Science.gov

Sample records for de-fg02-86er13504 photoinduced electron

  1. Photoinduced Electron Transfer Reactions for Macromolecular Syntheses.

    PubMed

    Dadashi-Silab, Sajjad; Doran, Sean; Yagci, Yusuf

    2016-09-14

    Photochemical reactions, particularly those involving photoinduced electron transfer processes, establish a substantial contribution to the modern synthetic chemistry, and the polymer community has been increasingly interested in exploiting and developing novel photochemical strategies. These reactions are efficiently utilized in almost every aspect of macromolecular architecture synthesis, involving initiation, control of the reaction kinetics and molecular structures, functionalization, and decoration, etc. Merging with polymerization techniques, photochemistry has opened up new intriguing and powerful avenues for macromolecular synthesis. Construction of various polymers with incredibly complex structures and specific control over the chain topology, as well as providing the opportunity to manipulate the reaction course through spatiotemporal control, are one of the unique abilities of such photochemical reactions. This review paper provides a comprehensive account of the fundamentals and applications of photoinduced electron transfer reactions in polymer synthesis. Besides traditional photopolymerization methods, namely free radical and cationic polymerizations, step-growth polymerizations involving electron transfer processes are included. In addition, controlled radical polymerization and "Click Chemistry" methods have significantly evolved over the last few decades allowing access to narrow molecular weight distributions, efficient regulation of the molecular weight and the monomer sequence and incredibly complex architectures, and polymer modifications and surface patterning are covered. Potential applications including synthesis of block and graft copolymers, polymer-metal nanocomposites, various hybrid materials and bioconjugates, and sequence defined polymers through photoinduced electron transfer reactions are also investigated in detail.

  2. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, Roland; Calvin, Melvin

    1984-01-01

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  3. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, R.; Calvin, M.

    1984-01-24

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  4. Magnetic resonance studies of photo-induced electron transfer reactions

    SciTech Connect

    van Willigen, H.

    1990-12-01

    During the period covered by this report research has been concerned with the application of Fourier Transform Electron Paramagnetic Resonance (FT EPR) in the study of photo-induced electron transfer reactions. Donor molecules used in this investigation have been various porphyrins, whereas quinones were used as acceptor molecules.

  5. Photoinduced electron transfer in binary blends of conjugated polymers

    SciTech Connect

    Jenekhe, A.A.; Paor, L.R. de; Chen, X.L.; Tarkka, R.M.

    1996-10-01

    The authors report observations concerning the intermolecular photoinduced electron transfer through blends of n-type/p-type {pi}-conjugated organic polymers. The results of transient absorption spectroscopy, fluorescence quenching analysis, and delocalized radical ion pair generation studies imply that these materials are supramolecular materials.

  6. Photoinduced absolute negative current in a symmetric molecular electronic bridge

    SciTech Connect

    Prociuk, Alexander; Dunietz, Barry D

    2010-09-28

    The study of current induced by photoradiating a molecular-based device under bias is of fundamental importance to the improvement of photoconductors and photovoltaics. In this technology, electron pumps generate an uphill current that opposes a potential drop and thereby recharges a fuel cell. While the modeled molecular electron pump is completely symmetric, the sign of the photocurrent is solely determined by the existing bias and the nature of photoinduced electronic excitations. The photoradiation induces nonequilibrium population of the electrode-coupled system. The dependence of the photocurrent on electrode coupling, photoradiation field strength, and applied bias are studied at a basic model level.

  7. Distance dependence in photo-induced intramolecular electron transfer

    NASA Astrophysics Data System (ADS)

    Larsson, Sven; Volosov, Andrey

    1986-09-01

    The distance dependence of the rate of photo-induced electron transfer reactions is studied. A quantum mechanical method CNDO/S is applied to a series of molecules recently investigated by Hush et al. experimentally. The calculations show a large interaction through the saturated bridge which connects the two chromophores. The electronic matrix element HAB decreases a factor 10 in about 4 Å. There is also a decrease of the rate due to less exothermicity for the longer molecule. The results are in fair agreement with the experimental results.

  8. Photoinduced electron transfer between donors and acceptors on micelle surfaces

    NASA Astrophysics Data System (ADS)

    Weidemaier, Kristin; Tavernier, H. L.; Chu, K. T.; Fayer, M. D.

    1997-09-01

    Fluorescence time-dependence and fluorescence yield data are used to examine photoinduced electron transfer between N,N-dimethylaniline and octadecylrhodamine B on the surfaces of dodecyltrimethylammonium bromide (DTAB) and Triton X-100 micelles. The data are analyzed with a detailed theory that includes diffusion of the chromophores over the micelle surface and models the reaction rate by a distance-dependent Marcus form. Good agreement between theory and experiment is obtained for reasonable choices of the transfer parameters for DTAB. However, for Triton X-100, there is reasonable agreement between theory and experiment only for values of the parameters that verge on unphysical. Possible explanations are discussed.

  9. Ultrafast photoinduced electron transfer reactions in supramolecular arrays: From charge separation and storage to molecular switches

    SciTech Connect

    Wasielewski, M.R.

    1992-01-01

    Photoinduced charge separation reactions form the basis for energy storage processes in both natural and artificial photosynthesis. Moreover, rapid reversible photoinduced electron transfer reactions are a class of photophysical phenomena that can be exploited to develop schemes for optical switching. Examples from each of these fields are discussed.

  10. Ultrafast photoinduced electron transfer reactions in supramolecular arrays: From charge separation and storage to molecular switches

    SciTech Connect

    Wasielewski, M.R.

    1992-08-01

    Photoinduced charge separation reactions form the basis for energy storage processes in both natural and artificial photosynthesis. Moreover, rapid reversible photoinduced electron transfer reactions are a class of photophysical phenomena that can be exploited to develop schemes for optical switching. Examples from each of these fields are discussed.

  11. Theory of photoinduced phase transitions in itinerant electron systems

    NASA Astrophysics Data System (ADS)

    Yonemitsu, Kenji; Nasu, Keiichiro

    2008-08-01

    Theoretical progress in the research of photoinduced phase transitions is reviewed with closely related experiments. After a brief introduction of stochastic evolution in statistical systems and domino effects in localized electron systems, we treat photoinduced dynamics in itinerant-electron systems. Relevant interactions are required in the models to describe the fast and ultrafast charge-lattice-coupled dynamics after photoexcitations. First, we discuss neutral-ionic transitions in the mixed-stack charge-transfer complex, TTF-CA. When induced by intrachain charge-transfer photoexcitations, the dynamics of the ionic-to-neutral transition are characterized by a threshold behavior, while those of the neutral-to-ionic transition by an almost linear behavior. The difference originates from the different electron correlations in the neutral and ionic phases. Second, we deal with halogen-bridged metal complexes, which show metal, Mott insulator, charge-density-wave, and charge-polarization phases. The latter two phases have different broken symmetries. The charge-density-wave to charge-polarization transition is much more easily achieved than the reverse transition. This is clarified by considering microscopic charge-transfer processes. The transition from the charge-density-wave to Mott insulator phases and that from the Mott insulator to metal phases proceed much faster than those between the low-symmetry phases. Next, we discuss ultrafast, inverse spin-Peierls transitions in an organic radical crystal and alkali-TCNQ from the viewpoint of intradimer and interdimer charge-transfer excitations. Then, we study photogenerated electrons in the quantum paraelectric perovskite, SrTiO 3, which are assumed to couple differently with soft-anharmonic phonons and breathing-type high-energy phonons. The different electron-phonon couplings result in two types of polarons, a “super-paraelectric large polaron” with a quasi-global parity violation, and an “off-center-type self

  12. Final Report: Vibrational Dynamics in Photoinduced Electron Transfer

    SciTech Connect

    Kenneth G. Spears

    2006-04-19

    The objective of this grant was to understand how molecular vibrational states (geometry distortions) are involved in photoinduced electron transfer rates of molecules. This subject is an important component of understanding how molecular absorbers of light convert that energy into charge separation. This is important because the absorption usually excites molecular vibrations in a new electronic state prior to electron transfer to other molecules or semiconductor nanoparticles, as in some types of solar cells. The speeds of charge separation and charge recombination are key parameters that require experiments such as those in this work to test the rules governing electron transfer rates. Major progress was made on this goal. Some of the molecular structures selected for developing experimental data were bimolecular charge transfer complexes that contained metals of cobalt or vanadium. The experiments used the absorption of an ultrafast pulse of light to directly separate charges onto the two different molecular parts of the complex. The charge recombination then proceeds naturally, and one goal was to measure the speed of this recombination for different types of molecular vibrations. We used picosecond and femtosecond duration pulses with tunable colors at infrared wavelengths to directly observe vibrational states and their different rates of charge recombination (also called electron transfer). We discovered that different contact geometries in the complexes had very different electron transfer rates, and that one geometry had a significant dependence on the amount of vibration in the complex. This is the first and only measurement of such rates, and it allowed us to confirm our interpretation with a number of molecular models and test the sensitivity of electron transfer to vibrational states. This led us to develop a general theory, where we point out how molecular distortions can change the electron transfer rates to be much faster than prior theories

  13. Distance dependence in photoinduced intramolecular electron transfer. Additional remarks and calculations

    NASA Astrophysics Data System (ADS)

    Larsson, Sven; Volosov, Andrey

    1987-12-01

    Rate constants for photoinduced intramolecular electron transfer are calculated for four of the molecules studied by Hush et al. The electronic factor is obtained in quantum chemical calculations using the CNDO/S method. The results agree reasonably well with experiments for the forward reaction. Possible reasons for the disagreement for the charge recombination process are offered.

  14. Revising Intramolecular Photoinduced Electron Transfer (PET) from First-Principles.

    PubMed

    Escudero, Daniel

    2016-09-20

    Photoinduced electron transfer (PET) plays relevant roles in many areas of chemistry, including charge separation processes in photovoltaics, natural and artificial photosynthesis, and photoluminescence sensors and switches. As in many other photochemical scenarios, the structural and energetic factors play relevant roles in determining the rates and efficiencies of PET and its competitive photodeactivation processes. Particularly, in the field of fluorescent sensors and switches, intramolecular PET is believed (in many cases without compelling experimental proof) to be responsible of the quench of fluorescence. There is an increasing experimental interest in fluorophore's molecular design and on achieving optimal excitation/emission spectra, excitation coefficients, and fluorescence quantum yields (importantly for bioimaging purposes), but less efforts are devoted to fundamental mechanistic studies. In this Account, I revise the origins of the fluorescence quenching in some of these systems with state-of-the-art quantum chemical tools. These studies go beyond the common strategy of analyzing frontier orbital energy diagrams and performing PET thermodynamics calculations. Instead, the potential energy surfaces (PESs) of the lowest-lying excited states are explored with time-dependent density functional theory (TD-DFT) and complete active space self-consistent field (CASSCF) calculations and the radiative and nonradiative decay rates from the involved excited states are computed from first-principles using a thermal vibration correlation function formalism. With such a strategy, this work reveals the real origins of the fluorescence quenching, herein entitled as dark-state quenching. Dark states (those that do not absorb or emit light) are often elusive to experiments and thus, computational investigations can provide novel insights into the actual photodeactivation mechanisms. The success of the dark-state quenching mechanism is demonstrated for a wide variety of

  15. Revising Intramolecular Photoinduced Electron Transfer (PET) from First-Principles.

    PubMed

    Escudero, Daniel

    2016-09-20

    Photoinduced electron transfer (PET) plays relevant roles in many areas of chemistry, including charge separation processes in photovoltaics, natural and artificial photosynthesis, and photoluminescence sensors and switches. As in many other photochemical scenarios, the structural and energetic factors play relevant roles in determining the rates and efficiencies of PET and its competitive photodeactivation processes. Particularly, in the field of fluorescent sensors and switches, intramolecular PET is believed (in many cases without compelling experimental proof) to be responsible of the quench of fluorescence. There is an increasing experimental interest in fluorophore's molecular design and on achieving optimal excitation/emission spectra, excitation coefficients, and fluorescence quantum yields (importantly for bioimaging purposes), but less efforts are devoted to fundamental mechanistic studies. In this Account, I revise the origins of the fluorescence quenching in some of these systems with state-of-the-art quantum chemical tools. These studies go beyond the common strategy of analyzing frontier orbital energy diagrams and performing PET thermodynamics calculations. Instead, the potential energy surfaces (PESs) of the lowest-lying excited states are explored with time-dependent density functional theory (TD-DFT) and complete active space self-consistent field (CASSCF) calculations and the radiative and nonradiative decay rates from the involved excited states are computed from first-principles using a thermal vibration correlation function formalism. With such a strategy, this work reveals the real origins of the fluorescence quenching, herein entitled as dark-state quenching. Dark states (those that do not absorb or emit light) are often elusive to experiments and thus, computational investigations can provide novel insights into the actual photodeactivation mechanisms. The success of the dark-state quenching mechanism is demonstrated for a wide variety of

  16. Photoinduced electron transfer reaction in polymer-surfactant aggregates: Photoinduced electron transfer between N,N-dimethylaniline and 7-amino coumarin dyes

    SciTech Connect

    Chakraborty, Anjan; Seth, Debabrata; Setua, Palash; Sarkar, Nilmoni

    2008-05-28

    Photoinduced electron transfer between coumarin dyes and N,N-dimethylaniline has been investigated by using steady state and picosecond time resolved fluorescence spectroscopy in sodium dodecyl sulphate (SDS) micelles and PVP-polyvinyl pyrrolidone (SDS) polymer-surfactant aggregates. A slower rate of electron transfer is observed in PVP-SDS aggregates than in polymer-free SDS micelles. A Marcus type inversion is observed in the correlation of free energy change in comparison with the electron transfer rate. The careful investigation reveals that C-151 deviates from the normal Marcus inverted region compared to its analogs C-152 and C-481 due to slower rotational relaxation and smaller translational diffusion coefficient.

  17. Discrete Chromatic Aberrations Arising from Photoinduced Electron-Photon Interactions in Ultrafast Electron Microscopy.

    PubMed

    Plemmons, Dayne A; Flannigan, David J

    2016-05-26

    In femtosecond ultrafast electron microscopy (UEM) experiments, the initial excitation period is composed of spatiotemporal overlap of the temporally commensurate pump photon pulse and probe photoelectron packet. Generation of evanescent near-fields at the nanostructure specimens produces a dispersion relation that enables coupling of the photons (ℏω = 2.4 eV, for example) and freely propagating electrons (200 keV, for example) in the near-field. Typically, this manifests as discrete peaks occurring at integer multiples (n) of the photon energy in the low-loss/gain region of electron-energy spectra (i.e., at 200 keV ± nℏω eV). Here, we examine the UEM imaging resolution implications of the strong inelastic near-field interactions between the photons employed in optical excitation and the probe photoelectrons. We find that the additional photoinduced energy dispersion occurring when swift electrons pass through intense evanescent near-fields results in a discrete chromatic aberration that limits the spatial resolving power to several angstroms during the excitation period. PMID:27111530

  18. Quantum Dot–Bridge–Fullerene Heterodimers with Controlled Photoinduced Electron Transfer

    SciTech Connect

    Cotlet, M.; Xu, Z.

    2011-06-27

    A series of donor-bridge-acceptor systems in the form of core/shell CdSe/ZnS quantum dot-bridge-fullerene heterodimers (see picture) with varying bridge length and varying quantum dot size were self-assembled by a surface-based stepwise method to demonstrate control of the rate and of the magnitude of fluctuations of photoinduced electron transfer at the single-molecule level.

  19. Ultrafast dynamics in photo-induced correlated electronic states in ladder cuprates

    NASA Astrophysics Data System (ADS)

    Ishihara, Sumio; Hashimoto, Hiroshi

    2014-03-01

    Ultrafast photo-induced dynamics in correlated electron systems, in particular, photon irradiation effects in half filled Mott insulators have been studied intensively from theoretical and experimental sides, and photo-induced Mott insulator to metal transition has been observed. On the other side, in recent ultrafast pump-probe experiments in ladder cuprates away from half filling, photo-irradiation weakens initial metallic state. We study ultrafast dynamics in photo-induced states in a ladder system. Real time dynamics in a ladder-type Hubbard model are analyzed by the numerical exact diagonalization method. Optical conductivity spectra and density of states show that the initial metallic state is changed into a bad metallic state by photo irradiation, in contrast to the photo-doped effect in half-filled Mott insulators. Through the calculation of the carrier pair correlation functions, we find that coherent motion of carrier pairs in initial states are reduced by pump photon irradiation. We further simulate a double pulse irradiation. Our simulations as well as the experimental results suggest an optical control of pair coherence in correlated electron system.

  20. Photoinduced electron transfer processes in homogeneous and microheterogeneous solutions

    SciTech Connect

    Whitten, D.G.

    1991-10-01

    The focus of the work described in this report is on single electron transfer reactions of excited states which culminate in the formation of stable or metastable even electron species. For the most part the studies have involved even electron organic substrates which are thus converted photochemically to odd electron species and then at some stage reconvert to even electron products. These reactions generally fall into two rather different categories. In one set of studies we have examined reactions in which the metastable reagents generated by single electron transfer quenching of an excited state undergo novel fragmentation reactions, chiefly involving C-C bond cleavage. These reactions often culminate in novel and potentially useful chemical reactions and frequently have the potential for leading to new chemical products otherwise unaffordable by conventional reaction paths. In a rather different investigation we have also studied reactions in which single electron transfer quenching of an excited state is followed by subsequent reactions which lead reversibly to metastable two electron products which, often stable in themselves, can nonetheless be reacted with each other or with other reagents to regenerate the starting materials with release of energy. 66 refs., 9 figs., 1 tab.

  1. Photoinduced electron transfer in rigidly linked dimethoxynapthalene-N-methylpyridinium donor-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Clayton, Andrew H. A.; Ghiggino, Kenneth P.; Wilson, Gerard J.; Keyte, Peter J.; Paddon-Row, Michael N.

    1992-07-01

    Photoinduced electron transfer (ET) is studied in a series of novel molecules containing a dimethoxynaphthalene (DMN) donor and either a pyridine (P) or N-methylpyridinium (P-Me +) acceptor covalently linked via a rigid nonbornalogous bridge ( n sigma bonds in length). ET rates of the order of 10 10 s -1 were measured for the DMN- n-P-Me + series ( n = 4, 6), while no appreciable ET was observed for the DMN- n-P compounds. Electronic and nuclear factors are discussed and the results rationalized in terms of Marcus—Hush and non-adiabatic ET theories.

  2. Photoinduced Electron Transfer in Ordered Macromolecular Assemblies. Final report for May 1, 1988 - June 30, 2002

    SciTech Connect

    Jones, G.

    2005-02-11

    The final report describes studies over a 13 year period having to do with photoinduced electron transfer for active chromophores and redox agents, including assembly of the components in water soluble polymers or polypeptides. The findings include observation of long range charge separation and electron transport using laser phototransient spectroscopy. The systems targeted in these studies include peptide assemblies for which helical conformations and aggregation are documented. Oligomeric peptides modified with non-native redox active groups were also selected for investigation. Highly charged polymers or peptides were investigated as host agents that resemble proteins. The overall goal of these investigations focused on the design and characterization of systems capable of artificial photosynthesis.

  3. Photoinduced electron transfer and geminate recombination in solution

    SciTech Connect

    Song, L.; Swallen, S.F.; Dorfman, R.C.; Weidemaier, K.; Fayer, M.D. )

    1993-02-18

    Intermolecular electron transfer and geminate recombination are explored experimentally in both solid and liquid solutions using the same donor-acceptor pair. The solvents were chosen to have similar chemical and dielectric properties, but vastly different viscosities. Systems of an electron donor, rubrene, and varying concentrations of an electron acceptor, duroquinone, were studied. The solvents used were diethyl sebacate (liquid) and sucrose octaacetate (solid). Forward electron transfer was studied using time-resolved and steady-state fluorescence measurements for a variety of acceptor concentrations. Electron back-transfer (geminate recombination) was measured using pump-probe experiments. The data were analyzed using a theoretical treatment that takes into account diffusion of the donor and acceptors, a distance-dependent (exponential) transfer rate, Coulomb interactions between the ions generated by the forward transfer, and donor-acceptor and acceptor-acceptor excluded volumes. The forward transfer data, in both the solid and liquid solutions, are in very good agreement with calculations. Virtually identical forward transfer parameters are obtained from the solid and liquid samples. The back-transfer parameters obtained from the measurements on solid solution are able to reproduce the liquid solution's back-transfer data, but only when the high-frequency dielectric constant is used. The use of this value for the dielectric constant is discussed. 48 refs., 10 figs.

  4. Influence of diffusion on photoinduced electron transfer. [laser radiation

    SciTech Connect

    Song, L.; Dorfman, R.C.; Swallen, S.F.; Fayer, M.D. )

    1991-05-02

    Electron transfer from an optically excited donor (rubrene) to randomly distributed acceptors (duroquinone) has been investigated experimentally. The forward electron-transfer process under the influence of diffusion in liquid solution (diethyl sebacate) is compared with that in solid solution (sucrose octaacetate). Steady-state fluorescence yield and time-resolved fluorescence measurements were used to measure the excited-state population of the donor (rubrene). The parameters were used to analyze the electron-transfer dynamics under a variety of acceptor concentrations. The agreement between theoretical predictions and experiments is very good. The forward transfer parameters (a{sub f} and R{sub 0}) in liquid solution are almost identical with those obtained in solid solution.

  5. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces.

    PubMed

    Abramavicius, V; Pranculis, V; Melianas, A; Inganäs, O; Gulbinas, V; Abramavicius, D

    2016-01-01

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces. PMID:27605035

  6. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

    NASA Astrophysics Data System (ADS)

    Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.

    2016-09-01

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.

  7. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

    PubMed Central

    Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.

    2016-01-01

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces. PMID:27605035

  8. Photoinduced Electron Transfer to Engineered Surface Traps in CdSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Califano, Marco; Zhu, Haiming; Yang, Ye; Hyeon-Deuk, Kim; Song, Nianhui; Wang, Youwei; Zhang, Wenqing; Prezhdo, Oleg; Lian, Tianquan

    2014-03-01

    Quantum confined nanomaterials, such as semiconductor nanocrystals (NCs), have emerged in the past decade as a new class of materials for solar energy conversion. An appropriate model for describing photoinduced charge transfer in these systems is, however, still lacking. Recently we observed that the rate of photoinduced electron transfer from CdSe NCs to molecular acceptors increased with decreasing NC size (and increasing driving force) exhibiting a lack of Marcus inverted regime behaviour over an apparent driving force range of 0-1.3 V. Our atomistic semiempirical pseudopotential calculations show that an Auger assisted ET mechanism, in which the transfer of the electron is coupled to the excitation of the hole, can circumvent the unfavourable Frank-Condon overlap (that is a signature of inter- or intra- molecular electron transfer) in the Marcus inverted regime, reproducing our observed ET rates with remarkable accuracy. We conclude that electron transfer from quantum dots differs from electron transfer originating from both molecules and bulk semiconductors. It proceeds via a novel Auger-assisted pathway which we believe is available to most excitonic nanomaterials. This new finding will have a major impact on the design of next generation solar energy harvesting devices.

  9. Photoinduced Electron Accumulation of Titanium Dioxide Nanoparticles Modified Electrodes

    NASA Astrophysics Data System (ADS)

    Miyoshi, Hirokazu; Sakamoto, Kensho; Kurashina, Masaru; Kanezaki, Eiji

    Titanium dioxide (TiO2) nanoparticles (Nps) were prepared by the hydrolysis of titanium tetraisopropoxide (TTIP) in 2-propanol with different water contents (0.5 vol% to 7.2 vol%) at 45 °C. The diameter of the Nps was estimated to be 1.5±0.5 nm (L-TiO2) and 3.0±0.6 nm (S-TiO2) from the onset wavelength in the absorption spectra and by transmission electron microscopy (TEM). A modified Pt electrode with a three-layered sandwich structure was prepared; the outermost and innermost layers were composed of S-TiO2 and L-TiO2, respectively, and the middle layer contained 1, 1'-dimethyl-4,4'-bipyridyl (MV2+)/Nafion®. Irradiation by a 500 W superhigh-pressure mercury lamp produced electrons in the conduction band of TiO2. An anodic current was observed after turning off the light. The mechanism by which anodic current is generated after turning off the radiation involves the reduction of MV2+ to MV+. by photogenerated electrons on the Nps and the diffusion of MV+. in the middle layer. After turning off the irradiation, MV+. transferred an electron to the Pt electrode via holes in the innermost layer or the conduction band of S-TiO2 coincidentally localized on the Pt electrode, resulting in the generation of the anodic current. The generation of MV+. was confirmed by the absorption spectra of MV+.. As a sacrificial reagent, 2-propanol (0.1 M) was used.

  10. Photoinduced electron transfer from dialkyl nitroxides to halogenated solvents

    SciTech Connect

    Chateauneuf, J. ); Lusztyk, J.; Ingold, K.U. )

    1990-02-02

    Laser flash photolysis (LFP) at wavelengths within the charge-transfer absorption present in CCl{sub 4} solutions of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) yields the oxoammonium chloride of TEMPO, 1 ({lambda}{sub max} = 460 nm), and the trichloromethyl radical in an essentially instantaneous ({le}18 ps) process. The primary photochemical event is an electron transfer from TEMPO to CCl{sub 4}, and this is followed by immediate decomposition of the CCl{sub 4}{sup {sm bullet}{minus}} radical anion to Cl{sup {minus}} and Cl{sub 3}C{sup {sm bullet}}. An independent synthesis of 1 confirmed that the absorption attributed to this species has been correctly assigned. The formation of Cl{sub 3}C{sup {sm bullet}} was inferred by its trapping by molecular oxygen. LFP of TEMPO in other halogenated solvents and of other nitroxides in halogenated solvents has confirmed the generality of these photoreactions.

  11. Molecular orbital assistance in the design of intramolecular and photoinduced electron transfer systems

    NASA Astrophysics Data System (ADS)

    Petsalakis, Ioannis D.; Theodorakopoulos, Giannoula

    2012-02-01

    A theoretical approach is described for the design of donor-acceptor intramolecular charge transfer (ICT) systems and for photoinduced electron transfer (PET) hybrids of fullerene, based on orbital level diagrams of the separate donor and acceptor moieties. Minimization of the HOMO-LUMO (highest occupied-lowest unoccupied orbital) gap in ICT systems, translates to a requirement for near degeneracy of the HOMO of the donor and LUMO of the acceptor, determined separately for the two moieties by density functional theory calculations. Similarly, near degeneracy of the LUMO of the donor and LUMO of the acceptor moieties would indicate the possibility of PET in the combined hybrid.

  12. Density matrix treatment of non-adiabatic photoinduced electron transfer at a semiconductor surface.

    PubMed

    Micha, David A

    2012-12-14

    Photoinduced electron transfer at a nanostructured surface leads to localized transitions and involves three different types of non-adiabatic couplings: vertical electronic transitions induced by light absorption emission, coupling of electronic states by the momentum of atomic motions, and their coupling due to interactions with electronic density fluctuations and vibrational motions in the substrate. These phenomena are described in a unified way by a reduced density matrix (RDM) satisfying an equation of motion that contains dissipative rates. The RDM treatment is used here to distinguish non-adiabatic phenomena that are localized from those due to interaction with a medium. The fast decay of localized state populations due to electronic density fluctuations in the medium has been treated within the Lindblad formulation of rates. The formulation is developed introducing vibronic states constructed from electron orbitals available from density functional calculations, and from vibrational states describing local atomic displacements. Related ab initio molecular dynamics calculations have provided diabatic momentum couplings between excited electronic states. This has been done in detail for an indirect photoexcitation mechanism of the surface Ag(3)Si(111):H, which leads to long lasting electronic charge separation. The resulting coupled density matrix equations are solved numerically to obtain the population of the final charge-separated state as it changes over time, for several values of the diabatic momentum coupling. New insight and unexpected results are presented here which can be understood in terms of photoinduced non-adiabatic transitions involving many vibronic states. It is found that the population of long lasting charge separation states is larger for smaller momentum coupling, and that their population grows faster for smaller coupling.

  13. Experimental and theoretical analysis of photoinduced electron transfer: Including the role of liquid structure

    SciTech Connect

    Swallen, S.F.; Weidemaier, K.; Tavernier, H.L.; Fayer, M.D.

    1996-05-16

    Experimental determinations of the dynamics of photoinduced electron transfer from rubrene to duroquinone in three solvents, dibutyl phthalate, diethyl sebacate, and cyclohexanone are presented. The data are analyzed using recent theoretical developements that include important features of the solvent, i.e., the effects of finite molecular volume on local solvent structure and on the mutual donor-acceptor diffusion rates. Inclusion of the liquid radial distribution function (rdf) in the theory accounts for the significant variation of the acceptor concentration near a donor. Hydrodynamic effects, which slow the rate of donor-acceptor approach at short distance, are important and are also included in the theoretical analysis of the data. The data analysis depends on a reasonable model of the rdf. A method is presented to obtain the hard-sphere parameters needed to calculate the rdf. The Marcus form of the distance-dependent transfer rate is used. For the highest viscosity solvent (dibutylphthalate), a unique set of the Marcus transfer parameters is obtained. For lower viscosity solvents, the transfer parameters are less well defined, but information on the distance and time dependence of charge separation is still acquired. These experiments, combined with the theoretical analysis, yield the first realistic description of through-solvent photoinduced electron transfer. 102 refs., 6 figs., 1 tab.

  14. Polyelectrolytes as interfaces for retarding back-reaction in photoinduced electron transfer

    SciTech Connect

    Otvos, J.W.; Casti, T.E.; Calvin, M.

    1984-08-01

    Flash photolysis experiments on the effect of the polyelectrolytes poly(styrene sulfonate) (PSS) and Poly(N,N-dimethyl-3, 5-dimethylene piperidinium chloride) (PolyP) on the photoinduced electron transfer reaction between zinc(II) tetrakis (4-N-methylpyridinium)porphyin (ZnP) and propyl viologen sulfonate (PVS/sup 0/) show that PSS decreases both the forward and back- electron transfer reaction rates significantly, by a factor of approx. 60. The effect of PSS is due to hydrophobic envelopment of ZnP by the polyelectrolyte, hindering approach of reactants to it and thus reducing all bimolecular reaction rates between ZnP and species in solution. The cationic polyelectrolyte, PolyP, decreases the back-electron transfer rate by a factor of approx. 2 without affecting other bimolecular reaction rates. This effect is probably due to binding of the PVS/sup -/ to the polyelectrolyte, which then repels the oxidized porphyrin electrostatically.

  15. Photoinduced 2-way electron transfer in composites of metal nanoclusters and semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mondal, Navendu; Paul, Sneha; Samanta, Anunay

    2016-07-01

    In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation between the QDs and NCs in a giant BSA-capped system, a higher electron transfer rate in this composite suggests that unlike other smaller capping agents, which act more like insulators, BSA allows much better electron conduction, as indicated previously.In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation

  16. Photoinduced homogeneous proton-coupled electron transfer: model study of isotope effects on reaction dynamics.

    PubMed

    Venkataraman, Charulatha; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2009-10-21

    A model Hamiltonian for photoinduced homogeneous proton-coupled electron transfer reactions is presented, and the equations of motion for the reduced density matrix elements in an electron-proton vibronic basis are derived. This formalism enables a detailed analysis of the proton vibrational dynamics, as well as the dynamics of the electronic state populations, following photoexcitation. The application of this theory to model systems provides insight into the fundamental physical principles underlying these types of processes. The initial nonequilibrium state is prepared by vertical photoexcitation from the ground electronic state to a coherent vibrational mixture in the donor electronic state. This nonstationary state relaxes to the equilibrium distributions in the donor and acceptor electronic states via dynamical processes arising from nonadiabatic transitions between the donor and acceptor vibronic states concurrent with energy dissipation to the bath. During the initial stage, when the proton vibrational population in the donor state is distributed among higher vibrational states and the donor proton wavepacket is oscillating with large amplitude, the electronic state population dynamics exhibits virtually no hydrogen/deuterium isotope effect. After vibrational relaxation, when the proton vibrational population in the donor state becomes concentrated in the lower vibrational states and the donor proton wavepacket becomes more localized near the minimum of the donor potential, a significant hydrogen/deuterium isotope effect on the electronic state population dynamics is exhibited. These model system calculations lead to experimentally testable predictions about the qualitative behavior of these isotope effects. PMID:20568867

  17. Structural effects on photoinduced electron transfer in carotenoid-porphyrin-quinone triads

    SciTech Connect

    Kuciauskas, D.; Liddell, P.A.; Hung, S.C.; Lin, S.; Stone, S.; Seely, G.R.; Moore, A.L.; Moore, T.A.; Gust, D.

    1997-01-16

    meso-Polyarylporphyrins are often used as components of molecules that mimic photosynthetic reaction centers by carrying out photoinduced electron-transfer reactions. Studies of these systems have raised questions concerning the role of alkyl substituents at the `{beta}-pyrrolic` positions on the porphyrin periphery in limiting {pi}-{pi} overlap between the macrocycle and the aryl rings. The degree of overlap affects electronic coupling and, therefore, the rates of electron-transfer reactions. There is also evidence that when the linkages joining porphyrins to electron-acceptor or -donor moieties contain amide bonds, the sense of the amide linkage may strongly affect electron-transfer rate constants. In this study, three carotenoid-porphyrin-quinone molecular triads and various model compounds have been prepared, and electron-transfer has been studied using time-resolved emission and absorption techniques. The results show that steric hindrance due to methyl groups at the {beta}-pyrrolic positions reduces electron-transfer rate constants by a factor of approximately 1/5. In addition, amide-containing donor-acceptor linkages having the nitrogen atom attached to the porphyrin meso-aryl ring demonstrate electron-transfer rate constants approximately 30 times larger than those for similar linkages with the amide reversed, after correction for thermodynamic effects. 52 refs., 7 figs., 2 tabs.

  18. Ultrafast photoinduced electron transfer between an incarcerated donor and a free acceptor in aqueous solution.

    PubMed

    Porel, Mintu; Chuang, Chi-Hung; Burda, Clemens; Ramamurthy, Vaidhyanathan

    2012-09-12

    Supramolecular photoinduced electron transfer dynamics between coumarin 153 (C153) and 4,4'-dimethyl viologen dichloride (MV(2+)) across the molecular barrier of a host molecule, octa acid (OA), has been investigated with femtosecond time resolution. The ultrafast electron transfer from C153 to MV(2+) followed excitation with 150 fs laser pulses at a wavelength of 390 nm despite the fact that C153 was incarcerated within an OA(2) capsule. As a result, the photoexcited coumarin did not show any of the typical relaxation dynamics that is usually observed in free solution. Instead, the excited electron was transferred across the molecular wall of the capsuleplex within 20 ps. Likewise, the lifetime of the charge transfer state was short (724 ps), and electron back-transfer reestablished the ground state of the system within 1 ns, showing strong electronic coupling among the excited electron donor, host, and acceptor. When the donor was encapsulated into the host molecule, the electron transfer process showed significantly accelerated dynamics and essentially no solvent relaxation compared with that in free solution. The study was also extended to N-methylpyridinium iodide as the acceptor with similar results. PMID:22931120

  19. Photoinduced 2-way electron transfer in composites of metal nanoclusters and semiconductor quantum dots.

    PubMed

    Mondal, Navendu; Paul, Sneha; Samanta, Anunay

    2016-08-01

    In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation between the QDs and NCs in a giant BSA-capped system, a higher electron transfer rate in this composite suggests that unlike other smaller capping agents, which act more like insulators, BSA allows much better electron conduction, as indicated previously. PMID:27396603

  20. Photoinduced electron transfer and fluorescence mechanisms in covalently linked polynuclear aromatic-nucleotide complexes

    SciTech Connect

    Geacintov, N.E.; Mao, Bing; Zhao, Rushen; Chen, Junxin; Liu, Tong Ming; Ya, Nai-Qi; France, L.L.; Sutherland, J.D.

    1992-04-01

    The fluorescence of polycyclic aromatic hydrocarbon-nucleic acid complexes is quenched by photoinduced electron transfer mechanisms in aqueous solutions at ambient temperatures. These effects are illustrated with the biologically important compound benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), a mutagenic and carcinogenic metabolite of the environmental pollutant benzo[a]pyrene, which forms covalent mutagenic lesions with 2{prime}-deoxyguanosine (dG) residues in DNA. The dependence of the fluroescence yeild and fluorescence decay times of the covalent model adduct (+)-trans-BPDE-N{sup 2}-dG as a function of temperature and methanol/water composition are described. Because of the sensitivity of the fluorescence of the pyrenyl residue to the polarity of the microenvironment, the magnitude of the fluorescence yield can be used to distinguish between highly hydrophobic (e.g. intercalation) and other more solvent-exposed BPDE-nucleic acid binding sites.

  1. Photoinduced electron transfer and fluorescence mechanisms in covalently linked polynuclear aromatic-nucleotide complexes

    SciTech Connect

    Geacintov, N.E.; Mao, Bing; Zhao, Rushen; Chen, Junxin; Liu, Tong Ming; Ya, Nai-Qi . Dept. of Chemistry); France, L.L.; Sutherland, J.D. )

    1992-01-01

    The fluorescence of polycyclic aromatic hydrocarbon-nucleic acid complexes is quenched by photoinduced electron transfer mechanisms in aqueous solutions at ambient temperatures. These effects are illustrated with the biologically important compound benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE), a mutagenic and carcinogenic metabolite of the environmental pollutant benzo(a)pyrene, which forms covalent mutagenic lesions with 2{prime}-deoxyguanosine (dG) residues in DNA. The dependence of the fluroescence yeild and fluorescence decay times of the covalent model adduct (+)-trans-BPDE-N{sup 2}-dG as a function of temperature and methanol/water composition are described. Because of the sensitivity of the fluorescence of the pyrenyl residue to the polarity of the microenvironment, the magnitude of the fluorescence yield can be used to distinguish between highly hydrophobic (e.g. intercalation) and other more solvent-exposed BPDE-nucleic acid binding sites.

  2. Enhancing photoinduced electron transfer efficiency of fluorescent pH-probes with halogenated phenols.

    PubMed

    Aigner, Daniel; Freunberger, Stefan A; Wilkening, Martin; Saf, Robert; Borisov, Sergey M; Klimant, Ingo

    2014-09-16

    Photoinduced electron transfer (PET), which causes pH-dependent quenching of fluorescent dyes, is more effectively introduced by phenolic groups than by amino groups which have been much more commonly used so far. That is demonstrated by fluorescence measurements involving several classes of fluorophores. Electrochemical measurements show that PET in several amino-modified dyes is thermodynamically favorable, even though it was not experimentally found, underlining the importance of kinetic aspects to the process. Consequently, the attachment of phenolic groups allows for fast and simple preparation of a wide selection of fluorescent pH-probes with tailor-made spectral properties, sensitive ranges, and individual advantages, so that a large number of applications can be realized. Fluorophores carrying phenolic groups may also be used for sensing analytes other than pH or molecular switching and signaling.

  3. Intramolecular photoinduced electron transfer of fluorescent probes based on 1,8-naphthalimide and aniline derivatives

    NASA Astrophysics Data System (ADS)

    Burmistrova, Natalia A.; Mushtakova, Svetlana P.; Zilberg, Rufina A.; Vakulin, Ivan V.; Duerkop, Axel

    2015-03-01

    The effect of conformation and electronic structure of fluorescent probes based on 1,8-naphthalimide and aniline derivatives (4-methoxyaniline and N,N-dimethyl-p-phenylenediamine) on the intramolecular photoinduced electron transfer (PET) was investigated by density functional theory calculations (B3LYP/6-31G (d, p)). We established restricted rotation around spacer bonds of the model compounds and their protonated and oxidized forms do not block the convergence of the nitrogen atoms involved in the electron transfer at a distance of ~3Å, which is adequately for PET. Computed values of protonation free energy for the gas-phase (ΔG298 r) show that the investigated fluorescent probes are predominantly protonated on the nitrogen atoms of the donor moiety. Electron population and localization of the frontier orbitals (LUMO, HOMO, HOMO-1) on the donor and acceptor moieties are transformed under protonation and one-electron oxidation of fluorescent probes. The results show that appearance or disappearance of the PET can be predicted by the energy difference between the frontier orbitals and the nature of their location of donor and acceptor moieties, which is in agreement with the PET theory and observed experimental data.

  4. Role of the bridge in photoinduced electron transfer in porphyrin-fullerene dyads.

    PubMed

    Pelado, Beatriz; Abou-Chahine, Fawzi; Calbo, Joaquín; Caballero, Rubén; de la Cruz, Pilar; Junquera-Hernández, José M; Ortí, Enrique; Tkachenko, Nikolai V; Langa, Fernando

    2015-04-01

    The role of π-conjugated molecular bridges in through-space and through-bond electron transfer is studied by comparing two porphyrin-fullerene donor-acceptor (D-A) dyads. One dyad, ZnP-Ph-C60 (ZnP = zinc porphyrin), incorporates a phenyl bridge between D and A and behaves very similarly to analogous dyads studied previously. The second dyad, ZnP-EDOTV-C60, introduces an additional 3,4-ethylenedioxythienylvinylene (EDOTV) unit into the conjugated bridge, which increases the distance between D and A, but, at the same time, provides increased electronic communication between them. Two essential outcomes that result from the introduction of the EDOTV unit in the bridge are as follows: 1) faster charge recombination, which indicates enhanced electronic coupling between the charge-separated and ground electronic states; and 2) the disappearance of the intramolecular exciplex, which mediates photoinduced charge separation in the ZnP-Ph-C60 dyad. The latter can be interpreted as a gradual decrease in electronic coupling between locally excited singlet states of D and A when introducing the EDOTV unit into the D-A bridge. PMID:25737468

  5. Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Bixner, Oliver; Lukeš, Vladimír; Mančal, Tomáš; Hauer, Jürgen; Milota, Franz; Fischer, Michael; Pugliesi, Igor; Bradler, Maximilian; Schmid, Walther; Riedle, Eberhard; Kauffmann, Harald F.; Christensson, Niklas

    2012-05-01

    The interaction of exciton and charge transfer (CT) states plays a central role in photo-induced CT processes in chemistry, biology, and physics. In this work, we use a combination of two-dimensional electronic spectroscopy (2D-ES), pump-probe measurements, and quantum chemistry to investigate the ultrafast CT dynamics in a lutetium bisphthalocyanine dimer in different oxidation states. It is found that in the anionic form, the combination of strong CT-exciton interaction and electronic asymmetry induced by a counter-ion enables CT between the two macrocycles of the complex on a 30 fs timescale. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra, and we monitor how the excited state charge density ultimately localizes on the macrocycle closest to the counter-ion within 100 fs. A comparison with the dynamics in the radical species further elucidates how CT states modulate the electronic structure and tune fs-reaction dynamics. Our experiments demonstrate the unique capability of 2D-ES in combination with other methods to decipher ultrafast CT dynamics.

  6. Photochemical reactions of electron-deficient olefins with N,N,N‧,N‧-tetramethylbenzidine via photoinduced electron-transfer

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Zhao, Junshu; Ji, Yuanyuan; Yan, Lei; Yu, Shuqin

    2006-01-01

    Photoinduced electron transfer reactions of several electron-deficient olefins with N, N, N', N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields 3TMB* after rapid intersystem crossing from 1TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), α-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property (π-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the kqT values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants kqS have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic kq values for CN and CrN in endergonic region may be the disturbance of exciplexs formation.

  7. Role of 3,5-dimethyl anisole (DMA) as an electron donor in photoinduced electron transfer (ET) reactions

    NASA Astrophysics Data System (ADS)

    Sinha, S.; De, R.; Ganguly, T.

    1997-01-01

    The present investigation was carried out to reveal the nature of photoinduced bimolecular quenching reactions, e.g. electron transfer (ET) and energy transfer processes within the donor DMA and acceptor 2-nitrofluorene (2NF) molecules in polar acetonitrile (ACN) fluid solution at the ambient temperature. From the observed large negative values of ΔG (the energy gap between the locally excited, LE and radical ion pair or RIP states) when one of the chromorphores was excited along with large R0 ( ˜27 Å), Förster critical transfer distance between the donor and acceptor measured from the considerable overlapping region of donor DMA emission with acceptor absorption and nearly 100% theoretical transfer efficiency ( T) value of the Förster type energy transfer the concurrent occurrences of the two processes, photoinduced ET and excitational energy transfer, were inferred. Moreover it was suggested that ET reaction within the present donor and acceptor systems is of outersphere type as evidenced from the large negative value of ΔG (˜ -2.3 eV).

  8. Dynamics and mechanisms of interfacial photoinduced electron transfer processes of third generation photovoltaics and photocatalysis.

    PubMed

    Bauer, Christophe; Teuscher, Joël; Brauer, Jan C; Punzi, Angela; Marchioro, Arianna; Ghadiri, Elham; De Jonghe, Jelissa; Wielopolski, Mateusz; Banerji, Natalie; Moser, Jacques E

    2011-01-01

    Photoinduced electron transfer (PET) across molecular/bulk interfaces has gained attention only recently and is still poorly understood. These interfaces offer an excellent case study, pertinent to a variety of photovoltaic systems, photo- and electrochemistry, molecular electronics, analytical detection, photography, and quantum confinement devices. They play in particular a key role in the emerging fields of third-generation photovoltaic energy converters and artificial photosynthetic systems aimed at the production of solar fuels, creating a need for a better understanding and theoretical treatment of the dynamics and mechanisms of interfacial PET processes. We aim to achieve a fundamental understanding of these phenomena by designing experiments that can be used to test and alter modern theory and computational modeling. One example illustrating recent investigations into the details of the ultrafast processes that form the basis for photoinduced charge separation at a molecular/bulk interface relevant to dye-sensitized solar cells is briefly presented here: Kinetics of interfacial PET and charge recombination processes were measured by fs and ns transient spectroscopy in a heterogeneous donor-bridge-acceptor (D-B-A) system, where D is a Ru(II)(terpyridyl-PO3)(NCS)3 complex, B an oligo-p-phenylene bridge, and A nanocrystalline TiO2. The forward ET reaction was found to be faster than vibrational relaxation of the vibronic excited state of the donor. Instead, the back ET occurred on the micros time scale and involved fully thermalized species. The D-A distance dependence of the electron transfer rate was studied by varying the number of p-phenylene units contained in the bridge moiety. The remarkably low damping factor beta = 0.16 angstroms(-1) observed for the ultrafast charge injection from the dye excited state into the conduction band of TiO2 is attributed to the coupling of electron tunneling with nonequilibrium vibrations redistributed on the bridge

  9. Electron spectrometer in adjustable triode configuration for photo-induced field emission measurements

    SciTech Connect

    Bornmann, B.; Mingels, S.; Luetzenkirchen-Hecht, D.; Mueller, G.; Dams, F.; Prommesberger, C.; Schreiner, R.

    2012-01-15

    We have constructed a new ultrahigh vacuum apparatus with a triode configuration for the systematic investigation of photo-induced field emission (PFE) from metallic or semiconducting cathodes. These are exposed to electric fields up to 400 MV/m and laser irradiation by means of hole or mesh gates. Cathodes and gates are in situ exchangeable and adjustable with high precision to ensure a homogeneous extraction of electrons which are partially transmitted to the fixed electron spectrometer. Its hemispherical sector analyzer provides an energy resolution limit of 8 meV. The commissioning of the measurement system has been performed with a tungsten needle. Its temperature showed up in the high-energy tail of the electron spectrum, while its work function was derived from the spectral low-energy part combined with the integral current-voltage curve. First PFE measurements on B-doped Si-tip arrays yielded a small field emission current increase under green laser illumination. A shift and splitting of the energy spectra was observed which revealed different emission regimes as well as the photosensitivity of the cathode due to carrier excitation into the conduction band. For the full exploitation of the PFE system, a tunable laser over a wide eV-range is required.

  10. Influence of donor-acceptor distance variation on photoinduced electron and proton transfer in rhenium(I)-phenol dyads.

    PubMed

    Kuss-Petermann, Martin; Wolf, Hilke; Stalke, Dietmar; Wenger, Oliver S

    2012-08-01

    A homologous series of four molecules in which a phenol unit is linked covalently to a rhenium(I) tricarbonyl diimine photooxidant via a variable number of p-xylene spacers (n = 0-3) was synthesized and investigated. The species with a single p-xylene spacer was structurally characterized to get some benchmark distances. Photoexcitation of the metal complex in the shortest dyad (n = 0) triggers release of the phenolic proton to the acetonitrile/water solvent mixture; a H/D kinetic isotope effect (KIE) of 2.0 ± 0.4 is associated with this process. Thus, the shortest dyad basically acts like a photoacid. The next two longer dyads (n = 1, 2) exhibit intramolecular photoinduced phenol-to-rhenium electron transfer in the rate-determining excited-state deactivation step, and there is no significant KIE in this case. For the dyad with n = 1, transient absorption spectroscopy provided evidence for release of the phenolic proton to the solvent upon oxidation of the phenol by intramolecular photoinduced electron transfer. Subsequent thermal charge recombination is associated with a H/D KIE of 3.6 ± 0.4 and therefore is likely to involve proton motion in the rate-determining reaction step. Thus, some of the longer dyads (n = 1, 2) exhibit photoinduced proton-coupled electron transfer (PCET), albeit in a stepwise (electron transfer followed by proton transfer) rather than concerted manner. Our study demonstrates that electronically strongly coupled donor-acceptor systems may exhibit significantly different photoinduced PCET chemistry than electronically weakly coupled donor-bridge-acceptor molecules.

  11. Tracking the evolution of electronic and structural properties of VO2 during the ultrafast photoinduced insulator-metal transition

    NASA Astrophysics Data System (ADS)

    Wall, S.; Foglia, L.; Wegkamp, D.; Appavoo, K.; Nag, J.; Haglund, R. F., Jr.; Stähler, J.; Wolf, M.

    2013-03-01

    We present a detailed study of the photoinduced insulator-metal transition in VO2 with broadband time-resolved reflection spectroscopy. This allows us to separate the response of the lattice vibrations from the electronic dynamics and observe their individual evolution. When we excite VO2 above the photoinduced phase transition threshold, we find that the restoring forces that describe the ground-state monoclinic structure are lost during the excitation process, suggesting that an ultrafast change in the lattice potential drives the structural transition. However, by performing a series of pump-probe measurements during the nonequilibrium transition, we observe that the electronic properties of the material evolve on a different, slower time scale. This separation of time scales suggests that the early state of VO2, immediately after photoexcitation, is a nonequilibrium state that is not well defined by either the insulating or the metallic phase.

  12. Exploring the extent of magnetic field effect on intermolecular photoinduced electron transfer in different organized assemblies.

    PubMed

    Choudhury, Sharmistha Dutta; Basu, Samita

    2005-09-15

    Magnetic field effect (MFE) on the photoinduced electron transfer (PET) between phenazine (PZ) and the amines, N,N-dimethylaniline , N,N-diethylaniline, 4,4'-bis(dimethylamino)diphenylmethane (DMDPM), and triethylamine, has been studied in micelles, reverse micelles, and small unilamellar vesicles (SUVs) with a view to understand the effect of spatial location of the donor and acceptor moieties on the magnetic field behavior. The structure of the assembly is found to influence greatly the PET dynamics and hence the MFE of all the systems studied. The magnetic field behavior in micelles is consistent with the hyperfine mechanism, but high B(1/2) values have been obtained which have been ascribed to hopping and lifetime broadening. The variation of MFE with W(0), in reverse micelles, proves yet again that the MFE maximizes at an optimum separation distance between the acceptor and donor. This is the first example of such behavior for intermolecular PET in heterogeneous medium. We have also reported for the first time MFE on intermolecular PET in SUVs. In this case, the PZ-DMDPM system responds most appreciably to an external field compared to the other acceptor-donor systems because it is appropriately positioned in the bilayer. The differential behavior of the amines has been discussed in terms of their confinement in different zones of the organized assemblies depending on their bulk, hydrophobic, and electrostatic effects.

  13. Photoinduced Electron Transfer from Various Aniline Derivatives to Graphene Quantum Dots.

    PubMed

    Ghosh, Tufan; Chatterjee, Swarupa; Prasad, Edamana

    2015-12-10

    The present study utilizes the luminescence nature of the graphene quantum dots (GQDs) to analyze the mechanistic aspects of the photoinduced electron transfer (PET) processes between GQDs and aniline derivatives. A systematic investigation of PET from various aniline derivatives to GQDs has been presented. Solution-processable GQDs have been synthesized from graphene oxide (GO) at 200 °C. The as-synthesized GQDs exhibit a strong green luminescence at 510 nm, upon photoexcitation at 440 nm. Various aniline derivatives (aniline, N-methylaniline, N,N'-dimethylaniline, N-ethylaniline, N,N'-diethylaniline, and N,N'-diphenylaniline) have been utilized as electron donors to probe the PET process. Results from UV-visible absorption and steady-state and time-resolve luminescence spectroscopy suggest that the GQDs interact with the aniline derivatives in the excited state, which results in a significant luminescence quenching of the GQDs. The bimolecular rate constants of the dynamic quenching have been deduced for various donor-acceptor systems, and the values are in the range of (1.06-2.68) × 10(9) M(-1) s(-1). The negative values of the free energy change of the electron transfer process suggest that PET from aniline derivatives to GQDs is feasible and could be responsible for the luminescence quenching. The PET has been confirmed by detecting radical cations for certain aniline derivatives, using a nanosecond laser flash photolysis setup. The present study shows that among the various types of graphene systems, GQDs are better candidates for understanding the mechanism of PET in graphene-based donor-acceptor systems.

  14. Catalytic photoinduced electron transport across a lipid bilayer mediated by a membrane-soluble electron relay.

    PubMed

    Limburg, B; Bouwman, E; Bonnet, S

    2015-12-14

    Unidirectional photocatalytic electron transfer from a hydrophilic electron donor encapsulated in the interior of a liposome, to a hydrophilic electron acceptor on the other side of the membrane, has been achieved using the simple membrane-soluble electron relay 1-methoxy-N-methylphenazinium (MMP(+)). The total amount of photoproduct (>140 nmol) exceeds the number of moles of MMP(+) present (125 nmol), thus showing that the transport of electrons is catalytic.

  15. Vectorially photoinduced electron-transfer processes across water-in-oil interfaces of microemulsions

    SciTech Connect

    Willner, I.; Otvos, J.W.; Calvin, M.

    1980-07-01

    Artificial photosynthetic devices are potential fuel sources. The basic idea in the design of such devices is a photosensitized electron-transfer that yields chemical species capable of reducing and oxidizing water to hydrogen and oxygen. A fundamental difficulty in effecting this transfer is the thermodynamically favored back reactions of the intermediary redox species. An interfacial model composed of a water-in-oil microemulsion is suggested to provide the separation of these redox species, thereby preventing back-reactions. This model is designed to accomplish the photodecomposition of water in two separate water-in-oil microemulsions coupled by a redox reaction. Phase-transfer of one of the redox products from the water-in-oil interface to the continuous organic phase is the principle by which separation is achieved. The oxidation and reduction sites of the general model have been constructed. One system includes the photosensitized oxidation of a donor, EDTA, solubilized in the water pool, benzylnicotinamide acts as a primary acceptor that mediates by the phase transfer principle the reduction of a secondary acceptor, dimethylamino-azobenzene, solubilized in the continuous organic phase. In system two, involving the photosensitized reduction of methyl viologen, by tris(2,2'bipyridine)Ru(2+), thioophenol is used as the donor and its oxidation product is phase transferred to the continuous organic phase. The photoinduced processes accomplished in the two systems proceed along an uphill gradient of free energy. Two water soluble zinc-porphyrins can substitute for the Ru(2+) complex in the second system. As the two Zn-porphyrins are oppositely charged, the effect of electrostatic interactions on the quantum yields of viologen reduction could be evaluated. The results suggest that the surface charge of the wateroil interface strongly influences the efficiency of electron-transfer.

  16. Density functional theory based analysis of photoinduced electron transfer in a triazacryptand based K⁺ sensor.

    PubMed

    Briggs, Edward A; Besley, Nicholas A

    2015-03-26

    The electronic structure and photoinduced electron transfer processes in a K(+) fluorescent sensor that comprises a 4-amino-naphthalimide derived fluorophore with a triazacryptand ligand is investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) in order to rationalize the function of the sensor. The absorption and emission energies of the intense electronic excitation localized on the fluorophore are accurately described using a ΔSCF Kohn-Sham DFT approach, which gives excitation energies closer to experiment than TDDFT. Analysis of the molecular orbital diagram arising from DFT calculations for the isolated molecule or with implicit solvent cannot account for the function of the sensor, and it is necessary to consider the relative energies of the electronic states formed from the local excitation on the fluorophore and the lowest fluorophore → chelator charge transfer state. The inclusion of solvent in these calculations is critical since the strong interaction of the charge transfer state with the solvent lowers its energy below the local fluorophore excited state making a reductive photoinduced electron transfer possible in the absence of K(+), while no such process is possible when the sensor is bound to K(+). The rate of electron transfer is quantified using Marcus theory, which gives a rate of electron transfer of k(ET) = 5.98 × 10(6) s(-1).

  17. Solvent polarity effect on photoinduced electron transfer between C{sub 60} and tetramethylbenzidine studied by laser flash photolysis

    SciTech Connect

    Ito, Osamu; Yoshikawa, Yuko; Watanabe, Akira; Sasaki, Yoshiko

    1995-06-15

    The photoinduced electron transfer between C{sub 60} and N,N,N{prime},N{prime}-tetramethylbenzidine (NTMB) in polar and nonpolar solvents and their mixtures has been investigated by nanosecond laser flash photolysis/transient absorption spectroscopy in the visible and near-IR regions. The transient absorption bands of the C{sub 60} triplet state ({sup T}C{sub 60}*) and the NTMB radical cation were observed in both nonpolar and polar solvents. In polar solvents such as benzonitrile, the reaction rate constants were determined from the decay of {sup T}C{sub 60}* at 740 nm, which were consistent with the rate constants evaluated from the growth of the NTMB radical cation, suggesting that direct electron transfer occurs from ground-state NTMB to {sup T}C{sub 60}*. In nonpolar solvents such as benzene, the NTMB radical cation and C{sub 60} radical anion were produced immediately after the nanosecond laser pulse, simultaneous with the formation of {sup T}C{sub 60}*, indicating that a different electron transfer mechanism exists in nonpolar solvents. In the solvent mixtures, two simultaneous reaction routes are present for both forward and back electron transfer reactions. Pronounced solvent effects found for electron transfer reaction kinetics and rates are characteristic of the photoinduced electron transfer reactions between C{sub 60} and some kinds of aromatic amines. 25 refs., 8 figs., 2 tabs.

  18. Excited states of the high-frequency vibrational modes and kinetics of ultrafast photoinduced electron transfer

    NASA Astrophysics Data System (ADS)

    Barykov, V. Yu.; Ivanov, A. I.

    2016-02-01

    The effect of the carrier frequency of the exciting laser pulse on the kinetics of intramolecular photoinduced charge transfer in the multi-channel stochastic model is studied. It is shown that the population of different states of high-frequency intramolecular modes upon varying the frequency of the excitation pulse can considerably alter the rate constant of ultrafast charge transfer. It is found that a negative vibrational spectral effect is expected in the vicinity of a barrier-free area (the rate constant of photoinduced charge transfer decreases along with the carrier frequency of the excitation pulse), while a positive effect is predicted in areas of high and low exergonicity (an inverse dependence). It is concluded that the value of the spectral effect falls along with the time of vibrational relaxation. For ultrafast photo-induced charge transfer, however, it remains considerable up to relaxation times of 100 fs.

  19. Experimentation and theoretic calculation of a BODIPY sensor based on photoinduced electron transfer for ions detection.

    PubMed

    Lu, Hua; Zhang, ShuShu; Liu, HanZhuang; Wang, YanWei; Shen, Zhen; Liu, ChunGen; You, XiaoZeng

    2009-12-24

    A boron-dipyrromethene (BODIPY)-based fluorescence probe with a N,N'-(pyridine-2, 6-diylbis(methylene))-dianiline substituent (1) has been prepared by condensation of 2,6-pyridinedicarboxaldehyde with 8-(4-amino)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene and reduction by NaBH(4). The sensing properties of compound 1 toward various metal ions are investigated via fluorometric titration in methanol, which show highly selective fluorescent turn-on response in the presence of Hg(2+) over the other metal ions, such as Li(+), Na(+), K(+), Ca(2+), Mg(2+), Pb(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Ag(+), and Mn(2+). Computational approach has been carried out to investigate the mechanism why compound 1 provides different fluorescent signal for Hg(2+) and other ions. Theoretic calculations of the energy levels show that the quenching of the bright green fluorescence of boradiazaindacene fluorophore is due to the reductive photoinduced electron transfer (PET) from the aniline subunit to the excited state of BODIPY fluorophore. In metal complexes, the frontier molecular orbital energy levels changes greatly. Binding Zn(2+) or Cd(2+) ion leads to significant decreasing of both the HOMO and LUMO energy levels of the receptor, thus inhibit the reductive PET process, whereas an oxidative PET from the excited state fluorophore to the receptor occurs, vice versa, which also quenches the fluorescence. However, for 1-Hg(2+) complex, both the reductive and oxidative PETs are prohibited; therefore, strong fluorescence emission from the fluorophore can be observed experimentally. The agreement of the experimental results and theoretic calculations suggests that our calculation method can be applicable as guidance for the design of new chemosensors for other metal ions. PMID:19950967

  20. Experimentation and Theoretic Calculation of a BODIPY Sensor Based on Photoinduced Electron Transfer for Ions Detection

    NASA Astrophysics Data System (ADS)

    Lu, Hua; Zhang, Shushu; Liu, Hanzhuang; Wang, Yanwei; Shen, Zhen; Liu, Chungen; You, Xiaozeng

    2009-12-01

    A boron-dipyrromethene (BODIPY)-based fluorescence probe with a N,N'-(pyridine-2, 6-diylbis(methylene))-dianiline substituent (1) has been prepared by condensation of 2,6-pyridinedicarboxaldehyde with 8-(4-amino)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene and reduction by NaBH4. The sensing properties of compound 1 toward various metal ions are investigated via fluorometric titration in methanol, which show highly selective fluorescent turn-on response in the presence of Hg2+ over the other metal ions, such as Li+, Na+, K+, Ca2+, Mg2+, Pb2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Ag+, and Mn2+. Computational approach has been carried out to investigate the mechanism why compound 1 provides different fluorescent signal for Hg2+ and other ions. Theoretic calculations of the energy levels show that the quenching of the bright green fluorescence of boradiazaindacene fluorophore is due to the reductive photoinduced electron transfer (PET) from the aniline subunit to the excited state of BODIPY fluorophore. In metal complexes, the frontier molecular orbital energy levels changes greatly. Binding Zn2+ or Cd2+ ion leads to significant decreasing of both the HOMO and LUMO energy levels of the receptor, thus inhibit the reductive PET process, whereas an oxidative PET from the excited state fluorophore to the receptor occurs, vice versa, which also quenches the fluorescence. However, for 1-Hg2+ complex, both the reductive and oxidative PETs are prohibited; therefore, strong fluorescence emission from the fluorophore can be observed experimentally. The agreement of the experimental results and theoretic calculations suggests that our calculation method can be applicable as guidance for the design of new chemosensors for other metal ions.

  1. Highly specific fluorescence detection of T4 polynucleotide kinase activity via photo-induced electron transfer.

    PubMed

    Tao, Mangjuan; Shi, Zhilu; Cheng, Rui; Zhang, Jing; Li, Baoxin; Jin, Yan

    2015-09-15

    Sensitive and reliable study of the activity of polynucleotide kinase (PNK) and its potential inhibitors is of great importance for biochemical interaction related to DNA phosphorylation as well as development of kinase-targeted drug discovery. To achieve facile and reliable detection of PNK activity, we report here a novel fluorescence method for PNK assay based on a combination of exonuclease cleavage reaction and photo-induced electron transfer (PIET) by using T4 PNK as a model target. The fluorescence of 3'-carboxyfluorescein-labeled DNA probe (FDNA) is effectively quenched by deoxyguanosines at the 5' end of its complementary DNA (cDNA) due to an effective PIET between deoxyguanosines and fluorophore. Whereas FDNA/cDNA hybrid is phosphorylated by PNK and then immediately cleaved by lambda exonuclease (λ exo), fluorescence is greatly restored due to the break of PIET. This homogeneous PNK activity assay does not require a complex design by taking advantage of the quenching ability of deoxyguanosines, making the proposed strategy facile and cost-effective. The activity of PNK can be sensitively detected in the range of 0.005 to 10 U mL(-1) with a detection limit of 2.1×10(-3) U mL(-1). Research on inhibition efficiency of different inhibitors demonstrated that it can be explored to evaluate inhibition capacity of inhibitors. The application for detection of PNK activity in complex matrix achieved satisfactory results. Therefore, this PIET strategy opens a promising avenue for studying T4 PNK activity as well as evaluating PNK inhibitors, which is of great importance for discovering kinase-targeted drugs. PMID:26050629

  2. Distance-dependent photo-induced electron transport in nanometer-sized junctions

    NASA Astrophysics Data System (ADS)

    Albee, Brian; Liu, Xuejun; Tork Ladani, Faezeh; Dutta, Rajen K.; Potma, Eric O.

    2016-05-01

    We describe photo-induced current experiments observed in nm-sized electro-migrated nano gaps, using surface plasmon polaritons (SPPs) as the source of the optical driving field. For gaps smaller than 5 nm, we observe a stable photo-induced current that is linear with the intensity of the SPP mode, whereas the photo-current in wider gaps shows a highly nonlinear dependence that is reminiscent of field emission. The results are explained by a modified Wentzel-Kramers-Brillouin tunneling model, which reproduces the observed transition from optical rectification to optically driven field emission in the nano junction.

  3. Study of interaction of proflavin with triethylamine in homogeneous and micellar media: Photoinduced electron transfer probed by magnetic field effect

    NASA Astrophysics Data System (ADS)

    Chakraborty, Brotati; Basu, Samita

    2009-08-01

    Interaction of triethylamine (TEA) with cationic proflavin (PF +) in homogeneous and micellar media is studied using absorption spectroscopy, steady-state as well as time-resolved fluorescence spectroscopy and laser flash photolysis in conjunction with an external magnetic field. The two prime phenomena that have been highlighted in this study are photoinduced electron transfer (PET) and ground-state complex formation. This study shows that it is the medium which determines the reaction pathways to be followed. Magnetic field effect (MFE) helps to elucidate the reaction mechanism involved and this work also highlights the distance dependence factor associated with MFE.

  4. Decatungstate acid improves the photo-induced electron lifetime and retards the recombination in dye sensitized solar cells.

    PubMed

    Li, Liang; Yang, Yulin; Fan, Ruiqing; Liu, Jian; Jiang, Yanxia; Yang, Bin; Cao, Wenwu

    2016-10-14

    Decatungstate acid (DA) was utilized to modify TiO2 in the photoanode of dye sensitized solar cells. The photo-induced electron lifetime was evidently improved and the recombination was greatly inhibited. DA can introduce levels of impurities and lower the Fermi level through a doping effect and thus increase the photocurrent. Moreover, the improved charge carrier density can be found through external electric field surface photovoltage and Mott-Schottky plots. A 22.94% enhancement in photocurrent was achieved with little degradation in photovoltage, leading to a 10.28% increase in optic-to-electric power conversion efficiency. PMID:27550800

  5. Effect of viscosity on photoinduced electron transfer reaction: An observation of the Marcus inverted region in homogeneous solvents

    NASA Astrophysics Data System (ADS)

    Saini, Rajesh Kumar; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2016-09-01

    The viscosity effect of homogeneous solvents on the dynamics of photoinduced electron transfer (PET) reaction among the coumarins and N,N-dimethylaniline (DMA) is investigated using steady-state and time-resolved fluorescence spectroscopy. A bell shape Marcus inversion in the ET rates has been detected in the plot of ET rate constant (kq) with free energy change (ΔG0) in viscous solvents decanol and EG, but it is not observed in DMSO like low viscous solvent. We have also reported that there is no complex formation between the coumarin dye and DMA molecule by using fluorescence correlation spectroscopy.

  6. Photoinduced electron and energy transfer from coumarin 153 to perylenetetracarboxylic diimide in bmimPF6/TX-100/water microemulsions.

    PubMed

    Wu, Haixia; Wang, Haixia; Xue, Lin; Li, Xiyou

    2011-01-15

    A perylenetetracarboxylic diimide (PDI) compound with an attached hydrophilic polyoxyethylene group at the imide nitrogen position was designed and synthesized. Photoinduced electron and energy transfer between coumarin 153 (C-153) and PDI in a ternary microemulsion with an ionic liquid (bmimPF(6)/TX-100/H(2)O) were investigated by steady state electronic absorption and fluorescence spectroscopy. The results revealed that both PDI and C-153 resided at the interface between the surfactant TX-100 and the ionic liquid bmimPF(6) in the ternary microemulsions. The absorption spectra suggested no interactions between C-153 and PDI in the ground states, but the fluorescence spectra revealed the presence of an efficient electron transfer and a less efficient energy transfer from C-153 to PDI. Moreover, the electron transfer was much more efficient in microemulsions than that in homogeneous conventional organic solvents due to the unique micro-environment of the microemulsion. PMID:20965513

  7. Effect of micellar environment on Marcus correlation curves for photoinduced bimolecular electron transfer reactions

    SciTech Connect

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2005-07-15

    Photoinduced electron transfer (ET) between coumarin dyes and aromatic amine has been investigated in two cationic micelles, namely, cetyltrimethyl ammonium bromide (CTAB) and dodecyltrimethyl ammonium bromide (DTAB), and the results have been compared with those observed earlier in sodium dodecyl sulphate (SDS) and triton-X-100 (TX-100) micelles for similar donor-acceptor pairs. Due to a reasonably high effective concentration of the amines in the micellar Stern layer, the steady-state fluorescence results show significant static quenching. In the time-resolved (TR) measurements with subnanosecond time resolution, contribution from static quenching is avoided. Correlations of the dynamic quenching constants (k{sub q}{sup TR}), as estimated from the TR measurements, show the typical bell-shaped curves with the free-energy changes ({delta}G{sup 0}) of the ET reactions, as predicted by the Marcus outersphere ET theory. Comparing present results with those obtained earlier for similar coumarin-amine systems in SDS and TX-100 micelles, it is seen that the inversion in the present micelles occurs at an exergonicity (-{delta}G{sup 0}>{approx}1.2-1.3 eV) much higher than that observed in SDS and TX-100 micelles (-{delta}G{sup 0}>{approx}0.7 eV), which has been rationalized based on the relative propensities of the ET and solvation rates in different micelles. In CTAB and DTAB micelles, the k{sub q}{sup TR} values are lower than the solvation rates, which result in the full contribution of the solvent reorganization energy ({lambda}{sub s}) towards the activation barrier for the ET reaction. Contrary to this, in SDS and TX-100 micelles, k{sub q}{sup TR} values are either higher or comparable with the solvation rates, causing only a partial contribution of {lambda}{sub s} in these cases. Thus, Marcus inversion in present cationic micelles is inferred to be the true inversion, whereas that in the anionic SDS and neutral TX-100 micelles are understood to be the apparent

  8. Effect of micellar environment on Marcus correlation curves for photoinduced bimolecular electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2005-07-01

    Photoinduced electron transfer (ET) between coumarin dyes and aromatic amine has been investigated in two cationic micelles, namely, cetyltrimethyl ammonium bromide (CTAB) and dodecyltrimethyl ammonium bromide (DTAB), and the results have been compared with those observed earlier in sodium dodecyl sulphate (SDS) and triton-X-100 (TX-100) micelles for similar donor-acceptor pairs. Due to a reasonably high effective concentration of the amines in the micellar Stern layer, the steady-state fluorescence results show significant static quenching. In the time-resolved (TR) measurements with subnanosecond time resolution, contribution from static quenching is avoided. Correlations of the dynamic quenching constants (kqTR), as estimated from the TR measurements, show the typical bell-shaped curves with the free-energy changes (ΔG0) of the ET reactions, as predicted by the Marcus outersphere ET theory. Comparing present results with those obtained earlier for similar coumarin-amine systems in SDS and TX-100 micelles, it is seen that the inversion in the present micelles occurs at an exergonicity (-ΔG0>˜1.2-1.3eV) much higher than that observed in SDS and TX-100 micelles (-ΔG0>˜0.7eV), which has been rationalized based on the relative propensities of the ET and solvation rates in different micelles. In CTAB and DTAB micelles, the kqTR values are lower than the solvation rates, which result in the full contribution of the solvent reorganization energy (λs) towards the activation barrier for the ET reaction. Contrary to this, in SDS and TX-100 micelles, kqTR values are either higher or comparable with the solvation rates, causing only a partial contribution of λs in these cases. Thus, Marcus inversion in present cationic micelles is inferred to be the true inversion, whereas that in the anionic SDS and neutral TX-100 micelles are understood to be the apparent inversion, as envisaged from two-dimensional ET theory.

  9. Bimolecular photoinduced electron transfer beyond the diffusion limit: the Rehm-Weller experiment revisited with femtosecond time resolution.

    PubMed

    Rosspeintner, Arnulf; Angulo, Gonzalo; Vauthey, Eric

    2014-02-01

    To access the intrinsic, diffusion free, rate constant of bimolecular photoinduced electron transfer reactions, fluorescence quenching experiments have been performed with 14 donor/acceptor pairs, covering a driving-force range going from 0.6 to 2.4 eV, using steady-state and femtosecond time-resolved emission, and applying a diffusion-reaction model that accounts for the static and transient stages of the quenching for the analysis. The intrinsic electron transfer rate constants are up to 2 orders of magnitude larger than the diffusion rate constant in acetonitrile. Above ∼1.5 eV, a slight decrease of the rate constant is observed, pointing to a much weaker Marcus inverted region than those reported for other types of electron transfer reactions, such as charge recombination. Despite this, the driving force dependence can be rationalized in terms of Marcus theory. PMID:24400958

  10. Ultrafast photoinduced charge transport in Pt(II) donor-acceptor assembly bearing naphthalimide electron acceptor and phenothiazine electron donor.

    PubMed

    Sazanovich, Igor V; Best, Jonathan; Scattergood, Paul A; Towrie, Michael; Tikhomirov, Sergei A; Bouganov, Oleg V; Meijer, Anthony J H M; Weinstein, Julia A

    2014-12-21

    Visible light-induced charge transfer dynamics were investigated in a novel transition metal triad acceptor-chromophore-donor, (NDI-phen)Pt(II)(-C≡C-Ph-CH2-PTZ)2 (1), designed for photoinduced charge separation using a combination of time-resolved infrared (TRIR) and femtosecond electronic transient absorption (TA) spectroscopy. In 1, the electron acceptor is 1,4,5,8-naphthalene diimide (NDI), and the electron donor is phenothiazine (PTZ), and [(phen)Pt(-C≡C-Ph-)], where phen is 1,10-phenanthroline, represents the chromophoric core. The first excited state observed in 1 is a (3)MLCT/LL'CT, with {Pt(II)-acetylide}-to-phen character. Following that, charge transfer from the phen-anion onto the NDI subunit to form NDI(-)-phen-[Pt-(C≡C)2](+)-PTZ2 occurs with a time constant of 2.3 ps. This transition is characterised by appearance of the prominent NDI-anion features in both TRIR and TA spectra. The final step of the charge separation in 1 proceeds with a time constant of ∼15 ps during which the hole migrates from the [Pt-(C≡C)2] subunit to one of the PTZ groups. Charge recombination in 1 then occurs with two distinct time constants of 36 ns and 107 ns, corresponding to the back electron transfer to each of the two donor groups; a rather rare occurrence which manifests that the hole in the final charge-separated state is localised on one of the two donor PTZ groups. The assignment of the nature of the excited states and dynamics in 1 was assisted by TRIR investigations of the analogous previously reported ((COOEt)2bpy)Pt(C≡C-Ph-CH2-PTZ)2 (2), (J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355; J. E. McGarrah, J. T. Hupp and S. N. Smirnov, J. Phys. Chem. A, 2009, 113, 6430) as well as (bpy)Pt(C≡C-Ph-C7H15)2, which represent the acceptor-free dyad, and the chromophoric core, respectively. Thus, the step-wise formation of the full charge-separated state on the picosecond time scale and charge recombination via tunnelling have been established; and

  11. Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids.

    PubMed

    Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J

    2014-07-22

    Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films. PMID:24883930

  12. Photoinduced electron transfer in a supramolecular triad produced by porphyrin anion-induced electron transfer from tetrathiafulvalene calix[4]pyrrole to Li(+)@C60.

    PubMed

    Davis, Christina M; Ohkubo, Kei; Lammer, Aaron D; Kim, Dong Sub; Kawashima, Yuki; Sessler, Jonathan L; Fukuzumi, Shunichi

    2015-06-18

    Binding of a porphyrin carboxylate anion () to tetrathiafulvalene calix[4]pyrrole (TTF-C4P) results in electron transfer from TTF-C4P to Li(+)@C60 to produce the charge-separated state (1/TTF-C4P˙(+)/Li(+)@C60˙(-)) in benzonitrile. Upon photoexcitation of , photoinduced electron transfer from the triplet excited state of to TTF-C4P˙(+) occurs to produce the higher energy charge-separated state (˙(+)/TTF-C4P/Li(+)@C60˙(-)), which decays to the ground state with a lifetime of 4.8 μs.

  13. Steric and Electronic Factors Associated with the Photoinduced Ligand Exchange of Bidentate Ligands Coordinated to Ru(II).

    PubMed

    Albani, Bryan A; Whittemore, Tyler; Durr, Christopher B; Turro, Claudia

    2015-01-01

    In an effort to create a molecule that can absorb low energy visible or near-infrared light for photochemotherapy (PCT), the new complexes [Ru(biq)2 (dpb)](PF6 )2 (1, biq = 2,2'-biquinoline, dpb = 2,3-bis(2-pyridyl)benzoquinoxaline) and [(biq)2 Ru(dpb)Re(CO)3 Cl](PF6 )2 (2) were synthesized and characterized. Complexes 1 and 2 were compared to [Ru(bpy)2 (dpb)](PF6 )2 (3, bpy = 2,2'-bipyridine) and [Ru(biq)2 (phen)](PF6 )2 (4, phen = 1,10-phenanthroline). Distortions around the metal and biq ligands were used to explain the exchange of one biq ligand in 4 upon irradiation. Complex 1, however, undergoes photoinduced dissociation of the dpb ligand rather than biq under analogous experimental conditions. Complex 3 is not photoactive, providing evidence that the biq ligands are crucial for ligand photodissociation in 1. The crystal structures of 1 and 4 are compared to explain the difference in photochemistry between the complexes. Complex 2 absorbs lower energy light than 1, but is photochemically inert although its crystal structure displays significant distortions. These results indicate that both the excited state electronic structure and steric bulk play key roles in bidentate photoinduced ligand dissociation. The present work also shows that it is possible to stabilize sterically hindered Ru(II) complexes by the addition of another metal, a property that may be useful for other applications. PMID:25403564

  14. Ultrafast electronic photoinduced phase transition in a two-dimensional charge-ordering system

    NASA Astrophysics Data System (ADS)

    Iwano, K.

    2015-03-01

    We investigate the ground- and excited-state properties of a two-dimensional charge-ordering system, and theoretically demonstrate that multielectron excitations by one photon occur substantially as a result of frustration effects. These multielectron excitations are naturally regarded as domain excitations, which involve a simultaneous excitation of a part of the system lattice. Furthermore, we show that such domain excitations not only suppress the original charge-ordering phase strongly but also enhance another phase of charge ordering. As a result of such a global change, the overall photoinduced optical conductivity spectra are also modified drastically from the original spectrum, with the modified spectra exhibiting midgap and gapless features.

  15. Photo-induced reactions from efficient molecular dynamics with electronic transitions using the FIREBALL local-orbital density functional theory formalism.

    PubMed

    Zobač, Vladimír; Lewis, James P; Abad, Enrique; Mendieta-Moreno, Jesús I; Hapala, Prokop; Jelínek, Pavel; Ortega, José

    2015-05-01

    The computational simulation of photo-induced processes in large molecular systems is a very challenging problem. Firstly, to properly simulate photo-induced reactions the potential energy surfaces corresponding to excited states must be appropriately accessed; secondly, understanding the mechanisms of these processes requires the exploration of complex configurational spaces and the localization of conical intersections; finally, photo-induced reactions are probability events, that require the simulation of hundreds of trajectories to obtain the statistical information for the analysis of the reaction profiles. Here, we present a detailed description of our implementation of a molecular dynamics with electronic transitions algorithm within the local-orbital density functional theory code FIREBALL, suitable for the computational study of these problems. As an example of the application of this approach, we also report results on the [2 + 2] cycloaddition of ethylene with maleic anhydride and on the [2 + 2] photo-induced polymerization reaction of two C60 molecules. We identify different deactivation channels of the initial electron excitation, depending on the time of the electronic transition from LUMO to HOMO, and the character of the HOMO after the transition.

  16. Research of a highly selective fluorescent chemosensor for aluminum(III) ions based on photoinduced electron transfer

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Sun, Changyan; Chen, Chao; Cui, Xiaoning; Li, Wenjun

    2015-01-01

    A highly selective fluorescent chemosensor for aluminum(III) ions, N,N‧-bis(2-hydroxy-1-naphthaldehyde)-l,2-phenylenediamine (H2L) was synthesized and characterized. When aluminum(III) ions are added to H2L solution in DMF, the solution exhibits two remarkably enhanced emissions at 517 and 540 nm, which could not be observed with other metal ions. The results of 1H NMR titration, MALDI-TOF-MS and DFT studies indicate that H2L and aluminum(III) ions form a 1:1 complex. The association constant Ka was determined to be 2.67 × 106 and the limit of detection (LOD) was calculated to be 10-6 M. The sensing mechanism can be explained by the photoinduced electron transfer (PET).

  17. Photoinduced electron transfer in a ferrocene-distyryl BODIPY dyad and a ferrocene-distyryl BODIPY-C60 triad.

    PubMed

    Liu, Jian-Yong; El-Khouly, Mohamed E; Fukuzumi, Shunichi; Ng, Dennis K P

    2012-06-01

    A ferrocene-distyryl BODIPY dyad and a ferrocene-distyryl BODIPY-C(60) triad are synthesized and characterized. Upon photoexcitation at the distyryl BODIPY unit, these arrays undergo photoinduced electron transfer to form the corresponding charge-separated species. Based on their redox potentials, determined by cyclic voltammetry, the direction of the charge separation and the energies of these states are revealed. Femtosecond transient spectroscopic studies reveal that a fast charge separation (k(CS) =1.0×10(10) s(-1)) occurs for both the ferrocene-distyryl BODIPY dyad and the ferrocene-distyryl BODIPY-C(60) triad, but that a relatively slow charge recombination is observed only for the triad. The lifetime of the charge-separated state is 500 ps. Charge recombination of the dyad and triad leads to population of the triplet excited sate of ferrocene and the ground state, respectively.

  18. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    SciTech Connect

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin -ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.

  19. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DOE PAGESBeta

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin -ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; et al

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less

  20. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    PubMed Central

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.

    2015-01-01

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920

  1. Incorporation of Water-Oxidation Catalysts into Photoinduced Electron Transfer Systems: Toward Solar Fuel Generation via Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Vagnini, Michael Thomas

    A key goal of artificial photosynthesis is to mimic the photochemistry of photosystem II and oxidize water using light energy, with the ultimate aim of using the liberated electrons for reductive, fuel-forming reactions. One of the more recent challenges in the field of solar fuels chemistry is the efficient activation of molecular water-oxidation catalysts with photoinduced electron transfer, an effort that would benefit from detailed knowledge of the energetics and kinetics of each electron transfer step in a light-driven catalytic cycle. The focus of this thesis is the synthesis and photophysical characterization of covalent assemblies comprising a redox-active organic chromophore and the iridium(III)-based water-oxidation catalyst Cp*Ir(ppy)Cl (ppy = 2-phenylpyridine), and the rates and pathways for photogeneration of higher-valence states of the catalyst are determined with femtosecond transient absorption spectroscopy and other time-resolved spectroscopic techniques. In linking the photooxidant perylene-3,4:9,10-bis (dicarboximide) (PDI) to the Ir(III) catalyst, fast photoinduced electron transfer from the metal complex to PDI outcompetes heavy-atom quenching of the dye excited state, and the catalytic integrity of the complex is retained, as determined by electrocatalysis experiments. Long-lived higher-valence states of the catalyst are necessary for the accumulation of oxidizing equivalents for oxygen evolution, and the lifetime of photogenerated Ir(IV) has been extended by over two orders of magnitude by catalyst incorporation into a covalent electron acceptor--chromophore--catalyst triad, in which the dye is perylene-3,4-dicarboximide (PMI). Time resolved X-ray absorption studies of the triad confirm the photogeneration of an Ir(IV) metal center, a species that is too unstable to observe with chemical or electrochemical oxidation methods. This approach to preparing higher-valence states of water-oxidation catalysts has great promise for deducing catalytic

  2. BODIPY-based fluorescent thermometer as a lysosome-targetable probe: how the oligo(ethylene glycols) compete photoinduced electron transfer.

    PubMed

    Wang, Hua; Wu, Yongquan; Shi, Yanlin; Tao, Pan; Fan, Xing; Su, Xinyan; Kuang, Gui-Chao

    2015-02-16

    A novel BODIPY-based fluorescent thermometer, which shows a lysosome-targeting property, was successfully prepared. Due to the electron-donating ability of the oligo(ethylene glycols), the photoinduced electron-transfer pathway from morpholine to BODIPY dye is blocked. The fluorescence of the thermometer quenched by intramolecular rotation at room temperature was progressively enhanced during heating due to the increased microviscosity around the fluorophore.

  3. Investigation of photoinduced electron transfer in model system of vitamin E-duroquinone by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Duan, Xiao-Hui; Li, Ze-Rong; Li, Xiang-Yuan; Li, Liu-Ming

    2004-06-01

    Photoinduced electron transfer of the model system composed of vitamin E and duroquinone has been investigated using time-dependent density functional theory. Calculations for the excited states tell that the photoexcitation of the model system can directly yield the charge transfer states in which the vitamin E moiety is positively charged but the duroquinone moiety is negatively charged. Our theoretical investigations indicate that the second charge transfer state of the model system can also be produced through the decay of higher locally excited state S4. Since S4 state in the model system corresponds to S1 state of the isolated duroquinone used as a model for peroxyl radical, and S2 state has the character of electron transfer from the tertiary amine group of the vitamin E moiety to the duroquinone moiety, the decay from S4 to S2 corresponds to the dynamic process following the photoexcitation of the duroquinone moiety of the model system, i.e., the initial stage of antioxidant reaction of vitamin E. Calculations of the kinetic parameters for the electron transfer have been carried out in the framework of the Marcus-Jortner-Levich formalism. Our calculations confirm that the electron transfer from S4 to S2 possesses the character of the inverted regime and the barrier is negligibly small.

  4. Photoinduced intramolecular electron transfer reactions in fullerene-phenothiazine linked compounds: effects of magnetic field and spacer chain length

    NASA Astrophysics Data System (ADS)

    Yonemura, Hiroaki; Noda, Masakazu; Hayashi, Kazuya; Tokudome, Hiromasa; Moribe, Shinya; Yamada, Sunao

    Spectroscopic and electrochemical properties of two fullerene(C60)-phenothiazine(PH) linked compounds with different spacer chain length have been compared in benzonitrile (polar solvent) and in benzene (non-polar solvent). Transient absorption and fluorescence spectra indicated that photoinduced intramolecular electron transfer occurred in benzonitrile, but not in benzene. The results are due to solvent effect on energy levels of the photogenerated biradical. The driving forces for the electron transfer were determined by measuring the redox potentials of the C60 and PH moieties. Thermodynamic parameters for the electron transfer processes were evaluated and compared. In benzonitrile, the lifetime of the photogenerated biradical was very long, in spite of being around the top region in Marcus theory. The decay rate of the biradicals was retarded in the presence of magnetic fields. The decay rate constant decreased quickly with increasing the magnetic field and became constant above about 0.2 T. The magnetic field effects verified that the triplet biradical was generated by the intramolecular electron transfer from PH to the triplet excited state of C60 . The long lifetime is most probably ascribed to the spin multiplicities of the biradical.

  5. Photoinduced electron transfer from N,N-dimethylaniline to 7-amino Coumarins in protein-surfactant complex: Slowing down of electron transfer dynamics compared to micelles

    NASA Astrophysics Data System (ADS)

    Chakraborty, Anjan; Seth, Debabrata; Setua, Palash; Sarkar, Nilmoni

    2006-02-01

    Photoinduced electron transfer from N,N-dimethylaniline to different Coumarin dyes has been investigated in dodecyl trimethyl ammonium bromide (DTAB) micelles and in Bovine serum albumin (BSA)-DTAB protein-surfactant complex using steady-state and picosecond time-resolved fluorescence spectroscopy. We observed a slower fluorescence quenching rate in the DTAB micelles and in the protein-surfactant complex as compared to that in pure acetonitrile solution. Moreover, the observed fluorescence quenching in BSA-DTAB complex was found to be slower than that in DTAB micelles. In the correlation of free-energy change with the fluorescence quenching constant we observed a deviation in the fluorescence quenching electron transfer rate for Coumarin 151 (C-151) from the normal Marcus curve. This observation is ascribed to the stronger interaction of C-151 with the surfactant molecules present in the micelles. This is evident from the slower translation diffusion (DL) of Coumarin 151 compared to other probe molecules.

  6. Photoinduced electron transfer between 2-methylanthraquinone and triethylamine in an ionic liquid: time-resolved EPR and transient absorption spectroscopy study.

    PubMed

    Zhu, Guanglai; Wang, Yu; Fu, Haiying; Xu, Xinsheng; Cui, Zhifeng; Ji, Xuehan; Wu, Guozhong

    2015-02-25

    Photoinduced electron transfer between 2-methylanthraquinone (MeAQ) and triethylamine (TEA) in a room-temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), was investigated by comparing the time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy and the transient absorption spectroscopy. The results of TR-EPR spectroscopy, in which MeAQ was 8 mmol L(-1) and TEA was 150 mmol L(-1), indicated that the transient radical would exist longer time in [bmim][PF6] than in acetonitrile. At the delay time of 8 μs after laser excitation, the TR-EPR signal transformed from an emissive peak into an absorptive peak when the experiment was performed in [bmim][PF6]. The results of the transient absorption spectroscopy, in which MeAQ was 0.1 mmol L(-1) and TEA was 2.2 mmol L(-1), showed that the efficiency and the rate of the photoinduced electron transfer reaction in [bmim][PF6] were obviously lower than that in acetonitrile. It was concluded that various factors, such as concentration, viscosity and local structural transformation of the solution, have an influence on the process of photoinduced electron transfer in [bmim][PF6].

  7. Ab initio characterization of electron transfer coupling in photoinduced systems: generalized Mulliken-Hush with configuration-interaction singles.

    PubMed

    Chen, Hung-Cheng; Hsu, Chao-Ping

    2005-12-29

    To calculate electronic couplings for photoinduced electron transfer (ET) reactions, we propose and test the use of ab initio quantum chemistry calculation for excited states with the generalized Mulliken-Hush (GMH) method. Configuration-interaction singles (CIS) is proposed to model the locally excited (LE) and charge-transfer (CT) states. When the CT state couples with other high lying LE states, affecting coupling values, the image charge approximation (ICA), as a simple solvent model, can lower the energy of the CT state and decouple the undesired high-lying local excitations. We found that coupling strength is weakly dependent on many details of the solvent model, indicating the validity of the Condon approximation. Therefore, a trustworthy value can be obtained via this CIS-GMH scheme, with ICA used as a tool to improve and monitor the quality of the results. Systems we tested included a series of rigid, sigma-linked donor-bridge-acceptor compounds where "through-bond" coupling has been previously investigated, and a pair of molecules where "through-space" coupling was experimentally demonstrated. The calculated results agree well with experimentally inferred values in the coupling magnitudes (for both systems studied) and in the exponential distance dependence (for the through-bond series). Our results indicate that this new scheme can properly account for ET coupling arising from both through-bond and through-space mechanisms.

  8. Quantum dynamical simulation of photoinduced electron transfer processes in dye-semiconductor systems: theory and application to coumarin 343 at TiO2

    NASA Astrophysics Data System (ADS)

    Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael

    2015-04-01

    A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.

  9. Ultrafast Photoinduced Interfacial Proton Coupled Electron Transfer from CdSe Quantum Dots to 4,4'-Bipyridine.

    PubMed

    Chen, Jinquan; Wu, Kaifeng; Rudshteyn, Benjamin; Jia, Yanyan; Ding, Wendu; Xie, Zhao-Xiong; Batista, Victor S; Lian, Tianquan

    2016-01-27

    Pyridine and derivatives have been reported as efficient and selective catalysts for the electrochemical and photoelectrochemical reduction of CO2 to methanol. Although the catalytic mechanism remains a subject of considerable recent debate, most proposed models involve interfacial proton coupled electron transfer (PCET) to electrode-bound catalysts. We report a combined experimental and theoretical study of the photoreduction of 4,4'-bipyridium (bPYD) using CdSe quantum dots (QDs) as a model system for interfacial PCET. We observed ultrafast photoinduced PCET from CdSe QDs to form doubly protonated [bPYDH2](+•) radical cations at low pH (4-6). Through studies of the dependence of PCET rate on isotopic substitution, pH and bPYD concentration, the radical formation mechanism was identified to be a sequential interfacial electron and proton transfer (ET/PT) process with a rate-limiting pH independent electron transfer rate constant, kint, of 1.05 ± 0.13 × 10(10) s(-1) between a QD and an adsorbed singly protonated [bPYDH](+). Theoretical studies of the adsorption of [bPYDH](+) and methylviologen on QD surfaces revealed important effects of hydrogen bonding with the capping ligand (3-mercaptopropionic acid) on binding geometry and interfacial PCET. In the presence of sacrificial electron donors, this system was shown to be capable of generating [bPYDH2](+•) radical cations under continuous illumination at 405 nm with a steady-state photoreduction quantum yield of 1.1 ± 0.1% at pH 4. The mechanism of bPYD photoreduction reported in this work may provide useful insights into the catalytic roles of pyridine and pyridine derivatives in the electrochemical and photoelectrochemical reduction of CO2. PMID:26713752

  10. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells

    NASA Astrophysics Data System (ADS)

    Wang, Jianxi; Zhou, Cheng; Zhang, Jianjian; Zhu, Xinyue; Liu, Xiaoyan; Wang, Qin; Zhang, Haixia

    2016-09-01

    A new biothiol-selective fluorescent probe 1 based on photoinduced electron transfer (PET) mechanism was designed and synthesized. The UV-Vis absorption and fluorescent emission properties of probe 1 towards various analytes were studied in detail. The probe exhibited a large stokes shift (~ 200 nm) after reacted with biothiols and could selectively detect cysteine (Cys) in dimethyl sulfoxide (DMSO)/H2O solution (9:1, v/v, 10 mM phosphate buffer saline, pH 3.5) over glutathione (GSH), homocysteine (Hcy) and other analytes with a detection limit of 0.117 μM. In addition, probe 1 responded well to GSH, Hcy and Cys in the same above solution with pH 5.5 and got the detection limits of 0.151 μM, 0.128 μM and 0.037 μM, respectively. Probe 1 was of very low cytotoxicity and successfully applied for imaging of thiols in living cells.

  11. Vibrational dynamics in photoinduced electron transfer. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Spears, K.G.

    1993-09-08

    Objective is to perform a new type of measurement for optically excited electron transfer processes that can provide unique experimental insight into the molecular mechanism of electron transfer. Measurements of optically excited electron transfer are done with picosecond infrared (IR) absorption spectroscopy to monitor the vibrational motions of the molecules immediately after electron transfer. Theory and experiment suggest that molecular vibrations and distortions are important controlling elements for electron transfer, and direct information has yet to be obtained on these elements of electron transfer mechanisms. The second period of funding has been dedicated to finishing technique development and performing studies of electron transfer in ion pair systems to identify if vibrational dependent electron transfer rates are present in this system. We have succeeded in measuring, for the first time, electron transfer rates as a function of vibrational state in an ion pair complex in solution. In a different area of electron transfer research we have proposed a new mechanism of solvent gated electron transfer.

  12. Anomalous modulation of photoinduced electron transfer of coumarin 102 in aniline-dimethylaniline mixture: dominant role of hydrogen bonding.

    PubMed

    Barman, Nabajeet; Sahu, Kalyanasis

    2014-12-28

    In a previous study, we reported a striking observation that photoinduced electron transfer (PET) from aniline (AN) to photoexcited coumarin 102 (C102) can be accelerated by adding an inert component (cyclohexane or toluene) to the neat electron donor solvent AN (Phys. Chem. Chem. Phys., 2014, 16, 6159-6166). The H-bond linking the electron donor (D, AN) and the acceptor (A, C102) was proposed to dictate the PET process. To account for the unusual variation of quenching pattern with AN mole fraction, two possible reasons were cited - (1) the D-A (AN-C102) H-bonding may be modulated due to change in polarity of the medium or (2) the additional D-D (AN-AN) H-bonding may restrain the D-A H-bonding to adjust optimally for the PET. Here, we investigate the PET of C102 in an AN-dimethylaniline (DMA) mixture to negate the polarity variation. Since, both AN and DMA have similar polarities, the polarity of the mixture should remain invariant at all compositions. Nevertheless, we found that the fluorescence quantum yield and lifetime of C102 in the mixtures follows a similar unusual trend as observed earlier in the AN-toluene or AN-cyclohexane mixtures; it first decreases up to a particular mole fraction (XD) of the H-bond donor AN and, thereafter, increases on further enrichment of the donor. The observed PET modulation may be rationalized by considering efficient PET in the 1 : 1 H-bonded C102-AN complex but less efficient PET in higher order C102-(AN)n≥2 complexes, where additional D-D (AN-AN) H-bonding may influence the key C102-AN H-bonding and thus inhibit the PET process.

  13. The wavelength dependence of photoinduced hot electron dissociative attachment to methyl bromide adsorbed on gallium arsenide (110)

    SciTech Connect

    Camillone, N. III; Khan, K.A.; Lasky, P.J.; Wu, L.; Moryl, J.E.; Osgood, R.M. Jr.

    1998-11-01

    The wavelength dependence of photoinduced dissociation of CH{sub 3}Br via dissociative electron attachment (DEA) of {open_quotes}hot{close_quotes} electrons for one monolayer CH{sub 3}Br adsorbed on GaAs(110) has been measured. The cross section for dissociation is found to decrease monotonically by two orders of magnitude as the incident wavelength is varied from 308 to 550 nm. There is an apparent threshold near 490 nm (2.5 eV), well below the gas phase photodissociation threshold near 250 nm (5.0 eV), but in good agreement with a simple estimate based on expected values for the decrease in the photoemission threshold and the lowering of the molecular affinity level upon adsorption of CH{sub 3}Br on a semiconductor surface. The observed threshold is found to move to higher energy as dissociation of the monolayer proceeds. Based on the work of Hasselbrink and co-workers [F. Weik, A. de Meijere, and E. Hasselbrink, J. Chem. Phys. {bold 99}, 682 (1993)], a simple theoretical model is developed which considers the tunneling of hot electrons through the interfacial barrier between the physisorbed CH{sub 3}Br and the GaAs. The results of our theoretical model in conjunction with those of earlier {ital ab initio} calculations [S. Black, R. Friesner, P. H. Lu, and R. M. Osgood, Jr., Surf. Sci. {bold 382}, 154 (1997)] suggest that the adsorbate affinity level is centered at {approximately}0.6 eV above the (adsorbate- modified) vacuum level of the substrate. This value corresponds to a {approximately}1.8 eV stabilization of the negative ion resonance upon adsorption. {copyright} {ital 1998 American Institute of Physics.}

  14. An Evaluation of Sensor Performance for Harmful Compounds by Using Photo-Induced Electron Transfer from Photosynthetic Membranes to Electrodes

    PubMed Central

    Kasuno, Megumi; Kimura, Hiroki; Yasutomo, Hisataka; Torimura, Masaki; Murakami, Daisuke; Tsukatani, Yusuke; Hanada, Satoshi; Matsushita, Takayuki; Tao, Hiroaki

    2016-01-01

    Rapid, simple, and low-cost screening procedures are necessary for the detection of harmful compounds in the effluent that flows out of point sources such as industrial outfall. The present study investigated the effects on a novel sensor of harmful compounds such as KCN, phenol, and herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine), and 2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine (terbutryn). The sensor employed an electrode system that incorporated the photocurrent of intra-cytoplasmic membranes (so-called chromatophores) prepared from photosynthetic bacteria and linked using carbon paste electrodes. The amperometric curve (photocurrent-time curve) of photo-induced electron transfer from chromatophores of the purple photosynthetic bacterium Rhodobacter sphaeroides to the electrode via an exogenous electron acceptor was composed of two characteristic phases: an abrupt increase in current immediately after illumination (I0), and constant current over time (Ic). Compared with other redox compounds, 2,5-dichloro-1,4-benzoquinone (DCBQ) was the most useful exogenous electron acceptor in this system. Photo-reduction of DCBQ exhibited Michaelis-Menten-like kinetics, and reduction rates were dependent on the amount of DCBQ and the photon flux intensity. The Ic decreased in the presence of KCN at concentrations over 0.05 μM (=μmol·dm−3). The I0 decreased following the addition of phenol at concentrations over 20 μM. The Ic was affected by terbutryn at concentrations over 10 μM. In contrast, DCMU and atrazine had no effect on either I0 or Ic. The utility of this electrode system for the detection of harmful compounds is discussed. PMID:27023553

  15. An Evaluation of Sensor Performance for Harmful Compounds by Using Photo-Induced Electron Transfer from Photosynthetic Membranes to Electrodes.

    PubMed

    Kasuno, Megumi; Kimura, Hiroki; Yasutomo, Hisataka; Torimura, Masaki; Murakami, Daisuke; Tsukatani, Yusuke; Hanada, Satoshi; Matsushita, Takayuki; Tao, Hiroaki

    2016-01-01

    Rapid, simple, and low-cost screening procedures are necessary for the detection of harmful compounds in the effluent that flows out of point sources such as industrial outfall. The present study investigated the effects on a novel sensor of harmful compounds such as KCN, phenol, and herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine), and 2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine (terbutryn). The sensor employed an electrode system that incorporated the photocurrent of intra-cytoplasmic membranes (so-called chromatophores) prepared from photosynthetic bacteria and linked using carbon paste electrodes. The amperometric curve (photocurrent-time curve) of photo-induced electron transfer from chromatophores of the purple photosynthetic bacterium Rhodobacter sphaeroides to the electrode via an exogenous electron acceptor was composed of two characteristic phases: an abrupt increase in current immediately after illumination (I₀), and constant current over time (Ic). Compared with other redox compounds, 2,5-dichloro-1,4-benzoquinone (DCBQ) was the most useful exogenous electron acceptor in this system. Photo-reduction of DCBQ exhibited Michaelis-Menten-like kinetics, and reduction rates were dependent on the amount of DCBQ and the photon flux intensity. The Ic decreased in the presence of KCN at concentrations over 0.05 μM (=μmol·dm(-3)). The I₀ decreased following the addition of phenol at concentrations over 20 μM. The Ic was affected by terbutryn at concentrations over 10 μM. In contrast, DCMU and atrazine had no effect on either I₀ or Ic. The utility of this electrode system for the detection of harmful compounds is discussed. PMID:27023553

  16. Photosynthetic reaction center functionalized nano-composite films: effective strategies for probing and exploiting the photo-induced electron transfer of photosensitive membrane protein.

    PubMed

    Lu, Yidong; Xu, Jingjing; Liu, Baohong; Kong, Jilie

    2007-02-15

    Photosynthetic reaction center (RC), a robust transmembrane pigment-protein complex, works as the crucial component participating the primary event of the photo-electrochemical conversion in bacteria. Sparked by the high photo-induced charge separation yield (ca. 100%) of RC, great interests have been aroused to fabricate versatile RC-functionalized nano-composite films for exploring the initial photosynthetic electron transfer (ET) of RC, and thus exploiting well-designed bio-photoelectric converters. In this review, we classify and summarize the current status about the concepts and methods of constructing RC-immobilized nano-composite films or devices for probing the photo-induced ET, and applying to novel bioelectronics if it is possible.

  17. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.

    PubMed

    Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V

    2011-01-01

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.

  18. Mechanistic studies of photoinduced spin crossover and electron transfer in inorganic complexes.

    PubMed

    Zhang, Wenkai; Gaffney, Kelly J

    2015-04-21

    Electronic excited-state phenomena provide a compelling intersection of fundamental and applied research interests in the chemical sciences. This holds true for coordination chemistry, where harnessing the strong optical absorption and photocatalytic activity of compounds depends on our ability to control fundamental physical and chemical phenomena associated with the nonadiabatic dynamics of electronic excited states. The central events of excited-state chemistry can critically influence the dynamics of electronic excited states, including internal conversion (transitions between distinct electronic states) and intersystem crossing (transitions between electronic states with different spin multiplicities), events governed by nonadiabatic interactions between electronic states in close proximity to conical intersections, as well as solvation and electron transfer. The diversity of electronic and nuclear dynamics also makes the robust interpretation of experimental measurements challenging. Developments in theory, simulation, and experiment can all help address the interpretation and understanding of chemical dynamics in organometallic and coordination chemistry. Synthesis presents the opportunity to chemically engineer the strength and symmetry of the metal-ligand interactions. This chemical control can be exploited to understand the influence of electronic ground state properties on electronic excited-state dynamics. New time-resolved experimental methods and the insightful exploitation of established methods have an important role in understanding, and ideally controlling, the photophysics and photochemistry of transition metal complexes. Techniques that can disentangle the coupled motion of electrons and nuclear dynamics warrant emphasis. We present a review of electron localization dynamics in charge transfer excited states and the dynamics of photoinitiated spin crossover dynamics. Both electron localization and spin crossover have been investigated by

  19. Photoinduced diffusion molecular transport

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Dekhtyar, Marina L.; Lin, Sheng Hsien; Trakhtenberg, Leonid I.

    2016-08-01

    We consider a Brownian photomotor, namely, the directed motion of a nanoparticle in an asymmetric periodic potential under the action of periodic rectangular resonant laser pulses which cause charge redistribution in the particle. Based on the kinetics for the photoinduced electron redistribution between two or three energy levels of the particle, the time dependence of its potential energy is derived and the average directed velocity is calculated in the high-temperature approximation (when the spatial amplitude of potential energy fluctuations is small relative to the thermal energy). The thus developed theory of photoinduced molecular transport appears applicable not only to conventional dichotomous Brownian motors (with only two possible potential profiles) but also to a much wider variety of molecular nanomachines. The distinction between the realistic time dependence of the potential energy and that for a dichotomous process (a step function) is represented in terms of relaxation times (they can differ on the time intervals of the dichotomous process). As shown, a Brownian photomotor has the maximum average directed velocity at (i) large laser pulse intensities (resulting in short relaxation times on laser-on intervals) and (ii) excited state lifetimes long enough to permit efficient photoexcitation but still much shorter than laser-off intervals. A Brownian photomotor with optimized parameters is exemplified by a cylindrically shaped semiconductor nanocluster which moves directly along a polar substrate due to periodically photoinduced dipole moment (caused by the repetitive excited electron transitions to a non-resonant level of the nanocylinder surface impurity).

  20. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-08-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  1. Modeling localized photoinduced electrons in rutile-TiO2 using periodic DFT+U methodology.

    PubMed

    Jedidi, Abdesslem; Markovits, Alexis; Minot, C; Bouzriba, Sarra; Abderraba, Manef

    2010-11-01

    We propose a theoretical model for photocatalytic processes on titanium dioxide, described by its most stable phase and surface, rutile-TiO(2)(110). The excitation induced by light promotes electrons from the valence band to the conduction band. In this context, one important requirement is having a correct value of the magnitude of the electronic gap. The use of GGA+U or LDA+U functional with an appropriate U value allows this. The U correction has little consequence on the adsorption strength itself on the TiO(2)(110) surface. For the ground state, it only yields a slight increase of the interaction strength of some test molecules; the surface basicity is somewhat enhanced. This is interpreted by the shift of TiO(2) vacant levels. Photoexcitation is taken into account by imposing two unpaired electrons per cell of the same spin. The size of the cell therefore determines the number of excitations per surface area; the larger the cell, the smaller the electron-hole surface concentration and the smaller the energy for electronic excitation. For the excited state, careful attention must be focused on the localization of the excited electron and of the hole which are crucial for the determination of the lowest electronic states and for the surface reactivity. We found that the excited electron is localized on a pentacoordinated surface titanium atom while the hole is shared by two surface oxygen atoms not too far from it. The electronic levels associated to the reduced titanium atoms are low in energy; the projected density of states is superposed onto the valence band.

  2. Photoinduced energy and electron transfer in rubrene-benzoquinone and rubrene-porphyrin systems

    NASA Astrophysics Data System (ADS)

    Khan, Jafar I.; Abbas, Abdullah Saud; Aly, Shawkat M.; Usman, Anwar; Melnikov, Vasily A.; Alarousu, Erkki; Mohammed, Omar F.

    2014-11-01

    Excited-state electron and energy transfer from singlet excited rubrene (Ru) to benzoquinone (BQ) and tetra-(4-aminophenyl) porphyrin (TAPP) were investigated by steady-state absorption and emission, time-resolved transient absorption, and femtosecond (fs)-nanosecond (ns) fluorescence spectroscopy. The low reduction potential of BQ provides the high probability of electron transfer from the excited Ru to BQ. Steady-state and time-resolved results confirm such an excited electron transfer scenario. On the other hand, strong spectral overlap between the emission of Ru and absorption of TAPP suggests that energy transfer is a possible deactivation pathway of the Ru excited state.

  3. Self-amplified photo-induced gap quenching in a correlated electron material

    NASA Astrophysics Data System (ADS)

    Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.

    2016-10-01

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains--on a microscopic level--the extremely fast response of this material to ultrafast optical excitation.

  4. Modulation of Cu(2-x)S Nanocrystal Plasmon Resonance through Reversible Photoinduced Electron Transfer.

    PubMed

    Alam, Rabeka; Labine, Molly; Karwacki, Christopher J; Kamat, Prashant V

    2016-02-23

    Copper sulfide (Cu(2-x)S) nanocrystals with nonstoichiometric composition exhibit plasmon resonance in the near-infrared region. Compositional changes and varying electron density markedly affect the position and intensity of the plasmon resonance. We report a photochemically induced phenomenon of modulating the plasmon resonance in a controlled fashion. As photogenerated reduced methyl viologen radicals transfer electrons to Cu(2-x)S in inert solutions, we observe a decrease in localized surface plasmon resonance (LSPR) absorbance at 1160 nm. Upon exposure to air, the plasmon resonance band recovers as stored electrons are scavenged away by oxygen. This cycle of electron charge and discharge of Cu(2-x)S nanocrystals is reversible and can be repeated through photoirradiation in N2 saturated solution followed by exposure of the suspension to air. The spectroscopic studies that provide mechanistic insights into the reversible charging and discharging of plasmonic Cu(2-x)S are discussed.

  5. Self-amplified photo-induced gap quenching in a correlated electron material

    PubMed Central

    Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.

    2016-01-01

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. PMID:27698341

  6. Interplay between barrier width and height in electron tunneling: photoinduced electron transfer in porphyrin-based donor-bridge-acceptor systems.

    PubMed

    Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo

    2006-01-12

    The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.

  7. Theory of ultrafast photoinduced electron transfer from a bulk semiconductor to a quantum dot

    SciTech Connect

    Rasmussen, Andrew M. Ramakrishna, S.; Weiss, Emily A.; Seideman, Tamar

    2014-04-14

    This paper describes analytical and numerical results from a model Hamiltonian method applied to electron transfer (ET) from a quasicontinuum (QC) of states to a set of discrete states, with and without a mediating bridge. Analysis of the factors that determine ET dynamics yields guidelines for achieving high-yield electron transfer in these systems, desired for instance for applications in heterogeneous catalysis. These include the choice of parameters of the laser pulse that excites the initial state into a continuum electronic wavepacket and the design of the coupling between the bridge molecule and the donor and acceptor. The vibrational mode on a bridging molecule between donor and acceptor has an influence on the yield of electron transfer via Franck-Condon factors, even in cases where excited vibrational states are only transiently populated. Laser-induced coherence of the initial state as well as energetic overlap is crucial in determining the ET yield from a QC to a discrete state, whereas the ET time is influenced by competing factors from the coupling strength and the coherence properties of the electronic wavepacket.

  8. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    PubMed

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes.

  9. Photoinduced electron transfers in zeolites: impact of the aluminum content on the activation energies.

    PubMed

    Hureau, Matthieu; Moissette, Alain; Gaillard, Jeremy; Brémard, Claude

    2012-10-01

    We report the activation energy determination corresponding to the recombination of the radical cation electron moiety created through photoionization of the 1,6-diphenyl-1,3,5-hexatriene molecule incorporated in ZSM-5 zeolite channels. We demonstrate that the charge separated state stabilization in zeolite does not depend only on the Al content but also on the Al repartition.

  10. Photo-induced electron detachment of protein polyanions in the VUV range

    NASA Astrophysics Data System (ADS)

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2013-02-01

    Biomolecular polyanions mainly relax by electron emission after UV excitation. Here, we study photodetachment of protein polyanions in the 6-16 eV VUV range by coupling a linear quadrupole ion trap with a synchrotron beamline. Gas-phase VUV action spectra of electrospray-produced multiply deprotonated insulin (5.6 kDa) and myoglobin (16.7 kDa) proteins are reported, which significantly increases the amount of data available on the optical response of proteins in the VUV. The influence of the protein charge and oxidation state upon the electron detachment efficiency is discussed. For small protein such as insulin, it appears that higher charge states produce higher detachment yields. Investigations on oxidized species show that the nature of the groups bearing the negative charges has an influence on the yields. For larger proteins, comparison of two forms of myoglobin clearly indicate that the three-dimensional structure does not impact much on the shape and the magnitude of the photodetachment spectra, in spite of a slight shift for the first electronic excited states.

  11. Photo-induced electron detachment of protein polyanions in the VUV range

    SciTech Connect

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Nahon, Laurent; Giuliani, Alexandre

    2013-02-14

    Biomolecular polyanions mainly relax by electron emission after UV excitation. Here, we study photodetachment of protein polyanions in the 6-16 eV VUV range by coupling a linear quadrupole ion trap with a synchrotron beamline. Gas-phase VUV action spectra of electrospray-produced multiply deprotonated insulin (5.6 kDa) and myoglobin (16.7 kDa) proteins are reported, which significantly increases the amount of data available on the optical response of proteins in the VUV. The influence of the protein charge and oxidation state upon the electron detachment efficiency is discussed. For small protein such as insulin, it appears that higher charge states produce higher detachment yields. Investigations on oxidized species show that the nature of the groups bearing the negative charges has an influence on the yields. For larger proteins, comparison of two forms of myoglobin clearly indicate that the three-dimensional structure does not impact much on the shape and the magnitude of the photodetachment spectra, in spite of a slight shift for the first electronic excited states.

  12. Coherent control of long-range photoinduced electron transfer by stimulated X-ray Raman processes.

    PubMed

    Dorfman, Konstantin E; Zhang, Yu; Mukamel, Shaul

    2016-09-01

    We show that X-ray pulses resonant with selected core transitions can manipulate electron transfer (ET) in molecules with ultrafast and atomic selectivity. We present possible protocols for coherently controlling ET dynamics in donor-bridge-acceptor (DBA) systems by stimulated X-ray resonant Raman processes involving various transitions between the D, B, and A sites. Simulations presented for a Ru(II)-Co(III) model complex demonstrate how the shapes, phases and amplitudes of the X-ray pulses can be optimized to create charge on demand at selected atoms, by opening up otherwise blocked ET pathways. PMID:27559082

  13. Generation of Phosphorescent Triplet States via Photoinduced Electron Transfer: Energy and Electron Transfer Dynamics in Pt Porphyrin-Rhodamine B Dyads

    PubMed Central

    Mani, Tomoyasu; Niedzwiedzki, Dariusz M.; Vinogradov, Sergei A.

    2012-01-01

    Control over generation and dynamics of excited electronic states is fundamental to their utilization in all areas of technology. We present the first example of multichromophoric systems in which emissive triplet states are generated via a pathway involving photoinduced electron transfer (ET), as opposed to local intrachromophoric processes. In model dyads, PtP-Phn-pRhB+ (1-3, n=1-3), comprising platinum(II) meso-tetraarylporphyrin (PtP) and rhodamine B piperazine derivative (pRhB+), linked by oligo-p-phenylene bridges (Phn), upon selective excitation of pRhB+ at a frequency below that of the lowest allowed transition of PtP, room-temperature T1→S0 phosphorescence of PtP was observed. The pathway leading to the emissive PtP triplet state includes excitation of pRhB+, ET with formation of the singlet radical pair, intersystem crossing within that pair and subsequent radical recombination. Due to the close proximity of the triplet energy levels of PtP and pRhB+, reversible triplet-triplet (TT) energy transfer between these states was observed in dyads 1 and 2. As a result, the phosphorescence of PtP was extended in time by the long decay of the pRhB+ triplet. Observation of ET and TT in the same series of molecules enabled direct comparison of the distance attenuation factors β between these two closely related processes. PMID:22400988

  14. Photoinduced electron transfer in a Watson-Crick base-paired, 2-aminopurine:uracil-C60 hydrogen bonding conjugate.

    PubMed

    D'Souza, Francis; Gadde, Suresh; Islam, D-M Shafiqul; Pang, Siew-Cheng; Schumacher, Amy Lea; Zandler, Melvin E; Horie, Rumiko; Araki, Yasuyaki; Ito, Osamu

    2007-02-01

    A fluorescent reporter molecule, 2-aminopurine was self-assembled via Watson-Crick base-pairing to a uracil appended fullerene to form a donor-acceptor conjugate; efficient photoinduced charge separation was confirmed by time-resolved emission and transient absorption spectral studies.

  15. Excited State Dynamics of Protonated Phenylalanine and Tyrosine: Photo-Induced Reactions Following Electronic Excitation.

    PubMed

    Féraud, Géraldine; Broquier, Michel; Dedonder, Claude; Jouvet, Christophe; Grégoire, Gilles; Soorkia, Satchin

    2015-06-11

    The electronic spectroscopy and the electronic excited state properties of cold protonated phenylalanine and protonated tyrosine have been revisited on a large spectral domain and interpreted by comparison with ab initio calculations. The protonated species are stored in a cryogenically cooled Paul trap, maintained at ∼10 K, and the parent and all the photofragment ions are mass-analyzed in a time-of-flight mass spectrometer, which allows detecting the ionic species with an improved mass resolution compared to what is routinely achieved with a quadrupole mass spectrometer. These new results emphasize the competition around the band origin between two proton transfer reactions from the ammonium group toward either the aromatic chromophore or the carboxylic acid group. These reactions are initiated by the coupling of the locally excited ππ* state with higher charge transfer states, the positions and coupling of which depend on the conformation of the protonated molecules. Each of these reaction processes gives rise to specific fragmentation channels that supports the conformer selectivity observed in the photofragmentation spectra of protonated tyrosine and phenylalanine.

  16. Controlling Photoinduced Electron Transfer Via Defects Self-Organization for Novel Functional Macromolecular Systems

    PubMed Central

    Campi, Gaetano; Ciasca, Gabriele; Poccia, Nicola; Ricci, Alessandro; Fratini, Michela; Bianconi, Antonio

    2014-01-01

    The electrons transfer (ET) from an atom or a molecule, donor (D), to another, acceptor (A) is the basis of many fundamental chemical and physical processes. The ET mechanism is controlled by spatial arrangements of donor and acceptors: it’s the particular spatial arrangement and thus the particular distance and the orientation between the electron donors and acceptors that controls the efficiency in charge separation processes in nature. Here, we stress the importance of this concept reviewing how spatial distribution of atomic and molecular self-assembly can determine the quality and physical features of ET process from biology to material science. In this context, we propose novel lab-on-chip techniques to be used to control spatial distribution of molecules at nanoscale. Synchrotron source brightness jointly to focusing optics fabrication allows one nowadays to monitor and visualize structures with sub-micrometric spatial resolution. This can give us a new powerful tool to set up sophisticated X-ray imaging techniques as well as spectroscopic elemental and chemical mapping to investigate the structure-function relationship controlling the spatial arrangement of the molecules at nanoscale. Finally, we report intriguing recent case studies on the possibility to manipulate and control this spatial distribution and material functionality at nanoscale by using X ray illumination.

  17. All-optical photochromic spatial light modulators based on photoinduced electron transfer in rigid matrices

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Perry, Joseph W. (Inventor)

    1991-01-01

    A single material (not a multi-element structure) spatial light modulator may be written to, as well as read out from, using light. The device has tailorable rise and hold times dependent on the composition and concentration of the molecular species used as the active components. The spatial resolution of this device is limited only by light diffraction as in volume holograms. The device may function as a two-dimensional mask (transmission or reflection) or as a three-dimensional volume holographic medium. This device, based on optically-induced electron transfer, is able to perform incoherent to coherent image conversion or wavelength conversion over a wide spectral range (ultraviolet, visible, or near-infrared regions).

  18. Redox and photoinduced electron-transfer properties in short distance organoboryl ferrocene-subphthalocyanine dyads.

    PubMed

    Maligaspe, Eranda; Hauwiller, Matthew R; Zatsikha, Yuriy V; Hinke, Jonathan A; Solntsev, Pavlo V; Blank, David A; Nemykin, Victor N

    2014-09-01

    Reaction between ferrocene lithium or ethynylferrocene magnesium bromide and (chloro)boronsubphthalocyanine leads to formation of ferrocene- (2) and ethynylferrocene- (3) containing subphthalocyanine dyads with a direct organometallic B-C bond. New donor-acceptor dyads were characterized using UV-vis and magnetic circular dichroism (MCD) spectroscopies, NMR method, and X-ray crystallography. Redox potentials of the rigid donor-acceptor dyads 2 and 3 were studied using the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) approaches and compared to the parent subphthalocyanine 1 and conformationally flexible subphthalocyanine ferrocenenylmethoxide (4) and ferrocenyl carboxylate (5) dyads reported earlier. It was found that the first oxidation process in dyads 2 and 3 is ferrocene-centered, while the first reduction as well as the second oxidation are centered at the subphthalocyanine ligand. Density functional theory-polarized continuum model (DFT-PCM) and time-dependent (TD) DFT-PCM methods were used to probe the electronic structures and explain the UV-vis and MCD spectra of complexes 1-5. DFT-PCM calculations suggest that the LUMO, LUMO+1, and HOMO-3 in new dyads 2 and 3 are centered at the subphthalocyanine ligand, while the HOMO to HOMO-2 in both dyads are predominantly ferrocene-centered. TDDFT-PCM calculations on compounds 1-5 are indicative of the π → π* transitions dominance in their UV-vis spectra, which is consistent with the experimental data. The excited state dynamics of the parent subphthalocyanine 1 and dyads 2-5 were investigated using time-resolved transient spectroscopy. In the dyads 2-5, the initially excited state is rapidly (<2 ps) quenched by electron transfer from the ferrocene ligand. The lifetime of the charge transfer state demonstrates a systematic dependence on the structure of the bridge between the subphthalocyanine and ferrocene.

  19. Donor-acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions.

    PubMed

    Stergiou, Anastasios; Pagona, Georgia; Tagmatarchis, Nikos

    2014-01-01

    Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor-acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor-acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor-acceptor graphene-based hybrids, will be discussed.

  20. Photoinduced electron transfer (PET) versus excimer formation in supramolecular p/n-heterojunctions of perylene bisimide dyes and implications for organic photovoltaics.

    PubMed

    Nowak-Król, Agnieszka; Fimmel, Benjamin; Son, Minjung; Kim, Dongho; Würthner, Frank

    2015-01-01

    Foldamer systems comprised of two perylene bisimide (PBI) dyes attached to the conjugated backbones of 1,2-bis(phenylethynyl)benzene and phenylethynyl-bis(phenylene)indane, respectively, were synthesized and investigated with regard to their solvent-dependent properties. UV/Vis absorption and steady-state fluorescence spectra show that both foldamers exist predominantly in a folded H-aggregated state consisting of π-π-stacked PBIs in THF and in more random conformations with weaker excitonic coupling between the PBIs in chloroform. Time-resolved fluorescence spectroscopy and transient absorption spectroscopy reveal entirely different relaxation pathways for the photoexcited molecules in the given solvents, i.e. photoinduced electron transfer leading to charge separated states for the open conformations (in chloroform) and relaxation into excimer states with red-shifted emission for the stacked conformations (in THF). Supported by redox data from cyclic voltammetry and Rehm-Weller analysis we could relate the processes occurring in these solution-phase model systems to the elementary processes in organic solar cells. Accordingly, only if relaxation pathways such as excimer formation are strictly avoided in molecular semiconductor materials, excitons may diffuse over larger distances to the heterojunction interface and produce photocurrent via the formation of electron/hole pairs by photoinduced electron transfer.

  1. Observation of the Marcus inverted region for bimolecular photoinduced electron-transfer reactions in viscous media.

    PubMed

    Kumbhakar, Manoj; Manna, Arpan; Sayed, Mhejabeen; Kumar, Anil; Pal, Haridas

    2014-09-11

    The general observation of Marcus inverted region (MIR) for bimolecular electron-transfer (ET) reactions in different viscous media, e.g., micelles, reverse micelles, vesicles, ionic liquids, DNA scaffold, etc. has been doubted in some recent publications arguing limitations in Stern-Volmer (SV) analysis to account for the static and transient stages of quenching in these slow diffusing media. Thus, following a theoretical treatment based on a spherically symmetric diffusion equation coupled with conventional Marcus ET description, it has been suggested that the MIR observed in viscous media arises due to the inadequate consideration of different quenching regimes and also due to the differential excited-state lifetimes of the fluorophores used than a genuine one (J. Am. Chem. Soc. 2012, 134, 11396). However, the overall treatment in this study is severely compromised by setting the minimum solvent reorganization energy (λs) to ∼0.96 eV while fitting the experimental data, which unambiguously suggests that the inversion in ET rate will never appear in the exergonicity (-ΔG(0)) range of 0.16 to 0.71 eV, as is the case for the studied ET systems. Besides, the applicability of the conventional Marcus ET model (instead of Sumi-Marcus two-dimensional ET model) in such extremely viscous media with exceptionally slow solvent response is highly debatable and perhaps is the main cause of the failure in fitting the experimental data quite satisfactorily. In the present study involving ultrafast ET quenching for coumarin derivatives by dimethylaniline donor in viscous ionic liquid media, we demonstrate clear MIR for the intrinsic ET rates, directly obtained from the ultrafast decay components of 1-10 ps, a time scale in which diffusion of reactants is negligible and the ET rates are either faster than or, at the most, competitive with the solvent reorganization. The appearance of MIR at ΔG(0) ∼ -0.5 eV, significantly lower than expected from the λs value, further

  2. Use of quantitative shape-activity relationships to model the photoinduced toxicity of polycyclic aromatic hydrocarbons: Electron density shape features accurately predict toxicity

    SciTech Connect

    Mezey, P.G.; Zimpel, Z.; Warburton, P.; Walker, P.D.; Irvine, D.G.; Huang, X.D.; Dixon, D.G.; Greenberg, B.M.

    1998-07-01

    The quantitative shape-activity relationship (QShAR) methodology, based on accurate three-dimensional electron densities and detailed shape analysis methods, has been applied to a Lemna gibba photoinduced toxicity data set of 16 polycyclic aromatic hydrocarbon (PAH) molecules. In the first phase of the studies, a shape fragment QShAR database of PAHs was developed. The results provide a very good match to toxicity based on a combination of the local shape features of single rings in comparison to the central ring of anthracene and a more global shape feature involving larger molecular fragments. The local shape feature appears as a descriptor of the susceptibility of PAHs to photomodification and the global shape feature is probably related to photosensitization activity.

  3. Photoinduced intercomponent excited-state decays in a molecular dyad made of a dinuclear rhenium(I) chromophore and a fullerene electron acceptor unit.

    PubMed

    Nastasi, Francesco; Puntoriero, Fausto; Natali, Mirco; Mba, Miriam; Maggini, Michele; Mussini, Patrizia; Panigati, Monica; Campagna, Sebastiano

    2015-05-01

    A novel molecular dyad, 1, made of a dinuclear {[Re2(μ-X)2(CO)6(μ-pyridazine)]} component covalently-linked to a fullerene unit by a carbocyclic molecular bridge has been prepared and its redox, spectroscopic, and photophysical properties - including pump-probe transient absorption spectroscopy in the visible and near-infrared region - have been investigated, along with those of its model species. Photoinduced, intercomponent electron transfer occurs in 1 from the thermally-equilibrated, triplet metal/ligand-to-ligand charge-transfer ((3)MLLCT) state of the dinuclear rhenium(I) subunit to the fullerene acceptor, with a time constant of about 100 ps. The so-formed triplet charge-separated state recombines in a few nanoseconds by a spin-selective process yielding, rather than the ground state, the locally-excited, triplet fullerene state, which finally decays to the ground state by intersystem crossing in about 290 ns.

  4. Influences of acid on molecular forms of fluorescein and photoinduced electron transfer in fluorescein-dispersing sol-gel titania films.

    PubMed

    Nishikiori, Hiromasa; Setiawan, Rudi Agus; Miyashita, Kyohei; Teshima, Katsuya; Fujii, Tsuneo

    2014-01-01

    Fluorescein-dispersing titania gel films were prepared by the acid-catalyzed sol-gel reaction using a titanium alkoxide solution containing fluorescein. The molecular forms of fluorescein in the films, depending on its acid-base equilibria, and the complex formation and photoinduced electron transfer process between the dye and titania surface were investigated by fluorescence and photoelectric measurements. The titanium species were coordinated to the carboxylate and phenolate-like groups of the fluorescein species. The quantum efficiencies of the fluorescence quenching and photoelectric conversion were higher upon excitation of the dianion species interacting with the titania, i.e. the dye-titania complex. This result indicated that the dianion form was the most favorable for formation of the dye-titania complex exhibiting the highest electron transfer efficiency. Using nitric acid as the catalyst, the titania surface bonded to the fluorescein instead of the adsorbed nitrate ion during the steam treatment. The dye-titania complex formation played an important role in the electron injection from the dye to the titania conduction band.

  5. Photoinduced hydrogen-bonding dynamics.

    PubMed

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water. PMID:27491849

  6. Sensitive fast electron spectrometer in adjustable triode configuration with pulsed tunable laser for research on photo-induced field emission cathodes

    SciTech Connect

    Mingels, S. Porshyn, V.; Bornmann, B.; Lützenkirchen-Hecht, D.; Müller, G.

    2015-04-15

    We have completed an ultra-high vacuum system for sensitive fast electron spectroscopy from cold cathodes in triode configuration under high electric fields E (<100 MV/m) and pulsed tunable laser illumination (3.5 ns, 10 Hz, hν = 0.5-5.9 eV, and 0.3-17 mJ). The cathodes are prepared and inserted under clean room conditions and can be precisely 3D-positioned, cooled or heated (77-400 K). Commissioning results with the upgraded system are presented. Field emission measurements with a W tip yielded an energy resolution of 14 meV at 4 eV pass energy and a precise determination of the emitter work function, size, and temperature. Photoemission spectroscopy of short electron bunches from a virgin and laser-ablated S-GaP crystal and quantum efficiency measurements revealed surface states, energy relaxation, and band structure effects. In conclusion, this novel system is ready now for the development and characterization of photo-induced field emission cathodes.

  7. Photoinduced electron transfer of DNA/Ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors.

    PubMed

    Zhang, Libing; Zhu, Jinbo; Guo, Shaojun; Li, Tao; Li, Jing; Wang, Erkang

    2013-02-20

    Photoinduced electron transfer (PET) has been observed for the first time between DNA/Ag fluorescent nanoclusters (NCs) and G-quadruplex/hemin complexes, accompanied by a decrease in the fluorescence of the DNA/Ag NCs. In this PET process, a parallel G-quadruplex and the sensing sequences are blocked by a duplex. The specific combination of targets with the sensing sequence triggers the release of the G-quadruplex and allows it to fold properly and bind hemin to form a stable G-quadruplex/hemin complex. The complex proves favorable for PET because it makes the G-quadruplex bind hemin tightly, which promotes the electron transfer from the DNA/Ag NCs to the hemin Fe(III) center, thus resulting in a decrease in the fluorescence intensity of the DNA/Ag NCs. This novel PET system enables the specific and versatile detection of target biomolecules such as DNA and ATP with high sensitivity based on the choices of different target sequences.

  8. Selective fluorescence sensing of Cu(II) and Zn(II) using a simple Schiff base ligand: naked eye detection and elucidation of photoinduced electron transfer (PET) mechanism.

    PubMed

    Ganguly, Aniruddha; Ghosh, Soumen; Kar, Samiran; Guchhait, Nikhil

    2015-05-15

    A simple Schiff base compound 2-((cyclohexylmethylimino)-methyl)-naphthalen-1-ol (2CMIMN1O) has been synthesized and characterized by (1)H NMR, (13)C NMR and FT-IR spectroscopic techniques. A significantly low emission yield of the compound has been rationalized in anticipation with photo-induced electron transfer (PET) from the imine receptor moiety to the naphthalene fluorophore unit. Consequently, an evaluation of the transition metal ion-induced modification of the fluorophore-receptor communication reveals the promising prospect of the title compound to function as a chemosensor for Cu(2+) and Zn(2+) ions selectively, through remarkable fluorescence enhancement as well as visual changes. While perturbation of the PET process has been argued to be the plausible mechanism behind the fluorescence enhancement, the selectivity for these two metal ions has been interpreted on the grounds of an appreciably strong binding interaction. Particularly notable aspects regarding the chemosensory activity of the compound is its ability to detect the aforesaid transition metal ions down to the level of micromolar concentration (detection limit being 2.74 and 2.27ppm respectively), along with a simple and efficient synthetic procedure.

  9. Photoinduced reactions of both 2-formyl-2H-azirine and isoxazole: A theoretical study based on electronic structure calculations and nonadiabatic dynamics simulations

    SciTech Connect

    Cao, Jun

    2015-06-28

    In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π{sup *} transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π{sup *} excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S{sub 1}({sup 1}ππ{sup *}) and S{sub 2}({sup 1}n{sub N}π{sup *}) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.

  10. Photoinduced reactions of both 2-formyl-2H-azirine and isoxazole: A theoretical study based on electronic structure calculations and nonadiabatic dynamics simulations.

    PubMed

    Cao, Jun

    2015-06-28

    In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π(*) transition induces a cleavage of the C-N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π(*) excitation of the imine chromophore results in a cleavage of the C-C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N-O bond cleavages on both S1((1)ππ(*)) and S2((1)nNπ(*)) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.

  11. Selective fluorescence sensing of Cu(II) and Zn(II) using a simple Schiff base ligand: naked eye detection and elucidation of photoinduced electron transfer (PET) mechanism.

    PubMed

    Ganguly, Aniruddha; Ghosh, Soumen; Kar, Samiran; Guchhait, Nikhil

    2015-05-15

    A simple Schiff base compound 2-((cyclohexylmethylimino)-methyl)-naphthalen-1-ol (2CMIMN1O) has been synthesized and characterized by (1)H NMR, (13)C NMR and FT-IR spectroscopic techniques. A significantly low emission yield of the compound has been rationalized in anticipation with photo-induced electron transfer (PET) from the imine receptor moiety to the naphthalene fluorophore unit. Consequently, an evaluation of the transition metal ion-induced modification of the fluorophore-receptor communication reveals the promising prospect of the title compound to function as a chemosensor for Cu(2+) and Zn(2+) ions selectively, through remarkable fluorescence enhancement as well as visual changes. While perturbation of the PET process has been argued to be the plausible mechanism behind the fluorescence enhancement, the selectivity for these two metal ions has been interpreted on the grounds of an appreciably strong binding interaction. Particularly notable aspects regarding the chemosensory activity of the compound is its ability to detect the aforesaid transition metal ions down to the level of micromolar concentration (detection limit being 2.74 and 2.27ppm respectively), along with a simple and efficient synthetic procedure. PMID:25721777

  12. Selective fluorescence sensing of Cu(II) and Zn(II) using a simple Schiff base ligand: Naked eye detection and elucidation of photoinduced electron transfer (PET) mechanism

    NASA Astrophysics Data System (ADS)

    Ganguly, Aniruddha; Ghosh, Soumen; Kar, Samiran; Guchhait, Nikhil

    2015-05-01

    A simple Schiff base compound 2-((cyclohexylmethylimino)-methyl)-naphthalen-1-ol (2CMIMN1O) has been synthesized and characterized by 1H NMR, 13C NMR and FT-IR spectroscopic techniques. A significantly low emission yield of the compound has been rationalized in anticipation with photo-induced electron transfer (PET) from the imine receptor moiety to the naphthalene fluorophore unit. Consequently, an evaluation of the transition metal ion-induced modification of the fluorophore-receptor communication reveals the promising prospect of the title compound to function as a chemosensor for Cu2+ and Zn2+ ions selectively, through remarkable fluorescence enhancement as well as visual changes. While perturbation of the PET process has been argued to be the plausible mechanism behind the fluorescence enhancement, the selectivity for these two metal ions has been interpreted on the grounds of an appreciably strong binding interaction. Particularly notable aspects regarding the chemosensory activity of the compound is its ability to detect the aforesaid transition metal ions down to the level of micromolar concentration (detection limit being 2.74 and 2.27 ppm respectively), along with a simple and efficient synthetic procedure.

  13. Complete Photo-Induced Breakup of the H2 Molecule as a Probe of Molecular Electron Correlation

    NASA Astrophysics Data System (ADS)

    Vanroose, Wim; Martín, Fernando; Rescigno, Thomas N.; McCurdy, C. William

    2005-12-01

    Despite decades of progress in quantum mechanics, electron correlation effects are still only partially understood. Experiments in which both electrons are ejected from an oriented hydrogen molecule by absorption of a single photon have recently demonstrated a puzzling phenomenon: The ejection pattern of the electrons depends sensitively on the bond distance between the two nuclei as they vibrate in their ground state. Here, we report a complete numerical solution of the Schrödinger equation for the double photoionization of H2. The results suggest that the distribution of photoelectrons emitted from aligned molecules reflects electron correlation effects that are purely molecular in origin.

  14. Complete Photo-Induced Breakup of the H2 Molecule as a Probe ofMolecular Electron Correlation

    SciTech Connect

    Vanroose, Wim; Martin, Fernando; Rescigno, Thomas N.; McCurdy, C.William

    2005-11-17

    Despite decades of progress in quantum mechanics, electron correlation effects are still only partially understood. Experiments in which both electrons are ejected from an oriented hydrogen molecule by absorption of a single photon have recently demonstrated a puzzling phenomenon: The ejection pattern of the electrons depends sensitively on the bond distance between the two nuclei as they vibrate in their ground state. Here we report a complete numerical solution of the Schrodinger equation for the double photoionization of H2. The results suggest that the distribution of photoelectrons emitted from aligned molecules reflects electron correlation effects that are purely molecular in origin.

  15. Photoinduced electron transfer and back transfer in systems of randomly distributed donors and acceptors: picosecond transient grating experiments

    SciTech Connect

    Dorfman, R.C.; Lin, Y.; Zimmt, M.B.; Baumann, J.; Domingue, R.P.; Fayer, M.D.

    1988-07-28

    Electron transfer from an optically excited donor (rubrene) to randomly distributed acceptors (duroquinone) followed by electron back transfer in a rigid solution (sucrose octaacetate) has been studied theoretically and experimentally. The forward electron transfer process was observed by time-dependent fluorescence quenching measurements, while the electron back transfer from the radical anion to the radical cation was monitored by using the picosecond transient grating (TG) technique. A statistical mechanics theory is used to describe the highly exponential TG signals and to extract the forward and back transfer parameters from the data. The agreement between the theory and experiments is excellent. The values of the forward and back transfer parameters are reported.

  16. Photoinduced electron transfer of platinum(II) bipyridine diacetylides linked by triphenylamine- and naphthaleneimide-derivatives and their application to photoelectric conversion systems.

    PubMed

    Suzuki, Shuichi; Matsumoto, Yuma; Tsubamoto, Mai; Sugimura, Ryoji; Kozaki, Masatoshi; Kimoto, Kenshi; Iwamura, Munetaka; Nozaki, Koichi; Senju, Naoki; Uragami, Chiasa; Hashimoto, Hideki; Muramatsu, Yohei; Konno, Akinori; Okada, Keiji

    2013-06-01

    The recently reported efficient charge-separated system based on bipyridine-diacetylide platinum(ii) complexes was applied to photoelectric conversion systems herein, based on the design and synthesis of two triads: MTA-Pt-NDISAc (3, MTA: dimethoxytriphenylamine, Pt: platinum(ii) complex, NDISAc: thioacetate derivative linked to naphthalenediimide) and MTA-Pt-MNICOOH (4, MNICOOH: naphthaleneimide-4-carboxylic acid). The charge-separated (CS) states of triads 3 and 5 (MOM-protected 4) were effectively generated by photo-induced electron transfer in both THF and toluene, although the rate of formation of the CS state from 5 was relatively slow in toluene. The lifetimes of these CS states were determined to be 730 ns in toluene and 61 ns (70%) and 170 ns (30%) as a double exponential decay in THF for 3, and 600 ns in toluene and 170 ns in THF for 5. The acetylthio group of triad 3 was exploited in the preparation of a self-assembled monolayer (SAM) on a gold surface. Photocurrent was detected upon irradiation of an electrochemical cell comprising Au/3/Na ascorbate/Pt, which was ascribed to the platinum(ii) complex based on the action spectrum. The carboxylic acid group of triad 4 facilitated adsorption on the TiO2 surface, and a dye-sensitized solar cell constructed based on FTO/TiO2/4/electrolyte (LiI-I2)/Pt exhibited a poor energy conversion efficiency (η = 0.20%) based on the incident photon-to-current conversion efficiency spectrum and the I-V curve. This poor efficiency may be derived from the bent molecular shape of 4, or may be due to a possible high energy barrier in the electron injection process through the adsorption site.

  17. Polydopamine-embedded Cu(2-x)Se nanoparticles as a sensitive biosensing platform through the coupling of nanometal surface energy transfer and photo-induced electron transfer.

    PubMed

    Zou, Hong Yan; Gao, Peng Fei; Gao, Ming Xuan; Huang, Cheng Zhi

    2015-06-21

    Full understanding and easy construction of specific biosensing principles is necessary for disease diagnostics and therapeutics in the hope of creating new types of biosensors. Herein, we developed a new conceptual nanobiosensing platform by coupling nanometal surface energy transfer (NSET) and photo-induced electron transfer (PET) with polydopamine-embedded Cu(2-x)Se nanoparticles (Cu(2-x)SeNPs@pDA) and DNA-conjugated fluorescent organic dyes. The new prepared Cu(2-x)SeNPs@pDA has intense and broad localized surface plasmon resonance (LSPR) absorption over UV to near infrared (NIR) wavelengths, with different affinities toward ssDNA versus dsDNA. It also exhibits a high multiplexed fluorescence quenching ability, and thus can act as an acceptor in the energy transfer and electron transfer interactions between Cu(2-x)SeNPs@pDA and fluorescent organic dyes. As a proof of concept, a new biosensing platform has been successfully developed to target biomacromolecules such as DNA and proteins, in which the NSET and PET interactions between Cu(2-x)SeNPs@pDA and three different DNA-conjugated fluorescent dyes have been identified using steady-state and time-resolved fluorescence. A simple mathematical model was further applied to simulate the respective contributions of the coexisting NSET and PET to the total quenching observed for each DNA-conjugated dye in this sensing system. This study highlights the importance of understanding the mechanistic details of NSET and PET coupling processes, and the disclosed coupling mechanism of NSET and PET (NSET©PET) in the systems of Cu(2-x)SeNPs@pDA with wide wavelength range dyes provides new opportunities for sensitive biosensing applications. PMID:25899757

  18. [Photoinduced electron transfer between [Ru(bpy)3]2+ and copper(II) ion in composite films mediated by DNA].

    PubMed

    Jiang, Zhen-shen; Chen, Min-jian; Li, Hong

    2013-09-01

    An orange-red [Ru(bpy)3]2+ -DNA-CU2 composite film (bpy = 2,2'-bipyridine) was fabricated on an indium-tin (ITO) surface based on electrostatic interactions among [Ru(bpy)3]2+, DNA and Cu2+ by using self-standing cast methods. The photoinduced electron transfer (PET) properties of the resultant composite film mediated by DNA were studied by means of steady-state and time-resolved fluorescence spectroscopy, UV-visible absorption spectroscopy, fluorescence microscopic imaging and scan electron microscopy. The [Ru(bpy)3]2+ -DNA-Cu2+ composite film with molar ratio of 10:20:1 shows an obvious absorption band (450 nm) and an intense emission peak (lamda(em) = 595 nm), whose emission exhibits a single-exponential decay with tau = 188.6 ns and is quenched by Cu2+ via DNA-mediated PET mechanism, indicating that the quenching constant is 6.94 x 10(3) L x mol(-1) and quenching rate constant is 3.80 x 10(10) L x mol(-1) x s(-1). The increasing molar ratio of Cu2+ in composite films (10-fold) leads to an 11 nm blue-shift of the emission peak, which is dramatically weakened by Cu2+ via a static quenching mechanism. In addition, compared with the emission quenching of DNA-[Ru(bpy)2 (tatp)]2+ (tatp = 1, 4, 8, 9-tetra-aza-triphenylene) tuned by Cu2+, which is present either in solutions or in composite films, Cu2+ only quenches the emission of [Ru(bpy)3]2+ bound to DNA via an electrostatic interaction mode in composite films. PMID:24369626

  19. Synthesis, Characterization and Photoinduced Electron Transfer in a Supramolecular Tetrakis(ruthenium (II) phthalocyanine)-perylenediimide Pentad

    SciTech Connect

    Jiménez, Angel J.; Grimm, Bruno; Gunderson, Victoria; Vagnini, Michael T.; Calderon, Sandra K.; Rodríguez-Morgade, M. S.; Wasielewski, Michael R.; Guldi, Dirk M.; Torres, Tomas

    2011-03-22

    Metal coordination was probed as a versatile approach for designing a novel electron donor/acceptor hybrid [PDIpy4{Ru(CO)Pc}4] (1), in which four pyridines placed at the bay region of a perylenediimides (PDIpy4) coordinate with four ruthenium phthalocyanine units [Ru(CO)Pc]. This structural motif was expected to promote strong electronic coupling between the electron donors and the electron acceptor, a hypothesis that was confirmed in a full-fledged physicochemical investigation focusing on the ground and excited state reactivities. As far as the ground state is concerned, absorption and electrochemical assays indeed reveal a notable redistribution of electron density, that is, from the electron-donating [Ru(CO)Pc] to the electron-accepting PDIpy4. The most important thing to note in this context is that both the [Ru(CO)Pc] oxidation and the PDIpy4 reduction are rendered more difficult in 1 than in the individual building blocks. Likewise, in the excited state, strong electronic communication is the inception for a rapid charge-transfer process in photoexcited 1. Regardless of exciting [Ru(CO)Pc] or PDIpy4, spectral characteristics of the [RuPc] radical cation (broad absorptive features from 425 to 600 nm with a maximum at 575 nm, as well as a band centered at 725 nm) and of the PDI radical anion (780 nm maximum) emerge. The correspondingly formed radical ion pair state lasts for up to several hundred picoseconds in toluene, for example. On the other hand, employing more polar solvents, such as dichloromethane, destabilizes the radical ion pair state.

  20. Ultrafast charge-transfer-to-solvent dynamics of iodide in tetrahydrofuran. 2. Photoinduced electron transfer to counterions in solution.

    PubMed

    Bragg, Arthur E; Schwartz, Benjamin J

    2008-04-24

    The excited states of atomic anions in liquids are bound only by the polarization of the surrounding solvent. Thus, the electron-detachment process following excitation to one of these solvent-bound states, known as charge-transfer-to-solvent (CTTS) states, provides a useful probe of solvent structure and dynamics. These transitions and subsequent relaxation dynamics also are influenced by other factors that alter the solution environment local to the CTTS anion, including the presence of cosolutes, cosolvents, and other ions. In this paper, we examine the ultrafast CTTS dynamics of iodide in liquid tetrahydrofuran (THF) with a particular focus on how the solvent dynamics and the CTTS electron-ejection process are altered in the presence of various counterions. In weakly polar solvents such as THF, iodide salts can be strongly ion-paired in solution; the steady-state UV-visible absorption spectroscopy of various iodide salts in liquid THF indicates that the degree of ion-pairing changes from strong to weak to none as the counterion is switched from Na+ to tetrabutylammonium (t-BA+) to crown-ether-complexed Na+, respectively. In our ultrafast experiments, we have excited the I- CTTS transition of these various iodide salts at 263 nm and probed the dynamics of the CTTS-detached electrons throughout the visible and near-IR. In the previous paper of this series (Bragg, A. E.; Schwartz, B. J. J. Phys. Chem. B 2008, 112, 483-494), we found that for "counterion-free" I- (obtained by complexing Na+ with a crown ether) the CTTS electrons were ejected approximately 6 nm from their partner iodine atoms, the result of significant nonadiabatic coupling between the CTTS excited state and extended electronic states supported by the naturally existing solvent cavities in liquid THF, which also serve as pre-existing electron traps. In contrast, for the highly ion-paired NaI/THF system, we find that approximately 90% of the CTTS electrons are "captured" by a nearby Na+ to form (Na

  1. Quantum mechanical modeling of self-assembly and photoinduced electron transfer in PNA-based artificial living organisms.

    PubMed

    Tamulis, A; Tamulis, V; Graja, A

    2006-04-01

    In order to support the creation of both artificial living organisms in the USA LANL "Protocell Assembly" project and programmable nano-biorobots in the EU "Programmable Artificial Cell Evolution" project, we used quantum mechanical (QM), density functional theory (DFT), the semiempirical PM3 method, and molecular mechanics (MM) software to investigate various complex photosynthetic systems based on peptide nucleic acid (PNA) in a water environment. Quantum mechanical DFT PBEPBE simulations, including electron correlations, confirm that water molecules that surround all the photosynthetic complex of the LANL protoorganism are main constructing factors and stabilize this system consisting of: PNA fragment attached by covalent bond sensitizer 1,4-bis(N,N-dimethylamino)naphthalene molecule, lipid precursor molecule and fragment of lipid molecules mono layer. The absorption spectrum shift to the red wavelengths in the complex artificial protocell photosynthetic center might be used as the measure of the complexity of this system. The electron pi-pi* transitions in the first and third excited states are from HOMO and HOMO-1 located on the conjugated water molecules and sensitizer 1,4-bis(N,N-dimethylamino)naphthalene molecule to the LUMO of the lipid precursor molecule as calculated using the time dependent (TD) PBEPBE/6-31G model. Electron charge tunneling in the first and third excited states should induce metabolic photodissociation of the lipid precursor molecule because of localization of the transferred electron cloud on the head (waste) of the lipid precursor molecule. TD electron correlation PBEPBE/6-31G calculations show that in the different energies of excitation, the charge transfer tunneling is from sensitizer to lipid precursor and cytosine molecules. One should note that in a water solvent, the electron charge transfer pi-pi* transition in the fifth and sixth excited state is from the HOMO and HOMO-1 located on the sensitizer 1,4-bis

  2. Spectroscopic characterization of photoaccumulated radical anions: a litmus test to evaluate the efficiency of photoinduced electron transfer (PET) processes.

    PubMed

    Fagnoni, Maurizio; Protti, Stefano; Ravelli, Davide; Albini, Angelo

    2013-01-01

    Steady-state irradiation in neat acetonitrile of some aromatic nitriles, imides and esters (10(-5)-10(-3) M solution) in the presence of tertiary amines allowed the accumulation of the corresponding radical anions, up to quantitative yield for polysubstituted benzenes and partially with naphthalene and anthracene derivatives. The condition for such an accumulation was that the donor radical cation underwent further evolution that precluded back electron transfer and any chemical reaction with the radical anion. In fact, no accumulation occurred with 1,4-diazabicyclo[2.2.2]octane (DABCO), for which this condition is not possible. The radical anions were produced from benzene polyesters too, but decomposition began early. Ipso substitution was one of the paths with secondary amines and the only reaction with tetrabutylstannane. The results fully support the previously proposed mechanism for electron transfer (ET) mediated photochemical alkylation of aromatic acceptors via radical ions and radical intermediates.

  3. Photoinduced electron donor/acceptor processes in colloidal II-VI semiconductor quantum dots and nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Dutta, Poulami

    Electron transfer (ET) processes are one of the most researched topics for applications ranging from energy conversion to catalysis. An exciting variation is utilizing colloidal semiconductor nanostructures to explore such processes. Semiconductor quantum dots (QDs) are emerging as a novel class of light harvesting, emitting and charge-separation materials for applications such as solar energy conversion. Detailed knowledge of the quantitative dissociation of the photogenerated excitons and the interfacial charge- (electron/hole) transfer is essential for optimization of the overall efficiency of many such applications. Organic free radicals are the attractive counterparts for studying ET to/from QDs because these undergo single-electron transfer steps in reversible fashion. Nitroxides are an exciting class of stable organic free radicals, which have recently been demonstrated to be efficient as redox mediators in dye-sensitized solar cells, making them even more interesting for the aforementioned studies. This dissertation investigates the interaction between nitroxide free radicals TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 4-amino-TEMPO (4-amino- 2,2,6,6-tetramethylpiperidine-1-oxyl) and II-VI semiconductor (CdSe and CdTe) QDs. The nature of interaction in these hybrids has been examined through ground-state UV-Vis absorbance, steady state and time-resolved photoluminescence (PL) spectroscopy, transient absorbance, upconversion photoluminescence spectroscopy and electron paramagnetic resonance (EPR). The detailed analysis of the PL quenching indicates that the intrinsic charge transfer is ultrafast however, the overall quenching is still limited by the lower binding capacities and slower diffusion related kinetics. Careful analysis of the time resolved PL decay kinetics reveal that the decay rate constants are distributed and that the trap states are involved in the overall quenching process. The ultrafast hole transfer from CdSe QDs to 4-Amino TEMPO observed

  4. Photoinduced oxygen-vacancy related centers in PbWO4: Electron spin resonance and thermally stimulated luminescence study

    NASA Astrophysics Data System (ADS)

    Laguta, V. V.; Martini, M.; Vedda, A.; Rosetta, E.; Nikl, M.; Mihokovo, E.; Bohacek, P.; Rosa, J.; Hofstatter, A.; Meyer, B. K.; Usuki, Y.

    Using electron spin resonance (ESR) and thermally stimulated luminescence (TSL) three different electron traps based on regular W sites perturbed by oxygen vacancies have been identified in PbWO4 . Analysis of ESR spectra parameters ( g -factor values and principal axes orientations) has shown that revealed centers are (WO3 )(-) vacancy containing complex anions associated with a defect in Pb sublattice: (WO3)(-) -A(Pb) complexes. One of the centers (W-1) is thermally stable up to 350-370 K, while the other two (W-2 and W-3 ) only to 270-290 K. Above these temperatures trapped electrons become free and recombine with localized holes, giving rise to TSL glow peaks at T approximate to 323 K and 365 K. Using the initial rise method the 323 K TSL peak-shape was fitted allowing the first order recombination kinetic that gives trap parameters E = 0.88 eV and s similar or equal to 5* 10(12) 1/s.

  5. Dimensionality of nanoscale TiO2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle

    DOE PAGESBeta

    Tafen, De Nyago; Long, Run; Prezhdo, Oleg V.

    2014-03-10

    Assumptions about electron transfer (ET) mechanisms guide design of catalytic, photovoltaic, and electronic systems. We demonstrate that the mechanism of ET from a CdSe quantum dot (QD) into nanoscale TiO2 depends on TiO2 dimensionality. The injection into a TiO2 QD is adiabatic due to strong donor–acceptor coupling, arising from unsaturated chemical bonds on the QD surface, and low density of acceptor states. In contrast, the injection into a TiO2 nanobelt (NB) is nonadiabatic, because the state density is high, the donor–acceptor coupling is weak, and multiple phonons accommodate changes in the electronic energy. The CdSe adsorbant breaks symmetry of delocalizedmore » TiO2 NB states, relaxing coupling selection rules, and generating more ET channels. Both mechanisms can give efficient ultrafast injection. Furthermore, the dependence on system properties is very different for the two mechanisms, demonstrating that the fundamental principles leading to efficient charge separation depend strongly on the type of nanoscale material.« less

  6. Remarkable Dependence of the Final Charge Separation Efficiency on the Donor-Acceptor Interaction in Photoinduced Electron Transfer.

    PubMed

    Higashino, Tomohiro; Yamada, Tomoki; Yamamoto, Masanori; Furube, Akihiro; Tkachenko, Nikolai V; Miura, Taku; Kobori, Yasuhiro; Jono, Ryota; Yamashita, Koichi; Imahori, Hiroshi

    2016-01-11

    The unprecedented dependence of final charge separation efficiency as a function of donor-acceptor interaction in covalently-linked molecules with a rectilinear rigid oligo-p-xylene bridge has been observed. Optimization of the donor-acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge-separated state to the ground state, yielding the final long-lived, triplet charge-separated state with circa 100% efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion. PMID:26610285

  7. Photoinduced electron transfer fluorometric Hg(II) chemosensor based on a BODIPY armed with a tetrapod receptor.

    PubMed

    Culzoni, M J; Muñoz de la Peña, A; Machuca, A; Goicoechea, H C; Brasca, R; Babiano, R

    2013-12-15

    From the great variety of BODIPY based-chemosensors able to determine Hg(2+), only a small portion has been applied to its determination in environmental and/or biological samples. The lack of studies on the analytical performance of the latter sensors makes interesting the development of investigations oriented to their possible analytical applications. The synthesis of a BODIPY derivative armed with a tetrapod receptor is described. The procedure is based on a previous publication, and the modifications performed to improve the synthesis include alternative procedures with different objectives, as the consecution of a multigram synthesis, improving the low yields of some of the previously proposed procedure steps, simplifying the experimental steps, achieving the desired purity requirements for use with analytical purposes, and enriching the characterization of the implied structures. The characteristics of its selectivity towards Hg(2+) have been investigated, and the OFF-ON fluorometric response, based on a photo-electron transfer (PET) mechanism, served as the base for the development of a method able to determine Hg(2+) in environmental waters at ng mL(-1) levels. The intrinsic fluorescence of the BODIPY core is inhibited and the probe exhibits a weak fluorescence (i.e. "OFF" state due to the deactivating PET effect). Upon complexation, Hg(2+) interacts with the lone-pair electrons on the nitrogen atoms of the receptor moiety so that the electronic transfer from the receptor to the photo-excited fluorophore is slowed down or switched off (i.e. "ON" state due to the suppression of the deactivating PET effect by coordination of the analyte to the probe). Regarding the complex photostability in aqueous solution, it is mandatory to conduct the experiments at darkness due to its photodegradation. The stoichiometry studies indicated a 1:2 relationship for the BODIPY-Hg(2+) complex. The high selectivity towards mercuric ions is considerably influenced by pH, being

  8. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.

    PubMed

    Wang, Peng; Dimitrijevic, Nada M; Chang, Angela Y; Schaller, Richard D; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A

    2014-08-26

    Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light. In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst. Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H2 (μmol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light.

  9. Fluorophore(s) appended fullerene dyads and triads for probing photoinduced energy transfer: syntheses, electronic structure, and fluorescence studies.

    PubMed

    Deviprasad, Gollapalli R; Smith, Phillip M; Zandler, Melvin E; Rogers, Lisa M; D'Souza, Francis

    2006-01-01

    Fullerene, C(60) was functionalized to possess one or two fluorophore entities. The fluorophore-fullerene dyads thus synthesized contain either a naphthalene, pyrene, or fluorene entity while the triads contain either a pyrene or fluorene entity in addition to a naphthalene entity. The redox behavior of these dyads and triads were probed by cyclic voltammetric technique, while the geometry and electronic structures were deduced from ab initio B3LYP/3-21G(*) method. Steady-state emission studies revealed the occurrence of energy transfer from the singlet excited fluorophore to the fullerene entity in the case of the dyads while the occurrence of step-by-step sequential energy transfer is envisioned in the case of the triads. A better 'antenna-effect' owing to the extended range of excitation wavelength to induce energy transfer to the appended fullerene has been achieved in the case of the triads. PMID:16404521

  10. Photoinduced electron transfer through peptide-based self-assembled monolayers chemisorbed on gold electrodes: directing the flow-in and flow-out of electrons through peptide helices.

    PubMed

    Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio

    2014-08-21

    Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.

  11. Modulation of ultrafast photoinduced electron transfer in H-bonding environment: PET from aniline to coumarin 153 in the presence of an inert co-solvent cyclohexane.

    PubMed

    Barman, Nabajeet; Hossen, Tousif; Mondal, Koushik; Sahu, Kalyanasis

    2015-12-28

    Despite intensive research, the role of the H-bonding environment on ultrafast PET remains illusive. For example, coumarin 153 (C153) undergoes ultrafast photoinduced electron transfer (PET) in electron-donating solvents, in both aniline (AN) and N,N-dimethylaniline (DMA), despite their very different H-bonding abilities. Thus, donor-acceptor (AN-C153) H-bonding may have only a minor role in PET (Yoshihara and co-workers, J. Phys. Chem. A, 1998, 102, 3089). However, donor-acceptor H-bonding may be somehow less effective in the neat H-bonding environment but could become dominant in the presence of an inert solvent (Phys. Chem. Chem. Phys., 2014, 16, 6159). We successfully applied and tested the proposal here. The nature of PET modulation of C153 in the presence of a passive component cyclohexane is found to be very different for aniline and DMA. Upon addition of cyclohexane to DMA, the PET process gradually becomes retarded but in the case of AN, the PET rate was indeed found to be accelerated at some intermediate composition (mole fraction of aniline, XAN∼ 0.74) compared to that of neat aniline. It is intuitive that cyclohexane may replace some of the donors (AN or DMA) from the vicinity of the acceptor and, thus, should disfavour PET. However, in the hydrogen bonding environment using molecular dynamics simulation, for the first time, we show that the average number of aniline molecules orienting their N-H group in the proximity of the C=O group of C153 is actually higher at the intermediate mole fraction (0.74) of aniline in a mixture rather than in neat aniline. This small but finite excess of C153-AN H-bonding already present in the ground state may possibly account for the anomalous effect. The TD-DFT calculations presented here showed that the intermolecular H-bonding between C153 and AN strengthens from 21.1 kJ mol(-1) in the ground state to 33.0 kJ mol(-1) in the excited state and, consequently, H-bonding may assist PET according to the Zhao and Han

  12. Incorporation of anthracene into zeolites: confinement effect on the recombination rate of photoinduced radical cation-electron pair.

    PubMed

    Marquis, Séverine; Moissette, Alain; Brémard, Claude

    2006-07-17

    FT-Raman spectrometry in combination with diffuse reflectance UV/Vis absorption (DRUVv) and fluorescence emission indicate that complete anthracene (ANT) sorption as intact molecules takes place over 6 months in the medium pores of non-Brønsted acidic M(n)ZSM-5 zeolites (n=0.0, 3.4, 6.6; M=Na+, K+, Rb+, Cs+) with 1 ANT per unit cell loading. The combined effect of confinement and electrostatic field induced by bulky cations (Rb+, Cs+) leads to specific changes in the occluded ANT Raman spectra after very long organization periods (one year). The laser photolysis (266 nm, 355 nm) of ANT@M(n)ZSM-5 equilibrated samples generates long-lived charge separated species in aluminum rich zeolites (n=3.4, 6.6). The very long-lived radical pairs are characterized by conventional DRUVv and CW-EPR spectroscopy. The direct charge recombination rates of ANT.+-electron pairs are dispersive, extending over a broad range of timescales. The kinetic constant values are found to increase dramatically with the aluminum content and increase markedly with M+ according to the following order Na+ < K+ < Rb+ < Cs+. The small reorganization energy (lambda) of ZSM-5 zeolite pores coupled with large negative free energy changes (-DeltaG degrees ) between the ground state ANT oxidation potential and Fermi level of aluminum rich M(n)ZSM-5 explain the observed trends of the ANT.+@M(n)ZSM-5.- charge recombination rates.

  13. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    SciTech Connect

    Jothikumar, N. Hill, Vincent R.

    2013-06-28

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forward or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  14. Encapsulation of MEH-PPV:PCBM Hybrids in the Cores of Block Copolymer Micellar Assemblies: Photoinduced Electron Transfer in a Nanoscale Donor-Acceptor System.

    PubMed

    Wang, Suxiao; Ryan, James William; Singh, Amita; Beirne, Jason Gerard; Palomares, Emilio; Redmond, Gareth

    2016-01-12

    The objective of this work is to demonstrate that conjugated polymer:fullerene hybrid nanoparticles encapsulated in the hydrophobic cores of triblock copolymer micelles may successfully act as spatially confined donor-acceptor systems capable of facilitating photoinduced charge carrier separation. To this end, aqueous dispersions of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) nanoparticles were first prepared by solubilization of the polymer in the cores of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymer, Pluronic F-127 micelles. A number of significant optical spectroscopic changes were observed on transfer of the conjugated polymer from a nonaqueous solvent to the aqueous micellar environment. These were primarily attributed to increased interchain interactions due to conjugated polymer chain collapse during encapsulation in the micellar cores. When prepared in buffer solution, the micelles exhibited good long-term collodial stability. When MEH-PPV micelles were blended by the addition of controlled amounts of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), the observed correspondence of photoluminescence emission quenching, quantum yield decreases, and emission lifetime shortening with increasing PCBM concentration indicated efficient photoinduced donor-to-acceptor charge transfer between MEH-PPV and the fullerenes in the cores of the micelles, an assignment that was confirmed by transient absorption spectroscopic monitoring of carrier photogeneration and recombination. PMID:26653672

  15. Large magnetic field effect on the radical pair generated from the photo-induced electron transfer from skatole to 2,4,6-triphenyl pyrilium tetrafluoroborate in aqueous SDS micellar medium

    NASA Astrophysics Data System (ADS)

    Haldar, Mintu; Chowdhury, Mihir

    2000-03-01

    The effect of external magnetic field on the spin evolution of the radical pair (RP) generated from photo-induced electron transfer from skatole to 2,4,6-triphenyl pyrilium tetrafluoroborate in aqueous SDS micellar medium has been investigated. The yield of escape radicals gradually increases with increasing field and ultimately reaches saturation. The yield of escaped radicals at saturating fields is almost four times the corresponding zero-field value. At low fields the magnetic field dependence of the escape yield is ascribed to HFI-Zeeman competition and at relatively higher fields, to the relaxation mechanism induced by anisotropic HFI [δ(hfi)]. A saturation in MFE is observed at high fields, which is a consequence of the competition between the spin-rephasing process and the fast escape process.

  16. Manipulating photoinduced voltage in metasurface with circularly polarized light.

    PubMed

    Bai, Qiang

    2015-02-23

    Recently, the concept of metasurface has provided one an unprecedented opportunity and ability to control the light in the deep subwavelength scale. However, so far most efforts are devoted to exploiting the novel scattering properties and applications of metasurface in optics. Here, I theoretically and numerically demonstrate that longitudinal and transverse photoinduced voltages can be simultaneously realized in the proposed metasurface utilizing the magnetic resonance under the normal incidence of circularly polarized light, which may extend the concept and functionality of metasurface into the electronics and may provide a potential scheme to realize a nanoscale tunable voltage source through a nanophotonic roadmap. The signs of longitudinal and transverse photoin-duced voltages can be manipulated by tuning the resonant frequency and the handedness of circularly polarized light, respectively. Analytical formulae of photoinduced voltage are presented based on the theory of symmetry of field. This work may bridge nanophotonics and electronics, expands the capability of metasurface and has many potential applications. PMID:25836566

  17. Characterization of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][Tf2N])∕TX-100∕cyclohexane ternary microemulsion: investigation of photoinduced electron transfer in this RTIL containing microemulsion.

    PubMed

    Sarkar, Souravi; Pramanik, Rajib; Ghatak, Chiranjib; Rao, Vishal Govind; Sarkar, Nilmoni

    2011-02-21

    In this study we have characterized a ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl- sulfonyl)imide containing ternary nonaqueous microemulsion ([Emim][Tf(2)N]∕∕TX-100∕cyclo- hexane). The phase behavior and dynamic light scattering study show that the [Emim][Tf(2)N]∕TX-100∕cyclohexane three component system can form microemulsion with [Emim][Tf(2)N] as polar core at suitable condition. We have investigated photoinduced electron transfer (PET) using dimethyl aniline as electron donor and several Coumarin dyes as electron acceptor molecules at two different R values (R = [ionic liquid]∕[surfactant]) to observe how the dynamics of the PET rate is affected in this type of confined microenvironment compared to that of the PET dynamics in neat ionic liquid and other pure solvent media. The plot of observed k(q) values with the free energy change (ΔG(0)) for electron transfer reaction shows an apparent inversion in the observed rate as predicted by the Marcus theory. PMID:21341859

  18. Characterization of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][Tf2N])/TX-100/cyclohexane ternary microemulsion: Investigation of photoinduced electron transfer in this RTIL containing microemulsion

    NASA Astrophysics Data System (ADS)

    Sarkar, Souravi; Pramanik, Rajib; Ghatak, Chiranjib; Rao, Vishal Govind; Sarkar, Nilmoni

    2011-02-01

    In this study we have characterized a ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl- sulfonyl)imide containing ternary nonaqueous microemulsion ([Emim][Tf2N]//TX-100/cyclo- hexane). The phase behavior and dynamic light scattering study show that the [Emim][Tf2N]/TX-100/cyclohexane three component system can form microemulsion with [Emim][Tf2N] as polar core at suitable condition. We have investigated photoinduced electron transfer (PET) using dimethyl aniline as electron donor and several Coumarin dyes as electron acceptor molecules at two different R values (R = [ionic liquid]/[surfactant]) to observe how the dynamics of the PET rate is affected in this type of confined microenvironment compared to that of the PET dynamics in neat ionic liquid and other pure solvent media. The plot of observed kq values with the free energy change (ΔG0) for electron transfer reaction shows an apparent inversion in the observed rate as predicted by the Marcus theory.

  19. Frequency scaling of photo-induced tunneling

    NASA Astrophysics Data System (ADS)

    Cuniberti, G.; Fechner, A.; Sassetti, M.; Kramer, B.

    1999-10-01

    The DC current-voltage characteristics induced by a driving electric field with frequency Ω of a one-dimensional electron channel with a tunnel barrier is calculated. Electron-electron interaction of finite range is taken into account. For intermediate interaction strengths, the non-linear differential conductance shows cusp-like minima at bias voltages mhbarΩ/e (m integer) that are a consequence of the finite non-zero range of the interaction but are independent of the shape of the driving electric field. However, the frequency-scaling of the photo-induced current shows a cross-over between Ω-1 and Ω-2, and depends on the spatial shape of the driving field and the range of the interaction.

  20. A Crucial Role of Rh Substituent Ion in Photoinduced Internal Electron Transfer and Enhanced Photocatalytic Activity of CdS-Ti(5.2-x)/6 Rhx /2 O2 Nanohybrids.

    PubMed

    Lee, Jang Mee; Jin, Hyung Bin; Kim, In Young; Jo, Yun Kyung; Hwang, Jung-Wook; Wang, Kang-Kyun; Kim, Min Gyu; Kim, Yong-Rok; Hwang, Seong-Ju

    2015-11-18

    The photocatalytic activity and photostability of CdS quantum dot (QD) can be remarkably enhanced by hybridization with Rh-substituted layered titanate nanosheet even at very low Rh substitution rate (<1%). Mesoporous CdS-Ti(5.2-x)/6 Rhx/2O2 nanohybrids are synthesized by a self-assembly of exfoliated Ti(5.2-x)/6 Rhx/2O2 nanosheets with CdS QDs. The partial substitution of Rh(3+)/Rh(4+) ions for Ti(4+) ions in layered titanate is quite effective in enhancing an electronic coupling between hybridized CdS and titanate components via the formation of interband Rh 4d states. A crucial role of Rh substituent ion in the internal electron transfer is obviously evidenced from in situ X-ray absorption spectroscopy showing the elongation of (RhO) bond under visible light irradiation. This is the first spectroscopic evidence for the important role of substituent ion in the photoinduced electron transfer of hybrid-type photocatalyst. The CdS-Ti(5.2-x)/6 Rhx/2O2 nanohybrids show much higher photocatalytic activity for H2 production and better photostability than do CdS and unsubstituted CdS-TiO2 nanohybrid. This result is ascribable to the enhancement of visible light absorptivity, the depression of electron-hole recombination, and the enhanced hole curing of CdS upon Rh substitution. The present study underscores that the hybridization with composition-controlled inorganic nanosheet provides a novel efficient methodology to optimize the photo-related functionalities of semiconductor nanocrystal. PMID:26456493

  1. Micellar Effects on Photoinduced Electron Transfer in Aqueous Solutions Revisited: Dramatic Enhancement of Cage Escape Yields in Surfactant Ru(II) Diimine Complex/[Ru(NH3)6](2+) Systems.

    PubMed

    Adams, Rebecca E; Schmehl, Russell H

    2016-08-30

    The effect of cationic micelle incorporation on light induced electron transfer, charge separation and back electron transfer between an aqueous electron donor, [Ru(NH3)6](2+), and a series of Ru(II) diimine complex chromophores/acceptors, is presented. The chromophores have the general formula [(bpy)2Ru(LL)](2+) (LL = bpy; 4-R-4'-methyl-2,2'-bpy, R = pentyl (MC5), terdecyl (MC13), heptadecyl (MC17); 4,4'-di(heptadecyl)-2,2'-bpy (DC17)). Of the five chromophores, the MC13, MC17, and DC17 complexes associate with the added micelle forming surfactant, cetyltrimethylammonium bromide (CTAB). Quenching of the luminescence of the bpy and MC5 complexes by [Ru(NH3)6](2+) is unaffected by addition of surfactant, while rate constants for quenching of the MC13 and MC17 complexes are decreased. Cage escape yields following photoinduced electron transfer to generate [(bpy)2Ru(LL)](+) and [Ru(NH3)6](3+) are approximately 0.1 for all the water-soluble chromophores (excluding DC17) in the absence of added CTAB. In the presence of surfactant, the cage escape yields dramatically increase for the MC13 (0.4) and MC17 (0.6) complexes, while remaining unchanged for [Ru(bpy)3](2+) and the MC5 complex. Back electron transfer of the solvent separated ions is also strongly influenced by the presence of surfactant. For the MC13 and MC17 complexes, back electron transfer rate constants decrease by factors of 270 and 190, respectively. The MC5 complex exhibits two component back electron transfer, with the fast component having a rate constant close to that in the absence of surfactant and a slow component nearly 200 times smaller. Results are interpreted in terms of the partitioning of the 2+ and 1+ forms of the chromophores between aqueous and micellar phases. The extended lifetimes of the radical ions may prove useful in coupling the strong reductants formed to kinetically facile catalysts for reduction of water to hydrogen. PMID:27486891

  2. Nanoscale chemical imaging by photoinduced force microscopy

    PubMed Central

    Nowak, Derek; Morrison, William; Wickramasinghe, H. Kumar; Jahng, Junghoon; Potma, Eric; Wan, Lei; Ruiz, Ricardo; Albrecht, Thomas R.; Schmidt, Kristin; Frommer, Jane; Sanders, Daniel P.; Park, Sung

    2016-01-01

    Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials. PMID:27051870

  3. Nanoscale chemical imaging by photoinduced force microscopy.

    PubMed

    Nowak, Derek; Morrison, William; Wickramasinghe, H Kumar; Jahng, Junghoon; Potma, Eric; Wan, Lei; Ruiz, Ricardo; Albrecht, Thomas R; Schmidt, Kristin; Frommer, Jane; Sanders, Daniel P; Park, Sung

    2016-03-01

    Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials. PMID:27051870

  4. Kinetics and characterization of photoinduced long-lived electron-hole pair of p-terphenyl occluded in ZSM-5 zeolites. Effects of aluminium content and extraframework cation.

    PubMed

    Moissette, Alain; Belhadj, Fatima; Brémard, Claude; Vezin, Hervé

    2009-12-14

    Diffuse reflectance UV-visible in combination with FT-Raman spectroscopies demonstrate the total incorporation without any solvent of p-terphenyl (p-TP) as an intact molecule in the medium size channel of non-acidic M(n)ZSM-5 (M = Li(+), Na(+), K(+), Rb(+), Cs(+) and n = 0, 3.4, 6.6) zeolites. The combined effects of confinement and electrostatic field induced by alkaline ions in the M(n)ZSM-5 zeolites lead only to weak conformational changes in the occluded p-TP after very long organization periods. The interaction between the counterbalancing cation and p-TP occurs through one phenyl group facially coordinated to the cation near the O atoms binding Al atoms. The laser UV photolysis of p-terphenyl occluded as intact molecules in non-acidic M(n)ZSM-5 zeolites generates long-lived charge separated states. The photoionization induces a p-TP*(+)-electron pair as a primary phenomenon. The recombination of the p-TP*(+)@M(n)ZSM-5*(-) radical cation moiety occurs mainly through unusual electron abstraction from the zeolite framework and p-TP@M(n)ZSM-5*(-)*(+) electron-hole pair formation which exceeds several days at room temperature in Li(6.6)ZSM-5. The very long-lived radical pairs are characterized by conventional DRUVv, FT-Raman and CW-EPR spectroscopy. Two-dimensional hyperfine sublevel correlation (2D-HYSCORE) experiments reveal the structural surroundings of the unpaired electrons through the proper assignment of unpaired electron couplings. The subsequent hole transfer from the radical cation of the channels as well as the final electron-hole pair recombination appear to be largely controlled by the aluminium content, the size of the extra framework cation and the associated local electrostatic field. The effects of the counterbalancing cations have been investigated and because the zeolite electron affinity increases on going from Li(+) to Cs(+), the electron transfer rates increase according to the following order Li(+) < Na(+) < K(+) < Rb(+) < Cs(+).

  5. Time-dependent resonant UHF CI approach for the photo-induced dynamics of the multi-electron system confined in 2D QD

    SciTech Connect

    Okunishi, Takuma; Clark, Richard; Takeda, Kyozaburo; Kusakabe, Kouichi; Tomita, Norikazu

    2013-12-04

    We extend the static multi-reference description (resonant UHF) to the dynamic system in order to include the correlation effect over time, and simplify the TD Schrödinger equation (TD-CI) into a time-developed rate equation where the TD external field Ĥ′(t) is then incorporated directly in the Hamiltonian without any approximations. We apply this TD-CI method to the two-electron ground state of a 2D quantum dot (QD) under photon injection and study the resulting two-electron Rabi oscillation.

  6. Tuning Optical and Electron Donor Properties by Peripheral Thio-Aryl Substitution of Subphthalocyanine: A New Series of Donor-Acceptor Hybrids for Photoinduced Charge Separation.

    PubMed

    Kc, Chandra B; Lim, Gary N; D'Souza, Francis

    2016-09-01

    Subphthalocyanine (SubPc), a unique ring-reduced member of the common phthalocyanines family, although known for its higher absorptivity, reveals narrow absorption with peak maxima around 570 nm thus limiting its utility in light-energy-harvesting applications. In the present study, by peripheral thio-aryl substitution of SubPc macrocycle, the spectral properties have been modulated to extend the absorption and emission well into the visible/near-IR region. Additionally, for α-ring-substituted derivatives, facile oxidation of SubPc was witnessed, thus making these derivatives better electron donors. Next, the preparation of donor-acceptor dyads containing the well-known electron acceptor C60 connected to the central boron atom of SubPc was accomplished by making use of the 1,3-dipolar cycloaddition reaction. Control experiments and free-energy calculations using the redox and spectral data suggested that the observed fluorescence quenching of SubPc in these dyads is due to electron transfer. Accordingly, transient spectral studies performed both in polar and nonpolar solvents conclusively proved electron transfer to be the quenching mechanism in these dyads. The measured rate constants by fitting kinetic data revealed efficient charge separation and charge recombination processes, suggesting that these dyads could be useful materials for the construction of light-to-electricity or light-to-fuel production devices. PMID:27515576

  7. Photocatalytic activation of pyridine for addition reactions: an unconventional reaction feature between a photo-induced hole and electron on TiO2.

    PubMed

    Ma, Dongge; Yan, Yan; Ji, Hongwei; Chen, Chuncheng; Zhao, Jincai

    2015-12-21

    TiO2 photocatalysis can be performed for the addition of pyridines to vinylarenes in an anti-Markovnikov manner. Seven examples with considerable yields (56-91%) and selectivity were demonstrated. A comparative survey of the involved process through ESR revealed a novel concerted two electron transfer pathway for these photocatalytic bimolecular addition reactions.

  8. Tuning Optical and Electron Donor Properties by Peripheral Thio-Aryl Substitution of Subphthalocyanine: A New Series of Donor-Acceptor Hybrids for Photoinduced Charge Separation.

    PubMed

    Kc, Chandra B; Lim, Gary N; D'Souza, Francis

    2016-09-01

    Subphthalocyanine (SubPc), a unique ring-reduced member of the common phthalocyanines family, although known for its higher absorptivity, reveals narrow absorption with peak maxima around 570 nm thus limiting its utility in light-energy-harvesting applications. In the present study, by peripheral thio-aryl substitution of SubPc macrocycle, the spectral properties have been modulated to extend the absorption and emission well into the visible/near-IR region. Additionally, for α-ring-substituted derivatives, facile oxidation of SubPc was witnessed, thus making these derivatives better electron donors. Next, the preparation of donor-acceptor dyads containing the well-known electron acceptor C60 connected to the central boron atom of SubPc was accomplished by making use of the 1,3-dipolar cycloaddition reaction. Control experiments and free-energy calculations using the redox and spectral data suggested that the observed fluorescence quenching of SubPc in these dyads is due to electron transfer. Accordingly, transient spectral studies performed both in polar and nonpolar solvents conclusively proved electron transfer to be the quenching mechanism in these dyads. The measured rate constants by fitting kinetic data revealed efficient charge separation and charge recombination processes, suggesting that these dyads could be useful materials for the construction of light-to-electricity or light-to-fuel production devices.

  9. Theoretical characterization of photoinduced electron transfer in rigidly linked donor-acceptor molecules: the fragment charge difference and the generalized Mulliken-Hush schemes

    NASA Astrophysics Data System (ADS)

    Lee, Sheng-Jui; Chen, Hung-Cheng; You, Zhi-Qiang; Liu, Kuan-Lin; Chow, Tahsin J.; Chen, I.-Chia; Hsu, Chao-Ping

    2010-10-01

    We calculate the electron transfer (ET) rates for a series of heptacyclo[6.6.0.02,6.03,13.014,11.05,9.010,14]-tetradecane (HCTD) linked donor-acceptor molecules. The electronic coupling factor was calculated by the fragment charge difference (FCD) [19] and the generalized Mulliken-Hush (GMH) schemes [20]. We found that the FCD is less prone to problems commonly seen in the GMH scheme, especially when the coupling values are small. For a 3-state case where the charge transfer (CT) state is coupled with two different locally excited (LE) states, we tested with the 3-state approach for the GMH scheme [30], and found that it works well with the FCD scheme. A simplified direct diagonalization based on Rust's 3-state scheme was also proposed and tested. This simplified scheme does not require a manual assignment of the states, and it yields coupling values that are largely similar to those from the full Rust's approach. The overall electron transfer (ET) coupling rates were also calculated.

  10. Dimensionality of nanoscale TiO2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle

    SciTech Connect

    Tafen, De Nyago; Long, Run; Prezhdo, Oleg V.

    2014-03-10

    Assumptions about electron transfer (ET) mechanisms guide design of catalytic, photovoltaic, and electronic systems. We demonstrate that the mechanism of ET from a CdSe quantum dot (QD) into nanoscale TiO2 depends on TiO2 dimensionality. The injection into a TiO2 QD is adiabatic due to strong donor–acceptor coupling, arising from unsaturated chemical bonds on the QD surface, and low density of acceptor states. In contrast, the injection into a TiO2 nanobelt (NB) is nonadiabatic, because the state density is high, the donor–acceptor coupling is weak, and multiple phonons accommodate changes in the electronic energy. The CdSe adsorbant breaks symmetry of delocalized TiO2 NB states, relaxing coupling selection rules, and generating more ET channels. Both mechanisms can give efficient ultrafast injection. Furthermore, the dependence on system properties is very different for the two mechanisms, demonstrating that the fundamental principles leading to efficient charge separation depend strongly on the type of nanoscale material.

  11. First-principles calculation of photo-induced electron transfer rate constants in phthalocyanine-C60 organic photovoltaic materials: Beyond Marcus theory

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    Classical Marcus theory is commonly adopted in solvent-mediated charge transfer (CT) process to obtain the CT rate constant, but it can become questionable when the intramolecular vibrational modes dominate the CT process as in OPV devices because Marcus theory treats these modes classically and therefore nuclear tunneling is not accounted for. We present a computational scheme to obtain the electron transfer rate constant beyond classical Marcus theory. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided. Ab initio calculations are used to obtain the basic parameters needed for calculating the electron transfer rate constant. We apply our methodology to phthalocyanine(H2PC)-C60 organic photovoltaic system where one C60 acceptor and one or two H2PC donors are included to model the donor-acceptor interface configuration. We obtain the electron transfer and recombination rate constants for all accessible charge transfer (CT) states, from which the CT exciton dynamics is determined by employing a master equation. The role of higher lying excited states in CT exciton dynamics is discussed. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  12. Control over photoinduced energy and electron transfer in supramolecular polyads of covalently linked azaBODIPY-bisporphyrin 'molecular clip' hosting fullerene.

    PubMed

    D'Souza, Francis; Amin, Anu N; El-Khouly, Mohamed E; Subbaiyan, Navaneetha K; Zandler, Melvin E; Fukuzumi, Shunichi

    2012-01-11

    A 'molecular clip' featuring a near-IR emitting fluorophore, BF(2)-chelated tetraarylazadipyrromethane (aza-BODIPY) covalently linked to two porphyrins (MP, M = 2H or Zn) has been newly synthesized to host a three-dimensional electron acceptor fullerene via a 'two-point' metal-ligand axial coordination. Efficient singlet-singlet excitation transfer from (1)ZnP* to aza-BODIPY was witnessed in the dyad and triad in nonpolar and less polar solvents, such as toluene and o-dichlorobenzene, however, in polar solvents, additional electron transfer occurred along with energy transfer. A supramolecular tetrad was formed by assembling bis-pyridine functionalized fullerene via a 'two-point' metal-ligand axial coordination, and the resulted complex was characterized by optical absorption and emission, computational, and electrochemical methods. Electron transfer from photoexcited zinc porphyrin to C(60) is witnessed in the supramolecular tetrad from the femtosecond transient absorption spectral studies. Further, the supramolecular polyads (triad or tetrad) were utilized to build photoelectrochemical cells to check their ability to convert light into electricity by fabricating FTO/SnO(2)/polyad electrodes. The presence of azaBODIPY and fullerene entities of the tetrad improved the overall light energy conversion efficiency. An incident photon-to-current conversion efficiency of up to 17% has been achieved for the tetrad modified electrode. PMID:22112019

  13. High-potential perfluorinated phthalocyanine-fullerene dyads for generation of high-energy charge-separated states: formation and photoinduced electron-transfer studies.

    PubMed

    Das, Sushanta K; Mahler, Andrew; Wilson, Angela K; D'Souza, Francis

    2014-08-25

    High oxidation potential perfluorinated zinc phthalocyanines (ZnF(n)Pcs) are synthesised and their spectroscopic, redox, and light-induced electron-transfer properties investigated systematically by forming donor-acceptor dyads through metal-ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine- (Py) and phenylimidazole-functionalised fullerene (C60Im) derivatives to the zinc centre of the F(n)Pcs. The determined binding constants, K, in o-dichlorobenzene for the 1:1 complexes are in the order of 10(4) to 10(5) M(-1); nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6-31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnF(n)Pc(.+)-C60Im(.-) and ZnF(n)Pc(.+)-C60Py(.-) (n=0, 8 or 16) intra-supramolecular charge-separated states during electron transfer. Electrochemical studies on the ZnPc-C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge-separated states. The energy of the charge-separated state for dyads composed of ZnF(n)Pc is higher than that of normal ZnPc-C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar-energy harvesting and optoelectronic device building applications.

  14. Photoinduced One-Electron Oxidation of Benzyl Methyl Sulfides in Acetonitrile: Time-Resolved Spectroscopic Evidence for a Thionium Ion Intermediate.

    PubMed

    Bettoni, Marta; Del Giacco, Tiziana; Stradiotto, Marina; Elisei, Fausto

    2015-08-21

    The photo-oxidation of 4-methoxybenzyl methyl sulfide (1a), benzyl methyl sulfide (1b), and 4-cyanobenzyl methyl sulfide (1c) has been investigated in the presence of N-methoxy phenanthridinium hexafluorophosphate (MeOP(+)PF6(-)) under nitrogen in CH3CN. The steady-state photolysis experiments showed for the investigated sulfides exclusively the formation of the corresponding benzaldehyde as the oxidation product, reasonably due to a deprotonation of the sulfide radical cations. Photo-oxidation of 1a-1c occurs through an electron transfer process. Indeed, laser flash photolysis measurements showed an efficient formation of sulfide radical cations, detected in their dimeric form [(4-X-C6H4CH2SCH3)2(+•)] at ≈520 nm. At longer delay times, the absorption of the dimer radical cation was replaced by an absorption band assigned to the (α-thio)benzyl cation (thionium ion, λmax = 420-400 nm), formed by oxidation of the benzyl radical and not by that of the (α-thiomethyl)benzyl radical, as expected if a Cα-H bond cleavage is operative. This finding highlights a particular stability of this kind of cation never reported before, even though its involvement in one-electron oxidation mechanisms of various sulfides has already been invoked. Density functional theory calculations allowed identification of a significant charge and spin delocalization involving both the phenyl ring and the sulfur atom of the radical cations.

  15. A mixed quantum-classical Liouville study of the population dynamics in a model photo-induced condensed phase electron transfer reaction

    SciTech Connect

    Rekik, Najeh; Freedman, Holly; Hanna, Gabriel; Hsieh, Chang-Yu

    2013-04-14

    We apply two approximate solutions of the quantum-classical Liouville equation (QCLE) in the mapping representation to the simulation of the laser-induced response of a quantum subsystem coupled to a classical environment. These solutions, known as the Poisson Bracket Mapping Equation (PBME) and the Forward-Backward (FB) trajectory solutions, involve simple algorithms in which the dynamics of both the quantum and classical degrees of freedom are described in terms of continuous variables, as opposed to standard surface-hopping solutions in which the classical degrees of freedom hop between potential energy surfaces dictated by the discrete adiabatic state of the quantum subsystem. The validity of these QCLE-based solutions is tested on a non-trivial electron transfer model involving more than two quantum states, a time-dependent Hamiltonian, strong subsystem-bath coupling, and an initial energy shift between the donor and acceptor states that depends on the strength of the subsystem-bath coupling. In particular, we calculate the time-dependent population of the photoexcited donor state in response to an ultrafast, on-resonance pump pulse in a three-state model of an electron transfer complex that is coupled asymmetrically to a bath of harmonic oscillators through the optically dark acceptor state. Within this approach, the three-state electron transfer complex is treated quantum mechanically, while the bath oscillators are treated classically. When compared to the more accurate QCLE-based surface-hopping solution and to the numerically exact quantum results, we find that the PBME solution is not capable of qualitatively capturing the population dynamics, whereas the FB solution is. However, when the subsystem-bath coupling is decreased (which also decreases the initial energy shift between the donor and acceptor states) or the initial shift is removed altogether, both the PBME and FB results agree better with the QCLE-based surface-hopping results. These findings

  16. Photoinduced superconductivity in semiconductors

    NASA Astrophysics Data System (ADS)

    Goldstein, Garry; Aron, Camille; Chamon, Claudio

    2015-02-01

    We show that optically pumped semiconductors can exhibit superconductivity. We illustrate this phenomenon in the case of a two-band semiconductor tunnel-coupled to broad-band reservoirs and driven by a continuous wave laser. More realistically, we also show that superconductivity can be induced in a two-band semiconductor interacting with a broad-spectrum light source. We furthermore discuss the case of a three-band model in which the middle band replaces the broad-band reservoirs as the source of dissipation. In all three cases, we derive the simple conditions on the band structure, electron-electron interaction, and hybridization to the reservoirs that enable superconductivity. We compute the finite superconducting pairing and argue that the mechanism can be induced through both attractive and repulsive interactions and is robust to high temperatures.

  17. Photoinduced Charge-Carrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap?

    PubMed

    Liu, Jinxuan; Zhou, Wencai; Liu, Jianxi; Howard, Ian; Kilibarda, Goran; Schlabach, Sabine; Coupry, Damien; Addicoat, Matthew; Yoneda, Satoru; Tsutsui, Yusuke; Sakurai, Tsuneaki; Seki, Shu; Wang, Zhengbang; Lindemann, Peter; Redel, Engelbert; Heine, Thomas; Wöll, Christof

    2015-06-15

    For inorganic semiconductors crystalline order leads to a band structure which gives rise to drastic differences to the disordered material. An example is the presence of an indirect band gap. For organic semiconductors such effects are typically not considered, since the bands are normally flat, and the band-gap therefore is direct. Herein we show results from electronic structure calculations demonstrating that ordered arrays of porphyrins reveal a small dispersion of occupied and unoccupied bands leading to the formation of a small indirect band gap. We demonstrate herein that such ordered structures can be fabricated by liquid-phase epitaxy and that the corresponding crystalline organic semiconductors exhibit superior photophysical properties, including large charge-carrier mobility and an unusually large charge-carrier generation efficiency. We have fabricated a prototype organic photovoltaic device based on this novel material exhibiting a remarkable efficiency. PMID:25960115

  18. Photoinduced Charge-Carrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap?

    PubMed

    Liu, Jinxuan; Zhou, Wencai; Liu, Jianxi; Howard, Ian; Kilibarda, Goran; Schlabach, Sabine; Coupry, Damien; Addicoat, Matthew; Yoneda, Satoru; Tsutsui, Yusuke; Sakurai, Tsuneaki; Seki, Shu; Wang, Zhengbang; Lindemann, Peter; Redel, Engelbert; Heine, Thomas; Wöll, Christof

    2015-06-15

    For inorganic semiconductors crystalline order leads to a band structure which gives rise to drastic differences to the disordered material. An example is the presence of an indirect band gap. For organic semiconductors such effects are typically not considered, since the bands are normally flat, and the band-gap therefore is direct. Herein we show results from electronic structure calculations demonstrating that ordered arrays of porphyrins reveal a small dispersion of occupied and unoccupied bands leading to the formation of a small indirect band gap. We demonstrate herein that such ordered structures can be fabricated by liquid-phase epitaxy and that the corresponding crystalline organic semiconductors exhibit superior photophysical properties, including large charge-carrier mobility and an unusually large charge-carrier generation efficiency. We have fabricated a prototype organic photovoltaic device based on this novel material exhibiting a remarkable efficiency.

  19. Photo-induced water oxidation at the aqueous GaN (101¯0) interface: Deprotonation kinetics of the first proton-coupled electron-transfer step

    SciTech Connect

    Ertem, Mehmed Z.; Kharche, Neerav; Batista, Victor S.; Hybertsen, Mark S.; Tully, John C.; Muckerman, James T.

    2015-03-12

    Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys (e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101¯0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigation of free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O˙⁻ requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101¯0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.

  20. A spectroscopic and electrochemical approach to the study of the interactions and photoinduced electron transfer between catechol and anatase nanoparticles in aqueous solution.

    PubMed

    Lana-Villarreal, Teresa; Rodes, Antonio; Pérez, Juan M; Gómez, Roberto

    2005-09-14

    We have combined in situ photoelectrochemical and spectroscopic techniques (Attenuated Total Reflection Infrared, ATR-IR, and Resonance Raman Spectroscopy) for the study of the charge-transfer complex formed upon adsorption of catechol on anatase nanoparticles in contact with aqueous acidic solutions. Vibrational spectroscopies reveal the existence of at least two adsorbate configurations: catecholate in a chelate configuration and molecularly adsorbed catechol, with apparent values of -12.3 and -10.5 kJ mol(-1), respectively. These values are significantly less negative than the values reported for anatase colloidal dispersions. The adsorption of both catechol species on the nanoparticulate anatase thin films follows the Freundlich isotherm. As revealed by resonance Raman spectroscopy, only the adsorbed chelating catecholate forms the charge-transfer complex. The electron transfer from the adsorbate to the anatase nanoparticles has been evidenced by the development of a negative photopotential upon 514.5 or 632.8 nm laser illumination of an anatase nanostructured thin film electrode in contact with a catechol solution. The time evolution of the Raman spectra shows an increasing fluorescence indicating that, upon electron injection, catechol polymerization occurs on the TiO2 surfaces. This conclusion is confirmed by in situ ATR-IR measurements, which show a progressive broadening of the catecholate bands together with the appearance of new signals. This study illustrates the benefits of combining electrochemical, infrared, and Raman techniques for the elucidation of processes occurring at the semiconductor/solution interface. Finally, evidence is given on the different adsorption and reactivity behavior found for suspensions and nanoporous thin films under equivalent experimental conditions.

  1. Photo-induced water oxidation at the aqueous GaN (101¯0) interface: Deprotonation kinetics of the first proton-coupled electron-transfer step

    DOE PAGESBeta

    Ertem, Mehmed Z.; Kharche, Neerav; Batista, Victor S.; Hybertsen, Mark S.; Tully, John C.; Muckerman, James T.

    2015-03-12

    Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys (e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101¯0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigation ofmore » free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O˙⁻ requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101¯0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.« less

  2. Obstruction of photoinduced electron transfer from excited porphyrin to graphene oxide: a fluorescence turn-on sensing platform for iron (III) ions.

    PubMed

    Liu, Zhong De; Zhao, Heng Xin; Huang, Cheng Zhi

    2012-01-01

    A comparative research of the assembly of different porphyrin molecules on graphene oxide (GO) and reduced graphene oxide (RGO) was carried out, respectively. Despite the cationic porphyrin molecules can be assembled onto the surfaces of graphene sheets, including GO and RGO, to form complexes through electrostatic and π-π stacking interactions, the more obvious fluorescence quenching and the larger red-shift of the Soret band of porphyrin molecule in RGO-bound states were observed than those in GO-bound states, due to the difference of molecular flattening in degree. Further, more interesting finding was that the complexes formed between cationic porphyrin and GO, rather than RGO sheets, can facilitate the incorporation of iron (III) ions into the porphyrin moieties, due to the presence of the oxygen-contained groups at the basal plane of GO sheets served as auxiliary coordination units, which can high-efficiently obstruct the electron transfer from excited porphyrin to GO sheets and result in the occurrence of fluorescence restoration. Thus, a fluorescence sensing platform has been developed for iron (III) ions detection in this contribution by using the porphyrin/GO nanohybrids as an optical probe, and our present one exhibited rapid and sensitive responses and high selectivity toward iron (III) ions.

  3. Photoinduced Electron-Transfer Mechanisms for Radical-Enhanced Photodynamic Therapy Mediated by Water-Soluble Decacationic C70 and C84O2 Fullerene Derivatives

    PubMed Central

    Sperandio, Felipe F.; Sharma, Sulbha K.; Wang, Min; Jeon, Seaho; Huang, Ying-Ying; Dai, Tianhong; Nayka, Suhasini; de Sousa, Suzana C.O.M.; Chiang, Long Y.; Hamblin, Michael R.

    2012-01-01

    Fullerenes are promising candidates for photodynamic therapy (PDT). Thus, C70 and novel C84O2 fullerenes were functionalized with and without an additional deca-tertiary ethyleneamino-chain as an electron source, giving rise to two distinct pairs of photosensitizers, the monoadducts LC-17, LC-19 and the bisadducts LC18 and LC-20 to perform PDT in HeLa cells with UVA, blue, green, white and red light. Shorter wavelengths gave more phototoxicity with LC-20 while LC-19 was better at longer wavelengths; the ratio between killing obtained with LC-19 and LC-20 showed an almost perfect linear correlation (R = 0.975) with wavelength. The incorporation of a deca-tertiary amine chain in the C84O2 fullerene gave more PDT killing when excited with shorter wavelengths or in presence of low ascorbate concentration through higher generation of hydroxyl radicals. Photoactivated C84O2 fullerenes induced apoptosis of HeLa cancer cells, together with mitochondrial and lysosomal damage demonstrated by acridine orange and rhodamine 123 fluorescent probes. PMID:23117043

  4. Photoelectric Properties Based on Electric Field Modulation of Photoinduced Electron Transfer Processes in Flavin-Porphyrin Hetero-type Langmuir-Blodgett Films

    NASA Astrophysics Data System (ADS)

    Isoda, Satoru; Hanazato, Yoshio; Ueyama, Satoshi; Nishikawa, Satoshi; Akiyama, Kouich

    2004-05-01

    Metal-insulator-meal devices composed of flavin-porphyrin hetero-type Langmuir-Blodgett films showed highly efficient photoelectric properties mainly attributable to the fast charge separation process at a molecular heterojunction (MHJ) between flavin and porphyrin. The photoelectric properties of the MHJ devices showed different characteristics depending on the redox state of the central metal of porphyrin, i.e., Ru(III) or Ru(II). The rectifying behavior of the photocurrent was observed for the Ru(III)-MHJ device, whereas the Ru(II)-MHJ device did not show the rectifying behavior. We concluded that the rectifying behavior was mainly controlled by the electric field dependence of the charge recombination process. Furthermore, a bell-shaped photocurrent-voltage curve was observed for the Ru(II)-MHJ device. The mechanism underlying the negative resistance might be based on the electric field dependence of the charge shift process in flavin monolayers controlled by the inverted region mechanism of the Marcus electron transfer theory.

  5. QSARs for photo-induced toxicity of polycyclic aromatic hydrocarbons (PAHs)

    SciTech Connect

    Mekenyan, O.; Call, D.; Ankley, G.; Veith, G.

    1994-12-31

    Photo-induced toxicity of polycyclic aromatic hydrocarbons (PAHs) was found to be a result of competing internal and external factors which interact to produce a complex, multilinear relationship between toxicity and chemical structure. The relationship between molecular electronic structure and photo-dynamic effects was studied in both ground and excited states. A measure of the energy required for an electron to be elevated from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), or HOMO-LUMO gap, provided a useful ground state index to explain the persistence, light absorption, and eventual photo-induced toxicity of PAHs to Daphnia magna. The derived QSARs clearly distinguished photo-induced toxicity differences between pairs of structurally similar PAHs, such as phenanthrene and anthracene, benzo[a]anthracene and tetracene, etc. Those PAHs exhibiting photo-induced toxicity were consistently within a specific HOMO-LUMO gap range. The relationship between the excited state electronic parameters and toxicity was also studied. Significant correlations were found with the measured energies of singlet and triplet states from spectroscopic data. An investigation of the effect of substituent additions on photo-induced acute toxicity of parent PAHs revealed that alkyl and hydroxy moieties did not significantly reduce the HOMO-LUMO gap of the parent PAHs. Nitro, alkene and chloro substituents cause gap reductions, whereby certain derivatives of parent chemicals that were close to the ``toxic region`` of the electronic gap could become phototoxic with such additions.

  6. Inactivation of tyrosinase photoinduced by pterin

    SciTech Connect

    Laura Dantola, M.; Gojanovich, Aldana D.; Thomas, Andres H.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Under UV-A radiation, tirosinase is photoinactivated by pterin. Black-Right-Pointing-Pointer The mechanism involves an electron transfer-initiated process. Black-Right-Pointing-Pointer The photochemical process affects both activities of tyrosinase. -- Abstract: Tyrosinase catalyzes in mammals the first and rate-limiting step in the biosynthesis of the melanin, the main pigment of the skin. Pterins, heterocyclic compounds able to photoinduce oxidation of DNA and its components, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder in which the protection against UV radiation fails due to the lack of melanin. Aqueous solutions of tyrosinase were exposed to UV-A irradiation (350 nm) in the presence of pterin, the parent compound of oxidized pterins, under different experimental conditions. The enzyme activity in the irradiated solutions was determined by spectrophotometry and HPLC. In this work, we present data that demonstrate unequivocally that the enzyme is photoinactivated by pterin. The mechanism of the photosensitized process involves an electron transfer from tyrosinase to the triplet excited state of pterin, formed after UV-A excitation of pterin. The biological implications of the results are discussed.

  7. UV photoinduced dynamics in protonated aromatic amino acid

    NASA Astrophysics Data System (ADS)

    Grã©Goire, G.; Lucas, B.; Barat, M.; Fayeton, J. A.; Dedonder-Lardeux, C.; Jouvet, C.

    2009-01-01

    UV photoinduced fragmentation of protonated aromatic amino acids has emerged the last few years, coming from a situation where nothing was known to what we think a good understanding of the optical properties. We will mainly focus this review on the tryptophan case. Three groups have mostly done spectroscopic studies and one has mainly been involved in dynamics studies of the excited states in the femtosecond/picosecond range and also in the fragmentation kinetics from nanosecond to millisecond. All these data, along with high level ab initio calculations, have shed light on the role of the different electronic states of the protonated molecules upon the fragmentation mechanisms.

  8. Static and dynamic photoinduced magnetic effects in yttrium-iron garnet lightly doped with barium ions

    SciTech Connect

    Vorob'eva, N. V. Khalilov, R. Z.

    2012-04-15

    In yttrium-iron garnet lightly doped with barium, direct measurements of the photoinduced changes in magnetostrictive strains disagree with those in magnetostriction constants at 78-100 K. This is attributed to a considerable photoinduced modification of the initial state in this sample due to a redistribution of the charge (during illumination) between cations of the ferromagnetic octahedral sublattice. In the same sample, the temperature dependence of the photoinduced disaccomodation of magnetic permeability characterizing the initial demagnetized state is measured and calculated. A change in the electron mechanism of the phenomenon during the transition to room temperature is shown. The conclusion about the promising prospects for using such samples for remagnetization by light is advanced.

  9. Improved Photo-Induced Stability in Amorphous Metal-Oxide Based TFTs for Transparent Displays.

    PubMed

    Koo, Sang-Mo; Ha, Tae-Jun

    2015-10-01

    In this paper, we investigate the origin of photo-induced instability in amorphous metal-oxide based thin-film transistors (oxide-TFTs) by exploring threshold voltage (Vth) shift in transfer characteristics. The combination of photo irradiation and prolonged gate bias stress enhanced the shift in Vth in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs. Such results stem from the extended trapped charges at the localized defect states related to oxygen vacancy which play a role in a screening effect on the electric field induced by gate voltage. We also demonstrate the chemically clean interface in oxide-TFTs by employing oxygen annealing which reduces the density of trap states, thereby resulting in improved photo-induced stability. We believe that this work stimulates the research society of transparent electronics by providing a promising approach to suppress photo-induced instability in metal-oxide TFTs. PMID:26726416

  10. Photoinduced Charge Transport in a BHJ Solar Cell Controlled by an External Electric Field

    PubMed Central

    Li, Yongqing; Feng, Yanting; Sun, Mengtao

    2015-01-01

    This study investigated theoretical photoinduced charge transport in a bulk heterojunction (BHJ) solar cell controlled by an external electric field. Our method for visualizing charge difference density identified the excited state properties of photoinduced charge transfer, and the charge transfer excited states were distinguished from local excited states during electronic transitions. Furthermore, the calculated rates for the charge transfer revealed that the charge transfer was strongly influenced by the external electric field. The external electric field accelerated the rate of charge transfer by up to one order when charge recombination was significantly restrained. Our research demonstrated that photoinduced charge transport controlled by an external electric field in a BHJ solar cell is efficient, and the exciton dissociation is not the limiting factor in organic solar cells.Our research should aid in the rational design of a novel conjugated system of organic solar cells. PMID:26353997

  11. Improved Photo-Induced Stability in Amorphous Metal-Oxide Based TFTs for Transparent Displays.

    PubMed

    Koo, Sang-Mo; Ha, Tae-Jun

    2015-10-01

    In this paper, we investigate the origin of photo-induced instability in amorphous metal-oxide based thin-film transistors (oxide-TFTs) by exploring threshold voltage (Vth) shift in transfer characteristics. The combination of photo irradiation and prolonged gate bias stress enhanced the shift in Vth in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs. Such results stem from the extended trapped charges at the localized defect states related to oxygen vacancy which play a role in a screening effect on the electric field induced by gate voltage. We also demonstrate the chemically clean interface in oxide-TFTs by employing oxygen annealing which reduces the density of trap states, thereby resulting in improved photo-induced stability. We believe that this work stimulates the research society of transparent electronics by providing a promising approach to suppress photo-induced instability in metal-oxide TFTs.

  12. Photoinduced magnetic force between nanostructures

    NASA Astrophysics Data System (ADS)

    Guclu, Caner; Tamma, Venkata Ananth; Wickramasinghe, Hemantha Kumar; Capolino, Filippo

    2015-12-01

    Photoinduced magnetic force between nanostructures, at optical frequencies, is investigated theoretically. Till now optical magnetic effects were not used in scanning probe microscopy because of the vanishing natural magnetism with increasing frequency. On the other hand, artificial magnetism in engineered nanostructures led to the development of measurable optical magnetism. Here two examples of nanoprobes that are able to generate strong magnetic dipolar fields at optical frequency are investigated: first, an ideal magnetically polarizable nanosphere and then a circular cluster of silver nanospheres that has a looplike collective plasmonic resonance equivalent to a magnetic dipole. Magnetic forces are evaluated based on nanostructure polarizabilities, i.e., induced magnetic dipoles, and magnetic-near field evaluations. As an initial assessment on the possibility of a magnetic nanoprobe to detect magnetic forces, we consider two identical magnetically polarizable nanoprobes and observe magnetic forces on the order of piconewtons, thereby bringing it within detection limits of conventional atomic force microscopes at ambient pressure and temperature. The detection of magnetic force is a promising method in studying optical magnetic transitions that can be the basis of innovative spectroscopy applications.

  13. Photoinduced diffraction in polymer waveguides.

    PubMed

    Andrews, J H; Singer, K D

    1993-11-20

    We report on techniques for measuring photoinduced diffraction in prism-coupled slab polymer waveguides. Diffraction effects resulting from photochromic gratings in slab waveguides of Disperse Red 1 dye in polymethylmethacrylate were studied. Optical damage in the form of diffractive mode conversion was observed when we coupled in light with a wavelength slightly longer than the absorption edge of Disperse Red 1 dye. Slowly growing satellite beams in the outcoupled light were attributed to anisotropic scattering between the lowest-order TE mode and the lowest-order TM mode caused by self-diffraction from a grating produced through the photochromic effect. We have also investigated the effect of mode-coupling changes on the determination of diffraction efficiency and sensitivity in waveguide experiments. Diffraction efficiencies predicted by measurements of the modulation depth in the guide are found to overstate the actual diffraction efficiencies that could be observed in this geometry. Techniques for overc ming this limitation and for improving estimates of the energy density and interaction length in the guide are noted.

  14. Photoinduced toxicity of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Jones, Philip Scott

    Engineered nanomaterials including metal, metal oxide and carbon based nanomaterials are extensively used in a wide variety of applications to the extent that their presence in the environment is expected to increase dramatically over the next century. These nanomaterials may be photodegraded by solar radiation and thereby release metal ions into the environment that can produce cytotoxic and genotoxic effects. Photoinduced toxicity experiments are performed exposing human lung epithelial carcinoma cells [H1650] to engineered semiconductor nanoparticles such as CdSe quantum dots and ZnO nanoparticles after exposure to 3, 6, and 9 hours of solar simulated radiation. Cytotoxicity and genotoxicity of the metal ions are evaluated using ZnSO4 and CdCl2 solutions for the MTT assay and Comet assay respectively. The objective of the dissertation is to obtain quantitative information about the environmental transformation of engineered nanomaterials and their mechanism of toxicity. This information is critical for addressing the environmental health and safety risks of engineered nanomaterials to workers, consumers and the environment.

  15. Kinetics of photoinduced electron transfer between DNA bases and triplet 3,3',4,4'-benzophenone tetracarboxylic acid in aqueous solution of different pH's: proton-coupled electron transfer?

    PubMed

    Nguyen, Truong X; Kattnig, Daniel; Mansha, Asim; Grampp, Günter; Yurkovskaya, Alexandra V; Lukzen, Nikita

    2012-11-01

    The kinetics of triplet state quenching of 3,3',4,4'-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λ(max) = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are k(q) = 2.3 × 10(9) (4.7 < pH < 9.9), k(q) = 4.0 × 10(9) (3.5 < pH < 4.7), k(q) = 1.0 × 10(9) (4.7 < pH < 9.9), and k(q) = 4.0 × 10(8) M(-1) s(-1) (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto-enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ -59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer. PMID:23038981

  16. Photoinduced Absorption and Transient Grating Studies of Conjugated Polymers.

    NASA Astrophysics Data System (ADS)

    Spiegel, Daniel Richard

    Most of the attributes that make conjugated polymers theoretically and technologically interesting derive from the electronic properties of the excited states. The well -known models which have successfully explained many of the solid state properties of these systems have emphasized the coupling of the electronic structure and the underlying lattice. Recently, it has become possible to obtain conjugated polymers in solution. In these systems, there exists an important parameter which is quenched in the solid state; namely, the entropy associated with the many different configurations in which a chain may exist. It becomes important, therefore, to examine to what extent the models that describe electronic processes in solid state conjugated polymers may be extended to solutions. Such questions are intimately tied to the macromolecular conformation favored by dissolved conjugated chains. In this thesis, soluble conjugated polymers are investigated using two CW pump-and-probe optical techniques. Both the solution and solid states have been investigated. First, results of spectroscopic CW resonant photoinduced absorption (PA) studies show that bipolarons are the preferred excitation for the storage of charge added via photoexcitation in thin films of poly(3-alkylthiophenes) (P3ATs). Additionally, resonant PA has also been carried out successfully in solutions of P3ATs dissolved in several different solvents. Based on the similarity of the photoinduced spectra in the solution and the solid state, it is concluded that bipolarons remain the preferred excitation in P3AT solutions. The dependences of the photoinduced signal on pump intensity, modulation frequency, and, in the case of solutions, polymer concentration are also reported. Secondly, two coherent crossed pump beams are used to create transient gratings within P3AT solutions, with excited states on the chains providing the optical contrast. The grating decay, after the pump beams are shut off, is monitored

  17. Direct observations of the photoinduced change in dimerization in K-TCNQ

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tadahiko; Hosoda, Ryosuke; Okimoto, Yoichi; Tanaka, Sei'ichi; Onda, Ken; Koshihara, Shinya; Kumai, Reiji

    2016-05-01

    The photoinduced dynamics of a potassium-tetracyanoquinodimethane (K-TCNQ) single crystal in the generalized Peierls phase are evaluated via time-resolved vibrational spectroscopy. The transient reflectivity spectrum of the photoinduced state in the mid-IR range shows a decrease in the height and width of the reflectivity band because of the electron-molecular-vibration-coupled CN stretching mode at approximately 2180 cm-1. This spectral change suggests that the photoexcitation of the charge transfer in TCNQ molecules induces melting of the dimerization of the molecules. From detailed analysis of the spectral evolution, the relaxation time constant from the photoinduced state to the dimerized state is estimated to be approximately 0.6 ps. Even after the recovery of the dimerization, a fluctuation is still observed, probably because of a domain-wall soliton. The fluctuation gradually dissipates with a time constant of approximately 2.3 ps. Direct observation of the dimerization process reveals the true dynamics of the photoinduced cooperative phenomenon within this system.

  18. Photoinduced charge and energy transfer in molecular wires.

    PubMed

    Gilbert, Mélina; Albinsson, Bo

    2015-02-21

    Exploring charge and energy transport in donor-bridge-acceptor systems is an important research field which is essential for the fundamental knowledge necessary to develop future applications. These studies help creating valuable knowledge to respond to today's challenges to develop functionalized molecular systems for artificial photosynthesis, photovoltaics or molecular scale electronics. This tutorial review focuses on photo-induced charge/energy transfer in covalently linked donor-bridge-acceptor (D-B-A) systems. Of utmost importance in such systems is to understand how to control signal transmission, i.e. how fast electrons or excitation energy could be transferred between the donor and acceptor and the role played by the bridge (the "molecular wire"). After a brief description of the electron and energy transfer theory, we aim to give a simple yet accurate picture of the complex role played by the bridge to sustain donor-acceptor electronic communication. Special emphasis is put on understanding bridge energetics and conformational dynamics effects on the distance dependence of the donor-acceptor electronic coupling and transfer rates. Several examples of donor-bridge-acceptor systems from the literature are described as a support to the discussion. Finally, porphyrin-based molecular wires are introduced, and the relationship between their electronic structure and photophysical properties is outlined. In strongly conjugated porphyrin systems, limitations of the existing electron transfer theory to interpret the distance dependence of the transfer rates are also discussed.

  19. Photoinduced Charge and Energy Transfer Processes in Molecular Aggregates

    SciTech Connect

    John F. Endicott

    2009-10-20

    This project involved the experimental probing of the electronic excited states generated by photoinduced (center-to-center) electron and energy transfer processes in several classes of transition metal donor/acceptor (D/A) complexes. Some of the general properties inferred from these studies should be useful in the design of new systems for energy conversion applications. Pursuit of the project goals has involved the determination of electron transfer efficiencies and the detailed study of variations in the electronic spectra of D/A complexes. This has resulted in the study of some very fundamental issues of photoinduced charge transfer and the identification of some of the constraints on its efficiency. The experimental studies of the competition between the degradative non-radiative unimolecular relaxation of transition metal excited states and their transfer of charge from these excited states to external acceptors have involved a range of techniques such as transient decay kinetics, photoacoustic calorimetry and transient or stationary state spectroscopy. The substrates synthesized for these studies were selected to provide model systems, or series of model systems to probe the validity of models of electronic excited states and their reactivity. The work during the last few years has focused largely, but not exclusively, on the use of emission spectral band shapes to probe the properties of charge transfer (CT) excited states. Bandshape variations are one of the very few approaches for systematically probing electronic excited states and good band shape resolution is necessary in order to gain information about the structural variations that correlate with excited state reactivity. Differences in molecular structure correlate with differences in chemical reactivity, and the variations in emission bandshapes are well known to relate to variations in the molecular structural differences between the excited and ground electronic states. However, it is has been

  20. Revealing photoinduced charge transfer mechanism across π-conjugated heterojunctions

    NASA Astrophysics Data System (ADS)

    Shin, Yongwoo; Lin, Xi

    2013-03-01

    The adapted Su-Schrieffer-Heeger (aSSH) model is extended to the π - conjugatedbulkheterojunctionsystem . The New aSSH Hamiltonian incorporated interchain π- π stacking and dynamic electron-phonon coupling effects. Excellent agreements are found between the computed photoadsorption and photoinduced adsorption spectra and their corresponding experimental measurements. It is found that excitons generated in the bulk poly-(p-phenylene vinylene) (PPV) phase must overcome an energy barrier of 0.23 eV to reach heterojunction interface. These interfacial excitons show clear charge separations, with their electron states leaning towards the interface. Therefore, electron transfers from the D1*state of PPV to the t1u* state of C60 follow non-adiabatic mechanisms, which are accelerated by the 0.97 eV energy drop, close vicinity of the D1*state to the C60 phase, and suppressed inversion symmetry that doubles the number of electron-accepting states. After non-adiabatic electron transfers, the hole D1 states are screened by the optical phonons in PPV, forming self-localized hole polarons and moving further away from heterojunction interface.

  1. Photoinduced interaction of riboflavin dye with different reducing agents in aqueous and liposome media.

    PubMed

    Bhowmik, Benoy B; Sil, Arpita

    2004-02-01

    The photoelectrochemical and spectral studies of riboflavin have been carried out in aqueous and phosphatidylcholine (PC) liposome media in presence of different reducing agents such as I-, Br-, Cl-, Fe2+, Fe(CN)6(4-) and Cu+. The results from both the studies support the photoinduced electron transfer from the reducing agent to the excited riboflavin dye. Moreover, a good correlation between photovoltages/Stern-Volmer quenching constants versus reduction potentials of the reducing agents also confirms the above electron transfer in the photoexcited state. An alternative method has been developed to determine the Stern-Volmer quenching constant. PMID:14726001

  2. Photoinduced valley-polarized current of layered MoS2 by electric tuning.

    PubMed

    Yu, Yunjin; Zhou, Yanfeng; Wan, Langhui; Wang, Bin; Xu, Fuming; Wei, Yadong; Wang, Jian

    2016-05-01

    A photoinduced current of a layered MoS2-based transistor is studied from first-principles. Under the illumination of circular polarized light, a valley-polarized current is generated, which can be tuned by the gate voltage. For monolayer MoS2, the valley-polarized spin-up (down) electron current at K (K') points is induced by the right (left) circular polarized light. The valley polarization is found to reach +1.0 (-1.0) for the valley current that carried such a K (K') index. For bilayer MoS2, the spin-up (down) current can be induced at both K and K' valleys by the right (left) circular light. In contrast to monolayer MoS2, the photoinduced valley polarization shows asymmetric behavior upon reversal of the gate voltage. Our results show that the valley polarization of the photoinduced current can be modulated by the circular polarized light and the gate voltage. All the results can be well understood using a simple kp model.

  3. Photoinduced shape changes of diarylethene single crystals: correlation between shape changes and molecular packing.

    PubMed

    Kuroki, Lumi; Takami, Shizuka; Yoza, Kenji; Morimoto, Masakazu; Irie, Masahiro

    2010-02-01

    Correlation between the photoinduced shape changes of diarylethene single crystals and their molecular packing in the crystals was studied. Crystals of 1,2-bis(5-ethyl-2-phenyl-4-thiazolyl)perfluorocyclopentene (3a) and 1,2-bis(2-isopropyl-5-phenyl-3-thienyl)perfluorocyclopentene (4a) showed similar photoinduced deformation from square to lozenge as that of 1,2-bis- (2-ethyl-5-phenyl-3-thienyl)perfluorocyclopentene (1a). Although these three diarylethenes have different electronic structures and exhibit different colours upon UV irradiation, the crystallographic structures and molecular packing of the crystals are very similar to each other. The result indicates that the deformation mode is determined by the packing mode of component molecules in the crystal. X-Ray crystallographic analysis of a micrometre-sized crystal 1a (20 x 15 x 8 microm) prepared by sublimation revealed that the small-size crystal, which shows photoinduced deformation, has the same crystal structure as that of the large bulk crystal. PMID:20126798

  4. Fourth-order perturbative model for photoinduced internal conversion processes.

    PubMed

    Molesky, Brian P; Moran, Andrew M

    2013-12-27

    Essential to the functionality of numerous biological and synthetic molecular systems is the ability to rapidly convert electronic excitation energy into heat. Such internal conversion (IC) transitions often cannot be described by traditional second-order kinetic theories because of time-coincident electronic and nuclear relaxation processes. Here, we present a perturbative fourth-order phenomenological model for photoinduced IC that incorporates effects associated with finite laser bandwidths and nonequilibrium nuclear motions. Specialized knowledge of first-principles computational methods is not required, and many parameters can be obtained with standard spectroscopic measurements. The model is applied to the IC processes that precede electrocyclic ring-opening in α-terpinene. It is shown that the primary factor governing the shape of the population decay profile (Gaussian versus exponential) is the rate at which the wavepacket approaches the geometry corresponding to degeneracy between the excited states. Other parameters such as the displacement in the promoting mode and the thermal fluctuation amplitudes affect the sensitivity of the IC dynamics to motion of the wavepacket but do not alter the basic physical picture. Finally, we suggest a wavepacket representation of the IC process to visualize correlations between population-transfer dynamics and the amount of energy transferred from the system to the bath.

  5. Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight.

    PubMed

    Gueret, Robin; Castillo, Carmen E; Rebarz, Mateusz; Thomas, Fabrice; Hargrove, Aaron-Albert; Pécaut, Jacques; Sliwa, Michel; Fortage, Jérôme; Collomb, Marie-Noëlle

    2015-11-01

    We recently reported a very efficient homogeneous system for visible-light driven hydrogen production in water based on the cobalt(III) tetraaza-macrocyclic complex [Co(CR)Cl2](+) (1) (CR=2,12-dimethyl-3,7,11,17-tetra-azabicyclo(11.3.1)-heptadeca-1(17),2,11,13,15-pentaene) as a noble metal-free catalyst, with [Ru(II)(bpy)3](2+) (Ru) as photosensitizer and ascorbate/ascorbic acid (HA(-)/H2A) as a sacrificial electron donor and buffer (PhysChemChemPhys 2013, 15, 17544). This catalyst presents the particularity to achieve very high turnover numbers (TONs) (up to 1000) at pH 4.0 at a relative high concentration (0.1mM) generating a large amount of hydrogen and having a long term stability. A similar activity was observed for the aquo derivative [Co(III)(CR)(H2O)2](3+) (2) due to substitution of chloro ligands by water molecule in water. In this work, the geometry and electronic structures of 2 and its analog [Zn(II)(CR)Cl](+) (3) derivative containing the redox innocent Zn(II) metal ion have been investigated by DFT calculations under various oxidation states. We also further studied the photocatalytic activity of this system and evaluated the influence of varying the relative concentration of the different components on the H2-evolving activity. Turnover numbers versus catalyst (TONCat) were found to be dependent on the catalyst concentration with the highest value of 1130 obtained at 0.05 mM. Interestingly, the analogous nickel derivative, [Ni(II)(CR)Cl2] (4), when tested under the same experimental conditions was found to be fully inactive for H2 production. Nanosecond transient absorption spectroscopy measurements have revealed that the first electron-transfer steps of the photocatalytic H2-evolution mechanism with the Ru/cobalt tetraaza/HA(-)/H2A system involve a reductive quenching of the excited state of the photosensitizer by ascorbate (kq=2.5×10(7) M(-1) s(-1)) followed by an electron transfer from the reduced photosensitizer to the catalyst (ket=1.4×10(9) M

  6. Nonlinear fluorescence imaging by photoinduced charge separation

    NASA Astrophysics Data System (ADS)

    Mochizuki, Kentaro; Shi, Lanting; Mizukami, Shin; Yamanaka, Masahito; Tanabe, Mamoru; Gong, Wei-Tao; Palonpon, Almar F.; Kawano, Shogo; Kawata, Satoshi; Kikuchi, Kazuya; Fujita, Katsumasa

    2015-04-01

    Manipulation of the optical property of fluorescent probes has been a powerful strategy to establish super-resolution microscopy. We describe a new strategy to realize a probe with a nonlinear fluorescence response by using photoinduced charge separation. In this scheme, the first photon is used for the generation of the charge-separated state and the second photon is for fluorescence excitation. This stepwise two-photon absorption was confirmed by detection of a second-order nonlinear fluorescence response. Transient absorption spectra studies and simulation indicate that fluorescence is emitted through the photophysical pathways we proposed. Fluorescence imaging of biological cells showed marked improvements in image contrast and resolution, demonstrating the usefulness of the fluorescent probe in laser scanning confocal microscopy.

  7. Photoinduced energy- and electron-transfer processes in dinuclear Ru(II)-Os(II), Ru(II)-Os(III), and Ru(III)-Os(II) trisbipyridine complexes containing a shape-persistent macrocyclic spacer.

    PubMed

    Venturi, Margherita; Marchioni, Filippo; Ferrer Ribera, Belén; Balzani, Vincenzo; Opris, Dorina M; Schlüter, A Dieter

    2006-01-16

    The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.

  8. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    SciTech Connect

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha; Kityk, Iwan; Mastai, Yitzhak

    2015-03-15

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.

  9. Photoinduced degradation of organic solar cells with different microstructures

    NASA Astrophysics Data System (ADS)

    Lu, Chun-Xi; Yan, Peng; Wang, Jin-Ze; Liu, Ai-Min; Song, De; Jiang, Chao

    2014-08-01

    An in situ measurement setup is established to investigate the photoinduced degradation effects in a controllable inert gas ambient environment for the two different microstructures of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacid methyl ester (PCBM) bulk-heterojunction organic solar cells. The two devices are fabricated with the solvent vapor drying process followed by a thermal annealing (vapor drying device) and only a normal thermal annealing process (control device), respectively. Their power conversion efficiencies (PCEs) and aging features are compared. Their different degradation behaviors in light absorption are confirmed. In addition, irradiation-induced changes in both nanostructure and surface morphology of the P3HT:PCBM blend films treated with two different fabrication processes are observed through scanning electron microscopy and atomic force microscopy. Aggregated bulbs are observed at the surfaces for control devices after light irradiation for 50 h, while the vapor drying devices exhibit smooth film surfaces, and the corresponding device features are not easy to degrade under the aging measurement. Thus the devices having solvent vapor drying and thermal annealing show better device stabilities than those having only the thermal annealing process.

  10. Investigation of photocatalytic activities over Bi₂WO₆/ZnWO₄ composite under UV light and its photoinduced charge transfer properties.

    PubMed

    He, Dongqing; Wang, Lingling; Xu, Dandan; Zhai, Jiali; Wang, Dejun; Xie, Tengfeng

    2011-08-01

    Bi(2)WO(6)/ZnWO(4) composite photocatalysts have been successfully synthesized by a facile hydrothermal process. The catalysts were characterized by powder X-ray diffraction (XRD), transmission electron microcopy (TEM), and UV-vis diffuse reflectance spectrum (DRS). The results show that Bi(2)WO(6) nanoparticles grow on the primary ZnWO(4) nanorods. The Bi(2)WO(6)/ZnWO(4) composites have better UV light photocatalytic activities compared to single ZnWO(4) nanorods. Furthermore, the photoinduced charge transfer properties of Bi(2)WO(6)/ZnWO(4) composites were investigated by means of transient photovoltage (TPV) technique in detail. The interconnected interface of Bi(2)WO(6)/ZnWO(4) composites led to the low recombination ratios of photoinduced electron-hole pairs and enhanced photocatalytic activities.

  11. Photoinduced stiffening and photoplastic effect of ZnS individual nanobelt in nanoindentation

    SciTech Connect

    Zheng, X. J.; Yu, G. C.; Chen, Y. Q.; Mao, S. X.; Zhang, T.

    2010-11-15

    The photoinduced stiffening (PIS) and photoplastic effect (PPE) of ZnS individual nanobelt (NB) were observed by using a nanoindenter in conjunction with an incident ultraviolet (UV) light source system. The results show that the elastic modulus and hardness of ZnS individual NB under UV illumination are at least 32% and 20% larger than those in darkness. The mechanisms of PIS and PPE are interpreted by the increase in electronic strain and Peierls barrier due to the photogeneration of free carriers in ZnS individual NB. The research may offer useful guidelines to the application of optoelectronic devices based on individual nanostructures.

  12. Photoinduced cytotoxicity by a platinum diimine complex employing magnetite-silica nanocomposites as delivery vehicles.

    PubMed

    Zhang, Zhigang; Li, Haisha; Dai, Ruihui; Chai, Aiyun

    2015-10-01

    Tartaric acid-modified core-shell magnetite-silica nanocomposites were prepared by a sol-gel method, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. Then the nanocomposites were employed as carriers of a photoactive platinum diimine complex. Photoinduced cytotoxicity by the photosensitizer-loaded nanocomposites in different human carcinoma cells has been studied by cell viability assay. The results suggest that the as-synthesized nanocomposites have good stability in water, and the cytotoxicity induced by the platinum diimine complex in red light can be significantly enhanced when the photosensitizer is loaded with the magnetic nanocomposites.

  13. POLARON DYNAMICS. Long-lived photoinduced polaron formation in conjugated polyelectrolyte-fullerene assemblies.

    PubMed

    Huber, Rachel C; Ferreira, Amy S; Thompson, Robert; Kilbride, Daniel; Knutson, Nicholas S; Devi, Lekshmi Sudha; Toso, Daniel B; Challa, J Reddy; Zhou, Z Hong; Rubin, Yves; Schwartz, Benjamin J; Tolbert, Sarah H

    2015-06-19

    The efficiency of biological photosynthesis results from the exquisite organization of photoactive elements that promote rapid movement of charge carriers out of a critical recombination range. If synthetic organic photovoltaic materials could mimic this assembly, charge separation and collection could be markedly enhanced. We show that micelle-forming cationic semiconducting polymers can coassemble in water with cationic fullerene derivatives to create photoinduced electron-transfer cascades that lead to exceptionally long-lived polarons. The stability of the polarons depends on the organization of the polymer-fullerene assembly. Properly designed assemblies can produce separated polaronic charges that are stable for days or weeks in aqueous solution. PMID:26089510

  14. Hole-lattice Coupling and Photo-induced Insulator-metal Transition in VO2

    NASA Astrophysics Data System (ADS)

    Zhang, Peihong; Yuan, Xun; Zhang, Wenqing

    2014-03-01

    In this talk, we will present a theory [PRB 88, 035119 (2013)] that is able to explain the photo-induced insulator-metal transition in VO2 and the related transient and multi-time-scale structural dynamics upon photo-excitation. Holes created by photo-excitation weaken the V-V bonds and eventually break V-V dimers in the M1 phase when the laser fluence reaches a critical value. The breaking of the V-V bonds in turn leads to an immediate electronic phase transition from an insulating to a metallic state while the crystal lattice remains monoclinic in shape.

  15. Photoinduced Reconfiguration Cycle in a Molecular Adsorbate Layer Studied by Femtosecond Inner-Shell Photoelectron Spectroscopy

    SciTech Connect

    Dachraoui, H.; Michelswirth, M.; Bartz, P.; Pfeiffer, W.; Heinzmann, U.; Siffalovic, P.; Schaefer, C.; Schnatwinkel, B.; Mattay, J.; Drescher, M.

    2011-03-11

    A time-resolved study of core-level chemical shifts in a monolayer of aromatic molecules reveals complex photoinduced reaction dynamics. The combination of electron spectroscopy for chemical analysis and ultrashort pulse excitation in the extreme ultraviolet allows performing time-correlated 4d-core-level spectroscopy of iodine atoms that probe the local chemical environment in the adsorbate molecule. The selectivity of the method unveils metastable molecular configurations that appear about 50 ps after the excitation and are efficiently quenched back to the ground state.

  16. Photoinduced intramolecular charge transfer process of betaine pyridinium: A theoretical spectroscopic study

    NASA Astrophysics Data System (ADS)

    Perrier, Aurélie; Aloïse, Stéphane; Pawlowska, Zuzanna; Sliwa, Michel; Maurel, François; Abe, Jiro

    2011-10-01

    Using Time-Dependent Density Functional Theory and taking into account bulk solvent effects, we investigate the absorption and emission spectra of a betaine pyridinium molecule, the 2-(1-pyridinio) benzimidazolate (SBPa). This molecule exhibits strong photoinduced intramolecular charge transfer (ICT). We have identified two different electronic states involved, respectively, in the strong bathochromic ICT absorption band (S 2) and in the moderate emission band (S 1). The ICT process is analyzed in terms of charge distribution and dipole moment evolutions upon photoexcitation. These results are compared with steady-state spectroscopic measurements.

  17. Model of photo-induced neutral-ionic phase transition in organic charge-transfer salts

    NASA Astrophysics Data System (ADS)

    Yartsev, V. M.

    1998-01-01

    One-dimensional donor-acceptor mixed chains are modeled by a periodic DADA tetramer. Electron coupling to intramolecular vibrations are taken into account explicitly. Generalized adiabatic potentials are calculated for the cases of regular and dimerized stacks which are characteristic, respectively, of quasi-neutral (N) and quasi-ionic (I) phases of a tetrathiafulvalene-chloranil compound. A sharp difference in life-times of photo-induced I-states in the N-phase and N-states in the I-phase is discussed within the periodic DADA tetramer model.

  18. POLARON DYNAMICS. Long-lived photoinduced polaron formation in conjugated polyelectrolyte-fullerene assemblies.

    PubMed

    Huber, Rachel C; Ferreira, Amy S; Thompson, Robert; Kilbride, Daniel; Knutson, Nicholas S; Devi, Lekshmi Sudha; Toso, Daniel B; Challa, J Reddy; Zhou, Z Hong; Rubin, Yves; Schwartz, Benjamin J; Tolbert, Sarah H

    2015-06-19

    The efficiency of biological photosynthesis results from the exquisite organization of photoactive elements that promote rapid movement of charge carriers out of a critical recombination range. If synthetic organic photovoltaic materials could mimic this assembly, charge separation and collection could be markedly enhanced. We show that micelle-forming cationic semiconducting polymers can coassemble in water with cationic fullerene derivatives to create photoinduced electron-transfer cascades that lead to exceptionally long-lived polarons. The stability of the polarons depends on the organization of the polymer-fullerene assembly. Properly designed assemblies can produce separated polaronic charges that are stable for days or weeks in aqueous solution.

  19. Photoinduced charge transfer involving a MoMo quadruply bonded complex to a perylene diimide.

    PubMed

    Alberding, Brian G; Brown-Xu, Samantha E; Chisholm, Malcolm H; Epstein, Arthur J; Gustafson, Terry L; Lewis, Sharlene A; Min, Yong

    2013-04-21

    Evidence, based on femtosecond transient absorption and time resolved infrared spectroscopy, is presented for photoinduced charge transfer from the Mo2δ orbital of the quadruply bonded molecule trans-Mo2(T(i)PB)2(BTh)2, where T(i)PB = 2,4,6-triisopropyl benzoate and BTh = 2,2'-bithienylcarboxylate, to di-n-octyl perylene diimide and di-n-hexylheptyl perylene diimide in thin films and solutions of the mixtures. The films show a long-lived charge separated state while slow back electron transfer, τBET ~ 500 ps, occurs in solution.

  20. Photoinduced charge transfer within polyaniline-encapsulated quantum dots decorated on graphene.

    PubMed

    Nguyen, Kim Truc; Li, Dehui; Borah, Parijat; Ma, Xing; Liu, Zhaona; Zhu, Liangliang; Grüner, George; Xiong, Qihua; Zhao, Yanli

    2013-08-28

    A new method to enhance the stability of quantum dots (QDs) in aqueous solution by encapsulating them with conducting polymer polyaniline was reported. The polyaniline-encapsulated QDs were then decorated onto graphene through π-π interactions between graphene and conjugated polymer shell of QDs, forming stable polyaniline/QD/graphene hybrid. A testing electronic device was fabricated using the hybrid in order to investigate the photoinduced charge transfer between graphene and encapsulated QDs within the hybrid. The charge transfer mechanism was explored through cyclic voltammetry and spectroscopic studies. The hybrid shows a clear response to the laser irradiation, presenting a great advantage for further applications in optoelectronic devices.

  1. Coherence motion of photoinduced nonadiabatic charge transfer reaction in solution: A numerical study of pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sheu, Sheh-Yi; Yang, Dah-Yen

    1998-10-01

    We study the photoinduced charge separation processes in solution through a pump-probe spectroscopy theory [Dah-Yen Yang and Sheh-Yi Sheu, J. Chem. Phys. 106, 9427 (1997)] numerically. We investigate the detailed mechanism of nonadiabatic transition processes via the transition differential flux analysis. For the harmonic potential surfaces, an electronic coherence motion is observed in the overdamped exothermic activationless and inverted regimes.

  2. Photoinduced charge transfer in ZnO/Cu(2)O heterostructure films studied by surface photovoltage technique.

    PubMed

    Jiang, Tengfei; Xie, Tengfeng; Zhang, Yu; Chen, Liping; Peng, Linlin; Li, Haiyan; Wang, Dejun

    2010-12-21

    ZnO/Cu(2)O heterostructure films were prepared by a two-step electrodeposition method in aqueous solution on fluorine-doped tin oxide (FTO) substrates. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and UV-vis transmission measurements were utilized to characterize the films. Surface photovoltage (SPV) technique was used to investigate the process of photoinduced charge transfer. The results show that there is an electric field located at the interface between ZnO and Cu(2)O film and the photoinduced electrons in Cu(2)O film inject into ZnO under the effect of interfacial electric field with visible light irradiation. While under ultraviolet light illumination, the photoinduced electrons in Cu(2)O film accumulate at the surface of Cu(2)O film instead of injecting into ZnO under the action of surface built-in electric field of Cu(2)O film. The work function measurements confirm that the direction of interfacial electric field is from ZnO to Cu(2)O. These results are help to future design of high performance heterostructure photovoltaic devices.

  3. Dipole-mediated rectification of intramolecular photoinduced charge separation and charge recombination.

    PubMed

    Bao, Duoduo; Upadhyayula, Srigokul; Larsen, Jillian M; Xia, Bing; Georgieva, Boriana; Nuñez, Vicente; Espinoza, Eli M; Hartman, Joshua D; Wurch, Michelle; Chang, Andy; Lin, Chung-Kuang; Larkin, Jason; Vasquez, Krystal; Beran, Gregory J O; Vullev, Valentine I

    2014-09-17

    Controlling charge transfer at a molecular scale is critical for efficient light harvesting, energy conversion, and nanoelectronics. Dipole-polarization electrets, the electrostatic analogue of magnets, provide a means for "steering" electron transduction via the local electric fields generated by their permanent electric dipoles. Here, we describe the first demonstration of the utility of anthranilamides, moieties with ordered dipoles, for controlling intramolecular charge transfer. Donor-acceptor dyads, each containing a single anthranilamide moiety, distinctly rectify both the forward photoinduced electron transfer and the subsequent charge recombination. Changes in the observed charge-transfer kinetics as a function of media polarity were consistent with the anticipated effects of the anthranilamide molecular dipoles on the rectification. The regioselectivity of electron transfer and the molecular dynamics of the dyads further modulated the observed kinetics, particularly for charge recombination. These findings reveal the underlying complexity of dipole-induced effects on electron transfer and demonstrate unexplored paradigms for molecular rectifiers. PMID:25162490

  4. Nonadiabatic Excited-State Molecular Dynamics Modeling of Photoinduced Dynamics in Conjugated Molecules

    SciTech Connect

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir; Roitberg, Adrian E.; Tretiak, Sergei

    2011-01-10

    Nonadiabatic dynamics generally defines the entire evolution of electronic excitations in optically active molecular materials. It is commonly associated with a number of fundamental and complex processes such as intraband relaxation, energy transfer, and light harvesting influenced by the spatial evolution of excitations and transformation of photoexcitation energy into electrical energy via charge separation (e.g., charge injection at interfaces). To treat ultrafast excited-state dynamics and exciton/charge transport we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework incorporating quantum transitions. Our calculations rely on the use of the Collective Electronic Oscillator (CEO) package accounting for many-body effects and actual potential energy surfaces of the excited states combined with Tully’s fewest switches algorithm for surface hopping for probing nonadiabatic processes. This method is applied to model the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene, PPV). Our analysis shows intricate details of photoinduced vibronic relaxation and identifies specific slow and fast nuclear motions that are strongly coupled to the electronic degrees of freedom, namely, torsion and bond length alternation, respectively. Nonadiabatic relaxation of the highly excited mA{sub g} state is predicted to occur on a femtosecond time scale at room temperature and on a picosecond time scale at low temperature.

  5. Nonadiabatic excited-state molecular dynamics modeling of photoinduced dynamics in conjugated molecules.

    PubMed

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir; Roitberg, Adrian E; Tretiak, Sergei

    2011-05-12

    Nonadiabatic dynamics generally defines the entire evolution of electronic excitations in optically active molecular materials. It is commonly associated with a number of fundamental and complex processes such as intraband relaxation, energy transfer, and light harvesting influenced by the spatial evolution of excitations and transformation of photoexcitation energy into electrical energy via charge separation (e.g., charge injection at interfaces). To treat ultrafast excited-state dynamics and exciton/charge transport we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework incorporating quantum transitions. Our calculations rely on the use of the Collective Electronic Oscillator (CEO) package accounting for many-body effects and actual potential energy surfaces of the excited states combined with Tully's fewest switches algorithm for surface hopping for probing nonadiabatic processes. This method is applied to model the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene, PPV). Our analysis shows intricate details of photoinduced vibronic relaxation and identifies specific slow and fast nuclear motions that are strongly coupled to the electronic degrees of freedom, namely, torsion and bond length alternation, respectively. Nonadiabatic relaxation of the highly excited mA(g) state is predicted to occur on a femtosecond time scale at room temperature and on a picosecond time scale at low temperature. PMID:21218841

  6. sp3 domain in graphite by visible light and photoinduced phase transitions

    NASA Astrophysics Data System (ADS)

    Nasu, K.

    2010-06-01

    Photoinduced structural phase transition (PSPT)s are reviewed in connection with recent experimental results. There are two key concepts: the hidden multi-stability of the ground state, and the proliferations of optically excited states. Taking the ionic (I)-neutral (N) phase transition in an organic charge-transfer (CT) crystal TTF-CA, as an example, we, briefly look back the essence of its PSPT, in terms of the CT exciton and the N-domain proliferation. Next, we are concerned with the discovery of a new photoinduced phase with inter-layer σ-bonds in a graphite. We will see the mechanism of this nonequilibrium phase transition, in terms of the proliferation of photo-generated inter-layer CT excitations in the visible region. At the Franck-Condon state, the resultant electron-hole pair is quite unstable, being easily dissipated into the two-dimensional electronic continuum, as plus and minus free carriers. However, by a small probability, the electron and the hole are bound as an inter-layer CT exciton. This exciton self-localizes, contracting the inter-layer distance and buckling the six membered ring of graphite, only around it. Thus a tiny sp3 nano-domain appears.

  7. Nonlinear fluorescence probe using photoinduced charge separation (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Mochizuki, Kentaro; Shi, Lanting; Mizukami, Shin; Yamanaka, Masahito; Tanabe, Mamoru; Gong, Wei-Tao; Palonpon, Almar F.; Kawano, Shogo; Kawata, Satoshi; Kikuchi, Kazuya; Fujita, Katsumasa

    2015-08-01

    Two-photon excitation microscopy (TPEM) provides spatial resolution beyond the optical diffraction limit using the nonlinear response of fluorescent molecules. One of the strong advantages of TPEM is that it can be performed using a laser-scanning microscope without a complicated excitation method or computational post-processing. However, TPEM has not been recognized as a super-resolution microscopy due to the use of near-infrared light as excitation source, which provides lower resolution than visible light. In our research, we aimed for the realization of nonlinear fluorescence response with visible light excitation to perform super-resolution imaging using a laser-scanning microscope. The nonlinear fluorescence response with visible light excitation is achieved by developing a probe which provides stepwise two-photon excitation through photoinduced charge separation. The probe named nitro-bisBODIPY consists of two fluorescent molecules (electron donor: D) and one electron acceptor (A), resulting to the structure of D-A-D. Excited by an incident photon, nitro-bisBODIPY generates a charge-separated pair between one of the fluorescent molecules and the acceptor. Fluorescence emission is obtained only when one more incident photon is used to excite the other fluorescent molecule of the probe in the charge-separated state. This stepwise two-photon excitation by nitro-bisBODIPY was confirmed by detection of the 2nd order nonlinear fluorescence response using a confocal microscope with 488 nm CW excitation. The physical model of the stepwise two-photon excitation was investigated by building the energy diagram of nitro-bisBODIPY. Finally, we obtained the improvement of spatial resolution in fluorescence imaging of HeLa cells using nitro-bisBODIPY.

  8. Ultrafast dynamics during the photoinduced phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Wegkamp, Daniel; Stähler, Julia

    2015-12-01

    The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.

  9. Photoinduced carrier annihilation in silicon pn junction

    NASA Astrophysics Data System (ADS)

    Sameshima, Toshiyuki; Motoki, Takayuki; Yasuda, Keisuke; Nakamura, Tomohiko; Hasumi, Masahiko; Mizuno, Toshihisa

    2015-08-01

    We report analysis of the photo-induced minority carrier effective lifetime (τeff) in a p+n junction formed on the top surfaces of a n-type silicon substrate by ion implantation of boron and phosphorus atoms at the top and bottom surfaces followed by activation by microwave heating. Bias voltages were applied to the p+ boron-doped surface with n+ phosphorus-doped surface kept at 0 V. The values of τeff were lower than 1 × 10-5 s under the reverse-bias condition. On the other hand, τeff markedly increased to 1.4 × 10-4 s as the forward-bias voltage increased to 0.7 V and then it leveled off when continuous-wave 635 nm light was illuminated at 0.74 mW/cm2 on the p+ surface. The carrier annihilation velocity S\\text{p + } at the p+ surface region was numerically estimated from the experimental τeff. S\\text{p + } ranged from 4000 to 7200 cm/s under the reverse-bias condition when the carrier annihilation velocity S\\text{n + } at the n+ surface region was assumed to be a constant value of 100 cm/s. S\\text{p + } markedly decreased to 265 cm/s as the forward-bias voltage increased to 0.7 V.

  10. Perovskites for Photovoltaics in the Spotlight: Photoinduced Physical Changes and Their Implications.

    PubMed

    Gottesman, Ronen; Zaban, Arie

    2016-02-16

    Organic-inorganic halide perovskites are in consensus to revolutionize the field of photovoltaics and optoelectronic devices due to their superior optical and electronic properties which are unprecedented in comparison to those of other solution processed semiconductors. These hybrid materials are used as light absorbers and also as charge carriers which makes them very versatile to be implemented and studied in a multitude of fields. Traditionally, the working paradigm in solar cells and optoelectronic devices' characterization has been that the properties of photovoltaic materials remain stable following illumination of varying times and intensities. However, recently there has been a growing number of reports on prolonged illumination-dependent physical changes in perovskite films and perovskite based devices. The changes are reversible and range from structural transformations and differences in optical characteristics, to an increase in optoelectronic properties and physical parameters. In this Account, we review the physical changes in three reported model systems which display changes under prolonged illumination of light intensities of ∼0.01-1 sun. The three systems are (i) a free-standing perovskite film on a glass substrate, (ii) a symmetrical system with nonselective electrical contacts, and (iii) a working perovskite solar cell (either a planar or a porous structure). We examine each model system and discuss its photoinduced physical changes and conclude with the implications on future experimentation design, data analysis, and characterization that involve organic-inorganic halide perovskites illumination. Since hybrid perovskites are considered to be mixed ionic-electronic conductors in nature, ions that migrate in the perovskite under electrical fields can influence its properties. Therefore, an important distinction is made between photoinduced effects and photo and electric field induced effects. Thus, photoinduced effects are designated as

  11. Perovskites for Photovoltaics in the Spotlight: Photoinduced Physical Changes and Their Implications.

    PubMed

    Gottesman, Ronen; Zaban, Arie

    2016-02-16

    Organic-inorganic halide perovskites are in consensus to revolutionize the field of photovoltaics and optoelectronic devices due to their superior optical and electronic properties which are unprecedented in comparison to those of other solution processed semiconductors. These hybrid materials are used as light absorbers and also as charge carriers which makes them very versatile to be implemented and studied in a multitude of fields. Traditionally, the working paradigm in solar cells and optoelectronic devices' characterization has been that the properties of photovoltaic materials remain stable following illumination of varying times and intensities. However, recently there has been a growing number of reports on prolonged illumination-dependent physical changes in perovskite films and perovskite based devices. The changes are reversible and range from structural transformations and differences in optical characteristics, to an increase in optoelectronic properties and physical parameters. In this Account, we review the physical changes in three reported model systems which display changes under prolonged illumination of light intensities of ∼0.01-1 sun. The three systems are (i) a free-standing perovskite film on a glass substrate, (ii) a symmetrical system with nonselective electrical contacts, and (iii) a working perovskite solar cell (either a planar or a porous structure). We examine each model system and discuss its photoinduced physical changes and conclude with the implications on future experimentation design, data analysis, and characterization that involve organic-inorganic halide perovskites illumination. Since hybrid perovskites are considered to be mixed ionic-electronic conductors in nature, ions that migrate in the perovskite under electrical fields can influence its properties. Therefore, an important distinction is made between photoinduced effects and photo and electric field induced effects. Thus, photoinduced effects are designated as

  12. Femtosecond transient studies of photoinduced charge transfer in polymers doped with strong acceptor molecules; applications for organic solar cells

    NASA Astrophysics Data System (ADS)

    Holt, Josh; Drori, Tomer; Sheng, Chuanxiang; Valy Vardeny, Z.

    2007-03-01

    Current developments in organic solar cells (˜5% efficiency nowadays) require understanding and control of photoinduced charge carrier transfer and electronic state dynamics of donor-acceptor pairs. One current drawback to organic solar cell efficiency is negligible absorption in the near infrared region of the solar spectrum. We provide and compare evidence that poly(2-methoxy-5(2'-ethyl)hexoxy-phenylenevinylene) (MEH-PPV) and regio-regular poly-3-hexyl thiophene (RR-P3HT) doped with 2,7-dinitrofluorenone (DNF) or 2,4,7-trinitrofluorenone (TNF) form below-gap charge transfer complex state that can extend absorption into the near infrared. Using fs transient and CW spectroscopies we found that the photoluminescence and mid-ir photoinduced absorption (PA) band of excitons are simultaneously quenched, when excited in the visible/uv or near ir. We compare our results to those of comparable systems using C60 as acceptor molecules.

  13. Photoinduced electron transfer in coaggregates of dicyanonaphthalene and pyrazoline.

    PubMed

    Shen, Fugang; Peng, Aidong; Chen, Yu; Dong, Yang; Jiang, Ziwen; Wang, Yaobing; Fu, Hongbing; Yao, Jiannian

    2008-03-20

    The photophysical properties of mixed coaggregates containing 1,4-dicyanonaphthalene (DCN) and 1,3,5-triphenyl-2-pyrazoline (TPP) have been studied. The absorption spectra of mixed coaggregates indicate that a charge-transfer complex is not formed in the ground state between DCN and TPP. The fluorescence of TPP in the mixed coaggregates is quenched by DCN, accompanied with a broad and structureless emission at about 560 nm from an exciplex between DCN and TPP. The color of the emission from mixed coaggregates is tunable by changing the DCN content. The excited-state properties of the TPP-DCN molecule pair are investigated theoretically with a quantum chemistry method. The theoretical results have also confirmed that the broad emission at about 560 nm in the mixed coaggregates originates from the exciplex rather than from the charge-transfer complex.

  14. Novel photoinduced phase transitions in transition metal oxides and diluted magnetic semiconductors

    PubMed Central

    2012-01-01

    Some transition metal oxides have frustrated electronic states under multiphase competition due to strongly correlated d electrons with spin, charge, and orbital degrees of freedom and exhibit drastic responses to external stimuli such as optical excitation. Here, we present photoemission studies on Pr0.55(Ca1 − ySry)0.45MnO3 (y = 0.25), SrTiO3, and Ti1 − xCoxO2 (x = 0.05, 0.10) under laser illumination and discuss electronic structural changes induced by optical excitation in these strongly correlated oxides. We discuss the novel photoinduced phase transitions in these transition metal oxides and diluted magnetic semiconductors on the basis of polaronic pictures such as orbital, ferromagnetic, and ferroelectric polarons. PMID:23092248

  15. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    NASA Astrophysics Data System (ADS)

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha; Kityk, Iwan; Mastai, Yitzhak

    2015-03-01

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica.

  16. Photoinduced structural changes to protein kinase A

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Thomas, Robert J.; Brancaleon, Lorenzo

    2014-03-01

    The importance of porphyrins in organisms is underscored by the ubiquitous biological and biochemical functions that are mediated by these compounds and by their potential biomedical and biotechnological applications. Protoporphyrin IX (PPIX) is the precursor to heme and has biomedical applications such as its use as a photosensitizer in phototherapy and photodetection of cancer. Among other applications, our group has demonstrated that low-irradiance exposure to laser irradiation of PPIX, Fe-PPIX, or meso-tetrakis (4-sulfonatophenyl) porphyrin (TSPP) non-covalently docked to a protein causes conformational changes in the polypeptide. Such approach can have remarkable consequences in the study of protein structure/function relationship and can be used to prompt non-native protein properties. Therefore we have investigated protein kinase A (PKA), a more relevant protein model towards the photo-treatment of cancer. PKA's enzymatic functions are regulated by the presence of cyclic adenosine monophosphate for intracellular signal transduction involved in, among other things, stimulation of transcription, tumorigenesis in Carney complex and migration of breast carcinoma cells. Since phosphorylation is a necessary step in some cancers and inflammatory diseases, inhibiting the protein kinase, and therefore phosphorylation, may serve to treat these diseases. Changes in absorption, steady-state fluorescence, and fluorescence lifetime indicate: 1) both TSPP and PPIX non-covalently bind to PKA where they maintain photoreactivity; 2) absorptive photoproduct formation occurs only when PKA is bound to TSPP and irradiated; and 3) PKA undergoes secondary structural changes after irradiation with either porphyrin bound. These photoinduced changes could affect the protein's enzymatic and signaling capabilities.

  17. Itinerant type many-body theories for photo-induced structural phase transitions

    NASA Astrophysics Data System (ADS)

    Nasu, Keiichiro

    2004-09-01

    Itinerant type quantum many-body theories for photo-induced structural phase transitions (PSPTs) are reviewed in close connection with various recent experimental results related to this new optical phenomenon. There are two key concepts: the hidden multi-stability of the ground state, and the proliferations of optically excited states. Taking the ionic (I) rarr neutral (N) phase transition in the organic charge transfer (CT) crystal, TTF-CA, as a typical example for this type of transition, we, at first, theoretically show an adiabatic path which starts from CT excitons in the I-phase, but finally reaches an N-domain with a macroscopic size. In connection with this I-N transition, the concept of the initial condition sensitivity is also developed so as to clarify experimentally observed nonlinear characteristics of this material. In the next, using a more simplified model for the many-exciton system, we theoretically study the early time quantum dynamics of the exciton proliferation, which finally results in the formation of a domain with a large number of excitons. For this purpose, we derive a stepwise iterative equation to describe the exciton proliferation, and clarify the origin of the initial condition sensitivity. Possible differences between a photo-induced nonequilibrium phase and an equilibrium phase at high temperatures are also clarified from general and conceptional points of view, in connection with recent experiments on the photo-induced phase transition in an organo-metallic complex crystal. It will be shown that the photo-induced phase can make a new interaction appear as a broken symmetry only in this phase, even when this interaction is almost completely hidden in all the equilibrium phases, such as the ground state and other high-temperature phases. The relation between the photo-induced nonequilibrium phase and the hysteresis induced nonequilibrium one is also qualitatively discussed. We will be concerned with a macroscopic parity violation

  18. Photo-induced halide redistribution in organic-inorganic perovskite films

    NASA Astrophysics Data System (ADS)

    Dequilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-05-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced `brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.

  19. Photo-induced halide redistribution in organic–inorganic perovskite films

    DOE PAGESBeta

    deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulovic, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-05-24

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging themore » same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. In conclusion, our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.« less

  20. Photo-induced halide redistribution in organic–inorganic perovskite films

    PubMed Central

    deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-01-01

    Organic–inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced ‘brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance. PMID:27216703

  1. Photo-induced halide redistribution in organic-inorganic perovskite films.

    PubMed

    deQuilettes, Dane W; Zhang, Wei; Burlakov, Victor M; Graham, Daniel J; Leijtens, Tomas; Osherov, Anna; Bulović, Vladimir; Snaith, Henry J; Ginger, David S; Stranks, Samuel D

    2016-01-01

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance. PMID:27216703

  2. Photoinduced polarization properties of LilO(3) single crystal.

    PubMed

    Pillai, P K; Shriver, E L

    1975-12-01

    Photoinduced polarization is achieved in a lithium iodate single crystal by the simultaneous application of a dc field and illumination from a uv source. The dark depolarization and photodepolarization current decay characteristics of the polarized samples have been studied in detail in this paper.

  3. Measurements of Photo-induced Changes in Conjugated Polymers

    DOE R&D Accomplishments Database

    Seager, C. H.; Sinclair, M. B.; Mc Branch, D.; Heeger, A. J.; Baker, G. L.

    1991-01-01

    We have used the highly sensitive technique of Photothermal Deflection Spectroscopy (PDS) to measure changes in the infrared absorption spectra of MEHPPV, P3HT and Polydiacetylene-4BCMU induced by pumping these polymers with light above the {pi} - {pi}* transition energy. In contrast to previous chopped light transmission measurements of these effects, the PDS technique can directly measure the buildup or decay of the absorption coefficient, {alpha}, on the time scale of second to days. In the case of MEHPPV we observe that the time scale of seconds to days. In the case of MEHPPV we observe that above-gap light causes the appearance of a broad infrared peak in {alpha}, which continues to grow-in hours after the pump light is first applied. For this polymer the general shape of the absorption spectra in the unpumped state mimics the photo-induced changes, suggesting that remnant photo-induced states determine the maximum transparency observed under normal experimental conditions. For P3HT and to a lesser extent, MEHPPV, we also observe irreversible photo-induced absorption components which we tentatively identify with photo-induced oxidation of the polymer matrix.

  4. Reflectivity, transmission, and photoinduced infrared spectra of NdNiO{sub 3}

    SciTech Connect

    Massa, N.E.; Alonso, J.A.; Martinez-Lope, M.J.; Rasines, I.

    1997-07-01

    We report temperature-dependent infrared spectra of NdNiO{sub 3} prepared by synthesis under high oxygen pressure. Its room-temperature reflectivity is characteristic of a metal oxide with a Drude tail asymptotically extending to higher frequencies. The sharp metal-insulator transition is detected at about 200 K as phonons become unscreened. While their activity is in the frequency range for a distorted perovskite, the strength of involving the Nd ion against the NiO{sub 6} octahedra at 183cm{sup {minus}1} is remarkable. This and all phonon groups show strong antiresonances near the longitudinal optical frequencies and these are unusually close to absorptions seen in transmission measurements. We interpret this as evidence of strong electron-phonon interactions with carrier localization in a temperature-dependent regime. Low-temperature photoinduced spectra, excited with argon laser lines, support this picture by showing weak absorptions at about those frequencies as well as a relatively very strong photoinduced band at 810cm{sup {minus}1} and one very broad and weak peak at {approximately}2300cm{sup {minus}1} and tail up to 4000cm{sup {minus}1}. They are assigned to electronic transitions involving localized defects. Our measurements suggest that the metal-insulator phase transition in NdNiO{sub 3} is triggered by electron localization in a polaronic environment. We conclude that a suitable order parameter for perovskites with a metal-insulator phase transition may be identified in the coupling between those electrons and local spins {copyright} {ital 1997} {ital The American Physical Society}

  5. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    1997-03-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  6. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    2008-12-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  7. Evidence for Photoinduced Insulator-to-Metal transition in B-phase vanadium dioxide.

    PubMed

    Lourembam, James; Srivastava, Amar; La-O-Vorakiat, Chan; Cheng, Liang; Venkatesan, T; Chia, Elbert E M

    2016-01-01

    Ultrafast optical studies have been performed on epitaxial films of the novel B-phase of vanadium dioxide using temperature-dependent optical pump-probe technique. Signature of temperature-driven metal-to-insulator transition was distinctly observed in the ultrafast dynamics - the insulating phase showed two characteristic electronic relaxation times while the metallic phase showed only one. Beyond a threshold value of the pump fluence, the insulating state collapses into a 'metallic-like' phase which can be further subdivided into two regimes according to the lengths of the fast characteristic time. The first regime can be explained by lattice heating due to the optical pump; the other cannot be accounted by simple lattice heating effects alone, and thus offers evidence for a true photoinduced phase transition.

  8. Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhang, Wei; Wang, Xinwei; Mai, Yongyi; Zhang, Yumei

    2011-06-01

    In this study, a sequential photoinduced graft polymerization process was proposed to improve the poor interfacial bonding property of ultra high molecular weight polyethylene (UHMWPE) fibers. The polymerization was initiated by dormant semipinacol (SP) groups and carried out in a thin liquid layer. Methacrylic acid (MAA) and acryl amide (AM) were grafted stepwise onto the surface of UHMWPE fibers. Attenuated total reflectance infrared spectroscopy (ATR-IR) and thermo gravimetric analysis (TGA) confirmed the grafting. The analysis result of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) indicated the structure of grafted chains. Scanning electron microscopy (SEM) images and atomic force microscopy (AFM) images revealed the apparent morphology changing, and the grafted layers were observed. Interfacial shear stress (IFSS) test of the modified fibers showed an extensively improved interfacial bonding property. The active groups grafted onto the fibers would supply enough anchor points for the chemical bonding with various resins or further reactions.

  9. When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals.

    PubMed

    Chan, Ching-Kit; Lee, Patrick A; Burch, Kenneth S; Han, Jung Hoon; Ran, Ying

    2016-01-15

    The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generates a Hall conductivity without any applied magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall conductivity which is within the experimentally accessible range. PMID:26824561

  10. Evidence for Photoinduced Insulator-to-Metal transition in B-phase vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Lourembam, James; Srivastava, Amar; La-O-Vorakiat, Chan; Cheng, Liang; Venkatesan, T.; Chia, Elbert E. M.

    2016-05-01

    Ultrafast optical studies have been performed on epitaxial films of the novel B-phase of vanadium dioxide using temperature-dependent optical pump-probe technique. Signature of temperature-driven metal-to-insulator transition was distinctly observed in the ultrafast dynamics — the insulating phase showed two characteristic electronic relaxation times while the metallic phase showed only one. Beyond a threshold value of the pump fluence, the insulating state collapses into a ‘metallic-like’ phase which can be further subdivided into two regimes according to the lengths of the fast characteristic time. The first regime can be explained by lattice heating due to the optical pump; the other cannot be accounted by simple lattice heating effects alone, and thus offers evidence for a true photoinduced phase transition.

  11. When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Lee, Patrick A.; Burch, Kenneth S.; Han, Jung Hoon; Ran, Ying

    2016-01-01

    The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generates a Hall conductivity without any applied magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall conductivity which is within the experimentally accessible range.

  12. Photo-induced persistent inversion of germanium in a 200-nm-deep surface region.

    PubMed

    Prokscha, T; Chow, K H; Stilp, E; Suter, A; Luetkens, H; Morenzoni, E; Nieuwenhuys, G J; Salman, Z; Scheuermann, R

    2013-01-01

    The controlled manipulation of the charge carrier concentration in nanometer thin layers is the basis of current semiconductor technology and of fundamental importance for device applications. Here we show that it is possible to induce a persistent inversion from n- to p-type in a 200-nm-thick surface layer of a germanium wafer by illumination with white and blue light. We induce the inversion with a half-life of ~12 hours at a temperature of 220 K which disappears above 280 K. The photo-induced inversion is absent for a sample with a 20-nm-thick gold capping layer providing a Schottky barrier at the interface. This indicates that charge accumulation at the surface is essential to explain the observed inversion. The contactless change of carrier concentration is potentially interesting for device applications in opto-electronics where the gate electrode and gate oxide could be replaced by the semiconductor surface.

  13. TDDFT-MD Study on Dynamics in Photoinduced Ring Opening of Benzene

    NASA Astrophysics Data System (ADS)

    Tateyama, Yoshitaka; Miyamoto, Yoshiyuki; Oyama, Norihisa; Ohno, Takahisa

    2004-03-01

    Coupled dynamics of ions and electrons in the excited states of molecular and solid benzene is investigated on the femtosecond scale by the efficient simulation scheme recently developed for the time-dependent density functional theory. Within the π arrow π excitations, any out-of-plane motion of ions is not induced in the molecular system basically. In the solid, however, we found that large swing of the C-H bonds and subsequent twist of the carbon ring takes place, leading to sp^3-like bonding of carbon ions. This swing-to-twist motion presents a plausible mechanism underlying the photoinduced ring opening in solid benzene experimentally observed under pressure. This research is partially supported by ACT-JST, and also by FSIS and Special Coordination Funds of Ministry of Education, Culture, Sports, Science and Technology of Japanese Government.

  14. Evidence for Photoinduced Insulator-to-Metal transition in B-phase vanadium dioxide

    PubMed Central

    Lourembam, James; Srivastava, Amar; La-o-vorakiat, Chan; Cheng, Liang; Venkatesan, T.; Chia, Elbert E. M.

    2016-01-01

    Ultrafast optical studies have been performed on epitaxial films of the novel B-phase of vanadium dioxide using temperature-dependent optical pump-probe technique. Signature of temperature-driven metal-to-insulator transition was distinctly observed in the ultrafast dynamics — the insulating phase showed two characteristic electronic relaxation times while the metallic phase showed only one. Beyond a threshold value of the pump fluence, the insulating state collapses into a ‘metallic-like’ phase which can be further subdivided into two regimes according to the lengths of the fast characteristic time. The first regime can be explained by lattice heating due to the optical pump; the other cannot be accounted by simple lattice heating effects alone, and thus offers evidence for a true photoinduced phase transition. PMID:27157532

  15. Generalized Förster-Dexter theory of photoinduced intramolecular energy transfer

    NASA Astrophysics Data System (ADS)

    Lin, S. H.; Xiao, W. Z.; Dietz, W.

    1993-05-01

    In this paper, we generalize the Förster-Dexter theory to treat photoinduced electronic energy transfer for a system in dense media and for an isolated system (i.e., a system in the collision-free condition). Instead of expressing the rate of energy transfer in terms of spectral overlap, we obtain the expression of the energy-transfer rate constant by evaluating a Fourier integral using the saddle-point method. In this way, the energy-gap dependence and the effect of temperature and the isotope effect on the energy transfer can be easily studied. The effect of bridge groups connecting between donor and acceptor on the energy transfer is also studied.

  16. Photoinduced antiferromagnetic to ferromagnetic crossover in organic systems.

    PubMed

    Shil, Suranjan; Misra, Anirban

    2010-02-01

    Magnetization reversal is important for different technological applications. Photoinduced magnetization reversal is easier to implement than conventional reversal methods. Here, we theoretically design and investigate the photomagnetic property of azobenzene based diradical systems, where trans isomers convert into corresponding cis forms upon irradiation with light of appropriate wavelength. The coupling constant values have been estimated using the broken symmetry approach in the density functional theory framework. In each case, the trans isomer is found to be antiferromagnetic, while the cis form is ferromagnetic in nature. Therefore, photoinduced magnetic crossover from antiferromagnetic to ferromagnetic regime would be observed. This is a new observation in case of the systems of organic origin. Importance of such systems for photomagnetic switches, sensors, high density data storage, spin valves, and semiconductor spintronic materials have also been discussed with support from density of state analysis, singly occupied molecular orbital-singly occupied molecular orbital energy gaps and spin density plots.

  17. Dynamics of photoinduced dichroism and birefringence in optically thick azopolymers

    SciTech Connect

    Ponomarev, Yu V; Ivanov, Yu V; Rumyantsev, Yu A; Gromchenko, A A

    2009-01-31

    Dynamics of photoinduced dichroism and birefringence have been studied experimentally and theoretically (with the help of the Dumont model) by using some comb-shaped azopolymers. It is shown that the dynamics of trans-isomer concentration and their angular distribution anisotropy can be restored from the experimentally found dichroism dynamics, with the concentration and anisotropy being averaged over the thickness for optically thick samples. At the initial stage of photoinduced anisotropy when the active role of the polymer matrix can be neglected, the experimental time dependence of dichroism is shown to comply well with the Dumont model even if the orientation memory is neglected, provided that only a part of trans-isomers participates in trans-isomerisation. (nonlinear optical phenomena)

  18. The time of a photoinduced spin-Peierls phase transition

    SciTech Connect

    Semenov, A. L.

    2015-02-15

    The time τ of the spin-Peierls phase transition is analyzed theoretically as a function of the duration τ{sub p} of the exciting light pulse and the average number x{sub 0} of absorbed photons per magnetic ion after the transmission of the pulse. It is shown that the phase transition occurs at x{sub 0} > x{sub c}. The critical value x{sub c} is determined as a function of the duration τ{sub p} of the light pulse. A photoinduced variation in the optical reflection coefficient R is calculated as a function of time t. The results of calculation are compared with experimental data on ultrafast photoinduced melting of the low-temperature spin-Peierls phase into potassium tetracyanoquinodimethan (K-TCNQ)

  19. Photo-induced force for spectroscopic imaging at the nanoscale

    NASA Astrophysics Data System (ADS)

    Jahng, Junghoon; Tork Ladani, Faezeh; Khan, Ryan M.; Potma, Eric O.

    2016-03-01

    Photo-induced force microscopy (PiFM) is a new scan probe method that enables imaging with spectroscopic contrast at the nanoscale. The operating principle of PiFM is based on the coupling between a sharp atomic tip and a polarizable object, as mediated by the electromagnetic field in the vicinity of the tip-sample junction. In this contribution, we develop a description of the photo-induced force in the limit where the tip and object can be approximated as dipoles. This description provides an insightful picture of the forces at play in the tip-sample junction in terms of the gradient and scattering forces. We consider various approximations that are relevant to experimental conditions. The theoretical approach described here successfully explains the previous spectroscopic PiFM measurements in the visible and in the near-IR range, and the anticipated spectral information that can be retrieved under mid infrared illumination.

  20. Silver photo-diffusion and photo-induced macroscopic surface deformation of Ge33S67/Ag/Si substrate

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Y.; Asaoka, H.; Uozumi, Y.; Kondo, K.; Yamazaki, D.; Soyama, K.; Ailavajhala, M.; Mitkova, M.

    2016-08-01

    Ge-chalcogenide films show various photo-induced changes, and silver photo-diffusion is one of them which attracts lots of interest. In this paper, we report how silver and Ge-chalcogenide layers in Ge33S67/Ag/Si substrate stacks change under light exposure in the depth by measuring time-resolved neutron reflectivity. It was found from the measurement that Ag ions diffuse all over the matrix Ge33S67 layer once Ag dissolves into the layer. We also found that the surface was macroscopically deformed by the extended light exposure. Its structural origin was investigated by a scanning electron microscopy.

  1. Photoinduced Dynamics and Toxicity of a Cancer Drug in Proximity of Inorganic Nanoparticles under Visible Light.

    PubMed

    Chaudhuri, Siddhi; Sardar, Samim; Bagchi, Damayanti; Dutta, Shreyasi; Debnath, Sushanta; Saha, Partha; Lemmens, Peter; Pal, Samir Kumar

    2016-01-18

    Drug sensitization with various inorganic nanoparticles (NPs) has proved to be a promising and an emergent concept in the field of nanomedicine. Rose bengal (RB), a notable photosensitizer, triggers the formation of reactive oxygen species under green-light irradiation, and consequently, it induces cytotoxicity and cell death. In the present study, the effect of photoinduced dynamics of RB upon complexation with semiconductor zinc oxide NPs is explored. To accomplish this, we successfully synthesized nanohybrids of RB with ZnO NPs with a particle size of 24 nm and optically characterized them. The uniform size and integrity of the particles were confirmed by high-resolution transmission electron microscopy. UV/Vis absorption and steady-state fluorescence studies reveal the formation of the nanohybrids. ultrafast picosecond-resolved fluorescence studies of RB-ZnO nanohybrids demonstrate an efficient electron transfer from the photoexcited drug to the semiconductor NPs. Picosecond-resolved Förster resonance energy transfer from ZnO NPs to RB unravel the proximity of the drug to the semiconductor at the molecular level. The photoinduced ROS formation was monitored using a dichlorofluorescin oxidation assay, which is a conventional oxidative stress indicator. It is observed that the ROS generation under green light illumination is greater at low concentrations of RB-ZnO nanohybrids compared with free RB. Substantial photodynamic activity of the nanohybrids in bacterial and fungal cell lines validated the in vitro toxicity results. Furthermore, the cytotoxic effect of the nanohybrids in HeLa cells, which was monitored by MTT assay, is also noteworthy. PMID:26563628

  2. Direct Observation of Photoinduced Tautomerization in Single Molecules at a Metal Surface.

    PubMed

    Böckmann, H; Liu, S; Mielke, J; Gawinkowski, S; Waluk, J; Grill, L; Wolf, M; Kumagai, T

    2016-02-10

    Molecular switches are of fundamental importance in nature, and light is an important stimulus to selectively drive the switching process. However, the local dynamics of a conformational change in these molecules remain far from being completely understood at the single-molecule level. Here, we report the direct observation of photoinduced tautomerization in single porphycene molecules on a Cu(111) surface by using a combination of low-temperature scanning tunneling microscopy and laser excitation in the near-infrared to ultraviolet regime. It is found that the thermodynamically stable trans configuration of porphycene can be converted to the metastable cis configuration in a unidirectional fashion by photoirradiation. The wavelength dependence of the tautomerization cross section exhibits a steep increase around 2 eV and demonstrates that excitation of the Cu d-band electrons and the resulting hot carriers play a dominant role in the photochemical process. Additionally, a pronounced isotope effect in the cross section (∼100) is observed when the transferred hydrogen atoms are substituted with deuterium, indicating a significant contribution of zero-point energy in the reaction. Combined with the study of inelastic tunneling electron-induced tautomerization with the STM, we propose that tautomerization occurs via excitation of molecular vibrations after photoexcitation. Interestingly, the observed cross section of ∼10(-19) cm(2) in the visible-ultraviolet region is much higher than that of previously studied molecular switches on a metal surface, for example, azobenzene derivatives (10(-23)-10(-22) cm(2)). Furthermore, we examined a local environmental impact on the photoinduced tautomerization by varying molecular density on the surface and find substantial changes in the cross section and quenching of the process due to the intermolecular interaction at high density. PMID:26796945

  3. Optimizing laser pulses to control photoinduced states of matter

    NASA Astrophysics Data System (ADS)

    Hwang, Bin; Duxbury, P. M.

    2016-10-01

    We present a computational approach to optimal laser pulse shaping directed at accessing novel photoinduced states of matter. Results are illustrated for a simple charge-density wave (CDW) model where the targeted effect is CDW melting and negative temperature states. Optimal control is implemented using the Krotov method applied to nonequilibrium tight-binding Hamiltonians where the laser pulse is introduced using the Peierls substitution, and we demonstrate monotonic convergence for this class of problem.

  4. Photoinduced cytotoxicity and thioadduct formation by a prodigiosin analogue.

    PubMed

    Tomlinson, John T; Park, Gyungse; Misenheimer, Jacob A; Kucera, Gregory L; Hesp, Kevin; Manderville, Richard A

    2006-10-12

    [reaction: see text] The prodigiosin alkaloid 1 and the synthetic analogue 2 show photoinduced cytotoxicity against HL-60 cancer cells. Photoirradiation of 1 and 2 causes photofading, photooxidation, and thioadduct formation. These results provide a model for the redox properties of prodigiosins that play a role in their biological activity and provide a new way to functionalize their pyrromethene entity with water-soluble thiol groups.

  5. On the mechanism of photoinduced refractive index changes in phosphosilicate glass

    SciTech Connect

    Larionov, Yu V; Sokolov, V O; Plotnichenko, V G

    2010-05-26

    The photoinduced growth of the refractive index of phosphosilicate glass during Bragg grating inscription and the thermal decay of the grating have a number of unusual features. The observed index variations are interpreted in terms of a new model for photoinduced glass network rearrangement. The model assumes the formation of photoinduced voids (nanopores) in the glass network near point defects. The nanopores may migrate through the network via bond switching when the network is in a 'soft' state. The photoinduced variations in network density lead to index variations. (fibres)

  6. Temperature-Induced and Photo-Induced Phase Transition in a BistableMetal-Cyanide Polymer

    NASA Astrophysics Data System (ADS)

    Tokoro, Hiroko; Ohkoshi, Shin-ichi

    Studies that are related to thermal-induced phase transition and photo-induced phase transition are important issues in the field of solid state science. Rubidium manganese hexacyanoferrate RbMn[Fe(CN)6], one of the Prussian blue analogs, is a suitable system for observing thermal-induced and photo-induced phase transitions since this compound is a mixed-valence compound that has a strong cooperativity due to the CN ligand bridges. Here, we describe the crystal structure, magnetic properties, thermal-induced phase transition, and photo-induced phase collapse and photomagnetic effect based on photo-induced phase transition of RbMn[Fe(CN)6].

  7. Direct characterization of photoinduced lattice dynamics in BaFe2As2.

    PubMed

    Gerber, S; Kim, K W; Zhang, Y; Zhu, D; Plonka, N; Yi, M; Dakovski, G L; Leuenberger, D; Kirchmann, P S; Moore, R G; Chollet, M; Glownia, J M; Feng, Y; Lee, J-S; Mehta, A; Kemper, A F; Wolf, T; Chuang, Y-D; Hussain, Z; Kao, C-C; Moritz, B; Shen, Z-X; Devereaux, T P; Lee, W-S

    2015-01-01

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands. PMID:26051704

  8. Direct characterization of photoinduced lattice dynamics in BaFe2As2

    NASA Astrophysics Data System (ADS)

    Gerber, S.; Kim, K. W.; Zhang, Y.; Zhu, D.; Plonka, N.; Yi, M.; Dakovski, G. L.; Leuenberger, D.; Kirchmann, P. S.; Moore, R. G.; Chollet, M.; Glownia, J. M.; Feng, Y.; Lee, J.-S.; Mehta, A.; Kemper, A. F.; Wolf, T.; Chuang, Y.-D.; Hussain, Z.; Kao, C.-C.; Moritz, B.; Shen, Z.-X.; Devereaux, T. P.; Lee, W.-S.

    2015-06-01

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands.

  9. Photoinduced charge separation in wide-band capturing, multi-modular bis(donor styryl)BODIPY-fullerene systems.

    PubMed

    Obondi, Christopher O; Lim, Gary N; Karr, Paul A; Nesterov, Vladimir N; D'Souza, Francis

    2016-07-21

    A new series of multi-modular donor-acceptor systems capable of exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques. In this series, the electron donor was a BF2-chelated dipyrromethene (BODIPY) appended with two styryl linkers carrying two electron rich triphenylamine or phenothiazine entities. Fulleropyrrolidine linked at the meso-position of the BODIPY ring served as an electron acceptor. As a result of extended conjugation and multiple electroactive chromophore entities, the bis-styryl BODIPY revealed absorbance and emission well-into the near-infrared region covering a 300-850 nm spectral range. Using redox, computational, absorbance and emission data, an energy level diagram was constructed that helped in envisioning the different photochemical events. Spectral evidence for photoinduced charge separation in these systems was established from femtosecond and nanosecond transient absorption studies. The measured rate constants indicated fast charge separation and relatively slow charge recombination revealing their usefulness in light energy harvesting and optoelectronic device building applications. The bis(donor styryl)BODIPY-fullerene systems populated BODIPY triplet excited states during the process of charge recombination.

  10. Photoinduced Charge Separation in the Carbon Nano-Onion C60@C240.

    PubMed

    Voityuk, Alexander A; Solà, Miquel

    2016-07-28

    The double-shell fullerene C60@C240 formed by inclusion of C60 into C240 is the smallest stable carbon nano-onion. In this article, we analyze in detail the character of the excited states of C60@C240 in terms of exciton localization and charge transfer between the inner and outer shells. The unique structure of the buckyonion leads to a large electrostatic stabilization of charge-separated (CS) states in the C60@C240. As a result, the CS states C60(+)@C240(-) lie in the same region of the electronic spectrum (2.4-2.6 eV) as strongly absorbing locally excited states and, therefore, can be effectively populated. The CS states C60(-)@C240(+) are found to be 0.5 eV higher in energy than the CS states C60(+)@C240(-). Unlike the situation observed in donor-acceptor systems, the energies of the CS states in C60@C240 do not practically depend on the environment polarity. This leads to exceptionally small reorganization energies for electron transfer between the shells. Electronic couplings for photoinduced charge-separation and charge-recombination processes are calculated. The absolute rate of the formation of the CS state C60(+)@C240(-) is estimated at ∼4 ps(-1). The electronic features found in C60@C240 are likely to be shared by other carbon nano-onions. PMID:27383921

  11. Different shapes of spherical vaterite by photo-induced cis?trans isomerization of an azobenzene-containing polymer in a mixture of dimethyl sulfoxide and water

    NASA Astrophysics Data System (ADS)

    Keum, Dong-Ki; Na, Hai-Sub; Naka, Kensuke; Chujo, Yoshiki

    2004-10-01

    We studied the crystallization of CaCO3 by the photoisomerization of azobenzene groups in poly[1-[4-[3-carboxy-4-hydroxyphenylazobenzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) in a mixture of dimethyl sulfoxide and water at 30 °C. The products were characterized by scanning electron microscopy (SEM), FT-IR, and powder X-ray diffraction (XRD) analysis. We observed that the different shapes of spherical vaterite particles were produced by the changes of configuration and polarity of the azobenzene groups in the polymer which resulted from photo-induced isomerization. The results indicate that the nucleation of primary particles of CaCO3 was inhibited by in situ photo-induced cis-trans isomerization of PAZO. Therefore, we suggest that the shapes of the spherical vaterite can be effectively modified by photoisomerization of the azobenzene groups in the polymer at the initial stage of CaCO3 crystallization.

  12. Synthesis and photoinduced charge-transfer properties of a ZnFe2O4-sensitized TiO2 nanotube array electrode.

    PubMed

    Li, Xinyong; Hou, Yang; Zhao, Qidong; Chen, Guohua

    2011-03-15

    TiO2 nanotube arrays sensitized with ZnFe2O4 nano-crystals were successfully fabricated by a two-step process of anodization and a vacuum-assistant impregnation method followed by annealing. The sample was studied by an environmental scanning electron microscope, a transmission electron microscope, energy-dispersive X-ray analysis, and X-ray diffraction to characterize its morphology and chemical composition. Ultraviolet-visible (UV-vis) absorption spectra and a photoelectrochemical measurement approved that the ZnFe2O4 sensitization enhanced the probability of photoinduced charge separation and extended the range of the photoresponse of TiO2 nanotube arrays from the UV to visible region. In addition, the behaviors of photoinduced charge transfer in a TiO2 nanotube array electrode before and after sensitization by ZnFe2O4 nanocrystals were comparatively studied. The photoluminescence of the TiO2 nanotube array electrode became suppressed, and the surface photovoltage responses on the spectrum were significantly enhanced after the introduction of ZnFe2O4 nanocrystals. The transfer dynamics of the photoinduced charges were observed directly by a transient photovoltage measurement, which revealed a fast charge separation at the interface between ZnFe2O4 nanocrystals and TiO2 nanotubes upon light excitation.

  13. Photoinduced topological phase transition in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Zhai, Xuechao; Jin, Guojun

    2014-06-01

    In epitaxial graphene irradiated by an off-resonance circularly polarized light, we demonstrate a phase transition taking place between the band insulator and Floquet topological insulator. Considering the competition between staggered sublattice potential and photon dressing, we derive the dynamical energy gap and phase diagram in the tight-binding approximation. It is found that a threshold value of light intensity is necessary to realize a Floquet topological insulator. At the phase boundary, for each set of parameters, there is a special state with only one valley that is Dirac cone gapless, but the other remains gapped; in the band insulating phase, only one valley provides low-energy electrons, and it could be switched to the other by reversing the polarization direction of light. From these results, two electronic devices are designed: one is an optical-sensing np junction, where the photodriven unusual intervalley tunneling exhibits a stronger detectable signal than the intravalley tunneling, and the other is a topological field-effect transistor, where polarized light is used to turn on or turn off a nonequilibrium current.

  14. Photoswitchable stable charge-distributed states in a new cobalt complex exhibiting photo-induced valence tautomerism.

    PubMed

    Slota, Michael; Blankenhorn, Marian; Heintze, Eric; Vu, Minh; Hübner, Ralph; Bogani, Lapo

    2015-01-01

    We report the synthesis and magnetic and photomagnetic behaviour of a novel valence tautomeric cobalt complex, [Co(3,5-dbbq)2(μ-bpym)] (1) (3,5-dbbq = 3,5-di-tert-butyl-1,2-benzoquinone and μ-bpym = 2,2'-bipyrimidine). The synthesis is performed by reacting Co2(CO)8 and μ-bpym in the presence of the ligand 3,5-dbbq in a mixed solvent under inert atmosphere. The magnetic behavior clearly shows the presence of electron transfer from the catecholate ligand to the cobalt center, producing valence tautomers of [Co(II)(SQ)2] with a transition temperature (T1/2) of 215 K. Photomagnetic studies, performed via both SQUID magnetometry and X-band electron paramagnetic resonance, show the clear presence of photoinduced valence tautomerism, at temperatures considerably higher than previous systems. A metastable charge distribution is observed, strengthening previous investigations on the character of mixed valence ligands. Entropy-driven valence tautomeric interconversion is observed, and drives the transition to the most stable charge distribution. The complex has the ability to coordinate and can be used as a photoswitchable building block, with the photomagnetic characterisation evidencing a metastable state lifetime of the photo-induced valence tautomeric process of ca. 2.9 × 10(4) s below 20 K. The observed yields are higher than ones in similar systems, showing that tiny changes in the molecular structures may have a huge impact. PMID:26470791

  15. Photoswitchable stable charge-distributed states in a new cobalt complex exhibiting photo-induced valence tautomerism.

    PubMed

    Slota, Michael; Blankenhorn, Marian; Heintze, Eric; Vu, Minh; Hübner, Ralph; Bogani, Lapo

    2015-01-01

    We report the synthesis and magnetic and photomagnetic behaviour of a novel valence tautomeric cobalt complex, [Co(3,5-dbbq)2(μ-bpym)] (1) (3,5-dbbq = 3,5-di-tert-butyl-1,2-benzoquinone and μ-bpym = 2,2'-bipyrimidine). The synthesis is performed by reacting Co2(CO)8 and μ-bpym in the presence of the ligand 3,5-dbbq in a mixed solvent under inert atmosphere. The magnetic behavior clearly shows the presence of electron transfer from the catecholate ligand to the cobalt center, producing valence tautomers of [Co(II)(SQ)2] with a transition temperature (T1/2) of 215 K. Photomagnetic studies, performed via both SQUID magnetometry and X-band electron paramagnetic resonance, show the clear presence of photoinduced valence tautomerism, at temperatures considerably higher than previous systems. A metastable charge distribution is observed, strengthening previous investigations on the character of mixed valence ligands. Entropy-driven valence tautomeric interconversion is observed, and drives the transition to the most stable charge distribution. The complex has the ability to coordinate and can be used as a photoswitchable building block, with the photomagnetic characterisation evidencing a metastable state lifetime of the photo-induced valence tautomeric process of ca. 2.9 × 10(4) s below 20 K. The observed yields are higher than ones in similar systems, showing that tiny changes in the molecular structures may have a huge impact.

  16. FeS2 quantum dots sensitized nanostructured TiO2 solar cell: photoelectrochemical and photoinduced absorption spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Bedja, I.

    2011-09-01

    Thin films of nanostructured TiO2 have been modified with FeS2 (pyrite) nano-particles by a low temperature chemical reaction of iron pentacarbonyl with sulfur in xylene. Quantum size effects are manifested by the observation of a blue shift in both absorption and photocurrent action spectra. PIA (Photoinduced absorption spectroscopy), where the excitation is provided by a square-wave modulated (on/off) monochromatic light emitting diode, is a multipurpose tool in the study of dye-sensitized solar cells. Here, PIA is used to study quantum-dot modified TiO2 nanostructured electrodes. The PIA spectra obtained give evidence for long-lived photoinduced charge separation: electrons are injected into the metal oxide and holes are left behind in the FeS2 quantum dot. Time-resolved PIA shows that recombination between electrons and holes occurs on a millisecond timescale. The Incident-Photon-to-Current Efficiency of about 23 % was obtained at 400 nm excitation. The performances of TiO2 electrodes modified with FeS2 are relatively low, which is explained by the presence of FeS2 phases other than the photoactive pyrite phase, as follows from the XRD spectrum.

  17. Design of a Molecular Memory Device: The Electron Transfer Shift Register Memory

    NASA Technical Reports Server (NTRS)

    Beratan, D.

    1993-01-01

    A molecular shift register memory at the molecular level is described. The memory elements consist of molecules can exit in either an oxidized or reduced state and the bits are shifted between the cells with photoinduced electron transfer reactions.

  18. Photoinduced surface reactions on TiO{sub 2} and SrTiO{sub 3} films: Photocatalytic oxidation and photoinduced hydrophilicity

    SciTech Connect

    Miyauchi, Masahiro; Nakajima, Akira; Fujishima, Akira; Hashimoto, Kazuhito; Watanabe, Toshiya

    2000-01-01

    In the present study, the authors have evaluated photocatalytic activities and photoinduced wettabilities for TiO{sub 2} and SrTiO{sub 3} films. Although both types of films had almost the same photocatalytic oxidation activity, photoinduced wettabilities of these films showed different phenomena. The photoinduced hydrophilicity peculiar to TiO{sub 2} is not caused by the photocatalytic oxidation of organic compounds adsorbed on the surface. The highly hydrophilic surface of TiO{sub 2} is ascribed to photogenerated Ti{sup 3+} defect sites that are favorable for dissociative water absorption. The yield of this photoinduced hydrophilic reaction is not clear at the present time. It is noted that this reaction involves a surface structural change, which should not require a high quantum efficiency as compared to conventional photocatalytic oxidation.

  19. Photoinduced spin polarization and microwave technology

    NASA Astrophysics Data System (ADS)

    Antipov, Sergey; Poluektov, Oleg; Schoessow, Paul; Kanareykin, Alexei; Jing, Chunguang

    2013-02-01

    We report here on studies of optically pumped active microwave media based on various fullerene derivatives, with an emphasis on the use of these materials in microwave electronics. We have investigated a class of optically excited paramagnetic materials that demonstrate activity in the X-band as candidate materials. We found that a particular fullerene derivative, Phenyl-C61-butyric acid methyl ester (PCBM), produced the largest electron paramagnetic resonance (EPR) emission signal compared to other organic compounds that have been suggested for use as microwave active materials. We also studied the effects of concentration, temperature, solvent etc. on the activity of the material. In these experiments, EPR studies using a commercial spectrometer were followed up by measurements of an RF signal reflected from a resonator loaded with the PCBM-based material. The activity was directly demonstrated through the change in the quality factor and RF coupling between the resonator and waveguide feed. At the inception of these experiments the primary interest was the development of a microwave PASER. The PASER (particle acceleration by stimulated emission of radiation [1]) is a novel acceleration concept that is based on the direct energy transfer from an active medium to a charged particle beam. While the previous work on the PASER has emphasized operations at infrared or visible wavelengths, operating in the microwave regime has significant advantages in terms of the less stringent quality requirements placed on the electron beam provided an appropriate microwave active medium can be found. This paper is focused on our investigation of the possibility of a PASER operating in the microwave frequency regime [2] using active paramagnetic materials. While a high level of gain for PCBM was demonstrated compared to other candidate materials, dielectric losses and quenching effects were found to negatively impact its performance for PASER applications. We present results on

  20. Photo-induced polymerization of polyaniline

    SciTech Connect

    Barros, R.A. de; Azevedo, W.M. de; Aguiar, F.M. de

    2003-03-15

    A straightforward route to prepare polyaniline is presented in which photons and metallic ions replace conventional oxidants to promote polymerization of aniline monomer. The photopolymerization methods yield a composite material that has been characterized by its UV, visible and Raman spectroscopic analysis and by scanning electron microscopy and X-ray microanalysis as well. Intriguing forms of silver wires embedded in polyaniline are observed, typically of 1 {mu}m wide and up to 100 {mu}m long. It is shown that the morphology of the resulting conducting polymer strongly depends on the excitation wavelength, while a globular morphology is found for the UV synthesis and a fibrillar one is found for visible light excitation.

  1. Photoinduced switching to metallic states in the two-dimensional organic Mott insulator dimethylphenazine-tetrafluorotetracyanoquinodimethane with anisotropic molecular stacks

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Hiroyuki; Ohkura, Masa-aki; Ishige, Yu; Nogami, Yoshio; Okamoto, Hiroshi

    2015-06-01

    A photoinduced phase transition was investigated in an organic charge-transfer (CT) complex M2P -TCNQ F4 , [M2P : 5,10-dihydro-5,10-dimethylphenazine, donor (D) molecule; TCNQ F4 : 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, acceptor (A) molecule] by means of femtosecond pump-probe reflection spectroscopy. This is an ionic compound and has a peculiar two-dimensional (2D) molecular arrangement; the same A (or D) molecules arrange along the [100] direction, and A and D molecules alternately arrange along the [111] direction. It results in a strongly anisotropic two-dimensional electronic structure. This compound shows a structural and magnetic phase transition at 122 K below which the two neighboring molecules are dimerized along both the [100] and [111] directions. We demonstrate that two kinds of photoinduced phase transitions occur by irradiation of a femtosecond laser pulse; in the high-temperature lattice-uniform phase, a quasi-one-dimensional (1D) metallic state along the AA(DD) stack is generated, and in the low-temperature lattice-dimerized phase, a quasi-2D metallic state is initially produced and molecular dimerizations are subsequently released. Mixed-stack CT compounds consisting of DA stacks are generally insulators or semiconductors in the ground state. Here, such a dynamical metallization in the DA stack is demonstrated. The release of the dimerizations drives several kinds of coherent oscillations which play an important role in the stabilization of the lattice-dimerized phase. The mechanisms of those photoinduced phase transitions are discussed in terms of the magnitudes of the anisotropic bandwidths and molecular dimerizations along two different directions of the molecular stacks.

  2. Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer.

    PubMed

    Chen, Huabing; Xiao, Ling; Anraku, Yasutaka; Mi, Peng; Liu, Xueying; Cabral, Horacio; Inoue, Aki; Nomoto, Takahiro; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-01

    Polymer vesicles formed by a pair of oppositely charged poly(ethylene glycol) (PEG)-based block aniomer and homocatiomer, termed "PICsomes", have tunable size, and are characterized by unique semipermeable property due to the flexible and tunable hydrophilicity of polyion complex (PIC) membranes. The PICsomes can encapsulate a variety of molecules in an inner aqueous phase just by a simple vortex mixing of solution, expecting their utility as nanocontainers of substances with biomedical interests. Here, we report on a new functionality of the PICsomes: photoinduced release of photoactive agents for intracellular drug delivery. A potent photosensitizer, Al(III) phthalocyanine chloride disulfonic acid (AlPcS2a), was efficiently incorporated into the PICsomes (11%(w/w)), and its quick release was induced by photoirradiation possibly due to the photochemical damage of the PIC membranes. The combination of a high-resolution fluorescent confocal microscopy and a lysosome membrane-specific staining method revealed that such photoinduced release of AlPcS2a occurred even in the lysosomes of living cells after endocytic internalization. Simultaneously, the released AlPcS2a photochemically affected the integrity of the lysosomal membranes, leading to the translocation of AlPcS2a and PICsomes themselves to the cytoplasm. Consequently, the AlPcS2a-encapsulated PICsomes (AlPcS2a-PICsomes) exhibited appreciably stronger photocytotoxicity compared with free AlPcS2a alone. Thus, the AlPcS2a-PICsomes have promising feasibility for the photodynamic therapy or the photoinduced cytoplasmic delivery of therapeutic molecules. PMID:24283288

  3. Interpretation of the ultrafast photoinduced processes in pentacene thin films.

    PubMed

    Kuhlman, Thomas S; Kongsted, Jacob; Mikkelsen, Kurt V; Møller, Klaus B; Sølling, Theis I

    2010-03-17

    Ambiguity remains in the models explaining the photoinduced dynamics in pentacene thin films as observed in pump-probe experiments. One model advocates exciton fission as governing the evolution of the initially excited species, whereas the other advocates the formation of an excimeric species subsequent to excitation. On the basis of calculations by a combined quantum mechanics and molecular mechanics (QM/MM) method and general considerations regarding the excited states of pentacene we propose an alternative, where the initially excited species instead undergoes internal conversion to a doubly excited exciton. The conjecture is supported by the observed photophysical properties of pentacene from both static as well as time-resolved experiments.

  4. Origin of photoinduced metastable defects in amorphous chalcogenides

    NASA Astrophysics Data System (ADS)

    Shimakawa, K.; Inami, S.; Kato, T.; Elliott, S. R.

    1992-10-01

    Prolonged exposure to band-gap light decreases the photoconductivity of annealed films of amorphous chalcogenides (As2S3, As3S7, AsS, As2Se3, GeS2, GeSe2, and GeSe). This can be attributed to photoinduced metastable defects, which could act as additional trapping and/or recombination centers. These metastable centers are removed by annealing near the glass transition temperature. The kinetics of the temporal change of photocurrent during illumination are discussed in a model of defect-conserved bond switching.

  5. Mechanism of the photoinduced refractive index increase in polymethyl methacrylate.

    PubMed

    Bowden, M J; Chandross, E A; Kaminow, I P

    1974-01-01

    Polymethyl methacrylate prepared under special circumstances exhibits a substantial increase in refractive index after irradiation with uv light. The essential step in the preparation is peroxidation of the monomer prior to polymerization. This increase in refractive index results from a photoinduced polymerization of unreacted monomer (1-2%) within the film which produces an increase in density (and hence refractive index) in the irradiated region. It is believed that peroxides, both polymeric and monomeric, act as photoinitiators. Sensitivity depends on the concentration of photoinitiator, but the absolute value of Deltan depends on the amount of unreacte monomer.

  6. Effects of molecular symmetry on quantum reaction dynamics: novel aspects of photoinduced nonadiabatic dynamics.

    PubMed

    Al-Jabour, Salih; Leibscher, Monika

    2015-01-15

    Nonadiabatic coupling terms (NACTs) between different electronic states lead to fast radiationless decay in photoexcited molecules. Using molecular symmetry, i.e., symmetry with respect to permutation of identical nuclei and inversion of the molecule in space, the irreducible representations of the NACTs can be determined with a combination of molecular symmetry arguments and quantization rules. Here, we extend these symmetry rules for electronic states and coupling elements and demonstrate the importance of molecular symmetry for nonadiabatic nuclear dynamics. As an example, we consider the NACTs related to the torsion around the CN bond in C5H4NH. We present the results of quantum dynamical simulations of the photoinduced large amplitude torsion on three coupled electronic states and show how the interference between wavepackets leads to radiationless decay, which depends on the symmetry of the NACTs. Moreover, we show that the nuclear spin of the system determines the symmetry of the initial nuclear wave function and thus influences the torsional dynamics. This may open new possibilities for nuclear spin selective laser control of nuclear dynamics.

  7. Model for photoinduced bending of slender molecular crystals.

    PubMed

    Nath, Naba K; Pejov, Ljupčo; Nichols, Shane M; Hu, Chunhua; Saleh, Na'il; Kahr, Bart; Naumov, Panče

    2014-02-19

    The growing realization that photoinduced bending of slender photoreactive single crystals is surprisingly common has inspired researchers to control crystal motility for actuation. However, new mechanically responsive crystals are reported at a greater rate than their quantitative photophysical characterization; a quantitative identification of measurable parameters and molecular-scale factors that determine the mechanical response has yet to be established. Herein, a simple mathematical description of the quasi-static and time-dependent photoinduced bending of macroscopic single crystals is provided. This kinetic model goes beyond the approximate treatment of a bending crystal as a simple composite bilayer. It includes alternative pathways for excited-state decay and provides a more accurate description of the bending by accounting for the spatial gradient in the product/reactant ratio. A new crystal form (space group P21/n) of the photoresponsive azo-dye Disperse Red 1 (DR1) is analyzed within the constraints of the aforementioned model. The crystal bending kinetics depends on intrinsic factors (crystal size) and external factors (excitation time, direction, and intensity).

  8. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    NASA Astrophysics Data System (ADS)

    Rybaltovsky, A. A.; Aleshkina, S. S.; Likhachev, M. E.; Bubnov, M. M.; Umnikov, A. A.; Yashkov, M. V.; Gur'yanov, Aleksei N.; Dianov, Evgenii M.

    2011-12-01

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al2O3 : SiO2, Al2O3 : Yb2O3 : SiO2, and P2O5 : Yb2O3 : SiO2. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role in photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb3+ ions to Yb2+. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb3+ ions.

  9. U-shaped temperature dependence of rate constant of intramolecular photoinduced charge separation in zinc-porphyrin-bridge-quinone compounds.

    PubMed

    Kichigina, Anna O; Ionkin, Vladimir N; Ivanov, Anatoly I

    2013-06-20

    The multichannel stochastic point transition model of photoinduced electron transfer from both a vibrationally unrelaxed and a relaxed states involving the vibrational relaxation in donor-acceptor pairs has been elaborated. The U-shaped temperature dependencies of the rate constants of the intramolecular photoinduced charge separation from both the vibrationally unrelaxed and the relaxed states observed in Zn-porphyrin-bridge-quinone compounds in 2-methyltetrahydrofuran solvent have been reproduced in the framework of the proposed model that accounts for the temperature dependencies of the charge separation free energy gap and the medium reorganization energy. This modeling has allowed uncovering the mechanism of such a variation of the rate constant with the temperature. In the high temperature region, 310-125 K, the charge separation proceeds in the solvent controlled regime and its rate constant decreases with decreasing the temperature mirroring the temperature dependence of the medium relaxation rate. Further lowering the temperature leads to a rise of the reaction free energy gap so that it becomes larger than the medium reorganization energy. In this region the dynamic solvent effect is strongly suppressed and the charge separation rate constant becomes independent from the solvent relaxation rate. Although the medium relaxation rate continues to decrease with decreasing the temperature, the charge separation rate constant starts to rise because the reaction proceeds in the barrierless region.

  10. U-shaped temperature dependence of rate constant of intramolecular photoinduced charge separation in zinc-porphyrin-bridge-quinone compounds.

    PubMed

    Kichigina, Anna O; Ionkin, Vladimir N; Ivanov, Anatoly I

    2013-06-20

    The multichannel stochastic point transition model of photoinduced electron transfer from both a vibrationally unrelaxed and a relaxed states involving the vibrational relaxation in donor-acceptor pairs has been elaborated. The U-shaped temperature dependencies of the rate constants of the intramolecular photoinduced charge separation from both the vibrationally unrelaxed and the relaxed states observed in Zn-porphyrin-bridge-quinone compounds in 2-methyltetrahydrofuran solvent have been reproduced in the framework of the proposed model that accounts for the temperature dependencies of the charge separation free energy gap and the medium reorganization energy. This modeling has allowed uncovering the mechanism of such a variation of the rate constant with the temperature. In the high temperature region, 310-125 K, the charge separation proceeds in the solvent controlled regime and its rate constant decreases with decreasing the temperature mirroring the temperature dependence of the medium relaxation rate. Further lowering the temperature leads to a rise of the reaction free energy gap so that it becomes larger than the medium reorganization energy. In this region the dynamic solvent effect is strongly suppressed and the charge separation rate constant becomes independent from the solvent relaxation rate. Although the medium relaxation rate continues to decrease with decreasing the temperature, the charge separation rate constant starts to rise because the reaction proceeds in the barrierless region. PMID:23721362

  11. Direct observation of key photoinduced dynamics in a potential nano-delivery vehicle of cancer drugs.

    PubMed

    Sardar, Samim; Chaudhuri, Siddhi; Kar, Prasenjit; Sarkar, Soumik; Lemmens, Peter; Pal, Samir Kumar

    2015-01-01

    In recent times, significant achievements in the use of zinc oxide (ZnO) nanoparticles (NPs) as delivery vehicles of cancer drugs have been made. The present study is an attempt to explore the key photoinduced dynamics in ZnO NPs upon complexation with a model cancer drug protoporphyrin IX (PP). The nanohybrid has been characterized by FTIR, Raman scattering and UV-Vis absorption spectroscopy. Picosecond-resolved Förster resonance energy transfer (FRET) from the defect mediated emission of ZnO NPs to PP has been used to study the formation of the nanohybrid at the molecular level. Picosecond-resolved fluorescence studies of PP-ZnO nanohybrids reveal efficient electron migration from photoexcited PP to ZnO, eventually enhancing the ROS activity. The dichlorofluorescin (DCFH) oxidation and no oxidation of luminol in PP/PP-ZnO nanohybrids upon green light illumination unravel that the nature of ROS is essentially singlet oxygen rather than superoxide anions. Surface mediated photocatalysis of methylene blue (MB) in an aqueous solution of the nanohybrid has also been investigated. Direct evidence of the role of electron transfer as a key player in enhanced ROS generation from the nanohybrid is also clear from the photocurrent measurement studies. We have also used the nanohybrid in a model photodynamic therapy application in a light sensitized bacteriological culture experiment.

  12. Enhanced Rates of Photoinduced Molecular Orientation in a Series of Molecular Glassy Thin Films.

    PubMed

    Snell, Kristen E; Hou, Renjie; Ishow, Eléna; Lagugné-Labarthet, François

    2015-07-01

    Photoinduced orientation in a series of molecular glasses made of small push-pull azo derivatives is dynamically investigated for the first time. Birefringence measurements at 632.8 nm are conducted with a temporal resolution of 100 ms to probe the fast rate of the azo orientation induced under polarized light and its temporal stability over several consecutive cycles. To better evaluate the influence of the azo chemical substituents and their electronic properties on the orientation of the whole molecule, a series of push-pull azo derivatives involving a triphenylaminoazo core substituted with distinct electron-withdrawing moieties is studied. All resulting thin films are probed using polarization modulation infrared spectroscopy that yields dynamical linear dichroism measurements during a cycle of orientation followed by relaxation. We show here in particular that the orientation rates of small molecule-based azo materials are systematically increased up to 7-fold compared to those of a reference polymer counterpart. For specific compounds, the percentage of remnant orientation is also higher, which makes these materials of great interest and promising alternatives to azobenzene-containing polymers for a variety of applications requiring a fast response and absolute control over the molecular weight.

  13. Nitroxides as redox probes of melanins: dark-induced and photoinduced changes in redox equilibria

    SciTech Connect

    Sarna, T.; Korytowski, W.; Sealy, R.C.

    1985-05-15

    The interaction of nitroxide free radicals and their reduced products (hydroxylamines) with synthetic and natural melanins has been studied. Electron spin resonance spectroscopy was used to measure changes in radical concentration in the dark and during irradiation with visible or uv light. Some reduction of nitroxide occurs in the dark, and is reversible: the nitroxide can be completely regenerated by the one-electron oxidant ferricyanide. The kinetics of the process depend strongly on radical charge and pH. For positively charged nitroxides the rate is much faster than for either neutral or anionic radicals. At pH 10 the rate is about 20 times faster than at pH 5. Oxidation of hydroxylamine also can occur so that a redox equilibrium is established. The equilibrium constant has been estimated for the reaction between a nitroxide and melanin from autoxidation of 3,4-dihydroxyphenylalanine. Results are also dependent upon the type of melanin used and chemical modification (oxidation or reduction) of the melanin. Redox equilibria are altered during irradiation with either visible or uv light. Rapid oxidation of hydroxylamine to nitroxide is apparent, together with a slower reduction of nitroxide. Action spectra for these processes are related to those for melanin radical production and oxygen consumption in nitroxide-free melanin systems. Reduction of nitroxide is inhibited by oxygen, suggesting a competition between nitroxide and oxygen for photoinduced reducing equivalents.

  14. Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies.

    PubMed

    Pan, Xiangcheng; Fang, Cheng; Fantin, Marco; Malhotra, Nikhil; So, Woong Young; Peteanu, Linda A; Isse, Abdirisak A; Gennaro, Armando; Liu, Peng; Matyjaszewski, Krzysztof

    2016-02-24

    Photoinduced metal-free atom transfer radical polymerization (ATRP) of methyl methacrylate was investigated using several phenothiazine derivatives and other related compounds as photoredox catalysts. The experiments show that all selected catalysts can be involved in the activation step, but not all of them participated efficiently in the deactivation step. The redox properties and the stability of radical cations derived from the catalysts were evaluated by cyclic voltammetry. Laser flash photolysis (LFP) was used to determine the lifetime and activity of photoexcited catalysts. Kinetic analysis of the activation reaction according to dissociative electron-transfer (DET) theory suggests that the activation occurs only with an excited state of catalyst. Density functional theory (DFT) calculations revealed the structures and stabilities of the radical cation intermediates as well as the reaction energy profiles of deactivation pathways with different photoredox catalysts. Both experiments and calculations suggest that the activation process undergoes a DET mechanism, while an associative electron transfer involving a termolecular encounter (the exact reverse of DET pathway) is favored in the deactivation process. This detailed study provides a deeper understanding of the chemical processes of metal-free ATRP that can aid the design of better catalytic systems. Additionally, this work elucidates several important common pathways involved in synthetically useful organic reactions catalyzed by photoredox catalysts. PMID:26820243

  15. Photoinduced charge transfer from vacuum-deposited molecules to single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Osada, Kazuki; Tanaka, Masatoshi; Ohno, Shinya; Suzuki, Takanori

    2016-06-01

    Variations of photoluminescence (PL) and Raman spectra of single-layer MoS2, MoSe2, WS2, and WSe2 due to the vacuum deposition of C60 or copper phthalocyanine (CuPc) molecules have been investigated. PL spectra are decomposed into two competitive components, an exciton and a charged exciton (trion), depending on carrier density. The variation of PL spectra is interpreted in terms of charge transfer across the interfaces between transition metal dichalcogenides (TMDs) and dopant molecules. We find that deposited C60 molecules inject photoexcited electrons into MoS2, MoSe2, and WS2 or holes into WSe2. CuPc molecules also inject electrons into MoS2, MoSe2, and WS2, while holes are depleted from WSe2 to CuPc. We then propose a band alignment between TMDs and dopant molecules. Peak shifts of Raman spectra and doped carrier density estimated using a three-level model also support the band alignment. We thus demonstrate photoinduced charge transfer from dopant molecules to single-layer TMDs.

  16. Role of Conical Intersections in Molecular Spectroscopy and Photoinduced Chemical Dynamics

    NASA Astrophysics Data System (ADS)

    Domcke, Wolfgang; Yarkony, David R.

    2012-05-01

    This review describes how conical intersections affect measured molecular spectra and simple photofragmentation processes. We consider excitations that result in electron ejection, that is, photoionization or photodetachment, as well as photoinduced H-atom elimination. Section 1 presents a brief overview of the history of conical intersections and their rise from an arcane theoretical concept to a major paradigm in nonadiabatic chemistry. In Section 2, the generic properties of conical intersections are discussed, as well as their characterization with modern electronic-structure methods. Section 3 briefly discusses computational tools used to compute the nuclear motion involving conical intersections. Section 4 describes how the ideas of Sections 2 and 3 are combined to simulate molecular spectra impacted by conical intersections. Section 5 describes selected recent experimental and computational studies of photoelectron, photodetachment, and photofragment spectra. Rather than providing an encyclopedic bibliography of the previous and current literature, we illustrate significant problems currently being addressed and describe what can be accomplished with current computational techniques and how these results are achieved. Section 6 suggests future directions in this field.

  17. Enhanced Rates of Photoinduced Molecular Orientation in a Series of Molecular Glassy Thin Films.

    PubMed

    Snell, Kristen E; Hou, Renjie; Ishow, Eléna; Lagugné-Labarthet, François

    2015-07-01

    Photoinduced orientation in a series of molecular glasses made of small push-pull azo derivatives is dynamically investigated for the first time. Birefringence measurements at 632.8 nm are conducted with a temporal resolution of 100 ms to probe the fast rate of the azo orientation induced under polarized light and its temporal stability over several consecutive cycles. To better evaluate the influence of the azo chemical substituents and their electronic properties on the orientation of the whole molecule, a series of push-pull azo derivatives involving a triphenylaminoazo core substituted with distinct electron-withdrawing moieties is studied. All resulting thin films are probed using polarization modulation infrared spectroscopy that yields dynamical linear dichroism measurements during a cycle of orientation followed by relaxation. We show here in particular that the orientation rates of small molecule-based azo materials are systematically increased up to 7-fold compared to those of a reference polymer counterpart. For specific compounds, the percentage of remnant orientation is also higher, which makes these materials of great interest and promising alternatives to azobenzene-containing polymers for a variety of applications requiring a fast response and absolute control over the molecular weight. PMID:26072966

  18. Effect of initial solution pH on photo-induced reductive decomposition of perfluorooctanoic acid.

    PubMed

    Qu, Yan; Zhang, Chao-Jie; Chen, Pei; Zhou, Qi; Zhang, Wei-Xian

    2014-07-01

    The effects of initial solution pH on the decomposition of perfluorooctanoic acid (PFOA) with hydrated electrons as reductant were investigated. The reductive decomposition of PFOA depends strongly on the solution pH. In the pH range of 5.0-10.0, the decomposition and defluorination rates of PFOA increased with the increase of the initial solution pH. The rate constant was 0.0295 min(-1) at pH 10.0, which was more than 49.0 times higher than that at pH 5.0. Higher pH also inhibits the generation of toxic intermediates during the PFOA decomposition. For example, the short-chain PFCAs reached a lower maximum concentration in shorter reaction time as pH increasing. The peak areas of accumulated fluorinated and iodinated hydrocarbons detected by GC/MS under acidic conditions were nearly 10-100 times more than those under alkaline conditions. In short, alkaline conditions were more favorable for photo-induced reduction of PFOA as high pH promoted the decomposition of PFOA and inhibited the accumulation of intermediate products. The concentration of hydrated electron, detected by laser flash photolysis, increased with the increase of the initial pH. This was the main reason why the decomposition of PFOA in the UV-KI system depended strongly on the initial pH.

  19. Photoinduced Br Desorption from CsBr Thin Films Grown on Cu(100)

    SciTech Connect

    Halliday, Matthew T.; Joly, Alan G.; Hess, Wayne P.; Shluger, AL

    2015-10-22

    Thin films of CsBr deposited onto metals such as copper are potential photocathode materials for light sources and other applications. We investigate desorption dynamics of Br atoms from CsBr films grown on insulator (KBr, LiF) and metal (Cu) substrates induced by sub-bandgap 6.4 eV laser pulses. The experimental results demonstrate that the peak kinetic energy of Br atoms desorbed from CsBr/Cu films is much lower than that for the hyperthermal desorption from CsBr/LiF films. Kelvin probe measurements indicate negative charge at the surface following Br desorption from CsBr/Cu films. Our ab initio calculations of excitons at CsBr surfaces demonstrate that this behavior can be explained by an exciton model of desorption including electron trapping at the CsBr surface. Trapped negative charges reduce the energy of surface excitons available for Br desorption. We examine the electron-trapping characteristics of low-coordinated sites at the surface, in particular, divacancies and kink sites. We also provide a model of cation desorption caused by Franck-Hertz excitation of F centers at the surface in the course of irradiation of CsBr/Cu films. These results provide new insights into the mechanisms of photoinduced structural evolution of alkali halide films on metal substrates and activation of metal photocathodes coated with CsBr.

  20. Photoinduced currents in pristine and ion irradiated kapton-H polyimide

    SciTech Connect

    Sharma, Anu Sridharbabu, Y. Quamara, J. K.

    2014-10-15

    The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200°C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.

  1. The dynamics of photoinduced defect creation in amorphous chalcogenides: The origin of the stretched exponential function

    SciTech Connect

    Freitas, R. J.; Shimakawa, K.; Wagner, T.

    2014-01-07

    The article discusses the dynamics of photoinduced defect creations (PDC) in amorphous chalcogenides, which is described by the stretched exponential function (SEF), while the well known photodarkening (PD) and photoinduced volume expansion (PVE) are governed only by the exponential function. It is shown that the exponential distribution of the thermal activation barrier produces the SEF in PDC, suggesting that thermal energy, as well as photon energy, is incorporated in PDC mechanisms. The differences in dynamics among three major photoinduced effects (PD, PVE, and PDC) in amorphous chalcogenides are now well understood.

  2. Convergent Synthesis and Photoinduced Processes in Multi-Chromophoric Rotaxanes1

    PubMed Central

    Megiatto, Jackson D.; Li, Ke; Schuster, David I.; Palkar, Amit; Herranz, M. Ángeles; Echegoyen, Luis; Abwandner, Silke; de Miguel, Gustavo; Guldi, Dirk M.

    2010-01-01

    A series of [2]rotaxane materials, in which [60]fullerene is linked to a macrocycle and ferrocene (Fc) moieties are placed at the termini of a thread, both of which possess a central Cu(I)-1,10-phenanthroline [Cu(phen)2]+ complex, were synthesized by self-assembly using Sauvage metal template methodology. Two types of threads were constructed, one with terminal ester linkages, and a second with terminal 1,2,3-triazole linkages derived from Cu(I)-catalyzed “click” 1,3-cycloaddition reactions. Model compounds lacking the fullerene moiety were prepared in an analogous manner. The ability of the interlocked Fc-[Cu(phen)2]+-C60 hybrids to undergo electron transfer upon photoexcitation was investigated by means of time-resolved fluorescence and transient absorption spectroscopy, using excitation wavelengths directed at the fullerene and [Cu(phen)2]+ subunits. The energies of the electronic excited states and charge separated (CS) states that might be formed upon photoexcitation were determined from spectroscopic and electrochemical data. These studies showed that MLCT excited states of the copper complex in the fullerenerotaxanes were quenched by electron transfer to the fullerene, resulting in charge separated states with oxidized copper and reduced fullerene moieties, (Fc)2-[Cu(phen)2]2+-C60•−. Even though electron transfer from Fc to the oxidized copper complex is predicted to be exergonic by 0.18 eV, no unequivocal evidence in support of such a process was obtained. The conclusion that Fc plays no role in the photoinduced processes in our systems rests on the lack of enhancement of the lifetime of the charge separated state as measured by decay of C60•− at ~ 1000 nm, since one-electron oxidized Fc is very difficult to detect spectroscopically in the 500–800 nm spectral region. PMID:20518479

  3. A 'two-point' bound zinc porphyrin-zinc phthalocyanine-fullerene supramolecular triad for sequential energy and electron transfer.

    PubMed

    KC, Chandra B; Ohkubo, Kei; Karr, Paul A; Fukuzumi, Shunichi; D'Souza, Francis

    2013-09-01

    A novel supramolecular triad composed of a zinc porphyrin-zinc phthalocyanine dyad and fullerenes has been assembled using a 'two-point' axial binding approach, and occurrence of efficient photoinduced energy transfer followed by electron transfer is demonstrated.

  4. The photoinduced E → Z isomerization of bisazobenzenes: a surface hopping molecular dynamics study.

    PubMed

    Floss, Gereon; Saalfrank, Peter

    2015-05-21

    The photoinduced E → Z isomerization of azobenzene is a prototypical example of molecular switching. On the way toward rigid molecular rods such as those for opto-mechanical applications, multiazobenzene structures have been suggested in which several switching units are linked together within the same molecule (Bléger et al., J. Phys. Chem. B 2011, 115, 9930-9940). Large differences in the switching efficiency of multiazobenzenes have been observed, depending on whether the switching units are electronically decoupled or not. In this paper we study, on a time-resolved molecular level, the E→ Z isomerization of the simplest multiazobenzene, bisazobenzene (BAB). Two isomers (ortho- and para-BAB), differing only in the connectivity of two azo groups on a shared phenyl ring will be considered.To do so, nonadiabatic semiclassical dynamics after photoexcitation of the isomers are studied by employing an "on-the-fly", fewest switches surface hopping approach. States and couplings are calculated by Configuration Interaction (CI) based on a semiempirical (AM1) Hamiltonian (Persico and co-workers, Chem. Eur. J. 2004, 10, 2327-2341). In the case of para-BAB, computed quantum yields for photoswitching are drastically reduced compared to pristine azobenzene, due to electronic coupling of both switching units. A reason for this (apart from altered absorption spectra and reduced photochromicity) is the drastically reduced lifetimes of electronically excited states which are transiently populated. In contrast for meta-connected species, electronic subsystems are largely decoupled, and computed quantum yields are slightly higher than that for pristine azobenzene because of new isomerization channels. In this case we can also distinguish between single- and double-switch events and we find a cooperative effect: The isomerization of a single azo group is facilitated if the other azo group is already in the Z-configuration.

  5. Photoinduced processes within compact dyads based on triphenylpyridinium-functionalized bipyridyl complexes of ruthenium(II).

    PubMed

    Lainé, Philippe P; Ciofini, Ilaria; Ochsenbein, Philippe; Amouyal, Edmond; Adamo, Carlo; Bedioui, Fethi

    2005-06-01

    As an alternative to conventional charge-separation functional molecular models based on long-range ET within redox cascades, a "compact approach" has been examined. To this end, spacer elements usually inserted between main redox-active units within polyad systems have been removed, allowing extended rigidity but at the expense of enhanced intercomponent electronic communication. The molecular assemblies investigated here are of the P-(theta (1))-A type, where the theta (1) twist angle is related to the degree of conjugation between the photosensitizer (P, of {Ru(bpy)(3)}(2+) type) and the electron-acceptor (A). 4-N- and 4-N-,4'-N-(2,4,6-triphenylpyridinio)-2,2'-bipyridine ligands (A(1)-bpy and A(2)-bpy, respectively) have been synthesized to give complexes with Ru(II), 1-bpy and 2-bpy, respectively. Combined solid-state analysis (X-ray crystallography), solution studies ((1)H NMR, cyclic voltammetry) and computational structural optimization allowed verifying that theta (1) angle approaches 90 degrees within 1-bpy and 2-bpy in solution. Also, anticipated existence of strong intercomponent electronic coupling has been confirmed by investigating electronic absorption properties and electrochemical behavior of the compounds. The capability of 1-bpy and 2-bpy to undergo PET process was evaluated by carrying out their photophysical study (steady state emission and time-resolved spectroscopy at both 293 and 77 K). The conformational dependence of photoinduced processes within P-(theta (1))-A systems has been established by comparing the photophysical properties of 1-bpy (and 2-bpy) with those of an affiliated species reported in the literature, 1-phen. A complementary theoretical analysis (DFT) of the change of spin density distribution within model [1-bpy(theta (1))](-) mono-reduced species as a function of theta (1) has been undertaken and the possibility of conformationally switching emission properties of P was derived. PMID:15822134

  6. Photo-induced reflectivity in the mid and far infrared

    SciTech Connect

    Haar, P.; Harrington, K.J.; Schwettman, H.A.

    1995-12-31

    Interest in switching FEL beams has motivated studies of photo-induced reflectivity in the mid and far infrared. We are particularly interested in Ge{sup 4}, GaAs, and Si{sup 5}, materials that can be pumped with a visible or near-IR conventional laser and which together cover the wavelengths from 3-100{mu}m. We have made quantitative measurements to determine the induced reflectivity, carrier lifetime, and transient absorption of these materials at several wavelengths across this range using a variety of pump laser wavelengths and pulse lengths. These measurements allow us to determine the feasibility of single pulse selection and cavity dumping with our FELs at high repetition rates.

  7. Photoinduced surface voltage mapping study for large perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou; Liu, Shengzhong Frank

    2016-05-01

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH3NH3PbX3 (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  8. Photoinduced Transformations in Bacteriorhodopsin Membrane Monitored with Optical Microcavities

    PubMed Central

    Topolancik, Juraj; Vollmer, Frank

    2007-01-01

    Photoinduced molecular transformations in a self-assembled bacteriorhodpsin (bR) monolayer are monitored by observing shifts in the near-infrared resonant wavelengths of linearly polarized modes circulating in a microsphere cavity. We quantify the molecular polarizability change upon all-trans to 13-cis isomerization and deprotonation of the chromophore retinal (∼−57 Å3) and determine its orientation relative to the bR membrane (∼61°). Our observations establish optical microcavities as a sensitive off-resonant spectroscopic tool for probing conformations and orientations of molecular self-assemblies and for measuring changes of molecular polarizability at optical frequencies. We provide a general estimate of the sensitivity of the technique and discuss possible applications. PMID:17208972

  9. Nonequilibrium molecular transport photoinduced by potential energy fluctuations

    NASA Astrophysics Data System (ADS)

    Dekhtyar, Marina L.; Rozenbaum, Viktor M.

    2011-01-01

    The mechanism of directed substrate-parallel motion of molecules caused by photoinduced potential energy fluctuations is investigated. Unlike simplistic models (e.g., an on-off ratchet), the approach suggested implies that the necessary asymmetry of the potential energy can arise not only from the asymmetry of the substrate potential but also from an asymmetric distribution of the fluctuating charge density in the molecule. The thus induced asymmetry of the potential energy governs the direction motion and enables, under certain conditions, its reversal at some frequencies of resonant laser pulses or temperature. These inferences are exemplified by the model charge distributions in the molecule and substrate, and the charge density fluctuations which are obtained by quantum chemical calculations for the realistic molecule of a substituted phenylpyrene compound on a model substrate.

  10. Tuning the Photoinduced Motion of Glassy Azobenzene Polymers and Networks

    NASA Astrophysics Data System (ADS)

    Vaia, R. A.

    2013-03-01

    Continual innovation at the forefront of soft-matter, in areas such as liquid crystal networks, nano-composites and bio-molecules, is providing exciting opportunities to create smart materials systems that exhibit a controlled, reproducible and reversible modulation of physical properties. These material systems evoke the adaptivity of natural organisms, and inspire radical aerospace notions. A key example is photo-responsive polymers, which convert a light stimulus input into a mechanical output (work). Photoinduced conformational changes, such as within azobenzene, dictate molecular-level distortions that summate into a macroscopic strain, which often manifests as a shape change or motion. The transduction of the molecular-level response to a macroscale effect is regulated by mesoscopic features, such as chain packing, free volume, and local molecular order - factors which depend on chemical composition as well as the process history of the material. For example, physical aging increases the density of the glass, reduces local free volume, and thus decreases the minima in local conformation space which strongly influences the azobenzene photochemistry (trans-cis-trans isomerization). The subsequent change in the energy landscape of the system reduces the fraction of azobenzene able to undergo reconfiguration as well as increases the probability that those photoinduced conformations will relax back to the initial local environment. The result is a tuning of the magnitude of macroscopic strain and the ability to shift from shape fixing to shape recovery, respectively. Work done in collaboration with H. Koerner, K.M. Lee, M. Smith, D. Wang, L-S. Tan. and T. White, Air Force Research Laboratory.

  11. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    SciTech Connect

    Rybaltovsky, A A; Aleshkina, S S; Likhachev, M E; Bubnov, M M; Umnikov, A A; Yashkov, M V; Gur'yanov, Aleksei N; Dianov, Evgenii M

    2011-12-31

    Photochemical reactions induced in the glass network of an ytterbium-doped fibre core by IR laser pumping and UV irradiation have been investigated by analysing absorption and luminescence spectra. We have performed comparative studies of the photoinduced absorption and luminescence spectra of fibre preforms differing in core glass composition: Al{sub 2}O{sub 3} : SiO{sub 2}, Al{sub 2}O{sub 3} : Yb{sub 2}O{sub 3} : SiO{sub 2}, and P{sub 2}O{sub 5} : Yb{sub 2}O{sub 3} : SiO{sub 2}. The UV absorption spectra of unirradiated preform core samples show strong bands peaking at 5.1 and 6.5 eV, whose excitation plays a key role in photoinduced colour centre generation in the glass network. 'Direct' UV excitation of the 5.1- and 6.5-eV absorption bands at 244 and 193 nm leads to the reduction of some of the Yb{sup 3+} ions to Yb{sup 2+}. The photodarkening of ytterbium-doped fibres by IR pumping is shown to result from oxygen hole centre generation. A phenomenological model is proposed for the IR-pumping-induced photodarkening of ytterbium-doped fibres. The model predicts that colour centre generation in the core glass network and the associated absorption in the visible range result from a cooperative effect involving simultaneous excitation of a cluster composed of several closely spaced Yb{sup 3+} ions.

  12. Frontier orbital symmetry control of intermolecular electron transfer. Final report, September 15, 1988--December 31, 1994

    SciTech Connect

    Stevens, B.

    1997-07-01

    This report discusses the following topics: the recovery of intermolecular transfer parameters from fluorescence quenching in liquids; photoinduced intramolecular electron transfer in flexible donor/space/acceptor systems containing an extended unsaturated spacer; electron transfer sensitized reaction; the recovery of solute and fractal dimensions from electron transfer quenching data; and frontier orbital symmetry control of back electron transfer.

  13. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid

    DOE PAGESBeta

    Tang, Yu; Pattengale, Brian A.; Ludwig, John M.; Atifi, Abderrahman; Zinovev, Alexander V.; Dong, Bin; Kong, Qingyu; Zuo, Xiaobing; Zhang, Xiaoyi; Huang, Jier

    2015-12-17

    We report that Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complexmore » to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (>>50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA.« less

  14. Mode of photo-induced toxic action of PAH in fish

    SciTech Connect

    Weinstein, J.E.; Oris, J.T.; Taylor, D.H.

    1995-12-31

    Juvenile fathead minnows (Pimephales promelas) were exposed to 0, 6, and 12 {micro}g/L fluoranthene in the presence of ultraviolet (US) light for 6, 12, 24, 48 and 96 hours. Ultrastructural pathology of the secondary gill lamellae was examined using transmission electron microscopy. Following 12 hours of exposure to 12 {micro}g/L fluoranthene and UV light, epithelial cells appeared highly vacuolated and swollen. Following 48 hours, additional morphological alterations in epithelial cells included multivesiculated blebbing of the plasma membrane into intercellular gaps, numerous cytolysosomes, myelinoid bodies, and enlarged lysosomes with lipid-like contents. The staining characteristics of these cytoplasmic inclusions were consistent with that of phospholipid autodigestion. In addition, an inflammatory-type reaction occurred in the secondary lamellae following 24 hours of exposure. This reaction was characterized by large areas of intercellular edema, which produced a lifting of the epithelium, and the occasional presence of macrophages and granulocytes within the edematous areas and the lamellar blood sinuses. No morphological changes were observed in chloride cells, mucous cells, or pillar cells. In those fish exposed to 6 {micro}g/L fluoranthene and UV light, a similar progression compared to 12 {micro}g/L exposure of epithelial cell damage and inflammatory-type reaction was evident beginning at 24 hours of exposure. The results of this study suggest that the mode of action of photo-induced fluoranthene toxicity in fish is respiratory stress.

  15. Highly efficient photoinduced desorption of N{sub 2}O and CO from porous silicon

    SciTech Connect

    Toker, Gil; Sagi, Roey; Bar-Nachum, Shay; Asscher, Micha

    2013-01-28

    Photoinduced desorption (PID) of N{sub 2}O and CO from porous silicon (PSi) samples is reported. Both adsorbates exhibit unusually large cross sections for PID at 193 nm, up to 10{sup -15} cm{sup 2}, 2-3 orders of magnitude larger than the literature values for similar processes on flat Si. Under this UV irradiation, N{sub 2}O molecules undergo photodissociation (a competing process leading to surface oxidation) with a cross section that is 2 orders of magnitude smaller than photodesorption. In the case of CO desorption is the exclusive photodepletion mechanism. PID efficiency decreases with increasing CO coverage suggesting PID hindrance by interactions among the desorbing CO molecules leading to re-adsorption at higher coverage. The wavelength and fluence dependence measurements exclude the possibility of laser induced thermal desorption for both adsorbates. The proposed mechanism for this phenomenon is desorption induced by hot electron transfer from the substrate to the adsorbate. Enhanced lifetime of transient negative adsorbate due to stabilization by localized holes on PSi nanotips can explain the observed abnormally large PID efficiency on top of porous silicon.

  16. Photophysics of Voltage Increase by Photoinduced Dipole Layers in Sensitized Solar Cells.

    PubMed

    Kazes, Miri; Buhbut, Sophia; Itzhakov, Stella; Lahad, Ohr; Zaban, Arie; Oron, Dan

    2014-08-01

    Significant overpotentials between the sensitizer and both the electron and hole conductors hamper the performance of sensitized solar cells, leading to a reduced photovoltage. We show that by using properly designed type-II quantum dots (QDs) between the sensitizer and the hole conductor in thin absorber cells, it is possible to increase the open circuit voltage (Voc) by more than 100 mV. This increase is due to the formation of a photoinduced dipole (PID) layer. Photogenerated holes in the type-II QDs are retained in the core for a relatively long time, allowing for the accumulation of a positively charged layer. Negative charges are, in turn, injected and accumulated in the TiO2 anode, creating a dipole moment, which negatively shifts the TiO2 conduction band relative to the electrolyte. We study this phenomenon using a unique TiO2/CdSe/(ZnSe:Te/CdS)/polysulfide system, where the formation of a PID depends on the color of the illumination. The PID concept thus introduces a new design strategy, where the operating parameters of the solar cell can be manipulated separately.

  17. Synthesis and Characterization of a Novel Borazine-Type UV Photo-Induced Polymerization of Ceramic Precursors.

    PubMed

    Wei, Dan; Chen, Lixin; Xu, Tingting; He, Weiqi; Wang, Yi

    2016-06-21

    A preceramic polymer of B,B',B''-(dimethyl)ethyl-acrylate-silyloxyethyl-borazine was synthesized by three steps from a molecular single-source precursor and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectrometry. Six-member borazine rings and acrylate groups were effectively introduced into the preceramic polymer to activate UV photo-induced polymerization. Photo-Differential Scanning Calorimetry (Photo-DSC) and real-time FTIR techniques were adapted to investigate the photo-polymerization process. The results revealed that the borazine derivative exhibited dramatic activity by UV polymerization, the double-bond conversion of which reached a maximum in 40 s. Furthermore, the properties of the pyrogenetic products were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which proved the ceramic annealed at 1100 °C retained the amorphous phase.

  18. Photoinduced domain-type collective structural changes with interlayer σ -bonds in the visible region of graphite

    NASA Astrophysics Data System (ADS)

    Ohnishi, Hiromasa; Nasu, Keiichiro

    2009-02-01

    We theoretically study the photoinduced domain-type structural changes in the visible region of graphite. By means of the ab initio total-energy calculation, we clarify the adiabatic path for the nucleation of this domain, wherein the interlayer distance of the original graphite is contracted and new interlayer σ -bonds are induced with a certain periodic buckling pattern. We show that an excitation by few visible photons is energetically enough to trigger the formation of this domain, and this domain is sufficiently stable against the thermal fluctuation at around room temperature. The electronic state of this domain is also shown to have a pseudogap, characteristic to an insulator immersed in the original semimetallic graphite.

  19. Reversible modulated mid-infrared absorption of Ag/TiO{sub 2} by photoinduced interfacial charge transfer

    SciTech Connect

    Xu, S. C. E-mail: ghli@issp.ac.cn; Li, L.; Pan, S. S.; Luo, Y. Y.; Zhang, Y. X.; Li, G. H. E-mail: ghli@issp.ac.cn

    2014-10-06

    An enhanced mid-infrared absorption in Ag nanoparticles-decorated TiO{sub 2} microflowers was reported. It was found that the mid-infrared absorption of the Ag/TiO{sub 2} complex depends strongly on the content and size of Ag nanoparticles, the higher the Ag nanoparticles content, the stronger the infrared absorption. The average reflectivity in the entire mid-infrared region of the microflowers drops from 57.6% to 10.5% after Ag nanoparticles decoration. Reversible modulated mid-infrared absorption properties were found in the Ag/TiO{sub 2} complexes upon alternative illumination of visible and UV light due to the photoinduced interfacial electron transfer between TiO{sub 2} semiconductor and Ag nanoparticles.

  20. Visualization of Photo-induced Doping patterns in Graphene/Boron Nitride Heterostructures via Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Velasco, Jairo, Jr.; Ju, Long; Wong, Dillon; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Mike

    2015-03-01

    Photo-induced doping in graphene-boron nitride (G/BN) heterostructures enables flexible and repeatable writing and erasing of charge doping in graphene using optical irradiation. So far, however, this phenomenon has been explored using spatially averaging probes such as electron transport, and there have been no local studies into the underlying microscopic behavior. Here we report a combined scanning tunneling microscopy (STM) and optoelectronic measurement scheme that has been utilized to investigate the microscopic mechanisms at work in this process. We will discuss the latest experimental progress towards the visualization of light-induced charge doping patterns on G/BN heterostructures via STM. J.V.J. acknowledges support from the UC President's Postdoctoral Fellowship.

  1. Long-lived excited states of zwitterionic copper(I) complexes for photoinduced cross-dehydrogenative coupling reactions.

    PubMed

    Wang, Bin; Shelar, Deepak Prakash; Han, Xian-Zhu; Li, Ting-Ting; Guan, Xiangguo; Lu, Wei; Liu, Kun; Chen, Yong; Fu, Wen-Fu; Che, Chi-Ming

    2015-01-12

    Four heteroleptic copper(I) complexes containing phenanthroline and monoanionic nido-carborane-diphosphine ligands have been prepared and structurally characterized by various spectroscopic techniques and X-ray diffraction. These complexes exhibit intense absorptions in the visible range and excited-state lifetimes on the microsecond scale. Their application in visible-light-induced cross-dehydrogenative coupling reactions was investigated. Preliminary studies showed that one of the four copper(I) complexes is an efficient catalyst for photoinduced oxidative C-H functionalization using oxygen as oxidant. Furthermore, α-functionalized tertiary amines were obtained in good-to-excellent yields by light irradiation (λ>420 nm) of a mixture of our Cu(I) complex, tertiary amines, and a variety of nucleophiles (nitroalkane, acetone, or indoles) under aerobic conditions. Electron paramagnetic resonance measurements provided evidence for the formation of superoxide radical anions (O2(-⋅)) rather than singlet oxygen ((1)O2) during these photocatalytic reactions. PMID:25413572

  2. Frontier orbital symmetry control of intermolecular electron transfer

    SciTech Connect

    Stevens, B.

    1991-09-01

    This report contains sections describing the selection of electron donor-acceptor systems, the synthesis and photophysical properties of linked electron-donor-acceptor systems, the estimation of photoinduced charge-separation rate constants from fluorescence quenching data, and radical ion-pair recombination by picosecond transient absorption spectroscopy. 9 refs., 1 fig., 7 tabs.

  3. Impact of chirality on the photoinduced charge transfer in linked systems containing naproxen enantiomers.

    PubMed

    Khramtsova, E A; Sosnovsky, D V; Ageeva, A A; Nuin, E; Marin, M L; Purtov, P A; Borisevich, S S; Khursan, S L; Roth, H D; Miranda, M A; Plyusnin, V F; Leshina, T V

    2016-05-14

    The model reaction of photoinduced donor-acceptor interaction in linked systems (dyads) has been used to study the comparative reactivity of a well-known anti-inflammatory drug, (S)-naproxen (NPX) and its (R)-isomer. (R)- or (S)-NPX in these dyads is linked to (S)-N-methylpyrrolidine (Pyr) using a linear or cyclic amino acid bridge (AA or CyAA), to give (R)-/(S)-NPX-AA-(S)-Pyr flexible and (R)-/(S)-NPX-CyAA-(S)-Pyr rigid dyads. The donor-acceptor interaction is reminiscent of the binding (partial charge transfer, CT) and electron transfer (ET) processes involved in the extensively studied inhibition of the cyclooxygenase enzymes (COXs) by the NPX enantiomers. Besides that, both optical isomers undergo oxidative metabolism by enzymes from the P450 family, which also includes ET. The scheme proposed for the excitation quenching of the (R)- and (S)-NPX excited state in these dyads is based on the joint analysis of the chemically induced dynamic nuclear polarization (CIDNP) and fluorescence data. The (1)H CIDNP effects in this system appear in the back electron transfer in the biradical-zwitterion (BZ), which is formed via dyad photoirradiation. The rate constants of individual steps in the proposed scheme and the fluorescence quantum yields of the local excited (LE) states and exciplexes show stereoselectivity. It depends on the bridge's length, structure and solvent polarity. The CIDNP effects (experimental and calculated) also demonstrate stereodifferentiation. The exciplex quantum yields and the rates of formation are larger for the dyads containing (R)-NPX, which let us suggest a higher contribution from the CT processes with the (R)-optical isomer. PMID:27098151

  4. Magneto-Photoinduced Absorption in Organic Polymer Films

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj; Nguyen, Tho; Ehrenfreund, Eitan; Vardeny, Z. Valy

    2012-02-01

    In order to elucidate the underlying mechanism of magneto-conductivity (MC) in OLEDs we studied magneto-photoinduced absorption (MPA) response in polymer films. The films were based on the MEH-PPV polymer in three different forms, namely: pristine film; film exposed to prolonged UV illumination; and MEH-PPV/PCBM blend having weight ratio 1:1. In pristine film we show that the MPA at low excitation intensity is due to sublevel spin mixing of triplet excitons; whereas at high excitation intensity the MPA is dominated by the triplet-triplet annihilation process. In UV illuminated MEH-PPV films that support photogenerated polarons we show that the MPA is due to sublevel spin-mixing of polaron-pairs via the hyperfine interaction with the closest hydrogen atoms to the chain. This mechanism also explains the MC response of OLED based on MEH-PPV, since its response is similar to that of MPA. Finally we found that the MPA in MEH-PPV/PCBM blend films is dominated by spin mixing of polaron-pair on the polymer and fullerene molecules, via the δg mechanism. Supported by the NSF DMR-1104495, the NSF MRSEC at the UoU, and the BSF program.

  5. Photoinducing the hidden M2 phase in VO2

    NASA Astrophysics Data System (ADS)

    Walko, D. A.; Smith, R. K.; Wen, Haidan; Dichiara, A. D.; Jeong, Jaewoo; Samant, Mahensh G.; Parkin, Stuart S. P.

    We used time-resolved x-ray diffraction to study photoinduced structural phase transitions in a 170-nm-thick VO2 film grown on sapphire (1,0,-1,0). Heating the unstrained film from room temperature induces the well-known phase transition from the monoclinic (M1) phase directly to the high-temperature tetragonal rutile (R) phase. In contrast, upon ultrafast optical excitation, the phase transition depends strongly on the laser intensity. At low fluences, the film is partially transformed into the monoclinic M2 phase, a phase which generally is observed only in doped or strained materials. Above a threshold at higher fluences, a small portion of the film is transformed into the M2 phase, decaying on a time scale of a few nanoseconds, while the majority of the film is transformed into the R phase which can persist for tens of nanoseconds. We further discuss the effects of laser wavelength on the efficiency of producing the M2 phase. Work at the Advanced Photon Source supported by DOE Contract No. DE-AC02-06CH11357.

  6. Diel variations in photoinduced oxidation of Hg0 in freshwater.

    PubMed

    Garcia, Edenise; Poulain, Alexandre J; Amyot, Marc; Ariya, Parisa A

    2005-05-01

    Experiments have been conducted to determine diel variations in photoinduced Hg0 oxidation in lake water under natural Hg0(aq) concentrations. Pseudo-first-order rates of photooxidation (k') were calculated for water freshly collected in a Canadian Shield lake, Lake Croche (45 degrees 56' N, 74 degrees 00' W), at different periods of the day and subsequently incubated in the dark. Hg0 oxidation rates ranged from 0.02 to 0.07 h(-1), increasing from sunrise to noon and then decreasing throughout the remainder of the day. These changes paralleled those in sunlight intensity integrated over 1 h preceding water collection, and suggested that the water freshly collected in daylight was rich in photochemically produced Hg0 oxidants. It was also estimated that under intense solar radiation, even if oxidation rates reached a peak, reduction of Hg(II) was the prevalent redox process. Inversely, Hg0 oxidation overcame DGM production during the night or at periods of weaker light intensity. Overall, these findings explain the decreases in the DGM pool generally observed overnight. They also support previous reports that, during summer days, volatilization of Hg0 from water represent an important step in the Hg cycle in freshwater systems. PMID:15823331

  7. Photo-induced chemical reaction of trans-resveratrol.

    PubMed

    Zhao, Yue; Shi, Meng; Ye, Jian-Hui; Zheng, Xin-Qiang; Lu, Jian-Liang; Liang, Yue-Rong

    2015-03-15

    Photo-induced chemical reaction of trans-resveratrol has been studied. UV B, liquid state and sufficient exposure time are essential conditions to the photochemical change of trans-resveratrol. Three principal compounds, cis-resveratrol, 2,4,6-phenanthrenetriol and 2-(4-hydroxyphenyl)-5,6-benzofurandione, were successively generated in the reaction solution of trans-resveratrol (0.25 mM, 100% ethanol) under 100 μW cm(-2) UV B radiation for 4h. cis-Resveratrol, originated from isomerization of trans-resveratrol, resulted in 2,4,6-phenanthrenetriol through photocyclisation reaction meanwhile loss of 2 H. 2,4,6-Phenanthrenetriol played a role of photosensitizer producing singlet oxygen in the reaction pathway. The singlet oxygen triggered [4+2] cycloaddition reaction of trans-resveratrol, and then resulted in the generation of 2-(4-hydroxyphenyl)-5,6-benzofurandione through photorearrangement and oxidation reaction. The singlet oxygen reaction was closely related to the substrate concentration of trans-resveratrol in solution.

  8. Photoinduced isomerization of lycopene and application to tomato cultivation.

    PubMed

    Heymann, Thomas; Raeke, Julia; Glomb, Marcus A

    2013-11-20

    The present study aimed to investigate if growth conditions have an impact on the isomeric composition of lycopene in tomatoes. First a model system for photoinduced isomerization was established. Tomato extracts were irradiated with a halogen lamp, whose wavelength spectrum is close to the spectrum of daylight and thus mimics field-grown cultivation. Different optical filters were interposed between lamp and samples to simulate greenhouse conditions. 5-cis-Lycopene was formed preferentially while the concentration of 7-cis-lycopene decreased in field-grown model systems. The change of isomerization in greenhouse model systems led to a significantly different ratio. Consequently 5-cis- and 7-cis-lycopene were identified as potent markers for the differentiation of various lighting conditions during cultivation. This result was verified in biological samples. Authentic field-grown tomatoes (var. Lycopersicon esculentum Mill. var. commune L. H. Bailey "Harzfeuer") showed a significantly higher content of 5-cis-lycopene 5.90 ± 0.45% compared to tomatoes of the same variety grown under electric lighting 4.11 ± 0.10%. Additionally, the ratio of 7-cis-lycopene was significantly lower under field-grown conditions. PMID:24191648

  9. Photoinduced autofluorescence modification of cells in an optical trap

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Liu, Yagang; Sonek, Gregory J.; Berns, Michael W.; Tromberg, Bruce J.

    1995-02-01

    Photoinduced modifications of NAD(P)H attributed autofluorescence of CHO cells in a single- beam gradient force optical trap (optical tweezers) were studied. Fluorescence spectra of single cells in the optical trap were measured using a modified microscope with an IR microbeam at 1064 and 760 nm for trapping, UVA radiation at 365 nm for fluorescence excitation, and an optical multichannel analyzer for spectral recording. No strong effect of the 1064 nm trapping beam on fluorescence intensity and spectral characteristics was found, even for power densities up to 70 MW/cm2. In contrast, 760 nm microirradiation resulted in a significant fluorescence increase, probably indicating cell damage due to absorption by heme- containing molecules. UVA exposure (1 W/cm2) of the trapped cells generated within seconds an initial fluorescence decrease, followed by a significant increase up to 5X of the value prior to irradiation. The UVA-induced modifications reflect NAD(P)H auto-oxidation and irreversible cell damage due to oxidative stress.

  10. Diel variations in photoinduced oxidation of Hg0 in freshwater.

    PubMed

    Garcia, Edenise; Poulain, Alexandre J; Amyot, Marc; Ariya, Parisa A

    2005-05-01

    Experiments have been conducted to determine diel variations in photoinduced Hg0 oxidation in lake water under natural Hg0(aq) concentrations. Pseudo-first-order rates of photooxidation (k') were calculated for water freshly collected in a Canadian Shield lake, Lake Croche (45 degrees 56' N, 74 degrees 00' W), at different periods of the day and subsequently incubated in the dark. Hg0 oxidation rates ranged from 0.02 to 0.07 h(-1), increasing from sunrise to noon and then decreasing throughout the remainder of the day. These changes paralleled those in sunlight intensity integrated over 1 h preceding water collection, and suggested that the water freshly collected in daylight was rich in photochemically produced Hg0 oxidants. It was also estimated that under intense solar radiation, even if oxidation rates reached a peak, reduction of Hg(II) was the prevalent redox process. Inversely, Hg0 oxidation overcame DGM production during the night or at periods of weaker light intensity. Overall, these findings explain the decreases in the DGM pool generally observed overnight. They also support previous reports that, during summer days, volatilization of Hg0 from water represent an important step in the Hg cycle in freshwater systems.

  11. A simple molecular theory for photo-induced smectic phase.

    PubMed

    Suresha, B L; Radhakrishna, M C; Govind, A S

    2011-10-01

    The response of liquid crystals to light is very important for applications of liquid crystals in display and memory devices. Recently experiments have been carried out on liquid crystals doped with photoactive azo compounds. It is seen that UV rays incident on such systems can lower the nematic isotropic transition temperature T (NI). Also, in some mixtures, a photo-induced smectic phase is observed. This is attributed to the change in the trans (longer) isomer to cis (shorter) isomer of the photoactive dopant. We have earlier developed a molecular mean-field model assuming the medium to consist of inter-converting anti-parallel and parallel pairs to explain the molecular origin of "two lengths". The model was used to explain double re-entrance, the effect of electric field on T (NI), etc. This model is modified to include the change of trans to cis isomer which is equivalent to an increase of fraction of parallel (shorter) pairs. The calculated phase diagram with respect to incident UV radiation energy shows an induced smectic phase. This is in qualitative agreement with experimental trends.

  12. Photoinduced charge separation in solid-state and molecular systems

    NASA Astrophysics Data System (ADS)

    Bocarsly, A. B.

    Our goal is to understand the role of intrinsic cyanometalate overlayers in modulating interfacial photoinduced charge transfer processes occurring at the cadmium chalconide/aqueous ferri-ferrocyanide interface. To accomplish this goal, detailed structural and charge transfer studies of (CdFe(CN)6)(2-/1-) overlayers generated either intrinsically via photoelectrochemistry at the illuminated CdX/(Fe(CN)6)(4-/32) (X=S or Se) interface, or synthesized as chemical modification layers on inert metal electrodes have been undertaken. From these studies, a picture has evolved which directly links charge transfer mediated cation intercalation processes to surface overlayer crystal structure, and overlayer structure to critical charge transfer parameters. We have discovered that a photoelectrochemical cell of composition n-CdSe/(1M) KCN provides a relatively unique environment for testing the dynamic effects of chemisorption processes on heterogeneous charge transfer at the semiconductor-liquid junction. Thus, our retrospective studies have provided for new insight into semiconductor photochemistry. In parallel with our photoelectrochemical projects we have also introduced work on the spatially resolved photodeposition of platinum metal on nonconducting and semiconducting substrates. This chemistry provides new opportunities for the design of semiconductor (or insulator)-metal heterostructures which have applications in solar energy conversion.

  13. PREFACE: Second International Conference on Photo-Induced Phase Transitions; Cooperative, non-linear and functional properties (PIPT'05)

    NASA Astrophysics Data System (ADS)

    Buron, Marylise; Collet, Eric

    2005-01-01

    This issue is a collection of papers presented at the 2nd International Conference on Photo-Induced Phase Transitions; Cooperative, non-linear and functional properties (PIPT'05), which was held in Rennes (France) on 24-28 May 2005 and chaired by Hervé Cailleau and Tadeusz Luty. The first PIPT conference was organized by Professor Keiichiro Nasu in Tsukuba, Japan, in 2001. During 5 days, PIPT'05 provided an interdisciplinary forum for research communications between solid state physicists, photophysicists, photochemists and photobiologists, as well as material scientists. Scientists came from all around the world (Europe, Japan, USA, Canada, ...). The fascinating scientific challenge of the possibility of triggering physical properties of a material by light excitation was at the heart of the exchange of ideas between scientists of the different fields. The topics of the conference were about light-induced phenomena in functional materials, nano-particles and devices, photo-induced structural, magnetic and/or electronic phase transitions, photo-induced gauge type phase transitions, photo-induced cooperative molecular switching and chemical reactions in solids, dynamics of out-of-equilibrium processes, light-driven non-thermal processes such as coherent phonons, shock waves, surface melting and femtomagnetism, precursor phenomena, coherent, co-operative and non-linear processes in excited states and new investigations by light, x-ray and electron probes. As you will see, the collection of papers presented here cover many of the fields mentioned above. The PIPT conferences, encompassing different areas of light-induced phenomena are also meant to bridge the gap between experimentalists and theoreticians, and to promote communication between scientists working on different continents. The present conference was attended by 148 participants from 17 countries, with the total number of 87 presentations (16 invited, 27 contributed talks and 44 posters). It is encouraging

  14. Photoinduced superhydrophilicity: a kinetic study of time dependent photoinduced contact angle changes on TiO2 surfaces.

    PubMed

    Foran, Philip S; Boxall, Colin; Denison, Kieth R

    2012-12-21

    Transparent TiO(2) thin films were prepared on quartz substrates via a reverse micelle, sol-gel, spin-coating technique. The time dependence of the TiO(2) film photoinduced superhydrophilicity (PISH) was measured by goniometric observation of the contact angle, θ, of sessile water drops at the film surfaces. In these measurements, the TiO(2) substrate was illuminated by 315 nm light and drops were sequentially applied at a range of illumination times. Using a model for the wetting of heterogeneous surfaces derived by Israelachvili and Gee, these measurements were used to calculate the time dependence of f(2), the fractional surface coverage of the TiO(2) surface by adventitious contaminating organics (Israelachvili, J. N.; Gee, M. L. Contact angles on chemically heterogeneous surfaces. Langmuir 1989, 5, 288). Extending this model to include a Langmuir-Hinshelwood based kinetic analysis of f(2) as a function of time allowed for calculation of an expected value for θ immediately prior to illumination, that is, at illumination time t = 0. Such expected values of θ at t = 0 were calculated using two possible values of θ(1), the contact angle on a pristine unilluminated homogeneous TiO(2) surface: (i) θ(1) = 4° as suggested by, inter alia, Zubkov et al. (Zubkov, T.; Stahl, D.; Thompson, T. L.; Panayotov, D.; Diwald, O.; Yates, J. T. Ultraviolet Light-Induced Hydrophilicity Effect on TiO(2)(110)(1 × 1). Dominant Role of the Photooxidation of Adsorbed Hydrocarbons Causing Wetting by Water Droplets. J. Phys. Chem. B2005, 109, 15454); and (ii) where θ(1) = 25°, as suggested by Fujishima et al., representative of a more hydrophobic homogeneous TiO(2) surface that reconstructs upon exposure to ultraband gap illumination into a hydrophilic surface where θ(1) → 0° (Fujishima, A.; Zhang, X.; Tryk, D. A. TiO(2) photocatalysis and related surface phenomena Surf. Sci. Rep.2008, 63, 515). Analysis of data from our experiments and from selected literature sources

  15. Simultaneous photoinduced generation of Fe(2+) and H2O2 in rivers: An indicator for photo-Fenton reaction.

    PubMed

    Mostofa, Khan M G; Sakugawa, Hiroshi

    2016-09-01

    The photo-Fenton reaction is a key source of the highly reactive hydroxyl radical (HO) that is produced by the reaction of simultaneous photo-induced generation of Fe(2)(+)-dissolved organic matter (DOM) with H2O2 in sunlit surface waters as well as in the treatment of organic pollutants in the advanced oxidation processes (AOPs). Concentrations of both H2O2 and Fe(2)(+)-DOM were dependent on time and total solar intensity flux, and their levels were highest in the diurnal samples collected at noon compared with the samples collected during the period before sunrise and after sunset. H2O2 and Fe(2)(+)-DOM concentrations during monthly readings were also found higher in comparison with the diurnal samples, shortly before sunrise or after sunset. A π-electron bonding system is formed between Fe and the functional groups in DOM (Fe-DOM), through electron donation from the functional groups of DOM to an empty d-orbital of Fe. The π-electron is loosely bound and is highly susceptible to a rapid excitation upon light exposure that will provide better understanding of the formation of aqueous electrons, superoxide radical anions, H2O2 and finally, photo-Fenton reactions, too. Our results imply that simultaneous generation of H2O2 and Fe(2)(+)-DOM upon sunlight exposure during the daytime is most likely to be the key photo-Fenton reaction pathway, taking place in surface waters.

  16. Simultaneous photoinduced generation of Fe(2+) and H2O2 in rivers: An indicator for photo-Fenton reaction.

    PubMed

    Mostofa, Khan M G; Sakugawa, Hiroshi

    2016-09-01

    The photo-Fenton reaction is a key source of the highly reactive hydroxyl radical (HO) that is produced by the reaction of simultaneous photo-induced generation of Fe(2)(+)-dissolved organic matter (DOM) with H2O2 in sunlit surface waters as well as in the treatment of organic pollutants in the advanced oxidation processes (AOPs). Concentrations of both H2O2 and Fe(2)(+)-DOM were dependent on time and total solar intensity flux, and their levels were highest in the diurnal samples collected at noon compared with the samples collected during the period before sunrise and after sunset. H2O2 and Fe(2)(+)-DOM concentrations during monthly readings were also found higher in comparison with the diurnal samples, shortly before sunrise or after sunset. A π-electron bonding system is formed between Fe and the functional groups in DOM (Fe-DOM), through electron donation from the functional groups of DOM to an empty d-orbital of Fe. The π-electron is loosely bound and is highly susceptible to a rapid excitation upon light exposure that will provide better understanding of the formation of aqueous electrons, superoxide radical anions, H2O2 and finally, photo-Fenton reactions, too. Our results imply that simultaneous generation of H2O2 and Fe(2)(+)-DOM upon sunlight exposure during the daytime is most likely to be the key photo-Fenton reaction pathway, taking place in surface waters. PMID:27593270

  17. Enhancement of Photoinduced Charge-Order Melting via Anisotropy Control by Double-Pulse Excitation in Perovskite Manganites: Pr_{0.6}Ca_{0.4}MnO_{3}.

    PubMed

    Yada, H; Ijiri, Y; Uemura, H; Tomioka, Y; Okamoto, H

    2016-02-19

    To control the efficiency of photoinduced charge-order melting in perovskite manganites, we performed femtosecond pump-probe spectroscopy using double-pulse excitation on Pr_{0.6}Ca_{0.4}MnO_{3}. The results revealed that the transfer of the spectral weight from the near-infrared to infrared region by the second pump pulse is considerably enhanced by the first pump pulse and that the suppression of crystal anisotropy, that is, the decrease of long-range lattice deformations due to the charge order by the first pump pulse is a key factor to enhance the charge-order melting. This double-pulse excitation method can be applied to various photoinduced transitions in complex materials with electronic and structural instabilities. PMID:26943548

  18. Preparation and photo-induced charge transfer of the composites based on 3D structural CdS nanocrystals and MEH-PPV

    SciTech Connect

    Deng, Dan; Shi, Minmin; Chen, Fei; Chen, Lin; Jiang, Xiaoxia; Chen, Hongzheng

    2010-05-15

    We report the synthesis of 3D structural CdS nanocrystals by a simple biomolecule-assisted hydrothermal process. The CdS nanocrystals are composed of many branched nanorods with the diameter of about 50 nm, and the length of about 250 nm. The phase and crystallographic properties are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractometry (XRD). The composites based on CdS nanocrystals and poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV) have been prepared by spin-coating of the mixture in the common solvent. The optical properties of the composites are investigated using ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopies. A significant fluorescence quenching of MEH-PPV in the composites is observed at high CdS nanocrystals/MEH-PPV ratios, indicating that the photo-induced charge transfer occurred due to the energy level offset between the donor MEH-PPV and the acceptor CdS nanocrystals. The obvious photovoltaic behavior of the solar cell made from this composite further demonstrates the mentioned photo-induced charge transfer process. (author)

  19. Dynamic structural effects and ultrafast biomolecular kinetics in photoinduced charge transfer reactions. Three year progress report, March 15, 1991--May 14, 1994

    SciTech Connect

    Hupp, J.T.

    1994-04-01

    The reactions were primarily electron-transfer-reactivity related (ET?). Goals were to obtain complete, multimode, experimental descriptions of vibrational (Franck-Condon) barriers to intramolecular electron transfer, explore molecular generality of time-dependent scattering analysis, connect the information directly to measured rates of photoinduced ET (femtosecond, picosecond, nanosecond regime), obtain complementary information in the microsecond regime (longer-range thermal ET) via pulsed-accelrated flow, explore valence localization/delocalization via vibronic coupling (resonance Raman in extended near infrared) and via reversible external manipulation of internal electronic structure, and manipulate and accelerate bimolecular photoredox processes by using room-temperature supercritical fluids. Fe and Ru complexes with such compounds as cyano-N-methylpyridinium compounds were studied.

  20. Photo-induced Doping in GaN Epilayers with Graphene Quantum Dots.

    PubMed

    Lin, T N; Inciong, M R; Santiago, S R M S; Yeh, T W; Yang, W Y; Yuan, C T; Shen, J L; Kuo, H C; Chiu, C H

    2016-03-18

    We demonstrate a new doping scheme where photo-induced carriers from graphene quantum dots (GQDs) can be injected into GaN and greatly enhance photoluminescence (PL) in GaN epilayers. An 8.3-fold enhancement of PL in GaN is observed after the doping. On the basis of time-resolved PL studies, the PL enhancement is attributed to the carrier transfer from GQDs to GaN. Such a carrier transfer process is caused by the work function difference between GQDs and GaN, which is verified by Kelvin probe measurements. We have also observed that photocurrent in GaN can be enhanced by 23-fold due to photo-induced doping with GQDs. The improved optical and transport properties from photo-induced doping are promising for applications in GaN-based optoelectronic devices.

  1. Photo-induced Doping in GaN Epilayers with Graphene Quantum Dots

    PubMed Central

    Lin, T. N.; Inciong, M. R.; Santiago, S. R. M. S.; Yeh, T. W.; Yang, W. Y.; Yuan, C. T.; Shen, J. L.; Kuo, H. C.; Chiu, C. H.

    2016-01-01

    We demonstrate a new doping scheme where photo-induced carriers from graphene quantum dots (GQDs) can be injected into GaN and greatly enhance photoluminescence (PL) in GaN epilayers. An 8.3-fold enhancement of PL in GaN is observed after the doping. On the basis of time-resolved PL studies, the PL enhancement is attributed to the carrier transfer from GQDs to GaN. Such a carrier transfer process is caused by the work function difference between GQDs and GaN, which is verified by Kelvin probe measurements. We have also observed that photocurrent in GaN can be enhanced by 23-fold due to photo-induced doping with GQDs. The improved optical and transport properties from photo-induced doping are promising for applications in GaN-based optoelectronic devices. PMID:26987403

  2. Photoinduced second harmonic generation in partially crystallized BiB 3O 6 glass

    NASA Astrophysics Data System (ADS)

    Kityk, I. V.; Imiołek, W.; Majchrowski, A.; Michalski, E.

    2003-04-01

    Photoinduced second harmonic generation was found in BiB 3O 6 (BiBO) glass having different degree of crystallinity. We have revealed that an increasing degree of crystallinity of BiBO glass leads to increase of the output second-order optical susceptibility. We have used a pulsed 35 MW nitrogen laser ( λ=337 nm; τ=50 ps) as a source of photoinducing laser beam. Fundamental laser beam was generated by pulsed Nd:YAG laser ( λ=1.06 μm; time duration about 25 ps). Maximal value of the photoinduced second-order non-linear optical susceptibility d222 was equal to about 5 pm/V, what is substantially higher than in case of BiBO single crystals (˜ 3 pm/ V).

  3. Recent advances in photoinduced donor/acceptor copolymerization

    NASA Astrophysics Data System (ADS)

    Jönsson, S.; Viswanathan, K.; Hoyle, C. E.; Clark, S. C.; Miller, C.; Morel, F.; Decker, C.

    1999-05-01

    Photoinitiated free radical polymerization of donor (D)/acceptor (A) type monomers has gained considerable interest due to the possibility to efficiently photopolymerize non-acrylate based systems. Furthermore, this photoinduced alternating copolymerization can be accomplished without the presence of a conventional free radical generating photoinitiator. In the past, we have shown that the structural influences in the direct photolysis of N-Alkyl and N-Arylmaleimides as well as their corresponding ground state charge transfer complexes (CTC) with suitable donors have carefully been investigated. For certain combinations of A and D type monomers, a direct photolysis of the ground state complex or the excitation of the acceptor, followed by the formation of an exciplex, has been shown to initiate the copolymerization. Herein, we show that the main route of initiation is based on inter or intra molecular H-abstraction from an excited state maleimide, whereby no exciplex formation takes place. H-abstraction will predominantly take place in systems where easily abstractable hydrogens are present. Our laser flash photolysis investigation, ESR [1] (A. Hiroshi, I. Takasi, T. Nosi, Macromol. Chem. 190 (1989) 2821) and phosphorescence emissions [2,3] (K.S. Chen, T. Foster, J.K.S. Wan, J. Phys. Chem. 84 (1980) 2473; C.J. Seliskar, S.P. McGlynn, J. Chem. Phys. 55 (1971) 4337) studies show that triplet excited states of N-alkyl substituted maleimides (RMI), which are well known strong precursors for direct H-abstractions from aliphatic ethers and secondary alcohols, are formed upon excitation. Rates of copolymerization and degrees of conversion for copolymerization of maleimide/vinyl ether pairs in air and nitrogen have been measured as a function of hydrogen abstractability of the excited triplet state MI as well as the influence of concentration and hydrogen donating effect of the hydrogen donor.

  4. Polydopamine as a biomimetic electron gate for artificial photosynthesis.

    PubMed

    Kim, Jae Hong; Lee, Minah; Park, Chan Beum

    2014-06-16

    We report on the capability of polydopamine (PDA), a mimic of mussel adhesion proteins, as an electron gate as well as a versatile adhesive for mimicking natural photosynthesis. This work demonstrates that PDA accelerates the rate of photoinduced electron transfer from light-harvesting molecules through two-electron and two-proton redox-coupling mechanism. The introduction of PDA as a charge separator significantly increased the efficiency of photochemical water oxidation. Furthermore, simple incorporation of PDA ad-layer on the surface of conducting materials, such as carbon nanotubes, facilitated fast charge separation and oxygen evolution through the synergistic effect of PDA-mediated proton-coupled electron transfer and the high conductivity of the substrate. Our work shows that PDA is an excellent electron acceptor as well as a versatile adhesive; thus, PDA constitutes a new electron gate for harvesting photoinduced electrons and designing artificial photosynthetic systems.

  5. Generalized quantum Fokker-Planck equation for photoinduced nonequilibrium processes with positive definiteness condition

    NASA Astrophysics Data System (ADS)

    Jang, Seogjoo

    2016-06-01

    This work provides a detailed derivation of a generalized quantum Fokker-Planck equation (GQFPE) appropriate for photo-induced quantum dynamical processes. The path integral method pioneered by Caldeira and Leggett (CL) [Physica A 121, 587 (1983)] is extended by utilizing a nonequilibrium influence functional applicable to different baths for the ground and the excited electronic states. Both nonequilibrium and non-Markovian effects are accounted for consistently by expanding the paths in the exponents of the influence functional up to the second order with respect to time. This procedure results in approximations involving only single time integrations for the exponents of the influence functional but with additional time dependent boundary terms that have been ignored in previous works. The boundary terms complicate the derivation of a time evolution equation but do not affect position dependent physical observables or the dynamics in the steady state limit. For an effective density operator with the boundary terms factored out, a time evolution equation is derived, through short time expansion of the effective action and Gaussian integration in analytically continued complex domain of space. This leads to a compact form of the GQFPE with time dependent kernels and additional terms, which renders the resulting equation to be in the Dekker form [Phys. Rep. 80, 1 (1981)]. Major terms of the equation are analyzed for the case of Ohmic spectral density with Drude cutoff, which shows that the new GQFPE satisfies the positive definiteness condition in medium to high temperature limit. Steady state limit of the GQFPE is shown to approach the well-known expression derived by CL in the high temperature and Markovian bath limit and also provides additional corrections due to quantum and non-Markovian effects of the bath.

  6. The nature of photoinduced changes in the magnetostriction of yttrium-iron garnet single crystals

    SciTech Connect

    Vorob'eva, N. V.

    2011-05-15

    A model of the occurrence of photoinduced changes in linear magnetostriction is proposed based on a complex experimental study of magnetostrictive strains in yttrium-iron garnets Y{sub 3}Fe{sub 5}O{sub 12} with low contents of different impurities. Analytical expressions for calculating the magnetostriction in yttrium-iron garnet single crystals with different types of doping are presented. The correlation of the photoinduced change in the magnetostriction with the crystallographic features of the samples is demonstrated. The changes in the magnetostriction constants are analyzed quantitatively for samples prepared in different ways.

  7. Qsars for photoinduced toxicity: 1. acute lethality of polycyclic aromatic hydrocarbons to daphnia magna'

    SciTech Connect

    Mekenyan, O.G.; Ankley, G.T.; Veith, G.D.; Call, D.J.

    1994-01-01

    Research with a variety of aquatic species has shown that while polycyclic aromatic hydrocarbons (PAHs) are generally not acutely toxic in conventional laboratory tests, many are extremely toxic in the presence of sunlight. In an effort to develop a model for predicting which PAHs may exhibit photo-induced toxicity, Newsted and Giesy (1987) reported a parabolic relationship between the toxicity and the energy of the triplet state of a variety of PAHs. The authors have reexamined these data and propose a more mechanistic explanation for the prediction of photo-induced PAH toxicity. They sought a molecular descriptor which could be computed from structure rather than measured empirically.

  8. Photoinduced phase transition and relaxation in bare SrTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Jin, K. X.; Luo, B. C.; Li, Y. F.; Chen, C. L.; Wu, T.

    2013-07-01

    The photoinduced insulator-metal phase transition and relaxation characteristics have been investigated in bare SrTiO3 single crystals. The photoinduced relaxation time constant after the irradiation shows an increase with increasing temperatures. The SrTiO3 single crystal has a cutoff wavelength and an absorption edge of spectrum at about 385 nm, which agrees well with the band gap. The photocurrent responsivity is 1.36 × 10-5 A/W at 300 nm wavelength. The relative change in resistance is more than above six orders at room temperature, possessing potential applications in ultraviolet sensitive and detecting devices.

  9. Spectropolarimetric investigation of the photoinduced dichroism and birefringence in malachite green/dichromated gelatin films

    NASA Astrophysics Data System (ADS)

    Markova, Bistra; Hristov, Boyan; Todorov, Todor; Nikolova, Ludmila; Stoilov, Georgi

    2009-06-01

    We report a spectropolarimetric investigation of the photoinduced anisotropy in dichromated gelatin films containing the dye malachite green. The investigation is done with a novel Spectral Stokesmeter which measures simultaneously and in real time (20 ms) the spectra of all the Stokes parameters of light in the spectral range 500-750 nm. This made it possible to measure not only the spectrum of the dichroism but also, for the first time to our knowledge, the spectrum of the photoinduced birefringence in these films. The results show that we can measure trustworthy dichroism larger than 0.02 and birefringence larger than 2 × 10-4.

  10. Photoinduced Magnetism, Dynamics, and Cluster Glass Behavior of a Molecule-Based Magnet

    NASA Astrophysics Data System (ADS)

    Pejaković, Dušan A.; Manson, Jamie L.; Miller, Joel S.; Epstein, Arthur J.

    2000-08-01

    The dynamic susceptibility study of photoinduced magnetism in a molecule-based magnet, K1-2xCo1+x[Fe\\(CN\\)6]˙yH2O \\(0.2<=x<=0.4,y~5\\), is reported. Upon excitation with visible light the material has substantial changes in linear and nonlinear ac susceptibility and dc magnetization. The results demonstrate cooperative freezing of magnetic moments and absence of true long-range magnetic order. The ground and photoexcited states are described within a cluster glass model, with photoinduced increase in spin concentration leading to a shift of the dynamics to longer length and time scales and higher temperatures.

  11. Photo-induced flip-flop of membrane markers monitored by SHG microscopy

    NASA Astrophysics Data System (ADS)

    Pons, Thomas; Mertz, Jerome

    2003-10-01

    Photoisomerization properties of amphiphilic stilbazolium markers are used to provoke photo-induced flip-flop in model lipid bilayer membranes. The flip-flop mechanism and dynamics are determined using simultaneous two-photon excited fluorescence and second harmonic generation microscopy. In absence of illumination, trans- is the dominant conformation, however when an illumination pulse is applied to the membrane markers, photo-induced isomerization provokes a significant increase in the cis- population, whose flip-flop rate was determined to be at least a thousand times greater than that for the trans- marker. Following the illumination pulse, all markers rapidly relax to the trans-conformation.

  12. Photoinduced dimerization of macrocyclic complexes mediated by a metal-assisted oxidation of the macrocycle

    SciTech Connect

    Ferraudi, G.; Muralidharan, S.

    1981-12-01

    The triplet state of benzophenone oxidizes Ni((14)aneN/sub 4//sup 2 +/ to a Ni(III) intermediate which subsequently produces the dimer of the complex as a product. The nature of the product was confirmed by structural studies. (Ni(13-At))/sup +/ reacts with the triplet of fluorenone and /sup 2/Estate of Cr(bpy)/sub 3//sup 3 +/ forming also a dimer in a reaction that involves different intermediates. Intermediates in the photoinduced oxidations of the macrocycles have been investigated by flash photolysis. The mechanism of the photoinduced oxidation is discussed in terms of the reported properties of the macrocycles.

  13. Photoinduced anisotropy of the refractive index of an azopolymer with liquid-crystal properties

    SciTech Connect

    Andreeva, M S; Shmalgauzen, V I

    2004-01-31

    The formation of a photoinduced refractive-index grating in a photosensitive azopolymer with liquid-crystal (LC) properties is theoretically studied. Equations for photoinduced additions to the refractive index of the LC and amorphous polymers are obtained from balance equations for the distribution densities of trans- and cis-isomers of azodyes. The frequency characteristics of the response of the refractive index to a harmonic perturbation are calculated for different values of the LC order parameter. (interaction of laser radiation with matter. laser plasma)

  14. Direct observation of a photoinduced nonstabilized nitrile imine structure in the solid state.

    PubMed

    Zheng, Shao-Liang; Wang, Yizhong; Yu, Zhipeng; Lin, Qing; Coppens, Philip

    2009-12-23

    We report the direct observation of a bent geometry for a nonstabilized nitrile imine in a metal-coordination crystal. The photoinduced tetrazole ring rupture to release N(2) appears to depend on the size of voids around the N(3)-N(4) bond in the crystal lattice. We further observed the selective formation of the 1,3-addition product when a reactive nitrile imine was photogenerated in water. Overall, the bent nitrile imine geometry agrees with the 1,3-dipolar structure, a transient reactive species that mediates the photoinduced 1,3-dipolar cycloaddition in the aqueous medium.

  15. CORRELATING ELECTRONIC AND VIBRATIONAL MOTIONS IN CHARGE TRANSFER SYSTEMS

    SciTech Connect

    Khalil, Munira

    2014-06-27

    The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.

  16. Synthesis of cyclobutane lignans via an organic single electron oxidant–electron relay system†

    PubMed Central

    Riener, Michelle; Nicewicz, David A.

    2013-01-01

    A direct method to synthesize lignan cyclobutanes and analogs via photoinduced electron transfer is presented. A variety of oxygenated alkenes are employed to furnish terminal or substituted cyclobutane adducts with complete regiocontrol, yielding cycloadducts with trans stereochemistry. Key to minimizing competing cycloreversion is the inclusion of an aromatic electron relay (ER). This method has been adapted to the synthesis of the natural products magnosalin and pellucidin A. PMID:24349680

  17. Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 production Based on Photoinduced Interfacial Charge Transfer

    PubMed Central

    Zhang, Zhenyi; Liu, Kuichao; Feng, Zhiqing; Bao, Yanan; Dong, Bin

    2016-01-01

    We have realized in-situ growth of ultrathin ZnIn2S4 nanosheets on the sheet-like g-C3N4 surfaces to construct a “sheet-on-sheet” hierarchical heterostructure. The as-synthesized ZnIn2S4/g-C3N4 heterojunction nanosheets exhibit remarkably enhancement on the photocatalytic activity for H2 production. This enhanced photoactivity is mainly attributed to the efficient interfacial transfer of photoinduced electrons and holes from g-C3N4 to ZnIn2S4 nanosheets, resulting in the decreased charge recombination on g-C3N4 nanosheets and the increased amount of photoinduced charge carriers in ZnIn2S4 nanosheets. Meanwhile, the increased surface-active-sites and extended light absorption of g-C3N4 nanosheets after the decoration of ZnIn2S4 nanosheets may also play a certain role for the enhancement of photocatalytic activity. Further investigations by the surface photovoltage spectroscopy and transient photoluminescence spectroscopy demonstrate that ZnIn2S4/g-C3N4 heterojunction nanosheets considerable boost the charge transfer efficiency, therefore improve the probability of photoinduced charge carriers to reach the photocatalysts surfaces for highly efficient H2 production. PMID:26753795

  18. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride. PMID:26491957

  19. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.

  20. Kinetics of a photoinduced NH tautomerism of free-base porphyrins in crystalline matrices at low temperatures: Computer simulations and experiment

    NASA Astrophysics Data System (ADS)

    Stanishevsky, I. V.; Solovyov, K. N.

    2004-03-01

    Photoinduced NH tautomerism, along with the reaction pathways of phototautomerization in tetrabenzoporphin and porphin free bases in n-octane polycrystalline matrices at 77 K, is studied by simulation of kinetic processes and their experimental observation. The simulation of the processes is performed by the numerical solution of the system of kinetic equations describing the populations of electronic levels and transitions between them. Kinetic dependences are obtained by measuring the perturbation of stationary fluorescence of one component of the 0-0 doublet origin upon pulsed selective photoexcitation of the other component. For two tautomeric forms related by the reversibility of the photochemical reaction, under the assumption of synchronism of the NH rearrangement, (i) analytical solutions governing the reaction rate are found, (ii) a method of measuring the rate constants of the proton rearrangement is suggested and the constants themselves are estimated, and (iii) direct evidence of the participation of T 1 levels in the photochemical reaction is obtained. With the aid of numerical simulations, the specific features of kinetic manifestation of an asynchronous mechanism of the photoinduced NH rearrangement are studied.

  1. Photo-induced oxidation and amorphization of trigonal tellurium: A means to engineer hybrid nanostructures and explore glass structure under spatial confinement

    SciTech Connect

    Vasileiadis, Thomas; Yannopoulos, Spyros N.

    2014-09-14

    Controlled photo-induced oxidation and amorphization of elemental trigonal tellurium are achieved by laser irradiation at optical wavelengths. These processes are monitored in situ by time-resolved Raman scattering and ex situ by electron microscopies. Ultrathin TeO₂ films form on Te surfaces, as a result of irradiation, with an interface layer of amorphous Te intervening between them. It is shown that irradiation, apart from enabling the controllable transformation of bulk Te to one-dimensional nanostructures, such as Te nanotubes and hybrid core-Te/sheath-TeO₂ nanowires, causes also a series of light-driven (athermal) phase transitions involving the crystallization of the amorphous TeO₂ layers and its transformation to a multiplicity of crystalline phases including the γ-, β-, and α-TeO₂ crystalline phases. The kinetics of the above photo-induced processes is investigated by Raman scattering at various laser fluences revealing exponential and non-exponential kinetics at low and high fluence, respectively. In addition, the formation of ultrathin (less than 10 nm) layers of amorphous TeO₂ offers the possibility to explore structural transitions in 2D glasses by observing changes in the short- and medium-range structural order induced by spatial confinement.

  2. Photoinduced, Copper-Catalyzed Carbon–Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature

    PubMed Central

    Ratani, Tanvi S.; Bachman, Shoshana; Fu, Gregory C.; Peters, Jonas C.

    2015-01-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C–N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C–C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand co-additive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2]− may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride. PMID:26491957

  3. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  4. Towards a 3D modelling of the microwave photo-induced load in CPW technology

    NASA Astrophysics Data System (ADS)

    Gary, Rene; Arnould, Jean-Daniel; Vilcot, Anne

    2005-09-01

    The optical control study works on both the optical and the microwave behaviours of the plasma photo-induced in the semiconductor enlightened by a laser beam. The presented study is based on the necessity to be able to foresee the microwave response of CPW microwave devices versus different optical powers and different kinds of optical fibers, single-mode or multimode. The optical part has been achieved analytically by solving the diffusion equation of photo-induced carriers using the Hankel transform in 3-Dimensions. The added value of this technique is its precision and fastness. For the electromagnetic part we have chosen to use CST Microwave Studio software, which solves numerically Maxwell's equations with a Finite Integration Technique (FIT). For this aim we have had to model the photo-induced load using the locally changed conductivity directly depending of the excess carriers distribution. In the final paper, the first part will deal with the analytical computation of the photo-induced excess carrier in silicon substrate using the Hankel transform under permanent enlightening. Then the explanation of the model will be based on the need of a 3-Dimension model that may be described in an electromagnetic software. Finally simulation results of simple CPW devices as stub will be compared to measurements. In conclusion, we will show that the model is suitable for designing more complex devices and that it can be simplified in case of low precision needs.

  5. EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOINDUCED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...

  6. Photo-induced cell damage analysis for multi-focus CARS microscopy

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Murakami, Yoshinori; Matsumura, Naokazu; Niioka, Hirohiko; Fukushima, Shuichiro; Araki, Tsutomu; Hashimoto, Mamoru

    2011-03-01

    We investigated photo-induced cell damage for multi-focus CARS (coherent anti-Stokes Raman scattering) microscopy. In general, using a near-infrared pulse light source, photo-induced damage is dominantly caused via multi-photon induced phenomena, and the peak power of the excitation light is limited for the non-invasive imaging. We obtained cell viability images during single- or multi-focus (7 foci) exposure of which wavelength and pulse duration were 709 nm and 5 ps. The laser power of one focal spot was respectively set to 27.8 mW and 14.5 mW for single- and multi-focus excitation because those excitation beams induce the comparable signals for third-order nonlinear phenomena. The cell viability was observed using DAPI fluorophore that mainly stains DNA of dead cells. As a result, we found that the single-focus excitation with 27.8 mW/spot caused cell damage within 6 min. In contrast, photo-induced damage was not detected until 20 min for the multi-focus excitation with 14.5 mW/spot and 7 foci. The results suggest that the photo-induced damage is a serious problem on the single-focus excitation, and the multi-focus excitation method is preferable for CARS imaging.

  7. Ultrafast photoinduced intramolecular charge separation and recombination processes in the oligothiophene-substituted benzene dyads with an amide spacer.

    PubMed

    Oseki, Yosuke; Fujitsuka, Mamoru; Cho, Dae Won; Sugimoto, Akira; Tojo, Sachiko; Majima, Tetsuro

    2005-10-20

    Photoinduced intramolecular charge separation (CS) and recombination (CR) processes of the tetrathiophene-substituted benzene dyads with an amide spacer (4T-PhR, R = 4-H (1), 4-CN (2), 3,4-(CN)2 (3), 4-NO2 (4), 3,5-(NO2)2 (5)) in solvents of different polarities were investigated using various fast spectroscopies. It was revealed that the CS rates depend on the ability of the acceptor and solvent polarity. Ultrafast CS with the rate of 5 x 10(12) s(-1) was revealed for 5 in PhCN and MeCN. The ultrafast CS can be attributed to the large electronic coupling matrix element between the donor and the acceptor despite the relative long donor-acceptor distance. The existence of the state with large electron density on the spacer between 14T*-PhR and LUMO should facilitate the CS process in the present dyad system. It was also revealed that the CR rates in these dyads were rather fast because of the enhanced superexchange interaction through the amide spacer.

  8. Photoinduced singlet charge transfer in a ruthenium(II) perylene-3,4:9,10-bis(dicarboximide) complex.

    PubMed

    Gunderson, Victoria L; Krieg, Elisha; Vagnini, Michael T; Iron, Mark A; Rybtchinski, Boris; Wasielewski, Michael R

    2011-06-16

    Elucidation of photoinduced charge transfer behavior in organic dye/metal hybrids is important for developing photocatalytic systems for solar energy conversion. We report the synthesis and photophysical characterization of a perylene-3,4:9,10-bis(dicarboximide) (PDI)-ruthenium(II) complex, bis-PDI-2,2'-bipyridineRu(II)Cl(2)(CN(t)butyl)(2), which has favorable energetics, ΔG(CS) ≈ -1.0 eV, for singlet electron transfer from the Ru complex to PDI. Time-resolved optical spectroscopy reveals that upon selective photoexcitation of PDI, ultrafast charge transfer (<150 fs) from the Ru complex to (1*)PDI generates the Ru(III)-PDI(-•) ion pair. The resulting vibrationally hot Ru(III)-PDI(-•) ion pair exhibits fast relaxation (τ = 3.9 ps) and charge recombination (τ(CR) = 63 ps). Our experimental and computational (DFT and TDDFT) studies show that energy-preserving photodriven singlet electron transfer can dominate in properly designed organic dye/metal complexes, making them of particular interest for use in artificial photosynthetic systems for solar fuels formation. PMID:21598951

  9. Photoinduced electron-transfer processes based on novel bipyridine-Ru(II) complex: properties of cis-[Ru(2,2'-bipyridine)2(5,6-bis(3-amidopyridine)-7-oxanorbornene)](PF6)2 and cis-[Ru(2,2'-bipyridine)2(3-aminopyridine)2](PF6)2 complexes.

    PubMed

    Inglez, Simone D; Lima, Francisco C A; Silva, Albérico B F; Simioni, Andreza R; Tedesco, Antônio C; Daniel, Juliana F S; Lima-Neto, Benedito S; Carlos, Rose M

    2007-07-01

    This paper presents the synthesis, MO calculations, and photochemical and photophysical properties of cis-[Ru(bpy)2(3Amdpy2oxaNBE)](PF6)2 (2), where bpy is 2,2'-bipyridine and 3Amdpy2oxaNBE is the novel 5,6-bis(3-amidopyridine)-7-oxanorbornene chelate-ligand (1). Complex 2 is considered in relation to the cis-[Ru(bpy)2(3Amnpy)2](PF6)2 (3) analogous complex, where 3Amnpy is 3-aminopyridine. Complexes 2 and 3 exhibit absorptions near 350 nm and in the 420-500 nm region attributable to a contribution from MLCT transitions (dpi-->bpy and dpi-->L; L=3Amdpy2oxaNBE or 3Amnpy). Whereas complex 3 is photochemically reactive, complex 2 shows luminescence either at 77 K or at room temperature in fluid solution. The emission of 2 assignable as an MLCT (Ru-->bpy) emission is characterized by a long lifetime at room temperature (650 ns in CH3CN and 509 ns in H2O). It is independent of lambdairr, but it is temperature dependent; i.e., it increases as the temperature is lowered. Considering the chelate ring of 1 contributes to the stability of the complex 2 under continuous light irradiation, the difference in the primary photoprocesses of 3 (loss of 3Amnpy) and 2 (luminescence) may be caused by a lowering of the lowest excited state from 3 to 2. The surface crossing to the lowest MC state value of 987 cm-1 (similar to that of [Ru(bpy)3]2+) will be prevented in the case of complex 2, and as a result, efficient 3Amdpy moiety loss cannot occur. The electronic depopulation of the {Ru(bpy)2} unit and population of a bpy* orbital upon excitation are evident by comparing the photophysical properties with those of a [Ru(bpy)3]2+ related complex. Moreover, a reduction of a bpy ligand in the MLCT excited state is indicated by time-resolved spectra that show features typical of bpy*-. The photocatalytic property of 2 is spectroscopically demonstrated by oxidative quenching using either methylviologen2+ or [RuCl(NH3)5]+2 electron-acceptor ions. PMID:17566998

  10. Temperature-dependent photoinduced third-harmonic-generation variation in azo-homopolymer and azo-doped polymer thin films

    NASA Astrophysics Data System (ADS)

    Hsu, Chia-Chen; Lin, Jian-Hung; Huang, Tzer-Hsiang; Harada, Kenji

    2003-04-01

    The temperature effect on the variation of photoinduced third-harmonic generation (THG) of an azo-polyurethane homopolymer and an azo guest-host polymer is studied at several different temperatures. At higher temperatures, both angular hole burning and molecule angular redistribution motions weaken, due to the decreases of cis-to-trans thermal relaxation time and the cis population and the increase of orientational diffusion coefficient. Smaller photoinduced THG variation is observed in both samples at higher temperatures. Results from the THG recovery experiment show that polyurethane homopolymer thin films pumped at a high temperature have the best photoinduced THG variation stability after turning off the pump beam.

  11. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    SciTech Connect

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  12. Final Report on project Photoinduced Dipoles and Charge Pairs in Condensed Media

    SciTech Connect

    Braun, Charles L.

    2006-09-27

    Most of our work involves photogenerated donor (D+) and acceptor (A-) radical ion pairs and their escape and recombination. The geminate radical ions are produced by inter or intramolecular electron transfer quenching of photoexcited acceptors. We made great progress in understanding the effect of charge separation distance and other factors on free ion formation. For geminate radical ion pairs formed by intermolecular electron transfer quenching, we found that, at least in a medium polarity solvent lilce dichloromethane, free radical ions are mainly formed from solvent separated radical ion pairs (SSRIPs). Contact radical ion pairs (CRIPs) make a very small contribution to free radical ion formation. It is observed that CRIPs and SSRIPs are kinetically distinguishable species. There is a potential barrier between CRIPs and SSRIPs that prevents a fast equilibrium between the two during the recombination of radical ion pairs and free radical ion formation. We confirmed for the first time that, for the recombination of both CRIPs and SSRIPs that are in the Marcus inverted region, rate constants of SSRIPs are larger than those of CRIPs. Our study indicates that initial charge separation distance and the potential barrier between CRIPs and SSRIPs play a more important role than recombination rate on free ion formation. Temperature dependence experiments reveal that through-tunneling back electron transfer is the dominant approach for the SSRIP recombination process. We believe that our discovery of the roles played by the initial charge separation distance and the potential barrier between radical ion pairs of different separation have very important implications for the development of new concepts for the design of organic photovoltaic (OPV) cells. Photoinduced transient dipole experiments are used to probe the effective charge separation distance of flexible electron donor/acceptor systems, D-(CH2)n-A, where D is 4-N-N-dimethylaniline, A is 9-anthryl and n=3, 4. We

  13. Acute photo-induced toxicity and toxicokinetics of single compounds and mixtures of polycyclic aromatic hydrocarbons in zebrafish.

    PubMed

    Willis, Alison M; Oris, James T

    2014-09-01

    The present study examined photo-induced toxicity and toxicokinetics for acute exposure to selected polycyclic aromatic hydrocarbons (PAHs) in zebrafish. Photo-enhanced toxicity from co-exposure to ultraviolet (UV) radiation and PAHs enhanced the toxicity and exhibited toxic effects at PAH concentrations orders of magnitude below effects observed in the absence of UV. Because environmental exposure to PAHs is usually in the form of complex mixtures, the present study examined the photo-induced toxicity of both single compounds and mixtures of PAHs. In a sensitive larval life stage of zebrafish, acute photo-induced median lethal concentrations (LC50s) were derived for 4 PAHs (anthracene, pyrene, carbazole, and phenanthrene) to examine the hypothesis that phototoxic (anthracene and pyrene) and nonphototoxic (carbazole and phenanthrene) pathways of mixtures could be predicted from single exposures. Anthracene and pyrene were phototoxic as predicted; however, carbazole exhibited moderate photo-induced toxicity and phenanthrene exhibited weak photo-induced toxicity. The toxicity of each chemical alone was used to compare the toxicity of mixtures in binary, tertiary, and quaternary combinations of these PAHs, and a predictive model for environmental mixtures was generated. The results indicated that the acute toxicity of PAH mixtures was additive in phototoxic scenarios, regardless of the magnitude of photo-enhancement. Based on PAH concentrations found in water and circumstances of high UV dose to aquatic systems, there exists potential risk of photo-induced toxicity to aquatic organisms.

  14. Biophysical adaptation of the theory of photo-induced phase transition: model of cooperative gating of cardiac ryanodine receptors

    NASA Astrophysics Data System (ADS)

    Moskvin, A. S.; Philipiev, M. P.; Solovyova, O. E.; Markhasin, V. S.

    2005-01-01

    Theory of photo-induced phase transitions has been adapted to describe the cooperative dynamics of the lattice of ryanodine receptors/channels (RyR) in cardiac muscle which regulate the release of the intracellular activator calcium from calcium stores in the sarcoplasmic reticulum (SR) by a process of Ca2+-induced Ca2+ release (CICR). We introduce two main degrees of freedom for RyR channel, fast electronic and slow conformational ones. The RyR lattice response to the L-type channel triggering evolves due to a nucleation process with a step-by-step domino-like opening of RyR channels. Typical mode of RyR lattice functioning in a CICR process implies the fractional release with a robust termination due to the depletion of SR with a respective change in effective conformational strain. The SR overload leads to an unconventional auto-oscillation regime with a spontaneous calcium release. The model is believed to consistently describe the main features of CICR, that is its gradedness, coupled gating, irreversibility, inactivation/adaptation, and spark termination.

  15. Photoinduced interactions of supramolecular ruthenium(II) complexes with plasmid DNA: synthesis and spectroscopic, electrochemical, and DNA photocleavage studies.

    PubMed

    Swavey, Shawn; DeBeer, Madeleine; Li, Kaiyu

    2015-04-01

    Two new bridging ligands have been synthesized by combining substituted benzaldehydes with phenanthrolinopyrrole (php), resulting in new polyazine bridging ligands. The ligands have been characterized by (1)H NMR, mass spectroscopy, and elemental analysis. These new ligands display π-π* transitions above 500 nm with modest molar absorptivities. Upon excitation at the ligand-centered charge-transfer transition, weak emission with a maximum wavelength of 612 nm is observed. When coordinated to two ruthenium(II) bis(bipyridyl) groups, the new bimetallic complexes generated give an overall 4+ charge. The electronic transitions of the bimetallic ruthenium(II) complexes display traditional π-π* transitions at 287 nm and metal-to-ligand charge-transfer transitions at 452 nm with molar absorptivities greater than 30000 M(-1) cm(-1). Oxidation of the ruthenium(II) metal centers to ruthenium(III) occurs at potentials above 1.4 V versus the Ag/AgCl reference electrode. Spectroscopic and electrochemical measurements indicate that the ruthenium(II) moieties behave independently. Both complexes are water-soluble and show the ability to photonick plasmid DNA when irradiated with low-energy light above 550 nm. In addition, one of the complexes, [Ru(bpy)2php]2Van(4+), shows the ability to linearize plasmid DNA and gives evidence, by gel electrophoresis, of photoinduced binding to plasmid DNA. PMID:25798576

  16. Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

    PubMed Central

    2014-01-01

    Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054

  17. Direct Observation of Cascade of Photoinduced Ultrafast Intramolecular Charge Transfer Dynamics in Diphenyl Acetylene Derivatives: Via Solvation and Intramolecular Relaxation.

    PubMed

    Karunakaran, Venugopal; Das, Suresh

    2016-07-21

    Interaction of light with electron donor-acceptor π-conjugated systems leading to intramolecular charge transfer (ICT) plays an essential role in transformation of light energy. Here the cascade of photoinduced ICT processes is directly observed by investigating the excited state relaxation dynamics of cyano and mono/di methoxy substituted diphenyl acetylene derivatives using femtosecond pump-probe spectroscopy and nanosecond laser flash photolysis. The femtosecond transient absorption spectra of the chromophores upon ultrafast excitation reveal the dynamics of intermediates involved in transition from initially populated Frank-Condon state to local excited state (LE). It also provides the dynamic details of the transition from the LE to the charge transfer state yielding the formation of the radical ions. Finally, the charge transfer state decays to the triplet state by geminate charge recombination. The latter dynamics are observed in the nanosecond transient absorption spectra. It is found that excited state relaxation pathways are controlled by different stages of solvation and intramolecular relaxation depending on the solvent polarity. The twisted ICT state is more stabilized (978 ps) in acetonitrile than cyclohexane where major components of transient absorption originate from the S1 state. PMID:27347705

  18. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid

    SciTech Connect

    Tang, Yu; Pattengale, Brian A.; Ludwig, John M.; Atifi, Abderrahman; Zinovev, Alexander V.; Dong, Bin; Kong, Qingyu; Zuo, Xiaobing; Zhang, Xiaoyi; Huang, Jier

    2015-12-17

    We report that Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complex to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (>>50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA.

  19. Photoinduced hydrogen evolution in supramolecular devices with a rhenium photosensitizer linked to FeFe-hydrogenase model complexes.

    PubMed

    Liu, Jianhui; Jiang, Weina

    2012-08-28

    Coordination of the pyridyl-attached diiron azadithiolate hexacarbonyl complexes (2 and 3) through the pyridyl nitrogen to the Re on 10-phenanthroline rhenium (5a) and 2,9-diphenyl-1,10-phenanthroline rhenium (5b) forms novel [Re-Fe] complexes 7a, 7b and 8 respectively. Under visible light illumination using triethylamine as a sacrificial electron donor and [Re-Fe] type complexes (7a, 7b or 8) as catalysts, remarkably increased efficiency was observed for photoinduced hydrogen production with a turnover number reaching 11.8 from complex 7a and 8.75 from 7b. To the best of our knowledge, these are the best values compared to other [Re-Fe] photocatalysts reported so far. In contrast to the parent molecules, the turnover number by the intermolecular combination of complexes 6a and 2 showed a value of 5.23, and that from 6b and 2 is 3.8, while no H(2) was detected from 8a and 3 under the same experimental conditions. Obviously, the intramolecular combination of rhenium(I) and [2Fe2S] as a catalyst is promising for efficient H(2) evolution, and it is better than the intermolecular multi-component system.

  20. Photoinduced carrier generation and decay dynamics in intercalated and non-intercalated polymer:fullerene bulk heterojunctions.

    PubMed

    Rance, William L; Ferguson, Andrew J; McCarthy-Ward, Thomas; Heeney, Martin; Ginley, David S; Olson, Dana C; Rumbles, Garry; Kopidakis, Nikos

    2011-07-26

    The dependence of photoinduced carrier generation and decay on donor-acceptor nanomorphology is reported as a function of composition for blends of the polymer poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT-C(14)) with two electron-accepting fullerenes: phenyl-C(71)-butyric acid methyl ester (PC(71)BM) or the bisadduct of phenyl-C(61)-butyric acid methyl ester (bis-PC(61)BM). The formation of partially or fully intercalated bimolecular crystals at weight ratios up to 1:1 for pBTTT-C(14):PC(71)BM blends leads to efficient exciton quenching due to a combination of static and dynamic mechanisms. At higher fullerene loadings, pure PC(71)BM domains are formed that result in an enhanced free carrier lifetime, as a consequence of spatial separation of the electron and hole into different phases, and the dominant contribution to the photoconductance comes from the high-frequency electron mobility in the fullerene clusters. In the pBTTT-C(14):bis-PC(61)BM system, phase separation results in a non-intercalated structure, independent of composition, which is characterized by exciton quenching that is dominated by a dynamic process, an enhanced carrier lifetime and a hole-dominated photoconductance signal. The results indicate that intercalation of fullerene into crystalline polymer domains is not detrimental to the density of long-lived carriers, suggesting that efficient organic photovoltaic devices could be fabricated that incorporate intercalated structures, provided that an additional pure fullerene phase is present for charge extraction.

  1. Chemiluminescence from UVA-exposed skin: separating photo-induced chemiluminescence from photophysical light emission.

    PubMed

    Millington, Keith R; Jones, Leslie N; Sinclair, Rodney D

    2012-09-01

    Several previous studies have reported luminescence emission from skin following exposure to UVA radiation in air. We show that UVA irradiation of biomaterials and polymers in oxygen, including bovine stratum corneum, followed by photon counting results in a complex emission due to a combination of photophysical processes together with photo-induced chemiluminescence (PICL). The photophysical processes include fluorescence, phosphorescence and charge-recombination luminescence. By irradiating materials in an inert atmosphere such as nitrogen and allowing photophysical light emission to fully decay before admitting oxygen, the weak photo-induced chemiluminescence generated via free radical reactions with oxygen can be separated and analysed. PICL emission from bovine stratum corneum is weaker than for wool keratin and bovine skin collagen, probably due to its higher water content, and the presence of the natural antioxidants ascorbate and tocopherol.

  2. Unraveling the Mechanism of Photoinduced Charge Transfer in Carotenoid-Porphyrin-C60 Molecular Triad.

    PubMed

    Manna, Arun K; Balamurugan, D; Cheung, Margaret S; Dunietz, Barry D

    2015-04-01

    Photoinduced charge transfer (CT) plays a central role in biologically significant systems and in applications that harvest solar energy. We investigate the relationship of CT kinetics and conformation in a molecular triad. The triad, consisting of carotenoid, porphyrin, and fullerene is structurally flexible and able to acquire significantly varied conformations under ambient conditions. With an integrated approach of quantum calculations and molecular dynamics simulations, we compute the rate of CT at two distinctive conformations. The linearly extended conformation, in which the donor (carotenoid) and the acceptor (fullerene) are separated by nearly 50 Å, enables charge separation through a sequential CT process. A representative bent conformation that is entropically dominant, however, attenuates the CT, although the donor and the acceptor are spatially closer. Our computed rate of CT at the linear conformation is in good agreement with measured values. Our work provides unique fundamental understanding of the photoinduced CT process in the molecular triad.

  3. Photoinduced transformation of UVR8 monitored by vibrational and fluorescence spectroscopy.

    PubMed

    Heilmann, Monika; Christie, John M; Kennis, John T M; Jenkins, Gareth I; Mathes, Tilo

    2015-02-01

    Tryptophan residues at the dimer interface of the plant photoreceptor UVR8 promote monomerisation after UV-B absorption via a so far unknown mechanism. Using FTIR spectroscopy we assign light-induced structural transitions of UVR8 mainly to amino acid side chains without major transformations of the secondary structure of the physiologically relevant C-terminal extension. Additionally, we assign the monomerisation associated increase and red shift of the UVR8 tryptophan emission to a photoinduced rearrangement of tryptophan side chains and a relocation of the aspartic acid residues D96 and D107, respectively. By illumination dependent emission spectroscopy we furthermore determined the quantum yield of photoinduced monomerisation to 20 ± 8%.

  4. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    NASA Astrophysics Data System (ADS)

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-02-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures.

  5. Temperature dependence of the photoinduced anisotropy in chalcogenide glasses: Activation energies and their interpretation

    NASA Astrophysics Data System (ADS)

    Tikhomirov, V. K.; Adriaenssens, G. J.; Elliott, S. R.

    1997-01-01

    Three distinct regions have been observed in the measured temperature dependence of photoinduced anisotropy in chalcogenide glasses (Se and AsSe). At high temperatures the relaxation of the induced anisotropy is governed by an Arrhenius law with a change of activation energy at the glass-transition temperature Tg (thus suggesting a method for detection of Tg in glasses). Conversely, the low-temperature relaxation is not thermally activated. These observations are explained by introducing a triple-well configurational diagram for the valence-alternation pairs (VAP's) and their environments, which are believed to be responsible. A transient neutral state connects two (initial and final) charged states of the VAP's. A symmetry reversal of the pyramid centered at an overcoordinated chalcogen atom is suggested as a microscopic mechanism for the photoinduced anisotropy.

  6. The photoinduced birefringence and mass transport in azo compound K-D-2

    NASA Astrophysics Data System (ADS)

    Klismeta, K.; Teteris, J.

    2015-06-01

    Azobenzene containing compounds are among light polarization sensitive materials - the moieties may align relative to the electric field vector of light, leading to anisotropy and birefringence in the sample. Another phenomenon which can be observed in azo compounds under influence of light is macroscopic movement of the material. In this work photoinduced processes in low molecular weight organic glass - bis-azobenzene containing compound K-D-2 were experimentally studied. Birefringence was induced with linearly polarized laser light (473, 532 and 635 nm) and measured at 633 nm wavelength. Polarization holography with recording beam configuration +45°/-45° was used to induce mass motion. Dependence of the surface relief depth on the recording laser wavelength in the visible spectrum (375 - 671 nm) was obtained. Formation of the SRG was observed with all used wavelengths and high birefringence values were obtained. Certain correlation between the absorption of the wavelength and photoinduced mass transport and birefringence is yet to be confirmed.

  7. Photo-induced Modulation Doping in Graphene/Boron nitride Heterostructures

    NASA Astrophysics Data System (ADS)

    Velasco, Jairo, Jr.; Ju, Long; Hwang, Edwin; Kahn, Salman; Nosiglia, Casey; Tsai, Hsin-Zon; Yang, Wei; Zhang, Guangyu; Taniguchi, Takashi; Watanabe, Kenji; Zhang, Yuanbo; Crommie, Michael; Zettl, Alex; Wang, Feng

    2014-03-01

    Van der Waals heterostructures (VDH) provide an exciting new platform for materials engineering, where a variety of layered materials with different electrical, optical and mechanical responses can be stacked together to enable new physics and novel functionalities. We report an emerging optoelectronic phenomenon (i.e. photo-induced modulation doping) in the graphene-boron nitride VDH (G/BN heterostructure). We find it enables flexible and repeatable writing and erasing of charge doping in graphene with optical light. We show that the photo-induced modulation doping maintains the remarkable carrier mobility of the G/BN heterostructure, and it can be used to generate spatially varying doping profiles like pn junctions. Our work contributes towards understanding light matter interactions in VDHs, and introduces a simple technique for creating inhomogeneous doping in high mobility graphene devices. J. Velasco Jr. acknowledges support from UC President's Postdoctoral Fellowship.

  8. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    PubMed

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-01

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated. PMID:25187982

  9. A bifunctional amorphous polymer exhibiting equal linear and circular photoinduced birefringences.

    PubMed

    Royes, Jorge; Provenzano, Clementina; Pagliusi, Pasquale; Tejedor, Rosa M; Piñol, Milagros; Oriol, Luis

    2014-11-01

    The large and reversible photoinduced linear and circular birefringences in azo-compounds are at the basis of the interest in these materials, which are potentially useful for several applications. Since the onset of the linear and circular anisotropies relies on orientational processes, which typically occur on the molecular and supramolecular length scale, respectively, a circular birefringence at least one order of magnitude lower than the linear one is usually observed. Here, the synthesis and characterization of an amorphous polymer with a dimeric repeating unit containing a cyanoazobenzene and a cyanobiphenyl moiety are reported, in which identical optical linear and circular birefringences are induced for proper light dose and ellipticity. A pump-probe technique and an analytical method based on the Stokes-Mueller formalism are used to investigate the photoinduced effects and to evaluate the anisotropies. The peculiar photoresponse of the polymer makes it a good candidate for applications in smart functional devices. PMID:25257542

  10. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    PubMed Central

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-01-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures. PMID:26891851

  11. Photolabile Amphiphiles with Fluorogenic Thioxanthone-Dithiane Functionality: Synthesis and Photoinduced Fragmentation in Micelles

    PubMed Central

    Ezhov, Roman N.; Rozhkov, Vladimir V.; Majjigapu, Janaki R. R.

    2014-01-01

    Novel photolabile amphiphiles containing thioxanthone-based fluorogenic caging groups are developed. Photoinduced fragmentation in dithiane-thioxanthone adducts was demonstrated to occur with 100% quantum efficiency at λ ~ 320 nm and more than 50% at λ ~ 360 nm. A plausible mechanism involves homolytic fission of a carbon-carbon single bond in the excited thioxanthone followed by disproportionation via hydrogen transfer. The critical feature of the system is that fluorescence of a substituted thioxanthone is recovered as a result of photofragmentation, making dithiane-thioxanthone adducts efficient fluorogenic caging groups. Photolabile amphiphiles containing these fluorogens are synthesized and their photoinduced disassembly is probed while following the fluorescence recovery. This methodology allows for destabilizing supramolecular assemblies of amphiphiles and at the same time offers a feedback mechanism for monitoring the process by fluorescence. PMID:24436724

  12. Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers.

    PubMed

    Liou, Jia-hong; Chang, Tin-hao; Lin, Ta; Yu, Chin-ping

    2011-03-28

    A novel light-controllable long-period fiber grating (LPFG) is demonstrated by making use of a PCF infiltrated with a photoresponsive liquid crystal (LC) mixture consisting of nematic LC molecules and light-sensitive 4-methoxyazobenzene (4MAB). With the aid of the photo-induced isomerization of 4MAB, the refractive index of the LC mixture can be modulated and the periodic index perturbation along the fiber can be achieved by exposing the PCF to a blue laser through a mask. The resonance wavelength and dip depth of the LPFG can be controlled by using different blue-laser irradiation time, numbers of period, and 4MAB concentrations. In addition, the photo-induced LPFG is erasable under green-laser illumination. PMID:21451702

  13. Stochastic model for photoinduced surface relief grating formation through molecular transport in polymer films.

    SciTech Connect

    Juan, M.; Plain, J.; Bachelot, R.; Royer, P.; Gray, S. K.; Wiederrecht, G. P.; Univ. de Technologie de Troyes

    2008-09-01

    We use a stochastic model to study photoinduced surface relief grating (SRG) formation due to molecular transport in azobenzene polymer films. The model is shown to reproduce the essential experimental features of SRG formation. In particular, it predicts SRG formation under both p and s polarizations, and the double peaked topographies that can occur at early times of the process. The evolving molecular positions and orientations during exposure are also followed, providing a useful mechanistic picture of SRG dynamics.

  14. Stochastic model for photoinduced surface relief grating formation through molecular transport in polymer films

    SciTech Connect

    Juan, M. L.; Plain, J.; Bachelot, R.; Royer, P.; Gray, S. K.; Wiederrecht, G. P.

    2008-10-13

    We use a stochastic model to study photoinduced surface relief grating (SRG) formation due to molecular transport in azobenzene polymer films. The model is shown to reproduce the essential experimental features of SRG formation. In particular, it predicts SRG formation under both p and s polarizations, and the double peaked topographies that can occur at early times of the process. The evolving molecular positions and orientations during exposure are also followed, providing a useful mechanistic picture of SRG dynamics.

  15. Procedure for quantitative determination of effectiveness of photoinduced destruction of malignant tumors

    NASA Astrophysics Data System (ADS)

    Bizyuk, S. A.; Istomin, Yu. P.; Dzhagarov, B. M.

    2006-07-01

    We have developed a procedure for analysis of the functional status of blood vessels in tumor tissues using computer-assisted color scanning of tumor slices and also for a quantitative assessment of the effectiveness of photoinduced destruction of tumor tissues in animal experiments. Its major advantage is direct determination of the size of the tumor necrosis zone. The procedure has been tested in an experiment on three strains of malignant tumors with different morphologies.

  16. Surface Grafting via Photo-Induced Copper-Mediated Radical Polymerization at Extremely Low Catalyst Concentrations.

    PubMed

    Laun, Joachim; Vorobii, Mariia; de los Santos Pereira, Andres; Pop-Georgievski, Ognen; Trouillet, Vanessa; Welle, Alexander; Barner-Kowollik, Christopher; Rodriguez-Emmenegger, Cesar; Junkers, Thomas

    2015-09-01

    Surface-initiated photo-induced copper-mediated radical polymerization is employed to graft a wide range of polyacrylate brushes from silicon substrates at extremely low catalyst concentrations. This is the first time that the controlled nature of the reported process is demonstrated via block copolymer formation and re-initiation experiments. In addition to unmatched copper catalyst concentrations in the range of few ppb, film thicknesses up to almost 1 μm are achieved within only 1 h.

  17. Surface Grafting via Photo-Induced Copper-Mediated Radical Polymerization at Extremely Low Catalyst Concentrations.

    PubMed

    Laun, Joachim; Vorobii, Mariia; de los Santos Pereira, Andres; Pop-Georgievski, Ognen; Trouillet, Vanessa; Welle, Alexander; Barner-Kowollik, Christopher; Rodriguez-Emmenegger, Cesar; Junkers, Thomas

    2015-09-01

    Surface-initiated photo-induced copper-mediated radical polymerization is employed to graft a wide range of polyacrylate brushes from silicon substrates at extremely low catalyst concentrations. This is the first time that the controlled nature of the reported process is demonstrated via block copolymer formation and re-initiation experiments. In addition to unmatched copper catalyst concentrations in the range of few ppb, film thicknesses up to almost 1 μm are achieved within only 1 h. PMID:26149622

  18. Photoinduced interfacial electron transfer and lateral charge transport in molecular donor-acceptor photovoltaic systems.

    PubMed

    Punzi, Angela; Brauer, Jan C; Marchioro, Arianna; Ghadiri, Elham; de Jonghe, Jelissa; Moser, Jacques E

    2011-01-01

    Nanostructured liquid/solid and solid/solid bulk heterojunctions designed for the conversion of solar energy offer ideal models for the investigation of light-induced ET dynamics at surfaces. Despite significant study of processes leading to charge generation in third-generation solar cells, a conclusive picture of the photophysics of these photovoltaic converters is still missing. More specifically searched is the link between the molecular structure of the interface and the kinetics of surface photoredox reactions. Fundamental scientific issues in this field are addressed by the research project undertaken in the frame of the NCCR MUST endeavor, an outline of which is given here.

  19. Copper catalyst activation driven by photoinduced electron transfer: a prototype photolatent click catalyst.

    PubMed

    Harmand, Lydie; Cadet, Sarah; Kauffmann, Brice; Scarpantonio, Luca; Batat, Pinar; Jonusauskas, Gediminas; McClenaghan, Nathan D; Lastécouères, Dominique; Vincent, Jean-Marc

    2012-07-16

    PET cat. While the copper(II) tren ketoprofenate precatalyst 1 (see picture) is inactive at room temperature in methanol, it is quantitatively and rapidly reduced to its cuprous state upon light irradiation to provide a highly reactive click catalyst. By simply introducing air into the reaction medium the catalysis can be switched off and then switched on again by bubbling argon followed by irradiation. PMID:22777953

  20. Capturing ultrafast photoinduced local structural distortions of BiFeO3

    PubMed Central

    Wen, Haidan; Sassi, Michel; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell G.; Rosso, Kevin M.; Zhang, Xiaoyi

    2015-01-01

    The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials. PMID:26463128

  1. Capturing ultrafast photoinduced local structural distortions of BiFeO3

    DOE PAGESBeta

    Wen, Haidan; Sassi, Michel JPC; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell; Rosso, Kevin M.; Zhang, Xiaoyi

    2015-10-14

    The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by themore » in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This uniaxial elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated nonequilibrium processes in polar materials.« less

  2. Capturing ultrafast photoinduced local structural distortions of BiFeO3

    NASA Astrophysics Data System (ADS)

    Wen, Haidan; Sassi, Michel; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell G.; Rosso, Kevin M.; Zhang, Xiaoyi

    2015-10-01

    The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials.

  3. Capturing ultrafast photoinduced local structural distortions of BiFeO3

    SciTech Connect

    Wen, Haidan; Sassi, Michel JPC; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell; Rosso, Kevin M.; Zhang, Xiaoyi

    2015-10-14

    The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This uniaxial elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated nonequilibrium processes in polar materials.

  4. Photo-induced toxicity of Deepwater Horizon slick oil to blue crab (Callinectes sapidus) larvae.

    PubMed

    Alloy, Matthew M; Boube, Idrissa; Griffitt, Robert J; Oris, James T; Roberts, Aaron P

    2015-09-01

    The 2010 Deepwater Horizon oil spill resulted in the accidental release of approximately 700 million L of crude oil into the Gulf of Mexico. Photo-induced toxicity after co-exposure to ultraviolet (UV) radiation is 1 mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Blue crab are an important commercial and ecological resource in the Gulf of Mexico, and their largely transparent larvae may make them sensitive to PAH photo-induced toxicity. The goal of the present study was to examine the sensitivity of early lifestage blue crab (Callinectes sapidus) zoea to slick oil collected during the Deepwater Horizon spill. Blue crab zoea were exposed to 1 of several dilutions of water accommodated fractions from 1 of 2 sources of oil and gradations of natural sunlight in a factorial design. Two 7-h solar exposures were carried out with a recovery period (dark) in between. Survival was found to be UV- and PAH-dependent. Toxicity was observed within the range of surface PAH concentrations reported in the Gulf of Mexico during the Deepwater Horizon spill. These findings indicate that early lifestage blue crab are sensitive to photo-induced toxicity from Deepwater Horizon slick oil. PMID:26198885

  5. Photo-induced toxicity of Deepwater Horizon slick oil to blue crab (Callinectes sapidus) larvae.

    PubMed

    Alloy, Matthew M; Boube, Idrissa; Griffitt, Robert J; Oris, James T; Roberts, Aaron P

    2015-09-01

    The 2010 Deepwater Horizon oil spill resulted in the accidental release of approximately 700 million L of crude oil into the Gulf of Mexico. Photo-induced toxicity after co-exposure to ultraviolet (UV) radiation is 1 mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Blue crab are an important commercial and ecological resource in the Gulf of Mexico, and their largely transparent larvae may make them sensitive to PAH photo-induced toxicity. The goal of the present study was to examine the sensitivity of early lifestage blue crab (Callinectes sapidus) zoea to slick oil collected during the Deepwater Horizon spill. Blue crab zoea were exposed to 1 of several dilutions of water accommodated fractions from 1 of 2 sources of oil and gradations of natural sunlight in a factorial design. Two 7-h solar exposures were carried out with a recovery period (dark) in between. Survival was found to be UV- and PAH-dependent. Toxicity was observed within the range of surface PAH concentrations reported in the Gulf of Mexico during the Deepwater Horizon spill. These findings indicate that early lifestage blue crab are sensitive to photo-induced toxicity from Deepwater Horizon slick oil.

  6. Spacer parity dependence of photoinduced effects in liquid-crystalline dimers

    NASA Astrophysics Data System (ADS)

    Prasad, S. Krishna; Sandhya, K. L.; Nair, Geetha G.; Hiremath, Uma S.; Yelamaggad, C. V.

    2002-07-01

    Liquid crystals composed of photoactive groups like azobenzene are promising materials for optical switching and image storage applications. When exposed to ultraviolet radiation, such materials are known to induce a transition from a liquid-crystalline nematic phase, in which the azo molecules are in the trans form to an isotropic liquid phase when the azo molecules take the cis form. We report the observation of the influence of the parity and length of the flexible spacer of photoactive liquid-crystalline dimers in a guest host system on the photoinduced nematic-isotropic transition. A remarkable feature observed is that in this system, in which the guest dimers are present only in a small concentration (4.8 weight %) the odd-even parity of the spacer results in a striking alternation of the magnitude of the photoinduced shift in the nematic-isotropic transition temperature. Further, it is demonstrated that the shape of the photoactive molecule in its all-trans configuration can be used as a convenient tool to control the photoinduced shift in the nematic-isotropic transition temperature.

  7. Photoinduced Disaggregation of TiO2 Nanoparticles Enables Transdermal Penetration

    PubMed Central

    Bennett, Samuel W.; Zhou, Dongxu; Mielke, Randall; Keller, Arturo A.

    2012-01-01

    Under many aqueous conditions, metal oxide nanoparticles attract other nanoparticles and grow into fractal aggregates as the result of a balance between electrostatic and Van Der Waals interactions. Although particle coagulation has been studied for over a century, the effect of light on the state of aggregation is not well understood. Since nanoparticle mobility and toxicity have been shown to be a function of aggregate size, and generally increase as size decreases, photo-induced disaggregation may have significant effects. We show that ambient light and other light sources can partially disaggregate nanoparticles from the aggregates and increase the dermal transport of nanoparticles, such that small nanoparticle clusters can readily diffuse into and through the dermal profile, likely via the interstitial spaces. The discovery of photoinduced disaggregation presents a new phenomenon that has not been previously reported or considered in coagulation theory or transdermal toxicological paradigms. Our results show that after just a few minutes of light, the hydrodynamic diameter of TiO2 aggregates is reduced from ∼280 nm to ∼230 nm. We exposed pigskin to the nanoparticle suspension and found 200 mg kg−1 of TiO2 for skin that was exposed to nanoparticles in the presence of natural sunlight and only 75 mg kg−1 for skin exposed to dark conditions, indicating the influence of light on NP penetration. These results suggest that photoinduced disaggregation may have important health implications. PMID:23155401

  8. Highly active ppm level organic copper catalyzed photo-induced ICAR ATRP of methyl methacrylate.

    PubMed

    Jiang, Xiaowu; Wu, Jian; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2014-11-01

    A novel photo-induced homogeneous atom transfer radical polymerization (ATRP) system is constructed using an organic copper salt (Cu(SC(S)N(C2 H5 )2 )2 ) as a photo-induced catalyst at 30 °C. Herein, N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) is used as a ligand, ethyl 2-bromophenylacetate (EBPA) as an ATRP initiator, and (2,4,6-trimethylbenzoyl) diphenylphosphine oxide (TPO) as a photo-induced radical initiator to establish an ICAR (initiators for continuous activator regeneration) ATRP using methyl methacrylate (MMA) as a modal monomer. The effect of the concentration of the organic copper on the polymerization is investigated in detail. It is found that well-controlled polymerization can be obtained even with the amount of (Cu(SC(S)N(C2 H5 )2 )2 decreasing to a 1.56 ppm level, with the molecular weight of the resultant polymers increasing linearly with monomer conversion while maintaining a narrow molecular weight distribution (M¯w/M¯n < 1.3). PMID:25250767

  9. Capturing ultrafast photoinduced local structural distortion of BiFeO3

    SciTech Connect

    Wen, Haidan; Sassi, Michel; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell G.; Rosso, Kevin M.; Zhang, Xiaoyi

    2015-10-14

    The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials.

  10. Photoinduced Charge Transfer and Electrochemical Properties of Triphenylamine Ih-Sc3N@C80 Donor-Acceptor Conjugates

    PubMed Central

    Pinzón, Julio R.; Gasca, Diana C.; Shankara, Gayathri. S; Bottari, Giovanni; Torres, Tomás; Guldi, Dirk M.; Echegoyen, Luis

    2009-01-01

    Two isomeric [5,6]-pyrrolidine-Ih-Sc3N@C80 electron donor acceptor conjugates containing triphenylamine (TPA) as the donor system were synthesized. Electrochemical and photophysical studies of the novel conjugates were made and compared with those of their C60 analogues, in order to determine i) the effect of the linkage position (N-substituted versus 2-substituted pyrrolidine) of the donor system in the formation of photoinduced charge separated states, ii) the thermal stability towards the retro-cycloaddition reaction and iii) the effect of changing C60 for Ih-Sc3N@C80 as the electron acceptor. It was found that when the donor is connected to the pyrrolidine nitrogen atom, the resulting dyad produces a significantly longer lived radical pair than the corresponding 2-substituted isomer for both the C60 and Ih-Sc3N@C80 dyads. In addition to that, the N-substituted TPA-Ih-Sc3N@C80 dyad has much better thermal stability than the 2-subtituted one. Finally, the Ih-Sc3N@C80 dyads have considerably longer lived charge separated states than their C60 analogues, thus approving the advantage of using Ih-Sc3N@C80 instead of C60 as the acceptor for the construction of fullerene based donor acceptor conjugates. These findings are important for the design and future application of Ih-Sc3N@C80 dyads as materials for the construction of plastic organic solar cells. PMID:19445462

  11. Photoinduced Enhancement of the Charge Density Wave Amplitude.

    PubMed

    Singer, A; Patel, S K K; Kukreja, R; Uhlíř, V; Wingert, J; Festersen, S; Zhu, D; Glownia, J M; Lemke, H T; Nelson, S; Kozina, M; Rossnagel, K; Bauer, M; Murphy, B M; Magnussen, O M; Fullerton, E E; Shpyrko, O G

    2016-07-29

    Symmetry breaking and the emergence of order is one of the most fascinating phenomena in condensed matter physics. It leads to a plethora of intriguing ground states found in antiferromagnets, Mott insulators, superconductors, and density-wave systems. Exploiting states of matter far from equilibrium can provide even more striking routes to symmetry-lowered, ordered states. Here, we demonstrate for the case of elemental chromium that moderate ultrafast photoexcitation can transiently enhance the charge-density-wave (CDW) amplitude by up to 30% above its equilibrium value, while strong excitations lead to an oscillating, large-amplitude CDW state that persists above the equilibrium transition temperature. Both effects result from dynamic electron-phonon interactions, providing an efficient mechanism to selectively transform a broad excitation of the electronic order into a well-defined, long-lived coherent lattice vibration. This mechanism may be exploited to transiently enhance order parameters in other systems with coupled degrees of freedom. PMID:27517781

  12. Photoinduced currents in metal-barrier-metal junctions

    NASA Technical Reports Server (NTRS)

    Guedes, M. P.; Gustafson, T. K.; Heiblum, M.; Siu, D. P.; Slayman, C. W.; Whinnery, J. R.; Yasuoka, Y.

    1978-01-01

    The fabrication and application of metal-barrier-metal tunneling junctions for radiative interactions are discussed. Particular attention is given to the photolithographic fabrication of small area devices and the coupling to such devices via surface plasmon waves which play an important role at infrared and optical frequencies. It has been shown that the junction electron tunneling currents can be strongly coupled to surface plasmon junction modes, and spontaneous and stimulated emission of the latter are possible as well as nonlinear interactions. Finally, results demonstrating the photo-excitation of electrons with subsequent tunneling induced by ultraviolet radiation are presented. It is estimated that quantum efficiencies of the order of 5% and higher are possible in the ultraviolet region.

  13. Photoinduced Enhancement of the Charge Density Wave Amplitude

    NASA Astrophysics Data System (ADS)

    Singer, A.; Patel, S. K. K.; Kukreja, R.; Uhlíř, V.; Wingert, J.; Festersen, S.; Zhu, D.; Glownia, J. M.; Lemke, H. T.; Nelson, S.; Kozina, M.; Rossnagel, K.; Bauer, M.; Murphy, B. M.; Magnussen, O. M.; Fullerton, E. E.; Shpyrko, O. G.

    2016-07-01

    Symmetry breaking and the emergence of order is one of the most fascinating phenomena in condensed matter physics. It leads to a plethora of intriguing ground states found in antiferromagnets, Mott insulators, superconductors, and density-wave systems. Exploiting states of matter far from equilibrium can provide even more striking routes to symmetry-lowered, ordered states. Here, we demonstrate for the case of elemental chromium that moderate ultrafast photoexcitation can transiently enhance the charge-density-wave (CDW) amplitude by up to 30% above its equilibrium value, while strong excitations lead to an oscillating, large-amplitude CDW state that persists above the equilibrium transition temperature. Both effects result from dynamic electron-phonon interactions, providing an efficient mechanism to selectively transform a broad excitation of the electronic order into a well-defined, long-lived coherent lattice vibration. This mechanism may be exploited to transiently enhance order parameters in other systems with coupled degrees of freedom.

  14. Photoinduced Charge Transfer at Metal Oxide/Oxide Interfaces Prepared with Plasma Enhanced Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Kaur, Manpuneet

    LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal oxide layers to passivate the surfaces and to enhance their photocatalytic efficiency. LiNbO 3 was coated with plasma enhanced atomic layer deposited (PEALD) ZnO and Al2O3, and molecular beam deposited TiO2 and VO2. On the other hand, PEALD ZnO and single crystal ZnO were passivated with PEALD SiO2 and Al2O3. Metal oxide/LiNbO3 heterostructures were immersed in aqueous AgNO3 solutions and illuminated with ultraviolet (UV) light to form Ag nanoparticle patterns. Alternatively, Al2O3 and SiO2/ZnO heterostructures were immersed in K3PO 4 buffer solutions and studied for photoelectrochemical reactions. A fundamental aspect of the heterostructures is the band alignment and band bending, which was deduced from in situ photoemission measurements. This research has provided insight to three aspects of the heterostructures. First, the band alignment at the interface of metal oxides/LiNbO 3, and Al2O3 or SiO2/ZnO were used to explain the possible charge transfer processes and the direction of carrier flow in the heterostructures. Second, the effect of metal oxide coatings on the LiNbO3 with different internal carrier concentrations was related to the surface photochemical reactions. Third is the surface passivation and degradation mechanism of Al2O 3 and SiO2 on ZnO was established. The heterostructures were characterized after stability tests using atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross-section transmission electron microscopy (TEM). The results indicate that limited thicknesses of ZnO or TiO2 on polarity patterned LiNbO3 (PPLN) enhances the Ag+ photoinduced reduction process. ZnO seems more efficient

  15. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    PubMed

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis. PMID:22792998

  16. Photoinduced water splitting via benzoquinone and semiquinone sensitisation.

    PubMed

    Karsili, Tolga N V; Tuna, Deniz; Ehrmaier, Johannes; Domcke, Wolfgang

    2015-12-28

    The splitting of water into H˙ and OH˙ radicals by sensitisation of a redox-active chromophore with sunlight may eventually become a viable way of producing unlimited, clean and sustainable energy. In this work, we explore the possibility of photo-oxidation of water via sensitisation of benzoquinone with ultraviolet (UV) light in the hydrogen-bonded complex of benzoquinone with a single water molecule. Using state-of-the-art quantum chemical calculations, the mechanisms of electron/proton transfer reactions between photoexcited benzoquinone and water are characterised. In the benzoquinone-H2O complex, photoexcitation of the chromophore leads to the population of locally excited ππ* and nπ* singlet states, which are coupled to hitherto unknown charge-transfer states. In the latter, an electron is transferred from the oxygen atom of the water molecule to the lowest π* orbital of benzoquinone. These charge-separated states drive the transfer of a proton from the water molecule to the carbonyl acceptor site, yielding the semiquinone-OH˙ biradical. Upon absorption of a second UV photon, the semiquinone radical may undergo O-H bond fission, which generates an H˙ radical and restores the benzoquinone photocatalyst. Our computational results shed light on long-standing questions regarding the nature of the photoreactive electronic states in the aqueous photochemistry of benzoquinone. PMID:26488227

  17. Near-Infrared Photoelectrochemical Conversion via Photoinduced Charge Separation in Supramolecular Complexes of Anionic Phthalocyanines with Li(+)@C60.

    PubMed

    Kawashima, Yuki; Ohkubo, Kei; Blas-Ferrando, Vicente Manuel; Sakai, Hayato; Font-Sanchis, Enrique; Ortíz, Javier; Fernández-Lázaro, Fernando; Hasobe, Taku; Sastre-Santos, Ángela; Fukuzumi, Shunichi

    2015-06-18

    Two phthalocyanines possessing carboxylate groups ((TBA)4H2Pc·1 and (TBA)4H2Pc·2) form 1:2 supramolecular complexes with lithium cation-encapsulated C60 (Li(+)@C60) [H2Pc·1(4-)/(Li(+)@C60)2 and H2Pc·2(4-)/(Li(+)@C60)2] in a polar mixed solvent. From the UV-vis spectral changes, the binding constants (K) were estimated as ca. 10(12) M(-2). Upon the photoexcitation of constructed supramolecular complexes, photoinduced electron transfer occurred to form the charge-separated (CS) state. The lifetime of the CS state was determined to be 1.2 ms for H2Pc·2(4-)/(Li(+)@C60)2, which is the longest CS lifetime among the porphyrinoid/fullerene supramolecular complexes. H2Pc·1(4-)/(Li(+)@C60)2 also afforded the long-lived CS state of 1.0 ms. The spin state of the long-lived CS states was determined to be a triplet, as indicated by the EPR signal at g = 4. The reorganization energy (λ) and the electronic coupling term were determined to be λ = 1.70 eV, V = 0.15 cm(-1) from the temperature dependence of the rate constant for the charge recombination of the CS state of H2Pc·1(4-)/(Li(+)@C60)2. The energy of the CS state (0.49 eV) is much smaller than the reorganization energy, indicating that the back-electron-transfer process is located in the Marcus normal region. The small electronic coupling term results from the spin-forbidden back electron transfer due to the triplet CS state. Supramolecular complexes of anionic zinc phthalocyanines with Li(+)@C60 were also prepared and investigated. The ZnPc·4(4-)/Li(+)@C60 supramolecular nanoclusters were assembled on the optically transparent electrode (OTE) of nanostructured SnO2 (OTE/SnO2) to construct the dye-sensitized solar cell. The IPCE (incident photon-to-photocurrent efficiency) values of OTE/SnO2/(ZnPc·4(4-)/Li(+)@C60)n were much higher than the sum of the two IPCE values of the individual systems OTE/SnO2/(Li(+)@C60)n and OTE/SnO2/(ZnPc·4(4-))n, covering the near-infrared region.

  18. Efficient photoinduced charge accumulation in reduced graphene oxide coupled with titania nanosheets to show highly enhanced and persistent conductance.

    PubMed

    Cai, Xingke; Sakai, Nobuyuki; Ozawa, Tadashi C; Funatsu, Asami; Ma, Renzhi; Ebina, Yasuo; Sasaki, Takayoshi

    2015-06-01

    Tuning of the electrical properties of graphene via photoexcitation of a heteroassembled material has started to attract attention for electronic and optoelectronic applications. Actually photoinduced carrier doping from the hexagonal boron nitride (h-BN) substrate greatly modulated the transport property of the top layer graphene, showing promising potential for this approach. However, for practical applications, the large scale production of this two-dimensional heterostructure is needed. Here, a superlattice film constructed from reduced graphene oxide (rGO) and photoactive titania nanosheets (Ti0.87O2(0.52-)) was employed as a channel to construct a field effect transistor (FET) device, and its UV light response on the electrical transport property was examined. The UV light illumination induced significant improvement of the electrical conductance by ∼7 times on the basis of simultaneous enhancements of the electron carrier concentration and its mobility in rGO. Furthermore, the polarity of the FET response changed from ambipolar to n-type unipolar. Such modulated properties persisted in vacuum even after the UV light was turned off. These interesting behaviors may be explained in terms of photomodulation effects from Ti0.87O2(0.52-) nanosheets. The photoexcited electrons in Ti0.87O2(0.52-) are injected into rGO to increase the electron carrier concentration as high as 7.6×10(13) cm(-2). On the other hand, the holes are likely trapped in the Ti0.87O2(0.52-) nanosheets. These photocarriers undergo reduction and oxidation of oxygen and water molecules adsorbed in the film, respectively, which act as carrier scattering centers, contributing to the enhancement of the carrier mobility. Since the film likely contains more water molecules than oxygen, upon extinction of UV light, a major portion of electrons (∼80% of the concentration at the UV off) survives in rGO, showing the highly enhanced conductance for days. This surpassing photomodulated FET response and

  19. Near-Infrared Photoelectrochemical Conversion via Photoinduced Charge Separation in Supramolecular Complexes of Anionic Phthalocyanines with Li(+)@C60.

    PubMed

    Kawashima, Yuki; Ohkubo, Kei; Blas-Ferrando, Vicente Manuel; Sakai, Hayato; Font-Sanchis, Enrique; Ortíz, Javier; Fernández-Lázaro, Fernando; Hasobe, Taku; Sastre-Santos, Ángela; Fukuzumi, Shunichi

    2015-06-18

    Two phthalocyanines possessing carboxylate groups ((TBA)4H2Pc·1 and (TBA)4H2Pc·2) form 1:2 supramolecular complexes with lithium cation-encapsulated C60 (Li(+)@C60) [H2Pc·1(4-)/(Li(+)@C60)2 and H2Pc·2(4-)/(Li(+)@C60)2] in a polar mixed solvent. From the UV-vis spectral changes, the binding constants (K) were estimated as ca. 10(12) M(-2). Upon the photoexcitation of constructed supramolecular complexes, photoinduced electron transfer occurred to form the charge-separated (CS) state. The lifetime of the CS state was determined to be 1.2 ms for H2Pc·2(4-)/(Li(+)@C60)2, which is the longest CS lifetime among the porphyrinoid/fullerene supramolecular complexes. H2Pc·1(4-)/(Li(+)@C60)2 also afforded the long-lived CS state of 1.0 ms. The spin state of the long-lived CS states was determined to be a triplet, as indicated by the EPR signal at g = 4. The reorganization energy (λ) and the electronic coupling term were determined to be λ = 1.70 eV, V = 0.15 cm(-1) from the temperature dependence of the rate constant for the charge recombination of the CS state of H2Pc·1(4-)/(Li(+)@C60)2. The energy of the CS state (0.49 eV) is much smaller than the reorganization energy, indicating that the back-electron-transfer process is located in the Marcus normal region. The small electronic coupling term results from the spin-forbidden back electron transfer due to the triplet CS state. Supramolecular complexes of anionic zinc phthalocyanines with Li(+)@C60 were also prepared and investigated. The ZnPc·4(4-)/Li(+)@C60 supramolecular nanoclusters were assembled on the optically transparent electrode (OTE) of nanostructured SnO2 (OTE/SnO2) to construct the dye-sensitized solar cell. The IPCE (incident photon-to-photocurrent efficiency) values of OTE/SnO2/(ZnPc·4(4-)/Li(+)@C60)n were much higher than the sum of the two IPCE values of the individual systems OTE/SnO2/(Li(+)@C60)n and OTE/SnO2/(ZnPc·4(4-))n, covering the near-infrared region. PMID:25615010

  20. Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells.

    PubMed

    Salvador, Michael; MacLeod, Bradley A; Hess, Angela; Kulkarni, Abhishek P; Munechika, Keiko; Chen, Jennifer I L; Ginger, David S

    2012-11-27

    Plasmonic metal nanoparticles have been used to enhance the performance of thin-film devices such as organic photovoltaics based on polymer/fullerene blends. We show that silver nanoprisms accumulate long-lived negative charges when they are in contact with a photoexcited bulk heterojunction blend composed of poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM). We report both the charge modulation and electroabsorption spectra of silver nanoprisms in solid-state devices and compare these spectra with the photoinduced absorption spectra of P3HT/PCBM blends containing silver nanoprisms. We assign a previously unidentified peak in the photoinduced absorption spectra to the presence of photoinduced electrons on the silver nanoprisms. We show that coating the nanoprisms with a 2.5 nm thick insulating layer can completely inhibit this charging. These results may inform methods for limiting metal-mediated losses in plasmonic solar cells. PMID:23062171

  1. Photo-induced free radicals on a simulated Martian surface

    NASA Technical Reports Server (NTRS)

    Tseng, S.-S.; Chang, S.

    1974-01-01

    Results of an electron spin resonance study of free radicals in the ultraviolet irradiation of a simulated Martian surface suggest that the ultraviolet photolysis of CO or CO2, or a mixture of both, adsorbed on silica gel at minus 170 C involves the formation of OH radicals and possibly of H atoms as the primary process, followed by the formation of CO2H radicals. It is concluded that the photochemical synthesis of organic compounds could occur on Mars if the siliceous surface dust contains enough silanol groups and/or adsorbed H2O in the form of bound water.

  2. Thermally and photoinduced polymerization of ultrathin sexithiophene films

    SciTech Connect

    Sander, Anke; Hammer, Rene; Duncker, Klaus; Förster, Stefan; Widdra, Wolf

    2014-09-14

    The thermally-induced polymerization of α-sexithiophene (6T) molecules on Ag(001) and Au(001) gives rise to long unbranched polymer chains or branched polymer networks depending on the annealing parameters. There, the onset temperature for polymerization depends on the strength of interaction with the underlying substrate. Similar polymerization processes are also induced by ultraviolet radiation with photon energies between 3.0 and 4.2 eV. Radical formation by an electronic excitation in the 6T molecule is proposed as the driving mechanism that necessitates the interplay with the metallic substrate.

  3. Photoinduced conductivity of a porphyrin-gold composite nanowire

    SciTech Connect

    Kilina, Svletana; Balatsky, Alexander; Kilin, Dmitri S; Prezhdo, Oleg; Tsemekhman, Kiril

    2009-01-01

    Negatively charged phosphine groups on the backbone of DNA are known to attract gold nanoclusters from a colloid, assembling the clusters at fixed intervals. Bridging these intervals with porphyrin-dye linkers forms an infinite conducting chain, a quantum wire whose carrier mobility can be enhanced by photoexcitation. The resulting nanoassembly can be used as a gate: a wire with a controllable conductivity. The electronic structure of the porphyrin-gold wire is studied here by density functional theory, and the conductivity of the system is determined as a function of the photoexcitation energy. Photoexcitations of the dye are found to enhance the wire conductivity by orders of magnitude.

  4. A self-healing photoinduced-deformable material fabricated by liquid crystalline elastomers using multivalent hydrogen bonds as cross-linkers.

    PubMed

    Ni, Bin; Xie, He-Lou; Tang, Jun; Zhang, Hai-Liang; Chen, Er-Qiang

    2016-08-11

    Liquid crystalline elastomers (LCEs) using multivalent hydrogen bonds as cross-linkers were successfully fabricated, which showed both self-healing and photoinduced-deformable properties. More interestingly, this LCE could be readily molded into different shapes through a versatile and efficient procedure, and the fibrous and filmy samples showed different photoinduced-deformable behavior originating from the difference in molecular orientations. PMID:27465691

  5. Photoinduced reduction of surface states in Fe:ZnO

    SciTech Connect

    Knut, R. Palmgren, P.; Karis, O.; Lagerqvist, U.; Pohl, A.; Pal, P.; Svedlindh, P.

    2015-05-28

    We report on the electronic structure of nano-crystalline Fe:ZnO, which has recently been found to be an efficient photocatalyst. Using resonant photoemission spectroscopy, we determine the binding energy of Fe 3d states corresponding to different valencies and coordination of the Fe atoms. The photo-activity of ZnO reduces Fe from 3+ to 2+ in the surface region of the nano-crystalline material due to the formation of oxygen vacancies. Electronic states corresponding to low-spin Fe{sup 2+} are observed and attributed to crystal field modification at the surface. These states are potentially important for the photocatalytic sensitivity to visible light due to their location deep in the ZnO bandgap. X-ray absorption and x-ray photoemission spectroscopy suggest that Fe is only homogeneously distributed for concentrations up to 3%. Increased concentrations does not result in a higher concentration of Fe ions in the surface region. This is limiting the photocatalytic functionality of ZnO, where the most efficient Fe doping concentration has been shown to be 1%-4%.

  6. Photoinduced charge-transfer materials for nonlinear optical applications

    DOEpatents

    McBranch, Duncan W.

    2006-10-24

    A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C.sub.60 acceptor layers.

  7. Photoinduced Charge Transfer from Titania to Surface Doping Site.

    PubMed

    Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S

    2013-05-16

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229

  8. Photoinduced Charge Transfer from Titania to Surface Doping Site

    PubMed Central

    Inerbaev, Talgat; Hoefelmeyer, James D.; Kilin, Dmitri S.

    2013-01-01

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229

  9. Molecular interactions, proton exchange, and photoinduced processes prompted by an inclusion process and a [2]pseudorotaxane formation.

    PubMed

    Mandal, Amal Kumar; Suresh, Moorthy; Kesharwani, Manoj K; Gangopadhyay, Monalisa; Agrawal, Manoj; Boricha, Vinod P; Ganguly, Bishwajit; Das, Amitava

    2013-09-20

    Appropriate design of the host and guest components allows formation of a novel [2]pseudorotaxane complex with an interrupted photoinduced electron transfer (PET)-coupled fluorescence resonance energy transfer (FRET) response. This is the first example of an inclusion complex with NO6-based azacrown ether as the host unit (H). Different guest molecules (G1, G2, G3, and G4) with varying stopper size are used for the studies. Unlike G1, G2, and G3, G4 with a relatively bulkier stopper fails to form a [2]pseudorotaxane complex. Isothermal titration microcalorimetry measurements reveal a systematic increase in the association constant for H·G1, H·G2, and H·G3 with a change in the stopper size. Thermodynamic data suggest that the formation of H·G1/H·G2/H·G3 is exclusively driven by a large positive entropic gain (TΔS = 19.69/26.80/21.81 kJ·mol(-1)), while the enthalpy change is slightly negative for H·G1/H·G3 (-2.61/-1.97 kJ·mol(-1)) and slightly positive for H·G2 (ΔH = 5.98 kJ·mol(-1)). For these three inclusion complexes, an interrupted PET-coupled FRET response is observed with varying efficiency, which is attributed to the subtle differences in acidity of the NH2(+) unit of the guest molecules and thus the proton exchange ability between the host and respective guest. This is substantiated by the results of the computational studies. PMID:23952368

  10. Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation

    NASA Astrophysics Data System (ADS)

    Intonti, Francesca; Caselli, Niccolò; Vignolini, Silvia; Riboli, Francesco; Kumar, Santosh; Rastelli, Armando; Schmidt, Oliver G.; Francardi, Marco; Gerardino, Annamaria; Balet, Laurent; Li, Lianhe H.; Fiore, Andrea; Gurioli, Massimo

    2012-01-01

    A method to achieve photoinduced tuning of PhC nanocavity modes is discussed and implemented. It is based on light induced oxidation in air atmosphere with very low thermal budget which produces a local reduction of the GaAs membrane effective thickness and a large blueshift of the nanocavity modes. It is also shown that green light is much more efficient in inducing the micro-oxidation with respect to near infrared light. The observed behaviour is attributed to oxide growth promoted by photoenhanced reactivity.

  11. Deuterium enrichment by selective photoinduced dissociation of a multihalogenated organic compound

    DOEpatents

    Marling, John B.; Herman, Irving P.

    1981-01-01

    A method for deuterium enrichment by photoinduced dissociation which uses as the deuterium source a multihalogenated organic compound selected from the group consisting of a dihalomethane, a trihalomethane, a 1,2-dihaloethene, a trihaloethene, a tetrahaloethane and a pentahaloethane. The multihalogenated organic compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of substantially only those molecules containing deuterium to provide a deuterium enriched dissociation product. The deuterium enriched product may be combusted with oxygen to provide deuterium enriched water. The deuterium depleted undissociated molecules may be redeuterated by treatment with a deuterium source such as water.

  12. Spontaneous photoinduced patterning of azo-dye polymer films: the facts

    NASA Astrophysics Data System (ADS)

    Hubert, Christophe; Fiorini-Debuisschert, Céline; Rocha, Licinio; Raimond, Paul; Nunzi, Jean-Michel

    2007-08-01

    We describe the spontaneous photoinduced patterning of azo-dye polymer films. We have observed that the illumination of an azo-dye polymer film by a uniform single laser beam with normal incidence leads to a self-structurization process that results in the formation of well-ordered submicrometer-sized structures whose organization depends on the light polarization direction. A modulation depth as high as 100 nm can be achieved. The influence of several experimental parameters on the structure formation is studied. Results are discussed and confronted to different models and phenomena already investigated in the literature. A physical origin to this peculiar photopatterning process is proposed.

  13. Emission properties of an organic light-emitting diode patterned by a photoinduced autostructuration process

    NASA Astrophysics Data System (ADS)

    Hubert, C.; Fiorini-Debuisschert, C.; Hassiaoui, I.; Rocha, L.; Raimond, P.; Nunzi, J.-M.

    2005-11-01

    The photoluminescence properties of a periodically structured organic light-emitting diode are presented. Patterning is achieved using an original single-step autostructuration technique based on photoinduced effects in azo-polymer films. We show that single beam laser irradiation can lead to the induction of regular two-dimensional surface relief gratings. The waveguide properties of these microstructures as well as their effect on the emission properties of a light-emitting material are studied. We demonstrate a new straightforward technique to improve external light emission efficiency by outcoupling part of the light that was initially guided into the different diode layers.

  14. [Photoinduced charge separation in solid state and molecular systems]. Final report

    SciTech Connect

    Not Available

    1993-10-01

    A critical theme has been to understand the role of intrinsic cyanometalate overlayers in modulating interfacial photoinduced charge transfer processes occurring at the Cd chalconide/aqueous ferri-ferrocyanide interface. Structural and charge transfer studies of [CdFe(CN){sub 6}]{sup 2-/1-} overlayers have been undertaken. It is reiterated that the focus of attention on the Cd ferrocyanide overlayer as a critical element in II-VI semiconductor based photoelectrochemical cells, is correct. A new project on metallization of solid supports, using photodeposition of Pt, has been initiated. A project has also been started in the area of visible light, molecular, charge transfer photochemistry.

  15. Control of photo-induced drug release by the use of conformational change of DNA.

    PubMed

    Tanabe, Kazuhito; Inasaki, Takeshi; Okamoto, Akimitsu; Nishimoto, Sei-ichi; Saito, Isao

    2002-01-01

    Photo-induced drug release system which was controlled by triplet quenching using the molecular beacon strategy of photoreactive oligodeoxynucleotides (P-ODN) was developed. The strand ends of P-ODN were modified with a phenacyl ester of biotin and naphthalene as photoreactive group and triplet quencher, respectively. Photoirradiation to P-ODN in the presence of complementary DNA caused an efficient release of biotin. In contrast, the biotin release was suppressed in the absence of complementary DNA by the intramolecular triplet quenching in the stem-and-loop structure of P-ODN.

  16. Control of the Ultrafast Photoinduced Magnetization across the Morin Transition in DyFeO3

    NASA Astrophysics Data System (ADS)

    Afanasiev, D.; Ivanov, B. A.; Kirilyuk, A.; Rasing, Th.; Pisarev, R. V.; Kimel, A. V.

    2016-03-01

    Excitation of the collinear compensated antiferromagnet DyFeO3 with a single 60 fs laser pulse triggers a phase transition across the Morin point into a noncollinear spin state with a net magnetization. Time-resolved imaging of the magnetization dynamics of this process reveals that the pulse first excites the spin oscillations upon damping of which the noncollinear spin state emerges. The sign of the photoinduced magnetization is defined by the relative orientation of the pump polarization and the direction of the antiferromagnetic vector in the initial collinear spin state.

  17. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    DOEpatents

    Marling, John B.

    1981-01-01

    A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.

  18. Decay of photoinduced oscillations of the optical reflection coefficient of bismuth

    SciTech Connect

    Semenov, A. L.

    2013-07-15

    A model describing the decay of photoinduced oscillations of the optical reflection coefficient R of bismuth is constructed, taking the crystal lattice anharmonicity into account. The decay time of oscillations of R is calculated as a function of the energy density of a laser pulse. The results of calculations explain the experimental data on the anomalously strong decay of oscillations of the optical reflection coefficient of bismuth (the decay time decreases by more than an order of magnitude with an increase in the laser pulse energy density from 0 to 4 mJ/cm{sup 2})

  19. Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping

    SciTech Connect

    Lin, Shisheng Chen, Hongsheng; Li, Xiaoqiang; Zhang, Shengjiao; Wang, Peng; Xu, Zhijuan; Zhong, Huikai; Wu, Zhiqian

    2015-11-09

    We report a type of solar cell based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.10%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by field effect transport, Raman, photoluminescence, and quantum efficiency measurements. This work demonstrates a feasible way of improving the performance of graphene/semiconductor heterostructure solar cells by combining one dimensional with two dimensional materials.

  20. Ultrafast electronic dynamics in laser-excited crystalline bismuth

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey A.; Misochko, Oleg V.; Chekalin, Sergey V.

    2013-07-01

    Femtosecond spectroscopy is applied to study transient electronic processes in bismuth. The components with relaxation times of 1 ps, 7 ps, and ˜1 ns are detected in the photoinduced reflectivity response of the crystal. To facilitate assignment of the observed relaxation to the decay of particular excited electronic states, we use pump pulses with central wavelengths ranging from 400 to 2300 nm. Additionally, we examine the variation of parameters of coherent A1g phonons upon the change of excitation and probing conditions. Data analysis reveals significant wavevector dependence of electron-hole and electron-phonon coupling strength along Γ-T direction of the Brillouin zone.

  1. Effects of photoinduced toxicity of fluoranthene on amphibian embryos and larvae

    SciTech Connect

    Hatch, A.C.; Burton, G.A. Jr.

    1998-09-01

    Embryos and newly hatched larvae of three amphibian species, the spotted salamander (Ambystoma maculatum), the northern leopard frog (Rana pipiens), and the African clawed frog (Xenopus laevis), were exposed to fluoranthene and ultraviolet (UV) light in two scenarios. Embryos were exposed in a laboratory setting from an early developmental stage through hatching under artificial UV light, and newly hatched larvae were exposed outdoors in varying sunlight intensity levels. Outdoor exposures indicated greater sensitivity in the toxic response than did laboratory exposures. In the laboratory, mortality and malformation of X. laevis were the most sensitive indicators of exposure. Xenopus laevis was also the most sensitive species tested to the effects of UV light alone. Hatching success of R. pipiens was monitored outdoors and was not a useful predictive endpoint in the determination of photoinduced toxicity; however, newly hatched larvae were sensitive to the effects of photoinduced toxicity. Amybstoma maculatum and X. laevis larvae were affected by low ({micro}g/L) concentrations of fluoranthene in sunlight. These findings suggest that low levels of polycyclic aromatic hydrocarbons could be acting synergistically with environmental factors such as UV light to place young amphibians at risk.

  2. Quantification of photoinduced order increase in liquid crystals with naphthopyran guests.

    PubMed

    Rumi, Mariacristina; Cazzell, Seth A; Kosa, Tamas; Sukhomlinova, Ludmila; Taheri, Bahman; White, Timothy J; Bunning, Timothy J

    2016-03-01

    Photoinduced order-increasing phase transitions can occur in dye-liquid crystal mixtures when the photoproduct of the excitation of the dye molecules is more compatible with the liquid crystalline medium than the initial dye species. A detailed investigation of the photoinduced changes of the phase behavior and optical properties of mixtures of liquid crystals with naphthopyran guests upon exposure to light at 365 nm is presented here. In these guest-host systems, the nematic-to-isotropic phase transition temperature is increased upon irradiation. We show that the nematic range can be extended up to 2.9 °C by illumination in 5CB (4-n-pentyl-4'-cyanobiphenyl) liquid crystal mixtures. The order parameter is significantly increased by illumination at all temperatures within the nematic range and the changes are larger at higher concentrations of the guests. In particular, the illuminated guest-host mixtures exhibit order parameters close to those of the neat liquid crystal host at the same temperature relative to the clearing point. An improved understanding of the photophysical processes taking place at the molecular level in these material systems can inform the design of photoresponsive materials and enhance their potential utility in optical or photonic devices.

  3. Kinetics of photoinduced ordering in azo-dye films: Two-state and diffusion models

    SciTech Connect

    Kiselev, Alexei D.; Chigrinov, Vladimir G.; Kwok, Hoi-Sing

    2009-07-15

    We theoretically study the kinetics of photoinduced ordering in azo-dye photoaligning layers and present the results of modeling performed using two different phenomenological approaches. A phenomenological two-state model is deduced from the master equation for the one-particle distribution functions of an ensemble of two-level molecular systems by specifying the angular redistribution probabilities and by expressing the order parameter correlation functions in terms of the order parameter tensor. Using an alternative approach that describes light-induced reorientation of azo-dye molecules in terms of a rotational Brownian motion, we formulate the two-dimensional diffusion model as the free energy Fokker-Planck equation simplified for the limiting regime of purely in-plane reorientation. The models are employed to interpret the irradiation time dependence of the absorption order parameters defined in terms of the principal extinction (absorption) coefficients. Using the exact solution to the light transmission problem for a biaxially anisotropic absorbing layer, these coefficients are extracted from the absorbance-vs-incidence angle curves measured at different irradiation doses for the probe light linearly polarized parallel and perpendicular to the plane of incidence. It is found that, in the azo-dye films, the transient photoinduced structures are biaxially anisotropic whereas the photosteady and the initial states are uniaxial.

  4. Crystallinity effects on scaling properties of photoinduced modes in silver nanoprisms

    SciTech Connect

    Ng, Ming-Yaw; Ho, I-Lin; Chang, Yia-Chung

    2015-02-21

    The crystallinity effects on scaling properties of photoinduced modes in crystalline silver nanoprisms with C{sub 3v} symmetry are studied using a realistic atomistic model and group theory. Among all vibrational modes, photoinduced modes can be identified as those vibrational modes which possess larger in-phase radial atomic displacement and can be projected out by the projected density of states method. We found that the properties of vibrations in silver nanoprisms strongly depend on the particle’s aspect ratio (bisector length over thickness). By considering crystallinity of silver nanoprisms, the dominant modes with the in-plane oscillation become several closely spaced modes, and become obvious for nanoprisms with a smaller aspect ratio. The oscillation spectra show that the dominant planar modes are insensitive to thickness change. On the contrary, the atomic displacements show significantly different patterns for nanoprisms of different thicknesses. We also found that, for nanoprisms with same aspect ratio that is larger than 4, the vibrational properties of dominant modes exhibit scaling similarity. By using a simple linear transformation, the vibration frequencies for large-sized nanoprisms of aspect ratio 6 can be obtained by a corresponding scaling factor. The calculated results are in good agreement with experimental data.

  5. Quantification of photoinduced order increase in liquid crystals with naphthopyran guests

    NASA Astrophysics Data System (ADS)

    Rumi, Mariacristina; Cazzell, Seth A.; Kosa, Tamas; Sukhomlinova, Ludmila; Taheri, Bahman; White, Timothy J.; Bunning, Timothy J.

    2016-03-01

    Photoinduced order-increasing phase transitions can occur in dye-liquid crystal mixtures when the photoproduct of the excitation of the dye molecules is more compatible with the liquid crystalline medium than the initial dye species. A detailed investigation of the photoinduced changes of the phase behavior and optical properties of mixtures of liquid crystals with naphthopyran guests upon exposure to light at 365 nm is presented here. In these guest-host systems, the nematic-to-isotropic phase transition temperature is increased upon irradiation. We show that the nematic range can be extended up to 2.9 °C by illumination in 5CB (4 -n -pentyl-4'-cyanobiphenyl) liquid crystal mixtures. The order parameter is significantly increased by illumination at all temperatures within the nematic range and the changes are larger at higher concentrations of the guests. In particular, the illuminated guest-host mixtures exhibit order parameters close to those of the neat liquid crystal host at the same temperature relative to the clearing point. An improved understanding of the photophysical processes taking place at the molecular level in these material systems can inform the design of photoresponsive materials and enhance their potential utility in optical or photonic devices.

  6. Synthesis and characterization of a new photoinduced switchable β-cyclodextrin dimer

    PubMed Central

    Hamon, Florian; Blaszkiewicz, Claire; Buchotte, Marie; Banaszak-Léonard, Estelle; Bricout, Hervé; Tilloy, Sébastien; Monflier, Eric; Cézard, Christine; Bouteiller, Laurent; Len, Christophe

    2014-01-01

    Summary This paper reports an efficient preparation of bridged bis-β-CD AZO-CDim 1 bearing azobenzene as a linker and exhibiting high solubility in water. The photoisomerization properties were studied by UV–vis and HPLC and supported by ab initio calculations. The cis/trans ratio of AZO-CDim 1 is 7:93 without irradiation and 37:63 after 120 min of irradiation at 365 nm; the reaction is reversible after irradiation at 254 nm. The photoinduced, switchable binding behavior of AZO-CDim 1 was evaluated by ITC, NMR and molecular modeling in the presence of a ditopic adamantyl guest. The results indicate that AZO-CDim 1 can form two different inclusion complexes with an adamantyl dimer depending on its photoinduced isomers. Both cavities of cis-AZO-CDim 1 are complexed simultaneously by two adamantyl units of the guest forming a 1:1 complex while trans-AZO-CDim 1 seems to lead to the formation of supramolecular polymers with an n:n stoichiometry. PMID:25550753

  7. Photo-induced bending in a light-activated polymer laminated composite.

    PubMed

    Mu, Xiaoming; Sowan, Nancy; Tumbic, Julia A; Bowman, Christopher N; Mather, Patrick T; Qi, H Jerry

    2015-04-01

    Light activated polymers (LAPs) have attracted increasing attention since these materials change their shape and/or behavior in response to light exposure, which serves as an instant, remote and precisely controllable stimulus that enables non-contact control of the material shape and behavior through simple variation in light intensity, wavelength and spatially controlled exposure. These features distinguish LAPs from other active polymers triggered by other stimuli such as heat, electrical field or humidity. Previous examples have resulted in demonstrations in applications such as surface patterning, photo-induced shape memory behavior, and photo-origami. However, in many of these applications, an undesirable limitation has been the requirement to apply and maintain an external load during light irradiation. In this paper, a laminated structure is introduced to provide a pre-programmed stress field, which is then used for photo-induced deformation. This laminated structure is fabricated by bonding a stretched elastomer (NOA65) sheet between two LAP layers. Releasing the elastomer causes contraction and introduces a compressive stress in the LAPs, which are relaxed optically to trigger the desired deformation. A theoretical model is developed to quantitatively examine the laminated composite system, allowing exploration of the design space and optimum design of the laminate. PMID:25690905

  8. Photo-induced reactions in the ion-molecule complex Mg+-OCNC2H5

    NASA Astrophysics Data System (ADS)

    Sun, Ju-Long; Liu, Haichuan; Han, Ke-Li; Yang, Shihe

    2003-06-01

    Ion-molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser-ablation supersonic expansion nozzle source. Photo-induced reactions in the 1:1 complexes have been studied in the spectral range of 230-410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 32P←32S atomic transition. The ground state geometry of Mg+-OCNC2H5 was fully optimized at B3LYP/6-31+G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3Px,y,z excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo-induced reactions of Mg+(OCNC2H5).

  9. Approaching real-time terahertz imaging using photo-induced reconfigurable aperture arrays

    NASA Astrophysics Data System (ADS)

    Shams, Md. Itrat Bin; Jiang, Zhenguo; Rahman, Syed; Qayyum, Jubaid; Hesler, Jeffrey L.; Cheng, Li-Jing; Xing, Huili Grace; Fay, Patrick; Liu, Lei

    2014-05-01

    We report a technique using photo-induced coded-aperture arrays for potential real-time THz imaging at roomtemperature. The coded apertures (based on Hadamard coding) were implemented using programmable illumination on semi-insulating Silicon wafer by a commercial digital-light processing (DLP) projector. Initial imaging experiments were performed in the 500-750 GHz band using a WR-1.5 vector network analyzer (VNA) as the source and receiver. Over the entire band, each array pixel can be optically turned on and off with an average modulation depth of ~20 dB and ~35 dB, for ~4 cm2 and ~0.5 cm2 imaging areas respectively. The modulation speed is ~1.3 kHz using the current DLP system and data acquisition software. Prototype imaging demonstrations have shown that a 256-pixel image can be obtained in the order of 10 seconds using compressed sensing (CS), and this speed can be improved greatly for potential real-time or video-rate THz imaging. This photo-induced coded-aperture imaging (PI-CAI) technique has been successfully applied to characterize THz beams in quasi-optical systems and THz horn antennas.

  10. Photoinduced charge generation rates in soluble P3HT : PCBM nano-aggregates predict the solvent-dependent film morphology

    NASA Astrophysics Data System (ADS)

    Roy, Palas; Jha, Ajay; Dasgupta, Jyotishman

    2016-01-01

    The device efficiency of bulk heterojunction (BHJ) solar cells is critically dependent on the nano-morphology of the solution-processed polymer : fullerene blend. Active control on blend morphology can only emanate from a detailed understanding of solution structures during the film casting process. Here we use photoinduced charge transfer (CT) rates to probe the effective length scale of the pre-formed solution structures and their energy disorder arising from a mixture of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in three different organic solvents. The observed solvent-dependent ultrafast biphasic rise of the transient polaron state in solution along with changes detected in the C&z.dbd;C stretching frequency of bound PCBM provides direct evidence for film-like P3HT : PCBM interfaces in solution. Using the diffusive component of the charge transfer rate, we deduce ~3-times larger functional nano-domain size in toluene than in chlorobenzene thereby correctly predicting the relative polymer nanofiber widths observed in annealed films. We thus provide first experimental evidence for the postulated polymer : fullerene : solvent ternary phase that seeds the eventual morphology in spin-cast films. Our work motivates the design of new chemical additives to tune the grain size of the evolving polymer : fullerene domains within the solution phase.The device efficiency of bulk heterojunction (BHJ) solar cells is critically dependent on the nano-morphology of the solution-processed polymer : fullerene blend. Active control on blend morphology can only emanate from a detailed understanding of solution structures during the film casting process. Here we use photoinduced charge transfer (CT) rates to probe the effective length scale of the pre-formed solution structures and their energy disorder arising from a mixture of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in three

  11. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    PubMed

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency. PMID:25704499

  12. Facile Synthesis of Stapled, Structurally Reinforced Peptide Helices via A Photoinduced Intramolecular 1,3-Dipolar Cycloaddition Reaction†

    PubMed Central

    Madden, Michael M.; Vera, Claudia I. Rivera; Song, Wenjiao; Lin, Qing

    2009-01-01

    We report the first use of a photoinduced 1,3-dipolar cycloaddition reaction in “stapling” peptide side chains to reinforce a model peptide helical structure with moderate to excellent yields. The resulting pyrazoline “staplers” exhibit unique fluorescence useful in a cell permeability study. PMID:19753366

  13. Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane (tpm) manganese tricarbonyl complex.

    PubMed

    Niesel, Johanna; Pinto, Antonio; Peindy N'Dongo, Harmel W; Merz, Klaus; Ott, Ingo; Gust, Ronald; Schatzschneider, Ulrich

    2008-04-21

    Cell viability studies of HT29 colon cancer cells treated with the CO-releasing compound [Mn(CO)(3)(tpm)]PF(6) revealed a significant photoinduced cytotoxicity comparable to that of established agent 5-fluorouracil (5-FU), while controls kept in the dark were unaffected at up to 100 microM.

  14. Photoinduced Graft-Polymerization of Acrylic Acid on Polyethylene and Polypropylene Surfaces: Comparative Study Using IR-ATR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorbachev, A. A.; Tretinnikov, O. N.; Shkrabatovskaya, L. V.; Prikhodchenko, L. K.

    2014-11-01

    Photoinduced graft-polymerization of acrylic acid on the surface of polyethylene and polypropylene films containing a photoinitiator pre-adsorbed from a thin layer of non-de-aerated aqueous monomer solution was investigated. Data about the monomer conversion and grafting depth as functions of the UV irradiation time and polymer nature were obtained using IR-ATR spectroscopy.

  15. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    PubMed

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency.

  16. PHOTO-INDUCED POLYCYCLIC AROMATIC HYDROCARBON TOXIC POTENTIALS OF NEAR SHORE LARVAL FISH HABITAT IN THE GREAT LAKES, USA

    EPA Science Inventory

    Photo-induced toxicity (PIT) of polycyclic aromatic hydrocarbons (PAH) has been documented in laboratory studies for both invertebrate and vertebrate aquatic organisms. PIT has not been verified in field studies for larval fish to date. Filtered water samples and larval fish were...

  17. Electronic Defect States in Polyaniline.

    NASA Astrophysics Data System (ADS)

    Ginder, John Matthew

    The electronic defect states of the conducting polymer polyaniline are studied by a variety of magnetic and optical techniques. The insulating emeraldine base form (EB) of polyaniline can be converted to the conducting emeraldine salt form (ES) by treatment with aqueous acids such as HCl. This "protonic acid doping" process occurs via the bonding of protons to the polymer chain, without altering the number of chain electrons. Magnetic susceptibility studies reveal that a roughly linear growth of the Pauli paramagnetic susceptibility, and an increase in the density of Curie-like spins, accompanies this conversion. Consequently, the protonation-induced defects are mainly spin-1/2 polarons; further, the linear growth of the Pauli susceptibility suggests that fully protonated regions--metallic islands --grow with increasing doping level. The electronic structure of the metallic phase is proposed to be that of a polaron lattice with electronic bandwidth ~0.4 eV and polaron decay length ~2 A. The defects which accomodate excess charge in EB were also studied by near-steady-state photoinduced absorption experiments. Upon photoexcitation into the 2 eV absorption band in EB, several photoinduced features evolved. Induced bleachings of the existing transitions at 2.0 and 3.7 eV were observed; induced absorptions were found at 0.9, 1.4, and 3.0 eV. The 2.0 eV bleaching is consistent with the production of molecular charge-transfer excitons, which may relax to a different ring conformation causing long-lived bleaching, or to two separate charges on a single chain. Indeed, the induced absorptions at 1.4 and 3.0 eV are, by analogy with similar protonation -induced absorptions and by their bimolecular recombination kinetics, assigned to photoexcited polarons. Light-induced electron spin resonance experiments confirm the presence of photogenerated spins upon pumping into the excitonic absorption. Near-steady-state photoconductivity measurements on EB reveal a very small induced

  18. Photoinduced transient thermoelectric effect in a perovskite manganite Pr0.67Sr0.33MnO3 film

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Wu, G. R.; Gao, W. X.; Negishi, H.; Inoue, M.; Xiong, G. C.

    1999-05-01

    Pulsed laser-induced transient thermoelectric effect (TTE) for perovskite manganite Pr0.67Sr0.33MnO3 thin films has been measured under dc electric and magnetic fields. Without any external fields, a photoinduced TTE voltage is small (~0.5 mV). When an electric field is applied, its magnitude enhances appreciably and decays exponentially with two relaxation times, but its sign is changed by varying temperature. The TTE voltage and its sign are also varied by applying magnetic field, from which the Curie temperature is determined. Based on the available band model of this material, we have discussed a possible mechanism for the observed TTE signals. The TTE phenomenon is primarily due to the formation of a bipolar state of photogenerated electrons and holes, which reflect strongly on the characteristic band structure in the paramagnetic and ferromagnetic phases. Its decay process is a recombination of the electron-hole pairs through some recombination centers, in which the Jahn-Teller or polaron effect is found to be appreciable near the Curie temperature.

  19. Photothermal deflection spectroscopy for the study of thin films and optical coatings: measurements of absorption losses and detection of photoinduced changes

    NASA Astrophysics Data System (ADS)

    Commandre, Mireille; Roche, Pierre J.; Albrand, Gerard; Pelletier, Emile P.

    1990-08-01

    Photothermal deflection has been used to map the absorption characteristics of thin film optical coatings. Our experimental set-up can give low level absorption coefficient down to 1 ppm, with a spatial resolution limited by the excitating laser beam diameter (100 tim). On single layer films, we can calculate extinction coefficient of the deposited material with a detectivity of a few i07. We present a study of absorption losses in single layer titania films and in TiOWSiO2 Fabry-Perot filters prepared in our laboratory by electron beam evaporation, ion assisted deposition and ion plating. Local variations of absorption on the sample surface can be very large especially in lowly absorbing samples; high absorption sites may be related to local defects responsible for laser damage. Furthermore, we show that some titania films can present photoinduced instabilities. Photothermal deflection spectroscopy is a good way to study absorption evolution under illumination. In Ti02/Si02 Fabry-Perot filters, we have observed that these absorption changes are associated with important drifts of transmission curves. So these instabilities can be explained by a change of the value of the complex index Ii = n - ik. Results lead to the conclusion that stability under illumination is strongly correlated to the deposition technique and also to the deposition conditions: unstable samples are mostly prepared by electron beam evaporation.

  20. Applications of time-domain spectroscopy to electron-phonon coupling dynamics at surfaces.

    PubMed

    Matsumoto, Yoshiyasu

    2014-10-01

    Photochemistry is one of the most important branches in chemistry to promote and control chemical reactions. In particular, there has been growing interest in photoinduced processes at solid surfaces and interfaces with liquids such as water for developing efficient solar energy conversion. For example, photoinduced charge transfer between adsorbates and semiconductor substrates at the surfaces of metal oxides induced by photogenerated holes and electrons is a core process in photovoltaics and photocatalysis. In these photoinduced processes, electron-phonon coupling plays a central role. This paper describes how time-domain spectroscopy is applied to elucidate electron-phonon coupling dynamics at metal and semiconductor surfaces. Because nuclear dynamics induced by electronic excitation through electron-phonon coupling take place in the femtosecond time domain, the pump-and-probe method with ultrashort pulses used in time-domain spectroscopy is a natural choice for elucidating the electron-phonon coupling at metal and semiconductor surfaces. Starting with a phenomenological theory of coherent phonons generated by impulsive electronic excitation, this paper describes a couple of illustrative examples of the applications of linear and nonlinear time-domain spectroscopy to a simple adsorption system, alkali metal on Cu(111), and more complex photocatalyst systems. PMID:25139240

  1. Boosting photoabsorption by attosecond control of electron correlation.

    PubMed

    Hu, S X

    2013-09-20

    Electron correlation plays an essential role in a wide range of fundamentally important many-body phenomena in modern physics and chemistry. An example is the importance of electron-electron correlation in multiple ionization of multielectron atoms and molecules exposed to intense laser pulses. Manipulating the dynamic electron correlation in such photoinduced processes is a crucial step toward the coherent control of chemical reactions and photobiological processes. The generation of an attosecond extreme ultraviolet (EUV) pulse may enable such controls. Here, we show for the first time, from full-dimensional ab initio calculations of double ionization of helium in intense laser pulses (λ = 780 nm), that the electron-electron interactions can be instantaneously tuned using a time-delayed attosecond EUV pulse. Consequently, the probability of producing energetic electrons from excessive photoabsorption can be enhanced by an order of magnitude, by the attosecond control of electron-electron correlation.

  2. EFFECTS OF LASER RADIATION ON MATTER: Photoinduced absorption in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Ponomar', V. V.

    1990-08-01

    A dependence of the absorption coefficient on the optical radiation intensity in the range 10 - 5 - 1 W/cm2 was observed for chalcogenide glasses at a photon energy less than the band gap of the material. The absorption coefficient depended on the irradiation time. In the case of arsenic sulfide in the range 1.6-1.7 eV an absorption peak was observed at intensities of the order of 10 - 3 W/cm2. In this part of the spectrum the absorption probably involved metastable As-As, S-Se, and Se-Se "defect" bonds and was similar to the photoinduced degradation of hydrogenated amorphous silicon.

  3. Phase assembly and photo-induced current in CdTe-ZnO nanocomposite thin films

    SciTech Connect

    Beal, R. J.; Kana Kana, J. B.; Potter, B. G. Jr.

    2012-07-16

    Sequential radio-frequency sputtering was used to produce CdTe-ZnO nanocomposite thin films with varied semiconductor-phase extended structures. Control of the spatial distribution of CdTe nanoparticles within the ZnO embedding phase was used to influence the semiconductor phase connectivity, contributing to both changes in quantum confinement induced spectral absorption and carrier transport characteristics of the resulting nanocomposite. An increased number density of CdTe particles deposited along the applied field direction produced an enhancement in the photo-induced current observed. These results highlight the opportunity to employ long-range phase assembly as a means to control optoelectronic properties of significant interest for photovoltaic applications.

  4. The use of a vanadium species as a catalyst in photoinduced water oxidation.

    PubMed

    Santoni, Marie-Pierre; La Ganga, Giuseppina; Mollica Nardo, Viviana; Natali, Mirco; Puntoriero, Fausto; Scandola, Franco; Campagna, Sebastiano

    2014-06-11

    The first water oxidation catalyst containing only vanadium atoms as metal centers is reported. The compound is the mixed-valence [(V(IV)5V(V)1)O7(OCH3)12](-) species, 1. Photoinduced water oxidation catalyzed by 1, in the presence of Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) and Na2S2O8, in acetonitrile/aqueous phosphate buffer takes place with a quantum yield of 0.20. A hole scavenging reaction between the photochemically generated Ru(bpy)3(3+) and 1 occurs with a bimolecular rate constant of 2.5 × 10(8) M(-1) s(-1). The time-resolved formation of the oxidized molecular catalyst 1(+) in bimolecular reactions is also evidenced for the first time by transient absorption spectroscopy. This result opens the way to the use of less expensive vanadium clusters as water oxidation catalysts in artificial photosynthesis schemes.

  5. Sub-wavelength imaging of photo-induced refractive index pattern in chalcogenide glass films

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyong; Anheier, Norman C.; Qiao, Hong A.; Lucas, Pierre

    2009-11-01

    Mapping of refractive index patterns with sub-wavelength resolution is achieved using Near-field Scanning Optical Microscopy (NSOM) in reflection mode. Imaging of index pattern is performed on surface gratings photo-imprinted in As 2S 3 films. The NSOM is adapted with a near infrared laser which wavelength (785 nm) is chosen to be within the transparency window of the glass film therefore allowing consistent measure of reflected light. Quantitative measurements of photo-induced index changes can then be obtained from knowledge of the initial film index. Images of gratings with a period of 0.5 micron are easily collected therefore demonstrating sub-wavelength spatial resolution. The technique permits to concurrently obtain a topographic image and index image of the gratings thereby permitting to quantify the extent of photodarkening and photoexpansion simultaneously. It is shown that relief gratings tend to vanish in films aged in air for several months however the index gratings remain.

  6. Temperature-driven and photo-induced MIT behaviors of VO2 nanowires

    NASA Astrophysics Data System (ADS)

    Sohn, Ahrum; Kim, Dong-Wook; Byun, Ji-Won; Baik, Jeong Min

    2014-03-01

    VO2 shows a metal-insulator transition (MIT) and structural phase transition (SPT) at critical temperature (Tc) of 343K. It has been known that the MIT and SPT behaviors of VO2 can be tuned by external stimuli such as light, electric-field, and strain. We carried out comparative studies of MIT behaviors of VO2 nanowires during heating-cooling cycles with and without illumination using several light sources (red, blue, and UV). Light can induce change in Tc and hysteresis width of the resistance change. We have investigated influences of light on SPT during MIT. In this presentation, we will discuss possible physical origins for the photo-induced effects on the MIT behaviors of the VO2 nanowires.

  7. Synthesis and Characterization of Coumarin-Containing Cyclic Polymer and Its Photoinduced Coupling/Dissociation.

    PubMed

    Li, Min; Fan, Wei; Hong, Chunyan; Pan, Caiyuan

    2015-12-01

    Cyclic polystyrene (PS) with a pendant coumarin group is prepared by the combination of atom transfer radical polymerization and "click" chemistry. Fluorescence resonance energy transfer process is observed in the fluorescence measurement of coumarin-containing PS, and cyclic PS exhibits stronger emission than that of its linear precursor. When cyclic PS is irradiated under UV light at λ = 365 nm, 8-shaped PS is achieved due to the dimerization of pendant coumarin group. Subsequently, 8-shaped PS can be divided into single macrocycle under UV irradiation at λ = 254 nm via the photocleavage of coumarin dimer. The photoinduced coupling and dissociation are monitored by UV/vis spectra and gel permeation chromatography (GPC).

  8. Development of a Photoinduced Chemiluminescent Method for the Determination of the Herbicide Quinmerac in Water.

    PubMed

    Catalá-Icardo, Mónica; López-Paz, José Luis; Blázquez-Pérez, Juncal

    2015-10-01

    A new, simple, and sensitive method, based on photoinduced chemiluminescence, was developed for the determination of quinmerac. The photoproduct, obtained after ultraviolet irradiation in basic medium, was mixed with sodium sulfite (sensitizer), and Ce(IV) (oxidant) in acid medium. A wide linear dynamic range (2-600 ng mL(-1)) and a limit of detection of 0.6 ng mL(-1) were obtained without any pretreatment (0.08 ng mL(-1) after solid-phase extraction). The determination was performed using a flow-injection manifold, which allowed a high throughput (144 h(-1)). The interday reproducibility was 5.6% (n = 5), and the intraday repeatability was 3.9 and 2.9% for 20 and 200 ng mL(-1) of quinmerac, respectively (n = 21). Finally, the method was applied to surface water and groundwater, with recoveries ranging from 78.1 to 94.5%. PMID:26449814

  9. Photoinduced Formation of Colloidal Silver in Nitrocellulose Solutions Containing Titanium Alkoxides

    NASA Astrophysics Data System (ADS)

    Kulak, A. I.; Branitsky, G. A.

    2016-07-01

    The study shows the possibility of photo-induced reduction of silver nitrate and formation of stable colloidal silver particles in an isopropanol-N,N-dimethylacetamide solution of titanium alkoxide (polybutyl titanate) stabilized by nitrocellulose. It is established that titanium alkoxide and the products of its partial hydrolysis in the liquid composition play the role of a photocatalyst for the reduction of silver ions; the introduction of nitric or acetic acid additives to the composition significantly increases its photosensitivity. The films deposited from the liquid composition, previously irradiated with visible or UV light, consist of hydrated titanium dioxide and nitrocellulose with incorporated colloidal silver. Thermal treatment of the films at 150-245°C leads to the decomposition of nitrocellulose and an increase in the absorption by silver particles.

  10. Photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex.

    PubMed

    Zhang, Zhigang; Dai, Ruihui; Ma, Jiajia; Wang, Shuying; Wei, Xuehong; Wang, Hongfei

    2015-02-01

    Many planar photosensitizers tend to self-aggregate via van der Waals interactions between π-conjugated systems. The self-aggregation of the photosensitizer may reduce the efficiency of the photosensitizer to generate singlet oxygen, thereby diminishing its photodynamic activity. Efforts have been made to improve the photodynamic activity of bis-(o-diiminobenzosemiquinonato)platinum(II) which has planar geometry by the introduction of the sterically hindered triphenylamine moiety into the ligand. Herein we report the photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex in red light studied by fluorescence spectra, agarose gel assay and cell viability assay. The results suggest that the triphenylamine-modified platinum-diimine complex has better capability to generate singlet oxygen than bis-(o-diiminobenzosemiquinonato)platinum(II), and it can induce DNA damage in red light, causing high photocytotoxicity in HepG-2 cells in vitro.

  11. Photo-induced strengthening of weak bonding in noble gas dimers

    SciTech Connect

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Rubio, Angel

    2014-05-19

    We demonstrate through extensive first-principles time-dependent density functional calculations that attractive van der Waals interaction between closed-shell atoms can be enhanced by light with constant spatial intensity. We illustrate this general phenomenon for a He dimer as a prototypical case of complex van der Waals interactions and show that when excited by light with a frequency close to the 1s → 2p He-atomic transition, an attractive force larger than 7 pN is produced. This force gain is manifested as a larger acceleration of He-He contraction under an optical field. The concerted dynamical motions of the He atoms together with polarity switching of the charge-induced dipole cause the contraction of the dimer. These findings are relevant for the photo-induced control of weakly bonded molecular species, either in gas phase or in solution.

  12. Characterization of the Thermal and Photoinduced Reactions of Photochromic Spiropyrans in Aqueous Solution

    PubMed Central

    2013-01-01

    Six water-soluble spiropyran derivatives have been characterized with respect to the thermal and photoinduced reactions over a broad pH-interval. A comprehensive kinetic model was formulated including the spiro- and the merocyanine isomers, the respective protonated forms, and the hydrolysis products. The experimental studies on the hydrolysis reaction mechanism were supplemented by calculations using quantum mechanical (QM) models employing density functional theory. The results show that (1) the substitution pattern dramatically influences the pKa-values of the protonated forms as well as the rates of the thermal isomerization reactions, (2) water is the nucleophile in the hydrolysis reaction around neutral pH, (3) the phenolate oxygen of the merocyanine form plays a key role in the hydrolysis reaction. Hence, the nonprotonated merocyanine isomer is susceptible to hydrolysis, whereas the corresponding protonated form is stable toward hydrolytic degradation. PMID:24143951

  13. Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition.

    PubMed

    Dasog, Mita; Carim, Azhar I; Yalamanchili, Sisir; Atwater, Harry A; Lewis, Nathan S

    2016-08-10

    Au was photoelectrochemically deposited onto cylindrical or tapered p-Si microwires on Si substrates to profile the photoinduced charge-carrier generation in individual wires in a photoactive semiconductor wire array. Similar experiments were repeated for otherwise identical Si microwires doped to be n-type. The metal plating profile was conformal for n-type wires, but for p-type wires was a function of distance from the substrate and was dependent on the illumination wavelength. Spatially resolved charge-carrier generation profiles were computed using full-wave electromagnetic simulations, and the localization of the deposition at the p-type wire surfaces observed experimentally correlated well with the regions of enhanced calculated carrier generation in the volumes of the microwires. This technique could potentially be extended to determine the spatially resolved carrier generation profiles in a variety of mesostructured, photoactive semiconductors. PMID:27322391

  14. Photoinduced absorption and refractive-index induction in phosphosilicate fibres by radiation at 193 nm

    SciTech Connect

    Rybaltovsky, A A; Sokolov, V O; Plotnichenko, V G; Lanin, Aleksei V; Semenov, S L; Dianov, Evgenii M; Gur'yanov, A N; Khopin, V F

    2007-04-30

    The photoinduced room-temperature-stable increase in the refractive index by {approx}5x10{sup -4} at a wavelength of 1.55 {mu}m was observed in phosphosilicate fibres without their preliminary loading with molecular hydrogen. It is shown that irradiation of preliminary hydrogen-loaded fibres by an ArF laser at 193 nm enhances the efficiency of refractive-index induction by an order of magnitude. The induced-absorption spectra of preforms with a phosphosilicate glass core and optical fibres fabricated from them are studied in a broad spectral range from 150 to 5000 nm. The intense induced-absorption band ({approx}800 cm{sup -1}) at 180 nm is found, which strongly affects the formation of the induced refractive index. The quantum-chemical model of a defect related to this band is proposed. (optical fibres)

  15. Photo-Induced Inactivation of Viruses: Adsorption of Methylene Blue, Thionine, and Thiopyronine on Qβ Bacteriophage

    NASA Astrophysics Data System (ADS)

    Jockusch, Steffen; Lee, Denis; Turro, Nicholas J.; Leonard, Edward F.

    1996-07-01

    The adsorption of cationic organic dyes (methylene blue, thionine, and thiopyronine) on Qβ bacteriophage was studied by UV-visible and fluorescence spectroscopy. The dyes have shown a strong affinity to the virus and some have been used as sensitizers for photo-induced inactivation of virus. In the methylene blue concentration range of 0.1-5 μ M and at high ratios of dye to virus (greater than 1000 dye molecules per virion), the dyes bind as aggregates on the virus. Aggregation lowers the efficiency of photoinactivation because of self-quenching of the dye. At lower ratios of dye to virus (lower than 500 dye molecules per virion), the dye binds to the virus as a monomer. Fluorescence polarization and time-resolved studies of the fluorescence support the conclusions based on fluorescence quenching. Increasing the ionic strength (adding NaCl) dissociates bound dye aggregates on the virus and releases monomeric dye into the bulk solution.

  16. Anisotropic hybrid organic/inorganic (azopolymer/SiO2 NP) materials with enhanced photoinduced birefringence.

    PubMed

    Nazarova, Dimana; Nedelchev, Lian; Sharlandjiev, Peter; Dragostinova, Violeta

    2013-08-01

    Hybrid materials based on combination of polymers and inorganic nanoparticles (NP) attracted considerable attention in the last decade due to their advantageous electrical, optical, or mechanical properties. Recently, we reported a significant improvement of the photoresponse by doping azopolymers with ZnO NP. To study the influence of the composition of the dopant, in our present work we have synthesized anisotropic organic/inorganic nanocomposite materials by incorporating 5-15 nm sized SiO2 NP in a side-chain azopolymer. As a result we observe an enhancement of the photoinduced birefringence in these composite materials with about 20% compared to the nondoped sample. Additionally, we discuss possible mechanisms leading to this enhancement related with the scattering caused by the NP and the increased mobility of the azochromophores in the vicinity of NP. PMID:23913084

  17. Photoinduced formation of peroxyl radicals in aqueous solutions of nucleobase derivatives at 77 K

    NASA Astrophysics Data System (ADS)

    Lozinova, T. A.; Lander, A. V.

    2015-05-01

    It is shown that the formation of free radicals photoinduced by near-UV irradiation at 77 K in aqueous solutions of guanosine-5'-monophosphate (GMP), adenosine (Ado), adenine (A), and thymine (T) containing NaCl (0.1 M) is intensified in the presence of O2. Signals of peroxyl radicals O{2/-·} and HO{2/·} are indicated in analyzing EPR spectra, and their overall yield is 20-40% of the total amount of the formed paramagnetic products. It is found that the concentration ratio of O{2/-·} and HO{2/·} radicals depends not only on pH of the solutions before freezing but also on the duration of irradiation and method of freezing the samples. Plausible mechanisms of the processes are discussed.

  18. Dependence of photoinduced bending behavior of diarylethene crystals on irradiation wavelength of ultraviolet light.

    PubMed

    Kitagawa, Daichi; Tanaka, Rika; Kobatake, Seiya

    2015-11-01

    The dependence of the photoinduced bending behavior of diarylethene crystals on the ultraviolet light irradiation wavelength was investigated. When irradiated with 365 nm light, a crystal of 1,2-bis(5-methyl-2-phenyl-4-thiazolyl)perfluorocyclopentene (1a) bends toward the incident light. On the other hand, when irradiated with 380 nm light, the crystal of 1a first bends away from the light source and then bends toward the incident light. To explain this bending behavior, we propose a comprehensive mechanism based on the depth of the photochromic reaction from the crystal surface. This mechanism is successfully supported by the change of cell parameters associated with the photochromic reaction upon irradiation with 380 nm light, which was determined by in situ X-ray crystallographic analysis.

  19. p-Benzoquinone adsorption-separation, sensing and its photoinduced transformation within a robust Cd(II)-MOF in a SC-SC fashion.

    PubMed

    Yang, Fan; Liu, Qi-Kui; Wu, Dan; Li, An-Yan; Dong, Yu-Bin

    2015-05-01

    p-Benzoquinone (Q) adsorption–separation, sensing and its photoinduced transformation within a robust Cd(II)-MOF (1) is reported. All the adsorption, sensing and photochemical reactions are directly performed on the single-crystals of 1.

  20. Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons

    SciTech Connect

    Diamond, S.A.; Mount, D.R.; Burkhard, L.P.; Ankley, G.T.; Makynen, E.A.; Leonard, E.N.

    2000-05-01

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events underlying phototoxicity. This suggests that variation in light spectra present in natural waters, arising from variation in dissolved organic carbon composition, is an important determinant of phototoxicity risk in specific, PAH-contaminated waterbodies. To quantify the effect of environmentally realistic variation in light spectra on toxicity, brine shrimp (Artemia salina) assays were conducted under various light spectra and with three PAHs (pyrene, fluoranthene, and anthracene) of known phototoxicity potential. In these spectral assays, the total ultraviolet light present was equivalent; only the spectral characteristics varied. Based on the absorbance spectra of these PAHs, it was predicted that toxicity, quantified using immobilization as the endpoint, would vary significantly among light spectra in pyrene assays, but not in anthracene assays, and that variation in toxicity in fluoranthene assays would be intermediate. The results supported these assumptions. In the pyrene exposures, the glass filter time to 50% population immobilization (IT50) (39.5 min) was 117% longer than the KCr filter IT50 (18.2 min). In the fluoranthene exposures, the glass filter IT50 (49.5 min) was 27% longer than the KCr filter IT50 (39.1 min). In the anthracene exposures, the glass filter IT50 (62.2 min) was not statistically different from the KCr filter IT50 (63.8 min). Comparison of these results with the results of assays conducted under neutral-density filters (that change intensity but not spectral distribution) demonstrate that multiplying spectral intensity by wavelength-specific absorbance accurately predicts relative photoinduced toxicity among the experimental treatments. These results indicate

  1. Photoinduced aging and viscosity evolution in Se-rich Ge-Se glasses

    SciTech Connect

    Gueguen, Yann; Sangleboeuf, Jean-Christophe; Rouxel, Tanguy; King, Ellyn A.; Lucas, Pierre; Keryvin, Vincent; Bureau, Bruno

    2013-08-21

    We propose here to investigate the non-equilibrium viscosity of Ge-Se glasses under and after light irradiation. Ge{sub 10}Se{sub 90} and Ge{sub 20}Se{sub 80} fibers have been aged in the dark and under ambient light, over months. During aging, both the relaxation of enthalpy and the viscosity have been investigated. The viscosity was measured by shear relaxation-recovery tests allowing the measurement of non-equilibrium viscosity. When Ge{sub 10}Se{sub 90} glass fibers are aged under irradiation, a relatively fast fictive temperature decrease is observed. Concomitantly, during aging under irradiation, the non-equilibrium viscosity increases and reaches an equilibrium after two months of aging. This viscosity increase is also observed in Ge{sub 20}Se{sub 80} fibers. Nevertheless, this equilibrium viscosity is far below the viscosity expected at the configurational equilibrium. As soon as the irradiation ceases, the viscosity increases almost instantaneously by about one order of magnitude. Then, if the fibers are kept in the dark, their viscosity slowly increases over months. The analysis of the shear relaxation functions shows that the aging is thermorheologically simple. On the other side, there is no simple relaxation between the shear relaxation functions measured under irradiation and those measured in the dark. These results clearly suggest that a very specific photoinduced aging process occurs under irradiation. This aging is due to photorelaxation. Nevertheless, the viscosity changes are not solely correlated to photoaging and photorelaxation. A scenario is proposed to explain all the observed viscosity evolutions under and after irradiation, on the basis of photoinduced transient defects.

  2. Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight.

    PubMed

    Mansfield, C M; Alloy, M M; Hamilton, J; Verbeck, G F; Newton, K; Klaine, S J; Roberts, A P

    2015-02-01

    Titanium dioxide nanoparticles (TiO2 NP) are one of the most abundantly utilized nanoparticles in the world. Studies have demonstrated the ability of the anatase crystal of TiO2 NP to produce reactive oxygen species (ROS) in the presence of ultraviolet radiation (UVR), a co-exposure likely to occur in aquatic ecosystems. The goal of this study was to examine the photo-induced toxicity of anatase TiO2 NP under natural sunlight to Daphnia magna. D. magna were exposed to a range of UVR intensities and anatase TiO2 concentrations in an outdoor exposure system using the sun as the source of UVR. Different UVR intensities were achieved using UVR opaque and transparent plastics. AnataseTiO2-NP demonstrated the reciprocal relationship seen in other phototoxic compounds such as polycyclic aromatic hydrocarbons (PAHs) at higher UVR treatments. The calculated 8h LC50 of anatase TiO2 NP was 139 ppb under full intensity ambient natural sunlight, 778 ppb under 50% natural sunlight, and >500 ppm under 10% natural sunlight. Mortality was also compared between animals allowed to accumulate a body burden of anatase TiO2 for 1h and organisms whose first exposure to anatase TiO2 aqueous suspensions occurred under UVR. A significantly greater toxic effect was observed in aqueous, low body burden suspensions than that of TiO2 1h body burdens, which is dissimilar from the model presented in PAHs. Anatase TiO2 presents a unique photo-induced toxic model that is different than that of established phototoxic compounds.

  3. Physical model for the photo-induced toxicity of polycyclic aromatic hydrocarbons (PAHs)

    SciTech Connect

    Greenburg, B.M.; Krylov, S.N.; Huang, H.D.; Dixon, D.G.

    1994-12-31

    A model for photo-induced toxicity of PAHs to duckweed was developed. Growth inhibition was described by photochemical reactions between PAHs and a hypothetical group of biomolecules (given the notation G) which are required for growth of the plants. Light activation of PAHs was considered in a two compartment system (water and leaves). The reaction scheme includes: photooxidation of PAHs, partitioning of PAHs into leaves, triplet formation of intact PAHs, photosensitization reactions that consume G, and reaction between photooxidized PAHs and G. The assumptions used in the model are: the rate of PAH photooxidation is slower than the rate of assimilation, PAH content in solution is approximately constant over the length of the toxicity test, the fluence rate of actinic radiation is lower in the leaves than in solution, the toxicity of intact PAHs with G in the absence of light is negligible, and the reaction of photooxidized PAHs with G does not require light. The authors then analyzed a series of differential equations that described toxicity. The result was an expression for growth inhibition as a function of the initial concentration of the PAH, the spectral distribution of the light source, the absorption spectrum of the PAH, the quantum yield for formation of triplet state PAH, and the rate of photo-oxidation of the PAH. The expression also includes two complex constants that can be solved by a least squares analysis of the empirical data for growth inhibition. Thus, the model allows a prediction of PAH photo-induced toxicity using only physical parameters of PAHs.

  4. Heterodimers formed through a partial anionic exchange process: scanning tunneling spectroscopy to monitor bands across the junction vis-à-vis photoinduced charge separation

    NASA Astrophysics Data System (ADS)

    Bera, Abhijit; Saha, Sudip K.; Pal, Amlan J.

    2015-10-01

    We report controlled formation of heterodimers and their charge separation properties. CdS|CdTe heterodimers were formed through an anionic exchange process of CdS nanostructures. With control over the duration of the anionic exchange process, bulk|dot, bulk|bulk, and then dot|bulk phases of the semiconductors could be observed to have formed. A mapping of density of states as derived from scanning tunneling spectroscopy (STS) brought out conduction and valence band-edges along the nanostructures and heterodimers. The CdS|CdTe heterodimers evidenced a type-II band-alignment between the semiconductors along with the formation of a depletion region at the interface. The width (of the depletion region) and the energy-offset at the interface depended on the size of the semiconductors. We report that the width that is instrumental for photoinduced charge separation in the heterodimers has a direct correlation with the performance of hybrid bulk-heterojunction solar cells based on the nanostructures in a polymer matrix.We report controlled formation of heterodimers and their charge separation properties. CdS|CdTe heterodimers were formed through an anionic exchange process of CdS nanostructures. With control over the duration of the anionic exchange process, bulk|dot, bulk|bulk, and then dot|bulk phases of the semiconductors could be observed to have formed. A mapping of density of states as derived from scanning tunneling spectroscopy (STS) brought out conduction and valence band-edges along the nanostructures and heterodimers. The CdS|CdTe heterodimers evidenced a type-II band-alignment between the semiconductors along with the formation of a depletion region at the interface. The width (of the depletion region) and the energy-offset at the interface depended on the size of the semiconductors. We report that the width that is instrumental for photoinduced charge separation in the heterodimers has a direct correlation with the performance of hybrid bulk

  5. Manifestations of sequential electron transfer

    SciTech Connect

    Thurnauer, M.C.; Tang, J.

    1996-05-01

    An essential feature of efficient photo-initiated charge separation is sequential electron transfer. Charge separation is initiated by photoexcitation of an electron donor followed by rapid electron transfer steps from the excited donor through a series of electron acceptors, so that, after one or two successive steps, charge separation is stabilized by the physical separation between the oxidized donor and reduced acceptor. The prime example of this process is the sequential electron transfer that takes place in the purple photosynthetic bacterial reaction center, resulting in the charge separation between P{sup +} and Q{sub A}{sup -} across a biological membrane. We have developed magnetic resonance tools to monitor sequential electron transfer. We are applying these techniques to study charge separation in natural photo-synthetic systems in order to gain insights into the features of the reaction center proteins that promote efficient charge separation. As we establish what some of these factors are, we are beginning to design artificial photosynthetic systems that undergo photoinduced sequential electron transfer steps.

  6. A Water-Soluble Copper-Polypyridine Complex as a Homogeneous Catalyst for both Photo-Induced and Electrocatalytic O2 Evolution.

    PubMed

    Xiang, Rui-Juan; Wang, Hong-Yan; Xin, Zhi-Juan; Li, Cheng-Bo; Lu, Ya-Xing; Gao, Xue-Wang; Sun, Hua-Ming; Cao, Rui

    2016-01-26

    The water-soluble polypyridine copper complex [Cu(F3TPA)(ClO4)2] [1; F3TPA=tris(2-fluoro-6-pyridylmethyl)amine] catalyzes water oxidation in a pH 8.5 borate buffer at a relatively low overpotential of 610 mV. Assisted by photosensitizer and an electron acceptor, 1 also exhibits activity as a homogeneous catalyst for photo-induced O2 evolution with a maximum turnover frequency (TOF) of (1.58 ± 0.03) × 10(-1) s(-1) and a maximum turnover number (TON) of 11.61 ± 0.23. In comparison, the reference [Cu(TPA)(ClO4)2] [TPA=tris(2-pyridylmethyl)amine] displayed almost no activity under either set of conditions, implying the crucial role of the ligand in determining the behavior of the catalyst. Experimental evidence indicate the molecular catalytic nature of 1, leading to a potentially practical strategy to apply the copper complex in a photoelectrochemical device for water oxidation. PMID:26640173

  7. Study of asymmetries of Cd(Zn)Te devices investigated using photo-induced current transient spectroscopy, Rutherford backscattering, surface photo-voltage spectroscopy, and gamma ray spectroscopies

    SciTech Connect

    Crocco, J.; Bensalah, H.; Zheng, Q.; Dieguez, E.; Corregidor, V.; Avles, E.; Castaldini, A.; Fraboni, B.; Cavalcoli, D.; Cavallini, A.; Vela, O.

    2012-10-01

    Despite these recent advancements in preparing the surface of Cd(Zn)Te devices for detector applications, large asymmetries in the electronic properties of planar Cd(Zn)Te detectors are common. Furthermore, for the development of patterned electrode geometries, selection of each electrode surface is crucial for minimizing dark current in the device. This investigation presented here has been carried out with three objectives. Each objective is oriented towards establishing reliable methods for the selection of the anode and cathode surfaces independent of the crystallographic orientation. The objectives of this study are (i) investigate how the asymmetry in I-V characteristics of Cd(Zn)Te devices may be associated with the TeO2 interfacial layer using Rutherford backscattering to study the structure at the Au-Cd(Zn)Te interface, (ii) develop an understanding of how the concentration of the active traps in Cd(Zn)Te varies with the external bias, and (iii) propose non-destructive methods for selection of the anode and cathode which are independent of crystallographic orientation. The spectroscopic methods employed in this investigation include Rutherford backscattering spectroscopy, photo-induced current transient spectroscopy, and surface photo-voltage spectroscopy, as well as gamma ray spectroscopy to demonstrate the influence on detector properties.

  8. Electron transfer through rigid organic molecular wires enhanced by electronic and electron-vibration coupling.

    PubMed

    Sukegawa, Junpei; Schubert, Christina; Zhu, Xiaozhang; Tsuji, Hayato; Guldi, Dirk M; Nakamura, Eiichi

    2014-10-01

    Electron transfer (ET) is a fundamental process in a wide range of biological systems, photovoltaics and molecular electronics. Therefore to understand the relationship between molecular structure and ET properties is of prime importance. For this purpose, photoinduced ET has been studied extensively using donor-bridge-acceptor molecules, in which π-conjugated molecular wires are employed as bridges. Here, we demonstrate that carbon-bridged oligo-p-phenylenevinylene (COPV), which is both rigid and flat, shows an 840-fold increase in the ET rate compared with the equivalent flexible molecular bridges. A 120-fold rate enhancement is explained in terms of enhanced electronic coupling between the electron donor and the electron acceptor because of effective conjugation through the COPVs. The remainder of the rate enhancement is explained by inelastic electron tunnelling through COPV caused by electron-vibration coupling, unprecedented for organic molecular wires in solution at room temperature. This type of nonlinear effect demonstrates the versatility and potential practical utility of COPVs in molecular device applications. PMID:25242485

  9. Electron transfer through rigid organic molecular wires enhanced by electronic and electron-vibration coupling

    NASA Astrophysics Data System (ADS)

    Sukegawa, Junpei; Schubert, Christina; Zhu, Xiaozhang; Tsuji, Hayato; Guldi, Dirk M.; Nakamura, Eiichi

    2014-10-01

    Electron transfer (ET) is a fundamental process in a wide range of biological systems, photovoltaics and molecular electronics. Therefore to understand the relationship between molecular structure and ET properties is of prime importance. For this purpose, photoinduced ET has been studied extensively using donor-bridge-acceptor molecules, in which π-conjugated molecular wires are employed as bridges. Here, we demonstrate that carbon-bridged oligo-p-phenylenevinylene (COPV), which is both rigid and flat, shows an 840-fold increase in the ET rate compared with the equivalent flexible molecular bridges. A 120-fold rate enhancement is explained in terms of enhanced electronic coupling between the electron donor and the electron acceptor because of effective conjugation through the COPVs. The remainder of the rate enhancement is explained by inelastic electron tunnelling through COPV caused by electron-vibration coupling, unprecedented for organic molecular wires in solution at room temperature. This type of nonlinear effect demonstrates the versatility and potential practical utility of COPVs in molecular device applications.

  10. Electron transfer through rigid organic molecular wires enhanced by electronic and electron-vibration coupling.

    PubMed

    Sukegawa, Junpei; Schubert, Christina; Zhu, Xiaozhang; Tsuji, Hayato; Guldi, Dirk M; Nakamura, Eiichi

    2014-10-01

    Electron transfer (ET) is a fundamental process in a wide range of biological systems, photovoltaics and molecular electronics. Therefore to understand the relationship between molecular structure and ET properties is of prime importance. For this purpose, photoinduced ET has been studied extensively using donor-bridge-acceptor molecules, in which π-conjugated molecular wires are employed as bridges. Here, we demonstrate that carbon-bridged oligo-p-phenylenevinylene (COPV), which is both rigid and flat, shows an 840-fold increase in the ET rate compared with the equivalent flexible molecular bridges. A 120-fold rate enhancement is explained in terms of enhanced electronic coupling between the electron donor and the electron acceptor because of effective conjugation through the COPVs. The remainder of the rate enhancement is explained by inelastic electron tunnelling through COPV caused by electron-vibration coupling, unprecedented for organic molecular wires in solution at room temperature. This type of nonlinear effect demonstrates the versatility and potential practical utility of COPVs in molecular device applications.

  11. Role of polytypism and degree of hexagonality on the photoinduced optical second harmonic generation in SiC nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Puziko, V.; Skorik, S.; Wojciechowski, A.; Fedorchuk, A. O.; Maciąg, A.

    2015-05-01

    Photoinduced optiсal second harmonic generation was studied in nanocrystalline SiC films prepared by the method of direct ion deposition. For the studies were chosen three types of polytypes (with different degree of hexagonality) - 24R with degree hexagonality G=25, 27R-G=44, 33R with - G=36. The bicolor photoinduced treatment was performed by the wavelengths 1064nm/532 nm by 15 ns YAG:Nd laser. The efficiency of the output SHG was evaluated by ratio of the corresponding signal intensities with respect to the references and by the time delay between the SHG and the fundamental maxima. Explanation of the observed effect is given within a framework of the occurrence of the nano-trapping levels in the film crystalline interfaces.

  12. Photoinduced reactions of 1-(dimethylethyl)-2,2-dimethylpropyl and cyclohexyl radicals in low-temperature solids

    NASA Astrophysics Data System (ADS)

    Koizumi, Hitoshi; Takada, Tomoya; Ichikawa, Tsuneki; Lund, Anders

    2001-06-01

    Photoinduced reactions of 1-(dimethylethyl)-2,2-dimethylpropyl and cyclohexyl radicals in 77 K solids were studied by the ESR method. 1-(Dimethylethyl)-2,2-dimethylpropyl is converted to 2,2,4,4-tetramethylpentyl radical with photoirradiation of 254 nm light. A hydrogen atom of methyl groups can hence directly transfer to the radical site at a carbon atom other than an adjacent one in the photoinduced reactions of alkyl radicals. Cyclohexyl radical is converted to cyclopentylmethyl radical with irradiation of 254 nm light. The photolysis of cyclohexyl radical causes C-C bond scission, and results in the formation of 5-hexenyl radical. It is then converted to cyclopentylmethyl radical through intramolecular rearrangement.

  13. Ultrafast in cellulo photoinduced dynamics processes of the paradigm molecular light switch [Ru(bpy)2dppz]2+

    PubMed Central

    De la Cadena, Alejandro; Davydova, Dar’ya; Tolstik, Tatiana; Reichardt, Christian; Shukla, Sapna; Akimov, Denis; Heintzmann, Rainer; Popp, Jürgen; Dietzek, Benjamin

    2016-01-01

    An in cellulo study of the ultrafast excited state processes in the paradigm molecular light switch [Ru(bpy)2dppz]2+ by localized pump-probe spectroscopy is reported for the first time. The localization of [Ru(bpy)2dppz]2+ in HepG2 cells is verified by emission microscopy and the characteristic photoinduced picosecond dynamics of the molecular light switch is observed in cellulo. The observation of the typical phosphorescence stemming from a 3MLCT state suggests that the [Ru(bpy)2dppz]2+ complex intercalates with the DNA in the nucleus. The results presented for this benchmark coordination compound reveal the necessity to study the photoinduced processes in coordination compounds for intracellular use, e.g. as sensors or as photodrugs, in the actual biological target environment in order to derive a detailed molecular mechanistic understanding of the excited-state properties of the systems in the actual biological target environment. PMID:27644587

  14. Ultrafast in cellulo photoinduced dynamics processes of the paradigm molecular light switch [Ru(bpy)2dppz]2+

    NASA Astrophysics Data System (ADS)

    de La Cadena, Alejandro; Davydova, Dar’Ya; Tolstik, Tatiana; Reichardt, Christian; Shukla, Sapna; Akimov, Denis; Heintzmann, Rainer; Popp, Jürgen; Dietzek, Benjamin

    2016-09-01

    An in cellulo study of the ultrafast excited state processes in the paradigm molecular light switch [Ru(bpy)2dppz]2+ by localized pump-probe spectroscopy is reported for the first time. The localization of [Ru(bpy)2dppz]2+ in HepG2 cells is verified by emission microscopy and the characteristic photoinduced picosecond dynamics of the molecular light switch is observed in cellulo. The observation of the typical phosphorescence stemming from a 3MLCT state suggests that the [Ru(bpy)2dppz]2+ complex intercalates with the DNA in the nucleus. The results presented for this benchmark coordination compound reveal the necessity to study the photoinduced processes in coordination compounds for intracellular use, e.g. as sensors or as photodrugs, in the actual biological target environment in order to derive a detailed molecular mechanistic understanding of the excited-state properties of the systems in the actual biological target environment.

  15. Sequence-specific photoinduced c-fos gene damage mediated by triple stranded-forming oligonucleotide conjugated to psoralen

    NASA Astrophysics Data System (ADS)

    Cao, En-Hua; Wang, Ju-jun; Ma, Wenjian; Qin, Jingfen

    1999-09-01

    A psoralen-oligonucleotide conjugate was designed to photoinduce a cross-link at a specific sequence of c-fos oncogene. Psoralen was attached to its C-3 position of a 20-base mer oligonucleotide, which binds to a synthetic 49 bp duplex containing the c-fos gene polypurine site, where it forms a triple stranded DNA. Upon near-UV-irradiation, the two strand of DNA are crosslinked at the TpA step present at the triple-duplex junction. Results show that the yield of the photoinduce cross- linking reaction is quite high. We treated HeLa cells with above 2-mer oligonucleotide conjugated to psoralen. The expression of c-fos oncogene was significant reduced, no significant effect on the level of c-myc mRNA. These data indicate that such psoralen- oligonucleotide conjugates could be used to selectively control gene expression or to induce sequence-specific damages.

  16. Ultrafast in cellulo photoinduced dynamics processes of the paradigm molecular light switch [Ru(bpy)2dppz](2.).

    PubMed

    De la Cadena, Alejandro; Davydova, Dar'ya; Tolstik, Tatiana; Reichardt, Christian; Shukla, Sapna; Akimov, Denis; Heintzmann, Rainer; Popp, Jürgen; Dietzek, Benjamin

    2016-01-01

    An in cellulo study of the ultrafast excited state processes in the paradigm molecular light switch [Ru(bpy)2dppz](2+) by localized pump-probe spectroscopy is reported for the first time. The localization of [Ru(bpy)2dppz](2+) in HepG2 cells is verified by emission microscopy and the characteristic photoinduced picosecond dynamics of the molecular light switch is observed in cellulo. The observation of the typical phosphorescence stemming from a (3)MLCT state suggests that the [Ru(bpy)2dppz](2+) complex intercalates with the DNA in the nucleus. The results presented for this benchmark coordination compound reveal the necessity to study the photoinduced processes in coordination compounds for intracellular use, e.g. as sensors or as photodrugs, in the actual biological target environment in order to derive a detailed molecular mechanistic understanding of the excited-state properties of the systems in the actual biological target environment. PMID:27644587

  17. How Geometric Distortions Scatter Electronic Excitations in Conjugated Macromolecules.

    PubMed

    Shi, Tian; Li, Hao; Tretiak, Sergei; Chernyak, Vladimir Y

    2014-11-20

    Effects of disorder and exciton-phonon interactions are the major factors controlling photoinduced dynamics and energy-transfer processes in conjugated organic semiconductors, thus defining their electronic functionality. All-atom quantum-chemical simulations are potentially capable of describing such phenomena in complex "soft" organic structures, yet they are frequently computationally restrictive. Here we efficiently characterize how electronic excitations in branched conjugated molecules interact with molecular distortions using the exciton scattering (ES) approach as a fundamental principle combined with effective tight-binding models. Molecule geometry deformations are incorporated to the ES view of electronic excitations by identifying the dependence of the Frenkel-type exciton Hamiltonian parameters on the characteristic geometry parameters. We illustrate our methodology using two examples of intermolecular distortions, bond length alternation and single bond rotation, which constitute vibrational degrees of freedom strongly coupled to the electronic system in a variety of conjugated systems. The effect on excited-state electronic structures has been attributed to localized variation of exciton on-site energies and couplings. As a result, modifications of the entire electronic spectra due to geometric distortions can be efficiently and accurately accounted for with negligible numerical cost. The presented approach can be potentially extended to model electronic structures and photoinduced processes in bulk amorphous polymer materials. PMID:26276475

  18. How Geometric Distortions Scatter Electronic Excitations in Conjugated Macromolecules.

    PubMed

    Shi, Tian; Li, Hao; Tretiak, Sergei; Chernyak, Vladimir Y

    2014-11-20

    Effects of disorder and exciton-phonon interactions are the major factors controlling photoinduced dynamics and energy-transfer processes in conjugated organic semiconductors, thus defining their electronic functionality. All-atom quantum-chemical simulations are potentially capable of describing such phenomena in complex "soft" organic structures, yet they are frequently computationally restrictive. Here we efficiently characterize how electronic excitations in branched conjugated molecules interact with molecular distortions using the exciton scattering (ES) approach as a fundamental principle combined with effective tight-binding models. Molecule geometry deformations are incorporated to the ES view of electronic excitations by identifying the dependence of the Frenkel-type exciton Hamiltonian parameters on the characteristic geometry parameters. We illustrate our methodology using two examples of intermolecular distortions, bond length alternation and single bond rotation, which constitute vibrational degrees of freedom strongly coupled to the electronic system in a variety of conjugated systems. The effect on excited-state electronic structures has been attributed to localized variation of exciton on-site energies and couplings. As a result, modifications of the entire electronic spectra due to geometric distortions can be efficiently and accurately accounted for with negligible numerical cost. The presented approach can be potentially extended to model electronic structures and photoinduced processes in bulk amorphous polymer materials.

  19. Characteristics of light-induced electron transport from P3HT to ZnO-nanowire field-effect transistors

    SciTech Connect

    Choe, Minhyeok; Hoon Lee, Byoung; Park, Woojin; Kang, Jang-Won; Jeong, Sehee; Hun Lee, Byoung; Lee, Kwanghee; Park, Seong-Ju; Cho, Kyungjune; Lee, Takhee; Hong, Woong-Ki

    2013-11-25

    We fabricated ZnO-nanowire (NW) field-effect transistors (FETs) coated with poly(3-hexylthiophene) (P3HT) and characterized the electron-transfer characteristics from the P3HT to the ZnO NWs. Under irradiation by laser light with a wavelength of 532 nm, photo-induced electrons were created in the P3HT and then transported to the ZnO NWs, constituting a source-drain current in the initially enhancement-mode P3HT-coated ZnO-NW FETs. As the intensity of the light increased, the current increased, and its threshold voltage shifted to the negative gate-bias direction. We estimated the photo-induced electron density and the electron-transfer characteristics, which will be helpful for understanding organic-inorganic hybrid optoelectronic devices.

  20. Modulation-frequency dependencies of the intensity and the phase delay of photoinduced absorption from conjugated polymers

    NASA Astrophysics Data System (ADS)

    Furukawa, Yukio

    2000-03-01

    The modulation-frequency dependencies of the intensity and the phase delay of photoinduced infrared absorption from poly(p-phenylene) have been observed and simulated numerically on the basis of a model based on second-order kinetics involving a neutralization recombination process between the positive and negative charge carriers (polarons) that are formed from a photogenerated polaron pair (interchain charge-transfer exciton). The rate constant of the bimolecular recombination has been obtained.