2. Numerical studies on the electromagnetic properties of the nonlinear Lorentz Computational model for the dielectric media

    SciTech Connect

    Abe, H.; Okuda, H.

    1994-06-01

    We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media.

  3. Investigation of Electromagnetic Properties of Multiparticle Systems in the Optical and Microwave Regions

    NASA Astrophysics Data System (ADS)

    Yip, Wendy

    The goal of this work is to examine the electromagnetic properties of multiple particles ensembles in optical and microwave regions. Electromagnetic scattering problems of multi-particles systems appear in many research areas, including biomedical research problems. When a particle system becomes dense, multiple scattering between the particles need to be included in order to fully describe the response of the system to an EM wave. The generalized multiparticle Mie (GMM) solution is used to rigorously solve the Maxwell's equations for multi-particles systems. The algorithm accounts for multiple scattering effects by transforming the waves scattered by an individual particle to the incident waves of other spheres in the ensemble. In the optical region, light scattering from biological tissues can reveal structural changes in the tissues which can be a mean for disease diagnosis. A new Monte Carlo simulation method is introduced to study the effect of tissue structure on signals from two diagnostic probes, the polarization gating probe and low coherence enhanced back scattering probe (LEBS). In the microwave region, the study of electromagnetic properties with metallic nanoparticles can determine their potential as effective heating agents in microwave hyperthermia therapy. The investigation aims to study the dielectric properties of metallic nanoparticles and quantify the relationship between the characteristics of metallic nanoparticles and the heating effect. The finding should help optimize the design and use of metallic nanoparticles in hyperthermia treatment. In addition, the metallic nanoparticles are studied for their potential to be contrast agents for biological tissue in the microwave region.

  4. Effects of Perovskite Additives on the Electromagnetic Properties of Z-Type Hexaferrites

    NASA Astrophysics Data System (ADS)

    Lijun Jia,; Yingming Tang,; Huaiwu Zhang,; Pingfeng Deng,; Yingli Liu,; Baoyuan Liu,

    2010-06-01

    In order to modulate the electromagnetic properties of Z-type hexaferrites for high-frequency applications, perovskite additives have been introduced. The effects of these additives on the phase composition, densification, microstructures and electromagnetic properties of the ceramics have been investigated. The results indicate that Ba0.5Sr0.5TiO3 (BST) can promote the grain growth and enhance the sintering by increasing the displacement of ions due to the lattice distortion, which is a result of the solid solubility of Ti4+ in the hexaferrite. The increase of grain size and bulk density and the decrease of magnetocrystalline anisotropy give rise to the improvement of the static permeability. Meanwhile, the dielectric constant increases with BST content due to the changing of the valence of Fe ions in octahedral sites and the polarization of the perovskite phase. In contrast, Pb0.95Sr0.05(Zr0.52Ti0.48)O3 (PZT) is not effective for improving the electromagnetic properties of hexaferrites due to the strong coupling of Ti-O and Zr-O.

  5. Study on the characteristics of magneto-sensitive electromagnetic wave-absorbing properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Yang, Pingan; Fu, Jie; Liu, Shuzhi; Qi, Song

    2016-08-01

    Magnetorheological (MR) materials are a class of materials whose mechanical and electrical properties can be reversible controlled by the magnetic field. In this study, we pioneered research on the effect of a uniform magnetic field with different strengths and directions on the microwave-absorbing properties of magnetorheological elastomers (MREs), in which the ferromagnetic particles are flower-like carbonyl iron powders (CIPs) prepared by an in situ reduction method. The electromagnetic (EM) absorbing properties of the composites have been analyzed by vector network analysis with the coaxial reflection/transmission technique. Under the magnetic field, the columnar or chainlike structures were formed, which allows EM waves to penetrate. Meanwhile, stronger Debye dipolar relaxation and attenuation constant have been obtained when changing the direction of the applied magnetic field. Compared with untreated MREs, not only have the minimum reflection loss (RL) and the effective absorption bandwidth (below -20 dB) greatly increased, the frequencies of the absorbing peaks shift about 15%. This suggests that MREs are a magnetic-field-sensitive electromagnetic wave-absorbing material and have great potential in applications such as in anti-radar camouflage, due to the fact that radar can continuously conduct detection at many electromagnetic frequencies, while the MR materials can adjust the microwave-absorption peak according to the radar frequency.

  6. Spectral properties of a random electromagnetic partially coherent flat-topped vortex beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Qian, Xianmei

    2013-03-01

    Based on the extended Huygens-Fresnel principle, we introduced the analytic expression of a random electromagnetic partially coherent flat-topped (PCFT) vortex beam propagating in Kolmogorov atmospheric turbulence. The spectral properties of the random electromagnetic PCFT vortex beam are explored by using the unified theory of coherence and polarization. It is demonstrated by numerical results and found that after propagating through turbulent atmosphere, the spectral density, the spectral degree of polarization as well as the spectral degree of coherence of the random electromagnetic PCFT vortex beam vary. The variations of the spectral properties depend closely on the strength of atmospheric turbulence and the properties of the source beam, i.e. the topological charges, the order of flatness, the waist width as well as the initial spatial coherence. In addition, the distributions of the spectral density and the spectral degree of polarization undergo several stages of evolution and finally tend to Gaussian profile at the receiver plane. Some possible explanations have also been given for these interesting physical phenomena.

  7. Electromagnetic properties of Beryllium-11 in Halo EFT

    NASA Astrophysics Data System (ADS)

    Phillips, Daniel; Hammer, Hans-Werner

    2010-10-01

    We compute properties of ^11Be using an effective field theory (EFT) that exploits the separation of scales in this halo system. This nucleus has both a shallow 1/2^+ and a shallow 1/2^- state. At leading order (LO) in the EFT the theory contains three parameters: the binding energies of these two states, as well as the effective ``range' for p-wave ^10Be-neutron scattering. We use data on the 1/2^+ and 1/2^- levels and the B(E1) strength of the 1/2^+ to 1/2^- transition in the ^11Be nucleus to fix these three parameters. We then compute the dissociation spectrum obtained from Coulomb excitation of the ^11Be nucleus into ^10Be plus a neutron, and compare to experimental data. At LO this spectrum is a prediction of the EFT. At next-to-leading order (NLO) one additional parameter associated with the 1/2^+ state arises. This can be adjusted to obtain a good description of the low-energy part of the dB(E1)/dE spectrum. We also predict the charge radius of the 1/2^+ state, which agrees with experiment at the level expected for an NLO calculation. The convergence pattern of the halo EFT is consistent with the nominal expansion parameter in this system. This allows us to extract the s-wave scattering length and effective range and the p-wave scattering volume in the effective-range expansions that parametrize scattering of a neutron from a ^10Be nucleus.

  8. On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.

    Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the

  9. Methods for describing the electromagnetic properties of silver and gold nanoparticles.

    PubMed

    Zhao, Jing; Pinchuk, Anatoliy O; McMahon, Jeffrey M; Li, Shuzhou; Ausman, Logan K; Atkinson, Ariel L; Schatz, George C

    2008-12-01

    This Account provides an overview of the methods that are currently being used to study the electromagnetics of silver and gold nanoparticles, with an emphasis on the determination of extinction and surface-enhanced Raman scattering (SERS) spectra. These methods have proven to be immensely useful in recent years for interpreting a wide range of nanoscience experiments and providing the capability to describe optical properties of particles up to several hundred nanometers in dimension, including arbitrary particle structures and complex dielectric environments (adsorbed layers of molecules, nearby metal films, and other particles). While some of the methods date back to Mie's celebrated work a century ago, others are still at the forefront of algorithm development in computational electromagnetics. This Account gives a qualitative description of the physical and mathematical basis behind the most commonly used methods, including both analytical and numerical methods, as well as representative results of applications that are relevant to current experiments. The analytical methods that we discuss are either derived from Mie theory for spheres or from the quasistatic (Gans) model as applied to spheres and spheroids. In this discussion, we describe the use of Mie theory to determine electromagnetic contributions to SERS enhancements that include for retarded dipole emission effects, and the use of the quasistatic approximation for spheroidal particles interacting with dye adsorbate layers. The numerical methods include the discrete dipole approximation (DDA), the finite difference time domain (FDTD) method, and the finite element method (FEM) based on Whitney forms. We discuss applications such as using DDA to describe the interaction of two gold disks to define electromagnetic hot spots, FDTD for light interacting with metal wires that go from particle-like plasmonic response to the film-like transmission as wire dimension is varied, and FEM studies of

  10. Influence of numerical schemes on statistical properties of computed charged particle trajectories in turbulent electromagnetic fields

    SciTech Connect

    Lalescu, C.C.; Teaca, B.; Carati, D.

    2013-05-15

    A class of numerical schemes is developed for the study of charged particle transport in complex stationary electromagnetic fields and tested for fields obtained from a numerical solution of the magneto-hydrodynamic equation. The performances of these schemes are evaluated by analyzing the conservation of energy and the statistical properties of the trajectories. Energy conservation is affected by the interpolation technique used to estimate the field value at the particle position. However, the particle transport properties are more robust, except in the limit of low energy when a significant fraction of the particles are trapped.

  11. Effects of electromagnetic field on the electrical properties of DNA molecular wires

    NASA Astrophysics Data System (ADS)

    Ramesh, Varsha

    Fabrication process for semiconductor electronics is approaching the barriers set by the fundamental laws of physics. Alternative technologies for implementing long term molecular wires in electronics such as deoxyribonucleic acids (DNA) continue to be pursued. In this thesis, we investigate the long-term electrical properties of double-stranded lambda-DNA during exposure of electromagnetic and electrostatic fields to DNA. While there is no specific theory and mechanism on how electromagnetic fields affect DNA, some research has shown damage to DNA while some have given negative results. All the studies have been conducted on cells and DNA damage is believed to be caused by multiple factors. Even small structural alterations in DNA is likely to cause changes in electrical readings. In this research, DNA is suspended between two 3-dimensional microelectrodes, which are separated by a 10 micron gap, fabricated using negative lithography. Afterwards, separate samples were exposed to electromagnetic field of 4.11E-10 eV energy. DNA was also exposed to high voltage directly to test its properties due to internal field. Fourier Transform Infrared Spectroscopy (FTIR) was done on electrostatic field exposed DNA. Experimental results showed that the electrical conductivity of DNA decreased with high exposure time. FTIR confirmed the structural changes that happened in DNA due to exposure to electrostatic fields.

  12. A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Weiya; Gao, Cuicui; Tian, Weicheng; Sun, Bin; Yu, Dan

    2015-07-01

    Polyacrylonitrile (PAN) fibers with antibacterial, electromagnetic shielding and antistatic functionalities were fabricated in this paper through modifying PAN fibers with (3-aminopropyl)triethoxysilane (APTES) and 3-mercaptopropyltriethoxysilane (MPTES) sequentially and followed with silver electroless plating. The silver layer on PAN fiber surface was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that the silver layer was plated uniformly and compactly. The surface resistance of plated fabric was about 40 mΩ/sq on average. The antibacterial tests demonstrate that silver-plated PAN fiber exhibits excellent antibacterial property against S. aureus and E. coli with a non-leaching characteristic. The antibacterial property remains good after 30 cycles of standard washing, which is a strong proof of a durable adhesion between metal layer and fiber. The shielding effectiveness (SE) of silver-plated PAN fabric before and after 30 cycles of standard washing was about 40-80 dB and 35-50 dB, respectively. This resultant fiber can be used in many occasions for reducing or preventing electromagnetic interference (EMI) and electromagnetic hazards.

  13. Fabrication and Electromagnetic Properties of Conjugated NH2-CuPc@Fe3O4

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Pu, Zejun; Xu, Mingzhen; Wei, Renbo; Liu, Xiaobo

    2017-10-01

    Conjugated amino-phthalocyanine copper containing carboxyl groups/magnetite (NH2-CuPc@Fe3O4) has been fabricated from FeCl3·6H2O and NH2-CuPc via a simple solvothermal method and its electromagnetic properties investigated. Scanning electron microscopy and transmission electron microscopy revealed that the NH2-CuPc@Fe3O4 was a waxberry-like nanomaterial with NH2-CuPc molecules effectively embedded in the interior of Fe3O4 particles in the form of beads. Introduction of NH2-CuPc effectively improved the complementarity between the dielectric and magnetic losses of the system, resulting in excellent electromagnetic performance. The minimum reflection loss of the as-prepared composite reached -33.4 dB at 7.0 GHz for coating layer thickness of 4.0 mm and bandwidth below -10.0 dB (90% absorption) of up to 3.8 GHz. These results indicate that introduction of NH2-CuPc results in a composite with potential for use as an electromagnetic microwave absorption material.

  14. MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties.

    PubMed

    Lü, Yinyun; Wang, Yiting; Li, Hongli; Lin, Yuan; Jiang, Zhiyuan; Xie, Zhaoxiong; Kuang, Qin; Zheng, Lansun

    2015-06-24

    Composites incorporating ferromagnetic metal nanopartices into a highly porous carbon matrix are promising as electromagnetic wave absorption materials. Such special composite nanomaterials are potentially prepared by the thermal decomposition of metal-organic framework (MOF) materials under controlled atmospheres. In this study, using Co-based MOFs (Co-MOF, ZIF-67) as an example, the feasibility of this synthetic strategy was demonstrated by the successful fabrication of porous Co/C composite nanomaterials. The atmosphere and temperature for the thermal decomposition of MOF precursors were crucial factors for the formation of the ferromagnetic metal nanopartices and carbon matrix in the porous Co/C composites. Among the three Co/C composites obtained at different temperatures, Co/C-500 obtained at 500 °C exhibited the best performance for electromagnetic wave absorption. In particular, the maximum reflection loss (RL) of Co/C-500 reached -35.3 dB, and the effective absorption bandwidth (RL ≤ -10 dB) was 5.80 GHz (8.40 GHz-14.20 GHz) corresponding to an absorber thickness of 2.5 mm. Such excellent electromagnetic wave absorption properties are ascribed to the synergetic effects between the highly porous structure and multiple components, which significantly improved impedance matching.

  15. Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.

    PubMed

    Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying

    2016-02-01

    Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption.

  16. Thermophysical properties of substantially undercooled liquid Ti-Al-Nb ternary alloy measured by electromagnetic levitation

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Wang, H. P.; Wei, B.

    2013-03-01

    The thermophysical properties of undercooled liquid alloys at high temperature are usually difficult to measure by experiment. Here, we report the specific heat of liquid Ti45Al45Nb10 ternary alloy in the undercooled state. By using electromagnetic levitation technique, a maximum undercooling of 287 K (0.15 T L) is achieved for this alloy. Its specific heat is determined to be 32.72 ± 2.51 J mol-1 K-1 over a broad temperature range of 1578-2010 K.

  17. Electromagnetic properties of terbium gallium garnet at millikelvin temperatures and low photon energy

    NASA Astrophysics Data System (ADS)

    Kostylev, Nikita; Goryachev, Maxim; Bushev, Pavel; Tobar, Michael E.

    2017-07-01

    Electromagnetic properties of single crystal terbium gallium garnet are characterised from room down to millikelvin temperatures using the whispering gallery mode method. Microwave spectroscopy is performed at low powers equivalent to a few photons in energy and conducted as functions of the magnetic field and temperature. A phase transition is detected close to the temperature of 3.5 K. This is observed for multiple whispering gallery modes causing an abrupt negative frequency shift and a change in transmission due to extra losses in the new phase caused by a change in complex magnetic susceptibility.

  18. Electromagnetic transition properties of Δ → Nγ in a hypercentral scheme

    NASA Astrophysics Data System (ADS)

    Kaushal, Thakkar; Ajay, Majethiya; C. Vinodkumar, P.

    2012-05-01

    The electromagnetic transition properties of the decuplet to octet baryon (Δ → Nγ) is studied within the framework of a hypercentral quark model. The confinement potential is assumed as a hypercentral coloumb plus linear potential. The transition magnetic moment and transition amplitude fM1 for the Δ → Nγ are in agreement with other theoretical predictions. The present result of the radiative decay width is found to be in excellent agreement with the experimental values reported by the particle data group over other theoretical model predictions.

  19. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers

    SciTech Connect

    Khan, Kishwar Rehman, Sarish

    2014-02-01

    Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of the calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.

  20. CoxFey@C Composites with Tunable Atomic Ratios for Excellent Electromagnetic Absorption Properties

    PubMed Central

    Lv, Hualiang; Ji, Guangbin; Zhang, Haiqian; Li, Meng; Zuo, Zhongzheng; Zhao, Yue; Zhang, Baoshan; Tang, Dongming; Du, Youwei

    2015-01-01

    The shell on the nano-magnetic absorber can prevent oxidation, which is very important for its practical utilization. Generally, the nonmagnetic shell will decrease the integral magnetic loss and thus weaken the electromagnetic absorption. However, maintaining the original absorption properties of the magnetic core is a major challenge. Here, we designed novel and facile CoxFey@C composites by reducing CoxFe3−xO4@phenolic resin (x = 1, 0.5 and 0.25). High saturation magnetization value (Ms) of CoxFey particle, as a core, shows the interesting magnetic loss ability. Meanwhile, the carbon shell may increase the integral dielectric loss. The resulting composite shows excellent electromagnetic absorption properties. For example, at a coating thickness of 2 mm, the RLmin value can reach to −23 dB with an effective frequency range of 7 GHz (11–18 GHz). The mechanisms of the improved microwave absorption properties are discussed. PMID:26659124

  1. CoxFey@C Composites with Tunable Atomic Ratios for Excellent Electromagnetic Absorption Properties

    NASA Astrophysics Data System (ADS)

    Lv, Hualiang; Ji, Guangbin; Zhang, Haiqian; Li, Meng; Zuo, Zhongzheng; Zhao, Yue; Zhang, Baoshan; Tang, Dongming; Du, Youwei

    2015-12-01

    The shell on the nano-magnetic absorber can prevent oxidation, which is very important for its practical utilization. Generally, the nonmagnetic shell will decrease the integral magnetic loss and thus weaken the electromagnetic absorption. However, maintaining the original absorption properties of the magnetic core is a major challenge. Here, we designed novel and facile CoxFey@C composites by reducing CoxFe3-xO4@phenolic resin (x = 1, 0.5 and 0.25). High saturation magnetization value (Ms) of CoxFey particle, as a core, shows the interesting magnetic loss ability. Meanwhile, the carbon shell may increase the integral dielectric loss. The resulting composite shows excellent electromagnetic absorption properties. For example, at a coating thickness of 2 mm, the RLmin value can reach to -23 dB with an effective frequency range of 7 GHz (11-18 GHz). The mechanisms of the improved microwave absorption properties are discussed.

  2. Differential uncertainty analysis for evaluating the accuracy of S-parameter retrieval methods for electromagnetic properties of metamaterial slabs.

    PubMed

    Hasar, Ugur Cem; Barroso, Joaquim J; Sabah, Cumali; Kaya, Yunus; Ertugrul, Mehmet

    2012-12-17

    We apply a complete uncertainty analysis, not studied in the literature, to investigate the dependences of retrieved electromagnetic properties of two MM slabs (the first one with only split-ring resonators (SRRs) and the second with SRRs and a continuous wire) with single-band and dual-band resonating properties on the measured/simulated scattering parameters, the slab length, and the operating frequency. Such an analysis is necessary for the selection of a suitable retrieval method together with the correct examination of exotic properties of MM slabs especially in their resonance regions. For this analysis, a differential uncertainty model is developed to monitor minute changes in the dependent variables (electromagnetic properties of MM slabs) in functions of independent variables (scattering (S-) parameters, the slab length, and the operating frequency). Two complementary approaches (the analytical approach and the dispersion model approach) each with different strengths are utilized to retrieve the electromagnetic properties of various MM slabs, which are needed for the application of the uncertainty analysis. We note the following important results from our investigation. First, uncertainties in the retrieved electromagnetic properties of the analyzed MM slabs drastically increase when values of electromagnetic properties shrink to zero or near resonance regions where S-parameters exhibit rapid changes. Second, any low-loss or medium-loss inside the MM slabs due to an imperfect dielectric substrate or a finite conductivity of metals can decrease these uncertainties near resonance regions because these losses hinder abrupt changes in S-parameters. Finally, we note that precise information of especially the slab length and the operating frequency is a prerequisite for accurate analysis of exotic electromagnetic properties of MM slabs (especially multiband MM slabs) near resonance regions.

  3. Mapping Soil Properties for Ecohydrological Studies in Small Semi-Arid Watersheds using Electromagnetic Induction

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.; Jones, S. B.

    2007-05-01

    While traditional methods of soil mapping provide a qualitative description of soil properties across a landscape they fail to provide spatially detailed quantitative data needed in ecohydrological studies. Electromagnetic induction (EMI) mapping is a useful tool for mapping soil properties where the penetration depth of a handheld sensor is just over a meter when carried 0.2 m above the soil surface, and the measurement integrates over a volume of several cubic meters, similar to the scale of a soil pedon. Our recent research efforts have focused on mapping soil properties in a semi-arid watershed at Reynolds Creek, ID, using geophysical methods with the idea of complimenting point-measured data using distributed sensors. In the Reynolds Creek environment the stream flow response is controlled largely by the subsurface and hence the identification of soil hydrological properties and the delineation of soil boundaries is important for modeling the watershed hydrology. Data collected using electromagnetic induction provide spatially informative maps tied to the subsurface bulk electrical conductivity (EC). The utility of bulk EC measurements for delineating soils stems from measured sensitivity to the physical and biogeochemical properties. Instrument output tends to increase in soils with more 2:1 clay, higher water content and higher solute concentration. Therefore, maps of bulk electrical conductivity are good for differentiating between coarse and fine textured soils and for identifying hydrological flow pathways. Preliminary data suggest EMI maps can be correlated to provide detailed spatial information of soil texture, water content, hydraulic conductivity and hydrological flow pathways in catchment hydrology, potentially improving hydrological model parameter estimation.

  4. Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties

    PubMed Central

    Qi, Xiaosi; Hu, Qi; Cai, Hongbo; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2016-01-01

    In order to explore high efficiency microwave absorption materials, heteronanostructured Co@carbon nanotubes-graphene (Co@CNTs-G) ternary hybrids were designed and produced through catalytic decomposition of acetylene at the designed temperature (400, 450, 500 and 550 °C) over Co3O4/reduced graphene oxide (Co3O4/RGO). By regulating the reaction temperatures, different CNT contents of Co@CNTs-G ternary hybrids could be synthesized. The investigations indicated that the as-prepared heteronanostructured Co@CNTs-G ternary hybrids exhibited excellent microwave absorption properties, and their electromagnetic and microwave absorption properties could be tuned by the CNT content. The minimum reflection loss (RL) value reached approximately −65.6, −58.1, −41.1 and −47.5 dB for the ternary hybrids synthesized at 400, 450, 500 and 550 °C, respectively. And RL values below −20 dB (99% of electromagnetic wave attenuation) could be obtained over the as-prepared Co@CNTs-G ternary hybrids in the large frequency range. Moreover, based on the obtained results, the possible enhanced microwave absorption mechanisms were discussed in details. Therefore, a simple approach was proposed to explore the high performance microwave absorbing materials as well as to expand the application field of graphene-based materials. PMID:27892515

  5. Electromagnetic wave absorption properties of composites with ultrafine hollow magnetic fibers

    NASA Astrophysics Data System (ADS)

    Yi, Jin Woo; Lee, Sang Bok; Kim, Jin Bong; Lee, Sang Kwan; Park, O. Ok

    2014-06-01

    Ultrafine hollow magnetic fibers were prepared by electroless plating using hydrolyzed polyester fiber as a sacrificial substrate. These hollow fibers can be served for lightweight and efficient electromagnetic (EM) absorbing materials. As observed from SEM and EDS analysis, hollow structures consisting of Ni inner layer and Fe or Fe-Co outer layer were obtained. By introducing Co onto Fe, oxidation of the Fe layer was successfully prevented making it possible to enhance the complex permeability compared to a case in which only Fe was used. Polymeric composites containing the hollow fibers with different weight fractions and fiber lengths were prepared by a simple mixing process. The electromagnetic wave properties of the composites were measured by a vector network analyzer and it was found that the hollow magnetic fibers show a clear resonance peak of the complex permittivity around the X-band range (8-12 GHz) and the resonance frequency strongly depends on the fiber concentration and length. A possible explanation for the unique resonance is that the hollow fibers possess relatively low electrical conductivity and a long mean free path due to their oxidized phase and hollow structure. The calculated EM wave absorption with the measured EM wave properties showed that the composite containing 30 wt% hollow Ni/Fe-Co (7:3) fibers in length of 180 μm exhibited multiple absorbance peaks resulting in a broad absorption bandwidth of 4.2 GHz. It is obvious that this multiple absorbance is attributed to the resonance characteristic of the composite.

  6. Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Qi, Xiaosi; Hu, Qi; Cai, Hongbo; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2016-11-01

    In order to explore high efficiency microwave absorption materials, heteronanostructured Co@carbon nanotubes-graphene (Co@CNTs-G) ternary hybrids were designed and produced through catalytic decomposition of acetylene at the designed temperature (400, 450, 500 and 550 °C) over Co3O4/reduced graphene oxide (Co3O4/RGO). By regulating the reaction temperatures, different CNT contents of Co@CNTs-G ternary hybrids could be synthesized. The investigations indicated that the as-prepared heteronanostructured Co@CNTs-G ternary hybrids exhibited excellent microwave absorption properties, and their electromagnetic and microwave absorption properties could be tuned by the CNT content. The minimum reflection loss (RL) value reached approximately ‑65.6, ‑58.1, ‑41.1 and ‑47.5 dB for the ternary hybrids synthesized at 400, 450, 500 and 550 °C, respectively. And RL values below ‑20 dB (99% of electromagnetic wave attenuation) could be obtained over the as-prepared Co@CNTs-G ternary hybrids in the large frequency range. Moreover, based on the obtained results, the possible enhanced microwave absorption mechanisms were discussed in details. Therefore, a simple approach was proposed to explore the high performance microwave absorbing materials as well as to expand the application field of graphene-based materials.

  7. Aniline doping and high energy milling to greatly enhance electromagnetic properties of magnesium diboride superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Chengduo; Wang, Dongliang; Zhang, Xianping; Yao, Chao; Wang, Chunlei; Ma, Yanwei

    2013-06-01

    MgB2 bulks were fabricated using milled precursor powders with aniline dopant and the low purity B was used as a starting material. The flux pinning, Bc2 and magnetic Jc of MgB2 are greatly enhanced by aniline doping. The magnetic Jc value of MgB2 sample with 3 wt% aniline is 9.5 × 103 A cm-2 at 5 K and 6 T, 13 times larger than that of the pure one. Furthermore, the liquid aniline can avoid the agglomeration of precursor powder during high energy milling. Long time ball milling can further improve the electromagnetic properties of aniline doped MgB2 samples. At 5 K and 6 T, the Jc of the 80 h 3 wt% sample is up to 5.5 × 104 A cm-2, 6 times larger than that of the 0.5 h 3 wt% one and 77 times larger than that of the 0.5 h pure one (the “80 h” and “0.5 h” refer to ball milling times). These results indicate that the liquid C-containing dopant combined with high energy milling may be an effective way to achieve the excellent electromagnetic properties of MgB2.

  8. Influential parameters on electromagnetic properties of nickel-zinc ferrites for antenna miniaturization

    NASA Astrophysics Data System (ADS)

    Souriou, David; Mattei, Jean-Luc; Chevalier, Alexis; Queffelec, Patrick

    2010-05-01

    Electromagnetic properties of nickel-zinc ferrites based materials make them potential candidates for applications linked to telecommunications. In the present study, nanosized particles of spinel ferrite Ni0.5Zn0.3Co0.2Fe2O4 were prepared by coprecipitation method. An optimized material is obtained after adequate heat treatment and partial filling of the porosity by epoxy resin. This material lies between ceramic and composite medium (with porosity close to 40%), and shows almost constant complex permeability and permittivity in the frequency range from 0.1-0.7 GHz, and equal to ˜3.5-j0.15 (loss tangent˜0.04) and ˜4-j0.2 (loss tangent˜0.02), respectively. The refractive index n is close to 3.75. These electromagnetic properties, in particular the low levels of losses, show that this material could be useful to the design of miniaturized antennas in the VHF-uhf (300-700 MHz) range of frequency.

  9. Influence analysis of structural parameters and operating parameters on electromagnetic properties of HTS linear induction motor

    NASA Astrophysics Data System (ADS)

    Fang, J.; Sheng, L.; Li, D.; Zhao, J.; Li, Sh.; Qin, W.; Fan, Y.; Zheng, Q. L.; Zhang, W.

    A novel High Temperature Superconductor Linear Induction Motor (HTS LIM) is researched in this paper. Since the critical current and the electromagnetic force of the motor are determined mainly by the primary slot leakage flux, the main magnetic flux and eddy current respectively, in order to research the influence of structural parameters and operating parameters on electromagnetic properties of HTS LIM, the motor was analyzed by 2D transient Finite Element Method (FEM). The properties of the motor, such as the maximum slot leakage flux density, motor thrust, motor vertical force and critical current are analyzed with different structural parameters and operating parameters. In addition, an experimental investigation was carried out on prototype HTS motor. Electrical parameters were deduced from these tests and also compared with the analysis results from FEM. AC losses of one HTS coil in the motor were measured and AC losses of all HTS coils in HTS LIM were estimated. The results in this paper could provide reference for the design and research on the HTS LIM.

  10. Design and evaluation of an electromagnetic beam waveguide for measuring electrical properties of materials

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    A beam waveguide was designed that is based upon the propagation characteristics of the fundamental Gaussian beam and the focusing properties of spherical dielectric lenses. The 20-GHz, two-horn, four-lens system was constructed and experimentally evaluated by probing the field in a plane perpendicular to the beam axis at the center of the beam waveguide system. The critical parameters were determined by numerical sensitivity studies, and the lens-horn critical spacing was adjusted to better focus the beam at the probe plane. The measured performance was analyzed by consideration of higher order Gaussian-Laguerre beam modes. The beam waveguide system was successfully used in the measurements of the electromagnetic transmission properties of Shuttle thermal-protection tiles while the tile surface was being heated to reentry-level temperatures with a high-power laser.

  11. Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels

    NASA Astrophysics Data System (ADS)

    Bi, Shuguang; Zhang, Liying; Mu, Chenzhong; Liu, Ming; Hu, Xiao

    2017-08-01

    Graphene was recently demonstrated to exhibit excellent electromagnetic interference (EMI) shielding performance. In this work, ultralight (∼5.5 mg/cm3) graphene aerogels (GAs) were fabricated through assembling graphene oxide (GO) using freeze-drying followed by a chemical reduction method. The EMI shielding properties and mechanisms of GAs were systematically studied with respect to the intrinsic properties of the reduced graphene oxide (rGO) sheets and the unique porous network. The EMI shielding effectiveness (SE) of GAs was increased from 20.4 to 27.6 dB when the GO was reduced by high concentration of hydrazine vapor. The presence of more sp2 graphitic lattice and free electrons from nitrogen atoms resulted in the enhanced EMI SE. Absorption was the dominant shielding mechanism of GAs. Compressing the highly porous GAs into compact thin films did not change the EMI SE, but shifted the dominant shielding mechanism from absorption to reflection.

  12. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates

    USGS Publications Warehouse

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2008-01-01

    Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on sediments recovered during drilling in the northern Gulf of Mexico at the Atwater Valley and Keathley Canyon sites as part of the 2005 Chevron Joint Industry Project on Methane Hydrates. The tested specimens include both unremolded specimens (as recovered from the original core liner) and remolded sediments both without gas hydrate and with pore fluid exchanged to attain 100% synthetic (tetrahydrofuran) hydrate saturation at any stage of loading. Test results demonstrate the extent to which the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. We also show how permittivity and electrical conductivity data can be used to estimate the evolution of hydrate volume fraction during formation. The gradual evolution of geophysical properties during hydrate formation probably reflects the slow increase in ionic concentration in the pore fluid due to ion exclusion in closed systems and the gradual decrease in average pore size in which the hydrate forms. During hydrate formation, the increase in S-wave velocity is delayed with respect to the decrease in permittivity, consistent with hydrate formation on mineral surfaces and subsequent crystal growth toward the pore space. No significant decementation/debonding occurred in 100% THF hydrate-saturated sediments during unloading, hence the probability of sampling hydrate-bearing sediments without disturbing the original sediment fabric is greatest for samples in which the gas hydrate is primarily responsible for maintaining the sediment fabric and for which the time between core retrieval and restoration of in situ effective stress in the laboratory is minimized. In evaluating the

  13. Thermo-electromagnetic properties of a magnetically shielded superconductor strip: theoretical foundations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Ma, G. T.; Rauh, H.

    2013-10-01

    Numerical simulations of thermo-electromagnetic properties of a thin type-II superconductor strip surrounded by open cavity soft-magnetic shields and exposed to an oscillating transverse magnetic field are performed by resorting to the quasistatic approximation of a vector potential approach in conjunction with the classical description of conduction of heat. The underlying definition of the superconducting constituent makes use of an extended ‘smoothed’ Bean model of the critical state, which includes the field and temperature dependence of the induced supercurrent as well. The delineation of the magnetic shields exploits the reversible-paramagnet approximation in the Langevin form, as appropriate for magnetizations with narrow Z-type loops, and considers induced eddy currents too. The coolant is envisaged as acting like a bath that instantly takes away surplus heat. Based on the Jacobian-free Newton-Krylov approach and the backward Euler scheme, the numerical analysis at hand is tailored to the problem of a high width/thickness aspect ratio of the superconductor strip. Assigning representative materials characteristics and conditions of the applied magnetic field, the main findings for a practically relevant magnet configuration include: (i) an overall rise of the maximum temperature of the superconductor strip tending to saturation in a superconducting thermo-electromagnetic steady state above the operating temperature, magnetic shielding lending increased stability and smoothing the temperature profile along the width of the superconductor strip; (ii) a washing out of the profile of the magnetic induction and a lowering of its strength, a relaxation of the profile of the supercurrent density and an increase of its strength, a tightening of the power loss density and a reduction of its strength, all inside the superconductor strip. The hysteretic ac loss suffered by the superconductor strip is seen to be cut back or, at most, to converge on that of an

  14. Surface properties and electromagnetic excitation of a piezoelectric gallium phosphate biosensor.

    PubMed

    Vasilescu, Alina; Ballantyne, Scott M; Cheran, Larisa-Emilia; Thompson, Michael

    2005-02-01

    The surface properties of GaPO4 have been studied by secondary ion mass spectrometry, X-ray photoelectron spectroscopy and electromagnetic acoustic wave excitation in order to explore the potential of this relatively new piezoelectric material as a biosensor. The X-ray photoelectron spectrum of the substrate shows a Ga-rich surface (Ga:P = 1.4), while the negative secondary ion mass spectrum is similar to that of other phosphates, with PO3- and PO2- being the main fragments derived from the substrate. Surface analysis reveals that the linker protein for biotinylated moieties, neutravidin, is both readily chemisorbed to bare gallium phosphate at pH 7.5 and attached to p-hydroxy benzaldehyde-treated devices, establishing the possibility to exploit the surface chemistry of the phosphate for the fabrication of an electrode-free acoustic wave biosensor. Preliminary results regarding the detection of the adsorption of neutravidin with an electromagnetic field-excited GaPO4 device incorporated in a FIA configuration showed comparable results with those obtained with a quartz-sensor equivalent. The frequency shift for the adsorbed protein layer at the device fundamental frequency was 200 Hz and the noise was routinely around 13 Hz. The possibility to use the electrodeless acoustic GaPO4 device at higher harmonics in the liquid phase has also been confirmed.

  15. Ag3PO4 nanoparticle-decorated Ni/C nanocapsules with tunable electromagnetic absorption properties

    NASA Astrophysics Data System (ADS)

    Cui, Caiyun; Zhou, Pingping; Liu, Xianguo; Or, Siu Wing; Ho, S. L.

    2017-05-01

    Core/shell-structured nickel/carbon (Ni/C) nanocapsules with Ag3PO4 nanoparticle decoration (Ag3PO4@Ni/C) are prepared by an arc-discharge process and an ion-exchange process. The Ag3PO4@Ni/C nanocapsules show a clear decoration of Ag3PO4 nanoparticles of 4-20 nm diameter on the C shell of the Ni/C nanocapsules of ˜60 nm diameter. The amount of Ag3PO4 nanoparticles that can be decorated on the Ni/C nanocapsules depends on the volume of Na2HPO4 reactant used in the ion-exchange process. The Ag3PO4@Ni/C nanocapsules demonstrate interestingly high and tunable electromagnetic absorption properties with different amounts of Ag3PO4 nanoparticle decoration in the paraffin-bonded composites over the 2-18 GHz microwave range. The nanocapsules prepared with 100 ml Na2HPO4 exhibit much enhanced dielectric and magnetic losses for an improved electromagnetic impedance match. These result in a large reflection loss (RL) of -31.4 dB at 12.3 GHz for a small absorber thickness of 2.6 mm in conjunction with a very wide effective absorption bandwidth (for RL<-10 dB) of 14 GHz (4-18 GHz) at a wide absorber thickness range of 1.4-5.0 mm.

  16. Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres.

    PubMed

    Li, Wenzhe; Qiu, Teng; Wang, Leilei; Ren, Shanshan; Zhang, Jiangru; He, Lifan; Li, Xiaoyu

    2013-02-01

    Through a novel method, we successfully synthesized electromagnetic (EM) functional polystyrene@polypyrrole@nickel (PS@PPy@Ni) composite microspheres. The PS@PPy spheres with well-defined core/shell structure have been synthesized via an in situ chemical oxidative copolymerization of pyrrole (Py) and N-2-carboxyethylpyrrole (PyCOOH) templated by PS microspheres. The reaction was carried out under heterophase conditions using the mixture of ethanol and water as the continuous phase. Tailored by the carboxyl groups on the surface of microspheres, magnetic nickel layer has been steady deposited onto the P(Py-PyCOOH) layer of the microspheres through an activation-electroless plating technology. The fine PS@P(Py-PyCOOH)@Ni core/shell structures could be obtained with the PyCOOH content up to 50 wt % in the P(Py-PyCOOH) layer. Moreover, the as-prepared PS@P(Py-PyCOOH)@Ni composites are ferromagnetic materials and behave as a good electromagnetic (EM) absorption material due to the coating of Ni layer around the PS@P(Py-PyCOOH) spheres. The PS@P(Py-PyCOOH)@Ni composite spheres show the remarkable EM wave absorption property with the maximum reflection loss (around -20.06 dB) at 10.69 GHz. The EM wave absorption can retained lower than -10 dB within a broad frequency range from 9.16 to 13.75 GHz.

  17. Core mass at the helium flash from observations and a new bound on neutrino electromagnetic properties

    NASA Technical Reports Server (NTRS)

    Raffelt, Georg G.

    1990-01-01

    Existing measurements of the bolometric magnitudes of the brightest red giants in 26 globular clusters are used to determine the brightness difference between the tip of the red giant branch (on average found to be 0.1 mag brighter than the brightest red giant) and RR Lyrae stars. The metallicity variation of the result agrees perfectly with theoretical predictions. In conjunction with previous determinations of the number ratio of horizontal-branch versus red giant stars, with statistical parallax determinations of RR Lyrae absolute luminosities, and with theoretical predictions based on the Sweigart and Gross evolutionary sequences, this result yields an allowed range for a hypothetical core mass variation relative to the standard results of (0.009 + or - 0.012) solar mass. If neutrinos had anomalous electromagnetic dipole moments, the increased energy loss near the helium flash would lead to an increased core mass. Constraints on neutrino electromagnetic properties are determined from the color-magnitude diagrams of the globular clusters.

  18. Core mass at the helium flash from observations and a new bound on neutrino electromagnetic properties

    NASA Technical Reports Server (NTRS)

    Raffelt, Georg G.

    1990-01-01

    Existing measurements of the bolometric magnitudes of the brightest red giants in 26 globular clusters are used to determine the brightness difference between the tip of the red giant branch (on average found to be 0.1 mag brighter than the brightest red giant) and RR Lyrae stars. The metallicity variation of the result agrees perfectly with theoretical predictions. In conjunction with previous determinations of the number ratio of horizontal-branch versus red giant stars, with statistical parallax determinations of RR Lyrae absolute luminosities, and with theoretical predictions based on the Sweigart and Gross evolutionary sequences, this result yields an allowed range for a hypothetical core mass variation relative to the standard results of (0.009 + or - 0.012) solar mass. If neutrinos had anomalous electromagnetic dipole moments, the increased energy loss near the helium flash would lead to an increased core mass. Constraints on neutrino electromagnetic properties are determined from the color-magnitude diagrams of the globular clusters.

  19. Electrical Properties and Electromagnetic Shielding Effectiveness of Carbon Based Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Micciulla, F.; Sacco, I.; Coderoni, L.; Rinaldi, G.

    Designing and engineering of new kind of electromagnetic interference (EMI) shielding for electronic systems and devices is a pressing need due to the wide range of using of several electronic devices. Electromagnetic (EM) shields have to guarantee high performances and right operation of electronic systems and to prevent the electronic pollution. Electronic systems are getting faster, smaller high frequency of clock and high energy in small dimension, so they generate, as effect, thermal drawback, and mechanical, as well. They are used in several electronic equipments and it is easy to find them in common life: communications, computations, automations, biomedical, military, space and other purposes. Nanocomposites based on Carbon Nanotubes (CNTs) give powerful and multifunctional materials with very high performances: mechanical, thermal, electrical properties. It is possible to achieve lighter and cheaper EM shields than the actual ones. Examples of new materials that can come from nanotubes are many: high conductors that are multifunctional (electrical and structural), highly anisotropic insulators and high-strength, porous ceramics and others.

  20. Effects of natural zeolite and ferric oxide to electromagnetic and reflection loss properties of polyurethane nanocomposite

    NASA Astrophysics Data System (ADS)

    Gultom, G.; Wirjosentono, B.; Ginting, M.; Sebayang, K.

    2017-07-01

    Microwave-absorptive polymeric composite materials are becoming important to protect interference of any communication systems due to increasing use of microwave-inducing devices. In this work, the microwave-absorptive polyurethane nanocomposites were prepared using natural zeolites of Sarulla North Sumatra and commercial ferric oxide as fillers. Weight ratios of the polyurethane to natural zeolite and ferric oxide were varied (90%:6%:4%; 80%:12%:8%; 70%:24%:6%) by weight. The fillers were prepared using ball milling technique and characterized for their particle size distributions using Particle Size Analyzer. The nanocomposites, prepared using in-situ reaction of polyethylene glycol, toluene diisocyanate and fillers. The complex permittivity (ε’and ε”) and complex permeability (μ’ and μ”) as electromagnetic properties were calculated using NRW method after collecting real and imaginary S parameter using Vector Network Analyzer measurement at X band frequency. Results show ratio of the fillers will affect the permeability, permittivity and reflection loss of the materials. The best reflection loss was shown -40.588 dB (>99 % absorption) at ratio for polyurethane : nanozeolite : ferric oxide (80%:12%:8%) by weight observed at 10.92 GHz. According to the measurement and calculation was shown the polyurethane filled with natural nanozeolite and ferric oxide is a good electromagnetic wave attenuation material.

  1. Electromagnetic performance and microwave absorbing property of nanocrystalline Sm2Fe14B compound

    NASA Astrophysics Data System (ADS)

    Han, Rui; Yi, Hai-bo; Wei, Jian-qiang; Qiao, Liang; Wang, Tao; Li, Fa-shen

    2012-09-01

    A new planar anisotropy Sm2Fe14B nanocrystal as an electromagnetic absorption material was prepared by melt-spinning method. The electromagnetic and microwave absorbing properties of Sm2Fe14B nanocrystal/nonmagnetic matrix composite in the frequency range of 0.1-10 GHz were measured and calculated. At the perfect matching point (2.9 GHz), the minimum reflection loss reaches -42.0 dB at the matching thickness of 3.1 mm. Furthermore, the calculation shows that the normalized input impedance Z in/ Z 0 equals 1, but the modulus of the ratio between the complex permittivity and permeability | ɛ/ μ| is far away from unity at the perfect matching point. The effective permeability of the composite was simulated using the combination of the Landau-Lifshitz-Gilbert equation and Bruggeman's effective medium theory; the agreement between the experimental data and the theoretical one demonstrates that the magnetic loss in the composite is mainly caused by natural resonance.

  2. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties

    USGS Publications Warehouse

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2010-01-01

    The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.

  3. Electromagnetic properties of Co flaky particles prepared via ball-milling method

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Jiang, Jian-Tang; Yuan, Yong; Gong, Yuan-Xun; Zhen, Liang

    2016-10-01

    Flaky cobalt particles with different aspect ratio were produced with ball-milling method. The phase structure and morphology of the particles were identified by XRD analysis and SEM observation. The static magnetic and electromagnetic properties of the particles were measured and effects of shape, microstructure and filling fraction were investigated. Phase transition from fcc lattice to hcp lattice occur due to the drive of ball-milling is responsible for the largely increased coercivity. Particles with high aspect ratio are found to possess high permittivity and permeability, compelling the frequency of absorption peak to shift to low frequency. Coatings using cobalt particles milled for 20 h as fillers present a RL peak of -33 dB at 8 GHz at the thickness of 2.5 mm together with a broad effective absorbing (RL below -10 dB) bandwidth covering 6-10 GHz.

  4. Improved Electromagnetic Interference Shielding Properties of MWCNT–PMMA Composites Using Layered Structures

    PubMed Central

    2009-01-01

    Electromagnetic interference (EMI) shielding effectiveness (SE) of multi-walled carbon nanotubes–polymethyl methacrylate (MWCNT–PMMA) composites prepared by two different techniques was measured. EMI SE up to 40 dB in the frequency range 8.2–12.4 GHz (X-band) was achieved by stacking seven layers of 0.3-mm thick MWCNT–PMMA composite films compared with 30 dB achieved by stacking two layers of 1.1-mm thick MWCNT–PMMA bulk composite. The characteristic EMI SE graphs of the composites and the mechanism of shielding have been discussed. SE in this frequency range is found to be dominated by absorption. The mechanical properties (tensile, flexural strength and modulus) of the composites were found to be comparable or better than the pure polymer. The studies therefore show that the composite can be used as structurally strong EMI shielding material. PMID:20596500

  5. High-frequency electromagnetic dynamics properties of THP1 cells using scanning microwave microscopy.

    PubMed

    Oh, Yoo Jin; Huber, Hans-Peter; Hochleitner, Markus; Duman, Memed; Bozna, Bianca; Kastner, Markus; Kienberger, Ferry; Hinterdorfer, Peter

    2011-11-01

    Microwave measurements combined with scanning probe microscopy is a novel tool to explore high-localized mechanical and electrical properties of biological species. Complex permittivities and permeabilities are detected through slight variations of an incident microwave signal. Here we report the high-frequency dependence of the electromagnetic dynamic characteristics in human monocytic leukemia cells (THP1) through local measurements by scanning microwave microscopy (SMM). The amplitude and phase images were shown to depend on the applied resonance frequency. While the amplitude yields information about the resistivity determined by the water and the ionic strength, the phase information reflects the dielectric losses arising from the fluid density. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Regenerative Feedback Resonant Circuit to Detect Transient Changes in Electromagnetic Properties of Semi-Insulating Materials

    SciTech Connect

    Jones, Anthony M.; Kelly, James F.; Severtsen, Ronald H.; McCloy, John S.

    2013-08-08

    A prototype regenerative feedback resonant circuit has been developed for measuring the transient spectral response due to perturbations in properties of various electromagnetic materials. The circuit can accommodate a variety of cavity resonators, shown here in the 8 GHz range, with passive quality factors (Qstat) as high as 7,000 depending upon material loading. The positive feedback enhanced dynamic quality factors (Qdyn) of resonator/material combinations in the regenerative circuit are on the order of 107 - 108. The theory, design, and implementation of the circuit is discussed along with real-time monitored example measurements of effects due to photon-induced charge carriers in high-resistivity silicon wafers and magnetic-field induced perturbations of yttrium-iron garnet.

  7. Pr 3+-substituted W-type barium ferrite: Preparation and electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Wu, Yanfei; Huang, Ying; Niu, Lei; Zhang, Yinling; Li, Yuqing; Wang, Xiaoya

    2012-02-01

    The W-type ferrites doped with Pr3+, BaCoNiPrxFe16-xO27 (x=0-0.20), were prepared by a sol-gel method. The structure and electromagnetic properties of the samples are studied using powder X-ray diffraction, field emission scanning electron microscope, vibrating sample magnetometer and vector network analyzer. All the samples are hexagonal platelet-like W-type barium ferrite. These synthesized samples exhibit paramagnetism and strong magnetism. The saturation magnetization (Ms) increases with the increase of Pr3+ content. The real part of complex permittivity (ε‧) decreases and the imaginary part (ε″) increases with Fe3+ replaced by Pr3+. The imaginary part of complex permittivity (μ″) increases and the real part (μ‧) decreases after Pr3+ is doped. Furthermore, the doped Pr3+ improves the microwave absorbency.

  8. THE GENERATION OF THERMOELASTIC STRESS WAVES BY IMPULSIVE ELECTROMAGNETIC RADIATION.

    DTIC Science & Technology

    ELECTROMAGNETIC RADIATION , ABSORPTION), (*STRESSES, ELECTROMAGNETIC RADIATION ), SURFACE PROPERTIES, INTERACTIONS, HEAT TRANSFER, ELASTIC PROPERTIES, ELECTROMAGNETIC PULSES, LASERS, MATHEMATICAL ANALYSIS, BOUNDARY VALUE PROBLEMS, SOLIDS

  9. Influence of Acoustic and Electromagnetic Actions on the Properties of Aqueous Nanoparticle Dispersions Used as Tempering Liquids for Dental Cement

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Goncharik, S. V.; Chubrik, N. N.; Koshevar, V. D.; Lopat‧ko, K. G.; Aftandilyants, E. G.; Veklich, A. N.; Boretskii, V. F.; Orlovich, A. I.

    2016-05-01

    The authors have studied the physicochemical properties of aqueous dispersions containing carbon, silver, and iron nanoparticles which were produced by elastic-spark synthesis under the conditions of subaqueous spark discharge, and also the influence of preliminary acoustic and high-frequency electromagnetic action on them and the change in the functional indices of the glass-ionomer cement tempered by these dispersions.

  10. Dielectric properties of tissues; variation with age and their relevance in exposure of children to electromagnetic fields; state of knowledge.

    PubMed

    Peyman, Azadeh

    2011-12-01

    This paper reviews and summarises the state of knowledge on dielectric properties of tissues; in particular those obtained as a function of age. It also examines the impact of variation in dielectric data on the outcome of recent dosimetric studies assessing the exposure of children to electromagnetic fields.

  11. The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites

    NASA Astrophysics Data System (ADS)

    De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V.; Guadagno, L.; Raimondo, M.

    2015-08-01

    The effect of filler aspect ratio on the electromagnetic properties of epoxy-amine resin reinforced with carbon nanofibers is here investigated. A heat treatment at 2500 °C of carbon nanofibers seems to increase their aspect ratio with respect to as-received ones most likely due to a lowering of structural defects and the improvement of the graphene layers within the dixie cup conformation. These morphological differences revealed by Raman's spectroscopy and scanning electron microscopy analyses may be responsible for the different electrical properties of the resulting composites. The DC characterization of the nanofilled material highlights an higher electrical conductivity and a lower electrical percolation threshold for the heat-treated carbon nanofibers based composites. In fact, the electrical conductivity is about 0.107 S/m and 1.36 × 10-3 S/m for the nanocomposites reinforced with heat-treated and as received fibers, respectively, at 1 wt. % of nanofiller loading, while the electrical percolation threshold falls in the range [0.05-0.32]wt. % for the first nanocomposites and above 0.64 wt. % for the latter. Moreover, also a different frequency response is observed since the critical frequency, which is indicative of the transition from a resistive to a capacitive-type behaviour, shifts forward of about one decade at the same filler loading. The experimental results are supported by theoretical and simulation studies focused on the role of the filler aspect ratio on the electrical properties of the nanocomposites.

  12. Synthesis, multi-nonlinear dielectric resonance and electromagnetic absorption properties of hcp-cobalt particles

    NASA Astrophysics Data System (ADS)

    Wen, Shulai; Liu, Ying; Zhao, Xiuchen; Cheng, Jingwei; Li, Hong

    2014-03-01

    Hcp-cobalt particles were successfully prepared by a liquid phase reduction method, and the microstructure, static magnetic properties, electromagnetic and microwave absorption properties of the cobalt particles with irregular shape were investigated in detail. The measured results indicate that the saturation magnetization was less than that of hcp-Co single crystals, and the coercivity was larger than that of bulk cobalt crystal. The permittivity presents multi-nonlinear dielectric resonance, which may result from the irregular shape containing parts of cutting angle of dodecahedron of cobalt particles. The real part of permeability decreases with the frequency, and the imaginary part has a wide resonant peak. The paraffin-based composite containing 70 wt% cobalt particles possessed strong absorption characteristics with a minimum RL of -38.97 dB at 10.81 GHz and an absorption band with RL under -10 dB from 8.72 to 13.26 GHz when the thickness is 1.8 mm, which exhibits excellent microwave absorption in middle and high frequency. The architectural design of material morphologies is important for improving microwave absorption properties toward future application.

  13. Effect of aluminum substitution on structural and electromagnetic properties of nanocrystalline MgCuMn ferrites

    SciTech Connect

    Ramesh, T. E-mail: ramanasarabu@gmail.com; Kumar, S. Senthil; Shinde, R. S.; Murthy, S. R.

    2015-06-24

    The effect of substitution of nonmagnetic Al{sup 3+} ions on the structural and electromagnetic properties were studied in nanocrystalline ferrite series of Mg{sub 0.8}Cu{sub 0.2}Al{sub x}Fe{sub 1.95-x}Mn{sub 0.05}O{sub 4} where x varies 0-0.4 in steps of 0.1. This series was synthesized by using microwave hydrothermal method. The nanocrystalline ferrite phase was observed at temperature 150°C/40 min. Synthesized powders were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The synthesized powders were densified using microwave sintering method at 950°C/40 min. The sintered samples were characterized using XRD. Surface morphology was observed by using field effective scanning electron microscopy (FESEM). The electrical and magnetic properties were measured at room temperature. These results led us to interfere that the values of d.c resistivity increases and dielectric constant, initial permeability, saturation magnetization and Curie temperature were observed to be decreased with the substitution of Al{sup 3+} ions with those of Fe{sup 3+}. The low dielectric and magnetic losses and low magnetization exhibited by aluminum substituted MgCuMn ferrites makes them find applications in microwave devices.

  14. Effect of electromagnetic fields on some biomechanical and biochemical properties of rat’s blood

    NASA Astrophysics Data System (ADS)

    Mohaseb, M. A.; Shahin, F. A.; Ali, F. M.; Baieth, H. A.

    2017-06-01

    In order to study the effect of electromagnetic fields (0.3 mT, 50 Hz) on some biomechanical and biochemical properties of rats’ blood, healthy thirty male albino rats of 150 ± 10 g were divided into three equal groups namely A, B1, B2. Group A used as a control group, group B1 was continuously exposed to a magnetic field of (0.3 mT, 50 Hz) for a period of 21 days for direct effect studies. Group B2 was continuously exposed to the same magnetic field for the same period of time, then was housed away from the magnetic field for a period of 45 days for delayed effects studies. After examination, the results indicated that the apparent viscosity and the consistency index increased significantly and very high significantly for groub B1 and B2 compared to control at P<0.05. Red blood cell counts (RBCs) membrane elasticity had significantly and very high significantly decreased for groups B1 and B2. Moreover, delayed effects studies indicated that there is deterioration in the bone marrow functions. These results are supported by the blood film image, where irregularities and deformations in the RBCs membranes had been occurred. We conclude that the cell membrane properties are highly affected by the extremely low frequency (ELF) magnetic fields, which proved to be biologically toxic.

  15. The properties of electromagnetic responses and optical modulation in terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin

    2016-11-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.

  16. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    NASA Astrophysics Data System (ADS)

    Cho, Seungchan; Choi, Jae Ryung; Jung, Byung Mun; Choi, U. Hyeok; Lee, Sang-Kwan; Kim, Ki Hyeon; Lee, Sang-Bok

    2016-05-01

    A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe), compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ˜14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  17. Electromagnetic properties of NiZn ferrite nanoparticles and their polymer composites

    SciTech Connect

    Parsons, P.; Duncan, K.; Giri, A. K.; Xiao, J. Q.; Karna, S. P.

    2014-05-07

    The magnetic properties of polycrystalline NiZn ferrite nanoparticles synthesized using a polyol-reduction and coprecipitation reaction methods have been investigated. The effects on magnetization of synthesis approach, chemical composition, processing conditions, and on the size of nanoparticles on magnetization have been investigated. The measured room-temperature magnetization for the as-prepared magnetic nanoparticles (MNP) synthesized via polyol-reduction and coprecipitation is 69 Am{sup 2} kg{sup −1} and 14 Am{sup 2} kg{sup −1}, respectively. X-ray diffraction measurements confirm spinel structure of the particles with an estimated grain size of ∼80 nm obtained from the polyol-reduction and 28 nm obtained from these coprecipitation techniques. Upon calcination under atmospheric conditions at different temperatures between 800 °C and 1000 °C, the magnetization, M, of the coprecipitated MNP increases to 76 Am{sup 2} kg{sup −1} with an estimated grain size of 90 nm. The MNP-polymer nanocomposites made from the synthesized MNP in various loading fraction and high density polyethylene exhibit interesting electromagnetic properties. The measured permeability and permittivity of the magnetic nanoparticle-polymer nanocomposites increases with the loading fractions of the magnetic nanoparticles, suggesting control for impedance matching for antenna applications.

  18. Electromagnetic properties and microwave absorption properties of BaTiO 3-carbonyl iron composite in S and C bands

    NASA Astrophysics Data System (ADS)

    Rui-gang, Yang

    2011-07-01

    BaTiO3 powders are prepared by sol-gel method. The carbonyl iron powder is prepared via thermal decomposition of iron pentacarbonyl. Then BaTiO3-carbonyl iron composite with different mixture ratios was prepared using the as-prepared material. The structure, morphology, and properties of the composites are characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM), and a network analyzer. The complex permittivity and reflection loss of the composites have been measured at different microwave frequencies in S- and C-bands employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3/carbonyl iron on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiO3-carbonyl iron composite has been proposed. The BaTiO3-carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  19. The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites

    SciTech Connect

    De Vivo, B.; Lamberti, P.; Spinelli, G. Tucci, V.; Guadagno, L.; Raimondo, M.

    2015-08-14

    The effect of filler aspect ratio on the electromagnetic properties of epoxy-amine resin reinforced with carbon nanofibers is here investigated. A heat treatment at 2500 °C of carbon nanofibers seems to increase their aspect ratio with respect to as-received ones most likely due to a lowering of structural defects and the improvement of the graphene layers within the dixie cup conformation. These morphological differences revealed by Raman's spectroscopy and scanning electron microscopy analyses may be responsible for the different electrical properties of the resulting composites. The DC characterization of the nanofilled material highlights an higher electrical conductivity and a lower electrical percolation threshold for the heat-treated carbon nanofibers based composites. In fact, the electrical conductivity is about 0.107 S/m and 1.36 × 10{sup −3} S/m for the nanocomposites reinforced with heat-treated and as received fibers, respectively, at 1 wt. % of nanofiller loading, while the electrical percolation threshold falls in the range [0.05–0.32]wt. % for the first nanocomposites and above 0.64 wt. % for the latter. Moreover, also a different frequency response is observed since the critical frequency, which is indicative of the transition from a resistive to a capacitive-type behaviour, shifts forward of about one decade at the same filler loading. The experimental results are supported by theoretical and simulation studies focused on the role of the filler aspect ratio on the electrical properties of the nanocomposites.

  20. Modeling and Modification of the Electromagnetic Properties of Advanced Composite Materials.

    DTIC Science & Technology

    1980-01-01

    effectiveness of these materials against electromagnetic interference (EMI) and electromagnetic pulse effects (E4P), radar cross-section and power supply...34 Journal de Physique Letters. Vol. 37 (1976), p. L-99. 6. C. lditescu and J. Rousaenq, "*Une lFourmi dans un Labyrmnthe Diffusion dans in Systene de

  1. Effect of cooling rate on structural and electromagnetic properties of high-carbon ferrochrome powders

    NASA Astrophysics Data System (ADS)

    Yang, Jian-ping; Chen, Jin; Hao, Jiu-jiu; Guo, Li-na; Liu, Jin-ying

    2016-03-01

    The structural and electromagnetic properties of high-carbon ferrochrome powders (HCFCP) obtained at different cooling rates were respectively investigated by means of optical microscope, X-ray diffractometer, electron probe as well as the vector network analyzer in the frequency range of 1-18 GHz. The results show that the cell structure of main phase, (Cr,Fe)7C3, transforms from hexagonal to orthogonal with the improvement of cooling rate. Meanwhile the mass ratio of Cr to Fe in (Cr,Fe)7C3 gradually declines, while that for CrFe goes up. Both the real part and the imaginary part of relative complex permittivity of HCFCP are in an increasing order with cooling rate rising in most frequencies. For comparison, the relative complex permeability presents an opposite changing tendency. The peaks of the imaginary part of relative complex permeability appearing in low and high frequencies are attributed to nature resonance. The reflection loss of HCFCP gradually decreases as cooling rate reduces and frequency enhances. At 2.45 GHz, the algebraic sum of dielectric loss factor and magnetic loss factor increases first and then decreases in the temperature extent from 298 K to 1273 K.

  2. Radio to microwave dielectric characterisation of constitutive electromagnetic soil properties using vector network analyses

    NASA Astrophysics Data System (ADS)

    Schwing, M.; Wagner, N.; Karlovsek, J.; Chen, Z.; Williams, D. J.; Scheuermann, A.

    2016-04-01

    The knowledge of constitutive broadband electromagnetic (EM) properties of porous media such as soils and rocks is essential in the theoretical and numerical modeling of EM wave propagation in the subsurface. This paper presents an experimental and numerical study on the performance EM measuring instruments for broadband EM wave in the radio-microwave frequency range. 3-D numerical calculations of a specific sensor were carried out using the Ansys HFSS (high frequency structural simulator) to further evaluate the probe performance. In addition, six different sensors of varying design, application purpose, and operational frequency range, were tested on different calibration liquids and a sample of fine-grained soil over a frequency range of 1 MHz-40 GHz using four vector network analysers. The resulting dielectric spectrum of the soil was analysed and interpreted using a 3-term Cole-Cole model under consideration of a direct current conductivity contribution. Comparison of sensor performances on calibration materials and fine-grained soils showed consistency in the measured dielectric spectra at a frequency range from 100 MHz-2 GHz. By combining open-ended coaxial line and coaxial transmission line measurements, the observable frequency window could be extended to a truly broad frequency range of 1 MHz-40 GHz.

  3. Effect of Rare Earth Elements on Electromagnetic and Microwave Absorption Properties of Fe-Based Alloys

    NASA Astrophysics Data System (ADS)

    Xiong, Jilei; Pan, Shunkang

    2017-07-01

    The RE2Fe17 (RE = Ce, Pr, Nd, Sm) and LaxPr2-xFe17 (x = 0.0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by arc smelting and high-energy ball milling methods. The phase structure, morphology, magnetic properties and electromagnetic parameters of the powders were characterized by x-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer, respectively. The results reveal that the lattice parameters a and c and unit-cell volume V of the LaxPr2-xFe17 alloys increase linearly upon the La content. The minimum absorption peak frequency shifts towards a lower-frequency region upon the La content. And the minimum reflection loss and saturation magnetization of the LaxPr2-xFe17 alloys decrease upon the La content, while the minimum reflection loss of Pr2Fe17 and La0.4Pr1.6Fe17 alloy of the 2.0 mm coating thickness reaches about -13.65 dB and -7.15 dB at 5.92 GHz and 3.6 GHz, respectively.

  4. Electromagnetic and Microwave-Absorbing Properties of Plate-Like Nd-Ce-Fe Powder

    NASA Astrophysics Data System (ADS)

    Qiao, Ziqiang; Pan, Shunkang; Xiong, Jilei; Cheng, Lichun; Lin, Peihao; Luo, Jialiang

    2017-01-01

    Plate-like Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders have been synthesized by an arc melting and high-energy ball milling method. The structure of the Nd-Ce-Fe powders was investigated by x-ray diffraction analysis. Their morphology and particle size distribution were evaluated by scanning electron microscopy and laser particle analysis. The saturation magnetization and electromagnetic parameters of the powders were characterized using vibrating-sample magnetometry and vector network analysis, respectively. The results reveal that the Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders consisted of Nd2Fe17 single phase with different Ce contents. The particle size and saturation magnetization decreased with increasing Ce content. The resonant frequencies of ɛ″ and μ″ moved towards lower frequency with increasing Ce concentration. The minimum reflection loss value decreased as the Ce content was increased. The minimum reflection loss and absorption peak frequency of Ce0.2Nd1.8Fe17 with coating thickness of 1.8 mm were -22.5 dB and 7 GHz, respectively. Increasing the values of the complex permittivity and permeability could result in materials with good microwave absorption properties.

  5. The unexplored avenues of human skin: electromagnetic properties in the sub-THz band

    NASA Astrophysics Data System (ADS)

    Feldman, Y.; Safrai, E.; Ben Ishai, P.; Puzenko, A.; Agranat, A. J.; Caduff, A.

    2012-03-01

    Recent studies of the minute morphology of the skin by optical coherence tomography showed that the sweat ducts in human skin become helically shaped tubes in the Epidermis and are filled with an aqueous solution. When considered as entities embedded in a dielectric media, they resemble helical antennas. The spectral response obtained by our computer simulations coincides with the analytical prediction of antenna theory and support this hypothesis, if a fast enough current mechanism exists in the duct. In particular the strongest spectral response of the simulation was noted around the predicted frequencies (240 GHz and 380 GHz) for the respective normal and axial modes of the helical structure. Furthermore, circular dichroism of the reflected electromagnetic field is a characteristic property of such helical antennas and it was shown that it is indeed a characteristic of the simulation model. Fast proton hopping is posited as the current mechanism. Consequently experimental evidence is presented that the spectral response of the skin in the sub-Terahertz region is governed by the level of activity of the perspiration system. This in turn is moderated by the Sympathetic Nerve Response and is demonstrated by the correlation to physiological stress as manifested by the pulse rate and the systolic blood pressure. These physical relaxations are tonic in nature (lasting more than a minute). Could the phasic characteristic of emotional excitation also be evident in the reflection coefficient? By applying techniques borrowed from psychiatric science we hope to answer this point in our paper.

  6. Controlled synthesis and morphology-dependent electromagnetic properties of nickel nanostructures by γ-ray irradiation technique

    NASA Astrophysics Data System (ADS)

    Hongtao, Zhao; Xijiang, Han; Lifang, Zhang; Gangyi, Wang; Chao, Wang; Xueai, Li; Ping, Xu

    2011-03-01

    We report the morphology-dependent magnetic and electromagnetic absorption properties of various nickel nanostructures prepared by a γ-ray irradiation technique. By changing the applied surfactants during the irradiation, sting-like, agglomerated, and chain-like nickel nanostructures are obtained when using polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and sodium dodecyl benzene sulfonate (SDBS) as the surfactants. It is determined that the excellent electromagnetic absorption ability of sting-like nickel arises from point discharge effect, while chain-like nickel shows the best absorption property due to the geometrical effect. We think that the preparation of nickel nanostructures with various morphologies by this facile γ-ray irradiation technique can be a general route for other metals.

  7. Dynamic Properties of Round Window Membrane in Guinea Pig Otitis Media Model Measured with Electromagnetic Stimulation

    PubMed Central

    Gan, Rong Z.; Nakmali, Don; Zhang, Xiangming

    2013-01-01

    The round window, one of two openings into the cochlea from the middle ear, plays an important role in hearing and is known to be structurally altered during otitis media. However, there have been no published studies systematically describing the changes in biomechanical properties of the round window membrane (RWM) that accompany bacterial otitis media. Here we describe the occurrence of significant changes in the dynamic properties of the RWM between normal guinea pigs and those with acute otitis media (AOM) that are detectable by electromagnetic force stimulation and laser Doppler vibrometry (LDV) measurements. AOM was induced by transbullar injection of streptococcus pneumoniae into the middle ear, and RWM specimens were prepared three days after challenge. Vibration of the RWM induced by coil-magnet coupling was measured by LDV over frequencies of 0.2–40 kHz. The experiment was then simulated in a finite element model, and the inverse-problem solving method was used to determine the complex modulus in the frequency domain and the relaxation modulus in the time domain. Results from 18 ears (9 control ears and 9 AOM ears) established that both the storage modulus and loss modulus of the RWM from ears with AOM were significantly lower than those of RWM from uninfected ears. The average decrease of the storage modulus in AOM ears ranged from 1.5 to 2.2 MPa and the average decrease of the loss modulus was 0.025 to 0.48 MPa. Our findings suggest that middle ear infection primarily affects the stiffness of the RWM due to the morphological changes that occur in AOM ears. We also conclude that the coil-magnet coupling method for assessment of RWM function may provide a valuable new approach to characterizing the mechanical response of the RWM when reverse driving is selected for middle ear implantable devices. PMID:23333258

  8. Dynamic properties of round window membrane in guinea pig otitis media model measured with electromagnetic stimulation.

    PubMed

    Gan, Rong Z; Nakmali, Don; Zhang, Xiangming

    2013-07-01

    The round window, one of two openings into the cochlea from the middle ear, plays an important role in hearing and is known to be structurally altered during otitis media. However, there have been no published studies systematically describing the changes in biomechanical properties of the round window membrane (RWM) that accompany bacterial otitis media. Here we describe the occurrence of significant changes in the dynamic properties of the RWM between normal guinea pigs and those with acute otitis media (AOM) that are detectable by electromagnetic force stimulation and laser Doppler vibrometry (LDV) measurements. AOM was induced by transbullar injection of streptococcus pneumoniae into the middle ear, and RWM specimens were prepared three days after challenge. Vibration of the RWM induced by coil-magnet coupling was measured by LDV over frequencies of 0.2-40 kHz. The experiment was then simulated in a finite element model, and the inverse-problem solving method was used to determine the complex modulus in the frequency domain and the relaxation modulus in the time domain. Results from 18 ears (9 control ears and 9 AOM ears) established that both the storage modulus and loss modulus of the RWM from ears with AOM were significantly lower than those of RWM from uninfected ears. The average decrease of the storage modulus in AOM ears ranged from 1.5 to 2.2 MPa and the average decrease of the loss modulus was 0.025-0.48 MPa. Our findings suggest that middle ear infection primarily affects the stiffness of the RWM due to the morphological changes that occur in AOM ears. We also conclude that the coil-magnet coupling method for assessment of RWM function may provide a valuable new approach to characterizing the mechanical response of the RWM when reverse driving is selected for middle ear implantable devices. This article is part of a special issue entitled "MEMRO 2012". Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Porous Three-Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties.

    PubMed

    Lv, Hualiang; Liang, Xiaohui; Ji, Guangbin; Zhang, Haiqian; Du, Youwei

    2015-05-13

    The porous three-dimensional (3-D) flower structures assembled by numerous ultrathin flakes were favor for strengthen electromagnetic absorption capability. However, it still remains a big challenge to fabricate such kind of materials. In this study, an easy and flexible two-step method consisting of hydrothermal and subsequent annealing process have been developed to synthesize the porous 3-D flower-like Co/CoO. Interestingly, we found that the suitable heat treatment temperature played a vital role on the flower-like structure, composition, and electromagnetic absorption properties. In detail, only in the composite treated with 400 °C can we gain the porous 3-D flower structure. If the annealing temperature were heated to 300 °C, the Co element was unable to generate. Moreover, when the annealing temperature increased from 400 to 500 °C, these flower-like structures were unable to be kept because the enlarged porous diameter would wreck the flower frame. Moreover, these 3-D porous flower-like structures presented outstanding electromagnetic absorption properties. For example, such special structure enabled an optimal reflection loss value of -50 dB with the frequency bandwidth ranged from 13.8 to 18 GHz. The excellent microwave absorption performance may attribute to the high impedance matching behavior and novel dielectric loss ability. Additionally, it can be supposed that this micrometer-size flower structure was more beneficial to scatter the incident electromagnetic wave. Meanwhile, the rough surface of the ultrathin flake is apt to increase the electromagnetic scattering among the leaves of the flower due to their large spacing and porous features.

  10. Influence of electromagnetic radiation produced by mobile phone on some biophysical blood properties in rats.

    PubMed

    El-Bediwi, Abu Bakr; Saad, Mohamed; El-kott, Attall F; Eid, Eman

    2013-04-01

    Effects of electromagnetic radiation produced by mobile phone on blood viscosity, plasma viscosity, hemolysis, Osmotic fragility, and blood components of rats have been investigated. Experimental results show that there are significant change on blood components and its viscosity which affects on a blood circulation due to many body problems. Red blood cells, White blood cells, and Platelets are broken after exposure to electromagnetic radiation produced by mobile phone. Also blood viscosity and plasma viscosity values are increased but Osmotic fragility value decreased after exposure to electromagnetic radiation produced by mobile phone.

  11. Experimental Determination of Electromagnetic Propagation and Scattering Properties of Ice-Sheets at P-Band

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Chi; Rommen, Björn; Buck, Christopher; Casal, Tania; Dall, Jørgen; Kusk, Anders; Nielsen, Ulrik; Corr, Hugh; Ginestet, Arnaud; Decerprit, Guillaume; Walker, Nick; Kristensen, Steen S.

    2014-05-01

    The electromagnetic (EM) propagation and scattering properties of the ice and its inclusions strongly affect radar reception signals in radio echo sounding of ice-sheets. In particular, those properties are very strongly dependent on the sensing frequency, with penetration depth rapidly decreasing with increasing frequency. Furthermore, the surface scattering signals, which mask the radar echoes from the depth, increases monotonically with frequency. In spite of those drawbacks, the recent interests in the use of P-band (435 MHz), as compared to the more established sensing frequencies at 60 and 150 MHz, are driven mainly by two reasons: (1) the use of a shorter wavelength improves the spatial selectivity of the sensor as a reasonably sized antenna system could generate narrow beams; (2) P-band is the lowest frequency band allocated for active sensing from space, potentially adequate for satellite-based sounding of ice-sheets. New datasets acquired by P-band radar sounders are becoming available, e.g. from the systems built by University of Kansas and ESA's POLARIS instrument built by Technical University of Denmark, thus opening a possibility to quantitatively compare the merits and drawback of ice sounding at P-band. This paper will report the result of the analysis carried out on the POLARIS data which were acquired over East Antarctica in Feb. 2011 in the frame of the Danish IceGrav 2011 campaign. More specifically, ice sounding measurements were performed over the areas of Dronning/Queen Maud Land and its coastal ice-shelves (e.g. Princess Astrid Coast and Fimbul ice-shelf), and Adelaide Island. Different ice types and regimes have been covered in order to build up a comprehensive catalogue of the ice electromagnetic properties. In addition to the POLARIS data, some in-situ data on the surface roughness, ice core data from EPICA and ice-shelf basal roughness data from an upward looking sonar experiment (Autosub Under Ice programme, 2005) have been gathered

  12. Effect of neodymium substitutions on electromagnetic properties in low temperature sintered NiCuZn ferrite

    NASA Astrophysics Data System (ADS)

    Wu, C. P.; Tung, M. J.; Ko, W. S.; Wang, Y. P.; Tong, S. Y.; Yang, M. D.

    2015-11-01

    Nd3+ ions substituted Ni0.37Cu0.14Zn0.52Fe2O4 (Nd3+ ions content=0, 0.01, 0.04, 0.6, 1.5 wt%) were prepared by the usual standard ceramic method at 1030 °C sintering temperature, and the composition dependence of the physical and magnetic properties has been investigated. SEM micrographs and EDX analysis revealed that it is no obvious impurities up to Nd3+ ions content wt%=0.04. For higher Nd3+ ions content samples (0.6 and 1.5 wt%), there are two kind of impurities Cu-rich and Nd-rich iron oxide phase. The saturation magnetization of the 0.01 wt% Nd3+ions content sample is higher as result of that the A-B sites distance and YK-angles are shorter and smaller. The saturation magnetization of 0.04-1.5 wt% Nd3+ ion content sample are reduced, since the total magnetic moments of the AB site are decreased. For the 0.6 wt% sample, the Curie temperature increasing is as result of the Cu-rich iron oxide separating out. The maximum enhancements of permeability μ‧ are improved to 11.2% (0.04 wt%) and 29.2% (0.6 wt%) at the 6.7 and 13.8 MHz, respectively. However, it is notice that small amount substitutions of Nd3+ increase the high frequency electromagnetic characteristics, can be applied to NFC technology and WPT technologies.

  13. Measuring electromagnetic properties of superconductors in high and localized rf magnetic field

    NASA Astrophysics Data System (ADS)

    Tai, Tamin

    possible nonlinear mechanism from switching events between the Meissner state and the mixed state. These models of extrinsic nonlinearity are studied in Chapter 6. The high transition temperature and low surface resistance of MgB2 attracts interest in its potential application in superconducting radio frequency accelerating cavities. However, compared to traditional Nb cavities, the viability of MgB2 at high RF fields is still open to question. Hence, in Chapter 7, two-gap high quality MgB2 films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location to investigate its RF properties. The third harmonic measurement on MgB2 films shows different nonlinear mechanisms compared to the bulk Nb measurement [3] . We conclude that the nonlinear response for the high quality MgB2 films at temperature less than Tc shows the nonlinearity from the moving vortices and from the following possible mechanisms: First, an intrinsic nonlinearity from the proximity-induced second Tc. Second, the intrinsic nonlinearity arising from Josephson coupling between the sigma and pi bands of the two gap nature of MgB2. Third: The potential nonlinearity from the reported superconducting nodal gap properties. Finally the future plan to raster scan on the SRF candidate materials is proposed to relate the nonlinear electromagnetic images to the physical defects on the superconductor surface. These efforts can finally feed back to the cavity processing techniques and suggest new thoughts for alternate surface processing treatment in the future. [1] T. Tai, et al., IEEE Trans. Appl. Supercond. 21, 2615, (2011). [2] T. Tai et al., IEEE Trans. Appl. Supercond. 23, 7100104, (2013). [3] T. Tai et al., Phys. Rev. ST Accel. Beams 15, 122002, (2012).

  14. Electromagnetic energy within a magnetic infinite cylinder and scattering properties for oblique incidence.

    PubMed

    Arruda, Tiago José; Martinez, Alexandre Souto

    2010-07-01

    We analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic isotropic cylinder that is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit, we derive a relation between the normalized internal energy and the optical-absorption efficiency that is not affected by the magnetism and the incidence angle. This relation, indeed, seems to be independent of the shape of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and consequently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in 2D random media.

  15. Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: Dielectric properties, electromagnetic interference shielding and microwave absorption

    SciTech Connect

    Song, Wei-Li; Cao, Mao-Sheng; Wen, Bo; Hou, Zhi-Ling; Cheng, Jin; Yuan, Jie

    2012-07-15

    Graphical abstract: A resistor–capacitor model could well describe the relationships between the structure and the dielectric properties, electromagnetic interference shielding and microwave-absorption of the composites in the frequency range of 2–18 GHz. The resonant behavior associated with the multiwalled carbon nanotubes/zinc oxide (MWCNTs/ZnO) interface greatly broadens the absorption band. Highlights: ► ZnO-immobilized on multiwalled carbon nanotubes (MWCNTs/ZnO) have resonant behavior. ► A resistor–capacitor model describes the relation between the structure and properties. ► The composite with 40 wt% MWCNTs/ZnO has good electromagnetic interference shielding. ► Two different types of absorption peaks are found in the MWCNTs/ZnO composites. ► The existence of MWCNTs/ZnO interface broadens the absorption band. -- Abstract: Zinc oxide (ZnO) nanoparticles were coated on the surfaces of multiwalled carbon nanotubes (MWCNTs). High resolution transmission electron microscopy images show that the wurtzite ZnO immobilized on the MWCNTs is single-crystalline with a preferential [0 0 0 2] growth direction. A capacitor was generated by the interface of ZnO and MWCNTs, and a resistor–capacitor model could well describe the relationships between the structure and the dielectric properties, electromagnetic interference shielding and microwave-absorption of the composites in the frequency range of 2–18 GHz. The network built by ZnO-immobilized MWCNTs could contribute to the improvement of electrical properties. Resonant peaks associated with the capacitor formed by the interface were observed in the microwave absorption spectra, which suggest that reflection–loss peaks greatly broadens the absorption bandwidth.

  16. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics

    NASA Astrophysics Data System (ADS)

    Cooley, Christopher G.

    2017-09-01

    This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.

  17. Manifestation of Symmetry Properties of Nucleon Structure in Strong and Electromagnetic Processes

    NASA Astrophysics Data System (ADS)

    Tomasi-Gustafsson, Egle; Rekalo, Michail P.

    2004-04-01

    In this contribution we present a specific application of a result obtained by Franco Iachello (in collaboration with R. Bijker and A. Leviatan), which concerns the inelastic electromagnetic form factors on the nucleons. In particular we show examples where symmetries inherent to the structure of the nucleon resonances can manifest in complicated processes of the strong interaction.

  18. Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; Paddubskaya, A.; Plyushch, A.; Volynets, N.; Maksimenko, S.; Macutkevic, J.; Kranauskaite, I.; Banys, J.; Ivanov, E.; Kotsilkova, R.; Celzard, A.; Fierro, V.; Zicans, J.; Ivanova, T.; Merijs Meri, R.; Bochkov, I.; Cataldo, A.; Micciulla, F.; Bellucci, S.; Lambin, Ph.

    2013-10-01

    A comprehensive analysis of electrical, electromagnetic (EM), mechanical, and thermal properties of epoxy resin composites filled with 0.25-2.0 wt. % of carbon additives characterized by high surface area, both nano-sized, like carbon nanotubes (CNTs) and carbon black (CBH), and micro-sized exfoliated graphite (EG), was performed. We found that the physical properties of both CNTs- and CBH-based epoxy resin composites increased all together with filler content and even more clearly for CBH than for CNTs. In the case of EG-based composites, good correlation between properties and filler amount was observed for concentrations below 1.5 wt. %. We conclude that CBH and, to a lower extent, EG could replace expensive CNTs for producing effective EM materials in microwave and low-frequency ranges, which are, in addition, mechanically and thermally stable.

  19. Coherence and Polarization Properties of Far Fields Generated by Quasi-Homogeneous Planar Electromagnetic Sources (Postprint)

    DTIC Science & Technology

    2005-02-03

    the explicit dependence of all he parameters on the frequency. In order that the elec- romagnetic Gaussian Schell - model source generated by eans of the...the far field gener- ted by a planar electromagnetic Gaussian Schell - model ource are given by the expressions s1 rs, = xx 2 exp− xx 2 k2 2/2...uniformly polarized, quasi- omogeneous Gaussian Schell - model source, which is haracterized by a cross-spectral density matrix J rs ,rs , whose

  20. Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere.

    PubMed

    Du, Xinyue; Zhao, Daomu; Korotkova, Olga

    2007-12-10

    We report analytic formulas for the elements of the e 2 X2 cross-spectral density matrix of a stochastic electromagnetic anisotropic beam propagating through the turbulent atmosphere with the help of vector integration. From these formulas the changes in the spectral density (spectrum), in the spectral degree of polarization, and in the spectral degree of coherence of such a beam on propagation are determined. As an example, these quantities are calculated for a so-called anisotropic electromagnetic Gaussian Schell-model beam propagating in the isotropic and homogeneous atmosphere. In particular, it is shown numerically that for a beam of this class, unlike for an isotropic electromagnetic Gaussian Schell-model beam, its spectral degree of polarization does not return to its value in the source plane after propagating at sufficiently large distances in the atmosphere. It is also shown that the spectral degree of coherence of such a beam tends to zero with increasing distance of propagation through the turbulent atmosphere, in agreement with results previously reported for isotropic beams.

  1. Astrophysical probes of electromagnetic neutrinos

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo; Kouzakov, Konstantin A.; Li, Yu-Feng; Lokhov, Alexey V.; Studenikin, Alexander I.; Zhou, Shun

    2017-09-01

    Electromagnetic properties of massive neutrinos and current best astrophysical bounds on neutrino magnetic moment and millicharge are outlined. Future probes of electromagnetic neutrinos from a core-collapse supernova with JUNO are discussed.

  2. Electromagnetic and microwave absorbing properties of carbonyl iron/BaTiO3 composite absorber for matched load of isolator

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohu; Cheng, Yankui

    2015-11-01

    Composite absorbers made from carbonyl iron powder and BaTiO3 were prepared by blending technique with the matrix of epoxy resin. The structure and microtopography of the carbonyl iron and BaTiO3 particles were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microstructure and electromagnetic properties of the as-prepared composites were investigated by SEM and vector network analyzer (VNA). The effect of the mass ratio of BaTiO3/carbonyl iron on the electromagnetic properties of the composites is investigated. The bandwidth with an absorption loss exceeding 30 dB is obtained in the whole measured frequency range for all composites, and an optimal reflection loss drop below 1.5 dB with 24 wt% BaTiO3. It is found that the carbonyl iron/BaTiO3 composite absorber can be a promising candidate as a matched load for the isolator.

  3. Polarization properties of polarized and partially coherent Electromagnetic Gaussian-Schell model pulse beams on slant path in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Li, Yan; Lv, Hong; Gong, Lei

    2014-11-01

    This paper is based on the unified theory of coherence and polarization of stochastic electromagnetic beams and the extended Huygens-Fresnel principle, combined with the quadratic approximation of Rytov's phase structure function and the generalized Stokes parameters. We have derived the novel expressions for the cross-spectral density matrix elements and the degree of cross-polarization of a class of elliptically polarized spatially and spectrally partially coherent Electromagnetic Gaussian-Schell model pulse (EGSMP) beams propagating through atmospheric turbulence along a slant path. Additionally, we calculate and analyze the effects of the turbulent intensity, the initial pulse duration, waist width of the beam, the spatial coherence length and temporal coherence length et al. on the polarization properties of fully polarized and partially coherent EGSMP beams. Finally, a comparison of the impact of those factors on the partially polarization beams is made. The results show that the influences of the turbulent intensity, the initial pulse duration, waist width of the beam, the spatial coherence length and temporal coherence length et al. on the polarization properties of fully polarized and partially coherent EGSMP beams are larger. While the effects of those parameters on the partially polarization and partially coherent EGSMP beams are smaller. It is noted that the results of this paper have established sound theoretical basis on the topic of improving performance of the laser system propagating through the atmospheric turbulence.

  4. Effect of pH value on electromagnetic loss properties of Co-Zn ferrite prepared via coprecipitation method

    NASA Astrophysics Data System (ADS)

    Huang, Xiaogu; Zhang, Jing; Wang, Wei; Sang, Tianyi; Song, Bo; Zhu, Hongli; Rao, Weifeng; Wong, Chingping

    2016-05-01

    In this paper, the cobalt zinc ferrite was prepared by coprecipitation method at different pH conditions. The influence of pH values on the coprecipitation reaction was theoretically analyzed at first. The calculated results showed that the pH values should be controlled in the range of 9-11 to form the stable precipitation. The XRD investigation was used to further confirm the formation of the composite on specific pH values. In addition, the morphological study revealed that the average particle size of the composite decreased from 40 nm to 30 nm when the pH value increased from 9-11. The variation of microstructure plays a critical role in controlling the electromagnetic properties. From the electromagnetic analysis, the dielectric loss factor was 0.02-0.07 and magnetic loss factor was 0.2-0.5 for the composite synthesized at pH of 9, which presents dramatically improved dielectric loss and magnetic loss properties than the samples prepared at pH of 10 and 11. The as-prepared cobalt zinc ferrite are highly promising to be used as microwave absorption materials.

  5. Influence of direct bias current on the electromagnetic properties of melt-extracted microwires and their composites

    NASA Astrophysics Data System (ADS)

    Qin, F. X.; Tang, J.; Popov, V. V.; Liu, J. S.; Peng, H. X.; Brosseau, C.

    2014-01-01

    We study the influence of a direct bias current on the magnetoimpedance (MI) in melt-extracted amorphous CoFeSiB microwires and the effective electromagnetic properties of epoxy composites filled with these microwires. Our analysis reveals two remarkable features of the current dependence of MI in the range of gigahertz frequencies: a redshift of the dielectric resonance frequency and a decrease of the peak resonance of the effective permittivity as the bias current increases. Both effects are intrinsically linked to the influence of the polymer matrix on the magnetic structure and properties of the microwires. A discussion of these results is proposed in terms of two competing effects of the bias current, i.e., the induced additional effective field in the plane normal to the wire axis and the stress relief from Joule heating.

  6. Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2017-03-01

    A thorough account of electromagnetic interactions of massive neutrinos in the theoretical formulation of low-energy elastic neutrino-electron scattering is given. The formalism of neutrino charge, magnetic, electric, and anapole form factors defined as matrices in the mass basis is employed under the assumption of three-neutrino mixing. The flavor change of neutrinos traveling from the source to the detector is taken into account and the role of the source-detector distance is inspected. The effects of neutrino flavor-transition millicharges and charge radii in the scattering experiments are pointed out.

  7. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience.

    PubMed

    Halter, Ryan J; Zhou, Tian; Meaney, Paul M; Hartov, Alex; Barth, Richard J; Rosenkranz, Kari M; Wells, Wendy A; Kogel, Christine A; Borsic, Andrea; Rizzo, Elizabeth J; Paulsen, Keith D

    2009-06-01

    Electromagnetic (EM) breast imaging provides low-cost, safe and potentially a more specific modality for cancer detection than conventional imaging systems. A primary difficulty in validating these EM imaging modalities is that the true dielectric property values of the particular breast being imaged are not readily available on an individual subject basis. Here, we describe our initial experience in seeking to correlate tomographic EM imaging studies with discrete point spectroscopy measurements of the dielectric properties of breast tissue. The protocol we have developed involves measurement of in vivo tissue properties during partial and full mastectomy procedures in the operating room (OR) followed by ex vivo tissue property recordings in the same locations in the excised tissue specimens in the pathology laboratory immediately after resection. We have successfully applied all of the elements of this validation protocol in a series of six women with cancer diagnoses. Conductivity and permittivity gauged from ex vivo samples over the frequency range 100 Hz-8.5 GHz are found to be similar to those reported in the literature. A decrease in both conductivity and permittivity is observed when these properties are gauged from ex vivo samples instead of in vivo. We present these results in addition to a case study demonstrating how discrete point spectroscopy measurements of the tissue can be correlated and used to validate EM imaging studies.

  8. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience

    PubMed Central

    Halter, Ryan J; Zhou, Tian; Meaney, Paul M; Hartov, Alex; Barth, Richard J; Rosenkranz, Kari M; Wells, Wendy A; Kogel, Christine A; Borsic, Andrea; Rizzo, Elizabeth J; Paulsen, Keith D

    2009-01-01

    Electromagnetic (EM) breast imaging provides low-cost, safe and potentially a more specific modality for cancer detection than conventional imaging systems. A primary difficulty in validating these EM imaging modalities is that the true dielectric property values of the particular breast being imaged are not readily available on an individual subject basis. Here, we describe our initial experience in seeking to correlate tomographic EM imaging studies with discrete point spectroscopy measurements of the dielectric properties of breast tissue. The protocol we have developed involves measurement of in vivo tissue properties during partial and full mastectomy procedures in the operating room (OR) followed by ex vivo tissue property recordings in the same locations in the excised tissue specimens in the pathology laboratory immediately after resection. We have successfully applied all of the elements of this validation protocol in a series of six women with cancer diagnoses. Conductivity and permittivity gauged from ex vivo samples over the frequency range 100 Hz–8.5 GHz are found to be similar to those reported in the literature. A decrease in both conductivity and permittivity is observed when these properties are gauged from ex vivo samples instead of in vivo. We present these results in addition to a case study demonstrating how discrete point spectroscopy measurements of the tissue can be correlated and used to validate EM imaging studies. PMID:19491436

  9. Effects Of Additions Of TiO2 Powder On The Electromagnetic Wave Absorbing Properties Of Fe-Based Nanocrystalline P/M Sheets

    NASA Astrophysics Data System (ADS)

    Woo, S. J.; Cho, H. J.; Cho, E. K.; Lee, J. J.; Sohn, K. Y.; Park, W. W.

    2008-04-01

    Fe-based nanocrystalline powder sheets mixed with TiO2 additives have been studied to improve the characteristics of electromagnetic wave absorber. The Fe-based flake powders crystallized at 550 ° for 1 h were mixed with a nano-sized and a micro-sized TiO2 powders using ball mill, and then tape-cast with binder. Absorbing properties of the fabricated sheet samples, including the complex permittivity and permeability, were measured by network analyzer. Consequently, as the amount of high dielectric TiO2 powder increased, the properties of electromagnetic wave absorption was improved due to the increase of dielectric loss.

  10. Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities

    NASA Astrophysics Data System (ADS)

    Heng, Hang; Wang, Rong

    2017-01-01

    Optical metamaterials can concentrate light into extremely tiny volumes to enhance their interaction with quantum objects. In this paper, a cylindrical microcavity based on the Au-dielectric-Au sandwiched structure is proposed. Numerical study shows that the cylindrical microcavity has the strong ability of localizing light and confining 103- 104-fold enhancement of the electromagnetic energy density, which contains the most energy of the incoming light. The enhancement factor of energy density G inside the cavity shows the regularities as the change in the thickness of the dielectric slab, dielectric constant, and the radius of gold disk. At the normal incidence of electromagnetic radiation, the obtained reflection spectra operate in the range from 4.8 μm to 6 μm and with the absorption efficiency C (C=1-R min), which can reach 99% by optimizing the structure's geometry parameters, and the dielectric constant. Due to the symmetry of the cylindrical microcavities, this structure is insensitive to the polarization of the incident wave. The proposed optical metamaterials will have potential applications in the surface enhanced spectroscopy, new plasmonic detectors, bio-sensing, solar cells, etc.

  11. Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties.

    PubMed

    Han, Meikang; Yin, Xiaowei; Hou, Zexin; Song, Changqing; Li, Xinliang; Zhang, Litong; Cheng, Laifei

    2017-04-05

    Three-dimensional (3D) flexible foams consisting of reduced graphene oxides (rGO) and in situ grown SiC nanowires (NWs) were prepared using freeze-drying and carbothermal reduction processes. By means of incorporating SiC nanowires into rGO foams, both the thermostability and electromagnetic absorption of the composites were improved. It was demonstrated that rGO/SiC NW foams were thermostable beyond ∼630 °C (90% weight retention in air atmosphere). As expected, rGO/SiC NW foams in the poly(dimethylsiloxane) matrix achieved effective absorption in the entire X-band (8.2-12.4 GHz) with a thinner thickness (3 mm) in comparison with those of the pure rGO foams. It is revealed that SiC nanowires with abundant stacking faults, twinning interfaces, and bridged junctions play an important role in the enhanced electromagnetic absorption performance, in addition to the contribution of interconnected graphene networks. Hierarchical rGO/SiC NW foams not only are efficient absorbers in the critical environments but also can be applied in photocatalytic and thermal-management fields.

  12. Research on Stabilization Properties of Inductive-Capacitive Transducers Based on Hybrid Electromagnetic Elements

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.

    2017-01-01

    Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.

  13. Properties of Longitudinal Electromagnetic Oscillations in Metals and Their Excitation at Planar and Spherical Surfaces

    NASA Astrophysics Data System (ADS)

    Datsyuk, Vitaly V.; Pavlyniuk, Oleg R.

    2017-08-01

    The common definition of the spatially dispersive permittivity is revised. The response of the degenerate electron gas on an electric field satisfying the vector Helmholtz equation is found with a solution to the Boltzmann equation. The calculated longitudinal dielectric function coincides with that obtained by Klimontovich and Silin in 1952 and Lindhard in 1954. However, it depends on the square of the wavenumber, a parameter of the vector Helmholtz equation, but not the wave vector of a plane electromagnetic wave. This new concept simplifies simulation of the nonlocal effects, for example, with a generalized Lorents-Mie theory, since no Fourier transforms should be made. The Fresnel coefficients are generalized allowing for excitation of the longitudinal electromagnetic waves. To verify the theory, the extinction spectra for silver and gold nanometer-sized spheres are calculated. For these particles, the generalized Lorents-Mie theory gives the blue shift and broadening of the plasmon resonance which are in excellent agreement with experimental data. In addition, the nonlocal theory explains vanishing of the plasmon resonance observed for gold spheres with diameters less than or equal to 2 nm. The calculations using the Klimontovich-Silin-Lindhard and hydrodynamic dielectric functions for silver are found to give close results at photon energies from 3 to 4 eV. We show that the absolute values of the wavenumbers of the longitudinal waves in solids are much higher than those of the transverse waves.

  14. Electromagnetic properties of phosphate composite materials with boron-containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Plyushch, A. O.; Sokol, A. A.; Lapko, K. N.; Kuzhir, P. P.; Fedoseeva, Yu. V.; Romanenko, A. I.; Anikeeva, O. B.; Bulusheva, L. G.; Okotrub, A. V.

    2014-12-01

    The possibility of developing electromagnetic composite materials based on unfired heat-resistant mechanically strong phosphate ceramics has been studied. Boron-containing multiwalled carbon nanotubes and onion-like particles (B-MWCNTs) synthesized by electric-arc evaporation of a graphite rod enriched with boron are used as a functional additive to the phosphate matrix. According to transmission electron microscopy, the average nanoparticle length is ˜100 nm. According to X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, the boron content in B-MWCNT walls is less than 1 at %, and substitution of carbon atoms with boron leads to the formation of acceptor states in the conduction band. An increase in the electromagnetic response of phosphate ceramics by ˜53 and ˜13-15% for 1.5 wt % B-MWCNT additive is detected in quasi-static and gigahertz ranges, respectively. It is assumed that a stronger effect can be achieved using longer B-MWCNTs than those formed under electric arc conditions.

  15. Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities

    NASA Astrophysics Data System (ADS)

    Heng, Hang; Wang, Rong

    2017-06-01

    Optical metamaterials can concentrate light into extremely tiny volumes to enhance their interaction with quantum objects. In this paper, a cylindrical microcavity based on the Au-dielectric-Au sandwiched structure is proposed. Numerical study shows that the cylindrical microcavity has the strong ability of localizing light and confining 103- - 104-fold enhancement of the electromagnetic energy density, which contains the most energy of the incoming light. The enhancement factor of energy density G inside the cavity shows the regularities as the change in the thickness of the dielectric slab, dielectric constant, and the radius of gold disk. At the normal incidence of electromagnetic radiation, the obtained reflection spectra operate in the range from 4.8 μm to 6 μm and with the absorption efficiency C ( C=1- R min), which can reach 99% by optimizing the structure's geometry parameters, and the dielectric constant. Due to the symmetry of the cylindrical microcavities, this structure is insensitive to the polarization of the incident wave. The proposed optical metamaterials will have potential applications in the surface enhanced spectroscopy, new plasmonic detectors, bio-sensing, solar cells, etc.

  16. Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method.

    PubMed

    Liu, Pan-Bo; Huang, Ying; Sun, Xu

    2013-12-11

    The ternary composites of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 (PEDOT-RGO-Co3O4) were synthesized and the electromagnetic absorption property of the composites was investigated. The structure of the composites was characterized with Fourier-transform infrared spectra, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscope. The electromagnetic parameters indicate the enhanced electromagnetic absorption property of the composites was attributed to the better impedance matching. On the basis of the above characterization, an electromagnetic complementary theory was proposed to explain the impedance matching. It can be found that the maximum reflection loss of PEDOT-RGO-Co3O4 can reach -51.1 dB at 10.7 GHz, and the bandwidth exceeding -10 dB is 3.1 GHz with absorber thickness of 2.0 mm. Therefore, the PEDOT-RGO-Co3O4 composites, with such excellent electromagnetic absorption properties and wide absorption bandwidth, can be used as a new kind of candidate for microwave absorbing materials.

  17. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Zhou, W.; Ding, J.; Xiao, M.; Yu, Z. J.; Xu, H.; Mao, W. G.; Pei, Y. M.; Li, F. X.; Feng, X.; Fang, D. N.

    2017-02-01

    A novel multiple functional bulge apparatus was designed to study the mechanical-electronic-magnetic characteristics of electromagnetic materials. The elastic modulus difference effect of Ni thin film was observed and it was about 22.16% in the demagnetized and magnetization saturated states. The mechanical-magnetic behaviors of Ni and lead-titanate zirconate (PZT)/Ni films were in-situ measured by using the new bulge systems, respectively. The evolutions of three key material properties in hysteresis loop including saturation magnetization, remanent magnetization and coercive field were discussed in detail, respectively. The mechanisms of mechanical-magnetic coupled behaviors of Ni and PZT/Ni films were analyzed with the aid of the competitive relationship of stress and magnetization. Similarly, the electronic-magnetic characteristics of PZT/Ni films were in-situ measured by using this experimental system. The evolution of saturated magnetization, remanent magnetization and coercive field Kerr signals were discussed with the magneto-elastic anisotropy energy point. In this paper, a suitable mechanical-electronic-magnetic bulge measurement system was established, which would provide a good choice for further understanding the multi field coupling characteristics of electromagnetic film materials.

  18. Electromagnetic momentum and the energy–momentum tensor in a linear medium with magnetic and dielectric properties

    SciTech Connect

    Crenshaw, Michael E.

    2014-04-15

    In a continuum setting, the energy–momentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energy–momentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derive electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energy–momentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the Abraham–Minkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energy–momentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.

  19. Dyson equation for electromagnetic scattering of heterogeneous media with spatially disordered particles: properties of the effective medium

    NASA Astrophysics Data System (ADS)

    Berginc, G.

    2016-08-01

    In this paper, we consider the coherent component of the electromagnetic wave field inside random media. The subject of our interest concerns a random medium, consisting of a statistical ensemble of different scattering species and artificial material structures developed on base of dielectric or metallic resonant or non-resonant particles. The starting point of our theory is the multiple scattering theory, the averaged electric field satisfies a Dyson equation with a mass operator related to the effective dielectric permittivity of the homogenized structure. Quantum multiple scattering theory has been transposed into this electromagnetic case. We give a formal solution for the mass operator by introducing the T-matrix formalism. We show that the T-matrix satisfies a Lippman-Schwinger equation. Then, we introduce the Quasi-Crystalline Coherent Potential Approximation (QC-CPA), which takes into account the correlation between the particles with a pair-distribution function. The mass operator includes geometric effects, caused by resonant behavior due to the shape and size of particles, cluster effects because of correlations between particles. Significant modifications of particle scattering properties can be observed.

  20. Flow-field differences and electromagnetic-field properties of air and N2 inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yamada, Kazuhiko; Takahashi, Yusuke; Liu, Kai; Zhao, Tong

    2016-12-01

    A numerical model for simulating air and nitrogen inductively coupled plasmas (ICPs) was developed considering thermochemical nonequilibrium and the third-order electron transport properties. A modified far-field electromagnetic model was introduced and tightly coupled with the flow field equations to describe the Joule heating and inductive discharge phenomena. In total, 11 species and 49 chemical reactions of air, which include 5 species and 8 chemical reactions of nitrogen, were employed to model the chemical reaction process. The internal energy transfers among translational, vibrational, rotational, and electronic energy modes of chemical species were taken into account to study thermal nonequilibrium effects. The low-Reynolds number Abe-Kondoh-Nagano k-ɛ turbulence model was employed to consider the turbulent heat transfer. In this study, the fundamental characteristics of an ICP flow, such as the weak ionization, high temperature but low velocity in the torch, and wide area of the plasma plume, were reproduced by the developed numerical model. The flow field differences between the air and nitrogen ICP flows inside the 10-kW ICP wind tunnel were made clear. The interactions between the electromagnetic and flow fields were also revealed for an inductive discharge.

  1. Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO3

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Luo, Heng; Yan, Shuoqing; Yao, Lingling; He, Jun; Li, Yuhan; He, Longhui; Huang, Shengxiang; Deng, Lianwen

    2017-03-01

    The single-phase Bi1-xNdxFeO3 (x=0, 0.05, 0.10, 0.15, 0.20) were synthesized by the sol-gel method. Their crystal structure and microwave electromagnetic property in the frequency range of 2-18 GHz were investigated. The XRD patterns and Raman spectra showed that structural transition from rhombohedral (x=0, 0.05, 0.1) to triclinic (x=0.15) and tetragonal structure (x=0.20) appeared in the Bi1-xNdxFeO3. Electromagnetic measurement suggested that both microwave permeability μ‧ and magnetic loss tanδm increased remarkably over 2-18 GHz by doping Nd. Strong dielectric loss peak was observed on the samples of Bi1-xNdxFeO3 (x=0.15) and Bi1-xNdxFeO3 (x=0.2). Results show that Nd substitution is an effective way to push BiFeO3 to become microwave absorbing materials with high performance.

  2. Electromagnetic nonuniformly correlated beams.

    PubMed

    Tong, Zhisong; Korotkova, Olga

    2012-10-01

    A class of electromagnetic sources with nonuniformly distributed field correlations is introduced. The conditions on source parameters guaranteeing that the source generates a physical beam are derived. It is shown that the new sources are capable of producing beams with polarization properties that evolve on propagation in a manner much more complex compared to the well-known electromagnetic Gaussian Schell-model beams.

  3. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    SciTech Connect

    Hakala, J. Alexandra; Stanchina, William; Soong, Yee; Hedges, Sheila

    2011-01-01

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200° C) and constant oil shale grade, both the relative dielectric constant (ε') and imaginary permittivity (ε'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ε' decreases or remains constant with oil shale grade, while ε'' increases or shows no trend with oil shale grade. At higher temperatures (>200º C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ε'' fluctuates. At these temperatures, maximum values for both ε' and ε'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  4. Methodology for the analysis of the impact of the forging parameters on metallurgy and mechanical properties in case of solid electromagnetic manufactured parts

    NASA Astrophysics Data System (ADS)

    Borsenberger, Marc; Baudouin, Cyrille; Benabou, Abdelkader; Bigot, Régis; Faverolle, Pierre; Mipo, Jean-Claude

    2016-10-01

    For electromagnetic applications the microstructure and the final mechanical state are key parameters. These can be obtained by a judicious choice of the material, a particular design like laminated steels but also through the determination and the mastering of the fabrication process. This present paper contains a brief introduction to electromagnetics and the qualification of a "good" electromagnetic quality. Then the article highlights, based on literature, first the influence of the process parameters on microstructure, mechanical state and secondly the impact these properties themselves on magnetic properties. Eventually, a methodology is proposed in order to predict the functional behavior of a part in its final system, taking into account its manufacturing process. The academic study case presented here can illustrate such a methodology. This kind of methodology includes in particular experimental tests, physical analysis and numerical modeling.

  5. A Study of the Electromagnetic Properties of the Dielectric Wall Accelerator

    NASA Astrophysics Data System (ADS)

    Uselmann, Adam J.

    Proton and heavy-ion radiotherapy are powerful tools in cancer treatment, yet access to these modalities has been limited due to the large size and costs of the accelerators used and the facilities to house them. The dielectric wall accelerator (DWA) is a type of compact particle accelerator that can potentially bring proton and heavy ion therapy into more widespread clinical use at a significantly lower cost than existing devices. However, the technology pushes the limits of current materials and electronics, making the maximization of the efficiency of the design absolutely crucial. In this work, an investigation of the critical parameters of the device was performed using electromagnetic simulation and particle tracking tools, and novel geometric variations of the device were investigated in order to improve performance.

  6. Calculation of the Bulk Electromagnetic Properties of Thunderclouds Using a Two-Space Scattering Formalism

    NASA Technical Reports Server (NTRS)

    Phanord, Dieudonne D.; Koshak, William J.; Solakiewicz, Richard J.; Blakeslee, Richard J.

    1998-01-01

    A two-space scatterer formalism and equivalent medium approach of Twersky are used to obtain formulae for the bulk electromagnetic parameters of a thundercloud medium that is illuminated by lightning optical emissions. A modified WKB approximation is applied to derive the two-space scattering amplitude. Optical constants of dry air, moist atmosphere, and water,.are inserted into the formulae to generate numerical values via iteration. The two-space scatterer formalism results are close to those obtained from free- or sin-le-space formalisms for the dilute case. The numerical values of the bulk parameters are required to successfully transform the scattering problem to that of an equivalent obstacle excited by an incident wave traveling in K - space but radiating in k(sub 1) -space.

  7. Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian vortex beams through non-Kolmogorov turbulence.

    PubMed

    Huang, Yongping; Wang, Fanhou; Gao, Zenghui; Zhang, Bin

    2015-01-26

    Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian (PCESHG) vortex beams through non-Kolmogorov atmospheric turbulence, including the spectral degree of polarization and evolution behavior of coherent vortices and average intensity are investigated in detail by using the extended Huygens-Fresnel principle and the spatial power spectrum of the refractive index of non-Kolmogorov turbulence. It is shown that the motion, creation and annihilation of the coherent vortices of PCESHG vortex beams in non-Kolmogorov turbulence may appear with the increasing propagation distance, and the distance for the conservation of the topological charge depends on the turbulence parameters and beam parameters. In additions, the evolution behavior of coherent vortices, average intensity and spectral degree of polarization vary significantly for different values of the generalized exponent parameter and the generalized refractive-index structure parameter of non-Kolmogorov turbulence, and the beam parameters as well as the propagation distance.

  8. Low-Temperature Sintering and Electromagnetic Properties of NiCuZn/CaTiO3 Composites

    NASA Astrophysics Data System (ADS)

    Yang, Haibo; Yang, Yanyan; Lin, Ying; Zhu, Jianfeng; Wang, Fen

    2012-04-01

    Dense CaTiO3/Ni0.37Cu0.20Zn0.43Fe1.92O3.88 (CTO/NiCuZn) composites were prepared by the conventional solid-state reaction method and sintered at 950°C. The phase compositions and surface morphologies of the composites were investigated using x-ray diffraction and scanning electron microscopy, respectively. The dielectric and magnetic properties of the composites were also investigated. The results show that the CTO/NiCuZn composites possess high dielectric constants and permeabilities, which can be used in high-frequency communications for capacitor-inductor integrating devices such as electromagnetic interference filters and antennas. With increasing NiCuZn concentration, the permeabilities of the CTO/NiCuZn composites increase, while the dielectric constants and cutoff frequencies decrease.

  9. Electromagnetic Properties of (Gd, Y)Ba2Cu3Ox Superconducting Tapes With High Levels of Zr Addition

    SciTech Connect

    Liu, Y; Yao, Y; Chen, Y; Khatri, ND; Liu, J; Galtsyan, E; Lei, C; Selvamanickam, V

    2013-06-01

    The dependence of the critical current density (J(c)) on the orientation of applied magnetic fields was studied in Zr-doped (Gd, Y)Ba2Cu3Ox tapes fabricated by metal organic chemical vapor deposition. The in-field performance of J(c) of (Gd, Y)Ba2Cu3Ox tapes with Zr-doping levels of 7.5-30 at.% was investigated up to 5 T over a temperature range of 40-77 K. The highest critical currents (I-c) at H parallel to c and the highest values of minimum Ic in angular dependence measurements were achieved in the tapes with 20% Zr doping over a broad range of temperature and magnetic field conditions measured. The electromagnetic properties have been related to the changes in BaZrO3 content and microstructure.

  10. Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption

    PubMed Central

    Huang, Lina; Liu, Xiaofang; Chuai, Dan; Chen, Yaxin; Yu, Ronghai

    2016-01-01

    Flaky FeSiAl alloy/multi-wall carbon nanotube (FeSiAl/MWCNT) composite was fabricated by facile and scalable ball milling method. The morphology and electromagnetic properties of the FeSiAl alloy can be well tuned by controlling the milling time. It is found that the magnetic loss of the FeSiAl alloy is improved by optimizing the milling time due to the increased anisotropy field. Meanwhile the addition of MWCNTs enhances the dielectric loss of the composite by increasing the interfacial polarizations, dipolar polarizations and conductive paths. Relative to conventional FeSiAl absorbers, the FeSiAl/MWCNT composite exhibits greatly improved microwave absorption performance with advantages of strong absorption and small thickness. The minimum reflection loss of the composite reaches −42.8 dB at 12.3 GHz at a very thin thickness of 1.9 mm. PMID:27762327

  11. Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption.

    PubMed

    Huang, Lina; Liu, Xiaofang; Chuai, Dan; Chen, Yaxin; Yu, Ronghai

    2016-10-20

    Flaky FeSiAl alloy/multi-wall carbon nanotube (FeSiAl/MWCNT) composite was fabricated by facile and scalable ball milling method. The morphology and electromagnetic properties of the FeSiAl alloy can be well tuned by controlling the milling time. It is found that the magnetic loss of the FeSiAl alloy is improved by optimizing the milling time due to the increased anisotropy field. Meanwhile the addition of MWCNTs enhances the dielectric loss of the composite by increasing the interfacial polarizations, dipolar polarizations and conductive paths. Relative to conventional FeSiAl absorbers, the FeSiAl/MWCNT composite exhibits greatly improved microwave absorption performance with advantages of strong absorption and small thickness. The minimum reflection loss of the composite reaches -42.8 dB at 12.3 GHz at a very thin thickness of 1.9 mm.

  12. Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption

    NASA Astrophysics Data System (ADS)

    Huang, Lina; Liu, Xiaofang; Chuai, Dan; Chen, Yaxin; Yu, Ronghai

    2016-10-01

    Flaky FeSiAl alloy/multi-wall carbon nanotube (FeSiAl/MWCNT) composite was fabricated by facile and scalable ball milling method. The morphology and electromagnetic properties of the FeSiAl alloy can be well tuned by controlling the milling time. It is found that the magnetic loss of the FeSiAl alloy is improved by optimizing the milling time due to the increased anisotropy field. Meanwhile the addition of MWCNTs enhances the dielectric loss of the composite by increasing the interfacial polarizations, dipolar polarizations and conductive paths. Relative to conventional FeSiAl absorbers, the FeSiAl/MWCNT composite exhibits greatly improved microwave absorption performance with advantages of strong absorption and small thickness. The minimum reflection loss of the composite reaches ‑42.8 dB at 12.3 GHz at a very thin thickness of 1.9 mm.

  13. Mechanical and electromagnetic properties of 3D printed hot pressed nanocarbon/poly(lactic) acid thin films

    NASA Astrophysics Data System (ADS)

    Kotsilkova, R.; Ivanov, E.; Todorov, P.; Petrova, I.; Volynets, N.; Paddubskaya, A.; Kuzhir, P.; Uglov, V.; Biró, I.; Kertész, K.; Márk, G. I.; Biró, L. P.

    2017-02-01

    We constructed a new type of light-weight, nanocarbon based thin film material having good mechanical properties, thermal stability, and electromagnetic shielding efficiency. Our method, 3D printing combined with hot pressing, is a cheap and industrially upscalable process. First a sandwich structure was created by layer-to-layer deposition of alternating 100 μm thick nanocarbon containing plastic layers and 100 μm thick pristine plastic layers, repeated as building blocks. The 3D printed samples were hot pressed to obtain thin films of 10-30 μm thickness. We used a commercial nanocarbon 3D printing filament (Black Magic). TEM investigations revealed the nanocarbon filler to be a mixture of graphene sheets, short carbon nanotubes, fishbone nanotubes, graphitic nanoparticles, and carbon black. Small-angle X-ray scattering and X-ray diffraction studies showed some amorphization of the nanocarbon filler as a consequence of the hot pressing. The nanoindentation hardness, nanoscratch hardness, and Young's modulus increase gradually by increasing the number of layers in the films, due to an increase of the amount of nanocarbon filler. Microwave absorption also increases continuously with the number of nanocarbon layers, reaching 40% for 3 nanocarbon layers. We demonstrate that unlike most conventional composites loaded with nanocarbons having pronounced dielectric properties, when the real part of permittivity Re(ɛ) is much higher than its imaginary part Im(ɛ) at high frequencies, a combination of 3D printing and hot pressing allows the fabrication of composites with Re ɛ ≈ Im ɛ in a very broad frequency range (0.2-0.6 THz). Our new 3D printed—hot pressed thin films may compete with the CVD graphene sandwiches in electromagnetic shielding applications because of their easier processability and low cost.

  14. Electromagnetic structure of light nuclei

    SciTech Connect

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  15. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  16. Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules

    NASA Astrophysics Data System (ADS)

    Dan-Feng, Zhang; Zhi-Feng, Hao; Bi, Zeng; Yan-Nan, Qian; Ying-Xin, Huang; Zhen-Da, Yang

    2016-04-01

    With the combination of the dielectric loss of the carbon layer with the magnetic loss of the ferromagnetic metal core, carbon-coated nickel (Ni(C)) nanoparticles are expected to be the promising microwave absorbers. Microwave electromagnetic parameters and reflection loss in a frequency range of 2 GHz-18 GHz for paraffin-Ni(C) composites are investigated. The values of relative complex permittivity and permeability, the dielectric and magnetic loss tangent of paraffin-Ni(C) composites are measured, respectively, when the weight ratios of Ni(C) nanoparticles are equal to 10 wt%, 40 wt%, 50 wt%, 70 wt%, and 80 wt% in paraffin-Ni(C) composites. The results reveal that Ni(C) nanoparticles exhibit a peak of magnetic loss at about 13 GHz, suggesting that magnetic loss and a natural resonance could be found at that frequency. Based on the measured complex permittivity and permeability, the reflection losses of paraffin-Ni(C) composites with different weight ratios of Ni(C) nanoparticles and coating thickness values are simulated according to the transmission line theory. An excellent microwave absorption is obtained. To be proved by the experimental results, the reflection loss of composite with a coating thickness of 2 mm is measured by the Arch method. The results indicate that the maximum reflection loss reaches -26.73 dB at 12.7 GHz, and below -10 dB, the bandwidth is about 4 GHz. The fact that the measured absorption position is consistent with the calculated results suggests that a good electromagnetic match and a strong microwave absorption can be established in Ni(C) nanoparticles. The excellent Ni(C) microwave absorber is prepared by choosing an optimum layer number and the weight ratio of Ni(C) nanoparticles in paraffin-Ni(C) composites. Project supported by the Science and Technology Program of Guangdong Province, China (Grant Nos. 2014B010106005, 2013B051000077, and 2015A050502047) and the Science and Technology Program of Guangzhou City, China (Grant No

  17. Study of Electromagnetic Properties of Nuclei and Structural Changes at High Spins in Yb Isotopes

    NASA Astrophysics Data System (ADS)

    Mansour, N.; Awwad, Z.; Bayomy, T.; Diab, A.

    High-spin states of nuclei, populated by heavy-ion reactions, are of interest because they reveal changes in the structur of nuclei under stress. In the first part much of our insight into the structure of high-spin states is being provided by electromagnetic strength functions. In the second part, the level scheme of 158Yb has been extended to I = 37 by using the 98Mo (64Ni, 4n) reaction, and the backbending phenomena in Yb isotopes has been discussed.Translated AbstractUntersuchungen der elektromagnetischen Eigenschaften an Kernen von Yb-Isotopen und ihren Strukturänderungen bei hohem SpinDurch Schwerionenreaktionen erhaltene Kernzustände mit hohen Spinwerten sind von Interesse, weil sie Änderungen der Kernstruktur unter Beanspruchung aufzeigen. Ein Großteil unseres Verständnisses der Struktur dieser Zustände großen Spins resultiert aus den elektromagnetischen Feldstärkefunktionen. Wir erweitern das Zustandsschema von 158Yb bis zu I = 37 unter Benutzung der Reaktion 98Mo (64Ni, 4n) und diskutieren das Phänomen der Rückbiegung an Yb-Isotopen.

  18. Electromagnetic properties of flake-shaped Fe-Si alloy particles prepared by ball milling

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Jiang, Jian-Tang; Wang, Zeng-Quan; Gong, Yuan-Xun; Liu, Chao; Zhen, Liang

    2014-11-01

    Flake-shaped Fe-Si alloy particles with high aspect ratios were fabricated by ball milling commercially available Fe-Si powder, aiming to fabricate high-performance microwave absorbing fillers for coatings applied in 1-4 GHz range. To compare with spherical particles, higher permittivity and permeability was observed by using flaky particles as fillers. High aspect ratios contributed to an enhanced dielectric relaxation in the 1-4 GHz band, resulting in an increased permittivity. The thin thickness together with the high resistivity of Fe-Si flakes was believed to be helpful for suppressing the effect of eddy current and thus lead to an increase in the permeability. The electromagnetic wave absorbing (EMA) performances were observed to be enhanced. With a thin thickness of 2 mm, a wide absorption band with a minimum reflection loss of -12 dB was achieved in 1-4 GHz range, when using 75 wt% of flaky Fe-Si particles as fillers. The study indicated that flake-shaped Fe-Si particles were a promising candidate for EMA materials in L and S bands.

  19. Polydopamine decoration on 3D graphene foam and its electromagnetic interference shielding properties.

    PubMed

    Zhang, Liying; Liu, Ming; Bi, Shuguang; Yang, Liping; Roy, Sunanda; Tang, Xiu-Zhi; Mu, Chenzhong; Hu, Xiao

    2017-05-01

    3D graphene foam was recently demonstrated to exhibit excellent electromagnetic interference (EMI) shielding performance. In this work, we prepared 3D graphene foams by incorporating a surface modification process of graphene via self-polymerization of dopamine with a subsequent foaming process. The multiple roles played by polydopamine (PDA), including as nitrogen doping source and as an enhancement tool to achieve higher extent of reduction of the graphene through providing wider pathways and larger accessible surface areas were discussed in detail. Despite the presence of the PDA which acted as barriers among the graphene layers that hindered the electrons movement, the enhanced reduction of graphene sheets and the polarization effects introduced by PDA decoration compensated the negative effect of the barrier on EMI shielding effectiveness (SE). As a result, the PDA decorated 3D graphene foams showed improved EMI shielding effectiveness (SE) compared to PDA-free graphene foam (from 23.1 to 26.5dB). More significantly, the EMI shielding performance of the PDA decorated graphene foam was much superior to all existing carbon-based porous materials when the thickness of the specimen was considered. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Electromagnetic and microwave absorption properties of (Co2+-Si4+) substituted barium hexaferrites and its polymer composite

    NASA Astrophysics Data System (ADS)

    Abbas, S. M.; Chatterjee, R.; Dixit, A. K.; Kumar, A. V. R.; Goel, T. C.

    2007-04-01

    The electromagnetic (EM) and microwave absorption properties of (Co2+-Si4+) substituted barium hexaferrite compositions BaCox2+Fey+2Six+y4+Fe12-2x-2y+3O19 (x =0.9 and y =0.0, 0.05, and 0.2) and its polymer composites prepared from hexaferrite, polyaniline, and carbon powders dispersed in polyurethane matrix have been investigated at the microwave frequency range of the X band (8.2-12.4GHz). The hexaferrite compositions were synthesized by solid-state reaction technique, whereas polyaniline, by chemical route. The permeabilities of a ferrite are drastically reduced at higher gigahertz frequencies. The permittivities, however, can be enhanced by appropriate choice of composition and processing temperature. In the present ferrite composition, silicon content is taken in excess so as to convert some of the Fe3+ ions to Fe2+ ions. This conversion has been shown to enhance EM and absorption properties. Mössbauer spectroscopy on the samples establishes that addition of excess Si4+ converts some of the Fe3+ to Fe2+. The sintered ferrites have shown resonance phenomena, but the composites do not. The EM parameters ɛ', ɛ″, μ', and μ″ were measured using a vector network analyzer (Agilent, model PNA E8364B). These measured EM parameters were used to determine the absorption spectra at different sample thicknesses based on a model of a single layered plane wave absorber backed by a perfect conductor. The sintered ferrite composition (x =0.9 and y =0.05) showed the best absorption properties [a minimum reflection loss of -17.7to-14.3dB over the whole frequency range of the X band (8.2-12.4) for a sample thickness of just 0.8mm], and it is used in the composite absorbers in powder form along with other constituents. The optimized composite absorber has shown dielectric constant ɛ'˜11.5, dielectric loss ɛ″˜2.3, and a minimum reflection loss of -29dB at 10.97GHz with the -20dB bandwidth over the frequency range of 9.7-12.2GHz for a sample thickness of 2.0mm. The

  1. Multipolar electromagnetic fields around neutron stars: exact vacuum solutions and related properties

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2015-06-01

    The magnetic field topology in the surrounding of neutron stars is one of the key questions in pulsar magnetospheric physics. A very extensive literature exists about the assumption of a dipolar magnetic field but very little progress has been made in attempts to include multipolar components in a self-consistent way. In this paper, we study the effect of multipolar electromagnetic fields anchored in the star. We give exact analytical solutions in closed form for any order l and apply them to the retarded point quadrupole (l = 2), hexapole (l = 3) and octopole (l = 4), a generalization of the retarded point dipole (l = 1). We also compare the Poynting flux from each multipole and show that the spin-down luminosity depends on the ratio R/rL, R being the neutron star radius and rL the light-cylinder radius. Therefore the braking index also depends on R/rL. As such multipole fields possess very different topology, most importantly smaller length scales compared to the dipolar field, especially close to the neutron star, we investigate the deformation of the polar caps induced by these multipolar fields. Such fields could have a strong impact on the interpretation of the pulsed radio emission suspected to emanate from these polar caps as well as on the inferred geometry deduced from the high-energy light-curve fitting and on the magnetic field strength. Discrepancies between the two-pole caustic model and our new multipole caustic model are emphasized with the quadrupole field. To this respect, we demonstrate that working with only a dipole field can be very misleading.

  2. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-02-01

    Heat resistant microwave absorbing materials were prepared by compression molding method, using polyimide resin as matrix and SiO2 coated carbonyl iron (CI) as filler. The SiO2 coated CI particles were prepared by Stober process. The microwave absorbing properties and the effect of heat treatment on the electromagnetic properties of SiO2 coated CI/polyimide composites were investigated. When the content of SiO2 coated CI is 60 wt%, the value of minimum reflection loss decreases from -25 dB to -33 dB with the thickness increases from 1.5 mm to 2.1 mm. According to the thermal-gravimetric analyses (TGA) curves, the polyimide matrix can be used at 300 °C for long time. The complex permittivity of the composites slightly increases while the complex permeability almost keeps constant after heat treatment at 300 °C for 10 h, which indicating that the composites can be used at elevated temperature as microwave absorbing materials at the same time have good heat resistance and microwave absorption.

  3. Improved microwave absorption and electromagnetic properties of BaFe12O19-poly(vinylidene fluoride) composites by incorporating reduced graphene oxides

    NASA Astrophysics Data System (ADS)

    He, Hongcai; Luo, Feifei; Qian, Neng; Wang, Ning

    2015-02-01

    Three-phase composites of poly(vinylidene fluoride)-BaFe12O19-reduced graphene oxide (PVDF-BFO-RGO) were synthesized by a facile wet chemical method and hot-pressing approach. The phase structure, topography of the hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectra. Influence of RGO on their electromagnetic properties was investigated. Especially, improved microwave absorption and electromagnetic properties of BaFe12O19-PVDF composites by incorporating RGO were obtained and studied. The PVDF/BFO/RGO sample with m(RGO):m(BFO) = 5:100 shows the best microwave absorption properties with a minimum RL = -32 dB at 11 GHz and with the bandwidth less than -20 dB from 9.6 to 12.8 GHz. The composites were believed to have potential applications as the microwave absorber.

  4. Synthesis and electromagnetic property of Li0.35Zn0.3Fe2.35O4 grafted with polyaniline fibers

    NASA Astrophysics Data System (ADS)

    Zhou, Jintang; Yao, Zhengjun; Yao, Tiantian

    2017-10-01

    Li0.35Zn0.3Fe2.35O4 (LZFO) grafted with polyaniline (PANI) fibers was synthesized by in-situ polymerization. FTIR, XRD, SEM and electromagnetic characterization were used to investigate chemical composition, micro-morphology, electromagnetic properties and microwave absorbing properties of the composite. The results show that PANI fibers were grafted on the surfaces of LZFO particles. The reflection loss exceeds 10 dB in the frequency range from 2.5 to 5 GHz and from 15 to 17 GHz, and the maximum reflection loss reaches -33 dB at 15.9 GHz. The enhanced microwave absorption properties of the LZFO/PANI-fiber composites are mainly ascribed to the combined effect of the dielectric and magnetic loss and the improved impedance matching.

  5. Monitoring processing properties of high performance thermoplastics using frequency dependent electromagnetic sensing

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.; Delos, S. E.; Hoff, M. S.; Weller, L. W.; Haverty, P. D.

    1987-01-01

    An in situ NDE dielectric impedance measurement method has been developed for ascertaining the cure processing properties of high temperature advanced thermoplastic and thermosetting resins, using continuous frequency-dependent measurements and analyses of complex permittivity over 9 orders of magnitude and 6 decades of frequency at temperatures up to 400 C. Both ionic and Debye-like dipolar relaxation processes are monitored. Attention is given to LARC-TPI, PEEK, and poly(arylene ether) resins' viscosity, glass transition temperature, recrystallization, and residual solvent content and evolution properties.

  6. Electromagnetism, Second Edition

    NASA Astrophysics Data System (ADS)

    Grant, I. S.; Phillips, W. R.

    2003-09-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Electromagnetism, Second Edition is suitable for a first course in electromagnetism, whilst also covering many topics frequently encountered in later courses. The material has been carefully arranged and allows for flexi-bility in its use for courses of different length and structure. A knowledge of calculus and an elementary knowledge of vectors is assumed, but the mathematical properties of the differential vector operators are described in sufficient detail for an introductory course, and their physical significance in the context of electromagnetism is emphasised. In this Second Edition the authors give a fuller treatment of circuit analysis and include a discussion of the dispersion of electromagnetic waves. Electromagnetism, Second Edition features: The application of the laws of electromagnetism to practical problems such as the behaviour of antennas, transmission lines and transformers. Sets of problems at the end of each chapter to help student understanding, with hints and solutions to the problems given at the end of the book. Optional "starred" sections containing more specialised and advanced material for the more ambitious reader. An Appendix with a thorough discussion of electromagnetic standards and units. Recommended by many institutions. Electromagnetism. Second Edition has also been adopted by the Open University as the

  7. Electromagnetic Nondestructive Evaluation of Wire Insulation and Models of Insulation Material Properties

    NASA Technical Reports Server (NTRS)

    Bowler, Nicola; Kessler, Michael R.; Li, Li; Hondred, Peter R.; Chen, Tianming

    2012-01-01

    Polymers have been widely used as wiring electrical insulation materials in space/air-craft. The dielectric properties of insulation polymers can change over time, however, due to various aging processes such as exposure to heat, humidity and mechanical stress. Therefore, the study of polymers used in electrical insulation of wiring is important to the aerospace industry due to potential loss of life and aircraft in the event of an electrical fire caused by breakdown of wiring insulation. Part of this research is focused on studying the mechanisms of various environmental aging process of the polymers used in electrical wiring insulation and the ways in which their dielectric properties change as the material is subject to the aging processes. The other part of the project is to determine the feasibility of a new capacitive nondestructive testing method to indicate degradation in the wiring insulation, by measuring its permittivity.

  8. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    SciTech Connect

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; Khan, A.; Leonard, K. J.; Aytug, T.; List III, F. A.; Rupich, M. W.; Zhang, Y.

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  9. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    DOE PAGES

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; ...

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less

  10. Electromagnetic properties of water on GHz frequencies for medicine tasks and metamaterial applications

    NASA Astrophysics Data System (ADS)

    Pavlov, N. D.; Baloshin, Y. A.

    2015-11-01

    In problems of modern radio physics and medicine it is important to know dielectric permittivity of liquids. Dispersion characteristics of water in UHF frequency band can be used to analyze the states of biological objects, and also to construct materials (metamanerials). The present work is intended to study the material properties of water in UHF frequency band based on two different techniques: Nicolson-Ross-Weir (NRW) [1] and the Active Nearfield Diagnostics [2].

  11. New Soft Magnetic Composites for electromagnetic applications with improved mechanical properties

    NASA Astrophysics Data System (ADS)

    Ferraris, Luca; Pošković, Emir; Franchini, Fausto

    2016-05-01

    The chance to move from 2D to 3D approach in the design of the electrical machines is made possible by the availability of Soft Magnetic Composites (SMC), iron based powders, insulated and pressed to realize shapes otherwise impossible with the traditional lamination sheets technology. Some commercial products are available on the market as "ready to press" powders, which presents good magnetic and energetic properties but are sometimes weak under the mechanical point of view; other products aim at improving this aspect but with considerable process complications and relative cost. The experience of the Authors in the realization of bonded magnets with the adoption of selected organic resins has been partly transferred in the research field of the SMC in order to investigate the possibility to obtain good mechanical properties maintaining the magnetic characteristics of the Insulated Iron Powder Compounds (I.I.P.C.) taken as reference. The paper presents the activity that has been carried out in the realization of SMC mixing iron powders and phenolic resin, in different weight percentages and mold pressures. The obtained results are considered satisfactory under the point of view of the compromise between magnetic and mechanical properties, considering also that the required productive process is simpler. The comparison of the obtained results with those related to commercial products encourages to carry on the research, also because of the reduced cost of the proposed SMC at parity (or better) performance.

  12. Theoretical study of turbulent channel flow - Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1990-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  13. Theoretical study of turbulent channel flow - Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1990-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  14. Theoretical study of turbulent channel flow: Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1988-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr--Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O--S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend stongly on the structure of the turbulence spectrun at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  15. Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets

    NASA Astrophysics Data System (ADS)

    Weiss, H. A.; Leuning, N.; Steentjes, S.; Hameyer, K.; Andorfer, T.; Jenner, S.; Volk, W.

    2017-01-01

    Mechanical stress occurring during the manufacturing process of electrical machines detrimentally alters the magnetic properties (iron losses and magnetizability). This affects the efficiency and performance of the machine. Improvement of the manufacturing process in terms of reduced magnetic property deterioration enables the full potential of the magnetic materials to be exploited, and as a result, the performance of the machine to be improved. A high quantity of electrical machine components is needed, with shear cutting (punching, blanking) being the most efficient manufacturing technology. The cutting process leads to residual stresses inside the non-oriented electrical sheet metal, resulting in increased iron losses. This paper studies the residual stresses induced by punching with different shear cutting parameters, taking a qualitative approach using finite element analysis. In order to calibrate the finite element analysis, shear cutting experiments are performed. A single sheet tester analysis of the cut blanks allows the correlation between residual stresses, micro hardness measurements, cutting surface parameters and magnetic properties to be studied.

  16. Electromagnetic and absorbing property of CIPs/resin composite using the 3D forming process

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Liang, Zichang; Wang, Xiaobing; Yuan, Liming; Li, Xinghao

    2016-08-01

    The absorbing composite filled with the flaky carbonyl iron particles (CIPs) were prepared using a three-dimensional (3D) forming process, in which the forming powder was fabricated using a milling process. The surface morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer, and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 4-18 GHz. With the variable thickness was set, the reflection loss (RL) was simulated to analyze the absorbing property of the composite. The results showed that the forming powder was uniformly dispersed in the absorber, and the saturation magnetization and the grain structure of the CIPs in the forming powder nearly did not change in the milling process. With the same volume content CIPs added, the average permittivity and the imaginary permeability of the samples added the powder was smaller than the directly mixing sample due to the aggregation effect. The RL results showed that the absorbing composites using the 3D forming process with thickness 6 or 8 mm had an better absorbing property (minimum RL -13.58 and -21.85 dB) in 4-18 GHz.

  17. Electromagnetic methods for measuring materials properties of cylindrical rods and array probes for rapid flaw inspection

    SciTech Connect

    Sun, Haiyan

    2005-01-01

    The case-hardening process modifies the near-surface permeability and conductivity of steel, as can be observed through changes in alternating current potential drop (ACPD) along a rod. In order to evaluate case depth of case hardened steel rods, analytical expressions are derived for the alternating current potential drop on the surface of a homogeneous rod, a two-layered and a three-layered rod. The case-hardened rod is first modeled by a two-layer rod that has a homogeneous substrate with a single, uniformly thick, homogeneous surface layer, in which the conductivity and permeability values differ from those in the substrate. By fitting model results to multi-frequency ACPD experimental data, estimates of conductivity, permeability and case depth are found. Although the estimated case depth by the two-layer model is in reasonable agreement with the effective case depth from the hardness profile, it is consistently higher than the effective case depth. This led to the development of the three-layer model. It is anticipated that the new three-layered model will improve the results and thus makes the ACPD method a novel technique in nondestructive measurement of case depth. Another way to evaluate case depth of a case hardened steel rod is to use induction coils. Integral form solutions for an infinite rod encircled by a coaxial coil are well known, but for a finite length conductor, additional boundary conditions must be satisfied at the ends. In this work, calculations of eddy currents are performed for a two-layer conducting rod of finite length excited by a coaxial circular coil carrying an alternating current. The solution is found using the truncated region eigenfunction expansion (TREE) method. By truncating the solution region to a finite length in the axial direction, the magnetic vector potential can be expressed as a series expansion of orthogonal eigenfunctions instead of as a Fourier integral. Closed-form expressions are derived for the electromagnetic

  18. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Ye, Weichun; Fu, Jiajia; Wang, Qin; Wang, Chunming; Xue, Desheng

    2015-12-01

    NiCoP alloy nanoparticles supported on reduced graphene oxide (NiCoP/RGO) are synthesized by in situ co-reduction of Ni2+, Co2+ and graphene oxide (GO) with sodium hypophosphite in a one-pot reaction. This synthesis route is simple and can be used for industrial preparation. The different molar ratios of Ni/Co can be obtained by changing the molar ratio of their salts in the reaction bath. The effect of annealing temperature on the crystal structure of NiCoP alloys has been further investigated. After 500 °C annealing, NiCoP alloys exhibit good crystallinity. The as-prepared NiCoP/RGO composites demonstrate high dielectric constant and magnetic loss in the frequency range of 2-18 GHz due to the conductive and ferromagnetic behavior. Also, their coercivity and magnetization strength are decreased from magnetic measurement with the increase of Ni content. As the molar ratio of Ni/Co is 3:1, the maximum value of the reflection loss reaches to -17.84 dB. Furthermore, the NiCoP/RGO composites have better corrosion resistance than traditional iron series magnetic nanoparticles. It is expected that the composites with the thin, light-weighted and broadband absorbing and good anti-corrosion properties will have a great potential for electromagnetic wave absorption applications.

  19. Light-Weight Silver Plating Foam and Carbon Nanotube Hybridized Epoxy Composite Foams with Exceptional Conductivity and Electromagnetic Shielding Property.

    PubMed

    Xu, Yu; Li, Ying; Hua, Wei; Zhang, Aiming; Bao, Jianjun

    2016-09-14

    Herein, light-weight and exceptionally conductive epoxy composite foams were innovatively fabricated for electromagnetic interference (EMI) shielding applications using multiwalled carbon nanotubes (MWCNTs) and 3D silver-coated melamine foam (SF) as conductive frameworks. A novel and nontraditional polymer microsphere was used to reduce the material density. The preformed, highly porous, and electrically conductive SF provided channels for fast electron transport. The MWCNTs were used to offset the decrease in conductive pathways due to the crystal defects of the silver layer and the insulating epoxy resin. Consequently, an exceptional conductivity of 253.4 S m(-1), a remarkable EMI shielding effectiveness of above 68 dB at 0.05-18 GHz, and a thermal conductivity of 0.305 W mK(-1) were achieved in these novel foams employing only 2 wt % of MWCNTs and 3.7 wt % of silver due to the synergistic effects that originated in the MWCNT and SF. These parameters are substantially higher than that achieved for the foam containing 2 wt % MWCNTs. Also, the SF exhibited little weakening in the foamability of the epoxy blends and the compression properties of resulting foams. All the results indicated that this effort provided a novel, simple, low-cost, and easily industrialized concept for fabricating light-weight, high-strength epoxy composite foams for high-performance EMI shielding applications.

  20. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. I. PROPERTIES OF A QUASI-KERR SPACETIME

    SciTech Connect

    Johannsen, Tim; Psaltis, Dimitrios E-mail: dpsaltis@email.arizona.ed

    2010-06-10

    According to the no-hair theorem, an astrophysical black hole is uniquely described by only two quantities, the mass and the spin. In this series of papers, we investigate a framework for testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. We formulate our approach in terms of a parametric spacetime which contains a quadrupole moment that is independent of both mass and spin. If the no-hair theorem is correct, then any deviation of the black hole quadrupole moment from its Kerr value has to be zero. We analyze in detail the properties of this quasi-Kerr spacetime that are critical to interpreting observations of black holes and demonstrate their dependence on the spin and quadrupole moment. In particular, we show that the location of the innermost stable circular orbit and the gravitational lensing experienced by photons are affected significantly at even modest deviations of the quadrupole moment from the value predicted by the no-hair theorem. We argue that observations of black hole images, of relativistically broadened iron lines, as well as of thermal X-ray spectra from accreting black holes will lead in the near future to an experimental test of the no-hair theorem.

  1. Substitution effect of (Mn, Ti) to the dielectric properties of barium-strontium hexaferrite for absorbing electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Repi, V. Vekky R.; Manaf, Azwar

    2012-07-01

    The objective of this work is to evaluate the ability of Mn-Ti substituted barium-strontium hexaferrite to absorb high frequency electromagnetic wave. To accomplish this objective, Mn-Ti substituted barium strontium hexaferrite of Ba0.5Sr0.5Fe12-x(Mn0.5Ti0.5)x with x = 0.1, x=0.3, x=0.5 were prepared through mechanical alloying route. Phase identification of the material obtained from XRD pattern indicating that the material is single phase for all variations of x. Coercivity and the remanent obtained by analyzing the hysteresis curve. The lowest coercivity at x = 0.5 for 77.86 kA/m but also lower the remanent of 0.088 kA/m. Dielectric properties of the material traced by calculating the value of permittivity and permeability of the material that was obtained with the parameters of the scattering vector network analyzer (VNA) in the 8GHz to 12GHz range.

  2. Substitution effect of (Mn, Ti) to the dielectric properties of barium-strontium hexaferrite for absorbing electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Vekky, V.; Repi, R.; Manaf, Azwar

    2012-06-01

    The objective of this work is to evaluate the ability of Mn-Ti substituted barium-strontium hexaferrite to absorb high frequency electromagnetic wave. To accomplish this objective, Mn-Ti substituted barium strontium hexaferrite of Ba0.5Sr0.5Fe12-x(Mn0.5Ti0.5)x with x = 0.1, x=0.3, x=0.5 were prepared through mechanical alloying route. Phase identification of the material obtained from XRD pattern indicating that the material is single phase for all variations of x. Coercivity and the remanent obtained by analyzing the hysteresis curve. The lowest coercivity at x = 0.5 for 77.86 kA/m but also lower the remanent of 0.088 kA/m. Dielectric properties of the material traced by calculating the value of permittivity and permeability of the material that was obtained with the parameters of the scattering vector network analyzer (VNA) in the 8GHz to 12GHz range.

  3. Electromagnetic properties of Fe53Ni47 and Fe53Ni47/Cu granular composite materials in the microwave range

    NASA Astrophysics Data System (ADS)

    Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro

    2016-09-01

    The electromagnetic proprieties of Fe53Ni47 granular composite materials and Fe53Ni47/Cu hybrid granular composites have been studied by measuring the relative complex permeability and permittivity spectra as well as the ac electrical conductivity. In the Fe53Ni47 composite, the variation of the ac conductivity at 1 kHz with the particle volume content shows an insulator-metal transition at the percolation threshold at 61 vol% particle content. A negative permeability spectrum due to the magnetic resonance in Fe53Ni47 particles was observed in the 85 vol% composite. Meanwhile, the negative permittivity spectrum caused by the plasmoinc state of the percolated Fe53Ni47 particle clusters appears at 90 vol%. The Fe53Ni47/Cu hybrid composite containing 85 vol% of Fe53Ni47/Cu hybrid particle as filers shows the percolative metallic properties; the ac conductivity increases with increasing the Cu particle volume fraction in the Fe53Ni47/Cu particle system. The negative permittivity spectrum appears above the Cu particle volume fraction of 0.16; the double negative characteristic was observed at that of 0.20 and 0.24 hybrid composites in the frequency range from 300 MHz to 1.8 GHz in the absence of the external magnetic field.

  4. Fabrication and evaluation of thin layer PVDF composites using MWCNT reinforcement: Mechanical, electrical and enhanced electromagnetic interference shielding properties

    NASA Astrophysics Data System (ADS)

    Bhaskara Rao, B. V.; Kale, Nikita; Kothavale, B. S.; Kale, S. N.

    2016-06-01

    Radar X-band electromagnetic interference shielding (EMS) is one of the prime requirements for any air vehicle coating; with limitations on the balance between strength and thickness of the EMS material. Nanocomposite of multiwalled-carbon-nanotubes (MWCNT) has been homogeneously integrated (0 - 9 wt%) with polymer, poly (vinylidene fluoride, PVDF) to yield 300 micron film. The PVDF + 9 wt% MWCNT sample of density 1.41 g/cm3 show specific shielding effectiveness (SSE) of 17.7 dB/(g/cm3) (99.6% EMS), with maintained hardness and improved conductivity. With multilayer stacking (900 microns) of these films of density 1.37 g/cm3, the sample showed increase in SSE to 23.3 dB/(g/cm3) (99.93% EMS). Uniform dispersion of MWCNTs in the PVDF matrix gives rise to increased conductivity in the sample beyond 5 wt% MWCNT reinforcement. The results are correlated to the hardness, reflection loss, absorption loss, percolation threshold, permittivity and the conductivity data. An extremely thin film with maximum EMS property is hence proposed.

  5. Measurements of electromagnetic properties of LCT (Large Coil Task) coils in IFSMTF (International Fusion Superconducting Magnet Test Facility)

    SciTech Connect

    Shen, S.S.; Baylor, L.R.; Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Wilson, C.T.; Wintenberg, R.E.

    1987-01-01

    Participants in the international Large Coil Task (LCT) have designed, built, and tested six different toroidal field coils. Each coil has a 2.5- by 3.5-m, D-shaped bore and a current between 10 and 18 kA and is designed to demonstrate stable operation at 8 T, with a superimposed averaged pulsed field of 0.14 T in 1.0 s and simulated nuclear heating. Testing of the full six-coil toroidal array began early in 1986 and was successfully completed on September 3, 1987, in the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL). This paper summarizes electromagnetic properties of LCT coils measured in different modes of energization and fast dump. Effects of mutual coupling and induced eddy currents are analyzed and discussed. Measurements of the ac loss caused by the superimposed pulsed fields are summarized. Finally, the interpretation of the test results and their relevance to practical fusion are presented. 11 refs., 10 figs., 4 tab.

  6. Role of the CMS electromagnetic calorimeter in the measurement of the Higgs boson properties and search for new physics

    NASA Astrophysics Data System (ADS)

    Ferri, F.; CMS Collaboration

    2016-04-01

    The precise determination of the mass, the width and the couplings of the particle discovered in 2012 with a mass around 125 GeV is of capital importance to clarify the nature of such a particle, in particular to establish precisely if it is a Standard Model Higgs boson. In several new physics scenarios, in fact, the Higgs boson may behave differently with respect to the Standard Model one, or may not be unique, i.e. there can be more than one Higgs boson. In order to achieve the precision needed to discriminate between different models, the energy resolution, the scale uncertainty and the position resolution for electrons and photons are required to be as good as possible. The CMS scintillating lead-tungstate electromagnetic calorimeter (ECAL) was built as a precise tool with an exceptional energy resolution and a very good position resolution that improved over the years with the knowledge of the detector. Moreover, thanks to the fact that most of the lead-tungstate scintillation light is emitted in about 25 ns, the ECAL can be used to accurately determine the time of flight of photons. We present the current performance of the CMS ECAL, with a special emphasis on the impact on the measurement of the properties of the Higgs boson and on searches for new physics.

  7. Influence of Sb content on electromagnetic properties of ATO/ferrite composites synthesized by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Lixi; Zhang, Qitu

    2015-09-01

    Composite microwave absorbers based on ATO (antimony-doped tin oxide) and W-type ferrite were prepared by a co-precipitation method, and the effects of Sb content on electromagnetic properties and reflection loss characteristics were studied in 2-18 GHz. The prepared composite particles were characterized with X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The results showed that the nano-particles ATO were coated with the surface of hexagonal flake ferrite, and with the increase of Sb content, the grain size of ATO nano-particles decreases resulting in agglomeration. The complex permittivity and permeability of the ferrite/ATO composites were analyzed by a vector network analyzer (Agilent E5071C), and the reflection loss was simulated by software YRComputer. The dielectric loss mainly comes from ATO, with the increase of Sb content, the real and imaginary parts of permittivity of the composites increase first, then decrease; The interface effects and surface effects lead to the increase of imaginary part μ″ of the absorbing materials in the macro; When the mole ratio of Sb/Sn is 2:10, the reflection loss reaches the maximum value -43.07 dB at 10.64 GHz for a layer 2.8 mm, and the bandwidth over an absorptivity of 90% (-10 dB reflection loss) is 8.32 GHz (ranging from 7.12 GHz to 15.44 GHz).

  8. Mechanical Properties and Microstructure of Thin Plates of A6061 Wrought Aluminum Alloy Using Rheology Forging Process with Electromagnetic Stirring

    NASA Astrophysics Data System (ADS)

    Jin, Chul Kyu; Bolouri, Amir; Kang, Chung Gil

    2014-06-01

    We propose the possibility of fabricating A6061 thin plates using the rheology forging process. Electromagnetic stirring (EMS) is used to fabricate a semi-solid slurry. A thin plate is formed by injecting the slurry into the forging die. When the punch speed used to compress the slurry is low, turbulent flow occurs. When the punch speed is high, laminar flow occurs, and the solid and liquid phases move simultaneously. For a pressure of 150 MPa or below, incomplete filling behavior and cracks occur. For a pressure of 200 MPa or above, a durable formed product can be obtained. However, the differences between the mechanical properties according to the application of EMS and pressure are slight. The microstructure of the slurry without EMS has an unclear distinction between the liquid phase and solid phase. However, the microstructure of the thin plates formed by using this slurry has a clear distinction between the liquid and solid with respect to the spheroid shapes. The tensile strength and elongation for a thin plate formed with a punch speed of 300 mm/s and pressure of 250 MPa with EMS slurry are 169 MPa and 11.0 pct, respectively. After T6 heat treatment, the tensile strength improves to 305 MPa.

  9. Analysis on the electromagnetic scattering properties of crops at multi-band

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Wu, Zhensen; Liu, Xiaoyi

    2014-12-01

    The vector radiative transfer (VRT) theory for active microwave remote sensing and Rayleigh-Gans approximation (GRG) are applied in the study, and an iterative algorithm is used to solve the RT equations, thus we obtain the zeroorder and first-order equation for numerical results. The Michigan Microwave Canopy Scattering (MIMICS) model is simplified to adapt to the crop model, by analyzing body-surface bistatic scattering and backscattering properties between a layer of soybean or wheat consisting of stems and leaves and different underlying soil surface at multi-band (i.e. P, L, S, X, Ku-band), we obtain microwave scattering mechanisms of crop components and the effect of underlying ground on total crop scattering. Stem and leaf are regard as a needle and a circular disk, respectively. The final results are compared with some literature data to verify our calculating method, numerical results show multi-band crop microwave scattering properties differ from scattering angle, azimuth angle and moisture of vegetation and soil, which offer the part needed information for the design of future bistatic radar systems for crop sensing applications.

  10. Electromagnetic properties of ground-state and excited-state pseudoscalar mesons

    NASA Astrophysics Data System (ADS)

    Höll, A.; Krassnigg, A.; Maris, P.; Roberts, C. D.; Wright, S. V.

    2005-06-01

    The axial-vector Ward-Takahashi identity places constraints on particular properties of every pseudoscalar meson. For example, in the chiral limit all pseudoscalar mesons, except the Goldstone mode, decouple from the axial-vector current. Nevertheless, all neutral pseudoscalar mesons couple to two photons. The strength of the π0nγγ coupling, where n=0 denotes the Goldstone mode, is affected by the Abelian anomaly's continuum contribution. The effect is material for n≠0. The γ*πnγ* transition form factor, Tπn(Q2), is nonzero ∀n, and Tπn(Q2)≈(4π2/3)(fπn/Q2) at large Q2. For all pseudoscalars but the Goldstone mode, this leading contribution vanishes in the chiral limit. In this instance the ultraviolet power-law behavior is 1/Q4 for n≠0, and we find numerically Tπ1(Q2)≃(4π2/3)(-/Q4). This subleading power-law behavior is always present. In general its coefficient is not simply related to fπn. The properties of n≠0 pseudoscalar mesons are sensitive to the pointwise behavior of the long-range piece of the interaction between light quarks.

  11. Electromagnetic properties of neutron-rich nuclei adjacent to the Z = 50 shell closure

    NASA Astrophysics Data System (ADS)

    Rejmund, M.; Navin, A.; Biswas, S.; Lemasson, A.; Caamaño, M.; Clément, E.; Delaune, O.; Farget, F.; de France, G.; Jacquot, B.; Van Isacker, P.

    2016-02-01

    Low-lying high-spin yrast states in the exotic odd-odd isotopes 124-128Sb (Z = 51) and 118-128In (Z = 49), studied for the first time, show a striking difference in their observed γ-ray decay. With a single valence proton particle/hole occupying the g7/2 /g9/2 spin-orbit partners, dominant electric quadrupole transitions occur in Sb as opposed to magnetic dipole transitions in In. The observed properties are explained on the basis of general principles of symmetry and with large-scale shell-model calculations, and reveal novel aspects of the competition between the neutron-proton interaction and the like-nucleon pairing interaction.

  12. Electromagnetic properties of ground-state and excited-state pseudoscalar mesons

    SciTech Connect

    Hoell, A.; Krassnigg, A.; Wright, S.V.; Maris, P.; Roberts, C.D.

    2005-06-01

    The axial-vector Ward-Takahashi identity places constraints on particular properties of every pseudoscalar meson. For example, in the chiral limit all pseudoscalar mesons, except the Goldstone mode, decouple from the axial-vector current. Nevertheless, all neutral pseudoscalar mesons couple to two photons. The strength of the {pi}{sub n}{sup 0}{gamma}{gamma} coupling, where n=0 denotes the Goldstone mode, is affected by the Abelian anomaly's continuum contribution. The effect is material for n{ne}0. The {gamma}*{pi}{sub n}{gamma}* transition form factor, T{sub {pi}{sub n}}(Q{sup 2}), is nonzero for all n, and T{sub {pi}{sub n}}(Q{sup 2}){approx_equal}(4{pi}{sup 2}/3)(f{sub {pi}{sub n}}/Q{sup 2}) at large Q{sup 2}. For all pseudoscalars but the Goldstone mode, this leading contribution vanishes in the chiral limit. In this instance the ultraviolet power-law behavior is 1/Q{sup 4} for n{ne}0, and we find numerically T{sub {pi}{sub 1}}(Q{sup 2}){approx_equal}(4{pi}{sup 2}/3)(-/Q{sup 4}). This subleading power-law behavior is always present. In general its coefficient is not simply related to f{sub {pi}{sub n}}n. The properties of n{ne}0 pseudoscalar mesons are sensitive to the pointwise behavior of the long-range piece of the interaction between light quarks.

  13. Electromagnetic absorbing property of the flaky carbonyl iron particles by chemical corrosion process

    NASA Astrophysics Data System (ADS)

    Zheng, Dianliang; Liu, Ting; Zhou, Li; Xu, Yonggang

    2016-12-01

    The flaky carbonyl iron particles (CIPs) were prepared using a milling process at the first step, then the chemical corrosion process was done to optimize the particle shape. The particle morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2-18 GHz and the reflection loss (RL) was calculated. The results showed that the saturation magnetization value of the CIPs decreased as the CIPs was corroded to the small flakes in chemical corrosion process. The diffraction peaks of the single α-Fe existed in the XRD pattern of CIPs, and the characteristic peaks was more obvious and the intensity of the diffraction pattern was lower by corrosion. The permittivity and the permeability of the corroded milling CIPs was a little larger than the milling CIPs, it was due to the larger aspect ratio based on the fitting calculation process. At thickness 0.6 mm and 0.8 mm, the corroded milling CIPs composite had the better absorbing property than the other two samples. The frequency band (RL<-5 dB) could be widened to 8.96-18 GHz at 0.6 mm and 5.92-18 GHz at 0.8 mm, and RL less than -8 dB began to exist in 8.96-14.72 GHz at 0.8 mm.

  14. Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Dong, Yong; Jiang, Li; Tang, Zhongyi; Lu, Yiping; Li, Tingju

    2015-11-01

    The bulk AlCrFeNiMo0.2 high-entropy alloy was successfully prepared by vacuum medium frequency induction melting. The effects of electromagnetic field on microstructure and properties were investigated. The alloy possessed a mixed structure of B2 and BCC, and the phase types were not changed by the electromagnetic field treatment. The microstructure exhibited typical lamellar eutectic cell and rod eutectic cell structures. These eutectic cell structures were constituted by the AlNi-type intermetallic compound and the FeCr-type solid solution. With the increase of electromagnetic field intensity, the hardness increases, while the compressive fracture strength and fracture strain of the alloy first increases and then decreases. The alloy with 15 mT electromagnetic field has the largest fracture strength 2282.3 MPa, yield strength 1160.5 MPa, and fracture strain 0.29. The alloy shows typical ferromagnetic behavior, and the homogenized lamellar eutectic cell microstructure significantly decreased the specific saturation magnetizations.

  15. Evaluation of shear-compressive strength properties for laminated GFRP composites in electromagnet system

    NASA Astrophysics Data System (ADS)

    Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon

    2014-07-01

    Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.

  16. Coaxial line measurement and analysis of electromagnetic properties of soils for sensor applications

    NASA Astrophysics Data System (ADS)

    Folks, William R.; North, Ryan E.; Kelley, Julie R.; Cunningham, Amy L.; McKenna, Jason R.

    2011-06-01

    We report complex permittivity, conductivity, magnetic susceptibility, and attenuation for soils collected from a typical site in a current theater of operations. Our experimental setup consists of three network analyzers along with custombuilt sample holders and data reduction and analysis software. The sample holder has the advantage of large sample volume and a resulting higher signal to noise ratio. This system was developed to determine the electrical properties of soils over a wide frequency range from 100 Hz to 8 GHz. The lower frequencies are applicable to capacitive sensors for small shallow targets, while the higher frequencies are applicable to ground-penetrating radar (GPR) from 50 MHz to 2 GHz and beyond. S-parameter data is collected and reduced using a method, initially developed by Nicolson and Ross (1970)1, for the determination of dielectric permittivity, magnetic permeability, and loss tangent from measured Sparameter data. Experimental results are compared with site geology and mineralogy. Applications include detection of tunnels, land mines, unexploded ordinance (UXO), concrete reinforcements, and other shallow compact targets.

  17. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  18. Electromagnetic and microwave-absorbing properties of magnetite decorated multiwalled carbon nanotubes prepared with poly(N-vinyl-2-pyrrolidone)

    SciTech Connect

    Zhao, Chunying; Zhang, Aibo; Zheng, Yaping; Luan, Jingfan

    2012-02-15

    Graphical abstract: The Fe{sub 3}O{sub 4}/MWNTs hybrids prepared with PVP achieve a maximum reflection loss is -35.8 dB at 8.56 GHz, and the bandwidth below -10 dB is more than 2.32 GHz. More importantly, a new reflection loss peak occurs at the frequency of 14.6 GHz, which indicates that the Fe{sub 3}O{sub 4}/MWNTs hybrids have better absorption properties in the high-frequency range. Highlight: Black-Right-Pointing-Pointer The Fe{sub 3}O{sub 4} decorated MWNTs hybrids were prepared using PVP as dispersant. Black-Right-Pointing-Pointer Many more Fe{sub 3}O{sub 4} particles were attached homogeneously on the surface of MWNTs. Black-Right-Pointing-Pointer The Fe{sub 3}O{sub 4}/MWNTs hybrids achieve a maximum reflection loss of -35.8 dB at 8.56 GHz. Black-Right-Pointing-Pointer A new reflection loss peak occurs at the high-frequency of 14.6 GHz. -- Abstract: The magnetite (Fe{sub 3}O{sub 4}) decorated multiwalled carbon nanotubes (MWNTs) hybrids were prepared by an in situ chemical precipitation method using poly(N-vinyl-2-pyrrolidone) (PVP) as dispersant. The structure and morphology of hybrids are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron-microscopy (TEM). The TEM investigation shows that the Fe{sub 3}O{sub 4}/MWNTs hybrids exhibit less entangled structure and many more Fe{sub 3}O{sub 4} particles are attached homogeneously on the surface of MWNTs, which indicated that PVP can indeed help MWNTs to disperse in isolated form. The electromagnetic and absorbing properties were investigated in a frequency of 2-18 GHz. The results show that the Fe{sub 3}O{sub 4}/MWNTs hybrids exhibit a superparamagnetic behavior and possess a saturation magnetization of 22.9 emu/g. The maximum reflection loss is -35.8 dB at 8.56 GHz, and the bandwidth below -10 dB is more than 2.32 GHz. More importantly, a new reflection loss peak occurs at the frequency of 14.6 GHz, which indicates that the Fe{sub 3}O{sub 4}/MWNTs

  19. Spectral and dynamic properties of stimulated electromagnetic emission (SEE) generated by very short diagnostic pulses

    NASA Astrophysics Data System (ADS)

    Sergeev, Evgeny; Grach, Savely

    pulse trailing edge increases by 2-3 times, from 0.7 ms to 2 ms, after the mode switching. During the fast decay process the right (HF) flank of the SEE spectrum moves to lower frequencies providing a displacement of the spectral maximum from fd by 15 kHz. Such the SEE decay dynamics can be attributed to the plasma wave energy transfer through the spectrum. Dependencies of diagnostic SEE properties on a shift between the pump wave and diagnostic wave frequencies (which can be easily translated to the altitude displacement), on closeness to the gyroharmonics, on the pump power, and on the time of the day are also discussed. The work was supported by RFBR grants 10-02-00642 and 09-02-01150 and Federal Special-purpose Program "Scientific and pedagogical personnel of innovative Russia".

  20. Electromagnetic properties and microstructures of in situ MgB2 wires made from three types of boron powders

    NASA Astrophysics Data System (ADS)

    Kodama, Motomune; Kotaki, Hiroshi; Yamamoto, Hiroyuki; Iwane, Tomohiro; Tanaka, Kazuhide; Tanaka, Hideki; Okishiro, Kenji; Okamoto, Kazutaka; Nishijima, Gen; Matsumoto, Akiyoshi; Kumakura, Hiroaki; Yamamoto, Akiyasu; Shimoyama, Jun-ichi; Kishio, Kohji

    2016-10-01

    In powder-in-tube processed MgB2 wires, the choice of boron powder as a starting material crucially affects their performance. In this paper, we prepared in situ MgB2 wires from three types of boron powders in various heat-treatment conditions and investigated their electromagnetic properties and microstructures. Their critical current density, J c, varied over a wide range from sample to sample. The difference in J c is understood to be caused by the effect of changes in the electrical connectivity, K, and intrinsic residual resistivity, ρ 0. Here, K represents the effective cross-sectional area for current, and ρ 0 reflects the degree of the charge carrier scattering caused by lattice defects. It was found that the use of boron powder with a large specific surface area leads to a large degree of lattice defects in MgB2 grains and enhances ρ 0, resulting in improving J c. The boron powder produced by thermal decomposition of B2H6 has a large specific surface area. Hence, this boron powder is the most suitable as a starting material for MgB2. Meanwhile, dry pulverization of low-cost boron powder, which is largely produced by active-metal reduction of B2O3, is also effective to increase its specific surface area without introducing impurities, resulting in the enhancement of J c in the entire magnetic field region. This finding broadens the choice of boron powder and contributes to realizing superconducting applications with excellent balance between performance and cost.

  1. Effects of Electromagnetic Stirring on the Microstructure and High-Temperature Mechanical Properties of a Hyper-eutectic Al-Si-Cu-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Jang, Youngsoo; Choi, Byounghee; Kang, Byungkeun; Hong, Chun Pyo

    2015-02-01

    A liquid treatment method by electromagnetic stirring was applied to a hyper-eutectic Al-15wt pctSi-4wt pctCu-3wt pctNi alloy for the piston manufacturing with diecasting process in order to improve high-temperature mechanical properties of the piston heads. The mechanical properties, such as hardness, high-temperature tensile stress, thermal expansion, and high-temperature relative wear resistance, were estimated using the specimens taken from the liquid-treated diecast products, and the results were compared with those of a conventional metal-mold-cast piston.

  2. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  3. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    NASA Astrophysics Data System (ADS)

    Paddubskaya, A.; Valynets, N.; Kuzhir, P.; Batrakov, K.; Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biró, I.; Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P.

    2016-04-01

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8-15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  4. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    SciTech Connect

    Paddubskaya, A.; Valynets, N.; Batrakov, K.; Kuzhir, P. Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biró, I.

    2016-04-07

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  5. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  6. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  7. Electromagnetic and microwave absorbing properties of SmCo coated single-wall carbon nanotubes/NiZn-ferrite nanocrystalline composite

    NASA Astrophysics Data System (ADS)

    Duan, M. C.; Yu, L. M.; Sheng, L. M.; An, K.; Ren, W.; Zhao, X. L.

    2014-05-01

    The electromagnetism and microwave absorption properties of SmCo coated single-wall carbon nanotubes (SmCo@SWCNTs) and Ni0.5Zn0.5Fe2O4 ferrite (NiZn-ferrite) nanocrystalline composites with different ingredient weight ratios were investigated in the frequency range of 2-18 GHz. SmCo@SWCNTs were prepared by a direct current arc discharge method. NiZn-ferrite nanocrystalline was synthesized by a sol-gel method. The electromagnetic properties of the nanocomposites in the paraffin matrix were measured by a vector network analyzer. The Debye equation and Bruggeman symmetric medium equation were introduced to explain the dielectric properties of the nanocomposites, and the mechanisms for the dielectric and magnetic losses were discussed. The experiment results reveal that the absorbing properties of the nanocomposites could be improved by tuning for a suitable weight ratio between SmCo@SWCNTs and NiZn-ferrite nanocrystallines. The reflection loss simulation calculations demonstrated that the nanocomposite could be excellent materials for microwave absorption.

  8. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  9. Full-waveform modeling of Zero-Offset Electromagnetic Induction for Accurate Characterization of Subsurface Electrical Properties

    NASA Astrophysics Data System (ADS)

    Moghadas, D.; André, F.; Vereecken, H.; Lambot, S.

    2009-04-01

    Water is a vital resource for human needs, agriculture, sanitation and industrial supply. The knowledge of soil water dynamics and solute transport is essential in agricultural and environmental engineering as it controls plant growth, hydrological processes, and the contamination of surface and subsurface water. Increased irrigation efficiency has also an important role for water conservation, reducing drainage and mitigating some of the water pollution and soil salinity. Geophysical methods are effective techniques for monitoring the vadose zone. In particular, electromagnetic induction (EMI) can provide in a non-invasive way important information about the soil electrical properties at the field scale, which are mainly correlated to important variables such as soil water content, salinity, and texture. EMI is based on the radiation of a VLF EM wave into the soil. Depending on its electrical conductivity, Foucault currents are generated and produce a secondary EM field which is then recorded by the EMI system. Advanced techniques for EMI data interpretation resort to inverse modeling. Yet, a major gap in current knowledge is the limited accuracy of the forward model used for describing the EMI-subsurface system, usually relying on strongly simplifying assumptions. We present a new low frequency EMI method based on Vector Network Analyzer (VNA) technology and advanced forward modeling using a linear system of complex transfer functions for describing the EMI loop antenna and a three-dimensional solution of Maxwell's equations for wave propagation in multilayered media. VNA permits simple, international standard calibration of the EMI system. We derived a Green's function for the zero-offset, off-ground horizontal loop antenna and also proposed an optimal integration path for faster evaluation of the spatial-domain Green's function from its spectral counterpart. This new integration path shows fewer oscillations compared with the real path and permits to avoid the

  10. Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties.

    PubMed

    Ren, Yulan; Zhu, Chunling; Zhang, Shen; Li, Chunyan; Chen, Yujin; Gao, Peng; Yang, Piaoping; Ouyang, Qiuyun

    2013-12-21

    We developed a new strategy, i.e., a seed-assisted method, to fabricate a three-dimensional (3D) SiO2@Fe3O4 core/shell nanorod array/graphene architecture. The fabrication processes involved deposition of β-FeOOH seeds on the graphene surfaces in the ferric nitrate aqueous solution, subsequent growth of β-FeOOH nanorod arrays on the graphene surfaces in the ferric chloride aqueous solution under hydrothermal conditions, deposition of SiO2 coating on the surfaces of β-FeOOH nanorods, and final formation of the 3D architecture by a thermal treatment process. Scanning electron microscopy and transmission electron microscopy measurements showed that the SiO2@Fe3O4 core/shell nanorods with a length and diameter of about 60 and 25 nm, respectively, were almost grown perpendicularly on both side surfaces of graphene sheets. The measured electromagnetic parameters showed that the 3D architecture exhibited excellent electromagnetic wave absorption properties, i.e., more than 99% of electromagnetic wave energy could be attenuated by the 3D architecture with an addition amount of only 20 wt% in the paraffin matrix. In addition, the growth mechanism of the 3D architecture was proposed, and thus, the strategy presented here could be used as a typical method to synthesize other 3D magnetic graphene nanostructures for extending their application areas.

  11. Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon.

    PubMed

    Xia, Changlei; Zhang, Shifeng; Ren, Han; Shi, Sheldon Q; Zhang, Hualiang; Cai, Liping; Li, Jianzhang

    2015-12-25

    Kenaf fiber-polyester composites incorporated with powdered activated carbon (PAC) were prepared using the vacuum-assisted resin transfer molding (VARTM) process. The product demonstrates the electromagnetic interference (EMI) shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET) specific surface area analysis. A higher BET value was obtained with a higher PAC loading. The transmission energies of the composites were measured by exposing the samples to the irradiation of electromagnetic waves with a variable frequency from 8 GHz to 12 GHz. As the PAC content increased from 0% to 10.0%, 20.5% and 28.9%, the EMI shielding effectiveness increased from 41.4% to 76.0%, 87.9% and 93.0%, respectively. Additionally, the EMI absorption increased from 21.2% to 31.7%, 44.7% and 64.0%, respectively. The ratio of EMI absorption/shielding of the composite at 28.9% of PAC loading was increased significantly by 37.1% as compared with the control sample. It was indicated that the incorporation of PAC into the composites was very effective for absorbing electromagnetic waves, which resulted in a decrease in secondary electromagnetic pollution.

  12. Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon

    PubMed Central

    Xia, Changlei; Zhang, Shifeng; Ren, Han; Shi, Sheldon Q.; Zhang, Hualiang; Cai, Liping; Li, Jianzhang

    2015-01-01

    Kenaf fiber—polyester composites incorporated with powdered activated carbon (PAC) were prepared using the vacuum-assisted resin transfer molding (VARTM) process. The product demonstrates the electromagnetic interference (EMI) shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET) specific surface area analysis. A higher BET value was obtained with a higher PAC loading. The transmission energies of the composites were measured by exposing the samples to the irradiation of electromagnetic waves with a variable frequency from 8 GHz to 12 GHz. As the PAC content increased from 0% to 10.0%, 20.5% and 28.9%, the EMI shielding effectiveness increased from 41.4% to 76.0%, 87.9% and 93.0%, respectively. Additionally, the EMI absorption increased from 21.2% to 31.7%, 44.7% and 64.0%, respectively. The ratio of EMI absorption/shielding of the composite at 28.9% of PAC loading was increased significantly by 37.1% as compared with the control sample. It was indicated that the incorporation of PAC into the composites was very effective for absorbing electromagnetic waves, which resulted in a decrease in secondary electromagnetic pollution. PMID:28787808

  13. Three-dimensional direct numerical simulation of electromagnetically driven multiscale shallow layer flows: Numerical modeling and physical properties

    NASA Astrophysics Data System (ADS)

    Lardeau, Sylvain; Ferrari, Simone; Rossi, Lionel

    2008-12-01

    Three-dimensional (3D) direct numerical simulations of a flow driven by multiscale electromagnetic forcing are performed in order to reproduce with maximum accuracy the quasi-two-dimensional (2D) flow generated by the same multiscale forcing in the laboratory. The method presented is based on a 3D description of the flow and the electromagnetic forcing. Very good agreements between our simulations and the experiments are found both on velocity and acceleration field, this last comparison being, to our knowledge, done for the first time. Such agreement requires that both experiments and simulations are carefully performed and, more importantly, that the underlying simplification to model the experiments and the multiscale electromagnetic forcing do not introduce significant errors. The results presented in this paper differ significantly from previous 2D direct numerical simulation in which a classical linear Rayleigh friction modeling term was used to mimic the effect of the wall-normal friction. Indeed, purely 2D simulations are found to underestimate the Reynolds number and, due to the dominance of nonhomogeneous bottom friction, lead to the wrong physical mechanism. For the range of conditions presented in this paper, the Reynolds number, defined by the ratio between acceleration and viscous terms, remains the order of unity, and the Hartmann number, defined by the ratio between electromagnetic force terms and viscous terms, is about 2. The main conclusion is that 3D simulations are required to model the (3D) electromagnetic forces and the wall-normal shear. Indeed, even if the flow is quasi-2D in terms of energy, a full 3D approach is required to simulate these shallow layer flows driven by multiscale electromagnetic forcing. In the range of forcing intensity investigated in this paper, these multiscale flows remain quasi-2D, with negligible energy in the wall-normal velocity component. It is also shown that the driving terms are the electromagnetic forcing and

  14. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  15. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  16. Dislocation Substructures on the Functional Properties of Niobium for SRF Cavities, focusing on microstructural,microchemical, and electromagnetic characteristic for Florida State University.

    SciTech Connect

    Dhakal, Pashupati

    2016-04-01

    Funding is being requested pursuant to a proposal that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). PAMS Proposal ID: 222686. Superconducting cavities are the integral part of many energy-efficient particle accelerators around the world. The current material of choice for superconducting cavities is niobium, which is the material with the highest transition temperature among pure metals. The performance of SRF cavities are influenced by the fabrication and processing steps. We plan to study the microstructural, microchemical and electromagnetic properties of Nb that are processed similar to the cavity processing steps to identify and mitigate the limiting factors to improve the performance of SRF cavities.

  17. Improved microwave absorption and electromagnetic properties of BaFe{sub 12}O{sub 19}-poly(vinylidene fluoride) composites by incorporating reduced graphene oxides

    SciTech Connect

    He, Hongcai; Luo, Feifei; Qian, Neng; Wang, Ning

    2015-02-28

    Three-phase composites of poly(vinylidene fluoride)-BaFe{sub 12}O{sub 19}-reduced graphene oxide (PVDF–BFO-RGO) were synthesized by a facile wet chemical method and hot-pressing approach. The phase structure, topography of the hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectra. Influence of RGO on their electromagnetic properties was investigated. Especially, improved microwave absorption and electromagnetic properties of BaFe{sub 12}O{sub 19}–PVDF composites by incorporating RGO were obtained and studied. The PVDF/BFO/RGO sample with m(RGO):m(BFO) = 5:100 shows the best microwave absorption properties with a minimum RL = −32 dB at 11 GHz and with the bandwidth less than −20 dB from 9.6 to 12.8 GHz. The composites were believed to have potential applications as the microwave absorber.

  18. Preparation and electromagnetic properties of Polyaniline(polypyrrole)-BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Ying; Wang, Qiufen; He, Qian; Chen, Lin

    2012-10-01

    The nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2 Fe2O4) was prepared by the sol-gel process, and then the polyaniline(PANI)/polypyrrole(PPY)-BaFe12O19/Ni0.8Zn0.2Fe2O4 was produced by in situ polymerization method. The structures, morphology and electromagnetic properties of the samples were characterized by various instruments. XRD, TEM, and FTIR analysis indicated that BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite were homogenously enwrapped by PANI(PPY) coating. The VSM and SDY-4 measurement show that the magnetic properties of the composites decreased with the increase in PANI(PPY) amount, However, the electrical conductivity is on the contrary. The electromagnetic properties of the composites were much better than BaFe12O19/Ni0.8Zn0.2Fe2O4 in the frequency range of 2-15 GHz, which mainly depends on the dielectric loss of PANI(PPY). A minimum reflection loss of the PANI(PPY)-BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite nanocomposite is -19.7 dB(-21.5 dB) at the frequency of 7.3 GHz (10.7 GHz).

  19. Electromagnetic wave absorption properties of Fe73Si16B7Nb3Cu1-based composites mixed with fine charcoal powder

    NASA Astrophysics Data System (ADS)

    Kim, Sun-I.; Kim, Mi Rae; Sohn, Keun Yong; Park, Won-Wook

    2010-05-01

    Fe73Si16B7Nb3Cu1 soft magnetic powder was crystallized to obtain a nano grain structure and mixed with a fine charcoal powder. The mixtures were tape-cast with polymer-based organic binders to form a sheet-type electromagnetic (EM) wave absorption composite. The EM wave absorption properties of the sheets were investigated using a network analyzer. The results showed that addition of charcoal powder improved the EM-absorbing properties of the composite. The power loss of the EM wave was directly related to the imaginary part of the permeability and permittivity, and it was reviewed in detail. Excellent absorption properties were achieved by adding 5 wt % charcoal powder (-500 mesh) to the Fe-based sheets.

  20. A new electromagnetic induction sensor using Vector Network Analyzer technology for accurate characterisation of soil electrical properties

    NASA Astrophysics Data System (ADS)

    André, F.; Lambot, S.; Moghadas, D.; Vereecken, H.

    2009-04-01

    Electromagnetic induction (EMI) has been widely used since the 70s to retrieve soil physico-chemical properties through the measurement of soil electrical conductivity. Soil electrical conductivity integrates several factors, mainly soil water content, salinity, clay content and temperature, and to a lesser extent, mineralogy, porosity, structure, cation exchange capacity, organic matter and bulk density. EMI has been shown to be useful for a wide range of environmental applications. EMI is non invasive and individual measurements are almost instantaneous, which permits to characterise large areas with fine spatial and/or temporal resolutions. Nevertheless, current EMI systems present some limitations. First, EMI usually operates at a single or at a limited number of fixed frequencies, which limits the information that can be retrieved from the subsurface. In addition, the calibration of existing commercial sensors is generally rather empirical and not accurate, which reduces the reliability of the data. Finally, the data processing techniques that are used to retrieve the soil electrical properties from EMI data often rely on strong simplifying assumptions with respect to wave propagation through the antenna-air-soil system. Performing EMI measurements with Vector Network Analyzer (VNA) technology would overcome a part of these limitations, allowing to work simultaneously at a wide range of frequencies and to readily perform robust calibrations, which are defined as an international standard. On that basis, we have developed a new algorithm for off-ground, zero-offset, frequency domain EMI based on full-waveform inverse modelling. The EMI forward model is based on a linear system of complex transfer functions for describing the loop antenna and its interactions with soil and an exact solution of Maxwell's equations for wave propagation in three-dimensional multilayered media. The approach has been validated in laboratory conditions for measurements at different

  1. "Hearing" Electromagnetic Waves

    ERIC Educational Resources Information Center

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  2. "Hearing" Electromagnetic Waves

    ERIC Educational Resources Information Center

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  3. Electromagnetic Showers at High Energy

    ERIC Educational Resources Information Center

    Loos, J. S.; Dawson, S. L.

    1978-01-01

    Some of the properties of electromagnetic showers observed in an experimental study are illustrated. Experimental data and results from quantum electrodynamics are discussed. Data and theory are compared using computer simulation. (BB)

  4. Electromagnetic Showers at High Energy

    ERIC Educational Resources Information Center

    Loos, J. S.; Dawson, S. L.

    1978-01-01

    Some of the properties of electromagnetic showers observed in an experimental study are illustrated. Experimental data and results from quantum electrodynamics are discussed. Data and theory are compared using computer simulation. (BB)

  5. The difference in noise property between the Autler—Townes splitting medium and the electromagnetically induced transparent medium

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Hua; Li, Yuan; Dou, Ya-Fang; Zhang, Jun-Xiang

    2012-03-01

    The quantum noise of squeezed probe light passing through an atomic system with different electromagnetically induced transparency and Autler—Townes splitting effects is investigated theoretically. It is found that the optimal squeezing preservation of the outgoing probe beam occurs in the strong-coupling-field regime rather than in the weak-coupling-field regime. In the weak-coupling-field regime, which was recently recognized as the electromagnetically induced transparency regime (Abi-Salloum T Y 2010 Phys. Rev. A 81 053836), the output amplitude noise is affected mainly by the atomic noise originating from the random decay process of atoms. While in the strong-coupling-field regime, defined as the Autler—Townes splitting regime, the output amplitude noise is affected mainly by the phase-to-amplitude conversion noise. This is useful in improving the quality of the experiment for efficient quantum memory, and hence has an application in quantum information processing.

  6. Effects of Electromagnetic Vibration Frequencies on Microstructure and Tensile Properties of Al-15 Wt Pct Sn Alloy in Semi-continuous Casting Process

    NASA Astrophysics Data System (ADS)

    Zhong, Yunbo; Wang, Huai; Wang, Yingbin; Wang, Jiang; Shen, Zhe; Zheng, Tianxiang; Zhu, Dongsheng; Ren, Weili; Lei, Zuosheng; Ren, Zhongming; Huang, Jingwen

    2017-07-01

    The electromagnetic vibration (EMV) generated by the action of the AC current and the magnetic field was applied in the crystallizer during the semi-continuous casting of the Al-15 wt pct Sn alloy. The influences of the electromagnetic vibration frequency (EMVF) on the metallographic structure, inverse segregation, and tensile properties were studied. The results indicated that the equiaxed grain ratios of the slabs were increased by decreasing the EMVFs from 500 to 5 Hz. The inverse segregation around the sides of the slab was improved at a low EMVF. The results of the 3D numerical simulation showed that the forced flows led to the refinement of grains and the improvement of the inverse segregation. The slabs with equiaxed grains which were produced with the low EMVFs showed the poor tensile properties comparing to the slabs with columnar grains obtained with the EMVFs of 50, 200, and 500 Hz and without the EMV. This phenomenon was mainly due to the distribution of the brittle Sn-rich phases: the reticular Sn-rich phases appeared around the boundary of the equiaxed grains, while the worm-like Sn-rich phases appeared between the column dendrites intermittently in the slabs with columnar grains.

  7. Polarization distribution control of anisotropic electromagnetic Gaussian-Schell model beams on free propagation by exploiting correlation properties at the source plane.

    PubMed

    Zhang, Rong; Wang, Xiangzhao; Cheng, Xin; Qiu, Zicheng

    2010-11-01

    When propagating in free space, the transversal distribution of the degree of polarization of an anisotropic electromagnetic Gaussian-Schell model (AEGSM) beam will generally undergo a complex evolution process. We find that this transversal distribution of the degree of polarization of an AEGSM beam can be controlled by exploiting the partial correlation properties of the source. The main research of our paper falls into two parts. First, the concept of analogical propagation of the transversal distribution of the degree of polarization is proposed, and the condition for an AEGSM beam having an analogical propagation is obtained. When an AEGSM beam is on analogical propagation, the distribution of the degree of polarization on any cross section of the beam is always similar to that on the source plane, except that the size of the distribution pattern will expand continuously as the propagation distance increases. Second, the far-field transversal distribution of the degree of polarization is considered, and the condition for the far-field transversal polarization distribution of an AEGSM beam to be always of circularly symmetric shape, no matter how complicated it is on the source, is obtained. Our research is expected to find applications in areas that make use of the polarization properties of random electromagnetic beams.

  8. Effects of TiO2 and Co2O3 combination additions on the elemental distribution and electromagnetic properties of Mn-Zn power ferrites

    NASA Astrophysics Data System (ADS)

    Yang, W. D.; Wang, Y. G.

    2015-06-01

    The effects of TiO2 and Co2O3 combination additions on the elemental distribution and electromagnetic properties of Mn-Zn power ferrites are investigated. TiO2 addition can promote Co2O3 transfer from grain boundaries to the bulk of the grains. The temperature at which the highest initial permeability μi and the lowest power losses PL appear shifts to low temperature range with the increase of Co2O3 content. Compared with the reference sample without TiO2 and Co2O3 addition, the microstructure and electromagnetic properties of Mn-Zn power ferrites can be considerably improved with suitable amounts of TiO2 and Co2O3 combination additions. At the peak temperature, the sample with the 0.1 wt% TiO2 and 0.08 wt% Co2O3 additions has an increase of 15.8% in μi to 3951, and a decrease of 22.9% in PL to 286 kW/m3. The saturation magnetic induction Bs and electrical resistivity ρ at 25 °C reach the highest values of 532 mT and 8.12 Ω m, respectively.

  9. CP-odd static electromagnetic properties of the W gauge boson and the t quark via the anomalous tbW coupling

    SciTech Connect

    Hernandez-Sanchez, J.; Honorato, C. G.; Procopio, F.; Tavares-Velasco, G.; Toscano, J. J.

    2007-04-01

    In the framework of the electroweak chiral Lagrangian, the one-loop induced effects of the anomalous tbW coupling, which includes both left- and right-handed complex components, on the static electromagnetic properties of the W boson and the t quark are studied. The attention is focused mainly on the CP-violating electromagnetic properties. It is found that the tbW anomalous coupling can induce both CP-violating moments of the W boson, namely, its electric dipole ({mu}-tilde{sub W}) and magnetic quadrupole (Q-tilde{sub W}) moments. As far as the t quark is concerned, a potentially large electric dipole moment (d{sub t}) can arise due to the anomalous tbW coupling. The most recent bounds on the tbW coupling left- and right-handed parameters from B meson physics lead to the following estimates {mu}-tilde{sub W}{approx}4x10{sup -23}-4x10{sup -22} e{center_dot}cm and Q-tilde{sub W}{approx}10{sup -38}-10{sup -37} e{center_dot}cm{sup 2}, which are 7 and 14 orders of magnitude larger than the standard model (SM) predictions, whereas d{sub t} may be as large as 10{sup -22} e{center_dot}cm, which is about 8 orders of magnitude larger than its SM counterpart.

  10. Effect of cathode vibration and heat treatment on electromagnetic properties of flake-shaped diatomite coated with Ni-Fe alloy by electroplating

    NASA Astrophysics Data System (ADS)

    Lan, Mingming; Li, Huiqin; Huang, Weihua; Xu, Guangyin; Li, Yan

    2015-03-01

    In this paper, flake-shaped diatomite particles were used as forming templates for the fabrication of the ferromagnetic functional fillers by way of electroplating Ni-Fe alloy method. The effects of cathode vibration frequency on the content of Ni-Fe alloy in the coating and the surface morphologies of the coatings were evaluated. The electromagnetic properties of the coated diatomite particles before and after heat treatment were also investigated in detail. The results show that the core-shell flake-shaped diatomite particles with high content of Ni-Fe alloy and good surface qualities of the coatings can be obtained by adjusting cathode vibration frequency. The coated diatomite particles with heat treatment filled paraffin wax composites exhibit a superior microwave absorbing and electromagnetic properties compared to the non-heat treated samples. Additionally, the peaks of reflection loss are found to be able to shift to lower frequency by the heat treatment process, which indicates the heat treatment can adjust microwave absorbing frequency band.

  11. Metamaterial electromagnetic wave absorbers.

    PubMed

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed.

  12. Electromagnetic characterization of nonevaporable getter properties between 220-330 and 500-750 GHz for the Compact Linear Collider damping rings

    NASA Astrophysics Data System (ADS)

    Koukovini-Platia, E.; Rumolo, G.; Zannini, C.

    2017-01-01

    Due to its effective pumping ability, nonevaporable getter (NEG) coating is considered for the vacuum chambers of the Compact Linear Collider (CLIC) electron damping rings (EDR). The aim is to suppress fast beam ion instabilities. The electromagnetic (EM) characterization of the NEG properties up to ultra-high frequencies is required for the correct impedance modeling of the damping ring (DR) components. The properties are determined using rectangular waveguides which are coated with NEG. The method is based on a combination of complex transmission coefficient S21 measurements with a vector network analyzer (VNA) and 3D simulations using CST Microwave Studio® (CST MWS). The frequency ranges discussed in this paper are 220-330 and 500-750 GHz.

  13. Synthesis and physicochemical properties of composites for electromagnetic shielding applications: a polymeric matrix impregnated with iron- or cobalt-containing nanoparticles

    NASA Astrophysics Data System (ADS)

    Yurkov, Gleb Yurjevich; Fionov, Alexander Sergeevich; Kozinkin, Aleksander Vladimirovich; Koksharov, Yury Alekseevich; Ovtchenkov, Yevgeniy Anatolievich; Pankratov, Denis Alexandrovich; Popkov, Oleg Vladimirovich; Vlasenko, Valery Grigorievich; Kozinkin, Yuriy Aleksandrovich; Biryukova, Marina Igorevna; Kolesov, Vladimir Vladimirovich; Kondrashov, Stanislav Vladimirovich; Taratanov, Nikolai Alexandrovich; Bouznik, Viacheslav Mikhailovich

    2012-01-01

    Magnetic, magnetic resonance, and structural properties of iron and cobalt nanoparticles embedded in a polyethylene matrix were studied. The materials were prepared by thermal decomposition of cobalt or iron formate in a polyethylene melt in mineral oil and contained from 2 to 40% wt. of metal. Transmission electron microscopy data indicate that the average diameter of particles is up to 8.0 nm. According to extended x-ray absorption fine structure and Mössbauer spectroscopy studies, the particles comprise a metallic core and nonmetallic shell which is chemically bound to the surrounding matrix. Electrophysical and magnetic properties of the materials prepared were studied along with their reflection and attenuation factors in the super high frequency band. The materials were found to be suitable for use in electromagnetic shielding.

  14. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effect of polyacrylamide on morphology and electromagnetic properties of chrysanthemum-like ZnO particles

    NASA Astrophysics Data System (ADS)

    Yan, Jun-Feng; Zhang, Zhi-Yong; You, Tian-Gui; Zhao, Wu; Yun, Jiang-Ni; Zhang, Fu-Chun

    2009-10-01

    Through hydrothermal process, the chrysanthemum-like ZnO particles are prepared with zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH) used as main resources under the different concentrations of surfactant polyacrylamide (PAM). The microstructure, morphology and the electromagnetic properties of the as-prepared products are characterized by high-resolution transmissïon electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM) and microwave vector network analyzer, respectively. The experimental results indicate that the as-prepared products are ZnO single crystalline with hexagona wurtzite structure, that the values of slenderness ratio Ld are different in different PAM concentrations, and that the good magnetic loss property is found in the ZnO products, and the average magnetic loss tangent tan δu increases with PAM concentration increasing, while the dielectric loss tangent tan δe decreases.

  15. Thermal and electromagnetic properties of Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks studied via one-dimensional coupled sine-Gordon equations

    NASA Astrophysics Data System (ADS)

    Rudau, F.; Tsujimoto, M.; Gross, B.; Judd, T. E.; Wieland, R.; Goldobin, E.; Kinev, N.; Yuan, J.; Huang, Y.; Ji, M.; Zhou, X. J.; An, D. Y.; Ishii, A.; Mints, R. G.; Wu, P. H.; Hatano, T.; Wang, H. B.; Koshelets, V. P.; Koelle, D.; Kleiner, R.

    2015-03-01

    We used one-dimensional coupled sine-Gordon equations combined with heat diffusion equations to numerically investigate the thermal and electromagnetic properties of a 300 μ m long intrinsic Josephson junction stack consisting of N =700 junctions. The junctions in the stack are combined with M segments where we assume that inside a segment all junctions behave identically. Most simulations are for M =20 . For not too high bath temperatures there is the appearance of a hot spot at high-bias currents. In terms of electromagnetic properties, robust standing-wave patterns appear in the current density and electric field distributions. These patterns come together with vortex/antivortex lines across the stack that correspond to π -kink states, discussed before in the literature for a homogeneous temperature distribution in the stack. We also discuss scaling of the thermal and electromagnetic properties with M , on the basis of simulations with M between 10 and 350.

  16. PREFACE: MEM11: The 6th International Workshop on Mechanical-Electromagnetic Properties of Composite Superconductors (Okinawa, Japan, 5-7 December 2011) MEM11: The 6th International Workshop on Mechanical-Electromagnetic Properties of Composite Superconductors (Okinawa, Japan, 5-7 December 2011)

    NASA Astrophysics Data System (ADS)

    Awaji, Satoshi; Osamura, Kozo; Hampshire, Damian

    2012-05-01

    The effect of stress and strain on the electromagnetic properties of superconducting composite conductors is one of the key issues for the practical application of superconductivity. To discuss these subjects thoroughly, the International Workshop on Mechanical-Electromagnetic Properties of Composite Superconductors (MEM) has been held regularly since 2001. The 6th workshop (MEM11) was held in Okinawa, Japan in 2011, which was the centennial of the discovery of superconductivity by Professor Kamerlingh Onnes, as well as the 25th anniversary of the discovery of high temperature superconductors (HTS). Although it was originally planned that MEM11 be held in Mito, the workshop venue was changed because of the serious disaster in the north of Japan on 11 March 2011. Sixty five scientists participated in this specialized workshop. Fifty six papers were presented in the following six sessions: (1) Intrinsic strain effects on low temperature superconductors (LTS) and HTS, (2) The International Thermonuclear Experimental Reactor (ITER), (3) Strain evaluation by quantum beams, (4) Flux pinning properties of HTS, (5) Standardization and the Versailles Project on Advanced Materials and Standards (VAMAS) and (6) High field magnets. Several large topics were presented and discussed at the workshop: the important progress in methods for non-invasive measurements of the local strain exerted on the superconducting components in superconducting wires and cables using quantum beam techniques. This approach provides powerful tools for investigating the effect of strain in composite superconductors; the intrinsic strain effects in LTS and HTS in the reversible strain region. Recently, it has become easier to determine quantitatively the strain dependence of critical current when the local strain is measured directly, and the mechanical and electromagnetic properties of the superconductors used in the ITER tokamak. This was a major topic at the workshop since the superconducting

  17. Electromagnetic Field Effects in Explosives

    NASA Astrophysics Data System (ADS)

    Tasker, D. G.; Whitley, V. H.; Lee, R. J.

    2009-12-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: enhancement of performance; and control of initiation and growth of reaction. Two series of experiments were performed to determine the effects of 1-T magnetic fields on explosive initiation and growth in the modified gap test and on the propagation of explosively generated plasma into air. The results have implications for the control of reactions in explosives and for the use of electromagnetic particle velocity gauges.

  18. Electromagnetic acoustic imaging.

    PubMed

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.

  19. The enhanced effects of antibiotics irradiated of extremely high frequency electromagnetic field on Escherichia coli growth properties.

    PubMed

    Torgomyan, Heghine; Trchounian, Armen

    2015-01-01

    The effects of extremely high frequency electromagnetic irradiation and antibiotics on Escherichia coli can create new opportunities for applications in different areas—medicine, agriculture, and food industry. Previously was shown that irradiated bacterial sensitivity against antibiotics was changed. In this work, it was presented the results that irradiation of antibiotics and then adding into growth medium was more effective compared with non-irradiated antibiotics bactericidal action. The selected antibiotics (tetracycline, kanamycin, chloramphenicol, and ceftriaxone) were from different groups. Antibiotics irradiation was performed with low intensity 53 GHz frequency during 1 h. The E. coli growth properties—lag-phase duration and specific growth rate—were markedly changed. Enhanced bacterial sensitivity to irradiated antibiotics is similar to the effects of antibiotics of higher concentrations.

  20. High-pressure crystal growth and electromagnetic properties of 5d double-perovskite Ca₃OsO₆

    SciTech Connect

    Feng, Hai Luke; Shi, Youguo; Guo, Yanfeng; Li, Jun; Sato, Akira; Sun, Ying; Wang, Xia; Yu, Shan; Sathish, Clastin I.; Yamaura, Kazunari

    2013-05-01

    Single crystals of the osmium-containing compound Ca₃OsO₆ have been successfully grown under high-pressure conditions, for the first time. The crystal structure of Ca₃OsO₆ atoms being fully ordered at the perovskite B-site. The electromagnetic analysis shows that the crystal exhibits a semiconductor-like behavior below 300 K and undergoes an antiferromagnetic transition at 50 K. - Graphical Abstract: Schematic image of crystal structure of Ca₃OsO₆ as determined by X-ray diffraction, where the gray and black octahedrons are occupied by Ca and Os, respectively. Top inset reveals an optic image of a typical Ca₃OsO₆ single crystal. Highlights: • Single crystals of Ca₃OsO₆ have been successfully grown under high-pressure. • Ca₃OsO₆ crystalizes into an ordered double-perovskite structure. • The Ca₃OsO₆ undergoes an antiferromagnetic transition at 50 K.

  1. Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties.

    PubMed

    Torgomyan, Heghine; Kalantaryan, Vitaly; Trchounian, Armen

    2011-07-01

    The low intensity electromagnetic irradiation (EMI) of the 70.6 and 73 GHz frequency is resonant for Escherichia coli but not for water. In this study, E. coli irradiation with this EMI during 1 h directly and in bi-distilled water or in the assay buffer with those frequencies resulted with noticeable changes in bacterial growth parameters. Furthermore, after EMI, 2 h rest of bacteria renewed their growth in 1.2-fold, but repeated EMI--had no significant action. Moreover, water absorbance, pH, and electric conductance were changed markedly after such irradiation. The results point out that EMI of the 70.6 and 73 GHz frequency can interact with bacteria affecting growth and in the same time with the surrounding medium (water) as well.

  2. Electromagnetic properties of the {delta}(1232) and decuplet baryons in the self-consistent SU(3) chiral quark-soliton model

    SciTech Connect

    Ledwig, Tim; Silva, Antonio; Vanderhaeghen, Marc

    2009-05-01

    We examine the electromagnetic properties of the {delta}(1232) resonance within the self-consistent chiral quark-soliton model. In particular, we present the {delta} form factors of the vector-current G{sub E0}(Q{sup 2}), G{sub E2}(Q{sup 2}), and G{sub M1}(Q{sup 2}) for a momentum-transfer range of 0{<=}Q{sup 2}{<=}1 GeV{sup 2}. We apply the symmetry-conserving quantization of the soliton and take 1/N{sub c} rotational corrections into account. Values for the magnetic moments of all decuplet baryons as well as for the N-{delta} transition are given. Special attention is also given to the electric quadrupole moment of the {delta}.

  3. Wide-domain controlled electromagnetic and microwave absorption properties of PANI/Ni0.5Zn0.5Fe2O4 composites

    NASA Astrophysics Data System (ADS)

    Li, Jun; Bi, Song; Su, Xunjia; Hou, Genliang; Mei, Bing; Ma, Weiqiang; Zhang, Kailun; Hou, Zhiling

    2017-07-01

    Microwave absorption materials such as traditional ferrite have received increasing attention owing to wide applications in national defense, electronics industry and physical electromagnetic protection. However, the insufficient absorption intensity coupled with the large application thickness have limited the practical application of the traditional materials in absorbing area. To address such issues, the PANI/Ni0.5Zn0.5Fe2O4 nanoparticles were fabricated, and the microscopic morphologies, x-ray diffraction (XRD) spectras, dielectric parameters and microwave absorption property of the as-prepared samples were charaterizated. The qualified absorption bandwidth (5.1 GHz) was remarkably broadened at a small thickness (1.78 mm), suggesting a novel platform for designing tunable qualified bandwidth lightweight absorbing materials.

  4. Use of Thermophysical Properties to Select and Control Convection During Rapid Solidification of Steel Alloys Using Electromagnetic Levitation on the Space Station

    NASA Astrophysics Data System (ADS)

    Matson, Douglas M.; Xiao, Xiao; Rodriguez, Justin E.; Lee, Jonghyun; Hyers, Robert W.; Shuleshova, Olga; Kaban, Ivan; Schneider, Stephan; Karrasch, Christian; Burggraff, Stefan; Wunderlich, Rainer; Fecht, Hans-Jörg

    2017-08-01

    A major reason to conduct solidification experiments in space is that the unique conditions accessible in reduced-gravity allow investigation of fundamental questions while limiting the influence of sedimentation or buoyancy-induced convection. When processing metallic alloys using containerless electromagnetic levitation, convection may be controlled over a wide range, spanning the laminar-turbulent transition, by proper selection of facility operating conditions. By measuring key thermophysical properties such as density, viscosity, and electrical resistivity on-orbit, the specific sample being processed may be characterized and the results used to update pre-mission magnetohydrodynamic model predictions of induced stirring within the droplet. Thus, convection becomes a controlled experimental parameter that can be applied to an investigation of how stirring influences the metastable-to-stable transformation during rapid solidification of FeCrNi alloys. For these alloys, the incubation or delay time is observed to be a weak function of undercooling and a strong function of applied convection.

  5. Synthesis and electromagnetic properties of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites

    SciTech Connect

    Xie, Yu; Hong, Xiaowei; Liu, Jinmei; Le, Zhanggao; Huang, Feihui; Qin, Yuancheng; Zhong, Rong; Gao, Yunhua; Pan, Jianfei; Ling, Yun

    2014-02-01

    Graphical abstract: Due to combining different functions and characteristics of individual materials, hybrid nanocomposite materials can strengthen their applications. Magnetic-conductive nanocomposites are the promising materials with electromagnetic loss, which have synergetic behavior between magnetic and conductive materials. It is the first time to report the synthesis of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide (BF/TD) composites by the gel-precursor self-propagating combustion process. The influence of mass ratio of BF and TD on the electromagnetic properties of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites was studied. The tgδ{sub μ} and tgδ{sub ε} of BF–TD composites. - Highlights: • It is the first time to report BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites. • The composites are prepared by the gel-precursor self-propagating combustion. • The electromagnetic properties could be adjusted by the mass ratio of BF and TD. • The introduction of TD enhances the dielectric loss and widens the frequency bands. • BF/TD composites will be microwave absorption materials with wide frequency band. - Abstract: Doped BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites have been prepared by the gel-precursor self-propagating combustion process. The characterization of the composites are performed by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Differential thermal analysis-thermo gravimetry (DTA–TG), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and network analyzer. Both XRD and FT-IR indicate that the doped BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites are successfully synthesized and there are some interactions between BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19} and titanium dioxide. DTA–TG analysis of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites shows that the composite gel

  6. Mapping patterns of soil properties and soil moisture using electromagnetic induction to investigate the impact of land use changes on soil processes

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan

    2016-04-01

    As highlighted by many authors, classical or geophysical techniques for measuring soil moisture such as destructive soil sampling, neutron probes or Time Domain Reflectometry (TDR) have some major drawbacks. Among other things, they provide point scale information, are often intrusive and time-consuming. ElectroMagnetic Induction (EMI) instruments are often cited as a promising alternative hydrogeophysical methods providing more efficiently soil moisture measurements ranging from hillslope to catchment scale. The overall objective of our research project is to investigate whether a combination of geophysical techniques at various scales can be used to study the impact of land use change on temporal and spatial variations of soil moisture and soil properties. In our work, apparent electrical conductivity (ECa) patterns are obtained with an EM multiconfiguration system. Depth profiles of ECa were subsequently inferred through a calibration-inversion procedure based on TDR data. The obtained spatial patterns of these profiles were linked to soil profile and soil water content distributions. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. On selected slopes within the catchments, combined EMI and TDR measurements were carried out simultaneously, under different atmospheric and soil moisture conditions. Ground-truth data for soil properties were obtained through soil sampling and auger profiles. The comparison of these data provided information about the potential of the EMI technique to deliver qualitative and quantitative information about the variability of soil moisture and soil properties.

  7. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  8. Characterization and high resolution mapping of soil hydrogeophysical properties from ground penetrating radar and electromagnetic induction data in a vineyard in southern France

    NASA Astrophysics Data System (ADS)

    Andre, F.; van Durmen, R.; Saussez, S.; van Leeuwen, C.; Moghadas, D.; Delvaux, B.; Vereecken, H.; Sebastien, L.

    2010-12-01

    Soil and climate are acknowledged to greatly affect vine growth and grape berry composition through their strong influence on vine water status. Over a limited area, climatic factors may be considered as rather homogeneous for a given vintage while soil characteristics may vary strongly over short distances. Therefore, detailed characterization of soil hydrogeophysical properties is of prime importance for the definition of optimal vineyard practices. In that respect, ground penetrating radar (GPR) and electromagnetic induction (EMI) are effective geophysical techniques for fast and non-invasive determination of shallow subsurface properties through the measurement of soil dielectric permittivity and electrical conductivity. Given contrasted sensitivities of GPR and EMI to soil electrical properties, combining measurements from both techniques allows to merge complementary information, thereby leading to more accurate quantitative characterisation of soil. Classical GPR and EMI data processing techniques for soil properties characterisation rely on strongly simplifying assumptions in the modelling of electromagnetic phenomena, leading to significant errors on the estimates and accounting for only a part of the data information content. We developed generalized multi-offset full-waveform approaches for modelling off-ground and on-ground GPR and EMI signals. GPR and EMI systems are modelled using sets of infinitesimal electric and magnetic dipoles, allowing us to properly describe the distribution of the scattered field when the subsurface is located in the near-field of the antenna. The antenna model is coupled with a three-dimensional Green’s function, corresponding to a specific solution of the Maxwell’s equations for wave propagation or diffusion in multilayered media. The approaches were applied in a vineyard in south of France (Saint-Emilion) over a 30-ha area characterized by strong spatial variations of soil types. Around 1 million GPR waveforms and 73

  9. Electromagnetic interference shielding in 1-18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)-multi-walled carbon nanotube composites.

    PubMed

    Kumar, G Sudheer; Vishnupriya, D; Joshi, Anupama; Datar, Suwarna; Patro, T Umasankar

    2015-08-21

    Electromagnetic interference (EMI) shielding properties in the 1-18 GHz frequency range for multi-walled carbon nanotube (MWNT)-poly(vinylidene fluoride) (PVDF) composites are reported. A simple and gentle acid-treatment of MWNT showed a percolation threshold (PT) of 0.15 wt% in the PVDF matrix as against 0.35 wt% for unfunctionalized MWNT. Acid-treatment of MWNT significantly improves dispersion, interfacial adhesion with the matrix and the EMI shielding properties of PVDF composites. Further, the EMI shielding properties are correlated with the electrical properties. Using composite films of 0.3 mm thickness, the maximum shielding effectiveness (SET) values for 4 wt% unfunctionalized MWNT composites are found to be about 110, 45, 30, 26, and 58 dB for L (1-2 GHz), S (2-4 GHz), C (4-5.8 GHz), J (5.8-8 GHz), and X (8-12 GHz) bands, while the corresponding values for only 0.5 wt% acid functionalized MWNT composites are about 98, 45, 26, 19, and 47 dB, respectively. The electrical conductivity for both the cases is ∼10(-3) S cm(-1) and the weight contents of CNTs are higher than the PT for the respective composites. The comparable EMI SE and electrical conductivity values for both the composites at different weight fractions of CNTs suggest that there is a critical electrical conductivity above which the composites attain improved EMI shielding properties. Further, the shielding mechanism was found to be dominated by absorption loss. Therefore, the composites may also serve as a radar absorbing material.

  10. Electromagnetic Spectroscopy of Normal Breast Tissue Specimens Obtained From Reduction Surgeries: Comparison of Optical and Microwave Properties

    PubMed Central

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M.; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C.

    2009-01-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly-excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r|~0.5–0.6, p<0.01), and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r|~ 0.4–0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=−0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition. PMID:18838370

  11. Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: comparison of optical and microwave properties.

    PubMed

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C

    2008-10-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r| approximately 0.5-0.6, p<0.01) and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r| approximately 0.4-0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=-0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition.

  12. Electromagnetic levitation applications

    SciTech Connect

    Bayazitoglu, Y.

    1996-11-01

    At high temperatures, most materials react with the walls of their containers. This inevitably leads to material contamination and property degradation. Therefore, it becomes difficult to process materials to the required degree of purity and/or measure their properties at high temperatures. Levitation melting has been used on earth and microgravity since to circumvent this problem. In this paper, first a broad survey of the work done in electromagnetic levitation since its invention is given. Then the heat generation due to an alternating magnetic field is studied. Finally, the application of levitation melting in the determination of thermal diffusivity, emissivity, surface tension and viscosity of liquid metals is presented.

  13. Effects of 3 Hz and 60 Hz Extremely Low Frequency Electromagnetic Fields on Anxiety-Like Behaviors, Memory Retention of Passive Avoidance and Electrophysiological Properties of Male Rats

    PubMed Central

    Rostami, Amin; Shahani, Minoo; Zarrindast, Mohammad Reza; Semnanian, Saeed; Rahmati Roudsari, Mohammad; Rezaei Tavirani, Mostafa; Hasanzadeh, Hadi

    2016-01-01

    Introduction: The effects of electromagnetic fields on biological organisms have been a controversial and also interesting debate over the past few decades, despite the wide range of investigations, many aspects of extremely low frequency electromagnetic fields (ELF/EMFs) effects including mechanism of their interaction with live organisms and also their possible biological applications still remain ambiguous. In the present study, we investigated whether the exposures of ELF/EMF with frequencies of 3 Hz and 60 Hz can affect the memory, anxiety like behaviors, electrophysiological properties and brain’s proteome in rats. Methods: Male rats were exposed to 3 Hz and 60 Hz ELF/EMFs in a protocol consisting of 2 cycles of 2 h/day exposure for 4 days separated with a 2-day interval. Short term memory and anxiety like behaviors were assessed immediately, 1 and 2 weeks after the exposures. Effects of short term exposure were also assessed using electrophysiological approach immediately after 2 hours exposure. Results: Behavioral test revealed that immediately after the end of exposures, locomotor activity of both 3 Hz and 60 Hz exposed groups significantly decreased compared to sham group. This exposure protocol had no effect on anxiety like behavior during the 2 weeks after the treatment and also on short term memory. A significant reduction in firing rate of locus coeruleus (LC) was found after 2 hours of both 3 Hz and 60 Hz exposures. Proteome analysis also revealed global changes in whole brain proteome after treatment. Conclusion: Here, some evidence regarding the fact that such exposures can alter locomotor activity and neurons firing rate in male rats were presented. PMID:27330708

  14. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  15. Electromagnetic wave in a relativistic magnetized plasma

    SciTech Connect

    Krasovitskiy, V. B.

    2009-12-15

    Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.

  16. Electromagnetic and microwave absorbing properties of the composites containing flaky FeSiAl powders mixed with MnO2 in 1-18 GHz

    NASA Astrophysics Data System (ADS)

    Xu, Haibing; Bie, Shaowei; Jiang, Jianjun; Yuan, Wei; Chen, Qian; Xu, Yongshun

    2016-03-01

    The flaky FeSiAl/ irregular shaped MnO2 composite with the different mass ratios were prepared by using a two-roll mixer and a vulcanizing machine. The morphologies of the composite absorbers were characterized by a scanning electron microscope. The microwave electromagnetic properties of the composites were measured using a vector network analyzer in the range of 1-18 GHz. The effect of the mass ratio of FeSiAl/MnO2 on the microwave loss properties of the composites was investigated. The results show that the reflection loss (RL) values exceeding -20 dB from 3.5 to 16.5 GHz can be obtained for the flaky FeSiAl/MnO2 mass ratio of 1:1 from 1.5 mm to 5 mm. In addition, the FeSiAl/MnO2 composite with the FeSiAl/MnO2 mass ratio of 7:3 has -10 dB bandwidth of 6.6 GHz (from 11.4-18 GHz) with a thickness of 1.5 mm. It is found that the flaky FeSiAl/MnO2 composites can be potential microwave absorption materials.

  17. Simultaneous enhancement in mechanical strength, electrical conductivity, and electromagnetic shielding properties in PVDF-ABS blends containing PMMA wrapped multiwall carbon nanotubes.

    PubMed

    Kar, Goutam Prasanna; Biswas, Sourav; Bose, Suryasarathi

    2015-06-14

    A unique approach was adopted to drive the multiwall carbon nanotubes (MWNTs) to the interface of immiscible PVDF-ABS blends by wrapping the nanotubes with a mutually miscible homopolymer (PMMA). A tailor made interface with an improved stress transfer was achieved in the blends with PMMA wrapped MWNTs. This manifested in an impressive 108% increment in the tensile strength and 48% increment in the Young's modulus with 3 wt% PMMA wrapped MWNTs in striking contrast to the neat blends. As the PMMA wrapped MWNTs localized at the interface of PVDF-ABS blends, the electrical conductivity could be tuned with respect to only MWNTs, which were selectively localized in the PVDF phase, driven by thermodynamics. The electromagnetic shielding properties were assessed using a vector network analyser in a broad range of frequency, X-band (8-12 GHz) and Ku-band (12-18 GHz). Interestingly, enhanced EM shielding was achieved by this unique approach. The blends with only MWNTs shielded the EM waves mostly by reflection however, the blends with PMMA wrapped MWNTs (3 wt%) shielded mostly by absorption (62%). This study opens new avenues in designing materials, which show simultaneous improvement in mechanical, electrical conductivity and EM shielding properties.

  18. Electromagnetic leptogenesis

    SciTech Connect

    Bell, Nicole F.; Law, Sandy S. C.; Kayser, Boris J.

    2008-10-15

    We present a new leptogenesis scenario, where the lepton asymmetry is generated by CP-violating decays of heavy electroweak singlet neutrinos via electromagnetic dipole moment couplings to the ordinary light neutrinos. Akin to the usual scenario where the decays are mediated through Yukawa interactions, we have shown, by explicit calculations, that the desired asymmetry can be produced through the interference of the corresponding tree-level and one-loop decay amplitudes involving the effective dipole moment operators. We also find that the relationship of the leptogenesis scale to the light neutrino masses is similar to that for the standard Yukawa-mediated mechanism.

  19. What Are Electromagnetic Fields?

    MedlinePlus

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  20. Electromagnetic microactuators

    NASA Astrophysics Data System (ADS)

    Büttgenbach, S.; Al-Halhouli, A. T.; Feldmann, M.; Seidemann, V.; Waldschik, A.

    2013-05-01

    High precision microactuators have become key elements for many applications of MEMS, for example for positioning and handling systems as well as for microfluidic devices. Electromagnetic microactuators exhibit considerable benefits such as high forces, large deflections, low input impedances and thus, the involvement of only low voltages. Most of the magnetic microactuators developed so far are based on the variable reluctance principle and use soft magnetic materials. Since the driving force of such actuators is proportional to their volume, they require structures with rather great heights and aspect ratios. Therefore, the development of new photo resists, which allow UV exposure of thick layers of resist, has been essential for the advancement of variable reluctance microactuators. On the other hand, hard magnetic materials have the potential for larger forces and larger deflections. Accordingly, polymer magnets, in which micro particles of hard magnetic material are suspended in a polymer matrix, have been used to fabricate permanent magnet microactuators. In this paper we give an overview of sophisticated electromagnetic microactuators which have been developed in our laboratory in the framework of the Collaborative Research Center "Design and Manufacturing of Active Microsystems". In particular, concept, fabrication and test of variable reluctance micro stepper motors, of permanent magnet synchronous micromotors and of microactuators based on the Lorentz force principle will be described. Special emphasis will be given to applications in lab-on-chip systems.

  1. Electromagnetic Induction Rediscovered Using Original Texts.

    ERIC Educational Resources Information Center

    Barth, Michael

    2000-01-01

    Describes a teaching unit on electromagnetic induction using historic texts. Uses some of Faraday's diary entries from 1831 to introduce the phenomenon of electromagnetic induction and teach about the properties of electricity, of taking conclusions from experiment, and scientific methodology. (ASK)

  2. Electromagnetic Induction Rediscovered Using Original Texts.

    ERIC Educational Resources Information Center

    Barth, Michael

    2000-01-01

    Describes a teaching unit on electromagnetic induction using historic texts. Uses some of Faraday's diary entries from 1831 to introduce the phenomenon of electromagnetic induction and teach about the properties of electricity, of taking conclusions from experiment, and scientific methodology. (ASK)

  3. Electromagnetic Characterization Of Metallic Sensory Alloy

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  4. Fabrication and electromagnetic properties of bio-based helical soft-core particles by way of Ni-Fe alloy electroplating

    NASA Astrophysics Data System (ADS)

    Lan, Mingming; Zhang, Deyuan; Cai, Jun; Zhang, Wenqiang; Yuan, Liming

    2011-12-01

    Ni-Fe alloy electroplating was used as a bio-limited forming process to fabricate bio-based helical soft-core ferromagnetic particles, and a low frequency vibration device was applied to the cathode to avoid microorganism (Spirulina platens) cells adhesion to the copper net during the course of plating. The morphologies and ingredients of the coated Spirulina cells were characterized using scanning electron microscopy and energy dispersive spectrometer. The complex permittivity and permeability of the samples containing the coated Spirulina cells before and after heat treatment were measured and investigated by a vector network analyzer. The results show that the Spirulina cells after plating keep their initial helical shape, and applying low frequency vibration to the copper net cathode in the plating process can effectively prevent agglomeration and intertwinement of the Spirulina cells. The microwave absorbing and electromagnetic properties of the samples containing the coated Spirulina cells particles with heat treatment are superior to those samples containing the coated Spirulina cells particles without heat treatment.

  5. Magnetic structure and electromagnetic properties of LnCrAsO with a ZrCuSiAs-type structure (Ln = La, Ce, Pr, and Nd).

    PubMed

    Park, Sang-Won; Mizoguchi, Hiroshi; Kodama, Katsuaki; Shamoto, Shin-ichi; Otomo, Toshiya; Matsuishi, Satoru; Kamiya, Toshio; Hosono, Hideo

    2013-12-02

    We report the synthesis, structure, and electromagnetic properties of Cr-based layered oxyarsenides LnCrAsO (Ln = La, Ce, Pr, and Nd) with a ZrCuSiAs-type structure. All LnCrAsO samples showed metallic electronic conduction. Electron doping in LaCrAsO by Mn-substitution for the Cr sites gave rise to a metal-insulator transition. Analysis of powder neutron diffraction data revealed that LaCrAsO had G-type antiferromagnetic (AFM) ordering, i.e., a checkerboard-type AFM ordering in the CrAs plane and antiparallel spin coupling between the adjacent CrAs planes, at 300 K with a large spin moment of 1.57 μB along the c axis. The magnetic susceptibility of LaCrAsO was very small (on the order of 10(-3) emu/mol) and showed a broad hump at ∼550 K. First-principles density functional theory calculations of LaCrAsO explained its crystal structure and metallic nature well, but could not replicate the antiparallel spin coupling between the CrAs layers. The electronic structure of LaCrAsO is discussed with regard to those of related compounds LaFeAsO and LaMnAsO.

  6. International comparison of the properties of NdFeB permanent magnets measured using an electromagnet and a pulsed field magnetometer

    NASA Astrophysics Data System (ADS)

    Hall, Michael

    2013-08-01

    An IEC TC 68 comparison on the measurement of the magnetic properties of permanent magnets was completed in 2011. Measurements were performed on 6 NdFeB magnets with intrinsic coercivities ranging from 1000 to 2600 kA/m by 8 institutes based in China, Japan, Italy, Belgium, Germany and the UK. Many versions of a Pulsed Field Magnetometer (PFM) that can determine the full BH curve in as little as 100 ms have been developed during the last 2 decades. By comparing measurements made using an internationally accepted electromagnet method and pulsed methods, the influence of the dynamic effects of the latter could be investigated and established. For the quantities remanence, B r , magnetic flux density coercivity, H cB and energy product, BH max the measurements agree within the combined uncertainties. For the intrinsic coercivity, H cJ , the dependence of the measurement of this quantity on the speed at which the magnetic field is reversed was found to be significant with the largest changes in value occurring as a DC measurement condition is approached.

  7. Preparation of nanocrystalline-coated carbon nanotube/Ni0.5Zn0.5Fe2O4 composite with excellent electromagnetic property as microwave absorber

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Bing; Shen, Lu; Li, Lei; Huang, Tong-Ming; Hu, Chun-Feng; Pan, Wei-Ming; Jin, Xi-Hai; Sun, Jing; Gao, Lian; Huang, Qing

    2013-04-01

    A combined precipitation-hydrothermal method was used to fabricate carbon nanotube/Ni0.5Zn0.5Fe2O4 ferrite composite powders. The phase, microstructure and electromagnetic properties of CNT/Ni0.5Zn0.5Fe2O4 composites were investigated. After surface modification, The zeta potential value of CNTs could maintain at about -50 mV when pH is higher than 8, which affords a suitable surface environment for in situ coating of Ni0.5Zn0.5Fe2O4 nanocrystallines. With increasing CNTs content, the saturation magnetization of the composites is gradually reduced, while the complex magnetic permeability changes little. The complex dielectric constant of the composites is significantly increased when the concentration of CNTs approaches the percolation threshold value of 2 wt%. When CNTs content is 5 wt%, the reflection ratios are less than -10 dB within the frequency range 2-9 GHz, and the reflection ratios reach a minimum -32.5 dB at a frequency of about 3.9 GHz.

  8. Lanthanum and Neodymium Doped Barium Ferrite-TiO2/MCNTs/poly(3-methyl thiophene) Composites with Nest Structures: Preparation, Characterization and Electromagnetic Microwave Absorption Properties

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Yu, Jian; Xie, Yu; Le, Zhanggao; Hong, Xiaowei; Ci, Suqin; Chen, Junhong; Qing, Xiaoyan; Xie, Weijie; Wen, Zhenhai

    2016-02-01

    We report herein the synthesis of a novel nest structured electromagnetic composite through in-situ chemical polymerization of 3-methyl thiophene (3MT) in the presence of the BaFe11.92(LaNd)0.04O19-TiO2 (BFTO) nanoparticles and MCNTs. As an absorbing material, the BFTO/MCNTs/P3MT/wax composites were prepared at various loadings of BFTO/MCNTs/P3MT (0.2:0.10:1.0 ~ 0.2:0.30:1.0), and they exhibited strong microwave absorption properties in the range of 1.0-18 GHz. When the loading of BFTO/MCNTs/P3MT is 0.2:0.30:1.0, the composite has a strongest absorbing peak at 11.04 GHz, and achieves a maximum absorbing value of -21.56 dB. The absorbing peak position moves to higher frequencies with the increase of MCNTs content. The mechanism for microwave absorption of these composites has been explained in detail.

  9. Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes

    NASA Astrophysics Data System (ADS)

    Wu, Yanhui; Han, Mangui; Liu, Tao; Deng, Longjiang

    2015-07-01

    The effective permittivity of composites containing Fe-Cu-Nb-Si-B nanocrystalline micro flakes has been studied within 0.5-10 GHz. Obvious differences in microwave permittivity have been observed for composites consisting of large flakes (size range: 23-111 μm, average thickness: 4.5 μm) and small flakes (size range: 3-21 μm, average thickness: 1.3 μm). Both the real part and imaginary part of permittivity of large flake composite are much larger than these small one in a given frequency. And faster decrease of permittivity with the increasing frequency can be observed for large flake composite than that of small one. These differences in permittivity spectra of different flakes have been explained from the perspective of interfacial polarization and ac conductivity. The assumption that more extensive ohmic contact interface between large flakes and matrix has been validated by the fittings and the calculated percolation threshold. Meanwhile, the permeability spectra of both composites also have been studied by Lorentzian dispersion law. The broadened spectra can be attributed to the distribution of magnetic anisotropy fields of two kinds of ferromagnetic phases in the particles. Finally, the composite containing the small flakes exhibits better electromagnetic wave absorption properties.

  10. Manufacture, electromagnetic properties and microstructure of an 18-filament jelly-roll Nb3Al superconducting wire with rapid heating and quenching heat-treatment

    NASA Astrophysics Data System (ADS)

    Pan, X. F.; Feng, Y.; Yan, G.; Cui, L. J.; Chen, C.; Zhang, Y.; Wu, Z. X.; Liu, X. H.; Zhang, P. X.; Bai, Z. M.; Zhao, Y.; Li, L. F.

    2016-01-01

    In this paper, we have reported the manufacture of a novel simple-structured jelly-roll Nb3Al precursor long wire, and its electromagnetic properties and microstructure with different rapid heating and quenching (RHQ) heat-treatments. By comparing three processing methods, it is found that the rolling and drawing (RD) method is more suitable to the fabrication of kilometer-length Nb3Al precursor wire without annealing. Using homemade RHQ equipment, we have successfully carried out RHQ heat-treatment of Nb3Al wire samples with various heating conditions. Based on magnetization and magnetoresistivity measurements, the onset superconducting transition temperature, T c and upper critical field, H c2 (0) of optimal Nb3Al wire reach 17.9 K-18.0 K and 29.7 T, respectively. Through microstructure and composition analysis, the Nb3Al superconductor in the optimal wire displays a typical ‘layer-to-layer’ structure, which comprises alternate crystalline Nb3Al and amorphous Nb layers, and the Nb3Al grains sizes are about 100 nm-300 nm. Furthermore, many small holes are dispersed in the Nb3Al superconductor due to the diffusion reaction from Al to Nb site. The work suggests the simple-structured Nb3Al precursor wire with RHQ heat-treatment is very promising for high-field application.

  11. Lanthanum and Neodymium Doped Barium Ferrite-TiO2/MCNTs/poly(3-methyl thiophene) Composites with Nest Structures: Preparation, Characterization and Electromagnetic Microwave Absorption Properties

    PubMed Central

    Zhao, Jie; Yu, Jian; Xie, Yu; Le, Zhanggao; Hong, Xiaowei; Ci, Suqin; Chen, Junhong; Qing, Xiaoyan; Xie, Weijie; Wen, Zhenhai

    2016-01-01

    We report herein the synthesis of a novel nest structured electromagnetic composite through in-situ chemical polymerization of 3-methyl thiophene (3MT) in the presence of the BaFe11.92(LaNd)0.04O19-TiO2 (BFTO) nanoparticles and MCNTs. As an absorbing material, the BFTO/MCNTs/P3MT/wax composites were prepared at various loadings of BFTO/MCNTs/P3MT (0.2:0.10:1.0 ~ 0.2:0.30:1.0), and they exhibited strong microwave absorption properties in the range of 1.0–18 GHz. When the loading of BFTO/MCNTs/P3MT is 0.2:0.30:1.0, the composite has a strongest absorbing peak at 11.04 GHz, and achieves a maximum absorbing value of −21.56 dB. The absorbing peak position moves to higher frequencies with the increase of MCNTs content. The mechanism for microwave absorption of these composites has been explained in detail. PMID:26857939

  12. Lanthanum and Neodymium Doped Barium Ferrite-TiO₂/MCNTs/poly(3-methyl thiophene) Composites with Nest Structures: Preparation, Characterization and Electromagnetic Microwave Absorption Properties.

    PubMed

    Zhao, Jie; Yu, Jian; Xie, Yu; Le, Zhanggao; Hong, Xiaowei; Ci, Suqin; Chen, Junhong; Qing, Xiaoyan; Xie, Weijie; Wen, Zhenhai

    2016-02-09

    We report herein the synthesis of a novel nest structured electromagnetic composite through in-situ chemical polymerization of 3-methyl thiophene (3MT) in the presence of the BaFe11.92(LaNd)0.04O19-TiO2 (BFTO) nanoparticles and MCNTs. As an absorbing material, the BFTO/MCNTs/P3MT/wax composites were prepared at various loadings of BFTO/MCNTs/P3MT (0.2:0.10:1.0 ~ 0.2:0.30:1.0), and they exhibited strong microwave absorption properties in the range of 1.0-18 GHz. When the loading of BFTO/MCNTs/P3MT is 0.2:0.30:1.0, the composite has a strongest absorbing peak at 11.04 GHz, and achieves a maximum absorbing value of -21.56 dB. The absorbing peak position moves to higher frequencies with the increase of MCNTs content. The mechanism for microwave absorption of these composites has been explained in detail.

  13. PSynthesis, characterization and electromagnetic properties of Zn-substituted CoFe2O4 via sucrose assisted combustion route

    NASA Astrophysics Data System (ADS)

    Gabal, M. A.; Al-Juaid, A. A.; Al-Rashed, S. M.; Hussein, M. A.; Al-Marzouki, F.

    2017-03-01

    Nanocrystalline Co1-xZnxFe2O4 ferrites (0.0≤x≤0.1) were synthesized via simple, economic and environmentally friend sucrose auto-combustion method. An appropriate mechanism for complexation process as well as ferrites formation was suggested and discussed. The detailed structural studies were estimated through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) measurements. The results confirmed the formation of mixed spinel phase with cubic structure and exhibited a gradual decrease in the crystal size from 58 nm to 20 nm by the addition of zinc. Based on the obtained structural parameters, an appropriate cation distribution was suggested and reinforced via electrical and magnetic properties measurements. Hysteresis loops measurements, indicated ferromagnetic characteristics, with hard magnetic properties, for the samples with 0.0≤x≤0.6. The samples with higher Zn-content exhibited paramagnetic properties. The changes in the magnetization and coercivity by the addition of zinc can be discussed in the view of the influence of cationic stoichiometry and magneto-crystalline anisotropy, respectively. The huge decrease in the magnetization value at x≥0.8 suggested a shift from ferromagnetic to paramagnetic characteristics. Ac-conductivity as well as dielectric constant behaviors reinforced this magnetic transition. The obtained Curie transition temperatures (TC) were gradually shifted to lower temperatures by the addition of zinc. The addition of zinc results in the substitution of Co2+ ions in the octahedral sites thus, decreases B-B hopping probability, decreases conductivity and consequently increases activation energy. The most predominant conduction mechanisms in the ferromagnetic and paramagnetic regions are expected to be due to electron hoppings between different valence state ions and small positive polaron migration, respectively.

  14. Electromagnetic Radiation System (EMRS) for Susceptibility Testing.

    DTIC Science & Technology

    ELECTROMAGNETIC COMPATIBILITY, *ELECTROMAGNETIC SUSCEPTIBILITY, COMMUNICATION EQUIPMENT, ELECTRONIC EQUIPMENT, ELECTROMAGNETIC RADIATION , ANTENNAS, ELECTROMAGNETIC INTERFERENCE, RADAR SIGNALS, RADIO SIGNALS, FIELD INTENSITY.

  15. Structural, electro-magnetic, and optical properties of Ba(Fe,Ni)2As2 single-crystal thin film

    NASA Astrophysics Data System (ADS)

    Yoon, Sejun; Seo, Yu-Seong; Lee, Seokbae; Weiss, Jeremy D.; Jiang, Jianyi; Oh, MyeongJun; Lee, Jongmin; Seo, Sehun; Jo, Youn Jung; Hellstrom, Eric E.; Hwang, Jungseek; Lee, Sanghan

    2017-03-01

    We investigated the superconducting transition temperature (T c), critical current density (J c) and optical properties of optimally doped Ba(Fe0.95Ni0.05)2As2 (Ni-Ba122) single-crystalline epitaxial thin films grown by pulsed laser deposition for the first time. The T c at zero resistivity was about 20.5 K and the J c at self-field and 4.2 K was 2.8 MA cm-2 calculated by the Bean model. The superconducting properties such as T c and J c of thin films are comparable to those of bulk single-crystal samples. The superfluid plasma frequency (λ p,S) of Ni-Ba122 thin film is ˜7033 cm-1 obtained by optical spectroscopic technique. Based on this plasma frequency, we obtained the London penetration depth (λ L), ˜226 nm at 8 K, which is comparable to those of optimally Co- and K-doped BaFe2As2 single crystals.

  16. Effect of co substitution of Mg and Zn on electromagnetic properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Sujatha, Ch.; Reddy, K. Venugopal; Babu, K. Sowri; Reddy, A. Rama Chandra; Suresh, M. Buchi; Rao, K. H.

    2013-07-01

    Ni0.5-2xMgxCu0.05Zn0.45+xFe2O4 (x=0, 0.04, 0.08, 0.12, and 0.16) ferrite samples were prepared through sol-gel method using polyvinyl alcohol as a chelating agent. Structural, magnetic, dielectric and electrical properties of the sintered samples were investigated using the characterisation techniques such as X-ray Diffractometer, Vibration sample magnetometer and impedance analyser respectively. X-ray diffraction patterns confirmed the formation of single phase cubic spinel structure of the samples. FTIR spectra showed two prominent bands (400 cm-1 and 600 cm-1) corresponding to characteristic of ferrites. Substitution of Mg and Zn for Ni showed gradual decrease of both magnetisation and coercivity. Magnetic permeability showed increasing trend with composition due to low anisotropy constant of Mg and Zn compared to Ni. Dielectric properties of the samples showed that both the dielectric constant as well as the dielectric loss factor was decreased with the composition. Cole-Cole plots consist of distorted semicircle with increasing diameter as a function of composition indicating improved resistance of the samples. The effect of substitution of Mg and Zn for Ni in NiCuZn ferrite system resulted in improved permeability with high cut off frequency, reduced dielectric losses and enhanced resistance of the samples.

  17. Electromagnetic, magnetorheological and stability properties of polysiloxane elastomers based on silane–modified carbonyl iron particles with enhanced wettability

    NASA Astrophysics Data System (ADS)

    Cvek, Martin; Moucka, Robert; Sedlacik, Michal; Pavlinek, Vladimir

    2017-10-01

    Soft carbonyl iron (CI) particles were successfully modified with a thin layer of tetraethoxysilane (TEOS) to enhance the wettability of their surface in hydrophobic media. The contact angle investigations and tensiometric analysis revealed and helped quantify the significantly enhanced wettability and, thus, the better interfacial adhesion of the TEOS–coated CI particles (CI–TEOS) with the non–polar siloxane–based materials. Therefore, stable magnetorheological elastomers (MREs) based on CI–TEOS particles and polydimethyl siloxane matrix were fabricated. The prepared composites had different particle loadings and microstructural characteristics: isotropic and anisotropic. These structural differences were confirmed by scanning electron microscopy and were found to considerably affect dielectric properties of the MREs due to various charge transport mechanisms within the particle clusters. Furthermore, the magnetorheological (MR) performances of isotropic MRE variants were analysed before and after exposure to acidic environment. After the corrosion test, the MRE based on bare CI particles exhibited dramatically decreased relative MR effect and mechanical properties when compared with its analogue containing CI–TEOS.

  18. PREFACE: MEM05: The 3rd International Workshop on Mechano-Electromagnetic Properties of Composite Superconductors (Kyoto, Japan, 17 20 July 2005)

    NASA Astrophysics Data System (ADS)

    Osamura, Kozo; Hampshire, Damian

    2005-12-01

    superconductors including the influence of stress and strain on the critical current of practical conductors such as YBCO and ReBCO coated conductors, BiSCCO tapes, MgB2 wires and Nb3Sn filamentary conductors. • The intrinsic strain effects on the critical current density in Nb3Sn YBCO, BiSCCO and MgB2. • Recent advances in the critical current, mechanical properties and reduction in ac losses of HTS tapes and wires. • The compositional and microstructural dependence of E-J characteristics and its explanation based on flux pinning, grain boundary weak links and other mechanisms. • Standardized test methods: international cooperative research work to establish test methods for assessing the mechano-electromagnetic properties of superconductors based on the activities of IEC/TC90 and VAMAS/TWA-16. More than 70 researchers attended the MEM05 workshop, coming from more than ten countries. In total, more than 50 presentations were made at the workshop. In this special issue of Superconductor Science and Technology selected papers have been included that are concerned with the comprehensive scientific research subjects mentioned above. The aim of this issue is to provide a snapshot of some of the current state-of-the-art research, and to promote further international research into the mechano-electromagnetic properties of composite superconductors. The workshop was organized under the activities of the NEDO Grant Project (Applied Superconductivity, 2004EA004) and VAMAS/TWA-16. We wish to thank the following for their contribution to the success of the workshop: AFOSR/AOARD and IEC/TC90-JNC.

  19. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  20. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    SciTech Connect

    Meng, Yi Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-06-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al{sub 3}Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al{sub 3}Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al{sub 3}Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L1{sub 2} Al{sub 3}Zr phases with 35–60 nm in diameter precipitate during homogenization. • L1{sub 2} and DO{sub 22} Al{sub 3}Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005.

  1. Effect of the Process Parameters on the Formability, Microstructure, and Mechanical Properties of Thin Plates Fabricated by Rheology Forging Process with Electromagnetic Stirring Method

    NASA Astrophysics Data System (ADS)

    Jin, Chul Kyu; Jang, Chang Hyun; Kang, Chung Gil

    2014-01-01

    A thin plate (150 × 150 × 1.2 mm) with embedded corrugation is fabricated using the rheoforming method. Semisolid slurry is created using the electromagnetic stirring (EMS) system, and the thin plate is made with the forging die at the 200-ton hydraulic press. The cross sections and microstructures of the slurry with and without stirring are examined. To investigate the effect of the process parameters on the formability, microstructure, and mechanical properties of thin plate the slurry is subjected to 16 types of condition for the forging experiment. The 16 types included the following conditions: Whether the EMS is applied or not, three fractions of the solid phase at 35, 45 and 55 pct; two compression velocities at 30 and 300 mm s-1; and four different compression pressures—100, 150, 200 and 250 MPa. The thin plate's formability is enhanced at higher punch velocity for compressing the slurry, and fine solid particles are uniformly distributed, which in turn, enhances the plate's mechanical properties. The pressure between 150 and 200 MPa is an appropriate condition to form thin plates. A thin plate without defects can be created when the slurry at 35 pct of the solid fraction (f s) was applied at the compression velocity of 300 mm s-1 and 150 MPa of pressure. The surface state of thin plate is excellent with 220 MPa of tensile strength and 13.5 pct of elongation. The primary particles are fine over the entire plate, and there are no liquid segregation-related defects.

  2. Effects of specimen preparation on the electromagnetic property measurements of solid materials with an automatic network analyzer

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1986-01-01

    Effects of specimen preparation on measured values of an acrylic's electomagnetic properties at X-band microwave frequencies, TE sub 1,0 mode, utilizing an automatic network analyzer have been studied. For 1 percent or less error, a gap between the specimen edge and the 0.901-in. wall of the specimen holder was the most significant parameter. The gap had to be less than 0.002 in. The thickness variation and alignment errors in the direction parallel to the 0.901-in. wall were equally second most significant and had to be less than 1 degree. Errors in the measurement f the thickness were third most significant. They had to be less than 3 percent. The following parameters caused errors of 1 percent or less: ratios of specimen-holder thicknesses of more than 15 percent, gaps between the specimen edge and the 0.401-in. wall less than 0.045 in., position errors less than 15 percent, surface roughness, hickness variation in the direction parallel to the 0.401-in. wall less than 35 percent, and specimen alignment in the direction parallel to the 0.401-in. wall mass than 5 degrees.

  3. Electromagnetic properties of microwave sintered ferromagnetic-ferroelectric composites for application in low temperature co-fired ceramic devices

    SciTech Connect

    Yang Qinghui; Zhang Huaiwu; Wen Qiye; Liu Yingli

    2011-04-01

    In this paper, microwave sintering (MS) technology has been applied in the preparation of ferromagnetic-ferroelectric composites. Several kinds of (Ni{sub 0.3}Zn{sub 0.6}Cu{sub 0.1})Fe{sub 2}O{sub 4} (NiCuZn) ferrite with different contents of BaTiO{sub 3}(BT) have been fabricated by MS technology. We found that the sintering time and temperature were significantly reduced from 22 h and 1100 deg. C for the conventional sintering (CS) process to 2 h and 840 deg. C for MS process, respectively. Experiments show that MS treated NiCuZn-BT composites possess both excellent ferromagnetic and ferroelectric properties. For the composites of NiCuZn added with 15% BaTiO{sub 3}, the real part of permittivity is larger than 50 below 20 MHz and the real part of dielectric constant is larger than 18 below 1 GHz. Our results indicate that the microwave sintering method is a potential important technique in LTCC technology.

  4. High frequency electromagnetic properties of interstitial-atom-modified Ce2Fe17NX and its composites

    NASA Astrophysics Data System (ADS)

    Li, L. Z.; Wei, J. Z.; Xia, Y. H.; Wu, R.; Yun, C.; Yang, Y. B.; Yang, W. Y.; Du, H. L.; Han, J. Z.; Liu, S. Q.; Yang, Y. C.; Wang, C. S.; Yang, J. B.

    2014-07-01

    The magnetic and microwave absorption properties of the interstitial atom modified intermetallic compound Ce2Fe17NX have been investigated. The Ce2Fe17NX compound shows a planar anisotropy with saturation magnetization of 1088 kA/m at room temperature. The Ce2Fe17NX paraffin composite with a mass ratio of 1:1 exhibits a permeability of μ ' = 2.7 at low frequency, together with a reflection loss of -26 dB at 6.9 GHz with a thickness of 1.5 mm and -60 dB at 2.2 GHz with a thickness of 4.0 mm. It was found that this composite increases the Snoek limit and exhibits both high working frequency and permeability due to its high saturation magnetization and high ratio of the c-axis anisotropy field to the basal plane anisotropy field. Hence, it is possible that this composite can be used as a high-performance thin layer microwave absorber.

  5. Electrical wire insulation and electromagnetic coil

    DOEpatents

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  6. The BaBar electromagnetic calorimeter

    SciTech Connect

    Stahl, A.

    1997-07-01

    The progress on the design and construction of the BaBar electromagnetic calorimeter including its mechanical structure, the readout system, the mechanical and optical properties of the crystals, and the schedule for the final assembly and testing is summarized.

  7. Electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Kolm, H.; Mongeau, P.; Williams, F.

    1980-09-01

    Recent advances in energy storage, switching and magnet technology make electromagnetic acceleration a viable alternative to chemical propulsion for certain tasks, and a means to perform other tasks not previously feasible. Applications include the acceleration of gram-size particles for hypervelocity research and the initiation of fusion by impact, a replacement for chemically propelled artillery, the transportation of cargo and personnel over inaccessible terrain, and the launching of space vehicles to supply massive space operations, and for the disposal of nuclear waste. The simplest launcher of interest is the railgun, in which a short-circuit slide or an arc is driven along two rails by direct current. The most sophisticated studied thus far is the mass driver, in which a superconducting shuttle bucket is accelerated by a line of pulse coils energized by capacitors at energy conversion efficiencies better than 90%. Other accelerators of interest include helical, brush-commutated motors, discrete coil arc commutated drivers, flux compression momentum transformers, and various hybrid electrochemical devices.

  8. Electromagnetic launcher

    SciTech Connect

    Laskaris, E.T.; Chari, M.V.K.

    1990-11-20

    This paper describes an electromagnetic launcher. It comprises: a stationary superconductive coil situated coaxially in a cylindrical vacuum vessel for providing a magnetic field. The superconductive coil having a central aperture, the vacuum vessel having an axially extending bore passing through the central aperture of the superconducting coil; a resistive coil situated coaxially with the superconductive coil and movable axially relative to the stationary superconductive coil, the outer diameter of the resistive coil being smaller than the inner diameter of the bore permitting the resistive coil to pass therethrough; launch activating means coupled to the resistive coil. The launch activating means comprising a shaft joined at one end to the resistive coil, a tube open at both ends, a sliding piston situated in the tube and connected to the other end of the shaft; and power supply means coupled to the resistive coil for providing current of a desired direction and magnitude, so that energization of the resistive coil in the presence of the radial field component of the magnetic field of the superconductive coil creates an axial force on the movable coil, the direction and magnitude of which is dependent on the direction and magnitude of the current in the resistive coil.

  9. Electromagnetic jets from compact objects

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1987-01-01

    The possibility that at least some astrophysical jets are initially electromagnetic in origin is examined. Subsequent pick-up of ionization would convert such electromagnetic jets into hydrodynamic jets. In such a model, relativistic outflow is formed into highly collimated beams simply through the interaction with the surrounding medium. Forming jets under such general circumstances is encouraging in view of the range of scales that appear to be involved. The overall properties of such jets are largely determined by a single dimensionless parameter: the characteristic electrostatic potential drop rewritten as a particle Lorentz factor. Consequently, the determination of any one observable, such as the total power output, also determines the particle energy scale, the electromagnetic field strengths, etc.

  10. Rock property measurements guide interpretation of electromagnetic, magnetic and gravity models at Mts. Adams, Baker, Rainier and St. Helens (Invited)

    NASA Astrophysics Data System (ADS)

    Finn, C.; Bedrosian, P. A.; Horton, R.; Polster, S.

    2010-12-01

    Hydrothermally altered rocks, particularly if water saturated, can weaken volcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Such alteration significantly reduces the electrical resistivity, magnetization and density of volcanic rocks, resulting in a clear distinction between altered and unaltered rock in geophysical survey measurements. We measured electrical resistivity, susceptibility and density of rock samples to help constrain models of the three-dimensional distribution of water saturated, hydrothermally altered sections of several Cascade Volcanoes, Washington, critical for understanding volcanic landslide hazards. Samples ranged from fresh, massive andesite and dacite to completely altered powders composed of opal, alunite, kaolinite, and montmorillonite. The resistivity of each sample was measured over 11 frequencies ranging from 100 to 100,000 Hz for dry and wet samples. Almost all dry sample resistivities typically exceed 5000 ohm-m. Water saturation levels vary from 2 to 33 wt% in the rocks samples and surpass 50% for the powders. Fresh andesite resistivity values exceed 1500 ohm-m, even when saturated. Resistivities of saturated, moderately altered samples and an intensely altered, low-porosity (~5%) opal and alunite sample are greater than 450 ohm m. Values less than 100 ohm-m are associated with saturated (>50%), intensely altered opal + alunite powders. Magnetic susceptibilities for the fresh volcanic rocks range from 4-25 x 10-3 SI while those of altered andesites range from 0 to 0.35 x 10-3 SI. Densities for the fresh rocks range from about 2200 - 2600 kg/m3 and 1300-1900 kg/m3 for the altered rocks. The combination of the rock property measurements, geophysical data and geological mapping, indicates the presence of appreciable thicknesses (>500 m) of altered rock west of the modern summit of Mt. Rainier in the Sunset Amphitheater region and in the central core of

  11. Influence of pH on the physical and electromagnetic properties of Mg–Mn ferrite synthesized by a solution combustion method

    SciTech Connect

    Lwin, Nilar; Othman, Radzali; Noor, Ahmad Fauzi Mohd; Sreekantan, Srimala; Yong, Tan Chou; Singh, Ramesh; Tin, Chin-Che

    2015-12-15

    The synthesis of nano-crystalline Mg–Mn ferrites by a solution combustion method using citric acid and ammonia was investigated by varying the pH of the precursor solution, which played an important role in controlling the morphology of the synthesized powders. The phase formation, microstructure and electromagnetic properties were studied using X-ray diffraction, scanning electron microscopy, impedance analyzer and vibrating sample magnetometer. Single phase pure spinel Mg–Mn ferrite powders were obtained for all the samples at different pH (< 1, 3, 5, 7, 9). The results showed that an increase of pH improves the crystallinity of the Mg–Mn ferrite nanoparticles. The average grain size of sintered samples was found to decrease from 2 μm to 0.5 μm with increasing pH values from pH < 1 to pH 9, respectively. The dielectric constant of the samples with different pH is in the range of 7–12 from frequencies of 1 MHz to 1 GHz. The highest saturation magnetization (30.04 emu/g) was obtained for the sample with pH < 1. - Highlights: • Mg–Mn ferrites were synthesized by a solution combustion method with different pH. • Auto-combustion process resulted in the formation of single phase spinel ferrite. • An increase of pH improves the crystallinity of the Mg–Mn ferrite nanoparticles. • pH variation has influence on phase formation and morphology of the ferrite.

  12. Effects of Ag{sub 2}O doping on the electromagnetic properties of a BiPbSrCaCuO superconductor

    SciTech Connect

    Lee, Sang Heon; Kim, H. C.

    2001-06-01

    Electromagnetic properties of an Ag{sub 2}O doped and an undoped BiPbSrCaCuO superconductor were evaluated to investigate the effect of the pinning center on the magnetic shielding and suspension/levitation phenomena. The residual magnetization M=M{sup +}{endash}M{sup {minus}} increased with the dopant concentration, a maximum for 2% doping, wherein a fine uniform dispersion of Ag particles was observed. The fine Ag particles form a cluster with increasing dopant as the particles condense with each other and grow, consequently does the number of flux passing through decreases, so the magnetization M decreases. This result indicates that M is proportional to the number of magnetic flux lines passing through the sample, because the smaller the particle size the larger the ratio of the surface area to the volume. Magnetic shielding was evaluated by measuring the induced voltage in the secondary coil by placing the sample in between the primary coil. The voltage was initially set to 0.5 V, and decreased to 0.17 and 0.28 V, respectively, for the undoped and 2% Ag{sub 2}O doped samples. The much less change in the induced voltage for the 2% doped sample is attributed to increased flux shielding by shielding the vortex current. Simultaneous stable levitation and suspension of 2% Ag{sub 2}O doped disk samples weighing 0.3 g were observed, respectively, above (3 mm) and beneath (2 mm) a toroidal permanent magnet under a field cooled condition. The role of flux pinning is discussed to account for the phenomena by considering the hysteretic force function. {copyright} 2001 American Institute of Physics.

  13. The properties of human body phantoms used in calculations of electromagnetic fields exposure by wireless communication handsets or hand-operated industrial devices.

    PubMed

    Zradziński, Patryk

    2013-06-01

    According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E(in)) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E(in) and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E(in) and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.

  14. A study of synthesis of NiCuZn-ferrite sintering in low temperature by metal nitrates and its electromagnetic property

    NASA Astrophysics Data System (ADS)

    Kim, Chul Won; Koh, Jae Gui

    2003-02-01

    The initial NiCuZn synthetic ferrite was synthesized by thermally decomposing the metal nitrates Fe(NO 3) 3·9H 2O, Zn(NO 3) 2·6H 2O, Ni(NO 3) 2·6H 2O, and Cu(NO 3) 2·3H 2O at 150°C for 24 h, and then we calcined the synthetic ferrite powder at 500°C, pulverized each of those for 3, 6, 9, 12, and 15 h in a steel ball mill, sintered each at 700-1000°C for 1 h, and thus studied their microstructures and electromagnetic properties. We could make the initial specimens chemically bonded in liquid at a low-temperature of 150°C, by using the low melting points less than 200°C of the metal nitrates instead of the mechanical ball-mill pulverization, then narrow a distance between the particles into a molecular one, and thus lower the reaction point of sintering by at least 200-300°C. Their initial permeability was 50-400 and their maximum magnetic induction density and coercive force, 2400 G and 0.3-0.5 Oe each, which was similar to those of NiCuZn ferrite synthesized in the conventional process. In the graph of initial permeability versus frequencies, a 180° rotation of the magnetic domain, which appears in a broad band of micro-wave before and after the resonance frequency, could be perceived.

  15. PREFACE: MEM07: The 5th Annual Workshop on Mechanical and Electromagnetic Properties of Composite Superconductors (Princeton, NJ, USA, 21 24 August 2007)

    NASA Astrophysics Data System (ADS)

    Larbalestier, D. C.; Osamura, K.; Hampshire, D. P.

    2008-05-01

    -up is a second vital task. As system design is dependent on material development, there is a critical need to study the key issues in developing high performance superconducting materials. The emphases of MEM07 were The mechanical properties of superconductors including the influence of stress and strain on the critical current of practical conductors including YBCO and ReBCO coated conductors, BSCCO tapes, MgB2 wires and Nb3Sn filamentary conductors. The intrinsic strain effects on critical current density in Nb3Sn, YBCO, BSCCO and MgB2. Recent advances in critical current, the mechanical properties and the reduction in ac losses of HTS tapes and wires. The compositional and microstructural dependence of E-J characteristics and explanations based on flux pinning, grain boundary weak-links and other mechanisms. Standardized test-methods: international cooperative research work to establish test methods for assessing the mechano-electromagnetic properties of superconductors based on the activities of IEC/TC90 and VAMAS/TWA-16. More than 60 researchers from more than 12 countries attended the MEM07 workshop, and about 40 presentations were made. A small selection of papers (15) from the workshop are included in this special issue of Superconductor Science and Technology. Taken together with papers published at earlier MEM meetings, this issue provides an updated view of some of the current state-of-the-art research in the mechano-electromagnetic properties of composite superconductors. The workshop was organized under the activities of the NEDO Grant Project (Applied Superconductivity, 2004EA004) and VAMAS/TWA-16. The meeting was organized by a committee composed of David Larbalestier (Conference Chair) aided by MEM05 and MEM06 Conference Chairs Kozo Osamura (Research Institute for Applied Sciences, Kyoto, Japan), Damian Hampshire (Durham University, UK) and Arman Nyilas (CEME). The Program Committee was composed of Ettore Salpietro (European Fusion Development Agreement

  16. Electromagnetic properties of baryon resonances

    NASA Astrophysics Data System (ADS)

    Tiator, Lothar

    2013-10-01

    Longitudinal and transverse transition form factors for most of the four-star nucleon resonances have been obtained from high-quality cross section data and polarization observables measured at MAMI, ELSA, BATES, GRAAL and CEBAF. As an application, we further show how the transition form factors can be used to obtain empirical transverse charge densities. Contour plots of the thus derived densities are shown and compared for the Roper and S11 nucleon resonances.

  17. Interactions between electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Schwan, H. P.

    1985-02-01

    We applied for this grant to support a workshop at Erice, Italy. This workshop has been commonly called Erice School and the main subject of this workshop is the interaction of electromagnetic fields with biological cells and molecules. The grant from ONR enabled us to invite American scientists to participants in this workshop and deliver scientific papers. The duration of the Erice School was ten days. Therefore, we had sufficient time to discuss the problems of electromagnetic radiations. Vigorous discussions took place during official sessions and during private conversations. The participants of this workshop are mostly those who have been active in the research on bioelectromagnetics, but there are some numbers of speakers who discussed the basic electrical and magnetic properties of polyelectrolytes, biological membranes and tissue. The workshop was unique in that there were participants with a variety of training backgrounds. This enabled us to exchange the information between applied scientists and basic scientists. Also, active exchanges of opinions took place between biological scientists and physical scientists.

  18. Electromagnetic Fields and Cancer

    MedlinePlus

    ... are in the ionizing radiation part of the electromagnetic spectrum and can damage DNA or cells directly. Low- ... in the non-ionizing radiation part of the electromagnetic spectrum and are not known to damage DNA or ...

  19. Electromagnetic induction methods

    USDA-ARS?s Scientific Manuscript database

    Electromagnetic induction geophysical methods are finding greater and greater use for agricultural purposes. Electromagnetic induction methods measure the electrical conductivity (or resistivity) for a bulk volume of soil directly beneath the surface. An instrument called a ground conductivity meter...

  20. Electromagnetic Education in India

    ERIC Educational Resources Information Center

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  1. Electromagnetic Education in India

    ERIC Educational Resources Information Center

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  2. Fundamentals of Electromagnetic Phenomena

    NASA Astrophysics Data System (ADS)

    Lorrain, Paul; Corson, Dale R.; Lorrain, Francois

    Based on the classic Electromagnetic Fields and Waves by the same authors, Fundamentals of Electromagnetic Phenomena capitalizes on the older text's traditional strengths--solid physics, inventive problems, and an experimental approach--while offering a briefer, more accessible introduction to the basic principles of electromagnetism.

  3. Broadband electromagnetic analysis of compacted kaolin

    NASA Astrophysics Data System (ADS)

    Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.

  4. Structural and dynamic electromagnetic properties of Ni0.27 Cu0.10 Zn0.63 Alx Fe2-x O4

    NASA Astrophysics Data System (ADS)

    Hossen, M. Belal; Hossain, A. K. M. Akther

    2015-08-01

    The influence of Al substitution on the structural and electromagnetic properties of Ni0.27Cu0.10Zn0.63AlxFe2 - xO4; (where x = 0.0 to x = 0.16 with step = 0.02) prepared by the combustion technique, has been investigated. X-ray diffraction analysis confirms the presence of single phase cubic spinel structure without any secondary phase. The lattice constant, theoretical density, bulk density and average grain size decreases with increasing Al content. B-H loops have been traced for all the compositions and the various hysteresis parameters like saturation induction, coercivity, remanance, remanance ratio and power loss have been studied as a function of Al content. The saturation induction and the initial permeability increases with sintering temperature up to 1150 °C where the maximum bulk density is obtained, while for higher sintering temperature they decrease. The variation of complex initial permeability for Al substituted NiCuZn ferrites can be presented as a form of semicircle so called the Cole-Cole plot and the relaxation phenomena were explained with various shapes of the plots. The analysis of complex impedance spectra by an equivalent circuit model were used to separate the grain and grain boundary resistance of various Ni0.27 Cu0.10 Zn0.63 Alx Fe2 - x O4 . The impedance plot showed the first semicircle at high frequency which corresponds to grain effect and the second semicircle at lower frequency which corresponds to grain boundary (conduction phenomenon). Both grain and grain boundary resistance increases with increasing Al content and the relative increase of grain resistance is larger than the grain boundary resistance. The frequency dependent conductivity results support the double (Jonscher's modified) power law,σT (ω) = σ (o) +A1 ω n1 +A2 ω n2 , and the results showed evidence of three types of conduction process at room temperature: (i) low frequency conductivity is due to long-range ordering (frequency independent or its tendency

  5. Electromagnetic nucleon form factors

    SciTech Connect

    Bender, A.; Roberts, C.D.; Frank, M.R.

    1995-08-01

    The Dyson-Schwinger equation framework is employed to obtain expressions for the electromagnetic nucleon form factor. In generalized impulse approximation the form factor depends on the dressed quark propagator, the dressed quark-photon vertex, which is crucial to ensuring current conservation, and the nucleon Faddeev amplitude. The approach manifestly incorporates the large space-like-q{sup 2} renormalization group properties of QCD and allows a realistic extrapolation to small space-like-q{sup 2}. This extrapolation allows one to relate experimental data to the form of the quark-quark interaction at small space-like-q{sup 2}, which is presently unknown. The approach provides a means of unifying, within a single framework, the treatment of the perturbative and nonperturbative regimes of QCD. The wealth of experimental nucleon form factor data, over a large range of q{sup 2}, ensures that this application will provide an excellent environment to test, improve and extend our approach.

  6. Young's experiment with electromagnetic spatial coherence wavelets.

    PubMed

    Castaneda, Roman; Carrasquilla, Juan; Garcia-Sucerquia, Jorge

    2006-10-01

    We discuss Young's experiment with electromagnetic random fields at arbitrary states of coherence and polarization within the framework of the electric spatial coherence wavelets. The use of this approach for the electromagnetic spatial coherence theory allows us to envisage the existence of polarization domains inside the observation plane. We show that it is possible to locally control those polarization domains by means of the correlation properties of the electromagnetic wave. To show the validity of this alternative approach, we derive by means of numerical modeling the classical Fresnel-Arago interference laws.

  7. Scattering theory of stochastic electromagnetic light waves.

    PubMed

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  8. Review on electromagnetic welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Shanthala, K.; Sreenivasa, T. N.

    2016-12-01

    Electromagnetic welding (EMW) is a highspeed joining technique that is used to join similar or dissimilar metals, as well as metals to non-metals. This technique uses electromagnetic force to mainly join conductive materials. Unlike conventional joining processes, the weld interface does not melt, thus keeping the material properties intact. Extremely high velocity and strain rate involved in the process facilitate extending the EMW technique for joining several materials. In this paper, the research and progress in electromagnetic welding are reviewed from various perspectives to provide a basis for further research.

  9. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  10. Principles of electromagnetic theory

    SciTech Connect

    Kovetz, A.H. )

    1990-01-01

    This book emphasizes the fundamental understanding of the laws governing the behavior of charge and current carrying bodies. Electromagnetism is presented as a classical theory, based-like mechanics-on principles that are independent of the atomic constitution of matter. This book is unique among electromagnetic texts in its treatment of the precise manner in which electromagnetism is linked to mechanics and thermodynamics. Applications include electrostriction, piezoelectricity, ferromagnetism, superconductivity, thermoelectricity, magnetohydrodynamics, radiation from charged particles, electromagnetic wave propagation and guided waves. There are many worked examples of dynamical and thermal effects of electromagnetic fields, and of effects resulting from the motion of bodies.

  11. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    SciTech Connect

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-06-15

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  12. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  13. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  14. Fabrication of monodispersed nickel flower-like architectures via a solvent-thermal process and analysis of their magnetic and electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Kong, Jing; Liu, Wei; Wang, Fenglong; Wang, Xinzhen; Luan, Liqiang; Liu, Jiurong; Wang, Yuan; Zhang, Zijun; Itoh, Masahiro; Machida, Ken-ichi

    2011-11-01

    Monodispersed Ni flower-like architectures with size of 1-2 μm were synthesized through a facile solvent-thermal process in 1,2-propanediol solution in the presence of polyethylene glycol (PEG) and sodium alkali for electromagnetic absorption application. The Ni architectures are composed of nanoflakes, which assemble to form three dimensional flower-like structure, and the thickness of nanoflakes is about 10-40 nm. A possible formation mechanism for Ni flower-like architectures was proposed and it was confirmed by the control experiments. The Ni architectures exhibited a saturation magnetization ( Ms) of 47.7 emu/g and a large coercivity ( Hcj) of 332.3 Oe. The epoxy resin composites with 20 vol% Ni sample provided good electromagnetic wave absorption performance (reflection loss <-20 dB) in the range of 2.8-6.3 GHz over absorber thickness of 2.6-5.0 mm.

  15. Fabrication of monodispersed nickel flower-like architectures via a solvent-thermal process and analysis of their magnetic and electromagnetic properties

    SciTech Connect

    Kong Jing; Liu Wei; Wang Fenglong; Wang Xinzhen; Luan Liqiang; Liu Jiurong; Wang Yuan; Zhang Zijun; Itoh, Masahiro; Machida, Ken-ichi

    2011-11-15

    Monodispersed Ni flower-like architectures with size of 1-2 {mu}m were synthesized through a facile solvent-thermal process in 1,2-propanediol solution in the presence of polyethylene glycol (PEG) and sodium alkali for electromagnetic absorption application. The Ni architectures are composed of nanoflakes, which assemble to form three dimensional flower-like structure, and the thickness of nanoflakes is about 10-40 nm. A possible formation mechanism for Ni flower-like architectures was proposed and it was confirmed by the control experiments. The Ni architectures exhibited a saturation magnetization (M{sub s}) of 47.7 emu/g and a large coercivity (H{sub cj}) of 332.3 Oe. The epoxy resin composites with 20 vol% Ni sample provided good electromagnetic wave absorption performance (reflection loss <-20 dB) in the range of 2.8-6.3 GHz over absorber thickness of 2.6-5.0 mm. - Graphical abstract: Monodispersed Ni flower-like architectures composed of nanoflakes were synthesized through a facile solvent-thermal process. The Ni architectures exhibited a large coercivity and enhanced electromagnetic wave absorption in GHz. Highlights: > Flower-like architectures composed of nanoflakes. > A possible formation mechanism for Ni flower-like architectures was proposed. > Sodium alkali, PEG, and NaCl played the important roles in the final morphology. > Ni architectures exhibited a large coercivity (H{sub cj}) of 332.3 Oe. > Efficient electromagnetic absorption (RL<-20 dB) was provided in 2.8-6.3 GHz.

  16. Electromagnetic and Microwave Absorption Properties of Hybrid FeCrAl/Ti3SiC2 Composite in X-Band

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Si, Jiajia; Li, Yunyu; Luo, Fa; Su, Xiaolei; Xu, Jie; Wang, Junbo; He, Xinhai; Shi, Yimin

    2017-08-01

    Hybrid magnetic-dielectric absorbers for electromagnetic applications consisting of FeCrAl and Ti3SiC2 powders have been fabricated by a ball-milling process and their electromagnetic characteristics and microwave absorption performance investigated in the frequency range from 8.2 GHz to 12.4 GHz. The dielectric loss increased with increasing Ti3SiC2 content, while the magnetic loss decreased. The electromagnetic parameters of the hybrid FeCrAl/Ti3SiC2 powders could be adjusted by adding various contents of Ti3SiC2. The hybrid powder with 20 wt.% Ti3SiC2 and 80 wt.% FeCrAl presented the most favorable microwave absorption performance. For the sample with thickness of 2.6 mm, effective absorption (<-10 dB) was obtained in the frequency range from 8.4 GHz to 12.1 GHz with a minimum value of -43.6 dB at 9.7 GHz. These results indicate that hybrid FeCrAl/Ti3SiC2 powders with appropriate weight ratio present better absorption performance than FeCrAl powder alone. This study makes a significant contribution to exploration of microwave absorption materials with low density, thin thickness, broad absorption bandwidth, and strong absorptivity.

  17. Morphology-controlled synthesis and novel microwave electromagnetic properties of hollow urchin-like chain Fe-doped MnO{sub 2} under 10 T high magnetic field

    SciTech Connect

    Yuping, Duan; Jia, Zhang; Hui, Jing; Shunhua, Liu

    2011-05-15

    Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO{sub 2} with Fe, the relative complex permittivity of MnO{sub 2} and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO{sub 2} exhibits good microwave absorption capability. -- Graphical Abstract: Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized in a high magnetic field of 10 T via a simple chemical process. Display Omitted Highlights: {yields} Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized. {yields} We investigated formation mechanism and electromagnetic properties of the Fe-doped MnO{sub 2}. {yields} By doping MnO{sub 2} with Fe, the electromagnetic properties are improved obviously.

  18. Computational design for electromagnetic simulations

    NASA Astrophysics Data System (ADS)

    Glasby, Ryan Steven

    An automatic computational procedure has been developed to efficiently and accurately design the shape of complicated electromagnetic objects. These electromagnetic objects can be simulated for operation at high frequencies (˜10 GHz), and can be comprised of dissimilar materials. The automated design procedure consists of linking together an original electromagnetic field simulation tool, an original adjoint routine for obtaining sensitivity derivatives, and an original grid-smoothing tool with an existing optimization package. The electromagnetic field simulation software employs a temporally and spatially higher-order accurate Streamline Upwind/Petrov-Galerkin finite-element method that numerically solves Maxwell's equations in the time domain using implicit time stepping. The software for computing sensitivity derivatives employs a reverse-mode time-accurate discrete adjoint methodology that is formulated to automatically maintain consistency with the electromagnetic field simulation software. Grid smoothing is achieved using a spatially higher-order accurate Galerkin finite-element method that generates a numerical solution to the linear elastic equations. All computational solutions to the linear systems present in each software tool are obtained using the Generalized Minimum Residual algorithm with block diagonal preconditioning. Each software tool is implemented using a parallel processing paradigm and is therefore capable of being executed on a distributed memory supercomputer. The order of accuracy of the electromagnetic field simulation software has been determined by using comparisons with exact solutions. The field software's results were compared to the exact solution of a rectangular resonant cavity. In all cases, the order properties of the field software exceed theoretical expectations when linear, quadratic, and cubic tetrahedral elements are employed to discretize the field. To demonstrate the consistency of the adjoint-based sensitivity

  19. Electromagnetic cellular interactions.

    PubMed

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.

  20. Electromagnetic Radiation Analysis

    DTIC Science & Technology

    1978-04-10

    A methodology is given for determining whether electromagnetic radiation of sufficient strength to cause performance degradation to the test item...exists at the test item location. The results of an electromagnetic radiation effects test are used to identify the radio frequencies and electromagnetic ... radiation levels to which the test item is susceptible. Further, using a test bed, comparisons are made with the representative signal levels to

  1. Controlling electromagnetic scattering with wire metamaterial resonators.

    PubMed

    Filonov, Dmitry S; Shalin, Alexander S; Iorsh, Ivan; Belov, Pavel A; Ginzburg, Pavel

    2016-10-01

    Manipulation of radiation is required for enabling a span of electromagnetic applications. Since properties of antennas and scatterers are very sensitive to the surrounding environment, macroscopic artificially created materials are good candidates for shaping their characteristics. In particular, metamaterials enable controlling both dispersion and density of electromagnetic states, available for scattering from an object. As a result, properly designed electromagnetic environments could govern wave phenomena and tailor various characteristics. Here electromagnetic properties of scattering dipoles, situated inside a wire medium (metamaterial), are analyzed both numerically and experimentally. The effect of the metamaterial geometry, dipole arrangement inside the medium, and frequency of the incident radiation on the scattering phenomena is studied in detail. It is shown that the resonance of the dipole hybridizes with Fabry-Perot modes of the metamaterial, giving rise to a complete reshaping of electromagnetic properties. Regimes of controlled scattering suppression and super-scattering are experimentally observed. Numerical analysis is in agreement with the experiment, performed at the GHz spectral range. The reported approach to scattering control with metamaterials could be directly mapped into optical and infrared spectral ranges by employing scalability properties of Maxwell's equations.

  2. Nucleon Electromagnetic Form Factors

    SciTech Connect

    Kees de Jager

    2004-08-01

    Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.

  3. Electromagnetically Operated Counter

    DOEpatents

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  4. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  5. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  6. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  7. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  8. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties

    PubMed Central

    Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.

    2015-01-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2–12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827

  9. Computer Code Validation in Electromagnetics

    DTIC Science & Technology

    1989-06-01

    modeling code. This user perception of validity is based on documentation, peer review, user experience and computer resource management. Keywords: Electromagnetic environment effects; Electromagnetic interference; Reprints. (jhd)

  10. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    PubMed

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  11. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  12. Electromagnetic ion beam instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Foosland, D. W.; Smith, C. W.; Lee, M. A.; Goldstein, M. L.

    1984-01-01

    The linear theory of electromagnetic instabilities driven by an energetic ion beam streaming parallel to a magnetic field in a homogeneous Vlasov plasma is considered. Numerical solutions of the full dispersion equation are presented. At propagation parallel to the magnetic field, there are four distinct instabilities. A sufficiently energetic beam gives rise to two unstable modes with right-hand polarization, one resonant with the beam, the other nonresonant. A beam with sufficiently large T (perpendicular to B)/T (parallel to B) gives rise to the left-hand ion cyclotron anisotropy instability at relatively small beam velocities, and a sufficiently hot beam drives unstable a left-hand beam resonant mode. The parametric dependences of the growth rates for the three high beam velocity instabilities are presented here. In addition, some properties at oblique propagation are examined. It is demonstrated that, as the beam drift velocity is increased, relative maxima in growth rates can arise at harmonics of the ion cyclotron resonance for both right and left elliptically polarized modes.

  13. Self-Propagating Combustion Triggered Synthesis of 3D Lamellar Graphene/BaFe12O19 Composite and Its Electromagnetic Wave Absorption Properties

    PubMed Central

    Zhao, Tingkai; Ji, Xianglin; Jin, Wenbo; Yang, Wenbo; Peng, Xiarong; Duan, Shichang; Dang, Alei; Li, Hao; Li, Tiehu

    2017-01-01

    The synthesis of 3D lamellar graphene/BaFe12O19 composites was performed by oxidizing graphite and sequentially self-propagating combustion triggered process. The 3D lamellar graphene structures were formed due to the synergistic effect of the tremendous heat induced gasification as well as huge volume expansion. The 3D lamellar graphene/BaFe12O19 composites bearing 30 wt % graphene present the reflection loss peak at −27.23 dB as well as the frequency bandwidth at 2.28 GHz (< −10 dB). The 3D lamellar graphene structures could consume the incident waves through multiple reflection and scattering within the layered structures, prolonging the propagation path of electromagnetic waves in the absorbers. PMID:28336889

  14. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Spin-dependent electron transport of a waveguide with Rashba spin-orbit coupling in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Xiao, Xian-Bo; Li, Xiao-Mao; Chen, Yu-Guang

    2009-12-01

    We investigate theoretically the spin-dependent electron transport in a straight waveguide with Rashba spin-orbit coupling (SOC) under the irradiation of a transversely polarized electromagnetic (EM) field. Spin-dependent electron conductance and spin polarization are calculated as functions of the emitting energy of electrons or the strength of the EM field by adopting the mode matching approach. It is shown that the spin polarization can be manipulated by external parameters when the strength of Rashba SOC is strong. Furthermore, a sharp step structure is found to exist in the total electron conductance. These results can be understood by the nontrivial Rashba subbands intermixing and the electron intersubband transition when a finite-range transversely polarized EM field irradiates a straight waveguide.

  15. Electromagnetic properties of core-shell particles by way of electroless Ni-Fe-P alloy plating on flake-shaped diatomite

    NASA Astrophysics Data System (ADS)

    Zhang, Deyuan; Yuan, Liming; Lan, Mingming; Hu, Yanyan; Cai, Jun; Zhang, Wenqiang; Li, Haiyang

    2013-11-01

    Flake-shaped diatomite particles coated by Ni-Fe-P alloy were prepared by electroless plating technique and processed by heat treatment. The samples were characterized by SEM, EDS and XRD. The results indicated that the magnetic diatomite particles had continuous and homogeneous Ni-Fe-P coating, and the phase constitution of the Ni-Fe-P coating was transformed from an amorphous structure to a crystalline structure during heat treatment. The measured electromagnetic parameters and the calculated reflection loss suggested that heat treatment was able to enhance the microwave absorption performance of the paraffin wax based composites. In a word, the Ni-Fe-P coated diatomite particle obtained in this paper is a promising candidate for lightweight microwave absorbing inclusions.

  16. Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures

    NASA Astrophysics Data System (ADS)

    Yoshida, Ken-Ichi; Itoh, Tamitake; Tamaru, Hiroharu; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Ozaki, Yukihiro

    2010-03-01

    The electromagnetic (EM) enhancement in surface-enhanced resonance Raman scattering (SERRS) is quantitatively evaluated for rhodamine molecules adsorbed on Ag nanostructures. Polarization dependence of the plasma resonance (plasmon resonance) and the SERRS spectra from single isolated Ag nanostructures was evaluated to determine one-to-one relationship between optical anisotropy of plasma resonance, that of SERRS, and the morphology of the nanostructures. Experimental observations were compared with finite-difference time-domain calculations of the EM field induced by plasma resonance using individual morphology of the nanostructures. The experimental enhancement factor of SERRS ˜109 was consistent with that of the calculations within a factor of ˜2 for three excitation wavelengths. We conclusively fortify the indispensible importance of SERRS-EM theory with our results to design metal nanostructures generating strong EM enhancement.

  17. Electromagnetic Characterization of a Marx Pulse Generator.

    DTIC Science & Technology

    1981-07-01

    This report reviews the electrical characteristics of the Marx pulser installed in ATLAS I (TRESTLE) facility. Various individual components of the...pulser, e.g., monocone switch, central Marx column and peaker arms are studied for their electromagnetic properties. The resulting design curves and

  18. An opening electromagnetic transducer

    NASA Astrophysics Data System (ADS)

    Sun, Yanhua; Kang, Yihua

    2013-12-01

    Tubular solenoids have been widely used without any change since an electrical wire was discovered to create magnetic fields by Hans Christian Oersted in 1820 and thereby the wire was first coiled as a helix into a solenoid coil by William Sturgeon in 1823 and was improved by Joseph Henry in 1829 [see http://www.myetymology.com/encyclopedia/History_of_the_electricity.html; J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010); and F. Winterberg, Plasma Phys. 8, 541553 (1996)]. A magnetic control method of C-shaped carrying-current wire is proposed, and thereby a new opening electromagnetic transducer evidently differing from the traditional tubular solenoid is created, capable of directly encircling and centering the acted objects in it, bringing about convenient and innovative electromagnetic energy conversion for electromagnetic heating, electromagnetic excitation, physical information capture, and electro-mechanical motion used in science research, industry, and even biomedical activities.

  19. Electromagnetic and Weak Interactions

    NASA Astrophysics Data System (ADS)

    Salam, A.; Ward, J. C.

    One of the recurrent dreams in elementary particles physics is that of a possible fundamental synthesis between electro-magnetism and weak interactions [1]. The idea has its origin in the following shared characteristics…

  20. Electromagnetism in the Movies.

    ERIC Educational Resources Information Center

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  1. Electromagnetism in the Movies.

    ERIC Educational Resources Information Center

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  2. Electromagnetically induced phase grating.

    PubMed

    de Araujo, Luís E E

    2010-04-01

    I propose an electromagnetically induced phase grating based on the giant Kerr nonlinearity of an atomic medium under electromagnetically induced transparency. The atomic phase grating behaves similarly to an ideal sinusoidal phase grating, and it is capable of producing a pi phase excursion across a weak probe beam along with high transmissivity. The grating is created with arbitrarily weak fields, and diffraction efficiencies as high as 30% are predicted.

  3. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  4. Simulation of electromagnetic aspects of lightning

    NASA Technical Reports Server (NTRS)

    Baum, C. E.

    1980-01-01

    Electromagnetic processes peculiar to the direct-strike case are reviewed with respect to their implications for lightning electromagnetic simulation. At low frequencies (quasistatic) there are important surface-charge-density and corona effects in addition to the surface-current-density effects. At resonant frequencies the frequency-spectral content of the excitation and properties of the arc (attachment, detachment, time history, spatial distribution, resistance, etc.) are significant. Of great complexity in all this are nonlinear aspects of the arc and corona around the system of interest. The complexity of these various processes requires rigor in the simulator design. Potential simulation concepts are presented and their relative merits are discussed.

  5. Interpreting Electromagnetic Reflections In Glaciology

    NASA Astrophysics Data System (ADS)

    Eisen, O.; Nixdorf, U.; Wilhelms, F.; Steinhage, D.; Miller, H.

    Electromagnetic reflection (EMR) measurements are active remote sensing methods that have become a major tool for glaciological investigations. Although the basic pro- cesses are well understood, the unambiguous interpretation of EMR data, especially internal layering, still requires further information. The Antacrtic ice sheet provides a unique setting for investigating the relation between physical­chemical properties of ice and EMR data. Cold ice, smooth surface topography, and low accumulation facilitates matters to use low energy ground penetrating radar (GPR) devices to pene- trate several tens to hundreds of meters of ice, covering several thousands of years of snow deposition history. Thus, sufficient internal layers, primarily of volcanic origin, are recorded to enable studies on a local and regional scale. Based on dated ice core records, GPR measurements at various frequencies, and airborne radio-echo sound- ing (RES) from Dronning Maud Land (DML), Antarctica, combined with numerical modeling techniques, we investigate the influence of internal layering characteristics and properties of the propagating electromagnetic wave on EMR data.

  6. Compton Sources of Electromagnetic Radiation

    SciTech Connect

    Geoffrey Krafft,Gerd Priebe

    2011-01-01

    When a relativistic electron beam interacts with a high-field laser beam, intense and highly collimated electromagnetic radiation will be generated through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens-of-MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review article, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to date, and the prospects of radiation sources of this general type. Due to the possibilities of producing hard electromagnetic radiation in a device that is small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future.

  7. Electromagnetic scattering from turbulent plasmas

    SciTech Connect

    Resendes, D.G. Instituto Superior Tecnico, Rua Rovisco Pais, Lisboa )

    1992-11-15

    A self-consistent multiple-scattering theory of vector electromagnetic waves scattered from a turbulent plasma is presented. This approach provides a general and systematic treatment to all orders in turbulence of the scattering of electromagnetic waves in terms of the properties of the turbulent structure of the scattering system and is applicable in the full regime from underdense to overdense plasmas. To illustrate the theory, a plasma consisting of a finite number density of discrete scatterers with a simple geometry and statistical properties is chosen. In this approach the exact solution for a single scatterer is obtained first. From it the configuration-dependent solution for {ital N} scatterers is constructed. Rather than solving explicitly for this solution and then averaging, the averaging operation will be taken first in order to find an approximate equation obeyed by the mean or coherent field. The coherent and incoherent scattering are then determined in terms of the coherent field and the backscatter is evaluated. The coherent and incoherent scattering, our principal results, are expressed in a plane-wave basis in a form suitable for numerical computation. A number of interesting phenomena which may readily be incorporated into the theory are indicated.

  8. Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite.

    PubMed

    Hsiao, Sheng-Tsung; Ma, Chen-Chi M; Tien, Hsi-Wen; Liao, Wei-Hao; Wang, Yu-Sheng; Li, Shin-Ming; Yang, Chih-Yu; Lin, Sheng-Chi; Yang, Ruey-Bin

    2015-02-04

    Flexible and lightweight graphene nanosheet (GN)/waterborne polyurethane (WPU) composites which exhibit high electrical conductivity and electromagnetic shielding performance were prepared. Covalently modifying GNs with aminoethyl methacrylate (AEMA; AEMA-GNs) through free radical polymerization effectively inhibited the restacking and aggregation of the GNs because of the -NH3(+) functional groups grafted on the AEMA-GNs. Moreover, the AEMA-GNs exhibited high compatibility with a WPU matrix with grafted sulfonated functional groups because of the electrostatic attraction, which caused the AEMA-GNs to homogeneously disperse in the WPU matrix. This homogeneous distribution enabled the GNs to form electrically conductive networks. Furthermore, AEMA-GNs with different amounts of AEMA segments were introduced into the WPU matrix, and the effects of the surface chemistry of the GNs on the electrical conductivity and EMI shielding performance of composites were investigated. AEMA-GN/WPU composites with a GN loading of 5 vol % exhibited remarkable electrical conductivity (approximately 43.64 S/m) and EMI shielding effectiveness (38 dB) over the frequency of 8.2 to 12.4 GHz.

  9. Electromagnetic interference reduction design of alternating integrator for EAST

    NASA Astrophysics Data System (ADS)

    Liu, D. M.; Wan, B. N.; Li, J.; Wang, Y.; Shen, B.; Gong, X. Z.; He, Y. G.

    2016-11-01

    An alternating integrator has been designed for the Experimental Advanced Superconducting Tokamak that is intended for long pulse operation of up to 1000 s. The electromagnetic operating environment for the device is so complex that it could affect the performance of the integrator. The new integrator system is carefully designed and actualized based on specific reduced electromagnetic interference requirements, which were formulated based on consideration of processing of the input signals, the isolation properties, and the circuit board layout and grounding. The developed integrator shows excellent electromagnetic compatibility and low-drift properties.

  10. Resolution in Electromagnetic Prospecting

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Schramm, K. A.

    2014-12-01

    Low-frequency electromagnetic (EM) signals are commonly used in geophysical exploration of the shallow subsurface. Sensitivity to conductivity implies they are particularly useful for inferring fluid content of porous media. However, low-frequency EM wavefields are diffusive, and have significantly larger wavelengths compared to seismic signals of equal frequency. The wavelength of a 30 Hz sinusoid propagating with seismic velocity 3000 m/s is 100 m, whereas an analogous EM signal diffusing through a conductive body of 0.1 S/m (clayey shale) has wavelength 1825 m. The larger wavelength has implications for resolution of the EM prospecting method. We are investigating resolving power of the EM method via theoretical and numerical experiments. Normal incidence plane wave reflection/transmission by a thin geologic bed is amenable to analytic solution. Responses are calculated for beds that are conductive or resistive relative to the host rock. Preliminary results indicate the classic seismic resolution/detection limit of bed thickness ~1/8 wavelength is not achieved. EM responses for point or line current sources recorded by general acquisition geometries are calculated with a 3D finite-difference algorithm. These exhibit greater variability which may allow inference of bed thickness. We also examine composite responses of two point scatterers with separation when illuminated by an incident EM field. This is analogous to the Rayleigh resolution problem of estimating angular separation between two light sources. The First Born Approximation implies that perturbations in permittivity, permeability, and conductivity have different scattering patterns, which may be indicators of EM medium properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Ten-gram scale SiC@SiO2 nanowires: high-yield synthesis towards industrialization, in situ growth mechanism and their peculiar photoluminescence and electromagnetic wave absorption properties.

    PubMed

    Li, Z J; Yu, H Y; Song, G Y; Zhao, J; Zhang, H; Zhang, M; Meng, A L; Li, Q D

    2017-02-01

    SiC@SiO2 nanowires, as a functional nanocomposite, have attracted widespread attention due to their fascinating performance and broad application prospect. However, the low-cost, high yield preparation of large-scale SiC@SiO2 nanowires is still a bottleneck, which hinders their industrial application. Herein, a carbothermal reduction strategy has been developed to synthesize SiC@SiO2 nanowires, which breaks through the handicap of the traditional growth pattern that uses the aid of a substrate. Systematic characterization results illustrate that the yield of the as-obtained products greatly depends on the heating rate, and ten-gram scale SiC@SiO2 nanowires (∼27.2 g) composed of a cubic β-SiC core and homogeneous amorphous SiO2 coating are achieved under the optimum process parameters. The in situ mechanisms of expansion-insertion-growth and inhibition of expansion-package-obstruction are proposed to rationally interpret the growth process of SiC@SiO2 nanowires and the effect of various heating rates, respectively. Furthermore, the SiC@SiO2 nanowires display violet-blue photoluminescence and electromagnetic wave absorption properties. This study not only provides some beneficial suggestions for the commercial production of SiC@SiO2 nanowires, but also reveals promising applications of SiC@SiO2 nanowires in the optical and electromagnetic shielding fields. Moreover, the developed novel in situ growth mechanism enriches the growth theory of one-dimension nanomaterials and offers inspiration for their industrial-scale production.

  12. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  13. Controlling the Electromagnetic Field Confinement with Metamaterials

    PubMed Central

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-01-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained. PMID:27886230

  14. Controlling the Electromagnetic Field Confinement with Metamaterials

    NASA Astrophysics Data System (ADS)

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-11-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained.

  15. Nonreciprocal Electromagnetic Devices in Gyromagnetic Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yuan; Liu, Rong-Juan; Gan, Lin; Fu, Jin-Xin; Lian, Jin

    2014-01-01

    Gyromagnetic photonic crystal (GPC) offers a promising way to realize robust transport of electromagnetic waves against backscattering from various disorders, perturbations and obstacles due to existence of unique topological electromagnetic states. The dc magnetic field exerting upon the GPC brings about the time-reversal symmetry breaking, splits the band degeneracy and opens band gaps where the topological chiral edge states (CESs) arise. The band gap can originate either from long-range Bragg-scattering effect or from short-range localized magnetic surface plasmon resonance (MSP). These topological edge states can be explored to construct backscattering-immune one-way waveguide and other nonreciprocal electromagnetic devices. In this paper we review our recent theoretical and experimental studies of the unique electromagnetic properties of nonreciprocal devices built in GPCs. We will discuss various basic issues like experimental instrumental setup, sample preparations, numerical simulation methods, tunable properties against magnetic field, band degeneracy breaking and band gap opening and creation of topological CESs. We will investigate the unidirectional transport properties of one-way waveguide under the influence of waveguide geometries, interface morphologies, intruding obstacles, impedance mismatch, lattice disorders, and material dissipation loss. We will discuss the unique coupling properties between one-wave waveguide and resonant cavities and their application as novel one-way bandstop filter and one-way channel-drop filter. We will also compare the CESs created in the Bragg-scattering band gap and the MSP band gap under the influence of lattice disorders. These results can be helpful for designing and exploring novel nonreciprocal electromagnetic devices for optical integration and information processing.

  16. Electromagnetic pion form factor

    SciTech Connect

    Roberts, C.D.

    1995-08-01

    A phenomenological Dyson-Schwinger/Bethe-Salpeter equation approach to QCD, formalized in terms of a QCD-based model field theory, the Global Color-symmetry Model (GCM), was used to calculate the generalized impulse approximation contribution to the electromagnetic pion form factor at space-like q{sup 2} on the domain [0,10] GeV{sup 2}. In effective field theories this form factor is sometimes understood as simply being due to Vector Meson Dominance (VMD) but this does not allow for a simple connection with QCD where the VMD contribution is of higher order than that of the quark core. In the GCM the pion is treated as a composite bound state of a confined quark and antiquark interacting via the exchange of colored vector-bosons. A direct study of the quark core contribution is made, using a quark propagator that manifests the large space-like-q{sup 2} properties of QCD, parameterizes the infrared behavior and incorporates confinement. It is shown that the few parameters which characterize the infrared form of the quark propagator may be chosen so as to yield excellent agreement with the available data. In doing this one directly relates experimental observables to properties of QCD at small space-like-q{sup 2}. The incorporation of confinement eliminates endpoint and pinch singularities in the calculation of F{sub {pi}}(q{sup 2}). With asymptotic freedom manifest in the dressed quark propagator the calculation yields q{sup 4}F{sub {pi}}(q{sup 2}) = constant, up to [q{sup 2}]- corrections, for space-like-q{sup 2} {approx_gt} 35 GeV{sup 2}, which indicates that soft, nonperturbative contributions dominate the form factor at presently accessible q{sup 2}. This means that the often-used factorization Ansatz fails in this exclusive process. A paper describing this work was submitted for publication. In addition, these results formed the basis for an invited presentation at a workshop on chiral dynamics and will be published in the proceedings.

  17. Electromagnetic transport properties and magnetoresistance of La{sub 0.7}Ca{sub 0.2}Sr{sub 0.1}MnO{sub 3}-Ag composites prepared by electroless process

    SciTech Connect

    Xiong, C.S. Cui, Y.F.; Xiong, Y.H.; Pi, H.L.; Bao, X.C.; Huang, Q.P.; Zeng, Y.; Wei, F.F.; Zheng, C.F.; Zhu, J.

    2008-09-15

    A series of bulk polycrystalline La{sub 0.7}Ca{sub 0.2}Sr{sub 0.1}MnO{sub 3} (LCSMO)-Ag composites were prepared by electroless plating process and several kinds of physical properties have been studied systemically. According to the results of X-ray diffraction (XRD), scanning electron microscopy (SEM), and electromagnetic transport properties, we can see that Ag-added segregated at the surfaces or interfaces of LCSMO grains. The metal-insulator transition temperature (T{sub P}) and Curie temperature (T{sub c}) were almost unchanged but {rho} decreased with increasing plating time. We also observed Ag-added can significantly enhance the magnetoresistance (MR) near T{sub P} under a low applied field (3000 Oe) and the room temperature MR reached to 35% under 20 kOe, which is encouraging for practical applications. We can suggest that improved grain boundary effect by Ag-added is responsible for the enhancement. - Graphical abstract: Magnetic field dependence of the MR for the composites at 298 K. The inset is the different silver-plating time dependence of the variation of MR at 2 T.

  18. On electromagnetic and quantum invisibility

    NASA Astrophysics Data System (ADS)

    Mundru, Pattabhiraju Chowdary

    The principle objective of this dissertation is to investigate the fundamental properties of electromagnetic wave interactions with artificially fabricated materials i.e., metamaterials for application in advanced stealth technology called electromagnetic cloaking. The main goal is to theoretically design a metamaterial shell around an object that completely eliminates the dipolar and higher order multipolar scattering, thus making the object invisible. In this context, we developed a quasi-effective medium theory that determines the optical properties of multi-layered-composites beyond the quasi-static limit. The proposed theory exactly reproduces the far-field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the composite system are introduced. In the large wavelength limit, our theory is consistent with Maxwell-Garnett formalism. Possible applications in determining the hybridization particle resonances of multi-shell structures and electromagnetic cloaking are identified. This dissertation proposes a multi-shell generic cloaking system. A transparency condition independent of the object's optical and geometrical properties is proposed in the quasi-static regime of operation. The suppression of dipolar scattering is demonstrated in both cylindrically and spherically symmetric systems. A realistic tunable low-loss shell design is proposed based on the composite metal-dielectric shell. The effects due to dissipation and dispersion on the overall scattering cross-section are thoroughly evaluated. It is shown that a strong reduction of scattering by a factor of up to 103 can be achieved across the entire optical spectrum. Full wave numerical simulations for complex shaped particle are performed to validate the analytical theory. The proposed design does not require optical magnetism and is generic in the sense that it is independent of the object's material and geometrical properties. A generic

  19. Synthesis and electro-magnetic properties of flower-like Fe2O3-Ag nanocomposite using direct subsidence loading method

    NASA Astrophysics Data System (ADS)

    Zhou, Xing; Wu, Zhengying; Xu, Nan; Liu, Shouqing; Zhao, Guizhe; Liu, Yaqing

    2015-10-01

    Novel flower-like Fe2O3/Ag nanocomposites were synthesized by a simple direct subsidence loading method. The composition and morphology of the obtained samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SEAD) techniques. The Ag nanoparticles which loaded on the surface of petals exhibit spherical morphology. Further, the magnetic and electrical conductive properties reveal the well controllable performance. Room temperature magnetic measurement of the flower-like nanocomposites demonstrated its ferromagnetic properties and the saturation magnetization (Ms) decreased from 0.6 to 0.11 emu/g.

  20. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  1. [Electromagnetic fields hypersensitivity].

    PubMed

    Sobiczewska, Elzbieta; Szmigielski, Stanisław

    2009-01-01

    The development of industry, particularly of new technologies in communication systems, gives rise to the number and diversty of electromagnetic field (EMF) sources in the environment. These sources, including power-frequent, radiofrequent and microwaves, make human life richer, safer and easier. But at the same time, there is growing concern about possible health risks connected with EMF exposure. An increasing number of persons have recently reported on a variety of health problems induced, in their opinion, by exposure to EMF. It is important to note that EMF levels to which these individuals are exposed are generally well below the recommended exposure limits and are certainly far below those known to produce any adverse effects. These persons call themselves "electromagnetic hypersensitivity individuals" And complain about experiencing various types of non-specific symptoms, including dermatological, neurological and vegetative. In the present paper, the problem of electromagnetic hypersensitivity phenomenon is discussed based on the recently published literature.

  2. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  3. Seismic electromagnetic study in China

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua

    2016-04-01

    Seismo-electromagnetism is becoming a hot interdisciplinary study in both geosciences and electromagnetism. Numerous electromagnetic changes at a broad range of frequencies associated with earthquakes have been reported independently. There are some attempts of applying such electromagnetic data to short-term earthquake prediction. Although due to the complexity of seismogenic process and underground structure, the seismic electromagnetic phenomena cannot be fully understood, the seismic electromagnetic study plays a key role in the mitigation of seismic hazard. China is one of the countries which have the earliest reports on seismo-electromagnetic phenomena. The seismic electromagnetic study in China started in late 1960's. There are almost 50 years continuous observation data up to now, which provides a unique database for seismo-electromagnetic study not only in China, but also in the world. Therefore, seismo-electromagnetic study in China is interested broadly by international communities of geosciences and electromagnetism. I present here a brief review on seismic electromagnetic study in China, especially focusing on geo-electromagnetic observation and empirical prediction based on the observation data. After summarizing various electromagnetic observations such as apparent resistivity, geoelectric potential, geomagnetic field, electromagnetic disturbance, and so on, I show the cases of the empirical prediction based on the observed electromagnetic data associated with some earthquakes in China. Finally, based on the above review, I propose an integrated research scheme of earthquake-related electromagnetic phenomena, which includes the interaction between appropriate observations, robust methodology of data processing, and theoretical model analysis. This study is supported partially by the National Natural Science Foundation of China (41274075) and the National Basic Research Program of China (2014CB845903).

  4. Elastic metamaterials for tuning circular polarization of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.

    2016-06-01

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  5. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  6. Elastic metamaterials for tuning circular polarization of electromagnetic waves.

    PubMed

    Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A

    2016-06-20

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  7. Advanced Fast 3D Electromagnetic Solver for Microwave Tomography Imaging.

    PubMed

    Simonov, Nikolai; Kim, Bo-Ra; Lee, Kwang-Jae; Jeon, Soon-Ik; Son, Seong-Ho

    2017-06-07

    This paper describes a fast forward electromagnetic solver (FFS) for the image reconstruction algorithm of our microwave tomography (MT) system. Our apparatus is a preclinical prototype of a biomedical imaging system, designed for the purpose of early breast cancer detection. It operates in the 3-6 GHz frequency band using a circular array of probe antennas immersed in a matching liquid; it produces image reconstructions of the permittivity and conductivity profiles of the breast under examination. Our reconstruction algorithm solves the electromagnetic inverse problem and takes into account the real electromagnetic properties of the probe antenna array as well as the influence of the patient's body and that of the upper metal screen sheet. This FFS algorithm is much faster than conventional electromagnetic simulation solvers. In comparison, in the same PC, the CST solver takes ~45 min, while the FFS takes ~1 s of effective simulation time for the same electromagnetic model of a numerical breast phantom.

  8. Elastic metamaterials for tuning circular polarization of electromagnetic waves

    PubMed Central

    Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.

    2016-01-01

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212

  9. High temperature electromagnetic characterization of thermal protection system tile materials

    NASA Technical Reports Server (NTRS)

    Heil, Garrett G.

    1993-01-01

    This study investigated the impact of elevated temperatures on the electromagnetic performance of the LI-2200 thermal protection system. A 15-kilowatt CO2 laser was used to heat an LI-2200 specimen to 3000 F while electromagnetic measurements were performed over the frequency range of l9 to 21 GHz. The electromagnetic measurement system consisted of two Dual-Lens Spot-Focusing (DLSF) antennas, a sample support structure, and an HP-8510B vector network analyzer. Calibration of the electromagnetic system was accomplished with a Transmission-Reflection-Line (TRL) procedure and was verified with measurements on a two-layer specimen of known properties. The results of testing indicated that the LI-2200 system's electromagnetic performance is slightly temperature dependent at temperatures up to 3000 F.

  10. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  11. Improved Electromagnetic Brake

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  12. Volcano-electromagnetic effects

    USGS Publications Warehouse

    Johnston, Malcolm J. S.

    2007-01-01

    Volcano-electromagnetic effects—electromagnetic (EM) signals generated by volcanic activity—derive from a variety of physical processes. These include piezomagnetic effects, electrokinetic effects, fluid vaporization, thermal demagnetization/remagnetization, resistivity changes, thermochemical effects, magnetohydrodynamic effects, and blast-excited traveling ionospheric disturbances (TIDs). Identification of different physical processes and their interdependence is often possible with multiparameter monitoring, now common on volcanoes, since many of these processes occur with different timescales and some are simultaneously identified in other geophysical data (deformation, seismic, gas, ionospheric disturbances, etc.). EM monitoring plays an important part in understanding these processes.

  13. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  14. Electromagnetic power absorber

    NASA Technical Reports Server (NTRS)

    Iwasaki, R. S. (Inventor)

    1979-01-01

    A structure is presented with a surface portion of dielectric material which passes electromagnetic radiation and with a portion below the surface which includes material that absorbs the radiation, the face of the structure being formed with numerous steep ridges. The steepness of the dielectric material results in a high proportion of the electromagnetic energy passing through the surface for absorption by the absorbing material under the surface. A backing of aluminum or other highly heat-conductive and reflective material lies under the face and has very steep protuberances supporting the absorbing and dielectric materials.

  15. Electromagnetic probes of the QGP

    NASA Astrophysics Data System (ADS)

    Bratkovskaya, E. L.; Linnyk, O.; Cassing, W.

    2015-05-01

    We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow v2 of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleusnucleus collisions can be employed to shed some more light on the origin of the photon v2 "puzzle". While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

  16. Electromagnetic Transmission Through Resonant Structures

    NASA Astrophysics Data System (ADS)

    Young, Steven M.

    Electromagnetic resonators store energy in the form of oscillatory electric and magnetic fields and gradually exchange that energy by coupling with their environment. This coupling process can have profound effects on the transmission and reflection properties of nearby interfaces, with rapid transitions from high transmittance to high reflectance over narrow frequency ranges, and has been exploited to design useful optical components such as spectral filters and dielectric mirrors. This dissertation includes analytic, numeric, and experimental investigations of three different electromagnetic resonators, each based on a different method of confining electromagnetic fields near the region of interest. First, we show that a structure with two parallel conducting plates, each containing a subwavelength slit, supports a localized resonant mode bound to the slits and therefore exhibits (in the absence of nonradiative losses), perfect resonant transmission over a narrow frequency range. In practice, the transmission is limited by conduction losses in the sidewalls; nevertheless, experimental results at 10 GHz show a narrowband transmission enhancement by a factor of 104 compared to the non-resonant transmission, with quality factor (ratio of frequency to peak width) Q ~ 3000. Second, we describe a narrowband transmission filter based on a single-layer dielectric grating. We use a group theory analysis to show that, due to their symmetry, several of the grating modes cannot couple to light at normal incidence, while several others have extremely large coupling. We then show how selectively breaking the system symmetry using off-normal light incidence can produce transmission peaks by enabling weak coupling to some of the previously protected modes. The narrowband filtering capabilities are validated by an experimental demonstration in the long wavelength infrared, showing transmission peaks of quality factor Q ~ 100 within a free-spectral range of 8-15 mum. Third, we

  17. Electro-magnetic transport and rectifying property of Fe{sub 2.5}Mn{sub 0.5}O{sub 4}/p-Si heterojunction

    SciTech Connect

    Aireddy, H.; Das, A. K.

    2016-05-06

    Fe{sub 2.5}Mn{sub 0.5}O{sub 4}/p-Si heterojunction was fabricated using a pulsed laser deposition technique and investigated it’s structural and electrical transport properties. The high-resolution transmission electron microscopy results reveal the formation of a polycrystalline film on silicon substrate. The heterojunction shows good rectifying property and giant negative junction magnetoresistance especially in reverse bias condition at room temperature. The origin of this giant negative junction magnetoresistance may be attributing to the injection of electrons to the majority spin-up band of the Fe{sub 2.5}Mn{sub 0.5}O{sub 4} film.

  18. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Entanglement Properties Between Two Spatially Separated Atoms with Cascade Configuration in Free Space

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Hui; Zhang, Jun-Feng; Miao, Xiang-Yang; Zhou, Ling

    2010-03-01

    We investigate the entanglement properties between two identical atoms with cascade configuration through the retarded dipole-dipole interaction in free space when their spatial separation is on the order of radiation wavelength or less. We analyze the function of Hamiltonian induced by dipole-dipole interaction. By solving master equation, we show that the spontaneous emission induce entanglement and destroy entanglement too. We also show the long life time of entanglement within cascade configuration.

  19. Large grain CBMM Nb ingot slices: An ideal test bed for exploring the microstructure-electromagnetic property relationships relevant to SRF

    DOE PAGES

    Sung, Zu -Hawn; Lee, Peter J.; Polyanskii, Anatolii; ...

    2015-12-04

    High purity (RRR > 200), large grain (> 5-10 cm) niobium ingot slices have been successfully used to fabricate radio frequency (RF) cavities for particle accelerators. In addition, they offer significantly reduced fabrication cost by eliminating processing steps and furthermore they provide the opportunity to study the influence of individual grain boundaries in SRF Nb. Here we summarize our measurements of grain boundary (GB) effects on the superconducting properties of large grain high purity niobium sheet manufactured by CBMM. We show by magneto-optical (MO) imaging that GBs allow premature flux penetration, but only when they are oriented close to themore » direction of the magnetic field. However, even low angle GBs produced by minor deformations commensurate with half-cell forming produce localized flux penetration. The transport properties of grain boundaries were investigated by direct transport across them and evidence for preferential vortex flow along the GBs of SRF Nb was observed for the first time. Using transmission electron microscopy (TEM) and micro crystallographic analysis with electron backscattered diffraction (EBSD), we were able to quantitatively characterize surface substructures that can lead to localized thermal breakdown of superconductivity. Important to these studies was the development of sample preparation techniques that made the cut-out single, bi-crystal and tri-crystal Nb coupons as representative as possible of the surface properties of cavities manufactured by standard techniques.« less

  20. Large grain CBMM Nb ingot slices: An ideal test bed for exploring the microstructure-electromagnetic property relationships relevant to SRF

    SciTech Connect

    Sung, Zu-Hawn; Lee, Peter J. Polyanskii, Anatolii Balachandran, Shreyas Chetri, Santosh; Larbalestier, David C.

    2015-12-04

    High purity (RRR > 200), large grain (> 5-10 cm) niobium ingot slices have been successfully used to fabricate radio frequency (RF) cavities for particle accelerators. They offer significantly reduced fabrication cost by eliminating processing steps and furthermore they provide the opportunity to study the influence of individual grain boundaries in SRF Nb. Here we summarize our measurements of grain boundary (GB) effects on the superconducting properties of large grain high purity niobium sheet manufactured by CBMM. We show by magneto-optical (MO) imaging that GBs allow premature flux penetration, but only when they are oriented close to the direction of the magnetic field. However, even low angle GBs produced by minor deformations commensurate with half-cell forming produce localized flux penetration. The transport properties of grain boundaries were investigated by direct transport across them and evidence for preferential vortex flow along the GBs of SRF Nb was observed for the first time. Using transmission electron microscopy (TEM) and micro crystallographic analysis with electron backscattered diffraction (EBSD), we were able to quantitatively characterize surface substructures that can lead to localized thermal breakdown of superconductivity. Important to these studies was the development of sample preparation techniques that made the cutout single, bi-crystal and tri-crystal Nb coupons as representative as possible of the surface properties of cavities manufactured by standard techniques.

  1. Large grain CBMM Nb ingot slices: An ideal test bed for exploring the microstructure-electromagnetic property relationships relevant to SRF

    SciTech Connect

    Sung, Zu -Hawn; Lee, Peter J.; Polyanskii, Anatolii; Balachandran, Shreyas; Chetri, Santosh; Larbalestier, David C.; Wang, Mingmin; Compton, Christopher; Bieler, Thomas R.

    2015-12-04

    High purity (RRR > 200), large grain (> 5-10 cm) niobium ingot slices have been successfully used to fabricate radio frequency (RF) cavities for particle accelerators. In addition, they offer significantly reduced fabrication cost by eliminating processing steps and furthermore they provide the opportunity to study the influence of individual grain boundaries in SRF Nb. Here we summarize our measurements of grain boundary (GB) effects on the superconducting properties of large grain high purity niobium sheet manufactured by CBMM. We show by magneto-optical (MO) imaging that GBs allow premature flux penetration, but only when they are oriented close to the direction of the magnetic field. However, even low angle GBs produced by minor deformations commensurate with half-cell forming produce localized flux penetration. The transport properties of grain boundaries were investigated by direct transport across them and evidence for preferential vortex flow along the GBs of SRF Nb was observed for the first time. Using transmission electron microscopy (TEM) and micro crystallographic analysis with electron backscattered diffraction (EBSD), we were able to quantitatively characterize surface substructures that can lead to localized thermal breakdown of superconductivity. Important to these studies was the development of sample preparation techniques that made the cut-out single, bi-crystal and tri-crystal Nb coupons as representative as possible of the surface properties of cavities manufactured by standard techniques.

  2. Large grain CBMM Nb ingot slices: An ideal test bed for exploring the microstructure-electromagnetic property relationships relevant to SRF

    NASA Astrophysics Data System (ADS)

    Sung, Zu-Hawn; Lee, Peter J.; Polyanskii, Anatolii; Balachandran, Shreyas; Chetri, Santosh; Larbalestier, David C.; Wang, Mingmin; Compton, Christopher; Bieler, Thomas R.

    2015-12-01

    High purity (RRR > 200), large grain (> 5-10 cm) niobium ingot slices have been successfully used to fabricate radio frequency (RF) cavities for particle accelerators. They offer significantly reduced fabrication cost by eliminating processing steps and furthermore they provide the opportunity to study the influence of individual grain boundaries in SRF Nb. Here we summarize our measurements of grain boundary (GB) effects on the superconducting properties of large grain high purity niobium sheet manufactured by CBMM. We show by magneto-optical (MO) imaging that GBs allow premature flux penetration, but only when they are oriented close to the direction of the magnetic field. However, even low angle GBs produced by minor deformations commensurate with half-cell forming produce localized flux penetration. The transport properties of grain boundaries were investigated by direct transport across them and evidence for preferential vortex flow along the GBs of SRF Nb was observed for the first time. Using transmission electron microscopy (TEM) and micro crystallographic analysis with electron backscattered diffraction (EBSD), we were able to quantitatively characterize surface substructures that can lead to localized thermal breakdown of superconductivity. Important to these studies was the development of sample preparation techniques that made the cutout single, bi-crystal and tri-crystal Nb coupons as representative as possible of the surface properties of cavities manufactured by standard techniques.

  3. Weak and electromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    One of the recurrent dreams in elementary particle physics is that of a possible fundamental synthesis between electromagnetism and weak interaction. The idea has its origin in the following shared characteristics: 1. Both forces affect equally all forms of matter -leptons as well as hadrons. 2. Both are vector in character. 3. Both (individually) possess universal coupling strengths.

  4. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  5. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  6. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  7. Optical electromagnetic radiation detector

    NASA Astrophysics Data System (ADS)

    Miceli, W. J.; Ludman, J. E.

    1985-08-01

    An optical electromagnetic radiation detector is invented having a probe for receiving nearby electromagnetic radiation. The probe includes a loop antenna connected to a pair of transparent electrodes deposited on the end surfaces of an electro-optic Fabry-Perot interferometer. When the loop antenna picks up the presence of electromagnetic radiation, a voltage will be developed across the crystal of the electro-optic Fabry-Perot interferometer thereby changing the optical length of the interferometer. A beam of light from a remote location is transmitted through an optical fiber onto the Fabry-Perot interferometer. The change in optical length of the Fabry-Perot interferometer alters the intensity of the beam of light as its is reflected from the Fabry-Perot interferometer back through the optical fiber to the remote location. A beamsplitter directs this reflected beam of light onto an intensity detector in order to provide an output indicative of the variations in intensity. The variations in intensity are directly related to the strength of the electromagnetic radiation received by the loop antenna.

  8. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  9. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  10. Electromagnetic pulse bombs' defense

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wang, Yongbin; Li, Juan; Wang, Jianzhong

    2007-11-01

    With the high power microwave devices development, the high power microwave electromagnetic pulse bombs (E-bombs) have become practical abroad. The development of conventional E-bombs devices allows their use in nonnuclear confrontations. E-bombs are powerful enough to damage communication, radar, navigation and computer systems. This paper discusses effects of EMP on electrical system and how to defend the EMP.

  11. Computational Electronics and Electromagnetics

    SciTech Connect

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  12. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    SciTech Connect

    Navarro, Roberto E. Muñoz, Víctor; Araneda, Jaime; Moya, Pablo S.; Viñas, Adolfo F.; Valdivia, Juan A.

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  13. Electromagnetic Levitation: A Useful Tool in Microgravity Research

    NASA Technical Reports Server (NTRS)

    Szekely, Julian; Schwartz, Elliot; Hyers, Robert

    1995-01-01

    Electromagnetic levitation is one area of the electromagnetic processing of materials that has uses for both fundamental research and practical applications. This technique was successfully used on the Space Shuttle Columbia during the Spacelab IML-2 mission in July 1994 as a platform for accurately measuring the surface tensions of liquid metals and alloys. In this article, we discuss the key transport phenomena associated with electromagnetic levitation, the fundamental relationships associated with thermophysical property measurement that can be made using this technique, reasons for working in microgravity, and some of the results obtained from the microgravity experiments.

  14. Gauge-covariant bimetric tetrad theory of gravitation and electromagnetism

    SciTech Connect

    Israelit, M.

    1989-01-01

    In order to get to a geometrically based theory of gravitation and electromagnetism, a gauge covariant bimetric tetrad space-time is introduced. The Weylian connection vector is derived from the tetrads and it is identified with the electromagnetic potential vector. The formalism is simplified by the use of gauge-invariant quantities. The theory contains a contorsion tensor that is connected with spinning properties of matter. The electromagnetic field may be induced by conventional sources and by spinning matter. In absence of spinning matter, the equations are identical with those of the gauge-covariant bimetric theory.

  15. Extremely Low Frequency Electromagnetic Investigation on Mars

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, Joanna; Kulak, Andrzej; Kubisz, Jerzy; Zietara, Krzysztof

    2016-11-01

    Natural electromagnetic (EM) signals of extremely low frequencies (ELF, 3 Hz-3 kHz) can be used to study many of the electromagnetic processes and properties occurring in the Martian environment. Sources of these signals, related to electrical activity in the atmosphere, are very significant since they can influence radio wave propagation on the planet, the atmospheric composition, and the ionospheric structure. In addition, such EM signals can be employed in many purposes such as: surveying the subsurface of Mars or studying the impact of the space weather on the Martian ionosphere. As ELF waves propagate on very long distances, it is possible to explore properties of the entire planet using single-station recordings. In this study, we propose an experiment that allows measuring ELF signals from the Martian surface. Such measurements can be used for detection of electric discharges in the atmosphere and water reservoirs in the planetary subsurface.

  16. The van Cittert-Zernike theorem for electromagnetic fields.

    PubMed

    Ostrovsky, Andrey S; Martínez-Niconoff, Gabriel; Martínez-Vara, Patricia; Olvera-Santamaría, Miguel A

    2009-02-02

    The van Cittert-Zernike theorem, well known for the scalar optical fields, is generalized for the case of vector electromagnetic fields. The deduced theorem shows that the degree of coherence of the electromagnetic field produced by the completely incoherent vector source increases on propagation whereas the degree of polarization remains unchanged. The possible application of the deduced theorem is illustrated by an example of optical simulation of partially coherent and partially polarized secondary source with the controlled statistical properties.

  17. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  18. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  19. Electromagnetic targeting of guns

    SciTech Connect

    Pogue, E.W.; Boat, R.M.; Holden, D.N.; Lopez, J.R.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Electromagnetic pulse (EMP) signals produced from explosives being fired have been reported in the literature for fifty years. When a gun is fired it produces an EMP muzzle blast signal. The strength and nature of these signals was first analyzed in the early 1970s, while the results were interesting, no follow-up studies were conducted. With modern detection and signal processing technology, we believe that these signals could be used to instantaneously locate guns of virtually all calibers as they fire. The objective of our one-year project was to establish the basic nature of these signals and their utility in the concept of electromagnetic targeting of guns.

  20. ELECTROMAGNETIC RELEASE MECHANISM

    DOEpatents

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  1. Layering fabrication, structure, and electromagnetic properties of perovskite phases by hybrid process: self-propagated high-temperature synthesis and selective laser sintering

    NASA Astrophysics Data System (ADS)

    Shishkovsky, I.; Morozov, Yu.; Kuznetsov, M.

    2013-11-01

    The paper discusses the fundamentals and the requirements for layer-by-layer manufacturing of three-dimensional porous parts from complex metal oxide systems (piezoceramics PbTi1-xZrxO3; hexaferrites - BaFe12-xCrxO19 and SrFe12O19; spinels - Li0.5Fe2.5-xCrxO4 and high-temperature superconducting ceramics (HTSC) - YBa2Cu3O7-y) and examines the main aspects of the overlapped processes associated with the self-propagated high-temperature synthesis (SHS) and selective laser sintering (SLS). These two techniques presently offered are joined as the original solutions in this external magnetic field. The perovskite phase compositions, morphology, and element distribution of the fabricated samples were analyzed by the X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped the EDX analysis. Optimal regimes for the three-dimensional (3D) parts laser synthesis and some of their electro physical properties were estimated for conducting the concurrent SHS-SLS reactions, both for the case with the applied dc magnetic field and without it.

  2. High frequency electromagnetic properties of interstitial-atom-modified Ce{sub 2}Fe{sub 17}N{sub X} and its composites

    SciTech Connect

    Li, L. Z.; Wei, J. Z.; Xia, Y. H.; Wu, R.; Yun, C.; Yang, Y. B.; Yang, W. Y.; Du, H. L.; Han, J. Z.; Liu, S. Q.; Yang, Y. C.; Wang, C. S. E-mail: jbyang@pku.edu.cn; Yang, J. B. E-mail: jbyang@pku.edu.cn

    2014-07-14

    The magnetic and microwave absorption properties of the interstitial atom modified intermetallic compound Ce{sub 2}Fe{sub 17}N{sub X} have been investigated. The Ce{sub 2}Fe{sub 17}N{sub X} compound shows a planar anisotropy with saturation magnetization of 1088 kA/m at room temperature. The Ce{sub 2}Fe{sub 17}N{sub X} paraffin composite with a mass ratio of 1:1 exhibits a permeability of μ′ = 2.7 at low frequency, together with a reflection loss of −26 dB at 6.9 GHz with a thickness of 1.5 mm and −60 dB at 2.2 GHz with a thickness of 4.0 mm. It was found that this composite increases the Snoek limit and exhibits both high working frequency and permeability due to its high saturation magnetization and high ratio of the c-axis anisotropy field to the basal plane anisotropy field. Hence, it is possible that this composite can be used as a high-performance thin layer microwave absorber.

  3. Estimating the power-law distribution of Earth electrical conductivity from low-frequency, controlled-source electromagnetic responses

    SciTech Connect

    Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.

    2016-11-30

    Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.

  4. Estimating the power-law distribution of Earth electrical conductivity from low-frequency, controlled-source electromagnetic responses

    DOE PAGES

    Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.

    2016-11-30

    Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.

  5. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  6. Ordinary electromagnetic mode instability

    NASA Technical Reports Server (NTRS)

    Cheng, C. Z.

    1974-01-01

    The instability of the ordinary electromagnetic mode propagating perpendicular to an external magnetic field is studied for a single-species plasma with ring velocity distribution. The marginal instability boundaries for both the purely growing mode and the propagating growing modes are calculated from the instability criteria. The dispersion characteristics for various sets of plasma parameters are also given. The typical growth rates are of the order of the cyclotron frequency.

  7. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  8. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  9. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  10. Proca and electromagnetic fields

    SciTech Connect

    Hillion, P.; Quinnerz, S.

    1986-07-01

    In the framework of the proper orthochronous Lorentz group, the old connection is revived between the electromagnetic field characterized by a self-dual tensor and a traceless second-rank spinor obeying the Proca equation. The relationship between this spinor and the Hertz potential also considered as a self-dual tensor is emphasized. The extension of this formalism to meet the covariance under the full Lorentz group is also discussed.

  11. Electromagnetic Hammer for Metalworking

    NASA Technical Reports Server (NTRS)

    Anderson, S. A.; Brunet, F.; Dowd, A.; Durham, R.; Ezell, J.; Gorr, G.; Hartley, D.; Jackson, F.; Marchand, J.; Macfarlane, W.; Nameth, P.; Okelly, K.; Phillips, H.; Rollo, J.; Rupert, E.; Sykes, H.; Vitrano, E.; Woods, M.

    1986-01-01

    High eddy currents apply pressure for cold-forming. Coil housing constructed for mechanical strength to hold coil against magnetic force, to maintain electrical contact with coil ends, and to maintain insulation between coil turns. Drilled holes placed to facilitate release of bubbles during potting. In contrast with mechanical hammers, electromagnetic hammer requires no dynamic material contact with workpiece; consequently, produces almost no change in metal grain structure.

  12. Earth's Electromagnetic Environment

    NASA Astrophysics Data System (ADS)

    Constable, Catherine

    2016-01-01

    The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10^{-4}-10^4 Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10^4 Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at ˜1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth's internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz-3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3-30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7-2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.

  13. Medium effect on the characteristics of the coupled seismic and electromagnetic signals.

    PubMed

    Huang, Qinghua; Ren, Hengxin; Zhang, Dan; Chen, Y John

    2015-01-01

    Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals.

  14. Medium effect on the characteristics of the coupled seismic and electromagnetic signals

    PubMed Central

    HUANG, Qinghua; REN, Hengxin; ZHANG, Dan; CHEN, Y. John

    2015-01-01

    Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals. PMID:25743062

  15. Carter separable electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.

    2000-02-01

    The purely electromagnetic analogue in flat space of Kerr's metric in general relativity is only rarely considered. Here we carry out in flat space a programme similar to Carter's investigation of metrics in general relativity in which the motion of a charged particle is separable. We concentrate on the separability of the motion (be it classical, relativistic or quantum) of a charged particle in electromagnetic fields that lie in planes through an axis of symmetry. In cylindrical polar coordinates (t,R,φ,z) the four-vector potential takes the form [formmu2] is the unit toroidal vector. The forms of the functions Φ(R,z) and A(R,z) are sought that allow separable motion. This occurs for relativistic motion only when AR,Φ and A2-Φ2 are all of the separable form ζ(λ)-η(μ)]/(λ-μ), where ζ and η are arbitrary functions, and λ and μ are spheroidal coordinates or degenerations thereof. The special forms of A and Φ that allow this are deduced. They include the Kerr metric analogue, with E+iB=-∇{q[(r-ia).(r-ia)]-1/2}. Rather more general electromagnetic fields allow separation when the motion is non-relativistic. The investigation is extended to fields that lie in parallel planes. Connections to Larmor's theorem are remarked upon.

  16. Nuclear Electromagnetic Pulse Review

    NASA Astrophysics Data System (ADS)

    Dinallo, Michael

    2011-04-01

    Electromagnetic Pulse (EMP) from nuclear detonations have been observed for well over half a century. Beginning in the mid-to-late 1950s, the physics and modeling of EMP has been researched and will continue into the foreseeable future. The EMP environment propagates hundreds of miles from its origins and causes interference for all types of electronic instrumentation. This includes military, municipal and industry based electronic infrastructures such as power generation and distribution, command and control systems, systems used in financial and emergency services, electronic monitoring and communications networks, to mention some key infrastructure elements. Research into EMP has included originating physics, propagation and electromagnetic field coupling analyses and measurement-sensor development. Several methods for calculating EMP induced transient interference (voltage and current induction) will be briefly discussed and protection techniques reviewed. These methods can be mathematically simple or involve challenging boundary value solution techniques. A few illustrative calculations will demonstrate the concern for electronic system operability. Analyses such as the Wunsch-Bell model for electronic upset or damage, and the Singularity Expansion Method (SEM) put forth by Dr. Carl Baum, will facilitate the concern for EMP effects. The SEM determines the voltages and currents induced from transient electromagnetic fields in terms of natural modes of various types of electronic platforms (aerospace vehicles or land-based assets - fixed or mobile). Full-scale facility and laboratory simulation and response measurement approaches will be discussed. The talk will conclude with a discussion of some present research activities.

  17. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  18. Understanding Io's Interior Structure from Electromagnetic Induction

    NASA Astrophysics Data System (ADS)

    Khurana, K. K.; Keszthelyi, L. P.; Jia, X.

    2015-12-01

    Io has long been suspected of a molten interior based on theoretical models of tidal dissipation in its interior. Extremely high temperature lava erupting on Io's surface would be consistent with an internal magma ocean but the highest reported eruption temperatures are questionable. Currently, the only direct evidence of a subsurface magma ocean in Io is the electromagnetic induction response observed by Galileo (Khurana et al. 2011, Science, 332, 1186). Using Jupiter's rotating magnetic field as a sounding signal, Khurana et al. (2011) provided evidence of a strong dipolar induction signature in Galileo's magnetometer data from four different flybys. They further showed that the signal is consistent with electromagnetic induction from large amounts of rock-melts in the asthenosphere of Io. Modeling showed that the induction response from a completely solid mantle model is inadequate to explain the magnetometer observations. However, a layer of asthenosphere >50 km in thickness with a melt fraction ≥20% is adequate to accurately match the observed magnetic field. Here we summarize our current knowledge of Io's interior from Galileo's induction measurements, and then outline a scheme to further infer properties of Io's interior, especially its internal temperature profile, by marrying the principles of thermodynamics with those of electromagnetism. In particular, we obtain guidance on stable mineral phases and their physical properties (such as density, melt state and electrical conductivity) from thermodynamic principles, whereas guidance on how the resulting internal conductivity profile affects the magnetic environment around Io is obtained from electromagnetic theory. We also explore how induction measurements can be obtained at multiple frequencies from a future mission and be used to constrain both the location and the thickness of the magma ocean. Finally, we explore the consequences of the global magma ocean on Io's physical properties such as the current

  19. Optimization methods in control of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Angell, Thomas S.; Kleinman, Ralph E.

    1991-05-01

    This program is developing constructive methods for certain constrained optimization problems arising in the design and control of electromagnetic fields and in the identification of scattering objects. The problems addressed fall into three categories: (1) the design of antennas with optimal radiation characteristics measured in terms of directivity; (2) the control of the electromagnetic scattering characteristics of an object, in particular the minimization of its radar cross section, by the choice of material properties; and (3) the determination of the shape of scattering objects with various electromagnetic properties from scattered field data. The main thrust of the program is toward the development of constructive methods based on the use of complete families of solutions of the time-harmonic Maxwell equations in the infinite domain exterior to the radiating or scattering body. During the course of the work an increasing amount of attention has been devoted to the use of iterative methods for the solution of various direct and inverse problems. The continued investigation and development of these methods and their application in parameter identification has become a significant part of the program.

  20. Experiments for electromagnetic levitation in microgravity

    NASA Technical Reports Server (NTRS)

    Willnecker, R.; Egry, I.

    1990-01-01

    Containerless processing is a promising research tool for investigating the properties of undercooled melts and their solidification. For conducting samples RF-electromagnetic levitation offers the possibility to obtain large undercoolings by avoiding heterogeneous nucleation at container walls. On earth, however, strong magnetic fields are needed to compensate the gravitational force which imposes a lower limit on the available temperatures and on the accessible undercooling range. Under microgravity conditions the magnetic positioning fields can be minimized and hence, undercooling becomes feasible under ultra-high vacuum conditions and lower temperatures become accessible. In contrast to other undercooling and solidification techniques, electromagnetic levitation allows for diagnostic measurements during the early steps of nucleation and phase selection. Experiments cover a wide field of research topics: nucleation, directional solidification at high velocities, generation of metastable phases, evolution of microstructures, properties of undercooled liquids. Examples from these classes including experiments selected for the IML-2 mission are discussed with emphasis on technical requirements. An overview is given on the German TEMPUS (electromagnetic levitation facility) program.

  1. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  2. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  3. One-way electromagnetic waveguide using multiferroic Fibonacci superlattices

    NASA Astrophysics Data System (ADS)

    Tang, Zhenghua; Lei, Dajun; Huang, Jianquan; Jin, Gui; Qiu, Feng; Yan, Wenyan

    2015-12-01

    The multiferroic Fibonacci superlattices (MFSs) are composed of single-phase multiferroic domains with polarization and magnetization according to the rule of Fibonacci sequence. We propose to construct a one-way electromagnetic waveguide by the MFSs. The forbidden band structures of the MFSs for the forward and backward electromagnetic waves are not completely overlapped, and an obvious translation between them occurs around the fixed point ω bar = 1 with broken time-reversal and space inversion symmetries (TRSIS), which indicates the existence of one-way electromagnetic modes in the MFSs. Transmission spectrum is utilized to present this property and to indicate further one-way electromagnetic modes lying within the polaritonic band gap. The maximum forbidden bandwidth (divided by midgap frequency) of 5.4% for the backward electromagnetic wave (BEW) is found, in which the forward electromagnetic wave (FEW) can pass. The functions of one-way propagation modes and polaritonic band gap integrated into the MFSs can miniaturize the one-way photonic devices. The properties can also be applied to construct compact microwave isolators.

  4. High-Altitude Electromagnetic Pulse (HEMP) Testing

    DTIC Science & Technology

    2015-07-09

    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 01-2-620A High-Altitude Electromagnetic Pulse (HEMP...planning and execution of testing Army/DOD equipment to determine the effects of Horizontal Component High Altitude Electromagnetic Pulse (HEMP... Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY

  5. Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model

    SciTech Connect

    Gilberto Ramalho, Kazuo Tsushima

    2011-09-01

    We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

  6. Generalized electromagnetism of subdimensional particles: A spin liquid story

    NASA Astrophysics Data System (ADS)

    Pretko, Michael

    2017-07-01

    It has recently been shown that there exists a class of stable gapless spin liquids in 3+1 dimensions described by higher-rank tensor U(1) gauge fields, giving rise to an emergent tensor electromagnetism. The tensor gauge field of these theories couples naturally to subdimensional particles (such as fractons), which are restricted by gauge invariance to move only along lower-dimensional subspaces of the system. Here we work out some of the basic generalized electromagnetic properties of subdimensional particles coupled to tensor electromagnetism, such as generalized electrostatic fields, potential formulations, Lorentz forces, Maxwell equations, and Biot-Savart laws. Some concepts from conventional electromagnetism will carry over directly, while others require significant modification.

  7. Shaping metallic glasses by electromagnetic pulsing

    PubMed Central

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  8. Shaping metallic glasses by electromagnetic pulsing

    NASA Astrophysics Data System (ADS)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-02-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  9. Electromagnetic Heat Transfer in Artificial Materials

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Drosdoff, David; Phan, Anh

    2014-03-01

    Electromagnetic energy exchange has found promising new opportunities by greatly enhancing the heat transfer between bodies via radiation in the near-field regime. The greatest heat transfer occurs when the bodies support surface plasmons or polaritons that share the same resonant frequency. It has been shown, however, that 2-D materials such as graphene can have their surface plasmons tuned by modifying the chemical potential and temperature. This allows for tuning its resonance with other systems. In this talk, we investigated the electromagnetic radiation in metamaterials characterized by a strong magnetic response. We study theoretically Pendry-like and magnetically active metamaterial/graphene composites. The possibility for enhancing or inhibiting the heat transfer via the graphene properties is investigated.

  10. Shaping metallic glasses by electromagnetic pulsing.

    PubMed

    Kaltenboeck, Georg; Demetriou, Marios D; Roberts, Scott; Johnson, William L

    2016-02-08

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  11. Tiny Electromagnetic Explosions

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher

    2017-08-01

    This paper considers electromagnetic transients of a modest total energy ({ E }≳ {10}40 erg) and small initial size ({ R }≳ {10}-1 cm). They could be produced during collisions between relativistic field structures (e.g., macroscopic magnetic dipoles) that formed around or before cosmic electroweak symmetry breaking. The outflowing energy has a dominant electromagnetic component; a subdominant thermal component (temperature > 1 GeV) supplies inertia in the form of residual {e}+/- . A thin shell forms, expanding subluminally and attaining a Lorentz factor ˜ {10}6{--7} before decelerating. Drag is supplied by the reflection of an ambient magnetic field and deflection of ambient free electrons. Emission of low-frequency (GHz-THz) superluminal waves takes place through three channels: (i) reflection of the ambient magnetic field; (ii) direct linear conversion of the embedded magnetic field into a superluminal mode; and (iii) excitation outside the shell by corrugation of its surface. The escaping electromagnetic pulse is very narrow (a few wavelengths), so the width of the detected transient is dominated by propagation effects. GHz radio transients are emitted from (i) the dark matter halos of galaxies and (ii) the near-horizon regions of supermassive black holes that formed via direct gas collapse and now accrete slowly. Brighter and much narrower 0.01-1 THz pulses are predicted at a rate at least comparable to fast radio bursts, experiencing weaker scattering and absorption. The same explosions also accelerate protons up to ˜ {10}19 eV, and heavier nuclei up to 1020-21 eV.

  12. Engineering electromagnetic metamaterials and methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yen, Tajen

    2005-07-01

    Electromagnetic metamaterials represent a group of artificial structures, whose dimensions are smaller than subwavelength. Due to electromagnetic metamaterials' collective response to the applied fields, they can exhibit unprecedented properties to fascinate researchers' eyes. For instance, artificial magnetism above terahertz frequencies and beyond, negative magnetic response, and artificial plasma lower than ultraviolet and visible frequencies. Our goal is to engineer those novel properties aforementioned at interested frequency regions and further optimize their performance. To fulfill this task, we developed exclusive micro/nano fabrication techniques to construct magnetic metamaterials (i.e., split-ring resonators and L-shaped resonators) and electric metamaterials (i.e., plasmonic wires) and also employed Taguchi method to study the optimal design of electromagnetic metamaterials. Moreover, by integrating magnetic and electric metamaterials, we have been pursuing to fabricate so-called negative index media---the Holy Grail enables not only to reverse conventional optical rules such as Snell's law, Doppler shift, and Cerenkov radiation, but also to smash the diffraction limit to realize the superlensing effect. In addition to electromagnetic metamaterials, in this dissertation we also successfully miniaturize silicon-based methanol fuel cells by means of micro-electrical-mechanical-system technique, which promise to provide an integrated micro power source with excellent performance. Our demonstrated power density and energy density are one of the highest in reported documents. Finally, based on the results of metamaterials and micro fuel cells, we intend to supply building blocks to complete an omnipotent device---a system with sensing, communication, computing, power, control, and actuation functions.

  13. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  14. Electromagnetic Meissner effect launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1991-01-01

    An electromagnetic projectile launcher provides acceleration of a superconducting projectile through the diamagnetic repulsion of the superconducting projectile. A superconducting layer is provided aft of the projectile, either directly on the projectile or on a platform upon which the projectile is carried, and a traveling magnetic field is caused to propagate along a magnetic field drive coil in which the projectile is disposed. The resulting diamagnetic repulsion between the superconducting projectile and the traveling magnetic field causes the projectile to be propelled along the coil. In one embodiment, a segmented drive coil is used to generate the traveling magnetic field.

  15. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  16. Electromagnetic strong plasma turbulence

    SciTech Connect

    Melatos, A.; Jenet, F. A.; Robinson, P. A.

    2007-02-15

    The first large-scale simulations of continuously driven, two-dimensional electromagnetic strong plasma turbulence are performed, for electron thermal speeds 0.01c{<=}v{<=}0.57c, by integrating the Zakharov equations for coupled Langmuir and transverse (T) waves near the plasma frequency. Turbulence scalings and wave number spectra are calculated, a transition is found from a mix of trapped and free T eigenstates for v{>=}0.1c to just free eigenstates for v{<=}0.1c, and wave energy densities are observed to undergo slow quasiperiodic oscillations.

  17. Advanced electromagnetic gun simulation

    NASA Astrophysics Data System (ADS)

    Brown, J. L.; George, E. B.; Lippert, J. R.; Balius, A. R.

    1986-11-01

    The architecture, software and application of a simulation system for evaluating electromagnetic gun (EMG) operability, maintainability, test data and performance tradeoffs are described. The system features a generic preprocessor designed for handling the large data rates necessary for EMG simulations. The preprocessor and postprocessor operate independent of the EMG simulation, which is viewed through windows by the user, who can then select the areas of the simulation desired. The simulation considers a homopolar generator, busbars, pulse shaping coils, the barrel, switches, and prime movers. In particular, account is taken of barrel loading by the magnetic field, Lorentz force and plasma pressure.

  18. Innovation for soil studies with electromagnetic induction techniques

    NASA Astrophysics Data System (ADS)

    Aditama, Iqbal F.; Widodo, Setiawan, Tedy; Bijaksana, Satria; Sanny, Teuku A.

    2017-07-01

    Electromagnetic methods for soil research have been applied in the worldwide over the decades. In particular Electromagnetic induction (EMI) techniques have been developed to provide more accurately soil maps. Present EMI methods can identify, characterize, and map spatially-varying soil types and properties offers better than traditional methods. In the future, the EMI techniques will be integrated with agricultural machinery and will be more effective to mapping of both lateral and vertical variations in soil properties. With that advantages, the systems should be utilized in precision agriculture more often in Indonesia. In addition, forward modelling also included in this research as a survey design tool before the outset of field campaign.

  19. STRUCTURAL RESPONSE TO INTENSE ELECTROMAGNETIC RADIATION.

    DTIC Science & Technology

    EXPLODING WIRES, *GLASS, *DAMAGE, ELECTROMAGNETIC RADIATION , ENERGY CONVERSION, ENERGY CONVERSION, ELECTROMAGNETIC RADIATION , ELECTROMAGNETIC ... RADIATION , PLASTICS, PLASMAS(PHYSICS), STRESSES, THERMAL STRESSES, INSTRUMENTATION, ELECTRICAL RESISTANCE, ELECTRIC DISCHARGES, THERMOCOUPLES, MATHEMATICAL ANALYSIS, MATHEMATICAL ANALYSIS.

  20. Metamaterials beyond electromagnetism

    NASA Astrophysics Data System (ADS)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  1. The HPS electromagnetic calorimeter

    DOE PAGES

    Balossino, I.; Baltzell, N.; Battaglieri, M.; ...

    2017-02-22

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less

  2. Electromagnetically driven liquid iris

    NASA Astrophysics Data System (ADS)

    Jang, Deasung; Jeong, Jin Won; Lee, Dae Young; Kim, Dae Geun; Chung, Sang Kug

    2016-11-01

    This paper describes a tunable liquid iris driven by electromagnetic actuation for miniature cameras. To examine the magnetic effect on a ferrofluid, the contact angle modification of a sessile ferrofluid droplet is tested using a neodymium magnet and an electric coil which 2.5 A current is applied to. The contact angle variations of the ferrofluid droplet for each test are 21.3 and 18.1 degrees, respectively. As a proof of concept, a pretest of a tunable iris actuated by electromagnetic effect is performed by using a hollow cylinder cell. As applying the current, the aperture diameter is adjusted from 4.06 mm at 0A to 3.21 mm at 2.0A. Finally, a tunable liquid iris (9 x 9 x 2 mm3) , consisting of two connected circular microchannels, is realized using MEMS technology. the aperture diameter of the tunable liquid iris is able to be modified from 1.72 mm at 0 A to 1.15 mm at 2.6 A. This tunable optical iris has potential applications not only for portable electronic devices but also in biomedical fields such as optical coherence tomography and microsurgery. This work was supported by 2016 Research Fund of Myongji University.

  3. Metamaterials beyond electromagnetism.

    PubMed

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment-all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, 'space-coiling' metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials ('meta-liquids'), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  4. Electro-magnetic compatibility

    NASA Astrophysics Data System (ADS)

    Maidment, H.

    1980-05-01

    The historical background to the growth in problems of electromagnetic compatibility (EMC) in UK Military aircraft is reviewed and the present approach for minimizing these problems during development is discussed. The importance of using representative aircraft for final EMC assessments is stressed, and the methods of approach in planning and executing such tests are also outlined. The present equipment qualification procedures are based on assumptions regarding the electromagnetic fields present within the airframe, and the nature of the coupling mechanisms. These cannot be measured with any certainty in representative aircraft. Thus EMC assessments rely on practical tests. Avionics systems critical to flight safety, and systems vital to mission effectiveness require test methods that provide a measure of the safety and performance margins available to account for variations that occur in production and service use. Some proven methods are available, notably for detonator circuits, but in most other areas further work is required. Encouraging process has been made in the use of current probes for the measurement of interfering signals on critical signal lines, in conjunction with complementary test house procedures, as a means for obtaining the safety margins required in flight and engine control systems. Performance margins for mission systems using digital techniques are difficult to determine, and there is a need for improved test techniques. The present EMC qualification tests for equipment in the laboratory do not guarantee freedom from interference when installed, and the results are limited in value for correlating with aircraft tests.

  5. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  6. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  7. The HPS electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Balossino, I.; Baltzell, N.; Battaglieri, M.; Bondì, M.; Buchanan, E.; Calvo, D.; Celentano, A.; Charles, G.; Colaneri, L.; D'Angelo, A.; Napoli, M. De; Vita, R. De; Dupré, R.; Egiyan, H.; Ehrhart, M.; Filippi, A.; Garçon, M.; Gevorgyan, N.; Girod, F.-X.; Guidal, M.; Holtrop, M.; Iurasov, V.; Kubarovsky, V.; Livingston, K.; McCarty, K.; McCormick, J.; McKinnon, B.; Osipenko, M.; Paremuzyan, R.; Randazzo, N.; Rauly, E.; Raydo, B.; Rindel, E.; Rizzo, A.; Rosier, P.; Sipala, V.; Stepanyan, S.; Szumila-Vance, H.; Weinstein, L. B.

    2017-05-01

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called ;heavy photon.; Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier.

  8. Electromagnetically Induced Entanglement

    PubMed Central

    Yang, Xihua; Xiao, Min

    2015-01-01

    Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing. PMID:26314514

  9. Electromagnetic Properties of Materials and Metamaterials

    DTIC Science & Technology

    2010-09-20

    anynlocr pnwislOn o(]~w. 1Ŕ.) jlI:Nm .. nail I\\: Stlll;’:Cl l" any pc llll hy for fa ihng to ,urnrl)’ ... ~ h a ~ ... JlIt·I;\\lon of mfllrmal itm lf...was established after the demonstrations of a propagation of a plane wave through a medium with simultaneously negative permeability and permittivity...medium’s simultaneous negat ive permeability and permittivit y. The SRR-wire-posts medium is similar to the medium used in the first demonstration

  10. Project to Study Soil Electromagnetic Properties

    DTIC Science & Technology

    2007-09-30

    transmitter or Tx loop) by some sort of electronic signal generator , thereby generating a time-varying magnetic field in the vicinity (called the primary...ITx) of the detectors Tx and Rx coils. In general , the primary magnetic field is much stronger than any secondary magnetic field, and it can induce a...symmetry, each principal component of the tensor may respond with an different frequency spectrum. In the most general case, the orientation of the

  11. Knots in electromagnetism

    NASA Astrophysics Data System (ADS)

    Arrayás, M.; Bouwmeester, D.; Trueba, J. L.

    2017-01-01

    Maxwell equations in vacuum allow for solutions with a non-trivial topology in the electric and magnetic field line configurations at any given moment in time. One example is a space filling congruence of electric and magnetic field lines forming circles lying on the surfaces of nested tori. In this example the electric, magnetic and Poynting vector fields are orthogonal everywhere. As time evolves the electric and magnetic fields expand and deform without changing the topology and energy, while the Poynting vector structure remains unchanged while propagating with the speed of light. The topology is characterized by the concept of helicity of the field configuration. Helicity is an important fundamental concept and for massless fields it is a conserved quantity under conformal transformations. We will review several methods by which linked and knotted electromagnetic (spin-1) fields can be derived. A first method, introduced by A. Rañada, uses the formulation of the Maxwell equations in terms of differential forms combined with the Hopf map from the three-sphere S3 to the two-sphere S2. A second method is based on spinor and twistor theory developed by R. Penrose in which elementary twistor functions correspond to the family of electromagnetic torus knots. A third method uses the Bateman construction of generating null solutions from complex Euler potentials. And a fourth method uses special conformal transformations, in particular conformal inversion, to generate new linked and knotted field configurations from existing ones. This fourth method is often accompanied by shifting singularities in the field to complex space-time points. Of course the various methods must be closely related to one another although they have been developed largely independently and they suggest different directions in which to expand the study of topologically non-trivial field configurations. It will be shown how the twistor formulation allows for a direct extension to massless

  12. Principles of electromagnetic waves in metasurfaces

    NASA Astrophysics Data System (ADS)

    Luo, XianGang

    2015-09-01

    Metasurfaces are artificially structured thin films with unusual properties on demand. Different from metamaterials, the metasurfaces change the electromagnetic waves mainly by exploiting the boundary conditions, rather than the constitutive parameters in three dimensional (3D) spaces. Despite the intrinsic similarities in the operational principles of metasurfaces, there is not a universal theory available for the understanding and design of these devices. In this article, we propose the concept of metasurface waves (M-waves) and provide a general theory to describe the principles of such waves. Most importantly, it is shown that the M-waves share some fundamental properties such as extremely short wavelength, abrupt phase change and strong chromatic dispersion, which making them different from traditional bulk waves. We show that these properties can enable many important applications such as subwavelength imaging and lithography, planar optical devices, broadband anti-reflection, absorption and polarization conversion. Our results demonstrated unambiguously that traditional laws of diffraction, refraction, reflection and absorption can be overcome by using the novel properties of M-waves. The theory provided here may pave the way for the design of new electromagnetic devices and further improvement of metasurfaces.

  13. Electromagnetic direct implicit PIC simulation

    SciTech Connect

    Langdon, A.B.

    1983-03-29

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.

  14. SOME SPECULATIONS ON ELECTROMAGNETIC THEORY,

    DTIC Science & Technology

    An attempt is made to derive Maxwell’s equation of an Electromagnetic field, in vacuo, from the relativistic Liouville’s equation for the photon gas...intensity, while half of the difference of the two functions, divided by square root of (-1) is the magnetic field intensity. Two vector wave functions satisfy Maxwell’s equation of Electromagnetic wave in vacuo. (Author)

  15. Electromagnetics laboratory annual report, 1994

    NASA Astrophysics Data System (ADS)

    Lindell, I. V.; Sihvola, A. H.

    1995-01-01

    Activities of the Electromagnetics Laboratory during 1994 are described in this report. As highlights of the output stand the monographs Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston) and History of Electrical Engineering (Otatieto, Espoo, in Finnish). Also, the total number of papers published and accepted for publication in international refereed journals show a new record, 40 items.

  16. Exploration of the Electromagnetic Environment

    ERIC Educational Resources Information Center

    Fullekrug, M.

    2009-01-01

    The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…

  17. Exploration of the Electromagnetic Environment

    ERIC Educational Resources Information Center

    Fullekrug, M.

    2009-01-01

    The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…

  18. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  19. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  20. Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution

    SciTech Connect

    Li, Hui; Wu, Jian; Zhou, Zhongxiang; Yuan, Chengxun

    2016-07-15

    The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.

  1. Spectrum and electromagnetic transitions of bottomonium

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Jun; Liu, Hui; Gui, Long-Cheng; Zhong, Xian-Hui

    2017-04-01

    Stimulated by the exciting progress in the observation of new bottomonium states, we study the bottomonium spectrum. To calculate the mass spectrum, we adopt a nonrelativistic screened potential model. The radial Schrödinger equation is solved with the three-point difference central method, where the spin-dependent potentials are dealt with nonperturbatively. With this treatment, the corrections of the spin-dependent potentials to the wave functions can be included successfully. Furthermore, we calculate the electromagnetic transitions of the n S (n ≤4 ), n P (n ≤3 ), and n D (n ≤2 ) bottomonium states with a nonrelativistic electromagnetic transition operator widely applied to meson photoproduction reactions. Our predicted masses, hyperfine and fine splittings, electromagnetic transition widths, and branching ratios of the bottomonium states are in good agreement with the available experimental data. In particular, the EM transitions of ϒ (3 S )→χb 1 ,2(1 P )γ , which were not well understood in previous studies, can be reasonably explained by considering the corrections of the spin-dependent interactions to the wave functions. We also discuss the observations of the missing bottomonium states by using radiative transitions. Some important radiative decay chains involving the missing bottomonium states are suggested to be observed. We hope our study can provide some useful references to observe and measure the properties of bottomonium mesons in forthcoming experiments.

  2. Noninvasive Electromagnetic Detection of Bladder Cancer

    PubMed Central

    Cormio, Luigi; Vedruccio, Clarbruno; Leucci, Giorgio; Massenio, Paolo; Di Fino, Giuseppe; Cavaliere, Vincenzo; Carrieri, Giuseppe

    2014-01-01

    Objectives. Normal and neoplastic human tissues have different electromagnetic properties. This study aimed to determine the diagnostic accuracy of noninvasive electromagnetic detection of bladder cancer (BC) by the tissue-resonance interaction method (TRIM-prob). Patients and Methods. Consecutive patients were referred for cystoscopy because of (i) microscopic or gross hematuria and/or irritative voiding symptoms and (ii) bladder ultrasounds and urinary cytology findings negative or just suspicious of malignancy. Patients were first submitted to TRIM-prob bladder scanning by a single investigator and then to cystoscopy by another investigator blind to TRIM-prob data. Results. In 125 evaluated patients cystoscopy was positive for BC in 47 and negative in the remaining 78; conversely, TRIM-prob bladder scanning was positive for BC in 53 and negative in 72. In particular, TRIM-prob scanning yielded 7 false positives and only one false negative; therefore, its overall sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 97.9%, 89.9%, 86.8%, 98.6%, and 93.6%, respectively. Conclusions. TRIM-prob bladder scanning was a simple and quite accurate method for non-invasive electromagnetic detection of BC. If the elevated positive and negative predictive values will be replicated in further well-designed studies, it could be used to screen asymptomatic patients at high risk of BC. PMID:24563795

  3. Sensitivity analysis for electromagnetic topology optimization problems

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Li, Wei; Li, Qing

    2010-06-01

    This paper presents a level set based method to design the metal shape in electromagnetic field such that the incident current flow on the metal surface can be minimized or maximized. We represent the interface of the free space and conducting material (solid phase) by the zero-order contour of a higher dimensional level set function. Only the electrical component of the incident wave is considered in the current study and the distribution of the induced current flow on the metallic surface is governed by the electric field integral equation (EFIE). By minimizing or maximizing a costing function relative to the current flow, its distribution can be controlled to some extent. This method paves a new avenue to many electromagnetic applications such as antenna and metamaterial whose performance or properties are dominated by their surface current flow. The sensitivity of the objective function to the shape change, an integral formulation including both the solutions to the electric field integral equation and its adjoint equation, is obtained using a variational method and shape derivative. The advantages of the level set model lie in its flexibility of disposing complex topological changes and facilitating the mathematical expression of the electromagnetic configuration. Moreover, the level set model makes the optimization an elegant evolution process during which the volume of the metallic component keeps a constant while the free space/metal interface gradually approaching its optimal position. The effectiveness of this method is demonstrated through a self-adjoint 2D topology optimization example.

  4. Electromagnetic Gyrokinetic Simulations

    SciTech Connect

    Wan, W

    2003-11-19

    A new electromagnetic kinetic electron {delta} particle simulation model has been demonstrated to work well at large values of plasma {beta} times the ion-to-electron mass ratio. The simulation is three-dimensional using toroidal flux-tube geometry and includes electron-ion collisions. The model shows accurate shear Alfven wave damping and microtearing physics. Zonal flows with kinetic electrons are found to be turbulent with the spectrum peaking at zero and having a width in the frequency range of the driving turbulence. This is in contrast with adiabatic electron cases where the zonal flows are near stationary, even though the linear behavior of the zonal flow is not significantly affected by kinetic electrons. zonal fields are found to be very weak, consistent with theoretical predictions for {beta} below the kinetic ballooning limit. Detailed spectral analysis of the turbulence data is presented in the various limits.

  5. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  6. On steady electromagnetic equilibria

    NASA Astrophysics Data System (ADS)

    Lehnert, B.

    1986-12-01

    The existence of steady electromagnetic equilibrium states predicted by an extended Lorentz invariant formulation of Maxwell's equations is analyzed. General equilibrium solutions are outlined which lead to integrated field quantities of the system, such as total charge qo, magnetic moment Mo, mass mo and angular momentum so. The quantization of moMo/qo in terms of Bohr magnetons is shown to be equivalent to the proposed resonance condition of circulating self-confined radiation. Exact equilibrium solutions were deduced in two simple cases, thereby leading to a so of the same order as that of the electron, and to a qo one order of magnitude larger than the electronic charge. A variational procedure is suggested in search for states of minimum charge, under the subsidiary quantum conditions on moMo/qo and so, i.e., by varying the profile of the electric space charge distribution.

  7. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  8. Electromagnetically revolving sphere viscometer

    NASA Astrophysics Data System (ADS)

    Hosoda, Maiko; Sakai, Keiji

    2014-12-01

    In this paper, we propose a new method of low viscosity measurement, in which the rolling of a probe sphere on the flat solid bottom of a sample cell is driven remotely and the revolution speed of the probe in a sample liquid gives the viscosity measurements. The principle of this method is based on the electromagnetically spinning technique that we developed, and the method is effective especially for viscosity measurements at levels below 100 mPa·s with an accuracy higher than 1%. The probe motion is similar to that in the well-known rolling sphere (ball) method. However, our system enables a steady and continuous measurement of viscosity, which is problematic using the conventional method. We also discuss the limits of the measurable viscosity range common to rolling-sphere-type viscometers by considering the accelerating motion of a probe sphere due to gravity, and we demonstrate the performance of our methods.

  9. Electromagnetic scattering theory

    NASA Technical Reports Server (NTRS)

    Bird, J. F.; Farrell, R. A.

    1986-01-01

    Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.

  10. Computational electronics and electromagnetics

    SciTech Connect

    Shang, C. C.

    1997-02-01

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domain CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.

  11. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  12. Superconducting electromagnetic thruster

    SciTech Connect

    Meng, J.

    1993-02-11

    An electromagnetic thruster for marine vehicles using a jet of water driven by the interaction of a mutually perpendicular intensified magnetic field and an intensified electric field is disclosed. The intensified magnetic field is produced by superconducting coils cooled by a coolant such as liquid helium. An intensified electric field is produced by passing high amperage current across the seawater jet. These interacting fields produce a Lorentz force perpendicular to mutually perpendicular electric and magnetic field vectors which is used to drive the seawater jet. In some embodiments, the force may also be used to draw water into the jet from the boundary layer flow around the vehicle thereby reducing boundary layer turbulence and associated radiated noise.

  13. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  14. Nucleon Electromagnetic Form Factors

    SciTech Connect

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  15. Electromagnetic theory of optical coherence [Invited].

    PubMed

    Friberg, Ari T; Setälä, Tero

    2016-12-01

    The coherence theory of random, vector-valued optical fields has been of great research interest in recent years. In this work we formulate the foundations of electromagnetic coherence theory both in the space-time and space-frequency domains, with particular emphasis on various types of optical interferometry. Analyzing statistically stationary, two-component (paraxial) electric fields in the classical and quantum-optical contexts we show fundamental connections between the conventional (polarization) Stokes parameters and the associated two-point (coherence) Stokes parameters. Measurement of the coherence and polarization properties of random vector beams by nanoparticle scattering and two-photon absorption is also addressed.

  16. Material-independent modes for electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Forestiere, Carlo; Miano, Giovanni

    2016-11-01

    In this Rapid Communication, we introduce a representation of the electromagnetic field for the analysis and synthesis of the full-wave scattering by a homogeneous dielectric object of arbitrary shape in terms of a set of eigenmodes independent of its permittivity. The expansion coefficients are rational functions of the permittivity. This approach naturally highlights the role of plasmonic and photonic modes in any scattering process and suggests a straightforward methodology to design the permittivity of the object to pursue a prescribed tailoring of the scattered field. We discuss in depth the application of the proposed approach to the analysis and design of the scattering properties of a dielectric sphere.

  17. Testing black hole candidates with electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo

    2017-04-01

    Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but there is not yet direct observational evidence that the spacetime geometry around these objects is described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. This paper reviews the state of the art of this research field, describing the possible approaches to test the Kerr metric with current and future observational facilities and discussing current constraints.

  18. Giant field enhancement in electromagnetic Helmholtz nanoantenna

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Greffet, Jean-Jacques; Pelouard, Jean-Luc; Haïdar, Riad; Pardo, Fabrice

    2014-11-01

    Inspired by the acoustic Helmholtz resonator, we propose a slit-box electromagnetic nanoantenna able to concentrate the energy of an incident beam into surfaces a thousand times smaller than with a classical lens. This design produces a giant electric field enhancement throughout the slit. The intensity enhancement reaches 104 in the visible range up to 108 in the THz range even with focused beams, thanks to an omnidirectional reception. These properties could target applications requiring extreme light concentration, such as surface-enhanced infrared absorption, nonlinear optics, and biophotonics.

  19. A framework for simulation and inversion in electromagnetics

    NASA Astrophysics Data System (ADS)

    Heagy, Lindsey J.; Cockett, Rowan; Kang, Seogi; Rosenkjaer, Gudni K.; Oldenburg, Douglas W.

    2017-10-01

    Simulations and inversions of electromagnetic geophysical data are paramount for discerning meaningful information about the subsurface from these data. Depending on the nature of the source electromagnetic experiments may be classified as time-domain or frequency-domain. Multiple heterogeneous and sometimes anisotropic physical properties, including electrical conductivity and magnetic permeability, may need be considered in a simulation. Depending on what one wants to accomplish in an inversion, the parameters which one inverts for may be a voxel-based description of the earth or some parametric representation that must be mapped onto a simulation mesh. Each of these permutations of the electromagnetic problem has implications in a numerical implementation of the forward simulation as well as in the computation of the sensitivities, which are required when considering gradient-based inversions. This paper proposes a framework for organizing and implementing electromagnetic simulations and gradient-based inversions in a modular, extensible fashion. We take an object-oriented approach for defining and organizing each of the necessary elements in an electromagnetic simulation, including: the physical properties, sources, formulation of the discrete problem to be solved, the resulting fields and fluxes, and receivers used to sample to the electromagnetic responses. A corresponding implementation is provided as part of the open source simulation and parameter estimation project SIMPEG (http://simpeg.xyz). The application of the framework is demonstrated through two synthetic examples and one field example. The first example shows the application of the common framework for 1D time domain and frequency domain inversions. The second is a field example that demonstrates a 1D inversion of electromagnetic data collected over the Bookpurnong Irrigation District in Australia. The final example is a 3D example which shows how the modular implementation is used to compute the

  20. Topics in curved- and flat-space electromagnetism

    SciTech Connect

    Mustafa, E.

    1987-01-01

    Several problems in curved-space and flat-space electromagnetism are discussed and resolved: use of the Hertz and Debye bivector potential schemes for the solution of Maxwell's equations for source-free electromagnetic test fields in general relativity is further developed. A new method for classifying such schemes is presented and the Debye schemes are given, for the first time, with respect to an orthonormal tetrad (basis). The electromagnetic properties of a slowly rotating charged thin shell (with charge density proportional to mass density) are considered in both curved and flat space. The g-factor g, magnetic moment and angular momentum of such a shell are computed as a function of the charge-to-mass and radius-to-mass ratios. The electromagnetic properties of the classical electron modeled as a thin charged shell are also considered. A solution to the problem that the energy and linear momentum of such an extended system do not transform properly under Lorentz transformations is given. An application of flat-space electromagnetism to pulsar astrophysics is given.