Sample records for deacetylase inhibitors decrease

  1. Histone deacetylase inhibitor belinostat represses survivin expression through reactivation of transforming growth factor beta (TGFbeta) receptor II leading to cancer cell death.

    PubMed

    Chowdhury, Sanjib; Howell, Gillian M; Teggart, Carol A; Chowdhury, Aparajita; Person, Jonathan J; Bowers, Dawn M; Brattain, Michael G

    2011-09-02

    Survivin is a cancer-associated gene that functions to promote cell survival, cell division, and angiogenesis and is a marker of poor prognosis. Histone deacetylase inhibitors induce apoptosis and re-expression of epigenetically silenced tumor suppressor genes in cancer cells. In association with increased expression of the tumor suppressor gene transforming growth factor β receptor II (TGFβRII) induced by the histone deacetylase inhibitor belinostat, we observed repressed survivin expression. We investigated the molecular mechanisms involved in survivin down-regulation by belinostat downstream of reactivation of TGFβ signaling. We identified two mechanisms. At early time points, survivin protein half-life was decreased with its proteasomal degradation. We observed that belinostat activated protein kinase A at early time points in a TGFβ signaling-dependent mechanism. After longer times (48 h), survivin mRNA was also decreased by belinostat. We made the novel observation that belinostat mediated cell death through the TGFβ/protein kinase A signaling pathway. Induction of TGFβRII with concomitant survivin repression may represent a significant mechanism in the anticancer effects of this drug. Therefore, patient populations exhibiting high survivin expression with epigenetically silenced TGFβRII might potentially benefit from the use of this histone deacetylase inhibitor.

  2. Nephrotoxicity of Epigenetic Inhibitors Used for the Treatment of Cancer

    PubMed Central

    Scholpa, N.E.; Kolli, R.T.; Moore, M.; Arnold, R.D.; Glenn, T.C.; Cummings, B.S.

    2016-01-01

    This study determined the anti-neoplastic activity and nephrotoxicity of epigenetic inhibitors in vitro. The therapeutic efficacy of epigenetic inhibitors was determined in human prostate cancer cells (PC-3 and LNCaP) using the DNA methyltransferase inhibitor 5-azacytidine (5-Aza) and the histone deacetylase inhibitor trichostatin A (TSA). Cells were also treated with carbamazepine (CBZ), an anti-convulsant with histone deacetylase inhibitor-like properties. 5-Aza, TSA or CBZ alone did not decrease MTT staining in PC-3 or LNCaP cells after 48 hr. In contrast, docetaxel, a frontline chemotherapeutic induced concentration-dependent decreases in MTT staining. Pretreatment with 5-Aza or TSA increased docetaxel-induced cytotoxicity in LNCaP cells, but not PC-3 cells. TSA pretreatment also increased cisplatin-induced toxicity in LNCaP cells. Carfilzomib (CFZ), a protease inhibitor approved for the treatment of multiple myeloma had minimal effect on LNCaP cell viability, but reduced MTT staining 50% in PC-3 cells compared to control, and pretreatment with 5-Aza further enhanced toxicity. Treatment of normal rat kidney (NRK) and human embryonic kidney 293 (HEK293) cells with the same concentrations of epigenetic inhibitors used in prostate cancer cells significantly decreased MTT staining in all cell lines after 48 hr. Interestingly, we found that the toxicity of epigenetic inhibitors to kidney cells was dependent on both the compound and the stage of cell growth. The effect of 5-Aza and TSA on DNA methyltransferase and histone deacetylase activity, respectively, was confirmed by assessing the methylation and acetylation of the CDK inhibitor p21. Collectively, these data show that combinatorial treatment with epigenetic inhibitors alters the efficacy of chemotherapeutics in cancer cells in a compound- and cell-specific manner; however, this treatment also has the potential to induce nephrotoxic cell injury. PMID:27543423

  3. Potential non-oncological applications of histone deacetylase inhibitors.

    PubMed

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma.

  4. Potential non-oncological applications of histone deacetylase inhibitors

    PubMed Central

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma. PMID:22046487

  5. Aceroside VIII is a new natural selective HDAC6 inhibitor that synergistically enhances the anticancer activity of HDAC inhibitor in HT29 cells.

    PubMed

    Ryu, Hyun-Wook; Lee, Dong-Hun; Shin, Dong-Hee; Kim, Seung Hyun; Kwon, So Hee

    2015-02-01

    The identification of new isoform-specific histone deacetylase inhibitors is important for revealing the biological functions of individual histone deacetylase and for determining their potential use as therapeutic agents. Among the 11 zinc-dependent histone deacetylases that have been identified in humans, histone deacetylase 6 is a structurally and functionally unique enzyme. Here, we tested the inhibitory activity of diarylheptanoids isolated from Betula platyphylla against histone deacetylase 6. Aceroside VIII selectively inhibited histone deacetylase 6 catalytic activity and the combined treatment of aceroside VIII or (-)-centrolobol with A452, another selective histone deacetylase 6 inhibitor, led to a synergistic increase in levels of acetylated α-tubulin. Aceroside VIII, paltyphyllone, and (-)-centrolobol synergistically enhanced the induction of apoptosis and growth inhibition by A452. Consistent with these results, A452 in combination with aceroside VIII, paltyphyllone, or (-)-centrolobol was more potent than either drug alone for the induction of apoptosis. Together, these findings indicate that aceroside VIII is a specific histone deacetylase 6 inhibitor and points to a mechanism by which natural histone deacetylase 6-selective inhibitors may enhance the efficacy of other histone deacetylase 6 inhibitors in colon cancer cells. Georg Thieme Verlag KG Stuttgart · New York.

  6. Histone deacetylase inhibitors: can we consider potent anti-neoplastic agents for the treatment of asthma?

    PubMed

    Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    Histone deacetylase inhibitors have emerged as a new class of anti-cancer therapeutics due to their potent anti-proliferative and apoptotic effects in malignant cells. Accumulating evidence is indicating that histone deacetylase inhibitors may also have potential clinical utility in non-oncological applications, including asthma. However, the potential of histone deacetylase inhibitors in asthma remains controversial. For example, the mechanisms of action of the broad-spectrum histone deacetylase inhibitor, Trichostatin A, in animal models of allergic airways disease are conflicting. Further, there is evidence suggesting potential problems associated with histone deacetylase 2 inhibition and conventional glucocorticosteroid therapy. Similarly, disparate findings are emerging following modulation of the class III, sirtuin 1 enzyme. Indeed, it is becoming apparent that the mechanism of action may not be related to histone deacetylase inhibition activity per se. Further, there is only limited evidence that these compounds possess anti-inflammatory effects in models of asthma. In this review, we provide an overview of the biology of the metal-dependent and sirtuin deacetylases in the context of asthma. The controversies surrounding the potential use of histone deacetylase inhibitors in asthma are discussed and future directions involving the investigation of more specific analogues are explored.

  7. Prostate Cancer Prevention by Sulforaphane, a Novel Dietary Histone Deacetylase Inhibitor

    DTIC Science & Technology

    2008-01-01

    sulforaphane , a novel dietary histone deacetylase inhibitor PRINCIPAL INVESTIGATOR: Yu Zhen CONTRACTING ORGANIZATION: Oregon State...ANNUAL 3. DATES COVERED 1 JAN 2007 - 31 DEC 2007 4. TITLE AND SUBTITLE Prostate cancer prevention by sulforaphane , a novel dietary histone deacetylase...Prostate cancer is the second leading cause of cancer related death in men. To test Sulforaphane (SFN) as a novel histone deacetylases (HDAC) inhibitor

  8. Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice.

    PubMed

    Fontán-Lozano, Angela; Romero-Granados, Rocío; Troncoso, Julieta; Múnera, Alejandro; Delgado-García, José María; Carrión, Angel M

    2008-10-01

    Histone deacetylases (HDAC) are enzymes that maintain chromatin in a condensate state, related with absence of transcription. We have studied the role of HDAC on learning and memory processes. Both eyeblink classical conditioning (EBCC) and object recognition memory (ORM) induced an increase in histone H3 acetylation (Ac-H3). Systemic treatment with HDAC inhibitors improved cognitive processes in EBCC and in ORM tests. Immunohistochemistry and gene expression analyses indicated that administration of HDAC inhibitors decreased the stimulation threshold for Ac-H3, and gene expression to reach the levels required for learning and memory. Finally, we evaluated the effect of systemic administration of HDAC inhibitors to mice models of neurodegeneration and aging. HDAC inhibitors reversed learning and consolidation deficits in ORM in these models. These results point out HDAC inhibitors as candidate agents for the palliative treatment of learning and memory impairments in aging and in neurodegenerative disorders.

  9. Effect of histone deacetylase inhibitor trichostatin A (TSA) on the microtubular system of Tetrahymena.

    PubMed

    Kovács, P; Pállinger, Eva; Csaba, G

    2007-12-01

    Histone deacetylases can also influence acetylation of tubulin. In the present experiments, after 60 min of 10 microM trichostatin (TSA) treatment the structure and amount of tubulin and acetylated-tubulin were studied immunocytochemically, by using confocal microscopy and flow cytometry. In TSA-treated Tetrahymena cells deep fibres were never labeled with antibody to acetylated tubulin. Flow cytometry with anti acetylated-tubulin antibody demonstrated that in the contol cell populations there were weaker and stronger labelled parts. After TSA treatment in the weaker labeled part the cell number decreased, and in the stronger labeled part increased significantly: this means that after the histone deacetylase inhibitor TSA treatment the amount of acetylated-tubulin in numerous Tetrahymena cells is significantly elevated. Labeling with anti-tubulin antibody was not changed significantly. On the basis of these results we postulate that histone deacetylase also in Tetrahymena influences the acetylation of tubulin, and this enzyme is sensitive to TSA treatments.

  10. Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes.

    PubMed

    Ververis, Katherine; Rodd, Annabelle L; Tang, Michelle M; El-Osta, Assam; Karagiannis, Tom C

    2011-12-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.

  11. Selective inhibitors of zinc-dependent histone deacetylases. Therapeutic targets relevant to cancer.

    PubMed

    Kollar, Jakub; Frecer, Vladimir

    2015-01-01

    Histone deacetylases (HDACs), which act on acetylated histones and/or other non-histone protein substrates, represent validated epigenetic targets for the treatment of cancer and other human diseases. The inhibition of HDAC activity was shown to induce cell cycle arrest, differentiation, apoptosis as well as a decrease in proliferation, angiogenesis, migration, and cell resistance to chemotherapy. Targeting single HDAC isoforms with selective inhibitors will help to reveal the role of individual HDACs in cancer development or uncover further biological consequences of protein acetylation. This review focuses on conventional zinc-containing HDACs. In its first part, the biological role of individual HDACs in various types of cancer is summarized. In the second part, promising HDAC inhibitors showing activity both in enzymatic and cell-based assays are surveyed with an emphasis on the inhibitors selective to the individual HDACs.

  12. The Effects of Histone Deacetylase Inhibition on the Levels of Cerebral Cytokines in an Animal Model of Mania Induced by Dextroamphetamine.

    PubMed

    Valvassori, Samira S; Resende, Wilson R; Varela, Roger B; Arent, Camila O; Gava, Fernanda F; Peterle, Bruna R; Dal-Pont, Gustavo C; Carvalho, André F; Andersen, Monica L; Quevedo, João

    2018-02-01

    Studies have suggested the involvement of inflammatory processes in the physiopathology of bipolar disorder. Preclinical evidences have shown that histone deacetylase inhibitors may act as mood-stabilizing agents and protect the brain in models of mania and depression. The aim of the present study was to evaluate the effects of sodium butyrate (SB) and valproate (VPA) on behavioral changes, histone deacetylase activity, and the levels of cytokines in an animal model of mania induced by dextroamphetamine (d-AMPH). Wistar rats were first given d-AMPH or saline (Sal) for a period of 14 days, and then, between the 8th and 14th days, the rats were treated with SB, VPA, or Sal. The activity of histone deacetylase and the levels of cytokines (interleukin (IL) IL-4, IL-6, and IL-10 and tumor necrosis factor-alpha (TNF-α)) were evaluated in the frontal cortex and striatum of the rats. The administration of d-AMPH increased the activity of histone deacetylase in the frontal cortex. Administration of SB or VPA decreased the levels of histone deacetylase activity in the frontal cortex and striatum of rats. SB per se increased the levels of cytokines in both of the brain structures evaluated. AMPH increased the levels of cytokines in both of the brain structures evaluated, and VPA reversed this alteration. The effects of SB on d-AMPH-induced cytokine alterations were dependent on the brain structure and the cytokine evaluated. Despite VPA and SB having a similar mechanism of action, both being histone deacetylase inhibitors, they showed different effects on the levels of cytokines. The present study reinforces the need for more research into histone deacetylase inhibitors being used as a possible target for new medications in the treatment of bipolar disorder.

  13. Butyrate decreases its own oxidation in colorectal cancer cells through inhibition of histone deacetylases.

    PubMed

    Han, Anna; Bennett, Natalie; Ahmed, Bettaieb; Whelan, Jay; Donohoe, Dallas R

    2018-06-05

    Colorectal cancer is characterized by an increase in the utilization of glucose and a diminishment in the oxidation of butyrate, which is a short chain fatty acid. In colorectal cancer cells, butyrate inhibits histone deacetylases to increase the expression of genes that slow the cell cycle and induce apoptosis. Understanding the mechanisms that contribute to the metabolic shift away from butyrate oxidation in cancer cells is important in in understanding the beneficial effects of the molecule toward colorectal cancer. Here, we demonstrate that butyrate decreased its own oxidation in cancerous colonocytes. Butyrate lowered the expression of short chain acyl-CoA dehydrogenase, an enzyme that mediates the oxidation of short-chain fatty acids. Butyrate does not alter short chain acyl-CoA dehydrogenase levels in non-cancerous colonocytes. Trichostatin A, a structurally unrelated inhibitor of histone deacetylases, and propionate also decreased the level of short chain acyl-CoA dehydrogenase, which alluded to inhibition of histone deacetylases as a part of the mechanism. Knockdown of histone deacetylase isoform 1, but not isoform 2 or 3, inhibited the ability of butyrate to decrease short chain acyl-CoA dehydrogenase expression. This work identifies a mechanism by which butyrate selective targets colorectal cancer cells to reduce its own metabolism.

  14. Use of Polyamine Derivatives as Selective Histone Deacetylase Inhibitors

    PubMed Central

    Woster, Patrick M.

    2014-01-01

    Histone acetylation and deacetylation, mediated by histone acetyltransferase and the 11 isoforms of histone deacetylase, play an important role in gene expression. Histone deacetylase inhibitors have found utility in the treatment of cancer by promoting the reexpression of aberrantly silenced genes that code for tumor suppressor factors. It is unclear which of the 11 histone deacetylase isoforms are important in human cancer. We have designed a series of polyaminohydroxamic acid (PAHA) and polyaminobenzamide (PABA) histone deacetylase inhibitors that exhibit selectivity among four histone deacetylase isoforms. Although all of the active inhibitors promote reexpression of tumor suppressor factors, they produce variable cellular effects ranging from stimulation of growth to cytostasis and cytotoxicity. This chapter describes the procedures used to quantify the global and isoform-specific inhibition caused by these inhibitors, and techniques used to measure cellular effects such as reexpression of tumor suppressor proteins and hyperacetylation of histones H3 and H4. Procedures are also described to examine the ability of PAHAs and PABAs to utilize the polyamine transport system and to induce overexpression of the early apoptotic factor annexin A1. PMID:21318894

  15. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn; Luo, Xiaoyong; Nie, Peipei

    SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuatingmore » AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.« less

  16. Histone Deacetylase Inhibitors Trichostatin A and MCP30 Relieve Benzene-Induced Hematotoxicity via Restoring Topoisomerase IIα.

    PubMed

    Chen, Jingjing; Zheng, Zhouyi; Chen, Yi; Li, Jiaqi; Qian, Shanhu; Shi, Yifen; Sun, Lan; Han, Yixiang; Zhang, Shenghui; Yu, Kang

    2016-01-01

    Dysfunction of histone acetylation inhibits topoisomerase IIα (Topo IIα), which is implicated in benzene-induced hematotoxicity in patients with chronic benzene exposure. Whether histone deacetylase (HDAC) inhibitors can relieve benzene-induced hematotoxicity remains unclear. Here we showed that hydroquinone, a main metabolite of benzene, increased the HDAC activity, decreased the Topo IIα expression and induced apoptosis in human bone marrow mononuclear cells in vitro, and treatment with two HDAC inhibitors, namely trichostatin A (TSA) or a mixture of ribosome-inactivating proteins MCP30, almost completely reversed these effects. We further established a benzene poisoning murine model by inhaling benzene vapor in a container and found that benzene poisoning decreased the expression and activity of Topo IIα, and impaired acetylation of histone H4 and H3. The analysis of regulatory factors of Topo IIα promoter found that benzene poisoning decreased the mRNA levels of SP1 and C-MYB, and increased the mRNA level of SP3. Both TSA and MCP30 significantly enhanced the acetylation of histone H3 and H4 in Topo IIα promoter and increased the expression and activity of Topo IIα in benzene poisoning mice, which contributed to relieve the symptoms of hematotoxicity. Thus, treatment with HDAC inhibitors represents an attractive approach to reduce benzene-induced hematotoxicity.

  17. Carbamates as Potential Prodrugs and a New Warhead for HDAC Inhibition.

    PubMed

    King, Kristina; Hauser, Alexander-Thomas; Melesina, Jelena; Sippl, Wolfgang; Jung, Manfred

    2018-02-02

    We designed and synthesized carbamates of the clinically-approved HDAC (histone deacetylase) inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) in order to validate our previously-proposed hypothesis that these carbamates might serve as prodrugs for hydroxamic acid containing HDAC inhibitors. Biochemical assays proved our new compounds to be potent inhibitors of histone deacetylases in vitro, and they also showed antiproliferative effects in leukemic cells. These results, as well as stability analysis led to the suggestion that the intact carbamates are inhibitors of histone deacetylases themselves, representing a new zinc-binding warhead in HDAC inhibitor design. This suggestion was further supported by the synthesis and evaluation of a carbamate derivative of the HDAC6-selective inhibitor bufexamac.

  18. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice.

    PubMed

    Ono, Tetsuo; Li, Chong; Mizutani, Eiji; Terashita, Yukari; Yamagata, Kazuo; Wakayama, Teruhiko

    2010-12-01

    Since the first mouse clone was produced by somatic cell nuclear transfer, the success rate of cloning in mice has been extremely low. Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, we found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency.

  19. The effect of a histone deacetylase inhibitor - valproic acid - on nucleoli in human leukaemic myeloblasts.

    PubMed

    Smetana, K; Zápotocký, M

    2010-01-01

    The present study was undertaken to provide more information on nucleolar changes induced by a histone deacetylase inhibitor such as valproic acid in leukaemic myeloblasts at the single-cell level. For this study, RNA in nucleoli was visualized by a simple but sensitive cytochemical procedure in unfixed cytospins of short-term bone marrow cultures from patients suffering from acute myeloid leukaemia. Valproic acid in leukaemic myeloblasts markedly reduced the nucleolar size and also produced significant transformation of "active" to "resting" and "inactive" nucleoli that reflected the alteration of the nucleolar transcription in sensitive myeloblasts. On this occasion it should be added that valproic acid significantly increased the incidence of altered myeloblasts that changed to apoptotic cells or apoptotic bodies and cell ghosts. In contrast to the above-mentioned decreased nucleolar size, the nucleolar RNA concentration, expressed by computerassisted RNA image densitometry in valproic acidtreated myeloblasts, was not significantly changed. The results of the present study clearly indicated that the nucleolar size and transformation of "active" to "sleeping" or "inactive" nucleoli are convenient markers of the sensitivity and alteration of leukaemic myeloblasts produced by a histone deacetylase inhibitor, valproic acid, at the single-cell level.

  20. Different effects of histone deacetylase inhibitors nicotinamide and trichostatin A (TSA) in C17.2 neural stem cells.

    PubMed

    Wang, Haifeng; Cheng, Hua; Wang, Kai; Wen, Tieqiao

    2012-11-01

    Histone deacetylase inhibitors are involved in proliferation, apoptosis, cell cycle, mRNA transcription, and protein expression in various cells. However, the molecular mechanism underlying such functions is still not fully clear. In this study, we used C17.2 neural stem cell (NSC) line as a model to evaluate the effects of nicotinamide and trichostatin A (TSA) on cell characteristics. Results show that nicotinamide and TSA greatly inhibit cell growth, lead to cell morphology changes, and effectively induce cell apoptosis in a dose-dependent manner. Western blot analyses confirmed that nicotinamide significantly decreases the expression of bcl-2 and p38. Further insight into the molecular mechanisms shows the suppression of phosphorylation in eukaryotic initiation factor 4E-binding protein 1 (4EBP1) by nicotinamide, whereas, an increased expression of bcl-2 and p38 and phosphorylation of 4EBP1 by TSA. However, both nicotinamide and TSA significantly increase the expression of cytochrome c (cyt c). These results strongly suggest that bcl-2, p38, cyt c, and p-4EBP1 could suppress proliferation and induce apoptosis of C17.2 NSCs mediated by histone deacetylase inhibitors, nicotinamide and TSA, involving different molecular mechanisms.

  1. Histone Deacetylase Inhibitors Trichostatin A and MCP30 Relieve Benzene-Induced Hematotoxicity via Restoring Topoisomerase IIα

    PubMed Central

    Chen, Yi; Li, Jiaqi; Qian, Shanhu; Shi, Yifen; Sun, Lan; Han, Yixiang; Zhang, Shenghui; Yu, Kang

    2016-01-01

    Dysfunction of histone acetylation inhibits topoisomerase IIα (Topo IIα), which is implicated in benzene-induced hematotoxicity in patients with chronic benzene exposure. Whether histone deacetylase (HDAC) inhibitors can relieve benzene-induced hematotoxicity remains unclear. Here we showed that hydroquinone, a main metabolite of benzene, increased the HDAC activity, decreased the Topo IIα expression and induced apoptosis in human bone marrow mononuclear cells in vitro, and treatment with two HDAC inhibitors, namely trichostatin A (TSA) or a mixture of ribosome-inactivating proteins MCP30, almost completely reversed these effects. We further established a benzene poisoning murine model by inhaling benzene vapor in a container and found that benzene poisoning decreased the expression and activity of Topo IIα, and impaired acetylation of histone H4 and H3. The analysis of regulatory factors of Topo IIα promoter found that benzene poisoning decreased the mRNA levels of SP1 and C-MYB, and increased the mRNA level of SP3. Both TSA and MCP30 significantly enhanced the acetylation of histone H3 and H4 in Topo IIα promoter and increased the expression and activity of Topo IIα in benzene poisoning mice, which contributed to relieve the symptoms of hematotoxicity. Thus, treatment with HDAC inhibitors represents an attractive approach to reduce benzene-induced hematotoxicity. PMID:27058040

  2. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis

    PubMed Central

    Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    The histone deacetylase inhibitors, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Numerous histone deacetylase inhibitors are currently undergoing clinical trials, predominantly in combination with other cancer modalities, for the treatment of various haematological and solid malignancies. Most of the traditional compounds are known as broad-spectrum or pan-histone deacetylase inhibitors, possessing activity against a number of the 11 metal-dependent enzymes. One of the main questions in the field is whether class- or isoform-specific compounds would offer a therapeutic benefit compared to broad-spectrum inhibitors. Therefore, analysis of the relative expression of the different histone deacetylase enzymes in cancer cells and tissues is important to determine whether there are specific targets. We used a panel of antibodies directed against the 11 known mammalian histone deacetylases to determine expression levels in MCF7 breast cancer cells and in tissue representative of invasive ductal cell carcinoma and ductal carcinoma in situ. Firstly, we utilized a semi-quantitative method based on immunofluorescence staining to examine expression of the different histone deacetylases in MCF7 cells. Our findings indicate high expression levels of HDAC1, 3 and 6 in accordance with findings from others using RT-PCR and immunoblotting. Following validation of our approach we examined the expression of the different isoforms in representative control and breast cancer tissue. In general, our findings indicate higher expression of class I histone deacetylases compared to class II enzymes in breast cancer tissue. Analysis of individual cancer cells in the same tissue indicated marked heterogeneity in the expression of most class I enzymes indicating potential complications with the use of class- or isoform-specific compounds. Overall, our approach can be utilized to rapidly compare, in an unbiased semi-quantitative manner, the differential levels of expression of histone deacetylase enzymes in cells and tissues using widely available imaging software. It is anticipated that such analysis will become increasingly important as class- or isoform-specific histone deacetylase inhibitors become more readily available. PMID:22347520

  3. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis.

    PubMed

    Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    The histone deacetylase inhibitors, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Numerous histone deacetylase inhibitors are currently undergoing clinical trials, predominantly in combination with other cancer modalities, for the treatment of various haematological and solid malignancies. Most of the traditional compounds are known as broad-spectrum or pan-histone deacetylase inhibitors, possessing activity against a number of the 11 metal-dependent enzymes. One of the main questions in the field is whether class- or isoform-specific compounds would offer a therapeutic benefit compared to broad-spectrum inhibitors. Therefore, analysis of the relative expression of the different histone deacetylase enzymes in cancer cells and tissues is important to determine whether there are specific targets. We used a panel of antibodies directed against the 11 known mammalian histone deacetylases to determine expression levels in MCF7 breast cancer cells and in tissue representative of invasive ductal cell carcinoma and ductal carcinoma in situ. Firstly, we utilized a semi-quantitative method based on immunofluorescence staining to examine expression of the different histone deacetylases in MCF7 cells. Our findings indicate high expression levels of HDAC1, 3 and 6 in accordance with findings from others using RT-PCR and immunoblotting. Following validation of our approach we examined the expression of the different isoforms in representative control and breast cancer tissue. In general, our findings indicate higher expression of class I histone deacetylases compared to class II enzymes in breast cancer tissue. Analysis of individual cancer cells in the same tissue indicated marked heterogeneity in the expression of most class I enzymes indicating potential complications with the use of class- or isoform-specific compounds. Overall, our approach can be utilized to rapidly compare, in an unbiased semi-quantitative manner, the differential levels of expression of histone deacetylase enzymes in cells and tissues using widely available imaging software. It is anticipated that such analysis will become increasingly important as class- or isoform-specific histone deacetylase inhibitors become more readily available.

  4. Murine hematopoietic stem cell dormancy controlled by induction of a novel short form of PSF1 by histone deacetylase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yinglu; Gong, Zhi-Yuan; Takakura, Nobuyuki, E-mail: ntakaku@biken.osaka-u.ac.jp

    2015-06-10

    Hematopoietic stem cells (HSCs) can survive long-term in a state of dormancy. Little is known about how histone deacetylase inhibitors (HDACi) affect HSC kinetics. Here, we use trichostatin A (TSA), a histone deacetylase inhibitor, to enforce histone acetylation and show that this suppresses cell cycle entry by dormant HSCs. Previously, we found that haploinsufficiency of PSF1, a DNA replication factor, led to attenuation of the bone marrow (BM) HSC pool size and lack of acute proliferation after 5-FU ablation. Because PSF1 protein is present in CD34{sup +} transiently amplifying HSCs but not in CD34{sup −} long-term reconstituting-HSCs which are restingmore » in a dormant state, we analyzed the relationship between dormancy and PSF1 expression, and how a histone deacetylase inhibitor affects this. We found that CD34{sup +} HSCs produce long functional PSF1 (PSF1a) but CD34{sup −} HSCs produce a shorter possibly non-functional PSF1 (PSF1b, c, dominantly PSF1c). Using PSF1a-overexpressing NIH-3T3 cells in which the endogenous PSF1 promoter is suppressed, we found that TSA treatment promotes production of the shorter form of PSF1 possibly by inducing recruitment of E2F family factors upstream of the PSF1 transcription start site. Our data document one mechanism by which histone deacetylase inhibitors affect the dormancy of HSCs by regulating the DNA replication factor PSF1. - Highlights: • Hematopoetic stem cell dormancy is controlled by histone deacetylation inhibitors. • Dormancy of HSCs is associated with a shorter form of non-functional PSF1. • Histone deacetylase inhibitors suppress PSF1 promoter activity.« less

  5. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    PubMed

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  6. Chlamydocin analogs bearing carbonyl group as possible ligand toward zinc atom in histone deacetylases.

    PubMed

    Bhuiyan, Mohammed P I; Kato, Tamaki; Okauchi, Tatsuo; Nishino, Norikazu; Maeda, Satoko; Nishino, Tomonori G; Yoshida, Minoru

    2006-05-15

    A series of chlamydocin analogs with various carbonyl functionalities were designed and synthesized as histone deacetylase (HDAC) inhibitors. Chlamydocin is a cyclic tetrapeptide containing an epoxyketone surrogate in the side chain which makes it irreversible inhibitor of HDACs, whereas apicidins are a class of cyclic tetrapeptides that contain an ethylketone moiety as zinc ligand. We replaced the epoxyketone moiety of chlamydocin with several ketones and aldehyde to synthesize potent reversible and selective HDAC inhibitors. The inhibitory activity of the cyclic tetrapeptides against histone deacetylase enzymes were evaluated and the result showed most of them are potent inhibitors. Some of them have remarkable selectivity among the HDACs.

  7. A novel histone deacetylase inhibitor, CG200745, potentiates anticancer effect of docetaxel in prostate cancer via decreasing Mcl-1 and Bcl-XL.

    PubMed

    Hwang, Jung Jin; Kim, Yong Sook; Kim, Taelim; Kim, Mi Joung; Jeong, In Gab; Lee, Je-Hwan; Choi, Jene; Jang, Sejin; Ro, Seonggu; Kim, Choung-Soo

    2012-08-01

    We synthesized a novel hydroxamate-based pan-histone deacetylase inhibitor (HDACI), CG200745 {(E)-2-(Naphthalen-1-yloxymethyl)-oct-2-enedioic acid 1-[(3-dimethylamino-propyl)-amide] 8-hydroxyamide]}. Like other inhibitors, for example vorinostat and belinostat, CG200745 has the hydroxamic acid moiety to bind zinc at the bottom of catalytic pocket. Firstly, we analyzed its inhibitory activity against histone deacetylase (HDAC) in hormone-dependent LNCaP cells and hormone-independent DU145 and PC3 cells. CG200745 inhibited deacetylation of histone H3 and tubulin as much as vorinostat and belinostat did. CG200745 also inhibited growth of prostate cancer cells, increased sub-G1 population, and activated caspase-9, -3 and -8 in LNCaP, DU145 and PC3 cells. These results indicate that CG200745 induces apoptosis. Next, we examined the effect of CG200745 on cell death induced by docetaxel in DU145 cells in vitro and in vivo. Compared to mono-treatment with each drug, pre-treatment of DU145 cells with docetaxel followed by CG200745 showed synergistic cytotoxicity, and increased the apoptotic sub-G1 population, caspase activation, and tubulin acetylation. Moreover, the combination treatment decreased Mcl-1 and Bcl-(XL). Docetaxel and CG200745 combination reduced tumor size in the DU145 xenograft model. These preclinical results show that combination treatment with docetaxel and new HDACI, CG200745, potentiated anti-tumor effect in hormone-refractory prostate cancer (HRPC) cells via activation of apoptosis.

  8. Targeting histone deacetylases in endometrial cancer: a paradigm-shifting therapeutic strategy?

    PubMed

    Garmpis, N; Damaskos, C; Garmpi, A; Spartalis, E; Kalampokas, E; Kalampokas, T; Margonis, G-A; Schizas, D; Andreatos, N; Angelou, A; Lavaris, A; Athanasiou, A; Apostolou, K G; Spartalis, M; Damaskou, Z; Daskalopoulou, A; Diamantis, E; Tsivelekas, K; Alavanos, A; Valsami, S; Moschos, M M; Sampani, A; Nonni, A; Antoniou, E A; Mantas, D; Tsourouflis, G; Markatos, K; Kontzoglou, K; Perrea, D; Nikiteas, N; Kostakis, A; Dimitroulis, D

    2018-02-01

    Endometrial cancer is increasingly prevalent in western societies and affects mainly postmenopausal women; notably incidence rates have been rising by 1.9% per year on average since 2005. Although the early-stage endometrial cancer can be effectively managed with surgery, more advanced stages of the disease require multimodality treatment with varying results. In recent years, endometrial cancer has been extensively studied at the molecular level in an attempt to develop effective therapies. Recently, a family of compounds that alter epigenetic expression, namely histone deacetylase inhibitors, have shown promise as possible therapeutic agents in endometrial cancer. The present review aims to discuss the therapeutic potential of these agents. This literature review was performed using the MEDLINE database; the search terms histone, deacetylase, inhibitors, endometrial, targeted therapies for endometrial cancer were employed to identify relevant studies. We only reviewed English language publications and also considered studies that were not entirely focused on endometrial cancer. Ultimately, sixty-four articles published until January 2018 were incorporated into our review. Studies in cell cultures have demonstrated that histone deacetylase inhibitors exert their antineoplastic activity by promoting expression of p21WAF1 and p27KIP1, cyclin-dependent kinase inhibitors, that have important roles in cell cycle regulation; importantly, the transcription of specific genes (e.g., E-cadherin, PTEN) that are commonly silenced in endometrial cancer is also enhanced. In addition to these abstracts effects, novel compounds with histone deacetylase inhibitor activity (e.g., scriptaid, trichostatin, entinostat) have also demonstrated significant antineoplastic activity both in vitro and in vivo, by liming tumor growth, inducing apoptosis, inhibiting angiogenesis and potentiating the effects of chemotherapy. The applications of histone deacetylase inhibitors in endometrial cancer appear promising; nonetheless, additional trials are necessary to establish the therapeutic role, clinical utility, and safety of these promising compounds.

  9. Histone Deacetylase Inhibitors as a Novel Targeted Therapy Against Non-small Cell Lung Cancer: Where Are We Now and What Should We Expect?

    PubMed

    Damaskos, Christos; Tomos, Ioannis; Garmpis, Nikolaos; Karakatsani, Anna; Dimitroulis, Dimitrios; Garmpi, Anna; Spartalis, Eleftherios; Kampolis, Christos F; Tsagkari, Eleni; Loukeri, Angeliki A; Margonis, Georgios-Antonios; Spartalis, Michael; Andreatos, Nikolaos; Schizas, Dimitrios; Kokkineli, Stefania; Antoniou, Efstathios A; Nonni, Afroditi; Tsourouflis, Gerasimos; Markatos, Konstantinos; Kontzoglou, Konstantinos; Kostakis, Alkiviadis; Tomos, Periklis

    2018-01-01

    Non-small cell lung cancer constitutes the most common type of lung cancer, accounting for 85-90% of lung cancer, and is a leading cause of cancer-related death. Despite the progress during the past years, poor prognosis remains a challenge and requires further research and development of novel antitumor treatment. Recently, the role of histone deacetylases in gene expression has emerged showing their regulation of the acetylation of histone proteins and other non-histone protein targets and their role in chromatin organization, while their inhibitors, the histone deacetylase inhibitors, have been proposed to have a potential therapeutic role in diverse malignancies, including non-small cell lung cancer. This review article focuses on the role of histone deacetylase inhibitors in the treatment of non-small cell lung cancer and the major molecular mechanisms underlying their antitumor activity recognized so far. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment.

    PubMed

    Colussi, Claudia; Mozzetta, Chiara; Gurtner, Aymone; Illi, Barbara; Rosati, Jessica; Straino, Stefania; Ragone, Gianluca; Pescatori, Mario; Zaccagnini, Germana; Antonini, Annalisa; Minetti, Giulia; Martelli, Fabio; Piaggio, Giulia; Gallinari, Paola; Steinkuhler, Christian; Steinkulher, Christian; Clementi, Emilio; Dell'Aversana, Carmela; Altucci, Lucia; Mai, Antonello; Capogrossi, Maurizio C; Puri, Pier Lorenzo; Gaetano, Carlo

    2008-12-09

    The overlapping histological and biochemical features underlying the beneficial effect of deacetylase inhibitors and NO donors in dystrophic muscles suggest an unanticipated molecular link among dystrophin, NO signaling, and the histone deacetylases (HDACs). Higher global deacetylase activity and selective increased expression of the class I histone deacetylase HDAC2 were detected in muscles of dystrophin-deficient MDX mice. In vitro and in vivo siRNA-mediated down-regulation of HDAC2 in dystrophic muscles was sufficient to replicate the morphological and functional benefits observed with deacetylase inhibitors and NO donors. We found that restoration of NO signaling in vivo, by adenoviral-mediated expression of a constitutively active endothelial NOS mutant in MDX muscles, and in vitro, by exposing MDX-derived satellite cells to NO donors, resulted in HDAC2 blockade by cysteine S-nitrosylation. These data reveal a special contribution of HDAC2 in the pathogenesis of Duchenne muscular dystrophy and indicate that HDAC2 inhibition by NO-dependent S-nitrosylation is important for the therapeutic response to NO donors in MDX mice. They also define a common target for independent pharmacological interventions in the treatment of Duchenne muscular dystrophy.

  11. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment

    PubMed Central

    Colussi, Claudia; Mozzetta, Chiara; Gurtner, Aymone; Illi, Barbara; Rosati, Jessica; Straino, Stefania; Ragone, Gianluca; Pescatori, Mario; Zaccagnini, Germana; Antonini, Annalisa; Minetti, Giulia; Martelli, Fabio; Piaggio, Giulia; Gallinari, Paola; Steinkuhler, Christian; Clementi, Emilio; Dell'Aversana, Carmela; Altucci, Lucia; Mai, Antonello; Capogrossi, Maurizio C.; Puri, Pier Lorenzo; Gaetano, Carlo

    2008-01-01

    The overlapping histological and biochemical features underlying the beneficial effect of deacetylase inhibitors and NO donors in dystrophic muscles suggest an unanticipated molecular link among dystrophin, NO signaling, and the histone deacetylases (HDACs). Higher global deacetylase activity and selective increased expression of the class I histone deacetylase HDAC2 were detected in muscles of dystrophin-deficient MDX mice. In vitro and in vivo siRNA-mediated down-regulation of HDAC2 in dystrophic muscles was sufficient to replicate the morphological and functional benefits observed with deacetylase inhibitors and NO donors. We found that restoration of NO signaling in vivo, by adenoviral-mediated expression of a constitutively active endothelial NOS mutant in MDX muscles, and in vitro, by exposing MDX-derived satellite cells to NO donors, resulted in HDAC2 blockade by cysteine S-nitrosylation. These data reveal a special contribution of HDAC2 in the pathogenesis of Duchenne muscular dystrophy and indicate that HDAC2 inhibition by NO-dependent S-nitrosylation is important for the therapeutic response to NO donors in MDX mice. They also define a common target for independent pharmacological interventions in the treatment of Duchenne muscular dystrophy. PMID:19047631

  12. Differential protein acetylation induced by novel histone deacetylase inhibitors.

    PubMed

    Glaser, K B; Li, J; Pease, L J; Staver, M J; Marcotte, P A; Guo, J; Frey, R R; Garland, R B; Heyman, H R; Wada, C K; Vasudevan, A; Michaelides, M R; Davidsen, S K; Curtin, M L

    2004-12-17

    Histone deacetylase (HDAC) inhibitors induce the hyperacetylation of nucleosomal histones in carcinoma cells resulting in the expression of repressed genes that cause growth arrest, terminal differentiation, and/or apoptosis. In vitro selectivity of several novel hydroxamate HDAC inhibitors including succinimide macrocyclic hydroxamates and the non-hydroxamate alpha-ketoamide inhibitors was investigated using isolated enzyme preparations and cellular assays. In vitro selectivity for the HDAC isozymes (HDAC1/2, 3, 4/3, and 6) was not observed for these HDAC inhibitors or the reference HDAC inhibitors, MS-275 and SAHA. In T24 and HCT116 cells these compounds caused the accumulation of acetylated histones H3 and H4; however, the succinimide macrocyclic hydroxamates and the alpha-ketoamides did not cause the accumulation of acetylated alpha-tubulin. These data suggest "selectivity" can be observed at the cellular level with HDAC inhibitors and that the nature of the zinc-chelating moiety is an important determinant of activity against tubulin deacetylase.

  13. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    PubMed

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  14. The Class I-Specific HDAC Inhibitor MS-275 Decreases Motivation to Consume Alcohol and Relapse in Heavy Drinking Rats

    PubMed Central

    Lemoine, Sandrine; Jeanblanc, Virginie; Alaux-Cantin, Stéphanie; Naassila, Mickaël

    2015-01-01

    Background: New strategies for the treatment of alcohol dependence are a pressing need, and recent evidence suggests that targeting enzymes involved in epigenetic mechanisms seems to have great potential. Among these mechanisms, alteration of histone acetylation by histone deacetylases is of great importance for gene expression and has also been implicated in addiction. Here, we examined whether intra-cerebroventricular administration of MS-275, a class I-specific histone deacetylase inhibitor, could alter ethanol self-administration, motivation to consume ethanol, and relapse in heavy drinking rats. Methods: Male Long Evans rats trained to self-administer high levels of ethanol received intra-cerebroventricular micro-infusions of MS-275 (250 µM, 500 µM, and 1000 µM) 3 hours prior to the self-administration sessions. Results: First, we demonstrated that intra-cerebroventricular infusion of MS-275 increases acetylation of Histone 4 within the nucleus accumbens nucleus accumbens and the dorsolateral striatum. Second, we observed that MS-275 decreases ethanol self-administration by about 75%. We found that 2 consecutive daily injections are necessary to decrease ethanol self-administration. Additionally, the dose-response curve test indicated that MS-275 has a U-shape effect on ethanol self-administration with the dose of 500 µM as the most efficient dose. Furthermore, we showed that MS-275 also diminished the motivation to consume ethanol (25% decrease), and finally, we demonstrated that MS-275 reduced relapse (by about 50%) and postponed reacquisition even when the treatment was stopped. Conclusions: Our study confirms the potential therapeutic interest of targeting epigenetic mechanisms in excessive alcohol drinking and strengthens the interest of focusing on specific isoforms of histone deacetylases. PMID:25762717

  15. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma.

    PubMed

    Hideshima, T; Cottini, F; Ohguchi, H; Jakubikova, J; Gorgun, G; Mimura, N; Tai, Y-T; Munshi, N C; Richardson, P G; Anderson, K C

    2015-05-15

    Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide (Len) and pomalidomide trigger anti-tumor activities in multiple myeloma (MM) by targetting cereblon and thereby impacting IZF1/3, c-Myc and IRF4. Histone deacetylase inhibitors (HDACi) also downregulate c-Myc. We therefore determined whether IMiDs with HDACi trigger significant MM cell growth inhibition by inhibiting or downregulating c-Myc. Combination treatment of Len with non-selective HDACi suberoylanilide hydroxamic acid or class-I HDAC-selective inhibitor MS275 induces synergic cytotoxicity, associated with downregulation of c-Myc. Unexpectedly, we observed that decreased levels of cereblon (CRBN), a primary target protein of IMiDs, was triggered by these agents. Indeed, sequential treatment of MM cells with MS275 followed by Len shows less efficacy than simultaneous treatment with this combination. Importantly ACY1215, an HDAC6 inhibitor with minimal effects on class-I HDACs, together with Len induces synergistic MM cytotoxicity without alteration of CRBN expression. Our results showed that only modest class-I HDAC inhibition is able to induce synergistic MM cytotoxicity in combination with Len. These studies may provide the framework for utilizing HDACi in combination with Len to both avoid CRBN downregulation and enhance anti-MM activities.

  16. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs.

    PubMed

    Marks, Paul A

    2010-09-01

    Histone deacetylase (HDAC) inhibitors are being developed as a new, targeted class of anticancer drugs. This review focuses on the mechanisms of action of the HDAC inhibitors, which selectively induce cancer cell death. There are 11 zinc-dependent HDACs in humans and the biological roles of these lysine deacetylases are not completely understood. It is clear that these different HDACs are not redundant in their activity. This review focuses on the mechanisms by which HDAC inhibitors can induce transformed cell growth arrest and cell death, inhibit cell mobility and have antiangiogenesis activity. There are more than a dozen HDAC inhibitors, including hydroxamates, cyclic peptides, benzamides and fatty acids, in various stages of clinical trials and many more compounds in preclinical development. The chemically different HDAC inhibitors may target different HDACs. There are extensive preclinical studies with transformed cells in culture and tumor-bearing animal models, as well as limited clinical studies reported to date, which indicate that HDAC inhibitors will be most useful when used in combination with cytotoxic or other targeted anticancer agents.

  17. An efficient synthesis of SK-658 and its analogs as potent histone deacetylase inhibitors.

    PubMed

    Shahidul Islam, Md; Nurul Islam, Md; Ashraful Hoque, Md; Nishino, Norikazu; Kato, Tamaki; Kim, Hyun-Jung; Ito, Akihiro; Yoshida, Minoru

    2015-04-01

    SK-658 is a potent histone deacetylase (HDAC) inhibitor that showed higher activity than SAHA due to the presence of extended hydrophobic group. We designed and synthesized thioester and SS-hybrid bearing SK-658 analogs as HDAC inhibitors. All the compounds were active in nano molar range and showed higher inhibitory activity than SAHA and SK-658. Among these, disulfide compounds showed the highest activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Efficacy of Histone Deacetylase and Estrogen Receptor Inhibition in Breast Cancer Cells Due to Concerted down Regulation of Akt

    PubMed Central

    Thomas, Scott; Thurn, K. Ted; Raha, Paromita; Chen, Stephanie; Munster, Pamela N.

    2013-01-01

    Hormonal therapy resistance remains a considerable barrier in the treatment of breast cancer. Activation of the Akt-PI3K-mTOR pathway plays an important role in hormonal therapy resistance. Our recent preclinical and clinical studies showed that the addition of a histone deacetylase inhibitor re-sensitized hormonal therapy resistant breast cancer to tamoxifen. As histone deacetylases are key regulators of Akt, we evaluated the effect of combined treatment with the histone deacetylase inhibitor PCI-24781 and tamoxifen on Akt in breast cancer cells. We demonstrate that while both histone deacetylase and estrogen receptor inhibition down regulate AKT mRNA and protein, their concerted effort results in down regulation of AKT activity with induction of cell death. Histone deacetylase inhibition exerts its effect on AKT mRNA through an estrogen receptor-dependent mechanism, primarily down regulating the most abundant isoform AKT1. Although siRNA depletion of AKT modestly induces cell death, when combined with an anti-estrogen, cytotoxicity is significantly enhanced. Thus, histone deacetylase regulation of AKT mRNA is a key mediator of this therapeutic combination and may represent a novel biomarker for predicting response to this regimen. PMID:23874830

  19. Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases.

    PubMed

    Pham, Tho X; Park, Young-Ki; Lee, Ji-Young

    2016-06-21

    We previously demonstrated that the organic extract of Spirulina platensis (SPE), an edible blue-green alga, possesses potent anti-inflammatory effects. In this study, we investigated if the regulation of histone deacetylases (HDACs) play a role in the anti-inflammatory effect of SPE in macrophages. Treatment of macrophages with SPE rapidly and dose-dependently reduced HDAC2, 3, and 4 proteins which preceded decreases in their mRNA levels. Degradation of HDAC4 protein was attenuated in the presence of inhibitors of calpain proteases, lysosomal acidification, and Ca(2+)/calmodulin-dependent protein kinase II, respectively, but not a proteasome inhibitor. Acetylated histone H3 was increased in SPE-treated macrophages to a similar level as macrophages treated with a pan-HDAC inhibitor, with concomitant inhibition of inflammatory gene expression upon LPS stimulation. Knockdown of HDAC3 increased basal and LPS-induced pro-inflammatory gene expression, while HDAC4 knockdown increased basal expression of interleukin-1β (IL-1β), but attenuated LPS-induced inflammatory gene expression. Chromatin immunoprecipitation showed that SPE decreased p65 binding and H3K9/K14 acetylation at the Il-1β and tumor necrosis factor α (Tnfα) promoters. Our results suggest that SPE increased global histone H3 acetylation by facilitating HDAC protein degradation, but decreases histone H3K9/K14 acetylation and p65 binding at the promoters of Il-1β and Tnfα to exert its anti-inflammatory effect.

  20. Identifying and Overcoming Mechanisms of Histone Deacetylase Inhibitor Resistance | Center for Cancer Research

    Cancer.gov

    Histone deacetylase inhibitors (HDIs), such as romidepsin, can inhibit the growth of cancer cells and induce their apoptosis by increasing histone acetylation and altering gene expression. Romidepsin has even been approved by the Food and Drug Administration for the treatment of two types of non-Hodgkin lymphoma, cutaneous T cell lymphoma (CTCL) and peripheral T cell lymphoma.

  1. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors.

    PubMed

    Ishihara, Kenji; Takahashi, Aki; Kaneko, Motoko; Sugeno, Hiroki; Hirasawa, Noriyasu; Hong, JangJa; Zee, OkPyo; Ohuchi, Kazuo

    2007-03-06

    EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

  2. Histone Deacetylase Inhibitors Facilitate Dihydroartemisinin-Induced Apoptosis in Liver Cancer In Vitro and In Vivo

    PubMed Central

    Zhang, Chris Zhiyi; Pan, Yinghua; Cao, Yun; Lai, Paul B. S.; Liu, Lili; Chen, George Gong; Yun, Jingping

    2012-01-01

    Liver cancer ranks in prevalence and mortality among top five cancers worldwide. Accumulating interests have been focused in developing new strategies for liver cancer treatment. We have previously showed that dihydroartemisinin (DHA) exhibited antitumor activity towards liver cancer. In this study, we demonstrated that histone deacetylase inhibitors (HDACi) significantly augmented the antineoplastic effect of DHA via increasing apoptosis in vitro and in vivo. Inhibition of ERK phosphorylation contributed to DHA-induced apoptosis, due to the fact that inhibitor of ERK phosphorylation (PD98059) increased DHA-induced apoptosis. Compared with DHA alone, the combined treatment with DHA and HDACi reduced mitochondria membrane potential, released cytochrome c into cytoplasm, increased p53 and Bak, decreased Mcl-1 and p-ERK, activated caspase 3 and PARP, and induced apoptotic cells. Furthermore, we showed that HDACi pretreatment facilitated DHA-induced apoptosis. In Hep G2-xenograft carrying nude mice, the intraperitoneal injection of DHA and SAHA resulted in significant inhibition of xenograft tumors. Results of TUNEL and H&E staining showed more apoptosis induced by combined treatment. Immunohistochemistry data revealed the activation of PARP, and the decrease of Ki-67, p-ERK and Mcl-1. Taken together, our data suggest that the combination of HDACi and DHA offers an antitumor effect on liver cancer, and this combination treatment should be considered as a promising strategy for chemotherapy. PMID:22761917

  3. Zinc binding groups for histone deacetylase inhibitors.

    PubMed

    Zhang, Lei; Zhang, Jian; Jiang, Qixiao; Zhang, Li; Song, Weiguo

    2018-12-01

    Zinc binding groups (ZBGs) play a crucial role in targeting histone deacetylase inhibitors (HDACIs) to the active site of histone deacetylases (HDACs), thus determining the potency of HDACIs. Due to the high affinity to the zinc ion, hydroxamic acid is the most commonly used ZBG in the structure of HDACs. An alternative ZBG is benzamide group, which features excellent inhibitory selectivity for class I HDACs. Various ZBGs have been designed and tested to improve the activity and selectivity of HDACIs, and to overcome the pharmacokinetic limitations of current HDACIs. Herein, different kinds of ZBGs are reviewed and their features have been discussed for further design of HDACIs.

  4. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer's disease.

    PubMed

    Yu, Chao-Wu; Chang, Pei-Teh; Hsin, Ling-Wei; Chern, Ji-Wang

    2013-09-12

    Novel quinazolin-4-one derivatives containing a hydroxamic acid moiety were designed and synthesized. All compounds were subjected to histone deacetylase (HDAC) enzymatic assays to identify selective HDAC6 inhibitors with nanomolar IC50 values. (E)-3-(2-Ethyl-7-fluoro-4-oxo-3-phenethyl-3,4-dihydroquinazolin-6-yl)-N-hydroxyacrylamide, 4b, is the most potent HDAC6 inhibitor (IC50, 8 nM). In vitro, these compounds induced neurite outgrowth accompanied by growth-associated protein 43 expression, and they enhanced the synaptic activities of PC12 and SH-SY5Y neuronal cells without producing toxic or mitogenic effects. Several of the compounds dramatically increased nonhistone protein acetylation, specifically of α-tubulin. Some of the more potent HDAC6 inhibitors decreased zinc-mediated β-amyloid aggregation in vitro. N-Hydroxy-3-(2-methyl-4-oxo-3-phenethyl-3,4-dihydro-quinazolin-7-yl)-acrylamide, 3f, the most promising drug candidate, selectively inhibits HDAC6 (IC50, 29 nM), practically does not affect human ether-a-go-go-related membrane channel activity (IC50 >10 μM) or cytochrome P450 activity (IC50 >6.5 μM) in vitro, and significantly improves learning-based performances of mice with β-amyloid-induced hippocampal lesions.

  5. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors.

    PubMed

    Delcuve, Geneviève P; Khan, Dilshad H; Davie, James R

    2012-03-12

    The zinc-dependent mammalian histone deacetylase (HDAC) family comprises 11 enzymes, which have specific and critical functions in development and tissue homeostasis. Mounting evidence points to a link between misregulated HDAC activity and many oncologic and nononcologic diseases. Thus the development of HDAC inhibitors for therapeutic treatment garners a lot of interest from academic researchers and biotechnology entrepreneurs. Numerous studies of HDAC inhibitor specificities and molecular mechanisms of action are ongoing. In one of these studies, mass spectrometry was used to characterize the affinities and selectivities of HDAC inhibitors toward native HDAC multiprotein complexes in cell extracts. Such a novel approach reproduces in vivo molecular interactions more accurately than standard studies using purified proteins or protein domains as targets and could be very useful in the isolation of inhibitors with superior clinical efficacy and decreased toxicity compared to the ones presently tested or approved. HDAC inhibitor induced-transcriptional reprogramming, believed to contribute largely to their therapeutic benefits, is achieved through various and complex mechanisms not fully understood, including histone deacetylation, transcription factor or regulator (including HDAC1) deacetylation followed by chromatin remodeling and positive or negative outcome regarding transcription initiation. Although only a very low percentage of protein-coding genes are affected by the action of HDAC inhibitors, about 40% of noncoding microRNAs are upregulated or downregulated. Moreover, a whole new world of long noncoding RNAs is emerging, revealing a new class of potential targets for HDAC inhibition. HDAC inhibitors might also regulate transcription elongation and have been shown to impinge on alternative splicing.

  6. Adenosine mimetics as inhibitors of NAD+-dependent histone deacetylases, from kinase to sirtuin inhibition.

    PubMed

    Trapp, Johannes; Jochum, Anne; Meier, Rene; Saunders, Laura; Marshall, Brett; Kunick, Conrad; Verdin, Eric; Goekjian, Peter; Sippl, Wolfgang; Jung, Manfred

    2006-12-14

    NAD+-dependent histone deacetylases, sirtuins, cleave acetyl groups from lysines of histones and other proteins to regulate their activity. Identification of potent selective inhibitors would help to elucidate sirtuin biology and could lead to useful therapeutic agents. NAD+ has an adenosine moiety that is also present in the kinase cofactor ATP. Kinase inhibitors based upon adenosine mimesis may thus also target NAD+-dependent enzymes. We present a systematic approach using adenosine mimics from one cofactor class (kinase inhibitors) as a viable method to generate new lead structures in another cofactor class (sirtuin inhibitors). Our findings have broad implications for medicinal chemistry and specifically for sirtuin inhibitor design. Our results also raise a question as to whether selectivity profiling for kinase inhibitors should be limited to ATP-dependent targets.

  7. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.

    PubMed

    Pabba, Chittari; Gregg, Brian T; Kitchen, Douglas B; Chen, Zhen Jia; Judkins, Angela

    2011-01-01

    A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Histone deacetylase inhibitors reverse age-related increases in side effects of haloperidol in mice.

    PubMed

    Montalvo-Ortiz, Janitza L; Fisher, Daniel W; Rodríguez, Guadalupe; Fang, Deyu; Csernansky, John G; Dong, Hongxin

    2017-08-01

    Older patients can be especially susceptible to antipsychotic-induced side effects, and the pharmacodynamic mechanism underlying this phenomenon remains unclear. We hypothesized that age-related epigenetic alterations lead to decreased expression and functionality of the dopamine D2 receptor (D2R), contributing to this susceptibility. In this study, we treated young (2-3 months old) and aged (22-24 months old) C57BL/6 mice with the D2R antagonist haloperidol (HAL) once a day for 14 days to evaluate HAL-induced motor side effects. In addition, we pretreated separate groups of young and aged mice with histone deacetylase (HDAC) inhibitors valproic acid (VPA) or entinostat (MS-275) and then administered HAL. Our results show that the motor side effects of HAL are exaggerated in aged mice as compared to young mice and that HDAC inhibitors are able to reverse the severity of these deficits. HAL-induced motor deficits in aged mice are associated with an age- and drug-dependent decrease in striatal D2R protein levels and functionality. Further, histone acetylation was reduced while histone tri-methylation was increased at specific lysine residues of H3 and H4 within the Drd2 promoter in the striatum of aged mice. HDAC inhibitors, particularly VPA, restored striatal D2R protein levels and functionality and reversed age- and drug-related histone modifications at the Drd2 promoter. These results suggest that epigenetic changes at the striatal Drd2 promoter drive age-related increases in antipsychotic side effect susceptibility, and HDAC inhibitors may be an effective adjunct treatment strategy to reduce side effects in aged populations.

  9. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Seiko; Division of Maxillofacial Surgery, Kyushu Dental University; Okinaga, Toshinori

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viabilitymore » was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.« less

  10. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Nicole M., E-mail: nicolegardner@creighton.edu; Riley, Ronald T.; Showker, Jency L.

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in themore » nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. - Highlights: • FB1 treatment results in accumulation of Sa1P primarily in the nucleus of MEFs. • FB1 treatment and elevated nuclear Sa1P are associated with HDAC inhibition. • Sphk2 inhibition alone significantly decreases nuclear Sa1P in response to FB1. • Sphk1 and Sphk2 inhibitors prevent nuclear Sa1P accumulation in response to FB1.« less

  11. The Oral Histone Deacetylase Inhibitor ITF2357 Reduces Cytokines and Protects Islet β Cells In Vivo and In Vitro

    PubMed Central

    Lewis, Eli C; Blaabjerg, Lykke; Størling, Joachim; Ronn, Sif G; Mascagni, Paolo; Dinarello, Charles A; Mandrup-Poulsen, Thomas

    2011-01-01

    In type 1 diabetes, inflammatory and immunocompetent cells enter the islet and produce proinflammatory cytokines such as interleukin-1β (IL-1β), IL-12, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ); each contribute to β-cell destruction, mediated in part by nitric oxide. Inhibitors of histone deacetylases (HDAC) are used commonly in humans but also possess antiinflammatory and cytokine-suppressing properties. Here we show that oral administration of the HDAC inhibitor ITF2357 to mice normalized streptozotocin (STZ)-induced hyperglycemia at the clinically relevant doses of 1.25–2.5 mg/kg. Serum nitrite levels returned to nondiabetic values, islet function improved and glucose clearance increased from 14% (STZ) to 50% (STZ + ITF2357). In vitro, at 25 and 250 nmol/L, ITF2357 increased islet cell viability, enhanced insulin secretion, inhibited MIP-1α and MIP-2 release, reduced nitric oxide production and decreased apoptosis rates from 14.3% (vehicle) to 2.6% (ITF2357). Inducible nitric oxide synthase (iNOS) levels decreased in association with reduced islet-derived nitrite levels. In peritoneal macrophages and splenocytes, ITF2357 inhibited the production of nitrite, as well as that of TNFα and IFNγ at an IC50 of 25–50 nmol/L. In the insulin-producing INS cells challenged with the combination of IL-1β plus IFNγ, apoptosis was reduced by 50% (P < 0.01). Thus at clinically relevant doses, the orally active HDAC inhibitor ITF2357 favors β-cell survival during inflammatory conditions. PMID:21193899

  12. Histone deacetylase 10 structure and molecular function as a polyamine deacetylase

    NASA Astrophysics Data System (ADS)

    Hai, Yang; Shinsky, Stephen A.; Porter, Nicholas J.; Christianson, David W.

    2017-05-01

    Cationic polyamines such as spermidine and spermine are critical in all forms of life, as they regulate the function of biological macromolecules. Intracellular polyamine metabolism is regulated by reversible acetylation and dysregulated polyamine metabolism is associated with neoplastic diseases such as colon cancer, prostate cancer and neuroblastoma. Here we report that histone deacetylase 10 (HDAC10) is a robust polyamine deacetylase, using recombinant enzymes from Homo sapiens (human) and Danio rerio (zebrafish). The 2.85 Å-resolution crystal structure of zebrafish HDAC10 complexed with a transition-state analogue inhibitor reveals that a glutamate gatekeeper and a sterically constricted active site confer specificity for N8-acetylspermidine hydrolysis and disfavour acetyllysine hydrolysis. Both HDAC10 and spermidine are known to promote cellular survival through autophagy. Accordingly, this work sets a foundation for studying the chemical biology of autophagy through the structure-based design of inhibitors that may also serve as new leads for cancer chemotherapy.

  13. Investigation on the ZBG-functionality of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase inhibitors.

    PubMed

    Musso, Loana; Cincinelli, Raffaella; Zuco, Valentina; Zunino, Franco; Nurisso, Alessandra; Cuendet, Muriel; Giannini, Giuseppe; Vesci, Loredana; Pisano, Claudio; Dallavalle, Sabrina

    2015-10-15

    A series of alternative Zn-binding groups were explored in the design of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Most of the synthesized compounds were less effective than the parent hydroxamic acid. However, the profile of activity shown by the analog bearing a hydroxyurea head group, makes this derivative promising for further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pharmacogenomics and histone deacetylase inhibitors

    PubMed Central

    Goey, Andrew KL; Sissung, Tristan M; Peer, Cody J; Figg, William D

    2016-01-01

    The histone deacetylase inhibitor valproic acid (VPA) has been used for many decades in neurology and psychiatry. The more recent introduction of the histone deacetylase inhibitors (HDIs) belinostat, romidepsin and vorinostat for treatment of hematological malignancies indicates the increasing popularity of these agents. Belinostat, romidepsin and vorinostat are metabolized or transported by polymorphic enzymes or drug transporters. Thus, genotype-directed dosing could improve pharmacotherapy by reducing the risk of toxicities or preventing suboptimal treatment. This review provides an overview of clinical studies on the effects of polymorphisms on the pharmacokinetics, efficacy or toxicities of HDIs including belinostat, romidepsin, vorinostat, panobinostat, VPA and a number of novel compounds currently being tested in Phase I and II trials. Although pharmacogenomic studies for HDIs are scarce, available data indicate that therapy with belinostat (UGT1A1), romidepsin (ABCB1), vorinostat (UGT2B17) or VPA (UGT1A6) could be optimized by upfront genotyping. PMID:27767376

  15. Structures of the Peptidoglycan N-Acetylglucosamine Deacetylase Bc1974 and Its Complexes with Zinc Metalloenzyme Inhibitors.

    PubMed

    Giastas, Petros; Andreou, Athena; Papakyriakou, Athanasios; Koutsioulis, Dimitris; Balomenou, Stavroula; Tzartos, Socrates J; Bouriotis, Vassilis; Eliopoulos, Elias E

    2018-02-06

    The cell wall peptidoglycan is recognized as a primary target of the innate immune system, and usually its disintegration results in bacterial lysis. Bacillus cereus, a close relative of the highly virulent Bacillus anthracis, contains 10 polysaccharide deacetylases. Among these, the peptidoglycan N-acetylglucosamine deacetylase Bc1974 is the highest homologue to the Bacillus anthracis Ba1977 that is required for full virulence and is involved in resistance to the host's lysozyme. These metalloenzymes belong to the carbohydrate esterase family 4 (CE4) and are attractive targets for the development of new anti-infective agents. Herein we report the first X-ray crystal structures of the NodB domain of Bc1974, the conserved catalytic core of CE4s, in the unliganded form and in complex with four known metalloenzyme inhibitors and two amino acid hydroxamates that target the active site metal. These structures revealed the presence of two conformational states of a catalytic loop known as motif-4 (MT4), which were not observed previously for peptidoglycan deacetylases, but were recently shown in the structure of a Vibrio clolerae chitin deacetylase. By employing molecular docking of a substrate model, we describe a catalytic mechanism that probably involves initial binding of the substrate in a receptive, more open state of MT4 and optimal catalytic activity in the closed state of MT4, consistent with the previous observations. The ligand-bound structures presented here, in addition to the five Bc1974 inhibitors identified, provide a valuable basis for the design of antibacterial agents that target the peptidoglycan deacetylase Ba1977.

  16. Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms.

    PubMed

    Ali, A; Bluteau, O; Messaoudi, K; Palazzo, A; Boukour, S; Lordier, L; Lecluse, Y; Rameau, P; Kraus-Berthier, L; Jacquet-Bescond, A; Lelièvre, H; Depil, S; Dessen, P; Solary, E; Raslova, H; Vainchenker, W; Plo, I; Debili, N

    2013-07-25

    Abexinostat is a pan histone deacetylase inhibitor (HDACi) that demonstrates efficacy in malignancy treatment. Like other HDACi, this drug induces a profound thrombocytopenia whose mechanism is only partially understood. We have analyzed its effect at doses reached in patient plasma on in vitro megakaryopoiesis derived from human CD34(+) cells. When added at day 0 in culture, abexinostat inhibited CFU-MK growth, megakaryocyte (MK) proliferation and differentiation. These effects required only a short incubation period. Decreased proliferation was due to induction of apoptosis and was not related to a defect in TPO/MPL/JAK2/STAT signaling. When added later (day 8), the compound induced a dose-dependent decrease (up to 10-fold) in proplatelet (PPT) formation. Gene profiling from MK revealed a silencing in the expression of DNA repair genes with a marked RAD51 decrease at protein level. DNA double-strand breaks were increased as attested by elevated γH2AX phosphorylation level. Moreover, ATM was phosphorylated leading to p53 stabilization and increased BAX and p21 expression. The use of a p53 shRNA rescued apoptosis, and only partially the defect in PPT formation. These results suggest that HDACi induces a thrombocytopenia by a p53-dependent mechanism along MK differentiation and a p53-dependent and -independent mechanism for PPT formation.

  17. Mechanism for the decrease in the FIP1L1-PDGFRalpha protein level in EoL-1 cells by histone deacetylase inhibitors.

    PubMed

    Ishihara, Kenji; Kaneko, Motoko; Kitamura, Hajime; Takahashi, Aki; Hong, Jang Ja; Seyama, Toshio; Iida, Koji; Wada, Hiroshi; Hirasawa, Noriyasu; Ohuchi, Kazuo

    2008-01-01

    Acetylation and deacetylation of proteins occur in cells in response to various stimuli, and are reversibly catalyzed by histone acetyltransferase and histone deacetylase (HDAC), respectively. EoL-1 cells have an FIP1L1-PDGFRA fusion gene that causes transformation of eosinophilic precursor cells into leukemia cells. The HDAC inhibitors apicidin and n-butyrate suppress the proliferation of EoL-1 cells and induce differentiation into eosinophils by a decrease in the protein level of FIP1L1-PDGFRalpha without affecting the mRNA level for FIP1L1-PDGFRA. In this study, we analyzed the mechanism by which the protein level of FIP1L1-PDGFRalpha is decreased by apicidin and n-butyrate. EoL-1 cells were incubated in the presence of the HDAC inhibitors apicidin, trichostatin A or n-butyrate. The protein levels of FIP1L1-PDGFRalpha and phosphorylated eIF-2alpha were determined by Western blotting. Actinomycin D and cycloheximide were used to block RNA synthesis and protein synthesis, respectively, in the chasing experiment of the amount of FIP1L1-PDGFRalpha protein. When apicidin- and n-butyrate-treated EoL-1 cells were incubated in the presence of actinomycin D, the decrease in the protein level of FIP1L1-PDGFRalpha was significantly enhanced when compared with controls. In contrast, the protein levels were not changed by cycloheximide among these groups. Apicidin and n-butyrate induced the continuous phosphorylation of eIF-2alpha for up to 8 days. The decrease in the level of FIP1L1-PDGFRalpha protein by continuous inhibition of HDAC may be due to the decrease in the translation rate of FIP1L1-PDGFRA. Copyright 2008 S. Karger AG, Basel.

  18. Exploring bis-(indolyl)methane moiety as an alternative and innovative CAP group in the design of histone deacetylase (HDAC) inhibitors.

    PubMed

    Giannini, Giuseppe; Marzi, Mauro; Marzo, Maria Di; Battistuzzi, Gianfranco; Pezzi, Riccardo; Brunetti, Tiziana; Cabri, Walter; Vesci, Loredana; Pisano, Claudio

    2009-05-15

    In order to gather further knowledge about the structural requirements on histone deacetylase inhibitors (HDACi), starting from the schematic model of the common pharmacophore that characterizes this class of molecules (surface recognition CAP group-connection unit-linker region-Zinc Binding Group), we designed and synthesized a series of hydroxamic acids containing a bis-(indolyl)methane moiety. HDAC inhibition profile and antiproliferative activity were evaluated.

  19. Inside HDAC with HDAC inhibitors.

    PubMed

    Bertrand, Philippe

    2010-06-01

    Histone deacetylase inhibitors are a large group of diverse molecules intrinsically able to inhibit cell proliferation in various cancer cell lines. Their apoptotic effects have been linked to the modulation in the expression of several regulatory tumor suppressor genes caused by the modified status of histone acetylation, a key event in chromatin remodelling. As the initial histone deacetylase activity of HDAC has been extended to other proteins, the possible other biological mechanisms modified by HDAC inhibitor treatments are still to be clarified. The need for HDAC isoform selective inhibitors is an important issue to serve this goal. This review discusses the approaches proposed by several research groups working on the synthesis of HDAC inhibitors, based on modelling studies and the way these findings were used to obtain new HDAC inhibitors with possible isoform selectivity. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  20. Functional differences in epigenetic modulators-superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies.

    PubMed

    Kozikowski, Alan P; Chen, Yufeng; Gaysin, Arsen; Chen, Bin; D'Annibale, Melissa A; Suto, Carla M; Langley, Brett C

    2007-06-28

    We compare the ability of two structurally different classes of epigenetic modulators, namely, histone deacetylase (HDAC) inhibitors containing either a hydroxamate or a mercaptoacetamide as the zinc binding group, to protect cortical neurons in culture from oxidative stress-induced death. This study reveals that some of the mercaptoacetamide-based HDAC inhibitors are fully protective, whereas the hydroxamates show toxicity at higher concentrations. Our present results appear to be consistent with the possibility that the mercaptoacetamide-based HDAC inhibitors interact with a different subset of the HDAC isozymes [less activity at HDAC1 and 2 correlates with less inhibitor toxicity], or alternatively, are interacting selectively with only the cytoplasmic HDACs that are crucial for protection from oxidative stress.

  1. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-05

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Identification of novel targets for PGC-1{alpha} and histone deacetylase inhibitors in neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowell, Rita M.; Department of Neurology, University of Michigan, Ann Arbor, MI 48109; Talati, Pratik

    2009-02-06

    Recent evidence suggests that the transcriptional coactivator peroxisome proliferator activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) is involved in the pathology of Huntington's Disease (HD). While animals lacking PGC-1{alpha} express lower levels of genes involved in antioxidant defense and oxidative phosphorylation in the brain, little is known about other targets for PGC-1{alpha} in neuronal cells and whether there are ways to pharmacologically target PGC-1{alpha} in neurons. Here, PGC-1{alpha} overexpression in SH-SY5Y neuroblastoma cells upregulated expression of genes involved in mitochondrial function, glucose transport, fatty acid metabolism, and synaptic function. Overexpression also decreased vulnerability to hydrogen peroxide-induced cell death and caspase 3more » activation. Treatment of cells with the histone deacetylase inhibitors (HDACi's) trichostatin A and valproic acid upregulated PGC-1{alpha} and glucose transporter 4 (GLUT4). These results suggest that PGC-1{alpha} regulates multiple pathways in neurons and that HDACi's may be good candidates to target PGC-1{alpha} and GLUT4 in HD and other neurological disorders.« less

  3. Histone Deacetylase 3 Suppresses Erk Phosphorylation and Matrix Metalloproteinase (Mmp)-13 Activity in Chondrocytes

    PubMed Central

    Carpio, Lomeli R.; Bradley, Elizabeth W.; Westendorf, Jennifer J.

    2017-01-01

    Histone deacetylase inhibitors are emerging therapies for many diseases including cancers and neurological disorders; however, these drugs are teratogens to the developing skeleton. Hdac3 is essential for proper endochondral ossification as its deletion in chondrocytes increases cytokine signaling and the expression of matrix remodeling enzymes. Here we explored the mechanism by which Hdac3 controls Mmp13 expression in chondrocytes. In Hdac3-depleted chondrocytes, Erk1/2 as well as its downstream substrate, Runx2, were hyperphosphorylated as a result of decreased expression and activity of the Erk1/2 specific phosphatase, Dusp6. Erk1/2 kinase inhibitors and Dusp6 adenoviruses reduced Mmp13 expression and partially rescued matrix production in Hdac3-deficient chondrocytes. Postnatal chondrocyte-specific deletion of Hdac3 with an inducible Col2a1-Cre caused premature production of pErk1/2 and Mmp13 in the growth plate. Thus, Hdac3 controls the temporal and spatial expression of tissue-remodeling genes in chondrocytes to ensure proper endochondral ossification during development. PMID:27662443

  4. MicroRNA-124 Controls the Proliferative, Migratory, and Inflammatory Phenotype of Pulmonary Vascular Fibroblasts

    PubMed Central

    Wang, Daren; Zhang, Zhang; Li, Min; Frid, Maria G.; Flockton, Amanda R.; McKeon, B. Alexandre; Yeager, Michael E.; Fini, Mehdi A.; Morrell, Nicholas W.; Pullamsetti, Soni S.; Velegala, Sivareddy; Seeger, Werner; McKinsey, Timothy A.; Sucharov, Carmen C.; Stenmark, Kurt R.

    2014-01-01

    Rationale Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. Objective We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. Methods and Results We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti–miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract–binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3′ untranslated region of polypyrimidine tract–binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. Conclusions Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated. PMID:24122720

  5. Histone Deacetylase Inhibitors Enhance Cytotoxicity Towards Breast Tumors While Preserving the Wound-Healing Function of Adipose-Derived Stem Cells.

    PubMed

    Koko, Kiavash R; Chang, Shaohua; Hagaman, Ashleigh L; Fromer, Marc W; Nolan, Ryan S; Gaughan, John P; Zhang, Ping; Carpenter, Jeffrey P; Brown, Spencer A; Matthews, Martha; Bird, Dorothy

    2017-06-01

    Paclitaxel improves the oncologic response of breast cancer resections; however, it may negatively affect the wound-healing potential of human adipose-derived stem cells (hASCs) for fat grafting and reconstructive surgery. Histone deacetylase inhibitors (HDACis) modify the epigenetic regulation of gene expression and stabilize microtubules similarly to paclitaxel, thus, creating a synergistic mechanism of cell cycle arrest. We aim to combine these drugs to enhance cytotoxicity towards breast cancer cells, while preserving the wound-healing function of hASCs for downstream reconstructive applications. Triple negative breast cancer cells (MBA-MB-231) and hASCs (institutional review board-approved clinical isolates) were treated with a standard therapeutic dose of paclitaxel (1.0 μM) or with low-dose paclitaxel (0.1 μM) combined with the HDACi suberoylanilide hydroxamic acid or trichostatin A. Cell viability, gene expression, apoptosis, and wound-healing/migration were measured via methylthiazol tetrazolium assay, quantitative real-time polymerase chain reaction, annexin V assay, and fibroblast scratch assay, respectively. Combined HDACi and low-dose paclitaxel therapy maintained cytotoxicity towards breast cancer cells and preserved adipose-derived stem cell viability. Histone deacetylase inhibitor demonstrated selective anti-inflammatory effects on adipose-derived stem cell gene expression and decreased expression of the proapoptotic gene FAS. Furthermore, HDACi therapy did not increase relative apoptosis within hASCs. A scratch assay demonstrated enhanced wound healing among injured fibroblasts indirectly co-cultured with HDACi-treated hASCs. Combining HDACi with low-dose paclitaxel improved cytotoxicity towards breast cancer cells and preserved hASC viability. Furthermore, enhanced wound healing was observed by improved migration in a fibroblast scratch assay. These results suggest that the addition of HDACi to taxane chemotherapy regimens may improve oncologic results and wound-healing outcomes after reconstructive surgery.

  6. Histone deacetylase inhibitors with a primary amide zinc binding group display antitumor activity in xenograft model.

    PubMed

    Attenni, Barbara; Ontoria, Jesus M; Cruz, Jonathan C; Rowley, Michael; Schultz-Fademrecht, Carsten; Steinkühler, Christian; Jones, Philip

    2009-06-01

    Histone deacetylase (HDAC) inhibition causes hyperacetylation of histones leading to differentiation, growth arrest and apoptosis of malignant cells, representing a new strategy in cancer therapy. Many of the known HDAC inhibitors (HDACi) that are in clinical trials possess a hydroxamic acid, that is a strong Zn(2+) binding group, thereby inhibiting some of the class I and class II isoforms. Herein we describe the identification of a selective class I HDAC inhibitor bearing a primary carboxamide moiety as zinc binding group. This HDACi displays good antiproliferative activity against multiple cancer cell lines, and demonstrates efficacy in a xenograft model comparable to vorinostat.

  7. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    PubMed

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  8. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Tine Kragh; Hildmann, Christian; Riester, Daniel

    2007-04-01

    The crystal structure of HDAH FB188 in complex with a trifluoromethylketone at 2.2 Å resolution is reported and compared to a previously determined inhibitor complex. Histone deacetylases (HDACs) have emerged as attractive targets in anticancer drug development. To date, a number of HDAC inhibitors have been developed and most of them are hydroxamic acid derivatives, typified by suberoylanilide hydroxamic acid (SAHA). Not surprisingly, structural information that can greatly enhance the design of novel HDAC inhibitors is so far only available for hydroxamic acids in complex with HDAC or HDAC-like enzymes. Here, the first structure of an enzyme complex with amore » nonhydroxamate HDAC inhibitor is presented. The structure of the trifluoromethyl ketone inhibitor 9,9,9-trifluoro-8-oxo-N-phenylnonanamide in complex with bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) has been determined. HDAH reveals high sequential and functional homology to human class 2 HDACs and a high structural homology to human class 1 HDACs. Comparison with the structure of HDAH in complex with SAHA reveals that the two inhibitors superimpose well. However, significant differences in binding to the active site of HDAH were observed. In the presented structure the O atom of the trifluoromethyl ketone moiety is within binding distance of the Zn atom of the enzyme and the F atoms participate in interactions with the enzyme, thereby involving more amino acids in enzyme–inhibitor binding.« less

  9. Human HDAC7 Harbors a Class IIa Histone Deacetylase-specific Zinc Binding Motif and Cryptic Deacetylase Activity*S⃞

    PubMed Central

    Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P.; Lewis, Timothy A.; Maglathin, Rebecca L.; McLean, Thomas H.; Bochkarev, Alexey; Plotnikov, Alexander N.; Vedadi, Masoud; Arrowsmith, Cheryl H.

    2008-01-01

    Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators. PMID:18285338

  10. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity.

    PubMed

    Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P; Lewis, Timothy A; Maglathin, Rebecca L; McLean, Thomas H; Bochkarev, Alexey; Plotnikov, Alexander N; Vedadi, Masoud; Arrowsmith, Cheryl H

    2008-04-25

    Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators.

  11. Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes

    PubMed Central

    Karagiannis, Tom C; Lin, Ann JE; Ververis, Katherine; Chang, Lisa; Tang, Michelle M; Okabe, Jun; El-Osta, Assam

    2010-01-01

    Histone deacetylase inhibitors represent a new class of anticancer therapeutics and the expectation is that they will be most effective when used in combination with conventional cancer therapies, such as the anthracycline, doxorubicin. The dose-limiting side effect of doxorubicin is severe cardiotoxicity and evaluation of the effects of combinations of the anthracycline with histone deacetylase inhibitors in relevant models is important. We used a well-established in vitro model of doxorubicin-induced hypertrophy to examine the effects of the prototypical histone deacetylase inhibitor, Trichostatin A. Our findings indicate that doxorubicin modulates the expression of the hypertrophy-associated genes, ventricular myosin light chain-2, the alpha isoform of myosin heavy chain and atrial natriuretic peptide, an effect which is augmented by Trichostatin A. Furthermore, we show that Trichostatin A amplifies doxorubicin-induced DNA double strand breaks, as assessed by γH2AX formation. More generally, our findings highlight the importance of investigating potential side effects that may be associated with emerging combination therapies for cancer. PMID:20930262

  12. Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes.

    PubMed

    Karagiannis, Tom C; Lin, Ann J E; Ververis, Katherine; Chang, Lisa; Tang, Michelle M; Okabe, Jun; El-Osta, Assam

    2010-10-01

    Histone deacetylase inhibitors represent a new class of anticancer therapeutics and the expectation is that they will be most effective when used in combination with conventional cancer therapies, such as the anthracycline, doxorubicin. The dose-limiting side effect of doxorubicin is severe cardiotoxicity and evaluation of the effects of combinations of the anthracycline with histone deacetylase inhibitors in relevant models is important. We used a well-established in vitro model of doxorubicin-induced hypertrophy to examine the effects of the prototypical histone deacetylase inhibitor, Trichostatin A. Our findings indicate that doxorubicin modulates the expression of the hypertrophy-associated genes, ventricular myosin light chain-2, the alpha isoform of myosin heavy chain and atrial natriuretic peptide, an effect which is augmented by Trichostatin A. Furthermore, we show that Trichostatin A amplifies doxorubicin-induced DNA double strand breaks, as assessed by γH2AX formation. More generally, our findings highlight the importance of investigating potential side effects that may be associated with emerging combination therapies for cancer.

  13. Comparative molecular dynamics simulations of histone deacetylase-like protein: binding modes and free energy analysis to hydroxamic acid inhibitors.

    PubMed

    Yan, Chunli; Xiu, Zhilong; Li, Xiaohui; Li, Shenmin; Hao, Ce; Teng, Hu

    2008-10-01

    Histone deacetylases (HDACs) play an important role in gene transcription, and inhibitors of HDACs can induce cell differentiation and suppress cell proliferation in tumor cells. Histone deacetylase1 (HDAC1) binds suberanilohydroxamic acid (SAHA) and 7-phenyl-2, 4, 6-hepta-trienoyl hydroxamic acid (CG-1521) with moderately low affinity (DeltaG = -8.6 and -7.8 kcal mol(-1)). The structurally related (E)-2-(3-(3-(hydroxyamino)-3-oxoprop-1-enyl)phenyl)-N(1),N(3)-diphenylmalonamide (SK-683), a Trichostatin A (TSA)-like HDAC1 inhibitor, and TSA are bound to the HDAC1 with -12.3 and -10.3 kcal mol(-1) of DeltaG, higher binding free energies than SAHA and CG-1521. Histone deacetylase-like protein (HDLP), an HDAC homologue, shows a 35.2% sequence identity of HDLP and human HDAC1. Molecular dynamics simulation and the molecular mechanics/generalized-Born surface area (MM-GBSA) free energy calculations were applied to investigate the factors responsible for the relatively activity of these four inhibitors to HDLP. In addition, computational alanine scanning of the binding site residues was carried out to determine the contribution components from van der Waals, electrostatic interaction, nonpolar and polar energy of solvation as well as the effects of backbones and side-chains with the MM-GBSA method. MM-GBSA methods reproduced the experimental relative affinities of the four inhibitors in good agreement (R(2) = 0.996) between experimental and computed binding energies. The MM-GBSA calculations showed that, the number of hydrogen bonds formed between the HDLP and inhibitors, which varied in the system studied, and electrostatic interactions determined the magnitude of the free energies for HDLP-inhibitor interactions. The MM-GBSA calculations revealed that the binding of HDLP to these four hydroxamic acid inhibitors is mainly driven by van der Waals/nonpolar interactions. This study can be a guide for the optimization of HDAC inhibitors and future design of new therapeutic agents for the treatment of cancer.

  14. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herr, Michael J.; Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163; Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163

    2014-05-16

    Highlights: • CD9 is differentially expressed in human Burkitt’s lymphoma cells. • We found that CD9 expression promotes these cells proliferation. • CD9 expression also increases HDAC activity. • HDAC inhibition decreased both cell proliferation and importantly CD9 expression. • CD9 may dictate HDAC efficacy and play a role in HDAC regulation. - Abstract: Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in twomore » human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.« less

  15. Targeting Inflammation in Heart Failure with Histone Deacetylase Inhibitors

    PubMed Central

    McKinsey, Timothy A

    2011-01-01

    Cardiovascular insults such as myocardial infarction and chronic hypertension can trigger the heart to undergo a remodeling process characterized by myocyte hypertrophy, myocyte death and fibrosis, often resulting in impaired cardiac function and heart failure. Pathological cardiac remodeling is associated with inflammation, and therapeutic approaches targeting inflammatory cascades have shown promise in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models, suggesting unforeseen potential for this class of compounds for the treatment of heart failure. In addition to their beneficial effects on myocardial cells, HDAC inhibitors have potent antiinflammatory actions. This review highlights the roles of HDACs in the heart and the potential for using HDAC inhibitors as broad-based immunomodulators for the treatment of human heart failure. PMID:21267510

  16. A cyclodextrin-capped histone deacetylase inhibitor.

    PubMed

    Amin, Jahangir; Puglisi, Antonino; Clarke, James; Milton, John; Wang, Minghua; Paranal, Ronald M; Bradner, James E; Spencer, John

    2013-06-01

    We have synthesized a β-cyclodextrin (βCD)-capped histone deacetylase (HDAC) inhibitor 3 containing an alkyl linker and a zinc-binding hydroxamic acid motif. Biological evaluation (HDAC inhibition studies) of 3 enabled us to establish the effect of replacing an aryl cap (in SAHA (vorinostat,)) 1 by a large saccharidic scaffold "cap". HDAC inhibition was observed for 3, to a lesser extent than SAHA, and rationalized by molecular docking into the active site of HDAC8. However, compound 3 displayed no cellular activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Clinical and experimental applications of sodium phenylbutyrate.

    PubMed

    Iannitti, Tommaso; Palmieri, Beniamino

    2011-09-01

    Histone acetyltransferase and histone deacetylase are enzymes responsible for histone acetylation and deacetylation, respectively, in which the histones are acetylated and deacetylated on lysine residues in the N-terminal tail and on the surface of the nucleosome core. These processes are considered the most important epigenetic mechanisms for remodeling the chromatin structure and controlling the gene expression. Histone acetylation is associated with gene activation. Sodium phenylbutyrate is a histone deacetylase inhibitor that has been approved for treatement of urea cycle disorders and is under investigation in cancer, hemoglobinopathies, motor neuron diseases, and cystic fibrosis clinical trials. Due to its characteristics, not only of histone deacetylase inhibitor, but also of ammonia sink and chemical chaperone, the interest towards this molecule is growing worldwide. This review aims to update the current literature, involving the use of sodium phenylbutyrate in experimental studies and clinical trials.

  18. Histone Deacetylase Inhibitor Induces the Expression of Select Epithelial Genes in Mouse Utricle Sensory Epithelia-Derived Progenitor Cells

    PubMed Central

    Wang, Jue

    2014-01-01

    Abstract Mouse utricle sensory epithelial cell–derived progenitor cells (MUCs), which have hair cell progenitor and mesenchymal features via epithelial-to-mesenchymal transition (EMT) as previously described, provide a potential approach for hair cell regeneration via cell transplantation. In this study, we treated MUCs with trichostatin A (TSA) to determine whether histone deacetylase inhibitor is able to stimulate the expression of epithelial genes in MUCs, an essential step for guiding mesenchymal-like MUCs to become sensory epithelial cells. After 72 h of TSA treatment, MUCs acquired epithelial-like features, which were indicated by increased expression of epithelial markers such as Cdh1, Krt18, and Dsp. Additionally, TSA decreased the expression of mesenchymal markers, including Zeb1, Zeb2, Snai1, and Snai2, and prosensory genes Lfng, Six1, and Dlx5. Moreover, the expression of the hair cell genes Atoh1 and Myo6 was increased in TSA-treated MUCs. We also observed significantly decreased expression of Hdac2 and Hdac3 in TSA-treated MUCs. However, no remarkable change was detected in protein expression using immunofluorescence, indicating that TSA-induced HDAC inhibition may contribute to the initial stage of the mesenchymal-to-epithelial phenotypic change. In the future, more work is needed to induce hair cell regeneration using inner ear tissue–derived progenitors to achieve an entire mesenchymal-to-epithelial transition. PMID:24945595

  19. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    ERIC Educational Resources Information Center

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  20. Targeting MTA1/HIF-1a signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression

    USDA-ARS?s Scientific Manuscript database

    The metastasis-associated protein 1(MTA1)/ histone deacetylase (HDAC) unit is a cancer progression-related epigenetic regulator, which is overexpressed in hormone-refractory and metastatic prostate cancer. In our previous studies, we found a significantly increased MTA1 expression in a prostate-spec...

  1. Somatic Nucleus Reprogramming Is Significantly Improved by m-Carboxycinnamic Acid Bishydroxamide, a Histone Deacetylase Inhibitor*

    PubMed Central

    Dai, Xiangpeng; Hao, Jie; Hou, Xiao-jun; Hai, Tang; Fan, Yong; Yu, Yang; Jouneau, Alice; Wang, Liu; Zhou, Qi

    2010-01-01

    Somatic cell nuclear transfer (SCNT) has shown tremendous potential for understanding the mechanisms of reprogramming and creating applications in the realms of agriculture, therapeutics, and regenerative medicine, although the efficiency of reprogramming is still low. Somatic nucleus reprogramming is triggered in the short time after transfer into recipient cytoplasm, and therefore, this period is regarded as a key stage for optimizing SCNT. Here we report that CBHA, a histone deacetylase inhibitor, modifies the acetylation status of somatic nuclei and increases the developmental potential of mouse cloned embryos to reach pre- and post-implantation stages. Furthermore, the cloned embryos treated by CBHA displayed higher efficiency in the derivation of nuclear transfer embryonic stem cell lines by promoting outgrowths. More importantly, CBHA increased blastocyst quality compared with trichostatin A, another prevalent histone deacetylase inhibitor reported previously. Use of CBHA should improve the productivity of SCNT for a variety of research and clinical applications, and comparisons of cells with different levels of pluripotency and treated with CBHA versus trichostatin A will facilitate studies of the mechanisms of reprogramming. PMID:20566633

  2. Studies of benzamide- and thiol-based histone deacetylase inhibitors in models of oxidative-stress-induced neuronal death: identification of some HDAC3-selective inhibitors.

    PubMed

    Chen, Yufeng; He, Rong; Chen, Yihua; D'Annibale, Melissa A; Langley, Brett; Kozikowski, Alan P

    2009-05-01

    We compare three structurally different classes of histone deacetylase (HDAC) inhibitors that contain benzamide, hydroxamate, or thiol groups as the zinc binding group (ZBG) for their ability to protect cortical neurons in culture from cell death induced by oxidative stress. This study reveals that none of the benzamide-based HDAC inhibitors (HDACIs) provides any neuroprotection whatsoever, in distinct contrast to HDACIs that contain other ZBGs. Some of the sulfur-containing HDACIs, namely the thiols, thioesters, and disulfides present modest neuroprotective activity but show toxicity at higher concentrations. Taken together, these data demonstrate that the HDAC6-selective mercaptoacetamides that were reported previously provide the best protection in the homocysteic acid model of oxidative stress, thus further supporting their study in animal models of neurodegenerative diseases.

  3. Designing Isoform-selective Inhibitors Against Classical HDACs for Effective Anticancer Therapy: Insight and Perspectives from In Silico.

    PubMed

    Ganai, Shabir Ahmad

    2018-01-01

    Histone deacetylase inhibitors, the small molecules modulating the biological activity of histone deacetylases are emerging as potent chemotherapeutic agents. Despite their considerable therapeutic benefits in disease models, the lack of isoform specificity culminates in debilitating off target effects, raising serious concerns regarding their applicability. This emphasizes the pressing and unmet medical need of designing isoform selective inhibitors for safe and effective anticancer therapy. Keeping these grim facts in view, the current article sheds light on structural basis of off-targeting. Furthermore, the article discusses extensively the role of in silico strategies such as Molecular Docking, Molecular Dynamics Simulation and Energetically-optimized structure based pharmacophore approach in designing on-target inhibitors against classical HDACs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. A Phosphorylation Switch Regulates the Transcriptional Activation of Cell Cycle Regulator p21 by Histone Deacetylase Inhibitors*

    PubMed Central

    Simboeck, Elisabeth; Sawicka, Anna; Zupkovitz, Gordin; Senese, Silvia; Winter, Stefan; Dequiedt, Franck; Ogris, Egon; Di Croce, Luciano; Chiocca, Susanna; Seiser, Christian

    2010-01-01

    Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are, therefore, promising anti-cancer drugs. The cyclin-dependent kinase inhibitor p21 is activated in histone deacetylase (HDAC) inhibitor-treated tumor cells, and its growth-inhibitory function contributes to the anti-tumorigenic effect of HDAC inhibitors. We show here that induction of p21 by trichostatin A involves MAP kinase signaling. Activation of the MAP kinase signaling pathway by growth factors or stress signals results in histone H3 serine 10 phosphorylation at the p21 promoter and is crucial for acetylation of the neighboring lysine 14 and recruitment of activated RNA polymerase II in response to trichostatin A treatment. In non-induced cells, the protein phosphatase PP2A is associated with the p21 gene and counteracts its activation. Induction of p21 is linked to simultaneous acetylation and phosphorylation of histone H3. The dual modification mark H3S10phK14ac at the activated p21 promoter is recognized by the phospho-binding protein 14-3-3ζ, which protects the phosphoacetylation mark from being processed by PP2A. Taken together we have revealed a cross-talk of reversible phosphorylation and acetylation signals that controls the activation of p21 by HDAC inhibitors and identify the phosphatase PP2A as chromatin-associated transcriptional repressor in mammalian cells. PMID:20952396

  5. Improved Therapeutic Effect against Leukemia by a Combination of the Histone Methyltransferase Inhibitor Chaetocin and the Histone Deacetylase Inhibitor Trichostatin A

    PubMed Central

    Tran, Huong Thi Thanh; Kim, Hee Nam; Lee, Il-Kwon; Nguyen-Pham, Thanh-Nhan; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Lee, Je-Jung; Park, Kyeong-Soo; Kook, Hoon

    2013-01-01

    SUV39H1 is a histone 3 lysine 9 (H3K9)-specific methyltransferase that is important for heterochromatin formation and the regulation of gene expression. Chaetocin specifically inhibits SUV39H1, resulted in H3K9 methylation reduction as well as reactivation of silenced genes in cancer cells. Histone deacetylase (HDAC) inhibitors inhibit deacetylases and accumulate high levels of acetylation lead to cell cycle arrest and apoptosis. In this study, we demonstrated that treatment with chaetocin enhanced apoptosis in human leukemia HL60, KG1, Kasumi, K562, and THP1 cells. In addition, chaetocin induced the expression of cyclin-dependent kinase inhibitor 2B (p15), E-cadherin (CDH1) and frizzled family receptor 9 (FZD9) through depletion of SUV39H1 and reduced H3K9 methylation in their promoters. Co-treatment with chaetocin and HDAC inhibitor trichostatin A (TSA) dramatically increased apoptosis and produced greater activation of genes. Furthermore, this combined treatment significantly increased loss of SUV39H1 and reduced histone H3K9 trimethylation responses accompanied by increased acetylation. Importantly, co-treatment with chaetocin and TSA produced potent antileukemic effects in leukemia cells derived from patients. These in vitro findings suggest that combination therapy with SUV39H1 and HDAC inhibitors may be of potential value in the treatment of leukemia. PMID:23400519

  6. Structure-activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery.

    PubMed

    Amin, Sk Abdul; Adhikari, Nilanjan; Jha, Tarun

    2017-12-01

    The pan-histone deacetylase (HDAC) inhibitors comprise a fish-like structural orientation where hydrophobic aryl- and zinc-binding groups act as head and tail, respectively of a fish. The linker moiety correlates the body of the fish linking head and tail groups. Despite these pan-HDAC inhibitors, selective HDAC-8 inhibitors are still in demand as a safe remedy. HDAC-8 is involved in invasion and metastasis in cancer. This review deals with the rationale behind HDAC-8 inhibitory activity and selectivity along with detailed structure-activity relationships of diverse hydroxamate-based HDAC-8 inhibitors. HDAC-8 inhibitory potency may be increased by modifying the fish-like pharmacophoric features of such type of pan-HDAC inhibitors. This review may provide a preliminary basis to design and optimize new lead molecules with higher HDAC-8 inhibitory activity. This work may surely enlighten in providing useful information in the field of target-specific anticancer therapy.

  7. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells

    PubMed Central

    Ha, Kyungsoo; Bhaskara, Srividya; Cerchietti, Leandro; Devaraj, Santhana G. T.; Shah, Bhavin; Sharma, Sunil; Chang, Jenny C.; Melnick, Ari M.; Hiebert, Scott; Bhalla, Kapil N.

    2014-01-01

    There is an unmet need to develop new, more effective and safe therapies for the aggressive forms of triple negative breast cancers (TNBCs). While up to 20% of women under 50 years of age with TNBC harbor germline mutations in BRCA1, and these tumors are sensitive to treatment with poly(ADP) ribose polymerase inhibitors, a majority of TNBCs lack BRCA1 mutations or loss of expression. Findings presented here demonstrate that by attenuating the levels of DNA damage response and homologous recombination proteins, pan-histone deacetylase inhibitor (HDI) treatment induces ‘BRCAness’ and sensitizes TNBC cells lacking BRCA1 to lethal effects of PARP inhibitor or cisplatin. Treatment with HDI also induced hyperacetylation of nuclear hsp90. Similar effects were observed following shRNA-mediated depletion of HDAC3, confirming its role as the deacetylase for nuclear HSP90. Furthermore, cotreatment with HDI and ABT-888 induced significantly more DNA strand breaks than either agent alone, and synergistically induced apoptosis of TNBC cells. Notably, co-treatment with HDI and ABT-888 significantly reduced in vivo tumor growth and markedly improved the survival of mice bearing TNBC cell xenografts. These findings support the rationale to interrogate the clinical activity of this novel combination against human TNBC, irrespective of its expression of mutant BRCA1. PMID:25026298

  8. A Putative Histone Deacetylase Modulates the Biosynthesis of Pestalotiollide B and Conidiation in Pestalotiopsis microspora.

    PubMed

    Niu, Xueliang; Hao, Xiaoran; Hong, Zhangyong; Chen, Longfei; Yu, Xi; Zhu, Xudong

    2015-05-01

    Fungi of the genus Pestalotiopsis have drawn attention for their capability to produce an array of bioactive secondary metabolites that have potential for drug development. Here, we report the determination of a polyketide derivative compound, pestalotiollide B, in the culture of the saprophytic fungus Pestalotiopsis microspora NK17. Structural information acquired by analyses with a set of spectroscopic and chromatographic techniques suggests that pestalotiollide B has the same skeleton as the penicillide derivatives, dibenzodioxocinones, which are inhibitors of cholesterol ester transfer protein (CETP), and as purpactins A and C', inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). Strain NK17 can make a fairly high yield of pestalotiollide B (i.e., up to 7.22 mg/l) in a constitutive manner in liquid culture. Moreover, we found that a putative histone deacetylase gene, designated as hid1, played a role in the biosynthesis of pestalotiollide B. In the hid1 null mutant, the yield of pestalotiollide B increased approximately 2-fold to 15.90 mg/l. In contrast, deletion of gene hid1 led to a dramatic decrease of conidia production of the fungus. These results suggest that hid1 is a modulator, concerting secondary metabolism and development such as conidiation in P. microspora. Our work may help with the investigation into the biosynthesis of pestalotiollide B and the development for new CETP and ACAT inhibitors.

  9. Paradoxical Regulation of Hypoxia Inducible Factor-1α (HIF-1α) by Histone Deacetylase Inhibitor in Diffuse Large B-Cell Lymphoma

    PubMed Central

    Bhalla, Savita; Evens, Andrew M.; Prachand, Sheila; Schumacker, Paul T.; Gordon, Leo I.

    2013-01-01

    Hypoxia inducible factor (HIF) is important in cancer, as it regulates various oncogenic genes as well as genes involved in cell survival, proliferation, and migration. Elevated HIF-1 protein promotes a more aggressive tumor phenotype, and greater HIF-1 expression has been demonstrated to correlate with poorer prognosis, increased risk of metastasis and increased mortality. Recent reports suggest that HIF-1 activates autophagy, a lysosomal degradation pathway which may promote tumor cell survival. We show here that HIF-1α expression is constitutively active in multiple diffuse large B cell lymphoma (DLBCL) cell lines under normoxia and it is regulated by the PI3K/AKT pathway. PCI-24781, a pan histone deacetylase inhibitor (HDACI), enhanced accumulation of HIF-1α and induced autophagy initially, while extended incubation with the drug resulted in inhibition of HIF-1α. We tested the hypothesis that PCI-24781- induced autophagy is mediated by HIF-1α and that inhibition of HIF-1α in these cells results in attenuation of autophagy and decreased survival. We also provide evidence that autophagy serves as a survival pathway in DLBCL cells treated with PCI-24781 which suggests that the use of autophagy inhibitors such as chloroquine or 3-methyl adenine in combination with PCI-24781 may enhance apoptosis in lymphoma cells. PMID:24312289

  10. Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes

    PubMed Central

    Brandão, Fabiana AS; Derengowski, Lorena S; Albuquerque, Patrícia; Nicola, André M; Silva-Pereira, Ildinete; Poças-Fonseca, Marcio J

    2015-01-01

    Cryptococcus neoformans undergoes phenotypical changes during host infection in order to promote persistence and survival. Studies have demonstrated that such adaptations require alterations in gene transcription networks by distinct mechanisms. Drugs such as the histone deacetylases inhibitors (HDACi) Sodium Butyrate (NaBut) and Trichostatin A (TSA) can alter the chromatin conformation and have been used to modulate epigenetic states in the treatment of diseases such as cancer. In this work, we have studied the effect of NaBut and TSA on the expression of C. neoformans major virulence phenotypes and on the survival rate of an animal model infected with drugs-treated yeasts. Both drugs affected fungal growth at 37°C more intensely than at 30°C; nonetheless, drugs did not affect cell viability at the concentrations we studied. HDACi also provoked the reduction of the fungal capsule expansion. Phospholipases enzyme activity decreased; mating process and melanin synthesis were also affected by both inhibitors. NaBut led to an increase in the population of cells in G2/M. Treated yeast cells, which were washed in order to remove the drugs from the culture medium prior to the inoculation in the Galleria mellonela infection model, did not cause significant difference at the host survival curve when compared to non-treated cells. Overall, NaBut effects on the impairment of C. neoformans main virulence factors were more intense and stable than the TSA effects. PMID:26103530

  11. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency

    PubMed Central

    Shen, Siming; Sandoval, Juan; Swiss, Victoria A; Li, Jiadong; Dupree, Jeff; Franklin, Robin J M; Casaccia-Bonnefil, Patrizia

    2009-01-01

    The efficiency of remyelination decreases with age, but the molecular mechanisms responsible for this decline remain only partially understood. In this study, we show that remyelination is regulated by age-dependent epigenetic control of gene expression. In demyelinated young brains, new myelin synthesis is preceded by downregulation of oligodendrocyte differentiation inhibitors and neural stem cell markers, and this is associated with recruitment of histone deacetylases (HDACs) to promoter regions. In demyelinated old brains, HDAC recruitment is inefficient, and this allows the accumulation of transcriptional inhibitors and prevents the subsequent surge in myelin gene expression. Defective remyelination can be recapitulated in vivo in mice receiving systemic administration of pharmacological HDAC inhibitors during cuprizone treatment and is consistent with in vitro results showing defective differentiation of oligodendrocyte progenitors after silencing specific HDAC isoforms. Thus, we suggest that inefficient epigenetic modulation of the oligodendrocyte differentiation program contributes to the age-dependent decline in remyelination efficiency. PMID:19160500

  12. Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.

    PubMed

    Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang

    2017-05-01

    Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.

  13. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment ofmore » learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD.« less

  14. Bicyclic tetrapeptide histone deacetylase inhibitors with methoxymethyl ketone and boronic acid zinc-binding groups.

    PubMed

    Islam, Md Nurul; Islam, Md Shahidul; Hoque, Md Ashraful; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru

    2014-12-01

    Histone deacetylase (HDAC) inhibitors are a class of potential therapeutics for the treatment of cancer. Bicyclic tetrapeptides equipped with methoxymethyl ketone and boronic acid as zinc-binding group were designed and synthesized. The inhibitory activities of these compounds were evaluated against HDAC enzymes. The cell-free and cell-based assay data showed that both potency and selectivity changed with the change in zinc-binding group. Boronic acid-based compound showed poor activity whereas methoxymethyl ketone-based compound displayed impressive activity in both cell-free and cell-based conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Upregulation of AMWAP: a novel mechanism for HDAC inhibitors to protect against cisplatin nephrotoxicity.

    PubMed

    Tang, Jinhua; Zhuang, Shougang

    2016-02-01

    Histone deacetylases have been reported to protect against renal tubular damage in several animal models of acute renal injury, including cisplatin nephrotoxicity. However, the mechanism involved is not well defined. In this study, Ranganathan et al. identify activated microglia/macrophage WAP domain protein as the novel mediator of histone deacetylase inhibitor-mediated renal protection in a murine model of cisplatin nephrotoxicity. Activated microglia/macrophage WAP-mediated renal protection is associated with suppression of inflammation and renal epithelial cell apoptosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Histone deacetylase inhibitors: current status and overview of recent clinical trials.

    PubMed

    Ma, Xujun; Ezzeldin, Hany H; Diasio, Robert B

    2009-10-01

    Histone deacetylase (HDAC) inhibitors are a new group of anticancer agents that have a potential role in the regulation of gene expression, induction of cell death, apoptosis and cell cycle arrest of cancer cells by altering the acetylation status of chromatin and other non-histone proteins. In clinical trials, HDAC inhibitors have demonstrated promising antitumour activity as monotherapy in cutaneous T-cell lymphoma and other haematological malignancies. In solid tumours, several HDAC inhibitors have been shown to be efficacious as single agents; however, results of most clinical trials were in favour of using HDAC inhibitors either prior to the initiation of chemotherapy or in combination with other treatments. Currently, the molecular basis of response to HDAC inhibitors in patients is not fully understood. In this review, we summarize the current status of HDAC inhibitors, as single agents or in combination with other agents in different phases of clinical trials. In most of the clinical trials, HDAC inhibitors were tolerable and exerted biological or antitumor activity. HDAC inhibitors have been studied in phase I, II and III clinical trials with variable efficacy. The combination of HDAC inhibitors with other anticancer agents including epigenetic or chemotherapeutic agents demonstrated favourable clinical outcome.

  17. The role of class I histone deacetylase (HDAC) on gluconeogenesis in liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oiso, Hiroshi; Furukawa, Noboru, E-mail: n-furu@gpo.kumamoto-u.ac.jp; Suefuji, Mihoshi

    2011-01-07

    Research highlights: {yields} A novel class I HDAC inhibitor decreased hepatic PEPCK mRNA and gluconeogenesis. {yields} Inhibition of HDAC decreased PEPCK by reducing HNF4{alpha} expression and FoxO1 activity. {yields} siRNA knockdown of HDAC1 in HepG2 cells reduced the expression of PEPCK and HNF4{alpha}. {yields} Inhibition of class I HDAC improves glucose homeostasis in HFD mice. -- Abstract: Hepatic gluconeogenesis is crucial for glucose homeostasis. Although sirtuin 1 (Sirt1) is implicated in the regulation of gluconeogenesis in the liver, the effects of other histone deacetylases (HDAC) on gluconeogenesis are unclear. The aim of this study was to identify the role ofmore » class I HDACs in hepatic gluconeogenesis. In HepG2 cells and the liver of mice, the expressions of phosphoenol pyruvate carboxykinase (PEPCK) and hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) were significantly decreased by treatment with a newly designed class I HDAC inhibitor, Ky-2. SiRNA knockdown of HDAC1 expression, but not of HDAC2 or HDAC3, in HepG2 cells decreased PEPCK and HNF4{alpha} expression. In HepG2 cells, insulin-stimulated phosphorylation of Akt and forkhead box O 1 (FoxO1) was increased by Ky-2. Pyruvate tolerance tests in Ky-2-treated high-fat-diet (HFD)-fed mice showed a marked reduction in blood glucose compared with vehicle-treated HFD mice. These data suggest that class I HDACs increase HNF4{alpha} protein expression and the transcriptional activity of FoxO1, followed by the induction of PEPCK mRNA expression and gluconeogenesis in liver.« less

  18. Effects of Histone Deacetylase Inhibitor Oxamflatin on In Vitro Porcine Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Hou, Liming; Ma, Fanhua; Yang, Jinzeng; Riaz, Hasan; Wang, Yongliang; Wu, Wangjun; Xia, Xiaoliang; Ma, Zhiyuan; Zhou, Ying; Zhang, Lin; Ying, Wenqin; Xu, Dequan; Zuo, Bo; Ren, Zhuqing

    2014-01-01

    Abstract Low cloning efficiency is considered to be caused by the incomplete or aberrant epigenetic reprogramming of differentiated donor cells in somatic cell nuclear transfer (SCNT) embryos. Oxamflatin, a novel class of histone deacetylase inhibitor (HDACi), has been found to improve the in vitro and full-term developmental potential of SCNT embryos. In the present study, we studied the effects of oxamflatin treatment on in vitro porcine SCNT embryos. Our results indicated that the rate of in vitro blastocyst formation of SCNT embryos treated with 1 μM oxamflatin for 15 h postactivation was significantly higher than all other treatments. Treatment of oxamflatin decreased the relative histone deacetylase (HDAC) activity in cloned embryos and resulted in hyperacetylation levels of histone H3 at lysine 9 (AcH3K9) and histone H4 at lysine 5 (AcH4K5) at pronuclear, two-cell, and four-cell stages partly through downregulating HDAC1. The suppression of HDAC6 through oxamflatin increased the nonhistone acetylation level of α-tubulin during the mitotic cell cycle of early SCNT embryos. In addition, we demonstrated that oxamflatin downregulated DNA methyltransferase 1 (DNMT1) expression and global DNA methylation level (5-methylcytosine) in two-cell-stage porcine SCNT embryos. The pluripotency-related gene POU5F1 was found to be upregulated in the oxamflatin-treated group with a decreased DNA methylation tendency in its promoter regions. Treatment of oxamflatin did not change the locus-specific DNA methylation levels of Sus scrofa heterochromatic satellite DNA sequences at the blastocyst stage. Meanwhile, our findings suggest that treatment with HDACi may contribute to maintaining the stable status of cytoskeleton-associated elements, such as acetylated α-tubulin, which may be the crucial determinants of donor nuclear reprogramming in early SCNT embryos. In summary, oxamflatin treatment improves the developmental potential of porcine SCNT embryos in vitro. PMID:24960409

  19. Resveratrol induces human keratinocyte damage via the activation of class III histone deacetylase, Sirt1.

    PubMed

    Lee, Ju-Hee; Kim, Jin-Shang; Park, Sang-Youel; Lee, You-Jin

    2016-01-01

    Human skin diseases are various and induce chronic inflammatory disorders, including psoriasis, atopic dermatitis and certain forms of ichthyosis. Psoriasis is a chronic inflammatory skin disease characterized by circumscribed, red, thickened plaques. Regulation of the balance between growth, differentiation and death is critical to keratinocytes; when altered, epidermal keratinocytes undergo hyperproliferation, abnormal differentiation and inflammatory infiltration. In the present study, we focused on the effects of resveratrol, found in red wine and peanuts, on the cell death of keratinocytes. We additionally studied the mechanism of resveratrol on Sirt1, a class III histone deacetylase, and Akt phosphorylation. Resveratrol caused apoptosis and increased Sirt1 expression in human HaCaT keratinocytes, following a decrease in the p62 protein level. Inhibition of Sirt1 by Sirt1 inhibitor restored cell viability and protein levels. Furthermore, we showed that resveratrol-induced Sirt1 blocked Akt phosphorylation. The present results indicated that resveratrol inhibited the Akt pathways by inducing Sirt1, thus leading to cell death. These data suggest that resveratrol-mediated activation of Sirt1 histone deacetylase may be a potential therapeutic target for skin diseases including psoriasis.

  20. Compound 9a, a novel synthetic histone deacetylase inhibitor, protects against septic injury in mice by suppressing MAPK signalling

    PubMed Central

    Kim, So‐Jin; Baek, Ki Seon; Park, Hyun‐Ju; Jung, Young Hoon

    2016-01-01

    Background and Purpose Sepsis is a life‐threatening clinical condition characterized by uncontrolled inflammatory responses and is a major cause of death in intensive care units. Histone deacetylase (HDAC) inhibitors have recently exhibited anti‐inflammatory properties. MAPK phosphatase (MKP) suppresses MAPK signalling, which plays an important role in inflammatory responses. The purpose of this study was to investigate the protective mechanisms of Compound 9a, a newly synthetized HDAC inhibitor, against septic injury. Experimental Approach The anti‐inflammatory properties of Compound 9a were assayed in LPS‐stimulated RAW264.7 cells. In vivo, polymicrobial sepsis was induced in C57BL/6 mice by caecal ligation and puncture (CLP). The mice were treated with Compound 9a (i.p., 10 mg∙kg−1) 2 h before and immediately after CLP. Key Results Compound 9a inhibited the increased production of TNF‐α, IL‐6 and NO in LPS‐stimulated RAW264.7 cells. In mice with CLP, Compound 9a improved survival rate, attenuated organ injuries and decreased serum TNF‐α and IL‐6 levels. CLP increased expression of toll‐like receptor 4, phosphorylated (p)‐p38, p‐JNK and p‐ERK proteins, which was attenuated by Compound 9a. Compound 9a decreased MKP‐1 association with HDAC1 and enhanced MKP‐1 acetylation and enhanced MKP‐1 association with p‐p38 and p‐ERK. Moreover, the inhibitory effects of Compound 9a on serum cytokine levels and phosphorylation of MAPK were abolished by MKP‐1 siRNA. Conclusions and Implications Our findings suggest that Compound 9a protected against septic injury by suppressing MAPK‐mediated inflammatory signalling. PMID:26689981

  1. HDAC inhibitors and immunotherapy; a double edged sword?

    PubMed Central

    Kroesen, Michiel; Armandari, Inna; Hoogerbrugge, Peter M.; Adema, Gosse J.

    2014-01-01

    Epigenetic modifications, like histone acetylation, are essential for regulating gene expression within cells. Cancer cells acquire pathological epigenetic modifications resulting in gene expression patterns that facilitate and sustain tumorigenesis. Epigenetic manipulation therefore is emerging as a novel targeted therapy for cancer. Histone Acetylases (HATs) and Histone Deacetylases (HDACs) regulate histone acetylation and hence gene expression. Histone deacetylase (HDAC) inhibitors are well known to affect cancer cell viability and biology and are already in use for the treatment of cancer patients. Immunotherapy can lead to clinical benefit in selected cancer patients, especially in patients with limited disease after tumor debulking. HDAC inhibitors can potentially synergize with immunotherapy by elimination of tumor cells. The direct effects of HDAC inhibitors on immune cell function, however, remain largely unexplored. Initial data have suggested HDAC inhibitors to be predominantly immunosuppressive, but more recent reports have challenged this view. In this review we will discuss the effects of HDAC inhibitors on tumor cells and different immune cell subsets, synergistic interactions and possible mechanisms. Finally, we will address future challenges and potential application of HDAC inhibitors in immunocombination therapy of cancer. PMID:25115382

  2. Differentiation and upregulation of heat shock protein 70 induced by a subset of histone deacetylase inhibitors in mouse and human embryonic stem cells.

    PubMed

    Park, Jeong-A; Kim, Young-Eun; Seok, Hyun-Jeong; Park, Woo-Youn; Kwon, Hyung-Joo; Lee, Younghee

    2011-03-01

    Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heatshock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/ JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.

  3. A structure-based virtual screening approach toward the discovery of histone deacetylase inhibitors: identification of promising zinc-chelating groups.

    PubMed

    Park, Hwangseo; Kim, Sukyoung; Kim, Yong Eun; Lim, Soo-Jeong

    2010-04-06

    The inhibitors of histone deacetylases (HDACs) have drawn a great deal of attention due to their promising potential as small-molecule therapeutics for the treatment of cancer. By means of virtual screening with docking simulations under consideration of the effects of ligand solvation, we were able to identify six novel HDAC inhibitors with IC(50) values ranging from 1 to 100 muM. These newly identified inhibitors are structurally diverse and have various chelating groups for the active site zinc ion, including N-[1,3,4]thiadiazol-2-yl sulfonamide, N-thiazol-2-yl sulfonamide, and hydroxamic acid moieties. The former two groups are included in many drugs in current clinical use and have not yet been reported as HDAC inhibitors. Therefore, they can be considered as new inhibitor scaffolds for the development of anticancer drugs by structure-activity relationship studies to improve the inhibitory activities against HDACs. Interactions with the HDAC1 active site residues responsible for stabilizing these new inhibitors are addressed in detail.

  4. Explorative study on isoform-selective histone deacetylase inhibitors.

    PubMed

    Suzuki, Takayoshi

    2009-09-01

    Histone deacetylases (HDACs) catalyze the deacetylation of the acetylated lysine residues of histones and non-histone proteins, and are involved in various fundamental life phenomena, such as gene expression and cell cycle progression. Thus far, eighteen HDAC family members (HDAC1-11 and SIRT1-7) have been identified, but the functions of the HDAC isoforms are not yet fully understood. In addition, some of the HDAC isoforms have been suggested to be associated with various disease states, including cancer and neurodegenerative disorders. Therefore, isoform-selective HDAC inhibitors are of great interest, not only as tools for probing the biological functions of the isoforms, but also as candidate therapeutic agents with few side effects. It was against this background that we initiated research programs to identify isoform-selective HDAC inhibitors. We designed HDAC inhibitors based on the three-dimensional structure of the enzyme and on the proposed catalytic mechanism of HDACs, and found several isoform-selective HDAC inhibitors. Furthermore, we elucidated the functions of HDAC6 by chemical genetic approaches using these inhibitors. The results of this research also suggested the feasibility of using isoform-selective HDAC inhibitors as therapeutic agents.

  5. Histone Deacetylase Inhibitors in Cell Pluripotency, Differentiation, and Reprogramming

    PubMed Central

    Kretsovali, Androniki; Hadjimichael, Christiana; Charmpilas, Nikolaos

    2012-01-01

    Histone deacetylase inhibitors (HDACi) are small molecules that have important and pleiotropic effects on cell homeostasis. Under distinct developmental conditions, they can promote either self-renewal or differentiation of embryonic stem cells. In addition, they can promote directed differentiation of embryonic and tissue-specific stem cells along the neuronal, cardiomyocytic, and hepatic lineages. They have been used to facilitate embryo development following somatic cell nuclear transfer and induced pluripotent stem cell derivation by ectopic expression of pluripotency factors. In the latter method, these molecules not only increase effectiveness, but can also render the induction independent of the oncogenes c-Myc and Klf4. Here we review the molecular pathways that are involved in the functions of HDAC inhibitors on stem cell differentiation and reprogramming of somatic cells into pluripotency. Deciphering the mechanisms of HDAC inhibitor actions is very important to enable their exploitation for efficient and simple tissue regeneration therapies. PMID:22550500

  6. Histone Deacetylase Inhibitors Are Protective in Acute but Not in Chronic Models of Ototoxicity.

    PubMed

    Yang, Chao-Hui; Liu, Zhiqi; Dong, Deanna; Schacht, Jochen; Arya, Dev; Sha, Su-Hua

    2017-01-01

    Previous studies have reported that modification of histones alters aminoglycoside-induced hair cell death and hearing loss. In this study, we investigated three FDA-approved histone deacetylase (HDAC) inhibitors (vorinostat/SAHA, belinostat, and panobinostat) as protectants against aminoglycoside-induced ototoxicity in murine cochlear explants and in vivo in both guinea pigs and CBA/J mice. Individually, all three HDAC inhibitors reduced gentamicin (GM)-induced hair cell loss in a dose-dependent fashion in explants. In vivo , however, treatment with SAHA attenuated neither GM-induced hearing loss and hair cell loss in guinea pigs nor kanamycin (KM)-induced hearing loss and hair cell loss in mice under chronic models of ototoxicity. These findings suggest that treatment with the HDAC inhibitor SAHA attenuates aminoglycoside-induced ototoxicity in an acute model, but not in chronic models, cautioning that one cannot rely solely on in vitro experiments to test the efficacy of otoprotectant compounds.

  7. Novel histone deacetylase 8-selective inhibitor 1,3,4-oxadiazole-alanine hybrid induces apoptosis in breast cancer cells.

    PubMed

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Bishayee, Anupam; Kalle, Arunasree M; Satya, Alapati Krishna

    2017-11-01

    Identification of isoform-specific histone deacetylase inhibitors (HDACi) is a significant advantage to overcome the adverse side effects of pan-HDACi for the treatment of various diseases, including cancer. We have designed, and synthesized novel 1,3,4 oxadiazole with glycine/alanine hybrids as HDAC8-specific inhibitors and preliminary evaluation has indicated that 1,3,4 oxadiazole with alanine hybrid [(R)-2-amino-N-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)propanamide (10b)] to be a potent HDAC8 inhibitor. In the present study, the in vitro efficacy of the molecule in inhibiting the cancer cell proliferation and the underlying molecular mechanism was studied. 10b inhibited the growth of MDA-MB-231 and MCF7 breast cancer cells, with a lower IC 50 of 230 and 1000 nM, respectively, compared to K562, COLO-205 and HepG2 cells and was not cytotoxic to normal breast epithelial cells, MCF10A. 10b was specific to HDAC8 and did not affect the expression of other class I HDACs. Further, a dose-dependent increase in H3K9 acetylation levels demonstrated the HDAC-inhibitory activity of 10b in MDA-MB-231 cells. Flow cytometric analysis indicated a dose-dependent increase and decrease in the percent apoptotic cells and mitochondrial membrane potential, respectively, when treated with 10b. Immunoblot analysis showed a modulation of Bax/Bcl2 ratio with a decrease in Bcl2 expression and no change in Bax expression. 10b treatment resulted in induction of p21 and inhibition of CDK1 proteins along with cytochrome c release from mitochondria, activation of caspases-3 and -9 and cleavage of poly ADP-ribose polymerase leading to apoptotic death of MDA-MB-231 and MCF7 cells. In conclusion, our results clearly demonstrated the efficacy of 10b as an anticancer agent against breast cancer.

  8. A phosphorescent rhenium(I) histone deacetylase inhibitor: mitochondrial targeting and paraptosis induction.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Lin, Yan-Nan; Ji, Liang-Nian; Mao, Zong-Wan

    2015-05-14

    In this report, we designed a histone deacetylase-targeted phosphorescent Re(I) complex ReLMito. Colocalization studies suggested that ReLMito could specially localize to mitochondria. We also demonstrated that ReLMito could induce paraptosis in cancer cells. These features endowed the complex with potential to induce and monitor mitochondrial morphological changes during the paraptosis simultaneously.

  9. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease

    PubMed Central

    Karagiannis, Tom C.; Ververis, Katherine

    2012-01-01

    Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes. PMID:22953035

  10. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease.

    PubMed

    Karagiannis, Tom C; Ververis, Katherine

    2012-01-01

    Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.

  11. Enhanced effects by 4-phenylbutyrate in combination with RTK inhibitors on proliferation in brain tumor cell models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Ana-Maria; Center for Molecular Medicine CMM, Karolinska University Hospital, Stockholm; Sofiadis, Anastasios

    2011-07-22

    Highlights: {yields} The histone deacetylase inhibitor 4-phenylbutyrate substantially enhance efficacy of the receptor tyrosine kinase inhibitors gefitinib or vandetanib in glioma and medulloblastoma cell lines. {yields} Cell death increases and clonogenic survival is reduced in the combination treatments, over mono-therapy. {yields} Combination treatments with these drugs may improve clinical outcome for cancer therapy. -- Abstract: We have investigated in vitro effects of anticancer therapy with the histone deacetylase inhibitor (HDACi) 4-phenylbutyrate (4-PB) combined with receptor tyrosine kinase inhibitors (RTKi) gefitinib or vandetanib on the survival of glioblastoma (U343MGa) and medulloblastoma (D324Med) cells. In comparison with individual effects of these drugs,more » combined treatment with gefitinib/4-PB or vandetanib/4-PB resulted in enhanced cell killing and reduced clonogenic survival in both cell lines. Our results suggest that combined treatment using HDACi and RTKi may beneficially affect the outcome of cancer therapy.« less

  12. Histone deacetylases as regulators of inflammation and immunity.

    PubMed

    Shakespear, Melanie R; Halili, Maria A; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2011-07-01

    Histone deacetylases (HDACs) remove an acetyl group from lysine residues of target proteins to regulate cellular processes. Small-molecule inhibitors of HDACs cause cellular growth arrest, differentiation and/or apoptosis, and some are used clinically as anticancer drugs. In animal models, HDAC inhibitors are therapeutic for several inflammatory diseases, but exacerbate atherosclerosis and compromise host defence. Loss of HDAC function has also been linked to chronic lung diseases in humans. These contrasting effects might reflect distinct roles for individual HDACs in immune responses. Here, we review the current understanding of innate and adaptive immune pathways that are regulated by classical HDAC enzymes. The objective is to provide a rationale for targeting (or not targeting) individual HDAC enzymes with inhibitors for future immune-related applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Synthesis and structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap group.

    PubMed

    Chen, Po C; Patil, Vishal; Guerrant, William; Green, Patience; Oyelere, Adegboyega K

    2008-05-01

    Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. Small molecule HDAC inhibitors identified so far fall in to three distinct structural motifs: the zinc-binding group (ZBG), a hydrophobic linker, and a recognition cap group. Here we report the suitability of a 1,2,3-triazole ring as a surface recognition cap group-linking moiety in suberoylanilide hydroxamic acid-like (SAHA-like) HDAC inhibitors. Using "click" chemistry (Huisgen cycloaddition reaction), several triazole-linked SAHA-like hydroxamates were synthesized. Structure-activity relationship revealed that the position of the triazole moiety as well as the identity of the cap group markedly affected the in vitro HDAC inhibition and cell growth inhibitory activities of this class of compounds.

  14. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    PubMed Central

    He, Yingzi; Cai, Chengfu; Tang, Dongmei; Sun, Shan; Li, Huawei

    2014-01-01

    In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line. PMID:25431550

  15. Histone deacetylase inhibitors potentiate photochemotherapy in cutaneous T-cell lymphoma MyLa cells.

    PubMed

    Sung, Jane J; Ververis, Katherine; Karagiannis, Tom C

    2014-02-05

    Cutaneous T cell lymphomas (CTCL) represent rare extranodal non-Hodgkin's lymphomas, which are characterised by pleomorphic skin lesions and distinct T-cell markers. CTCL is a relatively benign disease in its early stages, but survival rates decrease significantly with progression. Histone deacetylase inhibitors (HDACi) have recently emerged as a new class of targeted anticancer therapies for CTCL, which have been shown to induce growth inhibition, terminal differentiation and apoptosis in various cancers in vitro and in vivo. In addition to the intrinsic anticancer properties of HDACi, recent studies have demonstrated its ability to synergise with phototherapy. In particular, we examine the therapeutic potential of HDACi in combination with ultraviolet A (UV-A) phototherapy, employing a halogenated DNA minor groove binding ligand called UVASens as a photosensitiser. In vitro studies have demonstrated that UVASens is approximately 1000-fold more potent than current psoralens. The extreme photopotency of UVASens allows the use of lower radiation doses minimising the carcinogenic risks associated with the long-term use of phototherapy. Considering, previous findings using the photosensitiser UVASens and potential synergy of HDACi with phototherapy, it was hypothesised that HDACi will augment photochemotherapy-induced cytotoxicity in CTCL MyLa cells. The findings indicated that combinations of UVASens/UV-A photochemotherapy and HDACi significantly decreased cell viability and increased apoptosis and DNA double-strand breaks in MyLa cells. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  16. Differential effects of histone deacetylase inhibitors on cellular drug transporters and their implications for using epigenetic modifiers in combination chemotherapy.

    PubMed

    Valdez, Benigno C; Li, Yang; Murray, David; Brammer, Jonathan E; Liu, Yan; Hosing, Chitra; Nieto, Yago; Champlin, Richard E; Andersson, Borje S

    2016-09-27

    HDAC inhibitors, DNA alkylators and nucleoside analogs are effective components of combination chemotherapy. To determine a possible mechanism of their synergism, we analyzed the effects of HDAC inhibitors on the expression of drug transporters which export DNA alkylators. Exposure of PEER lymphoma T-cells to 15 nM romidepsin (Rom) resulted in 40%-50% reduction in mRNA for the drug transporter MRP1 and up to ~500-fold increase in the MDR1 mRNA within 32-48 hrs. MRP1 protein levels concomitantly decreased while MDR1 increased. Other HDAC inhibitors - panobinostat, belinostat and suberoylanilide hydroxamic acid (SAHA) - had similar effects on these transporters. The protein level of MRP1 correlated with cellular resistance to busulfan and chlorambucil, and Rom exposure sensitized cells to these DNA alkylators. The decrease in MRP1 correlated with decreased cellular drug export activity, and increased level of MDR1 correlated with increased export of daunorubicin. A similar decrease in the level of MRP1 protein, and increase in MDR1, were observed when mononuclear cells derived from patients with T-cell malignancies were exposed to Rom. Decreased MRP1 and increased MDR1 expressions were also observed in blood mononuclear cells from lymphoma patients who received SAHA-containing chemotherapy in a clinical trial. This inhibitory effect of HDAC inhibitors on the expression of MRP1 suggests that their synergism with DNA alkylating agents is partly due to decreased efflux of these alkylators. Our results further imply the possibility of antagonistic effects when HDAC inhibitors are combined with anthracyclines and other MDR1 drug ligands in chemotherapy.

  17. Treatment of chronic kidney diseases with histone deacetylase inhibitors

    PubMed Central

    Liu, Na; Zhuang, Shougang

    2015-01-01

    Histone deacetylases (HDACs) induce deacetylation of both histone and non-histone proteins and play a critical role in the modulation of physiological and pathological gene expression. Pharmacological inhibition of HDAC has been reported to attenuate progression of renal fibrogenesis in obstructed kidney and reduce cyst formation in polycystic kidney disease. HDAC inhibitors (HDACis) are also able to ameliorate renal lesions in diabetes nephropathy, lupus nephritis, aristolochic acid nephropathy, and transplant nephropathy. The beneficial effects of HDACis are associated with their anti-fibrosis, anti-inflammation, and immunosuppressant effects. In this review, we summarize recent advances on the treatment of various chronic kidney diseases with HDACis in pre-clinical models. PMID:25972812

  18. In vitro effects of histone deacetylase inhibitors and mitomycin C on tenon capsule fibroblasts and conjunctival melanoma cells.

    PubMed

    Cunneen, Thomas S; Conway, R Max; Madigan, Michele C

    2009-04-01

    To investigate the effects of mitomycin C and the histone deacetylase inhibitors sodium butyrate and trichostatin on the viability and growth of conjunctival melanoma cell lines and Tenon capsule fibroblasts. Cells were treated with a range of concentrations of sodium butyrate, trichostatin, and mitomycin C. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assays were performed 48 hours after treatment. Treated cells were stained with acridine orange/ethidium bromide to assess for cell death. Cell-cycle changes in histone deacetylase inhibitor-treated melanoma cells were quantified using flow cytometry. All agents induced dose-dependent cell death in the melanoma cell lines; however, sodium butyrate and trichostatin were relatively nontoxic to Tenon capsule fibroblasts. Acridine orange/ethidium bromide staining indicated that sodium butyrate and trichostatin induced apoptotic cell death. At low doses, sodium butyrate and trichostatin induced a G1 cell-cycle block in the melanoma cells. Sodium butyrate and trichostatin induced cell death in melanoma cells, comparable with mitomycin C, with minimal effect on Tenon capsule fibroblasts. In addition, they induced a G1 cell-cycle block. These findings support the need for further investigation into the in vivo efficacy of these agents.

  19. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yingying; Chen, Xi; Yu, Dehai

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phasemore » blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.« less

  20. Histone Deacetylase Inhibitors as Anticancer Drugs.

    PubMed

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  1. Histone Deacetylase Inhibitors as Anticancer Drugs

    PubMed Central

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-01-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities. PMID:28671573

  2. Identification of highly selective and potent histone deacetylase 3 inhibitors using click chemistry-based combinatorial fragment assembly.

    PubMed

    Suzuki, Takayoshi; Kasuya, Yuki; Itoh, Yukihiro; Ota, Yosuke; Zhan, Peng; Asamitsu, Kaori; Nakagawa, Hidehiko; Okamoto, Takashi; Miyata, Naoki

    2013-01-01

    To find histone deacetylase 3 (HDAC3)-selective inhibitors, a series of 504 candidates was assembled using "click chemistry", by reacting nine alkynes bearing a zinc-binding group with 56 azide building blocks in the presence of Cu(I) catalyst. Screening of the 504-member triazole library against HDAC3 and other HDAC isozymes led to the identification of potent and selective HDAC3 inhibitors T247 and T326. These compounds showed potent HDAC3 inhibition with submicromolar IC50s, whereas they did not strongly inhibit other isozymes. Compounds T247 and T326 also induced a dose-dependent selective increase of NF-κB acetylation in human colon cancer HCT116 cells, indicating selective inhibition of HDAC3 in the cells. In addition, these HDAC3-selective inhibitors induced growth inhibition of cancer cells, and activated HIV gene expression in latent HIV-infected cells. These findings indicate that HDAC3-selective inhibitors are promising candidates for anticancer drugs and antiviral agents. This work also suggests the usefulness of the click chemistry approach to find isozyme-selective HDAC inhibitors.

  3. Histone Deacetylase Inhibition Induces Odor Preference Memory Extension and Maintains Enhanced AMPA Receptor Expression in the Rat Pup Model

    ERIC Educational Resources Information Center

    Bhattacharya, Sriya; Mukherjee, Bandhan; Doré, Jules J. E.; Yuan, Qi; Harley, Carolyn W.; McLean, John H.

    2017-01-01

    Histone deacetylase (HDAC) plays a role in synaptic plasticity and long-term memory formation. We hypothesized that trichostatin-A (TSA), an HDAC inhibitor, would promote long-term odor preference memory and maintain enhanced GluA1 receptor levels that have been hypothesized to support memory. We used an early odor preference learning model in…

  4. Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1.

    PubMed

    Chen, Lei; Feng, Yu; Zhou, Yinqiu; Zhu, Weiliang; Shen, Xu; Chen, Kaixian; Jiang, Hualiang; Liu, Dongxiang

    2010-02-01

    Zn(2+) directly participates in catalysis of histone deacetylase (HDAC) Classes I, II, IV enzymes while its role in HDAC Class III activity is not well established. Herein we investigated the effects of Zn(2+) on the deacetylase activity of sirtuin 1 (silent mating type information regulation 2 homolog 1, SIRT1). We found that the inherent Zn(2+) at the zinc-finger motif of SIRT1 is essential for the structural integrity and the deacetylase activity of SIRT1, whereas the exogenous Zn(2+) strongly inhibits the deacetylase activity with an IC(50) of 0.82muM for Zn(Gly)(2). SIRT1 activity suppressed by the exogenous Zn(2+) can be fully recovered by the metal chelator EDTA but not by the activator resveratrol. We also identified Zn(2+) as a noncompetitive inhibitor for the substrates of NAD(+) and the acetyl peptide P53-AMC. The 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence titration experiments and site-directed mutagenesis study suggested that the exogenous Zn(2+) binds to SIRT1 but not at the zinc-finger motif. These results indicate that Zn(2+) plays a dual role in SIRT1 activity. Inherent Zn(2+) at the zinc-finger motif is structurally related and essential for SIRT1 activity. On the other hand, Zn(2+) may also bind to another site different from the zinc-finger motif or the binding sites for the substrates or resveratrol and act as a potent inhibitor of SIRT1.

  5. LBH589, a deacetylase inhibitor, induces apoptosis in adult T-cell leukemia/lymphoma cells via activation of a novel RAIDD-caspase-2 pathway

    PubMed Central

    Hasegawa, H; Yamada, Y; Tsukasaki, K; Mori, N; Tsuruda, K; Sasaki, D; Usui, T; Osaka, A; Atogami, S; Ishikawa, C; Machijima, Y; Sawada, S; Hayashi, T; Miyazaki, Y; Kamihira, S

    2011-01-01

    Adult T-cell leukemia/lymphoma (ATLL), an aggressive neoplasm etiologically associated with human T-lymphotropic virus type-1 (HTLV-1), is resistant to treatment. In this study, we examined the effects of a new inhibitor of deacetylase enzymes, LBH589, on ATLL cells. LBH589 effectively induced apoptosis in ATLL-related cell lines and primary ATLL cells and reduced the size of tumors inoculated in SCID mice. Analyses, including with a DNA microarray, revealed that neither death receptors nor p53 pathways contributed to the apoptosis. Instead, LBH589 activated an intrinsic pathway through the activation of caspase-2. Furthermore, small interfering RNA experiments targeting caspase-2, caspase-9, RAIDD, p53-induced protein with a death domain (PIDD) and RIPK1 (RIP) indicated that activation of RAIDD is crucial and an event initiating this pathway. In addition, LBH589 caused a marked decrease in levels of factors involved in ATLL cell proliferation and invasion such as CCR4, IL-2R and HTLV-1 HBZ-SI, a spliced form of the HTLV-1 basic zipper factor HBZ. In conclusion, we showed that LBH589 is a strong inducer of apoptosis in ATLL cells and uncovered a novel apoptotic pathway initiated by activation of RAIDD. PMID:21242994

  6. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer.

    PubMed

    Seidel, Carole; Schnekenburger, Michael; Mazumder, Aloran; Teiten, Marie-Hélène; Kirsch, Gilbert; Dicato, Mario; Diederich, Marc

    2016-01-01

    Histone deacetylase (HDAC)6 is a unique isoenzyme targeting specific substrates including α-tubulin and heat shock protein (HSP)90. HDAC6 is involved in protein trafficking and degradation, cell shape and migration. Deregulation of HDAC6 activity is associated with a variety of diseases including cancer leading to a growing interest for developing HDAC6 inhibitors. Here, we identified two new structurally related 4-hydroxybenzoic acids as selective HDAC6 inhibitors reducing proliferation, colony and spheroid formation as well as viability of prostate cancer cells. Both compounds strongly enhanced α-tubulin acetylation leading to remodeling of microtubular organization. Furthermore, 4-hydroxybenzoic acids decreased HSP90α regulation of the human androgen receptor in prostate cancer cells by increasing HSP90α acetylation levels. Collectively, our data support the potential of 4-hydroxybenzoic acid derivatives as HDAC6-specific inhibitors with anti-cancer properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Histone deacetylases as targets for treatment of multiple diseases

    PubMed Central

    TANG, Jinhua; YAN, Haidong; ZHUANG, Shougang

    2015-01-01

    HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-histone proteins. They are known as modulators of gene transcription and are associated with proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. Recently, HDACs have come to be considered crucial targets in various diseases, including cancer, interstitial fibrosis, autoimmune and inflammatory diseases, and metabolic disorders. Pharmacological inhibitors of HDACs have been used or tested to treat those diseases. In the present review, we will examine the application of HDAC inhibitors in a variety of diseases with the focus on their effects of anti-cancer, fibrosis, anti-inflammatory, immunomodulatory activity and regulating metabolic disorders. PMID:23414309

  8. Inhibition of histone deacetylases protects septic mice from lung and splenic apoptosis.

    PubMed

    Takebe, Mariko; Oishi, Hirofumi; Taguchi, Kumiko; Aoki, Yuta; Takashina, Michinori; Tomita, Kengo; Yokoo, Hiroki; Takano, Yasuo; Yamazaki, Mitsuaki; Hattori, Yuichi

    2014-04-01

    Epigenetic programming, dynamically regulated by histone acetylation, may play a key role in the pathophysiology of sepsis. We examined whether histone deacetylase (HDAC) can contribute to sepsis-associated inflammation and apoptosis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in BALB/c mice. An intraperitoneal injection of CG200745 (10 mg/kg), a novel broad-spectrum HDAC inhibitor, or valproic acid (500 mg/kg), a predominant inhibitor of class I HDACs, was given 3 h before surgery. HDAC1, HDAC2, and HDAC3 protein levels were decreased in lungs after CLP. Furthermore, CLP-induced sepsis increased both histone H3 and H4 acetylation levels in lungs. When CG200745 was given, apoptosis induction was strongly suppressed in lungs and spleens of septic mice. This antiapoptotic effect of CG200745 was not accompanied by upregulation of antiapoptotic and downregulation of proapoptotic Bcl-2 family member proteins. Treatment with CG200745 failed to inhibit elevated levels of serum cytokines and prevent lung inflammation in septic mice. Valproic acid also showed antiapoptotic but not anti-inflammatory effects in septic mice. These findings imply that HDAC inhibitors are a unique agent to prevent cell apoptosis in sepsis at their doses that do not improve inflammatory features, indicating that septic inflammation and apoptosis may not necessarily be essential for one another's existence. This study also represents the first report that CLP-induced sepsis downregulates HDACs. Nevertheless, the data with HDAC inhibitors suggest that imbalance in histone acetylation may play a contributory role in expression or repression of genes involved in septic cell apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    PubMed

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  10. PCI-24781 (abexinostat), a novel histone deacetylase inhibitor, induces reactive oxygen species-dependent apoptosis and is synergistic with bortezomib in neuroblastoma

    PubMed Central

    Sholler, Giselle Saulnier; Currier, Erika A.; Dutta, Akshita; Slavik, Marni A.; Illenye, Sharon A.; Mendonca, Maria Cecilia F.; Dragon, Julie; Roberts, Stephen S.; Bond, Jeffrey P.

    2014-01-01

    In this study, we investigated the cytotoxic effects of a broad-spectrum histone deacetylase (HDAC) inhibitor, PCI-24781, alone and in combination with the proteasome inhibitor bortezomib in neuroblastoma cell lines. The combination was shown to induce synergistic cytotoxity involving the formation of reactive oxygen species. The cleavage of caspase-3 and PARP, as determined by western blotting, indicated that cell death was primarily due to apoptosis. Xenograft mouse models indicated increased survival among animals treated with this combination. The Notch signaling pathway and MYCN gene expression were quantified by reverse transcription-polymerase chain reaction (PCR) in cells treated with PCI-24781 and bortezomib, alone and in combination. Notch pathway expression increased in response to an HDAC inhibitor. NFKB1 and MYCN were both significantly down regulated. Our results suggest that PCI-24781 and bortezomib are synergistic in neuroblastoma cell lines and may be a new therapeutic strategy for this disease. PMID:25520806

  11. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group.

    PubMed

    Lobera, Mercedes; Madauss, Kevin P; Pohlhaus, Denise T; Wright, Quentin G; Trocha, Mark; Schmidt, Darby R; Baloglu, Erkan; Trump, Ryan P; Head, Martha S; Hofmann, Glenn A; Murray-Thompson, Monique; Schwartz, Benjamin; Chakravorty, Subhas; Wu, Zining; Mander, Palwinder K; Kruidenier, Laurens; Reid, Robert A; Burkhart, William; Turunen, Brandon J; Rong, James X; Wagner, Craig; Moyer, Mary B; Wells, Carrow; Hong, Xuan; Moore, John T; Williams, Jon D; Soler, Dulce; Ghosh, Shomir; Nolan, Michael A

    2013-05-01

    In contrast to studies on class I histone deacetylase (HDAC) inhibitors, the elucidation of the molecular mechanisms and therapeutic potential of class IIa HDACs (HDAC4, HDAC5, HDAC7 and HDAC9) is impaired by the lack of potent and selective chemical probes. Here we report the discovery of inhibitors that fill this void with an unprecedented metal-binding group, trifluoromethyloxadiazole (TFMO), which circumvents the selectivity and pharmacologic liabilities of hydroxamates. We confirm direct metal binding of the TFMO through crystallographic approaches and use chemoproteomics to demonstrate the superior selectivity of the TFMO series relative to a hydroxamate-substituted analog. We further apply these tool compounds to reveal gene regulation dependent on the catalytic active site of class IIa HDACs. The discovery of these inhibitors challenges the design process for targeting metalloenzymes through a chelating metal-binding group and suggests therapeutic potential for class IIa HDAC enzyme blockers distinct in mechanism and application compared to current HDAC inhibitors.

  12. Enhancing the Sensitivity of Pharmacophore-Based Virtual Screening by Incorporating Customized ZBG Features: A Case Study Using Histone Deacetylase 8.

    PubMed

    Hou, Xuben; Du, Jintong; Liu, Renshuai; Zhou, Yi; Li, Minyong; Xu, Wenfang; Fang, Hao

    2015-04-27

    As key regulators of epigenetic regulation, human histone deacetylases (HDACs) have been identified as drug targets for the treatment of several cancers. The proper recognition of zinc-binding groups (ZBGs) will help improve the accuracy of virtual screening for novel HDAC inhibitors. Here, we developed a high-specificity ZBG-based pharmacophore model for HDAC8 inhibitors by incorporating customized ZBG features. Subsequently, pharmacophore-based virtual screening led to the discovery of three novel HDAC8 inhibitors with low micromole IC50 values (1.8-1.9 μM). Further studies demonstrated that compound H8-A5 was selective for HDAC8 over HDAC 1/4 and showed antiproliferation activity in MDA-MB-231 cancer cells. Molecular docking and molecular dynamic studies suggested a possible binding mode for H8-A5, which provides a good starting point for the development of HDAC8 inhibitors in cancer treatment.

  13. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair

    PubMed Central

    Roos, Wynand Paul; Krumm, Andrea

    2016-01-01

    Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization. PMID:27738139

  14. Histone Deacetylase Inhibitors Prolong Cardiac Repolarization through Transcriptional Mechanisms.

    PubMed

    Spence, Stan; Deurinck, Mark; Ju, Haisong; Traebert, Martin; McLean, LeeAnne; Marlowe, Jennifer; Emotte, Corinne; Tritto, Elaine; Tseng, Min; Shultz, Michael; Friedrichs, Gregory S

    2016-09-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and suggest that the optimal time to assess potentially transcriptionally mediated physiologic effects will be delayed relative to an epigenetic drug's Tmax/Cmax. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles.

    PubMed

    Igaz, Nóra; Kovács, Dávid; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M; Kiricsi, Mónika

    2016-10-01

    Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels and improves learning and memory in a mouse model of Alzheimer's disease.

    PubMed

    Sung, You Me; Lee, Taehee; Yoon, Hyejin; DiBattista, Amanda Marie; Song, Jung Min; Sohn, Yoojin; Moffat, Emily Isabella; Turner, R Scott; Jung, Mira; Kim, Jungsu; Hoe, Hyang-Sook

    2013-01-01

    Histone deacetylase inhibitors (HDACIs) alter gene expression epigenetically by interfering with the normal functions of HDAC. Given their ability to decrease Aβ levels, HDACIs are a potential treatment for Alzheimer's disease (AD). However, it is unclear how HDACIs alter Aβ levels. We developed two novel HDAC inhibitors with improved pharmacological properties, such as a longer half-life and greater penetration of the blood-brain barrier: mercaptoacetamide-based class II HDACI (coded as W2) and hydroxamide-based class I and IIHDACI (coded as I2) and investigated how they affect Aβ levels and cognition. HDACI W2 decreased Aβ40 and Aβ42 in vitro. HDACI I2 also decreased Aβ40, but not Aβ42. We systematically examined the molecular mechanisms by which HDACIs W2 and I2 can decrease Aβ levels. HDACI W2 decreased gene expression of γ-secretase components and increased the Aβ degradation enzyme Mmp2. Similarly, HDACI I2 decreased expression of β- and γ-secretase components and increased mRNA levels of Aβ degradation enzymes. HDACI W2 also significantly decreased Aβ levels and rescued learning and memory deficits in aged hAPP 3xTg AD mice. Furthermore, we found that the novel HDACI W2 decreased tau phosphorylation at Thr181, an effect previously unknown for HDACIs. Collectively, these data suggest that class II HDACls may serve as a novel therapeutic strategy for AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Zac1 is a histone acetylation-regulated NF-κB suppressor that mediates histone deacetylase inhibitor-induced apoptosis.

    PubMed

    Shu, G; Tang, Y; Zhou, Y; Wang, C; Song, J-G

    2011-12-01

    Histone deacetylase (HDAC) inhibitors are a class of promising anticancer reagents. They are able to induce apoptosis in embryonic carcinoma (EC) cells. However, the underlying mechanism remains poorly understood. Here we show that increased expression of zinc-finger protein regulator of apoptosis and cell-cycle arrest (Zac1) is implicated in HDAC inhibitor-induced apoptosis in F9 and P19 EC cells. By chromatin immunoprecipitation analysis we identified that increased Zac1 expression is mediated by histone acetylation of the Zac1 promoter region. Knockdown of Zac1 inhibited HDAC inhibitor-induced cell apoptosis. Moreover, HDAC inhibitors repressed nuclear factor-κB (NF-κB) activity, and this effect is abrogated by Zac1 knockdown. Consistently, Zac1 overexpression suppressed cellular NF-κB activity. Further investigation showed that Zac1 inhibits NF-κB activity by interacting with the C-terminus of the p65 subunit, which suppresses the phosphorylation of p65 at Ser468 and Ser536 residues. These results indicate that Zac1 is a histone acetylation-regulated suppressor of NF-κB, which is induced and implicated in HDAC inhibitor-mediated EC cell apoptosis.

  18. Histone Deacetylase (HDAC) Inhibitors - Emerging Roles in Neuronal Memory, Learning, Synaptic Plasticity and Neural Regeneration

    PubMed Central

    Ahmad Ganai, Shabir; Ramadoss, Mahalakshmi; Mahadevan, Vijayalakshmi

    2016-01-01

    Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed. PMID:26487502

  19. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors.

    PubMed

    Roessler, Claudia; Nowak, Theresa; Pannek, Martin; Gertz, Melanie; Nguyen, Giang T T; Scharfe, Michael; Born, Ilona; Sippl, Wolfgang; Steegborn, Clemens; Schutkowski, Mike

    2014-09-26

    Sirtuins are NAD(+)-dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide-based inhibitors that interact with the NAD(+) binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X-ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration.

    PubMed

    Ganai, Shabir Ahmad; Ramadoss, Mahalakshmi; Mahadevan, Vijayalakshmi

    2016-01-01

    Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed.

  1. Antagonism between granulocytic maturation and deacetylase inhibitor-induced apoptosis in acute promyelocytic leukaemia cells.

    PubMed

    Hennig, D; Müller, S; Wichmann, C; Drube, S; Pietschmann, K; Pelzl, L; Grez, M; Bug, G; Heinzel, T; Krämer, O H

    2015-01-20

    Transcriptional repression is a key mechanism driving leukaemogenesis. In acute promyelocytic leukaemia (APL), the fusion protein promyelocytic leukaemia-retinoic acid receptor-α fusion (PML-RARα) recruits transcriptional repressors to myeloid differentiation genes. All-trans-retinoic acid (ATRA) induces the proteasomal degradation of PML-RARα and granulocytic differentiation. Histone deacetylases (HDACs) fall into four classes (I-IV) and contribute to the transcription block caused by PML-RARα. Immunoblot, flow cytometry, and May-Grünwald-Giemsa staining were used to analyze differentiation and induction of apoptosis. A PML-RARα- and ATRA-dependent differentiation programme induces granulocytic maturation associated with an accumulation of the myeloid transcription factor CCAAT/enhancer binding protein (C/EBP)ɛ and of the surface protein CD11b. While this process protects APL cells from inhibitors of class I HDAC activity, inhibition of all Zinc-dependent HDACs (classes I, II, and IV) with the pan-HDACi (histone deacetylase inhibitor(s)) LBH589 induces apoptosis of immature and differentiated APL cells. LBH589 can eliminate C/EBPɛ and the mitochondrial apoptosis regulator B-cell lymphoma (BCL)-xL in immature and differentiated NB4 cells. Thus, BCL-xL and C/EBPɛ are newly identified molecular markers for the efficacy of HDACi against APL cells. Our results could explain the therapeutic limitations occurring with ATRA and class I HDACi combinations. Pro-apoptotic effects caused by pan-HDAC inhibition are not blunted by ATRA-induced differentiation and may provide a clinically interesting alternative.

  2. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis.

    PubMed

    Hartl, Markus; Füßl, Magdalena; Boersema, Paul J; Jost, Jan-Oliver; Kramer, Katharina; Bakirbas, Ahmet; Sindlinger, Julia; Plöchinger, Magdalena; Leister, Dario; Uhrig, Glen; Moorhead, Greg Bg; Cox, Jürgen; Salvucci, Michael E; Schwarzer, Dirk; Mann, Matthias; Finkemeier, Iris

    2017-10-23

    Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome-wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis Relative quantification of the changes in the lysine acetylation levels was determined on a proteome-wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1-like histone deacetylases in Arabidopsis , of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar-localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss-of-function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low-light conditions. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Retinoid and Histone Deacetylase Inhibitors in the Treatment of Prostate Cancer

    DTIC Science & Technology

    2004-12-01

    prostate cancer therapy (2). BODY Task 1. To determine the mechanism by which concomitant administration of retinoids and various histone deacetylase...cell proliferation assays to determine if we observed increased growth inhibition using combination therapy with ATRA plus a low dose of a variety of...cancer therapy trials (3-8). We also added the drug 5-aza-deoxycytidine to our growth inhibition studies because of much recent data that in combination

  4. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  5. The Role of Histone Deacetylases in Neurodegenerative Diseases and Small-Molecule Inhibitors as a Potential Therapeutic Approach

    NASA Astrophysics Data System (ADS)

    Bürli, Roland W.; Thomas, Elizabeth; Beaumont, Vahri

    Neurodegenerative disorders are devastating for patients and their social environment. Their etiology is poorly understood and complex. As a result, there is clearly an urgent need for therapeutic agents that slow down disease progress and alleviate symptoms. In this respect, interference with expression and function of multiple gene products at the epigenetic level has offered much promise, and histone deacetylases play a crucial role in these processes. This review presents an overview of the biological pathways in which these enzymes are involved and illustrates the complex network of proteins that governs their activity. An overview of small molecules that interfere with histone deacetylase function is provided.

  6. Sarcosine influences apoptosis and growth of prostate cells via cell-type specific regulation of distinct sets of genes.

    PubMed

    Rodrigo, Miguel A Merlos; Strmiska, Vladislav; Horackova, Eva; Buchtelova, Hana; Michalek, Petr; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Heger, Zbynek

    2018-02-01

    Sarcosine is a widely discussed oncometabolite of prostate cells. Although several reports described connections between sarcosine and various phenotypic changes of prostate cancer (PCa) cells, there is still a lack of insights on the complex phenomena of its effects on gene expression patterns, particularly in non-malignant and non-metastatic cells. To shed more light on this phenomenon, we performed parallel microarray profiling of RNA isolated from non-malignant (PNT1A), malignant (22Rv1), and metastatic (PC-3) prostate cell lines treated with sarcosine. Microarray results were experimentally verified using semi-quantitative-RT-PCR, clonogenic assay, through testing of the susceptibility of cells pre-incubated with sarcosine to anticancer agents with different modes of actions (inhibitors of topoisomerase II, DNA cross-linking agent, antimicrotubule agent and inhibitor of histone deacetylases) and by evaluation of activation of executioner caspases 3/7. We identified that irrespective of the cell type, sarcosine stimulates up-regulation of distinct sets of genes involved in cell cycle and mitosis, while down-regulates expression of genes driving apoptosis. Moreover, it was found that in all cell types, sarcosine had pronounced stimulatory effects on clonogenicity. Except of an inhibitor of histone deacetylase valproic acid, efficiency of all agents was significantly (P < 0.05) decreased in sarcosine pre-incubated cells. Our comparative study brings evidence that sarcosine affects not only metastatic PCa cells, but also their malignant and non-malignant counterparts and induces very similar changes in cells behavior, but via distinct cell-type specific targets. © 2017 Wiley Periodicals, Inc.

  7. The Effect of a Histone Deacetylase Inhibitor (AR-42) on Canine Prostate Cancer Growth and Metastasis.

    PubMed

    Elshafae, Said M; Kohart, Nicole A; Altstadt, Lucas A; Dirksen, Wessel P; Rosol, Thomas J

    2017-05-01

    Canine prostate cancer (PCa) is an excellent preclinical model for human PCa. AR-42 is a histone deacetylase inhibitor (HDACi) developed at The Ohio State University that inhibits the proliferation of several cancers, including multiple myeloma, lung, and hepatocellular cancer. In this study, we investigated whether AR-42 would prevent or decrease. The growth and metastasis of a canine PCa (Ace-1 cells) to bone in vitro and in vivo. Proliferation, cell viability, invasion, and metastasis of a canine prostate cancer cell line (Ace-1) were measured following treatment with AR-42. Expression of anoikis resistance, epithelial-to-mesenchymal transition (EMT), and stem cell-related markers were also evaluated. To assess the efficacy of AR-42 on prevention of PCa metastasis to bone, Ace-1 cells were injected in the left cardiac ventricle of nude mice, mice were treated with AR-42, and the incidence and growth of bone metastasis were measured. Bioluminescence was performed to monitor the bone metastases in nude mice. AR-42 inhibited the in vitro proliferation of Ace-1 cells in a time- and dose-dependent manner. The IC 50 concentration of AR-42 for Ace-1 cells was 0.42 μM after 24 hr of treatment. AR-42 induced apoptosis, decreased cell migration, and increased the stem cell properties of Ace-1 cells in vitro. AR-42 downregulated E-cadherin, N-cadherin, TWIST, MYOF, anoikis resistance, and osteomimicry genes, while it upregulated SNAIL, PTEN, FAK, and ZEB1 gene expression in Ace-1 cells. Importantly, AR-42 decreased the bioluminescence and incidence of bone metastasis in nude mice. In addition, AR-42 induced apoptosis and altered the tumor cell morphology to an irregular cell phenotype with condensed chromatin in the bone metastases. AR-42 decreased PCa growth and bone metastasis, induced apoptosis, and downregulated osteomimicry genes in PCa cells in the bone microenvironment. Prostate 77:776-793, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090 .

    PubMed

    Cole, Kathryn E; Gattis, Samuel G; Angell, Heather D; Fierke, Carol A; Christianson, David W

    2011-01-18

    The first committed step of lipid A biosynthesis is catalyzed by UDP-(3-O-((R)-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase, a metal-dependent deacetylase also known as LpxC. Because lipid A is essential for bacterial viability, the inhibition of LpxC is an appealing therapeutic strategy for the treatment of Gram-negative bacterial infections. Here we report the 1.79 Å resolution X-ray crystal structure of LpxC from Yersinia enterocolitica (YeLpxC) complexed with the potent hydroxamate inhibitor CHIR-090. This enzyme is a nearly identical orthologue of LpxC from Yersinia pestis (99.7% sequence identity), the pathogen that causes bubonic plague. Similar to the inhibition of LpxC from Escherichia coli, CHIR-090 inhibits YeLpxC via a two-step slow, tight-binding mechanism with an apparent K(i) of 0.54 ± 0.14 nM followed by conversion of the E·I to E·I* species with a rate constant of 0.11 ± 0.01 min(-1). The structure of the LpxC complex with CHIR-090 shows that the inhibitor hydroxamate group chelates the active site zinc ion, and the "tail" of the inhibitor binds in the hydrophobic tunnel in the active site. This hydrophobic tunnel is framed by a βαβ subdomain that exhibits significant conformational flexibility as it accommodates inhibitor binding. CHIR-090 displays a 27 mm zone of inhibition against Y. enterocolitica in a Kirby-Bauer antibiotic assay, which is comparable to its reported activity against other Gram-negative species including E. coli and Pseudomonas aeruginosa. This study demonstrates that the inhibition of LpxC should be explored as a potential therapeutic and/or prophylatic response to infection by weaponized Yersinia species.

  9. Intermittent Fasting Protects against Alzheimer's Disease Possible through Restoring Aquaporin-4 Polarity.

    PubMed

    Zhang, Jingzhu; Zhan, Zhipeng; Li, Xinhui; Xing, Aiping; Jiang, Congmin; Chen, Yanqiu; Shi, Wanying; An, Li

    2017-01-01

    The impairment of amyloid-β (Aβ) clearance in the brain plays a causative role in Alzheimer's disease (AD). Polarity distribution of aquaporin-4 (AQP4) is important to remove Aβ from brain. AQP4 polarity can be influenced by the ratio of two AQP4 isoforms M1 and M23 (AQP4-M1/M23), however, it is unknown whether the ratio of AQP4-M1/M23 changes in AD. Histone deacetylase 3 has been reported to be significantly increased in AD brain. Moreover, evidence indicated that microRNA-130a (miR-130a) possibly mediates the regulation of histone deacetylase 3 on AQP4-M1/M23 ratio by repressing the transcriptional activity of AQP4-M1 in AD. This study aimed to investigate whether intermittent fasting (IF), increasing the level of an endogenous histone deacetylases inhibitor β-hydroxybutyrate, restores AQP4 polarity via miR-130a mediated reduction of AQP4-M1/M23 ratio in protection against AD. The results showed that IF ameliorated cognitive dysfunction, prevented brain from Aβ deposition, and restored the AQP4 polarity in a mouse model of AD (APP/PS1 double-transgenic mice). Additionally, IF down-regulated the expression of AQP4-M1 and histone deacetylase 3, reduced AQP4-M1/M23 ratio, and increased miR-130a expression in the cerebral cortex of APP/PS1 mice. In vitro , β-hydroxybutyrate was found to down-regulate the expression of AQP4-M1 and histone deacetylase 3, reduce AQP4-M1/M23 ratio, and increase AQP4-M23 and miR-130a expression in 2 μM Aβ-treated U251 cells. Interestingly, on the contrary to the result observed in 2 μM Aβ-treated cells, AQP4 expression was obviously decreased in cells exposed to 10 μM Aβ. miR-130a mimic decreased the expression of AQP4-M1 and the ratio of AQP4-M1/M23, as well as silencing histone deacetylase 3 caused the up-regulation of AQP4 and miR-130a, and the reduction of AQP4-M1/M23 ratio in U251 cells. In conclusion, IF exhibits beneficial effects against AD. The mechanism may be associated with recovery of AQP4 polarity, resulting from the reduction of AQP4-M1/M23 ratio. Furthermore, β-hydroxybutyrate may partly mediate the effect of IF on the reduction of AQP4-M1/M23 ratio in AD, in which miR-130a and histone deacetylase 3 may be implicated.

  10. Increasing expression and decreasing degradation of SMN ameliorate the spinal muscular atrophy phenotype in mice

    PubMed Central

    Kwon, Deborah Y.; Motley, William W.; Fischbeck, Kenneth H.; Burnett, Barrington G.

    2011-01-01

    Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by reduced levels of the survival motor neuron (SMN) protein. Here we show that the proteasome inhibitor, bortezomib, increases SMN in cultured cells and in peripheral tissues of SMA model mice. Bortezomib-treated animals had improved motor function, which was associated with reduced spinal cord and muscle pathology and improved neuromuscular junction size, but no change in survival. Combining bortezomib with the histone deacetylase inhibitor trichostatin A (TSA) resulted in a synergistic increase in SMN protein levels in mouse tissue and extended survival of SMA mice more than TSA alone. Our results demonstrate that a combined regimen of drugs that decrease SMN protein degradation and increase SMN gene transcription synergistically increases SMN levels and improves the lifespan of SMA model mice. Moreover, this study indicates that while increasing SMN levels in the central nervous system may help extend survival, peripheral tissues can also be targeted to improve the SMA disease phenotype. PMID:21693563

  11. Histone deacetylase 1 and 2 are essential for murine neural crest proliferation, pharyngeal arch development, and craniofacial morphogenesis.

    PubMed

    Milstone, Zachary J; Lawson, Grace; Trivedi, Chinmay M

    2017-12-01

    Craniofacial anomalies involve defective pharyngeal arch development and neural crest function. Copy number variation at 1p35, containing histone deacetylase 1 (Hdac1), or 6q21-22, containing Hdac2, are implicated in patients with craniofacial defects, suggesting an important role in guiding neural crest development. However, the roles of Hdac1 and Hdac2 within neural crest cells remain unknown. The neural crest and its derivatives express both Hdac1 and Hdac2 during early murine development. Ablation of Hdac1 and Hdac2 within murine neural crest progenitor cells cause severe hemorrhage, atrophic pharyngeal arches, defective head morphogenesis, and complete embryonic lethality. Embryos lacking Hdac1 and Hdac2 in the neural crest exhibit decreased proliferation and increased apoptosis in both the neural tube and the first pharyngeal arch. Mechanistically, loss of Hdac1 and Hdac2 upregulates cyclin-dependent kinase inhibitors Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, Cdkn2c, and Tp53 within the first pharyngeal arch. Our results show that Hdac1 and Hdac2 function redundantly within the neural crest to regulate proliferation and the development of the pharyngeal arches by means of repression of cyclin-dependent kinase inhibitors. Developmental Dynamics 246:1015-1026, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Retinoic acids and trichostatin A (TSA), a histone deacetylase inhibitor, induce human pyruvate dehydrogenase kinase 4 (PDK4) gene expression.

    PubMed

    Kwon, Hye-Sook; Huang, Boli; Ho Jeoung, Nam; Wu, Pengfei; Steussy, Calvin N; Harris, Robert A

    2006-01-01

    Induction of pyruvate dehydrogenase kinase 4 (PDK4) conserves glucose and substrates for gluconeogenesis and thereby helps regulate blood glucose levels during starvation. We report here that retinoic acids (RA) as well as Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC), regulate PDK4 gene expression. Two retinoic acid response elements (RAREs) to which retinoid X receptor alpha (RXRalpha) and retinoic acid receptor alpha (RARalpha) bind and activate transcription are present in the human PDK4 (hPDK4) proximal promoter. Sp1 and CCAAT box binding factor (CBF) bind to the region between two RAREs. Mutation of either the Sp1 or the CBF site significantly decreases basal expression, transactivation by RXRalpha/RARalpha/RA, and the ability of TSA to stimulate hPDK4 gene transcription. By the chromatin immunoprecipitation assay, RA and TSA increase acetylation of histones bound to the proximal promoter as well as occupancy of CBP and Sp1. Interaction of p300/CBP with E1A completely prevented hPDK4 gene activation by RXRalpha/RARalpha/RA and TSA. The p300/CBP may enhance acetylation of histones bound to the hPDK4 promoter and cooperate with Sp1 and CBF to stimulate transcription of the hPDK4 gene in response to RA and TSA.

  13. Mechanism for the differentiation of EoL-1 cells into eosinophils by histone deacetylase inhibitors.

    PubMed

    Kaneko, Motoko; Ishihara, Kenji; Takahashi, Aki; Hong, Jangja; Hirasawa, Noriyasu; Zee, Okpyo; Ohuchi, Kazuo

    2007-01-01

    EoL-1 cells have a FIP1L1-PDGFRA fusion gene which causes the transformation of eosinophilic precursor cells into leukemia cells. Recently, we suggested that the induction of differentiation of EoL-1 cells into eosinophils by the HDAC inhibitors apicidin and n-butyrate is due to the continuous inhibition of HDACs. However, neither apicidin nor n-butyrate inhibited the expression of FIP1L1-PDGFRA mRNA, although both these inhibitors suppressed cell proliferation. Therefore, in this study, we analyzed whether the levels of FIP1L1-PDGFRalpha protein and phosphorylated-Stat5 involved in the signaling for the proliferation of EoL-1 cells are attenuated by HDAC inhibitors. EoL-1 cells were incubated in the presence of apicidin, TSA or n-butyrate. FIP1L1-PDGFRalpha and phosphorylated-Stat5 were detected by Western blotting. Treatment of EoL-1 cells with apicidin at 100 nM or n-butyrate at 500 microM decreased the levels of FIP1L1-PDGFRalpha protein and phosphorylated-Stat5, while that with trichostatin A at 30 nM did not. The decrease in the level of FIP1L1-PDGFRalpha protein caused by apicidin and n-butyrate might be one of the mechanisms by which EoL-1 cells are induced to differentiate into eosinophils by these HDAC inhibitors.

  14. Discovery of a new class of histone deacetylase inhibitors with a novel zinc binding group.

    PubMed

    Li, Youxuan; Woster, Patrick M

    2015-04-01

    Small molecules featuring a hydroxamic acid or a benzamide zinc binding group (ZBG) are the most thoroughly studied histone deacetylase (HDAC) inhibitors. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety and potential metabolic toxicity of the aniline portion of benzamide HDAC inhibitors have stimulated research efforts aimed at discovering alternative ZBGs. Here we report the 2-(oxazol-2-yl)phenol moiety as a novel ZBG that can be used to produce compounds that are potent HDAC inhibitors. A series of analogues with this novel ZBG have been synthesized, and these analogues exhibit selective inhibition against HDAC1 as well as the class IIb HDACs (HDAC6 and HDAC10). Compound 10 possesses an IC 50 value of 7.5 μM in the MV-4-11 leukemia cell line, and induces a comparable amount of acetylated histone 3 lysine 9 (H3K9) and p21Waf1/CIP1 as 0.5 μM of SAHA. Modeling of compound 10 in the active site of HDAC2 demonstrates that the 2-(oxazol-2-yl)phenol moiety has a zinc-binding pattern similar to benzamide HDAC inhibitors.

  15. The Class I HDAC Inhibitor RGFP963 Enhances Consolidation of Cued Fear Extinction

    ERIC Educational Resources Information Center

    Bowers, Mallory E.; Xia, Bing; Carreiro, Samantha; Ressler, Kerry J.

    2015-01-01

    Evidence indicates that broad, nonspecific histone deacetylase (HDAC) inhibition enhances learning and memory, however, the contribution of the various HDACs to specific forms of learning is incompletely understood. Here, we show that the Class I HDAC inhibitor, RGFP963, enhances consolidation of cued fear extinction. However, RGFP966, a strong…

  16. Mechanism for neurotropic action of vorinostat, a pan histone deacetylase inhibitor

    USDA-ARS?s Scientific Manuscript database

    In this study we investigated the effect of vorinostat (suberanilohydroxamic acid, SAHA), a class I and class II HDAC inhibitor, on the differentiation of Neuroscreen-1 (NS-1) cells. NS-1 cell is a subclone of the rat pheochromocytoma cell line (PC 12). PC12 cells on treatment with nerve growth fac...

  17. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities.

    PubMed

    Kitir, Betül; Maolanon, Alex R; Ohm, Ragnhild G; Colaço, Ana R; Fristrup, Peter; Madsen, Andreas S; Olsen, Christian A

    2017-09-26

    Histone deacetylases (HDACs) are validated targets for treatment of certain cancer types and play numerous regulatory roles in biology, ranging from epigenetics to metabolism. Small molecules are highly important as tool compounds for probing these mechanisms as well as for the development of new medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30 natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important tool compounds as well as the approved drug Istodax (romidepsin). This work provides novel inhibitors with varying potencies, selectivity profiles, and mechanisms of inhibition and, importantly, affords insight into known tool compounds that will improve the interpretation of their effects in biology and medicine.

  18. Histone Deacetylase Inhibitor Trichostatin a Promotes the Apoptosis of Osteosarcoma Cells through p53 Signaling Pathway Activation

    PubMed Central

    Deng, Zhantao; Liu, Xiaozhou; Jin, Jiewen; Xu, Haidong; Gao, Qian; Wang, Yong; Zhao, Jianning

    2016-01-01

    Purpose: The purpose of this study was to investigate the profile of histone deacetylase (HDAC) activity and expression in osteosarcoma cells and tissues from osteosarcoma patients and to examine the mechanism by which a histone deacetylase (HDAC) inhibitor, Trichostatin A (TSA), promotes the apoptosis of osteosarcoma cells. Methods: HDAC activity and histone acetyltransferase (HAT) activity were determined in nuclear extracts of MG63 cells, hFOB 1.19 cells and tissues from 6 patients with primary osteosarcoma. The protein expression of Class I HDACs (1, 2, 3 and 8) and the activation of the p53 signaling pathway were examined by Western blot. Cell growth and apoptosis were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2H-tetrazolium bromide (MTT) assay and flow cytometry, respectively. Results: Nuclear HDAC activity and class I HDAC expression were significantly higher in MG63 cells than in hFOB 1.19 cells, and a similar trend was observed in the human osteosarcoma tissues compared with the paired adjacent non-cancerous tissues. TSA significantly inhibited the growth of MG63 cells and promoted apoptosis in a dose-dependent manner through p53 signaling pathway activation. Conclusion: Class I HDACs play a central role in the pathogenesis of osteosarcoma, and HDAC inhibitors may thus have promise as new therapeutic agents against osteosarcoma. PMID:27877082

  19. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents.

    PubMed

    Namdar, Mandana; Perez, Gisela; Ngo, Lang; Marks, Paul A

    2010-11-16

    Histone deacetylase 6 (HDAC6) is structurally and functionally unique among the 11 human zinc-dependent histone deacetylases. Here we show that chemical inhibition with the HDAC6-selective inhibitor tubacin significantly enhances cell death induced by the topoisomerase II inhibitors etoposide and doxorubicin and the pan-HDAC inhibitor SAHA (vorinostat) in transformed cells (LNCaP, MCF-7), an effect not observed in normal cells (human foreskin fibroblast cells). The inactive analogue of tubacin, nil-tubacin, does not sensitize transformed cells to these anticancer agents. Further, we show that down-regulation of HDAC6 expression by shRNA in LNCaP cells enhances cell death induced by etoposide, doxorubicin, and SAHA. Tubacin in combination with SAHA or etoposide is more potent than either drug alone in activating the intrinsic apoptotic pathway in transformed cells, as evidenced by an increase in PARP cleavage and partial inhibition of this effect by the pan-caspase inhibitor Z-VAD-fmk. HDAC6 inhibition with tubacin induces the accumulation of γH2AX, an early marker of DNA double-strand breaks. Tubacin enhances DNA damage induced by etoposide or SAHA as indicated by increased accumulation of γH2AX and activation of the checkpoint kinase Chk2. Tubacin induces the expression of DDIT3 (CHOP/GADD153), a transcription factor up-regulated in response to cellular stress. DDIT3 induction is further increased when tubacin is combined with SAHA. These findings point to mechanisms by which HDAC6-selective inhibition can enhance the efficacy of certain anti-cancer agents in transformed cells.

  20. Modulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by Zac1 through the antagonistic regulators p53 and histone deacetylase 1 in HeLa Cells.

    PubMed

    Liu, Pei-Yao; Chan, James Yi-Hsin; Lin, Hsiu-Chen; Wang, Sung-Ling; Liu, Shu-Ting; Ho, Ching-Liang; Chang, Li-Chien; Huang, Shih-Ming

    2008-07-01

    Zac1 is a novel seven-zinc finger protein which possesses the ability to bind specifically to GC-rich DNA elements. Zac1 not only promotes apoptosis and cell cycle arrest but also acts as a transcriptional cofactor for p53 and a number of nuclear receptors. Our previous study indicated that the enhancement of p53 activity by Zac1 is much more pronounced in HeLa cells compared with other cell lines tested. This phenomenon might be due to the coactivator effect of Zac1 on p53 and the ability of Zac1 to reverse E6 inhibition of p53. In the present study, we showed that Zac1 acted synergistically with either p53 or a histone deacetylase inhibitor, trichostatin A, to enhance p21(WAF1/Cip1) promoter activity. We showed that Zac1 physically interacted with some nuclear receptor corepressors such as histone deacetylase 1 (HDAC1) and mSin3a, and the induction of p21(WAF1/Cip1) gene and protein by Zac1 was suppressed by either overexpressing HDAC1 or its deacetylase-dead mutant. In addition, our data suggest that trichostatin A-induced p21(WAF1/Cip1) protein expression might be mediated through a p53-independent and HDAC deacetylase-independent pathway. Taken together, our data suggest that Zac1 might be involved in regulating the p21(WAF1/Cip1) gene and protein expression through its protein-protein interaction with p53 and HDAC1 in HeLa cells.

  1. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  2. Developing selective histone deacetylases (HDACs) inhibitors through ebselen and analogs.

    PubMed

    Wang, Yuren; Wallach, Jason; Duane, Stephanie; Wang, Yuan; Wu, Jianghong; Wang, Jeffrey; Adejare, Adeboye; Ma, Haiching

    2017-01-01

    Histone deacetylases (HDACs) are key regulators of gene expression in cells and have been investigated as important therapeutic targets for cancer and other diseases. Different subtypes of HDACs appear to play disparate roles in the cells and are associated with specific diseases. Therefore, substantial effort has been made to develop subtype-selective HDAC inhibitors. In an effort to discover existing scaffolds with HDAC inhibitory activity, we screened a drug library approved by the US Food and Drug Administration and a National Institutes of Health Clinical Collection compound library in HDAC enzymatic assays. Ebselen, a clinical safe compound, was identified as a weak inhibitor of several HDACs, including HDAC1, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HDAC9 with half maximal inhibitory concentrations approximately single digit of µM. Two ebselen analogs, ebselen oxide and ebsulfur (a diselenide analog of ebselen), also inhibited these HDACs, however with improved potencies on HDAC8. Benzisothiazol, the core structure of ebsulfur, specifically inhibited HDAC6 at a single digit of µM but had no inhibition on other HDACs. Further efforts on structure-activity relationship based on the core structure of ebsulfur led to the discovery of a novel class of potent and selective HDAC6 inhibitors with RBC-2008 as the lead compound with single-digit nM potency. This class of histone deacetylase inhibitor features a novel pharmacophore with an ebsulfur scaffold selectively targeting HDAC6. Consistent with its inhibition on HDAC6, RBC-2008 significantly increased the acetylation levels of α-tubulin in PC-3 cells. Furthermore, treatment with these compounds led to cell death of multiple tumor cell lines in a dose-dependent manner. These results demonstrated that ebselen and ebsulfur analogs are inhibitors of HDACs, supporting further preclinical development of this class of compounds for potential therapeutic applications.

  3. 3-Hydroxypyridin-2-thione as Novel Zinc Binding Group for Selective Histone Deacetylase Inhibition

    PubMed Central

    Patil, Vishal; Sodji, Quaovi H.; Kornacki, James R.; Mrksich, Milan; Oyelere, Adegboyega K.

    2013-01-01

    Small molecules bearing hydroxamic acid as the zinc binding group (ZBG) have been the most effective histone deacetylase inhibitor (HDACi) to date. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety have stimulated research efforts aimed at finding alternative non-hydroxamate ZBGs. We have identified 3-hydroxypyridin-2-thione (3-HPT) as a novel ZBG that is compatible with HDAC inhibition. 3-HPT inhibits HDAC 6 and HDAC 8 with an IC50 of 681 nM and 3675 nM respectively. Remarkably, 3-HPT gives no inhibition of HDAC 1. Subsequent optimization led to several novel 3HPT-based HDACi that are selective for HDAC 6 and HDAC 8. Furthermore, a subset of these inhibitors induces apoptosis in various cancer cell lines. PMID:23547652

  4. Inhibition of cell-mediated immunity by the histone deacetylase inhibitor vorinostat: implications for therapy of cutaneous T-cell lymphoma.

    PubMed

    Stephen, Sasha; Morrissey, Kelly A; Benoit, Bernice M; Kim, Ellen J; Vittorio, Carmela C; Nasta, Sunita D; Showe, Louise C; Wysocka, Maria; Rook, Alain H

    2012-02-01

    Several histone deacetylase inhibitors (HDACi), including vorinostat, have been approved for the therapy of cutaneous T-cell lymphoma (CTCL). Emerging data suggest that HDACi may exert immune suppressive effects which would be disadvantageous for therapy of CTCL. We describe a patient with Sezary syndrome who was monitored for drug-induced immunosuppression while undergoing treatment with vorinostat. Analysis of the patient's natural killer cell function before and after initiation of treatment confirmed inhibition of this important cell-mediated immune function. In addition, the in vitro effects of vorinostat on the immunity of healthy volunteers confirmed that this class of drug can profoundly suppress multiple arms of the cellular immune response. These findings raise concerns of increased susceptibility to infection in this high-risk population.

  5. 3-Hydroxypyridin-2-thione as novel zinc binding group for selective histone deacetylase inhibition.

    PubMed

    Patil, Vishal; Sodji, Quaovi H; Kornacki, James R; Mrksich, Milan; Oyelere, Adegboyega K

    2013-05-09

    Small molecules bearing hydroxamic acid as the zinc binding group (ZBG) have been the most effective histone deacetylase inhibitors (HDACi) to date. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety have stimulated research efforts aimed at finding alternative nonhydroxamate ZBGs. We have identified 3-hydroxypyridin-2-thione (3-HPT) as a novel ZBG that is compatible with HDAC inhibition. 3-HPT inhibits HDAC 6 and HDAC 8 with an IC50 of 681 and 3675 nM, respectively. Remarkably, 3-HPT gives no inhibition of HDAC 1. Subsequent optimization led to several novel 3HPT-based HDACi that are selective for HDAC 6 and HDAC 8. Furthermore, a subset of these inhibitors induces apoptosis in various cancer cell lines.

  6. TSA-induced JMJD2B downregulation is associated with cyclin B1-dependent survivin degradation and apoptosis in LNCap cells.

    PubMed

    Zhu, Shan; Li, Yueyang; Zhao, Li; Hou, Pingfu; Shangguan, Chenyan; Yao, Ruosi; Zhang, Weina; Zhang, Yu; Tan, Jiang; Huang, Baiqu; Lu, Jun

    2012-07-01

    Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to induce apoptosis of cancer cells, and a significant number of genes have been identified as potential effectors responsible for HDAC inhibitor-induced apoptosis. However, the mechanistic actions of these HDAC inhibitors in this process remain largely undefined. We here report that the treatment of LNCap prostate cancer cells with HDAC inhibitor trichostatin A (TSA) resulted in downregulation of the Jumonji domain-containing protein 2B (JMJD2B). We also found that the TSA-mediated decrease in survivin expression in LNCap cells was partly attributable to downregulation of JMJD2B expression. This effect was attributable to the promoted degradation of survivin protein through inhibition of Cyclin B1/Cdc2 complex-mediated survivin Thr34 phosphorylation. Consequently, knockdown of JMJD2B enhanced TSA-induced apoptosis by regulating the Cyclin B1-dependent survivin degradation to potentiate the apoptosis pathways. Copyright © 2012 Wiley Periodicals, Inc.

  7. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts

    PubMed Central

    Newton, Jason; Hait, Nitai C.; Maceyka, Michael; Colaco, Alexandria; Maczis, Melissa; Wassif, Christopher A.; Cougnoux, Antony; Porter, Forbes D.; Milstien, Sheldon; Platt, Nicholas; Platt, Frances M.; Spiegel, Sarah

    2017-01-01

    Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused by mutations in NPC1 or NPC2 with decreased functions leading to lysosomal accumulation of cholesterol and sphingolipids. FTY720/fingolimod, used for treatment of multiple sclerosis, is phosphorylated by nuclear sphingosine kinase 2, and its active phosphorylated form (FTY720-P) is an inhibitor of class I histone deacetylases. In this study, administration of clinically relevant doses of FTY720 to mice increased expression of NPC1 and -2 in brain and liver and decreased cholesterol in an SphK2-dependent manner. FTY720 greatly increased expression of NPC1 and -2 in human NPC1 mutant fibroblasts that correlated with formation of FTY720-P and significantly reduced the accumulation of cholesterol and glycosphingolipids. In agreement with this finding, FTY720 pretreatment of human NPC1 mutant fibroblasts restored transport of the cholera toxin B subunit, which binds ganglioside GM1, to the Golgi apparatus. Together, these findings suggest that FTY720 administration can ameliorate cholesterol and sphingolipid storage and trafficking defects in NPC1 mutant fibroblasts. Because neurodegeneration is the main clinical feature of NPC disease, and FTY720 accumulates in the CNS and has several advantages over available histone deacetylase inhibitors now in clinical trials, our work provides a potential opportunity for treatment of this incurable disease.—Newton, J., Hait, N. C., Maceyka, M., Colaco, A., Maczis, M., Wassif, C. A., Cougnoux, A., Porter, F. D., Milstien, S., Platt, N., Platt, F. M., Spiegel, S. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts. PMID:28082351

  8. Inhibiting histone deacetylase 6 partly protects cultured rat cortical neurons from oxygen‑glucose deprivation‑induced necroptosis.

    PubMed

    Yuan, Liming; Wang, Zhen; Liu, Lihua; Jian, Xiaohong

    2015-08-01

    Necroptosis has an important role in ischemia-reperfusion damage. The expression of histone deacetylase 6 (HDAC6) is upregulated in neurons following ischemia-reperfusion, however, whether HDAC6 is closely involved in the necroptosis, which occurs during ischemia-reperfusion damage remains to be elucidated. In the present study, the roles of HDAC6 in the necroptosis of cultured rat cortical neurons were investigated in a oxygen-glucose deprivation (OGD) model. The results demonstrated that OGD induced marked necroptosis of cultured rat cortical neurons and upregulated the expression of HDAC6 in the cultured neurons, compared with the control (P<0.05). The necroptosis inhibitor, necrostatin-1 (Nec-1), decreased The expression of HDAC6 in the OGD-treated cultured neurons, accompanied by the inhibition of necroptosis. Further investigation revealed that, compared with OGD treatment alone, inhibiting the activity of HDAC6 with tubacin, a specific HDAC6 inhibitor, reduced the OGD-induced necroptosis of the cultured rat cortical neurons (P<0.05), which was similar to the change following treatment with Nec-1 (P>0.05). In addition, inhibiting the activity of HDAC6 reversed the OGD-induced increase of reactive oxygen species (ROS) and the OGD-induced decrease of acetylated tubulin in the cultured rat cortical neurons (P<0.05), compared with the neurons treated with OGD alone). The levels of acetylated tubulin in the cultured neurons following treatment with OGD and tubacin were significantly higher than those in the control (P<0.05). These results suggested that HDAC6 was involved in the necroptosis of neurons during ischemia-reperfusion by modulating the levels of ROS and acetylated tubulin.

  9. Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors.

    PubMed

    Melesina, Jelena; Robaa, Dina; Pierce, Raymond J; Romier, Christophe; Sippl, Wolfgang

    2015-11-01

    Histone deacetylases (HDACs) are promising epigenetic targets for the treatment of various diseases, including cancer and neurodegenerative disorders. There is evidence that they can also be addressed to treat parasitic infections. Recently, the first X-ray structure of a parasite HDAC was published, Schistosoma mansoni HDAC8, giving structural insights into its inhibition. However, most of the targets from parasites of interest still lack this structural information. Therefore, we prepared homology models of relevant parasitic HDACs and compared them to human and S. mansoni HDACs. The information about known S. mansoni HDAC8 inhibitors and compounds that affect the growth of Trypanosoma, Leishmania and Plasmodium species was used to validate the models by docking and molecular dynamics studies. Our results provide analysis of structural features of parasitic HDACs and should be helpful for selecting promising candidates for biological testing and for structure-based optimisation of parasite-specific inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives.

    PubMed

    Hailu, Gebremedhin S; Robaa, Dina; Forgione, Mariantonietta; Sippl, Wolfgang; Rotili, Dante; Mai, Antonello

    2017-06-22

    Current therapies for human parasite infections rely on a few drugs, most of which have severe side effects, and their helpfulness is being seriously compromised by the drug resistance problem. Globally, this is pushing discovery research of antiparasitic drugs toward new agents endowed with new mechanisms of action. By using a "drug repurposing" strategy, histone deacetylase inhibitors (HDACi), which are presently clinically approved for cancer use, are now under investigation for various parasite infections. Because parasitic Zn 2+ - and NAD + -dependent HDACs play crucial roles in the modulation of parasite gene expression and many of them are pro-survival for several parasites under various conditions, they are now emerging as novel potential antiparasitic targets. This Perspective summarizes the state of knowledge of HDACi (both class I/II HDACi and sirtuin inhibitors) targeted to the main human parasitic diseases (schistosomiasis, malaria, trypanosomiasis, leishmaniasis, and toxoplasmosis) and provides visions into the main issues that challenge their development as antiparasitic agents.

  11. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase–dependent DC functions and regulates experimental graft-versus-host disease in mice

    PubMed Central

    Reddy, Pavan; Sun, Yaping; Toubai, Tomomi; Duran-Struuck, Raimon; Clouthier, Shawn G.; Weisiger, Elizabeth; Maeda, Yoshinobu; Tawara, Isao; Krijanovski, Oleg; Gatza, Erin; Liu, Chen; Malter, Chelsea; Mascagni, Paolo; Dinarello, Charles A.; Ferrara, James L.M.

    2008-01-01

    Histone deacetylase (HDAC) inhibitors are antitumor agents that also have antiinflammatory properties. However, the mechanisms of their immunomodulatory functions are not known. We investigated the mechanisms of action of 2 HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and ITF 2357, on mouse DC responses. Pretreatment of DCs with HDAC inhibitors significantly reduced TLR-induced secretion of proinflammatory cytokines, suppressed the expression of CD40 and CD80, and reduced the in vitro and in vivo allostimulatory responses induced by the DCs. In addition, injection of DCs treated ex vivo with HDAC inhibitors reduced experimental graft-versus-host disease (GVHD) in a murine allogeneic BM transplantation model. Exposure of DCs to HDAC inhibitors increased expression of indoleamine 2,3-dioxygenase (IDO), a suppressor of DC function. Blockade of IDO in WT DCs with siRNA and with DCs from IDO-deficient animals caused substantial reversal of HDAC inhibition–induced in vitro suppression of DC-stimulated responses. Direct injection of HDAC inhibitors early after allogeneic BM transplantation to chimeric animals whose BM-derived cells lacked IDO failed to protect from GVHD, demonstrating an in vivo functional role for IDO. Together, these data show that HDAC inhibitors regulate multiple DC functions through the induction of IDO and suggest that they may represent a novel class of agents to treat immune-mediated diseases. PMID:18568076

  12. Combinatorial In Silico Strategy towards Identifying Potential Hotspots during Inhibition of Structurally Identical HDAC1 and HDAC2 Enzymes for Effective Chemotherapy against Neurological Disorders

    PubMed Central

    Ganai, Shabir Ahmad; Abdullah, Ehsaan; Rashid, Romana; Altaf, Mohammad

    2017-01-01

    Histone deacetylases (HDACs) regulate epigenetic gene expression programs by modulating chromatin architecture and are required for neuronal development. Dysregulation of HDACs and aberrant chromatin acetylation homeostasis have been implicated in various diseases ranging from cancer to neurodegenerative disorders. Histone deacetylase inhibitors (HDACi), the small molecules interfering HDACs have shown enhanced acetylation of the genome and are gaining great attention as potent drugs for treating cancer and neurodegeneration. HDAC2 overexpression has implications in decreasing dendrite spine density, synaptic plasticity and in triggering neurodegenerative signaling. Pharmacological intervention against HDAC2 though promising also targets neuroprotective HDAC1 due to high sequence identity (94%) with former in catalytic domain, culminating in debilitating off-target effects and creating hindrance in the defined intervention. This emphasizes the need of designing HDAC2-selective inhibitors to overcome these vicious effects and for escalating the therapeutic efficacy. Here we report a top-down combinatorial in silico approach for identifying the structural variants that are substantial for interactions against HDAC1 and HDAC2 enzymes. We used extra-precision (XP)-molecular docking, Molecular Mechanics Generalized Born Surface Area (MMGBSA) for predicting affinity of inhibitors against the HDAC1 and HDAC2 enzymes. Importantly, we employed a novel in silico strategy of coupling the state-of-the-art molecular dynamics simulation (MDS) to energetically-optimized structure based pharmacophores (e-Pharmacophores) method via MDS trajectory clustering for hypothesizing the e-Pharmacophore models. Further, we performed e-Pharmacophores based virtual screening against phase database containing millions of compounds. We validated the data by performing the molecular docking and MM-GBSA studies for the selected hits among the retrieved ones. Our studies attributed inhibitor potency to the ability of forming multiple interactions and infirm potency to least interactions. Moreover, our studies delineated that a single HDAC inhibitor portrays differential features against HDAC1 and HDAC2 enzymes. The high affinity and selective HDAC2 inhibitors retrieved through e-Pharmacophores based virtual screening will play a critical role in ameliorating neurodegenerative signaling without hampering the neuroprotective isoform (HDAC1). PMID:29170627

  13. Targeting inflammation in diabetes: Newer therapeutic options

    PubMed Central

    Agrawal, Neeraj Kumar; Kant, Saket

    2014-01-01

    Inflammation has been recognised to both decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can affect beta cell function directly leading to secretory dysfunction and increased apoptosis. These cytokines can also indirectly affect beta cell function by increasing adipocyte inflammation.The resulting glucotoxicity and lipotoxicity further enhance the inflammatory process resulting in a vicious cycle. Weight reduction and drugs such as metformin have been shown to decrease the levels of C-Reactive Protein by 31% and 13%, respectively. Pioglitazone, insulin and statins have anti-inflammatory effects. Interleukin 1 and tumor necrosis factor-α antagonists are in trials and NSAIDs such as salsalate have shown an improvement in insulin sensitivity. Inhibition of 12-lipo-oxygenase, histone de-acetylases, and activation of sirtuin-1 are upcoming molecular targets to reduce inflammation. These therapies have also been shown to decrease the conversion of pre-diabetes state to diabetes. Drugs like glicazide, troglitazone, N-acetylcysteine and selective COX-2 inhibitors have shown benefit in diabetic neuropathy by decreasing inflammatory markers. Retinopathy drugs are used to target vascular endothelial growth factor, angiopoietin-2, various proteinases and chemokines. Drugs targeting the proteinases and various chemokines are pentoxifylline, inhibitors of nuclear factor-kappa B and mammalian target of rapamycin and are in clinical trials for diabetic nephropathy. Commonly used drugs such as insulin, metformin, peroxisome proliferator-activated receptors, glucagon like peptide-1 agonists and dipeptidyl peptidase-4 inhibitors also decrease inflammation. Anti-inflammatory therapies represent a potential approach for the therapy of diabetes and its complications. PMID:25317247

  14. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents

    PubMed Central

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date. PMID:23459471

  15. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    PubMed

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date.

  16. Pleiotropic effects of the sirtuin inhibitor sirtinol involves concentration-dependent modulation of multiple nuclear receptor-mediated pathways in the androgen-responsive prostate cancer cell LNCaP

    USDA-ARS?s Scientific Manuscript database

    Sirtinol, a purported specific inhibitor of the nicotinamide adenine dinucleotide (NAD)-dependent type III histone deacetylase (also known as sirtuin), has been used extensively to identify chemopreventive/chemotherapeutic agents that modulate the activity of this group of enzymes. However, the mole...

  17. Significant Improvement in Cloning Efficiency of an Inbred Miniature Pig by Histone Deacetylase Inhibitor Treatment after Somatic Cell Nuclear Transfer1

    PubMed Central

    Zhao, Jianguo; Ross, Jason W.; Hao, Yanhong; Spate, Lee D.; Walters, Eric M.; Samuel, Melissa S.; Rieke, August; Murphy, Clifton N.; Prather, Randall S.

    2009-01-01

    The National Institutes of Health (NIH) miniature pig was developed specifically for xenotransplantation and has been extensively used as a large-animal model in many other biomedical experiments. However, the cloning efficiency of this pig is very low (<0.2%), and this has been an obstacle to the promising application of these inbred swine genetics for biomedical research. It has been demonstrated that increased histone acetylation in somatic cell nuclear transfer (SCNT) embryos, by applying a histone deacetylase (HDAC) inhibitor such as trichostatin A (TSA), significantly enhances the developmental competence in several species. However, some researchers also reported that TSA treatment had various detrimental effects on the in vitro and in vivo development of the SCNT embryos. Herein, we report that treatment with 500 nM 6-(1,3-dioxo-1H, 3H-benzo[de]isoquinolin-2-yl)-hexanoic acid hydroxyamide (termed scriptaid), a novel HDAC inhibitor, significantly enhanced the development of SCNT embryos to the blastocyst stage when NIH inbred fetal fibroblast cells (FFCs) were used as donors compared with the untreated group (21% vs. 9%, P < 0.05). Scriptaid treatment resulted in eight pregnancies from 10 embryo transfers (ETs) and 14 healthy NIH miniature pigs from eight litters, while no viable piglets (only three mummies) were obtained from nine ETs in the untreated group. Thus, scriptaid dramatically increased the cloning efficiency when using inbred genetics from 0.0% to 1.3%. In contrast, scriptaid treatment decreased the blastocyst rate in in vitro fertilization embryos (from 37% to 26%, P < 0.05). In conclusion, the extremely low cloning efficiency in the NIH miniature pig may be caused by its inbred genetic background and can be improved by alteration of genomic histone acetylation patterns. PMID:19386991

  18. Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer.

    PubMed

    Zhao, Jianguo; Ross, Jason W; Hao, Yanhong; Spate, Lee D; Walters, Eric M; Samuel, Melissa S; Rieke, August; Murphy, Clifton N; Prather, Randall S

    2009-09-01

    The National Institutes of Health (NIH) miniature pig was developed specifically for xenotransplantation and has been extensively used as a large-animal model in many other biomedical experiments. However, the cloning efficiency of this pig is very low (<0.2%), and this has been an obstacle to the promising application of these inbred swine genetics for biomedical research. It has been demonstrated that increased histone acetylation in somatic cell nuclear transfer (SCNT) embryos, by applying a histone deacetylase (HDAC) inhibitor such as trichostatin A (TSA), significantly enhances the developmental competence in several species. However, some researchers also reported that TSA treatment had various detrimental effects on the in vitro and in vivo development of the SCNT embryos. Herein, we report that treatment with 500 nM 6-(1,3-dioxo-1H, 3H-benzo[de]isoquinolin-2-yl)-hexanoic acid hydroxyamide (termed scriptaid), a novel HDAC inhibitor, significantly enhanced the development of SCNT embryos to the blastocyst stage when NIH inbred fetal fibroblast cells (FFCs) were used as donors compared with the untreated group (21% vs. 9%, P < 0.05). Scriptaid treatment resulted in eight pregnancies from 10 embryo transfers (ETs) and 14 healthy NIH miniature pigs from eight litters, while no viable piglets (only three mummies) were obtained from nine ETs in the untreated group. Thus, scriptaid dramatically increased the cloning efficiency when using inbred genetics from 0.0% to 1.3%. In contrast, scriptaid treatment decreased the blastocyst rate in in vitro fertilization embryos (from 37% to 26%, P < 0.05). In conclusion, the extremely low cloning efficiency in the NIH miniature pig may be caused by its inbred genetic background and can be improved by alteration of genomic histone acetylation patterns.

  19. HIPK2 modulates p53 activity towards pro-apoptotic transcription.

    PubMed

    Puca, Rosa; Nardinocchi, Lavinia; Sacchi, Ada; Rechavi, Gideon; Givol, David; D'Orazi, Gabriella

    2009-10-14

    Activation of p53-mediated gene transcription is a critical cellular response to DNA damage and involves a phosphorylation-acetylation cascade of p53. The discovery of differences in the response to different agents raises the question whether some of the p53 oncosuppressor functions might be exerted by different posttranslational modifications. Stress-induced homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates p53 at serine-46 (Ser46) for p53 apoptotic activity; p53 acetylation at different C-terminus lysines including p300-mediated lysine-382 (Lys382) is also required for full activation of p53 transcriptional activity. The purpose of the current study was to evaluate the interplay among HIPK2, p300, and p53 in p53 acetylation and apoptotic transcriptional activity in response to drug by using siRNA interference, p300 overexpression or deacetylase inhibitors, in cancer cells. Knockdown of HIPK2 inhibited both adriamycin-induced Ser46 phosphorylation and Lys382 acetylation in p53 protein; however, while combination of ADR and zinc restored Ser46 phosphorylation it did not recover Lys382 acetylation. Chromatin immunoprecipitation studies showed that HIPK2 was required in vivo for efficient p300/p53 co-recruitment onto apoptotic promoters and that both p53 modifications at Ser46 and Lys382 were necessary for p53 apoptotic transcription. Thus, p53Lys382 acetylation in HIPK2 knockdown as well as p53 apoptotic activity in response to drug could be rescued by p300 overexpression. Similar effect was obtained with the Sirt1-inhibitor nicotinamide. Interestingly trichostatin A (TSA), the inhibitor of histone deacetylase complexes (HDAC) did not have effect, suggesting that Sirt1 was the deacetylase involved in p53 deacetylation in HIPK2 knockdown. These results reveal a novel role for HIPK2 in activating p53 apoptotic transcription. Our results indicate that HIPK2 may regulate the balance between p53 acetylation and deacetylation, by stimulating on one hand co-recruitment of p300 and p53Lys382 on apoptotic promoters and on the other hand by inhibiting Sirt1 deacetylase activity. We attempted to reactivate p53 apoptotic transcriptional activity by rescuing both Ser46 and Lys382 modification in response to drug. Our data propose combination strategies for the treatment of tumors with dysfunctional p53 and/or HIPK2 that include classical chemotherapy with pharmacological or natural agents such as Sirt1-deacetylase inhibitors or zinc, respectively.

  20. Histone Deacetylase (HDAC) Inhibitors: Current Evidence for Therapeutic Activities in Pancreatic Cancer.

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Karatzas, Theodore; Nikolidakis, Lampros; Kostakis, Ioannis D; Garmpi, Anna; Karamaroudis, Stefanos; Boutsikos, Georgios; Damaskou, Zoi; Kostakis, Alkiviadis; Kouraklis, Gregory

    2015-06-01

    Pancreatic carcinoma is one of the leading causes of cancer death. Current standard treatments include surgical resection, chemotherapy and radiotherapy but patient's prognosis remains poor and present severe side-effects. Contemporary oncology found a wide variety of novel anticancer drugs that regulate the epigenetic mechanisms of tumor genesis. Histone deacetylases (HDACs) are enzymes with pleiotropic activities that control critical functions of the cell through regulation of the acetylation states of histone proteins and other non-histone protein targets. They are divided into four groups, each with different localization in the cell, role and structure. Histone deacetylase inhibitors (HDACIs) are substances, which inhibit the function of HDACs. We recognize four leading groups (hydroxamic acid, cyclic tetrapeptide, benzamide, aliphatic acid). There are many HDACIs currently in pre-clinical and two (vorinostat, romidepsin) in clinical stages of investigation for pancreatic cancer. Numerous studies argue for the use HDACIs as monotherapy, others suggest that combination of HDACIs with other antitumor drugs has better therapeutic results. This review focuses on the use of HDACIs as novel anticancer drugs and will explain the mechanisms of therapeutic effect on pancreatic cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. The 2.5 Å Crystal Structure of the SIRT1 Catalytic Domain Bound to Nicotinamide Adenine Dinucleotide (NAD + ) and an Indole (EX527 Analogue) Reveals a Novel Mechanism of Histone Deacetylase Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xun; Allison, Dagart; Condon, Bradley

    2013-02-14

    The sirtuin SIRT1 is a NAD+-dependent histone deacetylase, a Sir2 family member, and one of seven human sirtuins. Sirtuins are conserved from archaea to mammals and regulate transcription, genome stability, longevity, and metabolism. SIRT1 regulates transcription via deacetylation of transcription factors such as PPARγ, NFκB, and the tumor suppressor protein p53. EX527 (27) is a nanomolar SIRT1 inhibitor and a micromolar SIRT2 inhibitor. To elucidate the mechanism of SIRT inhibition by 27, we determined the 2.5 Å crystal structure of the SIRT1 catalytic domain (residues 241–516) bound to NAD+ and the 27 analogue compound 35. 35 binds deep in themore » catalytic cleft, displacing the NAD+ nicotinamide and forcing the cofactor into an extended conformation. The extended NAD+ conformation sterically prevents substrate binding. The SIRT1/NAD+/35 crystal structure defines a novel mechanism of histone deacetylase inhibition and provides a basis for understanding, and rationally improving, inhibition of this therapeutically important target by drug-like molecules.« less

  2. Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi

    PubMed Central

    Suraweera, Amila; O’Byrne, Kenneth J.; Richard, Derek J.

    2018-01-01

    Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient’s response to these agents, in order to limit the off-target toxicity associated with HDACi. PMID:29651407

  3. Epigenetic influences on sensory regeneration: histone deacetylases regulate supporting cell proliferation in the avian utricle.

    PubMed

    Slattery, Eric L; Speck, Judith D; Warchol, Mark E

    2009-09-01

    The sensory hair cells of the cochlea and vestibular organs are essential for normal hearing and balance function. The mammalian ear possesses a very limited ability to regenerate hair cells and their loss can lead to permanent sensory impairment. In contrast, hair cells in the avian ear are quickly regenerated after acoustic trauma or ototoxic injury. The very different regenerative abilities of the avian vs. mammalian ear can be attributed to differences in injury-evoked expression of genes that either promote or inhibit the production of new hair cells. Gene expression is regulated both by the binding of cis-regulatory molecules to promoter regions as well as through structural modifications of chromatin (e.g., methylation and acetylation). This study examined effects of histone deacetylases (HDACs), whose main function is to modify histone acetylation, on the regulation of regenerative proliferation in the chick utricle. Cultures of regenerating utricles and dissociated cells from the utricular sensory epithelia were treated with the HDAC inhibitors valproic acid, trichostatin A, sodium butyrate, and MS-275. All of these molecules prevent the enzymatic removal of acetyl groups from histones, thus maintaining nuclear chromatin in a "relaxed" (open) configuration. Treatment with all inhibitors resulted in comparable decreases in supporting cell proliferation. We also observed that treatment with the HDAC1-, 2-, and 3-specific inhibitor MS-275 was sufficient to reduce proliferation and that two class I HDACs--HDAC1 and HDAC2--were expressed in the sensory epithelium of the utricle. These results suggest that inhibition of specific type I HDACs is sufficient to prevent cell cycle entry in supporting cells. Notably, treatment with HDAC inhibitors did not affect the differentiation of replacement hair cells. We conclude that histone deacetylation is a positive regulator of regenerative proliferation but is not critical for avian hair cell differentiation.

  4. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees

    PubMed Central

    Spannhoff, Astrid; Kim, Yong Kee; Raynal, Noel J -M; Gharibyan, Vazganush; Su, Ming-Bo; Zhou, Yue-Yang; Li, Jia; Castellano, Sabrina; Sbardella, Gianluca; Issa, Jean-Pierre J; Bedford, Mark T

    2011-01-01

    Worker and queen bees are genetically indistinguishable. However, queen bees are fertile, larger and have a longer lifespan than their female worker counterparts. Differential feeding of larvae with royal jelly controls this caste switching. There is emerging evidence that the queen-bee phenotype is driven by epigenetic mechanisms. In this study, we show that royal jelly—the secretion produced by the hypopharyngeal and mandibular glands of worker bees—has histone deacetylase inhibitor (HDACi) activity. A fatty acid, (E)-10-hydroxy-2-decenoic acid (10HDA), which accounts for up to 5% of royal jelly, harbours this HDACi activity. Furthermore, 10HDA can reactivate the expression of epigenetically silenced genes in mammalian cells. Thus, the epigenetic regulation of queen-bee development is probably driven, in part, by HDACi activity in royal jelly. PMID:21331099

  5. Identifying and Overcoming Mechanisms of Histone Deacetylase Inhibitor Resistance | Center for Cancer Research

    Cancer.gov

    Histone deacetylase inhibitors (HDIs), such as romidepsin, can inhibit the growth of cancer cells and induce their apoptosis by increasing histone acetylation and altering gene expression. Romidepsin has even been approved by the Food and Drug Administration for the treatment of two types of non-Hodgkin lymphoma, cutaneous T cell lymphoma (CTCL) and peripheral T cell lymphoma. But, as Susan Bates, M.D., in CCR’s Medical Oncology Branch, knows firsthand from her work on phase I and II clinical trials testing romidepsin, many cancers are initially resistant or develop resistance to HDIs. Bates, along with Arup Chakraborty, Ph.D., a postdoctoral fellow in her lab, and their colleagues are interested in understanding cellular mechanisms of HDI resistance with the hope of identifying additional pathways that could be targeted to enhance the anticancer efficacy of HDIs.

  6. Natural products as zinc-dependent histone deacetylase inhibitors.

    PubMed

    Tan, Shuai; Liu, Zhao-Peng

    2015-03-01

    Zinc-dependent histone deacetylases (HDACs), a family of hydrolases that remove acetyl groups from lysine residues, play an important role in the regulation of multiple processes, from gene expression to protein activity. The dysregulation of HDACs is associated with many diseases including cancer, neurological disorders, cellular metabolism disorders, and inflammation. Molecules that act as HDAC inhibitors (HDACi) exhibit a variety of related bioactivities. In particular, HDACi have been applied clinically for the treatment of cancers. Inhibition through competitive binding of the catalytic domain of these enzymes has been achieved by a diverse array of small-molecule chemotypes, including a number of natural products. This review provides a systematic introduction of natural HDACi, with an emphasis on their enzyme inhibitory potency, selectivity, and biological activities, highlighting their various binding modes with HDACs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Phase II Multi-Institutional Trial of the Histone Deacetylase Inhibitor Romidepsin As Monotherapy for Patients With Cutaneous T-Cell Lymphoma

    PubMed Central

    Piekarz, Richard L.; Frye, Robin; Turner, Maria; Wright, John J.; Allen, Steven L.; Kirschbaum, Mark H.; Zain, Jasmine; Prince, H. Miles; Leonard, John P.; Geskin, Larisa J.; Reeder, Craig; Joske, David; Figg, William D.; Gardner, Erin R.; Steinberg, Seth M.; Jaffe, Elaine S.; Stetler-Stevenson, Maryalice; Lade, Stephen; Fojo, A. Tito; Bates, Susan E.

    2009-01-01

    Purpose Romidepsin (depsipeptide or FK228) is a member of a new class of antineoplastic agents active in T-cell lymphoma, the histone deacetylase inhibitors. On the basis of observed responses in a phase I trial, a phase II trial of romidepsin in patients with T-cell lymphoma was initiated. Patients and Methods The initial cohort was limited to patients with cutaneous T-cell lymphoma (CTCL), or subtypes mycosis fungoides or Sézary syndrome, who had received no more than two prior cytotoxic regimens. There were no limits on other types of therapy. Subsequently, the protocol was expanded to enroll patients who had received more than two prior cytotoxic regimens. Results Twenty-seven patients were enrolled onto the first cohort, and a total of 71 patients are included in this analysis. These patients had undergone a median of four prior treatments, and 62 patients (87%) had advanced-stage disease (stage IIB, n = 15; stage III, n= 6; or stage IV, n = 41). Toxicities included nausea, vomiting, fatigue, and transient thrombocytopenia and granulocytopenia. Pharmacokinetics were evaluated with the first administration of romidepsin. Complete responses were observed in four patients, and partial responses were observed in 20 patients for an overall response rate of 34% (95% CI, 23% to 46%). The median duration of response was 13.7 months. Conclusion The histone deacetylase inhibitor romidepsin has single-agent clinical activity with significant and durable responses in patients with CTCL. PMID:19826128

  8. The histone deacetylase inhibitor, trichostatin A, inhibits the development of 2,4-dinitrofluorobenzene-induced dermatitis in NC/Nga mice.

    PubMed

    Kim, Tae-Ho; Jung, Jung-A; Kim, Gun-Dong; Jang, An-Hee; Cho, Jeong-Je; Park, Yong Seek; Park, Cheung-Seog

    2010-10-01

    Repetitive skin contact with a chemical hapten like 2,4-dinitrofluorobenzene (DNFB) evokes an atopic dermatitis (AD)-like dermatitis reaction in NC/Nga mice maintained under specific pathogen-free (SPF) conditions. The histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), modulates the expression of several genes by inhibiting the activity of HDACs. Furthermore, TSA has been reported to suppress inflammatory cytokine expression and to induce T cell-suppression by increasing regulatory T cell (T reg cell) numbers. In addition, histone deacetylase inhibitors (HDACi) are currently undergoing clinical trials for the treatment of inflammatory disorders. In the present study, we examined whether treatment with TSA suppresses AD-like skin lesions in NC/Nga mice treated with DNFB under SPF conditions. Intraperitoneal (i.p.) administration of TSA to DNFB-treated NC/Nga mice was found to inhibit ear thickness increases and the skin lesions induced by DNFB. Furthermore, IL-4 production by CD4+ T cells from the lymph nodes of DNFB-treated NC/Nga mice was significantly inhibited by TSA, although levels of IFN-γ were not. Flow cytometric analysis of lymphocytes showed an increase in CD4+ CD25+ T cell proportions in mice given TSA-i.p. These findings suggest that TSA suppresses the development of AD-like dermatitis in DNFB-treated NC/Nga mice by reducing IL-4 production and increasing the T reg cell population. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor.

    PubMed

    Vannini, Alessandro; Volpari, Cinzia; Filocamo, Gessica; Casavola, Elena Caroli; Brunetti, Mirko; Renzoni, Debora; Chakravarty, Prasun; Paolini, Chantal; De Francesco, Raffaele; Gallinari, Paola; Steinkühler, Christian; Di Marco, Stefania

    2004-10-19

    Histone deacetylases (HDACs) are a family of enzymes involved in the regulation of gene expression, DNA repair, and stress response. These processes often are altered in tumors, and HDAC inhibitors have had pronounced antitumor activity with promising results in clinical trials. Here, we report the crystal structure of human HDAC8 in complex with a hydroxamic acid inhibitor. Such a structure of a eukaryotic zinc-dependent HDAC has not be described previously. Similar to bacterial HDAC-like protein, HDAC8 folds in a single alpha/beta domain. The inhibitor and the zinc-binding sites are similar in both proteins. However, significant differences are observed in the length and structure of the loops surrounding the active site, including the presence of two potassium ions in HDAC8 structure, one of which interacts with key catalytic residues. CD data suggest a direct role of potassium in the fold stabilization of HDAC8. Knockdown of HDAC8 by RNA interference inhibits growth of human lung, colon, and cervical cancer cell lines, highlighting the importance of this HDAC subtype for tumor cell proliferation. Our findings open the way for the design and development of selective inhibitors of HDAC8 as possible antitumor agents.

  10. Targeting histone deacetylase inhibitors for anti-malarial therapy.

    PubMed

    Andrews, Katherine T; Tran, Thanh N; Wheatley, Nicole C; Fairlie, David P

    2009-01-01

    It is now clear that histone acetylation plays key roles in regulating gene transcription in both eukaryotes and prokaryotes, the acetylated form inducing gene expression while deacetylation silences genes. Recent studies have identified roles for histone acetyltransferases (HATs) and/or histone deacetylases (HDACs) in a number of parasites including Entamoeba histolytica, Toxoplasma gondii, Schistosoma mansoni, Cryptosporidium sp., Leishmania donovani, Neospora caninum, and Plasmodium falciparum. Here we survey fairly limited efforts to date in profiling antimalarial activities of HDAC inhibitors, showing that such compounds are potent inhibitors of the growth of P. falciparum in vitro and in vivo. Most of the compounds evaluated so far have borne a zinc-binding hydroxamate group that tends to be metabolized in vivo, and thus new zinc-binding groups need to be incorporated into second generation inhibitors in order to mask the catalytic zinc in the active site of HDACs. Also the development of compounds that are selective for parasitic HDACs over mammalian HDACs is still in relative infancy and it will take some time to derive antiparasitic HDAC inhibitor compounds with minimal toxicity for the host and acceptable pharmacokinetic and pharmacodynamic profiles for human treatment. Nevertheless, results to date suggest that HDAC inhibitor development represents a promising new approach to the potential treatment of parasitic infections, including those induced by malaria protozoa, and may offer new therapeutic targets within increasingly drug-resistant malarial parasites.

  11. Histone Deacetylase Inhibitors: An Attractive Therapeutic Strategy Against Breast Cancer.

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Valsami, Serena; Kontos, Michael; Spartalis, Eleftherios; Kalampokas, Theodoros; Kalampokas, Emmanouil; Athanasiou, Antonios; Moris, Demetrios; Daskalopoulou, Afrodite; Davakis, Spyridon; Tsourouflis, Gerasimos; Kontzoglou, Konstantinos; Perrea, Despina; Nikiteas, Nikolaos; Dimitroulis, Dimitrios

    2017-01-01

    With a lifetime risk estimated to be one in eight in industrialized countries, breast cancer is the most frequent type of cancer among women worldwide. Patients are often treated with anti-estrogens, but it is common that some tumors develop resistance to therapy. The causation and progression of cancer is controlled by epigenetic processes, so there is an ongoing interest in research into mechanisms, genes and signaling pathways associating carcinogenesis with epigenetic modulation of gene expression. Given the fact that histone deacetylases (HDACs) have a great impact on chromatin remodeling and epigenetics, their inhibitors have become a very interesting field of research. This review focused on the use of HDAC inhibitors as anticancer treatment and explains the mechanisms of therapeutic effects on breast cancer. We anticipate further clinical benefits of this new class of drugs, both as single agents and in combination therapy. Molecules such as suberoylanilide hydroxamic acid, trichostatin A, suberoylbis-hydroxamic acid, panobinostat, entinostat, valproic acid, sodium butyrate, SK7041, FTY720, N-(2-hydroxyphenyl)-2-propylpentanamide, Scriptaid, YCW1, santacruzamate A and ferrocenyl have shown promising antitumor effects against breast cancer. HDAC inhibitors consists an attractive field for targeted therapy against breast cancer. Future therapeutic strategies will include combination of HDAC inhibitors and chemotherapy or other inhibitors, in order to target multiple oncogenic signaling pathways. More trials are needed. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Structural and Functional Analysis of the Human HDAC4 Catalytic Domain Reveals a Regulatory Structural Zinc-binding Domain*S⃞

    PubMed Central

    Bottomley, Matthew J.; Lo Surdo, Paola; Di Giovine, Paolo; Cirillo, Agostino; Scarpelli, Rita; Ferrigno, Federica; Jones, Philip; Neddermann, Petra; De Francesco, Raffaele; Steinkühler, Christian; Gallinari, Paola; Carfí, Andrea

    2008-01-01

    Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR·HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions. PMID:18614528

  13. Histone deacetylase inhibitor valproic acid affects plasmacytoid dendritic cells phenotype and function.

    PubMed

    Arbez, Jessy; Lamarthée, Baptiste; Gaugler, Béatrice; Saas, Philippe

    2014-08-01

    Plasmacytoid dendritic cells (PDC) represent a rare subset of dendritic cells specialized in the production of type I IFN in response to microbial pathogens. Recent data suggested that histone deacetylase (HDAC) inhibitors possess potent immunomodulatory properties both in vitro and in vivo. In this study, we assayed the ability of the HDAC inhibitor, valproic acid (VPA), to influence the phenotype and functional properties of human PDC isolated from peripheral blood. We showed that VPA inhibited the production of IFN-α and the proinflammatory cytokines TNF-α and IL-6 by CpG-activated PDC. VPA also affected the phenotype of PDC by reducing the expression of costimulatory molecules induced by CpG activation. Moreover, VPA reduced the capacity of CpG-stimulated PDC to promote CD4(+) T cell proliferation and IFN-γ production, while enhancing the proportion of IL-10 positive T cells. These results suggest that HDAC inhibition by VPA alters essential human PDC functions, highlighting the need for monitoring immune functions in cancer patients receiving HDAC inhibitors, but also making these drugs attractive therapies in inflammatory, and autoimmune diseases implicating PDC. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Structural Basis of the Antiproliferative Activity of Largazole a Depsipeptide Inhibitor of the Histone Deacetylases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K Cole; D Dowling; M Boone

    2011-12-31

    Largazole is a macrocyclic depsipeptide originally isolated from the marine cyanobacterium Symploca sp., which is indigenous to the warm, blue-green waters of Key Largo, Florida (whence largazole derives its name). Largazole contains an unusual thiazoline-thiazole ring system that rigidifies its macrocyclic skeleton, and it also contains a lipophilic thioester side chain. Hydrolysis of the thioester in vivo yields largazole thiol, which exhibits remarkable antiproliferative effects and is believed to be the most potent inhibitor of the metal-dependent histone deacetylases (HDACs). Here, the 2.14 {angstrom}-resolution crystal structure of the HDAC8-largazole thiol complex is the first of an HDAC complexed with amore » macrocyclic inhibitor and reveals that ideal thiolate-zinc coordination geometry is the key chemical feature responsible for its exceptional affinity and biological activity. Notably, the core structure of largazole is conserved in romidepsin, a depsipeptide natural product formulated as the drug Istodax recently approved for cancer chemotherapy. Accordingly, the structure of the HDAC8-largazole thiol complex is the first to illustrate the mode of action of a new class of therapeutically important HDAC inhibitors.« less

  15. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain.

    PubMed

    Bottomley, Matthew J; Lo Surdo, Paola; Di Giovine, Paolo; Cirillo, Agostino; Scarpelli, Rita; Ferrigno, Federica; Jones, Philip; Neddermann, Petra; De Francesco, Raffaele; Steinkühler, Christian; Gallinari, Paola; Carfí, Andrea

    2008-09-26

    Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR.HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions.

  16. Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts

    PubMed Central

    Schuetze, Katherine B.; Stratton, Matthew S.; Blakeslee, Weston W.; Wempe, Michael F.; Wagner, Florence F.; Holson, Edward B.; Kuo, Yin-Ming; Andrews, Andrew J.; Gilbert, Tonya M.; Hooker, Jacob M.

    2017-01-01

    Inhibitors of zinc-dependent histone deacetylases (HDACs) profoundly affect cellular function by altering gene expression via changes in nucleosomal histone tail acetylation. Historically, investigators have employed pan-HDAC inhibitors, such as the hydroxamate trichostatin A (TSA), which simultaneously targets members of each of the three zinc-dependent HDAC classes (classes I, II, and IV). More recently, class- and isoform-selective HDAC inhibitors have been developed, providing invaluable chemical biology probes for dissecting the roles of distinct HDACs in the control of various physiologic and pathophysiological processes. For example, the benzamide class I HDAC-selective inhibitor, MGCD0103 [N-(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide], was shown to block cardiac fibrosis, a process involving excess extracellular matrix deposition, which often results in heart dysfunction. Here, we compare the mechanisms of action of structurally distinct HDAC inhibitors in isolated primary cardiac fibroblasts, which are the major extracellular matrix–producing cells of the heart. TSA, MGCD0103, and the cyclic peptide class I HDAC inhibitor, apicidin, exhibited a common ability to enhance histone acetylation, and all potently blocked cardiac fibroblast cell cycle progression. In contrast, MGCD0103, but not TSA or apicidin, paradoxically increased expression of a subset of fibrosis-associated genes. Using the cellular thermal shift assay, we provide evidence that the divergent effects of HDAC inhibitors on cardiac fibroblast gene expression relate to differential engagement of HDAC1- and HDAC2-containing complexes. These findings illustrate the importance of employing multiple compounds when pharmacologically assessing HDAC function in a cellular context and during HDAC inhibitor drug development. PMID:28174211

  17. Novel histone deacetylase inhibitor N25 exerts anti-tumor effects and induces autophagy in human glioma cells by inhibiting HDAC3

    PubMed Central

    Sun, Xin-Yuan; Qu, Yue; Ni, An-Ran; Wang, Gui-Xiang; Huang, Wei-Bin; Chen, Zhong-Ping; Lv, Zhu-Fen; Zhang, Song; Lindsay, Holly; Zhao, Sibo; Li, Xiao-Nan; Feng, Bing-Hong

    2017-01-01

    N25, a novel histone deacetylase inhibitor, was created through structural modification of suberoylanilide hydroxamic acid. To evaluate the anti-tumor activity of N25 and clarify its molecular mechanism of inducing autophagy in glioma cells, we investigated its in vitro anti-proliferative effect and in vivo anticancer effect. Moreover, we detected whether N25 induces autophagy in glioma cells by transmission electron microscope and analyzed the protein expression level of HDAC3, Tip60, LC3 in glioma samples by western blot. We additionally analyzed the protein expression level of HDAC3, Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment with N25 in glioma cells. Our results showed that the anti-tumor activity of N25 in glioma cells is slightly stronger than SAHA both in vitro and in vivo. We found that N25 induced autophagy, and HDAC3 was significantly elevated and Tip60 and LC3 significantly decreased in glioma samples compared with normal brain tissues. Nevertheless, N25 inhibited HDAC3 and up-regulated the protein expression of Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment of glioma cells with N25. In conclusion, these data suggest that N25 has striking anti-tumor activity in part due to inhibition of HDAC3. Additionally, N25 may induce autophagy through inhibiting HDAC3. PMID:29088860

  18. Histone deacetylase inhibitors suppress ABO transcription in vitro, leading to reduced expression of the antigens.

    PubMed

    Takahashi, Yoichiro; Kubo, Rieko; Sano, Rie; Nakajima, Tamiko; Takahashi, Keiko; Kobayashi, Momoko; Handa, Hiroshi; Tsukada, Junichi; Kominato, Yoshihiko

    2017-03-01

    The ABO system is of fundamental importance in the fields of transfusion and transplantation and has apparent associations with certain diseases, including cardiovascular disorders. ABO expression is reduced in the late phase of erythroid differentiation in vitro, whereas histone deacetylase inhibitors (HDACIs) are known to promote cell differentiation. Therefore, whether or not HDACIs could reduce the amount of ABO transcripts and A or B antigens is an intriguing issue. Quantitative polymerase chain reactions were carried out for the ABO transcripts in erythroid-lineage K562 and epithelial-lineage KATOIII cells after incubation with HDACIs, such as sodium butyrate, panobinostat, vorinostat, and sodium valproate. Flow cytometric analysis was conducted to evaluate the amounts of antigen in KATOIII cells treated with panobinostat. Quantitative chromatin immunoprecipitation (ChIP) assays and luciferase assays were performed on both cell types to examine the mechanisms of ABO suppression. HDACIs reduced the ABO transcripts in both K562 and KATOIII cells, with panobinostat exerting the most significant effect. Flow cytometric analysis demonstrated a decrease in B-antigen expression on panobinostat-treated KATOIII cells. ChIP assays indicated that panobinostat altered the modification of histones in the transcriptional regulatory regions of ABO, and luciferase assays demonstrated reduced activity of these elements. ABO transcription seems to be regulated by an epigenetic mechanism. Panobinostat appears to suppress ABO transcription, reducing the amount of antigens on the surface of cultured cells. © 2016 AABB.

  19. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex.

    PubMed

    Carmen, A A; Rundlett, S E; Grunstein, M

    1996-06-28

    Histone acetylation is maintained through the action of histone acetyltransferases and deacetylases and has been correlated with increased gene activity. To investigate the functional role of these enzymes in the regulation of transcription, we have purified from Saccharomyces cerevisiae two histone deacetylase activities, HDA and HDB, with molecular masses of approximately 350 and 600 kDa, respectively. In vitro, the HDA activity deacetylates all four core histones, has a preference for histone H3, and is strongly inhibited by trichostatin A (a specific inhibitor of histone deacetylases). HDB is considerably less sensitive to trichostatin A. We report the extensive purification of the HDA activity and the identification of peptides (p75, p73, p72, and p71) whose presence correlates with deacetylase activity on native polyacrylamide gels. An antibody to p75 immunoprecipitates peptides with molecular masses similar to those in the 350-kDa complex. Additionally, antibodies to p75 and p71 specifically precipitate histone deacetylase activity and co-immunoprecipitate each other. Gene disruptions of p75 (HDA1) or p71 (HDA3) cause the loss of the 350-kDa (but not the 600-kDa) activity from our chromatography profiles. These data argue strongly that HDA1 and HDA3 are subunits of the HDA complex, which is structurally distinct from the second, HDB complex.

  20. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML

    PubMed Central

    Novotny-Diermayr, V; Hart, S; Goh, K C; Cheong, A; Ong, L-C; Hentze, H; Pasha, M K; Jayaraman, R; Ethirajulu, K; Wood, J M

    2012-01-01

    Acute myeloid leukemia (AML) is currently treated with aggressive chemotherapy that is not well tolerated in many elderly patients, hence the unmet medical need for effective therapies with less toxicity and better tolerability. Inhibitors of FMS-like tyrosine kinase 3 (FLT3), JAK2 and histone deacetylase inhibitors (HDACi) have been tested in clinical studies, but showed only moderate single-agent activity. High efficacy of the HDACi pracinostat treating AML and synergy with the JAK2/FLT3 inhibitor pacritinib is demonstrated. Both compounds inhibit JAK-signal transducer and activator of transcription (STAT) signaling in AML cells with JAK2V617F mutations, but also diminish FLT3 signaling, particularly in FLT3-ITD (internal tandem duplication) cell lines. In vitro, this combination led to decreased cell proliferation and increased apoptosis. The synergy translated in vivo in two different AML models, the SET-2 megakaryoblastic AML mouse model carrying a JAK2V617F mutation, and the MOLM-13 model of FLT3-ITD-driven AML. Pracinostat and pacritinib in combination showed synergy on tumor growth, reduction of metastases and synergistically decreased JAK2 or FLT signaling, depending on the cellular context. In addition, several plasma cytokines/growth factors/chemokines triggered by the tumor growth were normalized, providing a rationale for combination therapy with an HDACi and a JAK2/FLT3 inhibitor for the treatment of AML patients, particularly those with FLT3 or JAK2 mutations. PMID:22829971

  1. Synthesis, biological evaluation, and molecular docking of Ugi products containing a zinc-chelating moiety as novel inhibitors of histone deacetylases.

    PubMed

    Grolla, Ambra A; Podestà, Valeria; Chini, Maria Giovanna; Di Micco, Simone; Vallario, Antonella; Genazzani, Armando A; Canonico, Pier Luigi; Bifulco, Giuseppe; Tron, Gian Cesare; Sorba, Giovanni; Pirali, Tracey

    2009-05-14

    HDAC inhibitors show great promise for the treatment of cancer. As part of a broader effort to explore the SAR of HDAC inhibitors, synthesis, biological evaluation, and molecular docking of novel Ugi products containing a zinc-chelating moiety are presented. One compound shows improved inhibitory potencies compared to SAHA, demonstrating that hindered lipophilic residues grafted on the peptide scaffold of the alpha-aminoacylamides can be favorable in the interaction with the enzyme.

  2. Histone Deacetylase Inhibitors Stimulate Dedifferentiation of Human Breast Cancer Cells through WNT/β-catenin Signaling

    PubMed Central

    Debeb, Bisrat G; Lacerda, Lara; Xu, Wei; Larson, Richard; Solley, Travis; Atkinson, Rachel; Sulman, Erik P.; Ueno, Naoto T; Krishnamurthy, Savitri; Reuben, James M; Buchholz, Thomas A; Woodward, Wendy A

    2015-01-01

    Recent studies have shown that differentiated cancer cells can de-differentiate into cancer stem cells (CSCs) although to date no studies have reported whether this transition is influenced by systemic anti-cancer agents. Valproic acid (VA) is a histone deacetylase (HDAC) inhibitor that promotes self renewal and expansion of hematopietic stem cells and facilitates the generation of induced pluripotent stem cells from somatic cells and is currently being investigated in breast cancer clinical trials. We hypothesized that HDAC inhibitors reprogram differentiated cancer cells towards the more resistant stem cell-like state. Two highly aggressive breast cancer cell lines, SUM159 and MDA-231, were FACS-sorted based on ALDH activity and subsequently ALDH-negative and ALDH-positive cells were treated with one of two known HDAC inhibitors, VA or SAHA (suberoylanilide hydroxamic acid). In addition, primary tumor cells from patients with metastatic breast cancer were evaluated for ALDH activity following treatment with HDAC inhibitors. We demonstrate that single cell sorted ALDH- negative cells spontaneously generated ALDH-positive cells in vitro. Treatment of ALDH-negative cells with HDAC inhibitors promoted the expansion of ALDH-positive cells and increased mammosphere forming efficiency. Most importantly, it significantly increased the tumor-initiating capacity of ALDH- negative cells in limiting dilution outgrowth assays. Moreover, while HDAC inhibitors upregulated β-catenin expression and significantly increased WNT reporter activity, a TCF4 dominant negative construct abolished HDAC-inhibitor induced expansion of CSCs. These results demonstrate that HDAC inhibitors promote the expansion of breast CSCs through dedifferentiation and have important clinical implications for the use of HDAC inhibitors in the treatment of cancer. PMID:22961641

  3. Metabolism as a key to histone deacetylase inhibition

    PubMed Central

    Rajendran, Praveen; Williams, David E.; Ho, Emily; Dashwood, Roderick H.

    2012-01-01

    There is growing interest in the epigenetic mechanisms that are dysregulated in cancer and other human pathologies. Under this broad umbrella, modulators of histone deacetylase (HDAC) activity have gained interest as both cancer chemopreventive and therapeutic agents. Of the first generation, FDA-approved HDAC inhibitors to have progressed to clinical trials, vorinostat represents a “direct acting” compound with structural features suitable for docking into the HDAC pocket, whereas romidepsin can be considered a prodrug that undergoes reductive metabolism to generate the active intermediate (a zinc-binding thiol). It is now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that affect HDAC activity. Examples are cited of short-chain fatty acids, seleno-α-keto acids, small molecule thiols, mercapturic acid metabolites, indoles, and polyphenols. The findings are discussed in the context of putative endogenous HDAC inhibitors generated by intermediary metabolism (e.g. pyruvate), the yin–yang of HDAC inhibition versus HDAC activation, and the screening assays that might be most appropriate for discovery of novel HDAC inhibitors in the future. PMID:21599534

  4. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma

    PubMed Central

    Mazur, Pawel K; Herner, Alexander; Mello, Stephano S; Wirth, Matthias; Hausmann, Simone; Sánchez-Rivera, Francisco J; Lofgren, Shane M; Kuschma, Timo; Hahn, Stephan A; Vangala, Deepak; Trajkovic-Arsic, Marija; Gupta, Aayush; Heid, Irina; Noël, Peter B; Braren, Rickmer; Erkan, Mert; Kleeff, Jörg; Sipos, Bence; Sayles, Leanne C; Heikenwalder, Mathias; Heßmann, Elisabeth; Ellenrieder, Volker; Esposito, Irene; Jacks, Tyler; Bradner, James E; Khatri, Purvesh; Sweet-Cordero, E Alejandro; Attardi, Laura D; Schmid, Roland M; Schneider, Guenter; Sage, Julien; Siveke, Jens T

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers and shows resistance to any therapeutic strategy used. Here we tested small-molecule inhibitors targeting chromatin regulators as possible therapeutic agents in PDAC. We show that JQ1, an inhibitor of the bromodomain and extraterminal (BET) family of proteins, suppresses PDAC development in mice by inhibiting both MYC activity and inflammatory signals. The histone deacetylase (HDAC) inhibitor SAHA synergizes with JQ1 to augment cell death and more potently suppress advanced PDAC. Finally, using a CRISPR-Cas9–based method for gene editing directly in the mouse adult pancreas, we show that de-repression of p57 (also known as KIP2 or CDKN1C) upon combined BET and HDAC inhibition is required for the induction of combination therapy–induced cell death in PDAC. SAHA is approved for human use, and molecules similar to JQ1 are being tested in clinical trials. Thus, these studies identify a promising epigenetic-based therapeutic strategy that may be rapidly implemented in fatal human tumors. PMID:26390243

  5. Inhibition of autophagy significantly enhances combination therapy with sorafenib and HDAC inhibitors for human hepatoma cells.

    PubMed

    Yuan, Hang; Li, Ai-Jun; Ma, Sen-Lin; Cui, Long-Jiu; Wu, Bin; Yin, Lei; Wu, Meng-Chao

    2014-05-07

    To clarify whether histone deacetylase inhibitors histone deacetylase inhibitors (HDACIs) can sensitize hepatocellular carcinoma (HCC) cells to sorafenib treatment. Bax, Bcl-2, ATG5-ATG12, p21, and p27 protein levels in Hep3B, HepG2, and PLC/PRF/5 cells were examined by Western blot. CCK8 and a fluorometric caspase-3 assay were used to examine cellular viability and apoptosis levels. The effect of Beclin-1 on sensitization of HCC cells to sorafenib was examined by transfecting Beclin-1 siRNA into Hep3B, HepG2, and PLC/PRF/5 cells. Autophagy inhibition enhances the inhibitory effects of vorinostat and sorafenib alone or in combination on HCC cell growth. Vorinostat and sorafenib synergistically induced apoptosis and cell cycle alterations. Western blot data indicated that HDACIs and Beclin-1 knockdown increased the p53 acetylation level. The knockdown of Beclin-1 enhanced the synergistic effect of the combination of vorinostat with sorafenib. HDACIs can sensitize HCC cells to sorafenib treatment by regulating the acetylation level of Beclin-1.

  6. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    PubMed Central

    Bakri, Ridla; Parikesit, Arli Aditya; Satriyanto, Cipta Prio; Kerami, Djati; Tambunan, Usman Sumo Friend

    2014-01-01

    Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔG binding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations. PMID:25214833

  7. Design, Multicomponent Synthesis, and Anticancer Activity of a Focused Histone Deacetylase (HDAC) Inhibitor Library with Peptoid-Based Cap Groups.

    PubMed

    Krieger, Viktoria; Hamacher, Alexandra; Gertzen, Christoph G W; Senger, Johanna; Zwinderman, Martijn R H; Marek, Martin; Romier, Christophe; Dekker, Frank J; Kurz, Thomas; Jung, Manfred; Gohlke, Holger; Kassack, Matthias U; Hansen, Finn K

    2017-07-13

    In this work, we report the multicomponent synthesis of a focused histone deacetylase (HDAC) inhibitor library with peptoid-based cap groups and different zinc-binding groups. All synthesized compounds were tested in a cellular HDAC inhibition assay and an MTT assay for cytotoxicity. On the basis of their noteworthy activity in the cellular HDAC assays, four compounds were further screened for their inhibitory activity against recombinant HDAC1-3, HDAC6, and HDAC8. All four compounds showed potent inhibition of HDAC1-3 as well as significant inhibition of HDAC6 with IC 50 values in the submicromolar concentration range. Compound 4j, the most potent HDAC inhibitor in the cellular HDAC assay, revealed remarkable chemosensitizing properties and enhanced the cisplatin sensitivity of the cisplatin-resistant head-neck cancer cell line Cal27CisR by almost 7-fold. Furthermore, 4j almost completely reversed the cisplatin resistance in Cal27CisR. This effect is related to a synergistic induction of apoptosis as seen in the combination of 4j with cisplatin.

  8. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors.

    PubMed

    Tashima, Toshihiko; Murata, Hiroaki; Kodama, Hidehiko

    2014-07-15

    Histone deacetylase (HDAC) inhibitions are known to elicit anticancer effects. We designed and synthesized several HDAC inhibitors. Among these compounds, compound 40 exhibited a more than 10-fold stronger inhibitory activity compared with that of suberoylanilide hydroxamic acid (SAHA) against each human HDAC isozyme in vitro (IC50 values of 40: HDAC1, 0.0038μM; HDAC2, 0.0082μM; HDAC3, 0.015μM; HDAC8, 0.0060μM; HDAC4, 0.058μM; HDAC9, 0.0052μM; HDAC6, 0.058μM). The dose of the administered HDAC inhibitors that contain hydroxamic acid as the zinc-binding group may be reduced by 40. Because the carbostyril subunit is a time-tested structural component of drugs and biologically active compounds, 40 most likely exhibits good absorption, distribution, metabolism, excretion, and toxicity (ADMET). Thus, compound 40 is expected to be a promising therapeutic agent or chemical tool for the investigation of life process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Curcumin enhances the anticancer effects of trichostatin a in breast cancer cells.

    PubMed

    Yan, Guang; Graham, Kimmer; Lanza-Jacoby, Susan

    2013-05-01

    Breast cancer patients with HER-2 positive or estrogen receptor negative tumors have a poor prognosis because these tumors are aggressive and respond poorly to standard therapies. Histone deacetylase (HDAC) inhibitors have been shown to decreased cell survival, which suggests that HDAC inhibitors may be developed for preventing and treating breast cancer. Curcumin has anti-inflammatory and proapoptotic effects in cancer cells. We determined whether the HDAC inhibitor, Tricostatin A (TSA) in combination with curcumin would produce greater antiproliferative and apoptotic effects than either agent alone. Increasing the concentration of curcumin from 10 to 20 µM enhanced the growth inhibitory effects of the combination in SkBr3 and 435eB breast cancer cells, which was accompanied by decreased viability along with decreased phosphorylation of ERK and Akt. The decreased cell viability observed in SkBr3 cells when curcumin was combined with TSA led to a G0/G1 cell cycle arrest and increased p21 and p27, and decreased Cyclin D1 protein expression. The combination induced cleavage of caspase 3 and poly(ADP-ribose) polymerase-1, suggesting that cell death occurred by apoptosis. There were no changes in protein expression of Bcl2, Bax, or Bcl-xL and decreased expression of p53. The combination increased protein expression of phosphorylated JNK and phosphorylated p38. Pharmacological inhibition of JNK, but not p38, attenuated the decreased viability induced by the curcumin and TSA combination. We conclude that p53 independent apoptosis induced by combining curcumin and TSA involves JNK activation. These findings provide a rationale for exploring the potential benefits of the combination of curcumin with TSA for treatment of breast cancer. Copyright © 2012 Wiley Periodicals, Inc.

  10. Isoxazole moiety in the linker region of HDAC inhibitors adjacent to the Zn-chelating group: effects on HDAC biology and antiproliferative activity.

    PubMed

    Tapadar, Subhasish; He, Rong; Luchini, Doris N; Billadeau, Daniel D; Kozikowski, Alan P

    2009-06-01

    A series of hydroxamic acid based histone deacetylase inhibitors 6-15, containing an isoxazole moiety adjacent to the Zn-chelating hydroxamic acid, is reported herein. Some of these compounds showed nanomolar activity in the HDAC isoform inhibitory assay and exhibited micro molar inhibitory activity against five pancreatic cancer cell lines.

  11. Radio-Sensitizing Effects of Novel Histone De-Acetylase Inhibitors in Prostate Cancer

    DTIC Science & Technology

    2005-09-01

    14-16 A ppendices ....................................................................................... 16-17 I INTRODUCTION...Jr., He, L. Z., Richon, V., Calleja, E., and Pandolfi, P. P. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an

  12. Chemoproteomic Discovery of AADACL1 as a Novel Regulator of Human Platelet Activation

    PubMed Central

    Holly, Stephen P.; Chang, Jae Won; Li, Weiwei; Niessen, Sherry; Phillips, Ryan M.; Piatt, Raymond; Black, Justin L.; Smith, Matthew C.; Boulaftali, Yacine; Weyrich, Andrew S.; Bergmeier, Wolfgang; Cravatt, Benjamin F.; Parise, Leslie V.

    2013-01-01

    A comprehensive knowledge of the platelet proteome is necessary for understanding thrombosis and for conceiving novel antiplatelet therapies. To discover new biochemical pathways in human platelets, we screened platelets with a carbamate library designed to interrogate the serine hydrolase subproteome and used competitive activity-based protein profiling to map the targets of active carbamates. We identified an inhibitor that targets arylacetamide deacetylase-like 1 (AADACL1), a lipid deacetylase originally identified in invasive cancers. Using this compound, along with highly selective second-generation inhibitors of AADACL1, metabolomics and RNA interference, we show that AADACL1 regulates platelet aggregation, thrombus growth, RAP1 and PKC activation, lipid metabolism and fibrinogen binding to platelets and megakaryocytes. These data provide the first evidence that AADACL1 regulates platelet and megakaryocyte activation and highlight the value of this chemoproteomic strategy for target discovery in platelets. PMID:23993462

  13. Histone Deacetylase Inhibitors through Click Chemistry

    PubMed Central

    Shen, Jie; Woodward, Robert; Kedenburg, James Patrick; Liu, Xianwei; Chen, Min; Fang, Lanyan; Sun, Duxin; Wang, Peng George

    2012-01-01

    Histone deacetylase inhibitors (HDACi) are a relatively new class of chemotherapy agents. Herein, we report a click-chemistry based approach to the synthesis of HDACi. Fourteen agents were synthesized from the combination of two alkyne and seven azido precursors. The inhibition of HDAC1 and HDAC8 was then determined by in vitro enzymatic assays, after which the cytotoxicity was evaluated in the NCI human cancer cell line screen. A lead compound 5g (NSC746457) was discovered that inhibited HDAC1 at an IC50 value of 104 ± 30 nM and proved quite potent in the cancer cell line screen with GI50 values ranging from 3.92 μM to 10 nM. Thus, this click HDACi design has provided a new chemical scaffold that has not only revealed a lead compound, but one which is easily amendable to further structural modifications given the modular nature of this approach. PMID:19007204

  14. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors.

    PubMed

    Shinji, Chihiro; Maeda, Satoko; Imai, Keisuke; Yoshida, Minoru; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2006-11-15

    A series of hydroxamic acid derivatives bearing a cyclic amide/imide group as a linker and/or cap structure, prepared during our structural development studies based on thalidomide, showed class-selective potent histone deacetylase (HDAC)-inhibitory activity. Structure-activity relationship studies indicated that the steric character of the substituent introduced at the cyclic amide/imide nitrogen atom, the presence of the amide/imide carbonyl group, the hydroxamic acid structure, the shape of the linking group, and the distance between the zinc-binding hydroxamic acid group and the cap structure are all important for HDAC-inhibitory activity and class selectivity. A representative compound (30w) showed potent p21 promoter activity, comparable with that of trichostatin A (TSA), and its cytostatic activity against cells of the human prostate cell line LNCaP was more potent than that of the well-known HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA).

  15. Kinetic method for the large-scale analysis of the binding mechanism of histone deacetylase inhibitors.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-09-01

    Performing kinetic studies on protein ligand interactions provides important information on complex formation and dissociation. Beside kinetic parameters such as association rates and residence times, kinetic experiments also reveal insights into reaction mechanisms. Exploiting intrinsic tryptophan fluorescence a parallelized high-throughput Förster resonance energy transfer (FRET)-based reporter displacement assay with very low protein consumption was developed to enable the large-scale kinetic characterization of the binding of ligands to recombinant human histone deacetylases (HDACs) and a bacterial histone deacetylase-like amidohydrolase (HDAH) from Bordetella/Alcaligenes. For the binding of trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), and two other SAHA derivatives to HDAH, two different modes of action, simple one-step binding and a two-step mechanism comprising initial binding and induced fit, were verified. In contrast to HDAH, all compounds bound to human HDAC1, HDAC6, and HDAC8 through a two-step mechanism. A quantitative view on the inhibitor-HDAC systems revealed two types of interaction, fast binding and slow dissociation. We provide arguments for the thesis that the relationship between quantitative kinetic and mechanistic information and chemical structures of compounds will serve as a valuable tool for drug optimization. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Role of the histone deacetylase complex in acute promyelocytic leukaemia.

    PubMed

    Lin, R J; Nagy, L; Inoue, S; Shao, W; Miller, W H; Evans, R M

    1998-02-19

    Non-liganded retinoic acid receptors (RARs) repress transcription of target genes by recruiting the histone deacetylase complex through a class of silencing mediators termed SMRT or N-CoR. Mutant forms of RARalpha, created by chromosomal translocations with either the PML (for promyelocytic leukaemia) or the PLZF (for promyelocytic leukaemia zinc finger) locus, are oncogenic and result in human acute promyelocytic leukaemia (APL). PML-RARalpha APL patients achieve complete remission following treatments with pharmacological doses of retinoic acids (RA); in contrast, PLZF-RARalpha patients respond very poorly, if at all. Here we report that the association of these two chimaeric receptors with the histone deacetylase (HDAC) complex helps to determine both the development of APL and the ability of patients to respond to retinoids. Consistent with these observations, inhibitors of histone deacetylase dramatically potentiate retinoid-induced differentiation of RA-sensitive, and restore retinoid responses of RA-resistant, APL cell lines. Our findings suggest that oncogenic RARs mediate leukaemogenesis through aberrant chromatin acetylation, and that pharmacological manipulation of nuclear receptor co-factors may be a useful approach in the treatment of human disease.

  17. A homogeneous cellular histone deacetylase assay suitable for compound profiling and robotic screening.

    PubMed

    Ciossek, Thomas; Julius, Heiko; Wieland, Heike; Maier, Thomas; Beckers, Thomas

    2008-01-01

    Most cellular assays that quantify the efficacy of histone deacetylase (HDAC) inhibitors measure hyperacetylation of core histone proteins H3 and H4. Here we describe a new approach, directly measuring cellular HDAC enzymatic activity using the substrate Boc-K(Ac)-7-amino-4-methylcoumarin (AMC). After penetration into HeLa cervical carcinoma or K562 chronic myeloid leukemia cells, the deacetylated product Boc-K-AMC is formed which, after cell lysis, is cleaved by trypsin, finally releasing the fluorophor AMC. The cellular potency of suberoylanilide hydroxamic acid, LBH589, trichostatin A, and MS275 as well-known HDAC inhibitors was determined using this assay. IC(50) values derived from concentration-effect curves correlated well with EC(50) values derived from a cellomics array scan histone H3 hyperacetylation assay. The cellular HDAC activity assay was adapted to a homogeneous format, fully compatible with robotic screening. Concentration-effect curves generated on a Tecan Genesis Freedom workstation were highly reproducible with a signal-to-noise ratio of 5.7 and a Z' factor of 0.88, indicating a very robust assay. Finally, a HDAC-inhibitor focused library was profiled in a medium-throughput screening campaign. Inhibition of cellular HDAC activity correlated well with cytotoxicity and histone H3 hyperacetylation in HeLa cells and with inhibition of human recombinant HDAC1 in a biochemical assay. Thus, by using Boc-K(Ac)-AMC as a cell-permeable HDAC substrate, the activity of various protein lysine-specific deacetylases including HDAC1-containing complexes is measurable in intact cells in a simple and homogeneous manner.

  18. Activation of the stress proteome as a mechanism for small molecule therapeutics.

    PubMed

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D

    2012-10-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities.

  19. Activation of the stress proteome as a mechanism for small molecule therapeutics

    PubMed Central

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C.; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X.; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D.

    2012-01-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities. PMID:22752410

  20. Identification of potential isoform-selective histone deacetylase inhibitors for cancer therapy: a combined approach of structure-based virtual screening, ADMET prediction and molecular dynamics simulation assay.

    PubMed

    Uba, Abdullahi Ibrahim; Yelekçi, Kemal

    2017-10-23

    Histone deacetylases (HDACs) have gained increased attention as targets for anticancer drug design and development. HDAC inhibitors have proven to be effective for reversing the malignant phenotype in HDAC-dependent cancer cases. However, lack of selectivity of the many HDAC inhibitors in clinical use and trials contributes to toxicities to healthy cells. It is believed that, the continued identification of isoform-selective inhibitors will eliminate these undesirable adverse effects - a task that remains a major challenge to HDAC inhibitor designs. Here, in an attempt to identify isoform-selective inhibitors, a large compound library containing 2,703,000 compounds retrieved from Otava database was screened against class I HDACs by exhaustive approach of structure-based virtual screening using rDOCK and Autodock Vina. A total of 41 compounds were found to show high-isoform selectivity and were further redocked into their respective targets using Autodock4. Thirty-six compounds showed remarkable isoform selectivity and passed drug-likeness and absorption, distribution, metabolism, elimination and toxicity prediction tests using ADMET Predictor™ and admetSAR. Furthermore, to study the stability of ligand binding modes, 10 ns-molecular dynamics (MD) simulations of the free HDAC isoforms and their complexes with respective best-ranked ligands were performed using nanoscale MD software. The inhibitors remained bound to their respective targets over time of the simulation and the overall potential energy, root-mean-square deviation, root-mean-square fluctuation profiles suggested that the detected compounds may be potential isoform-selective HDAC inhibitors or serve as promising scaffolds for further optimization towards the design of selective inhibitors for cancer therapy.

  1. Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts.

    PubMed

    Schuetze, Katherine B; Stratton, Matthew S; Blakeslee, Weston W; Wempe, Michael F; Wagner, Florence F; Holson, Edward B; Kuo, Yin-Ming; Andrews, Andrew J; Gilbert, Tonya M; Hooker, Jacob M; McKinsey, Timothy A

    2017-04-01

    Inhibitors of zinc-dependent histone deacetylases (HDACs) profoundly affect cellular function by altering gene expression via changes in nucleosomal histone tail acetylation. Historically, investigators have employed pan-HDAC inhibitors, such as the hydroxamate trichostatin A (TSA), which simultaneously targets members of each of the three zinc-dependent HDAC classes (classes I, II, and IV). More recently, class- and isoform-selective HDAC inhibitors have been developed, providing invaluable chemical biology probes for dissecting the roles of distinct HDACs in the control of various physiologic and pathophysiological processes. For example, the benzamide class I HDAC-selective inhibitor, MGCD0103 [ N -(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide], was shown to block cardiac fibrosis, a process involving excess extracellular matrix deposition, which often results in heart dysfunction. Here, we compare the mechanisms of action of structurally distinct HDAC inhibitors in isolated primary cardiac fibroblasts, which are the major extracellular matrix-producing cells of the heart. TSA, MGCD0103, and the cyclic peptide class I HDAC inhibitor, apicidin, exhibited a common ability to enhance histone acetylation, and all potently blocked cardiac fibroblast cell cycle progression. In contrast, MGCD0103, but not TSA or apicidin, paradoxically increased expression of a subset of fibrosis-associated genes. Using the cellular thermal shift assay, we provide evidence that the divergent effects of HDAC inhibitors on cardiac fibroblast gene expression relate to differential engagement of HDAC1- and HDAC2-containing complexes. These findings illustrate the importance of employing multiple compounds when pharmacologically assessing HDAC function in a cellular context and during HDAC inhibitor drug development. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Histone deacetylases and atherosclerosis.

    PubMed

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang

    2015-06-01

    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis. Copyright © 2015. Published by Elsevier Ireland Ltd.

  3. Dynamic Structure-Based Pharmacophore Model Development: A New and Effective Addition in the Histone Deacetylase 8 (HDAC8) Inhibitor Discovery

    PubMed Central

    Thangapandian, Sundarapandian; John, Shalini; Lee, Yuno; Kim, Songmi; Lee, Keun Woo

    2011-01-01

    Histone deacetylase 8 (HDAC8) is an enzyme involved in deacetylating the amino groups of terminal lysine residues, thereby repressing the transcription of various genes including tumor suppressor gene. The over expression of HDAC8 was observed in many cancers and thus inhibition of this enzyme has emerged as an efficient cancer therapeutic strategy. In an effort to facilitate the future discovery of HDAC8 inhibitors, we developed two pharmacophore models containing six and five pharmacophoric features, respectively, using the representative structures from two molecular dynamic (MD) simulations performed in Gromacs 4.0.5 package. Various analyses of trajectories obtained from MD simulations have displayed the changes upon inhibitor binding. Thus utilization of the dynamically-responded protein structures in pharmacophore development has the added advantage of considering the conformational flexibility of protein. The MD trajectories were clustered based on single-linkage method and representative structures were taken to be used in the pharmacophore model development. Active site complimenting structure-based pharmacophore models were developed using Discovery Studio 2.5 program and validated using a dataset of known HDAC8 inhibitors. Virtual screening of chemical database coupled with drug-like filter has identified drug-like hit compounds that match the pharmacophore models. Molecular docking of these hits reduced the false positives and identified two potential compounds to be used in future HDAC8 inhibitor design. PMID:22272142

  4. Bicyclic-Capped Histone Deacetylase 6 Inhibitors with Improved Activity in a Model of Axonal Charcot-Marie-Tooth Disease.

    PubMed

    Shen, Sida; Benoy, Veronick; Bergman, Joel A; Kalin, Jay H; Frojuello, Mariana; Vistoli, Giulio; Haeck, Wanda; Van Den Bosch, Ludo; Kozikowski, Alan P

    2016-02-17

    Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A.

  5. Identification of a better Homo sapiens Class II HDAC inhibitor through binding energy calculations and descriptor analysis

    PubMed Central

    2010-01-01

    Human papillomaviruses (HPVs) are the most common on sexually transmitted viruses in the world. HPVs are responsible for a large spectrum of deseases, both benign and malignant. The certain types of HPV are involved in the development of cervical cancer. In attemps to find additional drugs in the treatment of cervical cancer, inhibitors of the histone deacetylases (HDAC) have received much attention due to their low cytotoxic profiles and the E6/E7 oncogene function of human papilomavirus can be completely by passed by HDAC inhibition. The histone deacetylase inhibitors can induce growth arrest, differentiation and apoptosis of cancer cells. HDAC class I and class II are considered the main targets for cancer. Therefore, the six HDACs class II was modeled and about two inhibitors (SAHA and TSA) were docked using AutoDock4.2, to each of the inhibitor in order to identify the pharmacological properties. Based on the results of docking, SAHA and TSA were able to bind with zinc ion in HDACs models as a drug target. SAHA was satisfied almost all the properties i.e., binding affinity, the Drug-Likeness value and Drug Score with 70% oral bioavailability and the carbonyl group of these compound fits well into the active site of the target where the zinc is present. Hence, SAHA could be developed as potential inhibitors of class II HDACs and valuable cervical cancer drug candidate. PMID:21106123

  6. Panobinostat induces apoptosis via production of reactive oxygen species and synergizes with topoisomerase inhibitors in cervical cancer cells.

    PubMed

    Wasim, Lubna; Chopra, Madhu

    2016-12-01

    Cervical cancer is the fourth major cause of cancer-related deaths in women worldwide and is the most common cancer in developing countries. Therefore, a search for novel treatment modalities is warranted. The present study is designed to investigate the effect of pan histone deacetylase inhibitor, 'panobinostat', on cervical cancer cells alone and in combination with topoisomerase inhibitors. We assessed the effect of panobinostat on two cervical cancer cell lines, HeLa and SiHa, for cell viability, apoptosis, oxidative stress and mitochondrial function using various assays. The results indicate that panobinostat reduces the viability of cervical cancer cells in a dose- and time-dependent manner; it arrests HeLa cells in G0/G1 and SiHa cells in G2/M phase of the cell cycle. Panobinostat induced apoptosis through an increase in the ROS production and the disruption of mitochondrial membrane potential. Concomitantly the expression of anti-apoptotic gene Bcl-xL was reduced, while levels of CDK inhibitor p21 and caspase-9 were increased. Panobinostat increased the acetylation of histone H3 indicating HDAC inhibition. In addition, panobinostat also showed synergistic effect with topoisomerase inhibitors mediated by increased activation of caspase-3/7 activity compared to that in cells treated with panobinostat alone. These results suggest a combination therapy using inhibitors of histone deacetylase and topoisomerase together could hold the promise for an effective targeted therapeutic strategy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Identification of a better Homo sapiens Class II HDAC inhibitor through binding energy calculations and descriptor analysis.

    PubMed

    Tambunan, Usman Sumo Friend; Wulandari, Evi Kristin

    2010-10-15

    Human papillomaviruses (HPVs) are the most common on sexually transmitted viruses in the world. HPVs are responsible for a large spectrum of deseases, both benign and malignant. The certain types of HPV are involved in the development of cervical cancer. In attemps to find additional drugs in the treatment of cervical cancer, inhibitors of the histone deacetylases (HDAC) have received much attention due to their low cytotoxic profiles and the E6/E7 oncogene function of human papilomavirus can be completely by passed by HDAC inhibition. The histone deacetylase inhibitors can induce growth arrest, differentiation and apoptosis of cancer cells. HDAC class I and class II are considered the main targets for cancer. Therefore, the six HDACs class II was modeled and about two inhibitors (SAHA and TSA) were docked using AutoDock4.2, to each of the inhibitor in order to identify the pharmacological properties. Based on the results of docking, SAHA and TSA were able to bind with zinc ion in HDACs models as a drug target. SAHA was satisfied almost all the properties i.e., binding affinity, the Drug-Likeness value and Drug Score with 70% oral bioavailability and the carbonyl group of these compound fits well into the active site of the target where the zinc is present. Hence, SAHA could be developed as potential inhibitors of class II HDACs and valuable cervical cancer drug candidate.

  8. Alkyl piperidine and piperazine hydroxamic acids as HDAC inhibitors.

    PubMed

    Rossi, Cristina; Porcelloni, Marina; D'Andrea, Piero; Fincham, Christopher I; Ettorre, Alessandro; Mauro, Sandro; Squarcia, Antonella; Bigioni, Mario; Parlani, Massimo; Nardelli, Federica; Binaschi, Monica; Maggi, Carlo A; Fattori, Daniela

    2011-04-15

    We report here the strategy used in our research group to find a new class of histone deacetylase (HDAC) inhibitors. A series of N-substituted 4-alkylpiperazine and 4-alkylpiperidine hydroxamic acids, corresponding to the basic structure of HDAC inhibitors (zinc binding moiety-linker-capping group) has been designed, prepared, and tested for HDAC inhibition. Linker length and aromatic capping group connection were systematically varied to find the optimal geometric parameters. A new series of submicromolar inhibitors was thus identified, which showed antiproliferative activity on HCT-116 colon carcinoma cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex

    PubMed Central

    Zhang, Qinghong; Wang, Su-Yan; Fleuriel, Capucine; Leprince, Dominique; Rocheleau, Jonathan V.; Piston, David W.; Goodman, Richard H.

    2007-01-01

    The Sir2 histone deacetylases are important for gene regulation, metabolism, and longevity. A unique feature of these enzymes is their utilization of NAD+ as a cosubstrate, which has led to the suggestion that Sir2 activity reflects the cellular energy state. We show that SIRT1, a mammalian Sir2 homologue, is also controlled at the transcriptional level through a mechanism that is specific for this isoform. Treatment with the glycolytic blocker 2-deoxyglucose (2-DG) decreases association of the redox sensor CtBP with HIC1, an inhibitor of SIRT1 transcription. We propose that the reduction in transcriptional repression mediated by HIC1, due to the decrease of CtBP binding, increases SIRT1 expression. This mechanism allows the specific regulation of SIRT1 in response to nutrient deprivation. PMID:17213307

  10. Systematic chemical and molecular profiling of MLL-rearranged infant acute lymphoblastic leukemia reveals efficacy of romidepsin

    PubMed Central

    Cruickshank, M N; Ford, J; Cheung, L C; Heng, J; Singh, S; Wells, J; Failes, T W; Arndt, G M; Smithers, N; Prinjha, R K; Anderson, D; Carter, K W; Gout, A M; Lassmann, T; O'Reilly, J; Cole, C H; Kotecha, R S; Kees, U R

    2017-01-01

    To address the poor prognosis of mixed lineage leukemia (MLL)-rearranged infant acute lymphoblastic leukemia (iALL), we generated a panel of cell lines from primary patient samples and investigated cytotoxic responses to contemporary and novel Food and Drug Administration-approved chemotherapeutics. To characterize representation of primary disease within cell lines, molecular features were compared using RNA-sequencing and cytogenetics. High-throughput screening revealed variable efficacy of currently used drugs, however identified consistent efficacy of three novel drug classes: proteasome inhibitors, histone deacetylase inhibitors and cyclin-dependent kinase inhibitors. Gene expression of drug targets was highly reproducible comparing iALL cell lines to matched primary specimens. Histone deacetylase inhibitors, including romidepsin (ROM), enhanced the activity of a key component of iALL therapy, cytarabine (ARAC) in vitro and combined administration of ROM and ARAC to xenografted mice further reduced leukemia burden. Molecular studies showed that ROM reduces expression of cytidine deaminase, an enzyme involved in ARAC deactivation, and enhances the DNA damage–response to ARAC. In conclusion, we present a valuable resource for drug discovery, including the first systematic analysis of transcriptome reproducibility in vitro, and have identified ROM as a promising therapeutic for MLL-rearranged iALL. PMID:27443263

  11. Histone deacetylase inhibition increases levels of choline kinase α and phosphocholine facilitating noninvasive imaging in human cancers.

    PubMed

    Beloueche-Babari, Mounia; Arunan, Vaitha; Troy, Helen; te Poele, Robert H; te Fong, Anne-Christine Wong; Jackson, L Elizabeth; Payne, Geoffrey S; Griffiths, John R; Judson, Ian R; Workman, Paul; Leach, Martin O; Chung, Yuen-Li

    2012-02-15

    Histone deacetylase (HDAC) inhibitors are currently approved for cutaneous T-cell lymphoma and are in mid-late stage trials for other cancers. The HDAC inhibitors LAQ824 and SAHA increase phosphocholine (PC) levels in human colon cancer cells and tumor xenografts as observed by magnetic resonance spectroscopy (MRS). In this study, we show that belinostat, an HDAC inhibitor with an alternative chemical scaffold, also caused a rise in cellular PC content that was detectable by (1)H and (31)P MRS in prostate and colon carcinoma cells. In addition, (1)H MRS showed an increase in branched chain amino acid and alanine concentrations. (13)C-choline labeling indicated that the rise in PC resulted from increased de novo synthesis and correlated with an induction of choline kinase α expression. Furthermore, metabolic labeling experiments with (13)C-glucose showed that differential glucose routing favored alanine formation at the expense of lactate production. Additional analysis revealed increases in the choline/water and phosphomonoester (including PC)/total phosphate ratios in vivo. Together, our findings provide mechanistic insights into the impact of HDAC inhibition on cancer cell metabolism and highlight PC as a candidate noninvasive imaging biomarker for monitoring the action of HDAC inhibitors.

  12. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy.

    PubMed

    Kong, Yongli; Tannous, Paul; Lu, Guangrong; Berenji, Kambeez; Rothermel, Beverly A; Olson, Eric N; Hill, Joseph A

    2006-06-06

    Recent work has demonstrated the importance of chromatin remodeling, especially histone acetylation, in the control of gene expression in the heart. In cell culture models of cardiac hypertrophy, pharmacological suppression of histone deacetylases (HDACs) can either blunt or amplify cell growth. Thus, HDAC inhibitors hold promise as potential therapeutic agents in hypertrophic heart disease. In the present investigation, we studied 2 broad-spectrum HDAC inhibitors in a physiologically relevant banding model of hypertrophy, observing dose-responsive suppression of ventricular growth that was well tolerated in terms of both clinical outcome and cardiac performance measures. In both short-term (3-week) and long-term (9-week) trials, cardiomyocyte growth was blocked by HDAC inhibition, with no evidence of cell death or apoptosis. Fibrotic change was diminished in hearts treated with HDAC inhibitors, and collagen synthesis in isolated cardiac fibroblasts was blocked. Preservation of systolic function in the setting of blunted hypertrophic growth was documented by echocardiography and by invasive pressure measurements. The hypertrophy-associated switch of adult and fetal isoforms of myosin heavy chain expression was attenuated, which likely contributed to the observed preservation of systolic function in HDAC inhibitor-treated hearts. Together, these data suggest that HDAC inhibition is a viable therapeutic strategy that holds promise in the treatment of load-induced heart disease.

  13. Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors

    PubMed Central

    Singh, Melissa M.; Manton, Christa A.; Bhat, Krishna P.; Tsai, Wen-Wei; Aldape, Kenneth; Barton, Michelle C.; Chandra, Joya

    2011-01-01

    Glioblastoma multiforme (GBM) is a particularly aggressive brain tumor and remains a clinically devastating disease. Despite innovative therapies for the treatment of GBM, there has been no significant increase in patient survival over the past decade. Enzymes that control epigenetic alterations are of considerable interest as targets for cancer therapy because of their critical roles in cellular processes that lead to oncogenesis. Several inhibitors of histone deacetylases (HDACs) have been developed and tested in GBM with moderate success. We found that treatment of GBM cells with HDAC inhibitors caused the accumulation of histone methylation, a modification removed by the lysine specific demethylase 1 (LSD1). This led us to examine the effects of simultaneously inhibiting HDACs and LSD1 as a potential combination therapy. We evaluated induction of apoptosis in GBM cell lines after combined inhibition of LSD1 and HDACs. LSD1 was inhibited by targeted short hairpin RNA or pharmacological means and inhibition of HDACs was achieved by treatment with either vorinostat or PCI-24781. Caspase-dependent apoptosis was significantly increased (>2-fold) in LSD1-knockdown GBM cells treated with HDAC inhibitors. Moreover, pharmacologically inhibiting LSD1 with the monoamine oxidase inhibitor tranylcypromine, in combination with HDAC inhibitors, led to synergistic apoptotic cell death in GBM cells; this did not occur in normal human astrocytes. Taken together, these results indicate that LSD1 and HDACs cooperate to regulate key pathways of cell death in GBM cell lines but not in normal counterparts, and they validate the combined use of LSD1 and HDAC inhibitors as a therapeutic approach for GBM. PMID:21653597

  14. Entropy as a Driver of Selectivity for Inhibitor Binding to Histone Deacetylase 6.

    PubMed

    Porter, Nicholas J; Wagner, Florence F; Christianson, David W

    2018-05-18

    Among the metal-dependent histone deacetylases, the class IIb isozyme HDAC6 is remarkable because of its role in the regulation of microtubule dynamics in the cytosol. Selective inhibition of HDAC6 results in microtubule hyperacetylation, leading to cell cycle arrest and apoptosis, which is a validated strategy for cancer chemotherapy and the treatment of other disorders. HDAC6 inhibitors generally consist of a Zn 2+ -binding group such as a hydroxamate, a linker, and a capping group; the capping group is a critical determinant of isozyme selectivity. Surprisingly, however, even "capless" inhibitors exhibit appreciable HDAC6 selectivity. To probe the chemical basis for this selectivity, we now report high-resolution crystal structures of HDAC6 complexed with capless cycloalkyl hydroxamate inhibitors 1-4. Each inhibitor hydroxamate group coordinates to the catalytic Zn 2+ ion with canonical bidentate geometry. Additionally, the olefin moieties of compounds 2 and 4 bind in an aromatic crevice between the side chains of F583 and F643. Reasoning that similar binding could be achieved in the representative class I isozyme HDAC8, we employed isothermal titration calorimetry to study the thermodynamics of inhibitor binding. These measurements indicate that the entropy of inhibitor binding is generally positive for binding to HDAC6 and negative for binding to HDAC8, resulting in ≤313-fold selectivity for binding to HDAC6 relative to HDAC8. Thus, favorable binding entropy contributes to HDAC6 selectivity. Notably, cyclohexenyl hydroxamate 2 represents a promising lead for derivatization with capping groups that may further enhance its impressive 313-fold thermodynamic selectivity for HDAC6 inhibition.

  15. Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation*

    PubMed Central

    Dudakovic, Amel; Evans, Jared M.; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E.; van Wijnen, Andre J.; Westendorf, Jennifer J.

    2013-01-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor β, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  16. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showedmore » that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.« less

  17. Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1.

    PubMed

    Campbell, Grant R; Bruckman, Rachel S; Chu, Yen-Lin; Spector, Stephen A

    2015-02-20

    Histone deacetylase inhibitors (HDACi) are being evaluated in a "shock-and-kill" therapeutic approach to reverse human immunodeficiency virus type-1 (HIV) latency from CD4(+) T cells. Using this approach, HDACi have induced HIV RNA synthesis in latently infected cells from some patients. The hope is that the increase in viral production will lead to killing of the infected cell either by the virus itself or by the patient's immune system, a "sterilizing cure." Although administered within the context of combination antiretroviral therapy, the infection of bystander cells remains a concern. In this study, we investigated the effect of HDACi (belinostat, givinostat, panobinostat, romidepsin, and vorinostat) on the productive infection of macrophages. We demonstrate that the HDACi tested do not alter the initial susceptibility of macrophages to HIV infection. However, we demonstrate that HDACi decrease HIV release from macrophages in a dose-dependent manner (belinostat < givinostat < vorinostat < panobinostat < romidepsin) via degradation of intracellular HIV through the canonical autophagy pathway. This mechanism involves unc-51-like autophagy-activating kinase 1 (ULK1) and the inhibition of the mammalian target of rapamycin and requires the formation of autophagosomes and their maturation into autolysosomes in the absence of increased cell death. These data provide further evidence in support of a role for autophagy in the control of HIV infection and suggest that careful consideration of off-target effects will be essential if HDACi are to be a component of a multipronged approach to eliminate latently infected cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Increased uptake of [123I]-meta-iodobenzylguanidine and [18F]-dopamine in mouse pheochromocytoma cells and tumors after treatment with the histone deacetylase inhibitors romidepsin and trichostatin A

    PubMed Central

    Martiniova, Lucia; Perera, Shiromi M.; Brouwers, Frederieke M.; Alesci, Salvatore; Abu-Asab, Mones; Marvelle, Amanda F.; Kiesewetter, Dale O.; Thomasson, David; Morris, John C.; Kvetnansky, Richard; Tischler, Arthur S.; Reynolds, James C; Fojo, A. Tito; Pacak, Karel

    2014-01-01

    Purpose [131I]-meta-iodobenzylguanidine ([131I]-MIBG) is the most commonly employed treatment for metastatic pheochromocytoma and paraganglioma; however, its success is limited. Its efficacy depends on the [131I]-MIBG concentration reached within the tumor through its uptake via the norepinephrine transporter and retention in neurosecretory granules. Purpose is to enhance [123I]-MIBG uptake in cells and liver pheochromocytoma tumors. Experimental Design We report the in vitro effects of two histone deacetylase (HDAC) inhibitors, romidepsin and trichostatin A, on increased uptake of [3H]-norepinephrine and [123I]-MIBG in mouse pheochromocytoma (MPC) cells, and the effect of romidepsin on [18F]-fluorodopamine and [123I]-MIBG uptake in a mouse model of metastatic pheochromocytoma. The effects of both inhibitors on norepinephrine transporter activity were assessed in MPC cells by [123I]-MIBG uptake studies with and without the transporter blocking agent desipramine and the vesicular blocking agent reserpine. Results Both HDAC inhibitors increased [3H]-norepinephrine, [123I]-MIBG, and [18F]-fluorodopamine uptake through the norepinephrine transporter in MPC cells. In vivo, inhibitor treatment resulted in increased uptake of [18F]-fluorodopamine and in pheochromocytoma liver metastases as measured by maximal standardized uptake values on PET imaging (p < 0.001). Analysis of biodistribution after inhibitor treatment confirmed the PET results in that uptake of [123I]-MIBG was significantly increased in liver metastases (p < 0.05). Therefore, HDAC inhibitor treatment increased radioisotope uptake in MPC cells in vitro and in liver metastases in vivo, through increased norepinephrine transporter activity. Conclusion These results suggest that HDAC inhibitors could enhance the therapeutic efficacy of [131I]-MIBG treatment in patients with malignant pheochromocytoma. PMID:21098082

  19. Radio-sensitizing Effects of Novel Histone De-Acetylase Inhibitors in Prostate Cancer

    DTIC Science & Technology

    2007-03-01

    were investigated in PC-3, LN -3 and DU-145 cells. (S)-HDAC-42 and SAHA could sensitize PC-3 and DU-145 cells to radiation. Aim 2: Effects of VAD- 18 ...combined effects of HDAC inhibitors and ionizing radiation on prostate cancer cell lines (PC-3, LN -3, LnCAP, DU-145 and 22Rv1). Aim 2. To understand the...cancer cell lines. Aim 3. To determine the combined effects of HDAC inhibitors plus ionizing radiation on the regression of (i) prostate cancer xenografts

  20. Inhibition of the NAD-Dependent Protein Deacetylase SIRT2 Induces Granulocytic Differentiation in Human Leukemia Cells

    PubMed Central

    Sunami, Yoshitaka; Araki, Marito; Hironaka, Yumi; Morishita, Soji; Kobayashi, Masaki; Liew, Ei Leen; Edahiro, Yoko; Tsutsui, Miyuki; Ohsaka, Akimichi; Komatsu, Norio

    2013-01-01

    Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL) cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation. PMID:23460888

  1. Improvement of the boron neutron capture therapy (BNCT) by the previous administration of the histone deacetylase inhibitor sodium butyrate for the treatment of thyroid carcinoma.

    PubMed

    Perona, M; Rodríguez, C; Carpano, M; Thomasz, L; Nievas, S; Olivera, M; Thorp, S; Curotto, P; Pozzi, E; Kahl, S; Pisarev, M; Juvenal, G; Dagrosa, A

    2013-08-01

    We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated thyroid carcinoma (PDTC). Histone deacetylase inhibitors (HDACI) like sodium butyrate (NaB) cause hyperacetylation of histone proteins and show capacity to increase the gamma irradiation effect. The purpose of these studies was to investigate the use of the NaB as a radiosensitizer of the BNCT for PDTC. Follicular thyroid carcinoma cells (WRO) and rat thyroid epithelial cells (FRTL-5) were incubated with 1 mM NaB and then treated with boronophenylalanine ¹⁰BPA (10 μg ¹⁰B ml⁻¹) + neutrons, or with 2, 4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ¹⁰BOPP (10 μg ¹⁰B ml⁻¹) + neutrons, or with a neutron beam alone. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux = (1.0 ± 0.1) × 10¹⁰ n cm⁻² s⁻¹). Cell survival decreased as a function of the physical absorbed dose in both cell lines. Moreover, the addition of NaB decreased cell survival (p < 0.05) in WRO cells incubated with both boron compounds. NaB increased the percentage of necrotic and apoptotic cells in both BNCT groups (p < 0.05). An accumulation of cells in G2/M phase at 24 h was observed for all the irradiated groups and the addition of NaB increased this percentage. Biodistribution studies of BPA (350 mg kg⁻¹ body weight) 24 h after NaB injection were performed. The in vivo studies showed that NaB treatment increases the amount of boron in the tumor at 2-h post-BPA injection (p < 0.01). We conclude that NaB could be used as a radiosensitizer for the treatment of thyroid carcinoma by BNCT.

  2. Acetylation of Histone Deacetylase 1 Regulates NuRD Corepressor Complex Activity*

    PubMed Central

    Yang, Tao; Jian, Wei; Luo, Yi; Fu, Xueqi; Noguchi, Constance; Bungert, Jörg; Huang, Suming; Qiu, Yi

    2012-01-01

    Histone deacetylases (HDACs) play important roles in regulating cell proliferation and differentiation. The HDAC1-containing NuRD complex is generally considered as a corepressor complex and is required for GATA-1-mediated repression. However, recent studies also show that the NuRD complex is involved in GATA-1-mediated gene activation. We tested whether the GATA-1-associated NuRD complex loses its deacetylase activity and commits the GATA-1 complex to become an activator during erythropoiesis. We found that GATA-1-associated deacetylase activity gradually decreased upon induction of erythroid differentiation. GATA-1-associated HDAC1 is increasingly acetylated after differentiation. It has been demonstrated earlier that acetylated HDAC1 has no deacetylase activity. Indeed, overexpression of an HDAC1 mutant, which mimics acetylated HDAC1, promotes GATA-1-mediated transcription and erythroid differentiation. Furthermore, during erythroid differentiation, acetylated HDAC1 recruitment is increased at GATA-1-activated genes, whereas it is significantly decreased at GATA-1-repressed genes. Interestingly, deacetylase activity is not required for Mi2 remodeling activity, suggesting that remodeling activity may be required for both activation and repression. Thus, our data suggest that NuRD can function as a coactivator or repressor and that acetylated HDAC1 converts the NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation. PMID:23014989

  3. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity.

    PubMed

    Ieda, Naoya; Yamada, Sota; Kawaguchi, Mitsuyasu; Miyata, Naoki; Nakagawa, Hidehiko

    2016-06-15

    Histone deacetylases (HDACs) are involved in epigenetic control of the expression of various genes by catalyzing deacetylation of ε-acetylated lysine residues. Here, we report the design, synthesis and evaluation of the (7-diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid (AC-SAHA) as a caged HDAC inhibitor, which releases the known pan-HDAC inhibitor SAHA upon cleavage of the photolabile (7-diethylaminocoumarin-4-yl)methyl protecting group in response to photoirradiation. A key advantage of AC-SAHA is that the caged derivative itself shows essentially no HDAC-inhibitory activity. Upon photoirradiation, AC-SAHA decomposes to SAHA and a 7-diethylaminocoumarin derivative, together with some minor products. We confirmed that AC-SAHA inhibits HDAC in response to photoirradiation in vitro by means of chemiluminescence assay. AC-SAHA also showed photoinduced inhibition of proliferation of human colon cancer cell line HCT116, as determined by MTT assay. Thus, AC-SAHA should be a useful tool for spatiotemporally controlled inhibition of HDAC activity, as well as a candidate chemotherapeutic reagent for human colon cancer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Cancer therapies in HIV cure research.

    PubMed

    Rasmussen, Thomas A; Anderson, Jenny L; Wightman, Fiona; Lewin, Sharon R

    2017-01-01

    This article provides an overview of anticancer therapies in various stages of clinical development as potential interventions to target HIV persistence. Epigenetic drugs developed for cancer have been investigated in vitro, ex vivo and in clinical trials as interventions aimed at reversing HIV latency and depleting the amount of virus that persists on antiretroviral therapy. Treatment with histone deacetylase inhibitors induced HIV expression in patients on antiretroviral therapy but did not reduce the frequency of infected cells. Other interventions that may accelerate the decay of latently infected cells, in the presence or absence of latency-reversing therapy, are now being explored. These include apoptosis-promoting agents, nonhistone deacetylase inhibitor compounds to reverse HIV latency and immunotherapy interventions to enhance antiviral immunity such as immune checkpoint inhibitors and Toll-like receptor agonists. A curative strategy in HIV will likely need to both reduce the amount of virus that persists on antiretroviral therapy and improve anti-HIV immune surveillance. Although we continue to explore advances in the field of oncology including cancer immunotherapy, there are major differences in the risk-benefit assessment between HIV-infected individuals and patients with malignancies. Drug development specifically targeting HIV persistence will be the key to developing effective interventions with an appropriate safety profile.

  5. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors

    PubMed Central

    Hawk, Joshua D.; Bookout, Angie L.; Poplawski, Shane G.; Bridi, Morgan; Rao, Allison J.; Sulewski, Michael E.; Kroener, Brian T.; Manglesdorf, David J.; Abel, Ted

    2012-01-01

    The formation of a long-lasting memory requires a transcription-dependent consolidation period that converts a short-term memory into a long-term memory. Nuclear receptors compose a class of transcription factors that regulate diverse biological processes, and several nuclear receptors have been implicated in memory formation. Here, we examined the potential contribution of nuclear receptors to memory consolidation by measuring the expression of all 49 murine nuclear receptors after learning. We identified 13 nuclear receptors with increased expression after learning, including all 3 members of the Nr4a subfamily. These CREB-regulated Nr4a genes encode ligand-independent “orphan” nuclear receptors. We found that blocking NR4A activity in memory-supporting brain regions impaired long-term memory but did not impact short-term memory in mice. Further, expression of Nr4a genes increased following the memory-enhancing effects of histone deacetylase (HDAC) inhibitors. Blocking NR4A signaling interfered with the ability of HDAC inhibitors to enhance memory. These results demonstrate that the Nr4a gene family contributes to memory formation and is a promising target for improving cognitive function. PMID:22996661

  6. Pharmacophore modeling and virtual screening studies to design some potential histone deacetylase inhibitors as new leads.

    PubMed

    Vadivelan, S; Sinha, B N; Rambabu, G; Boppana, Kiran; Jagarlapudi, Sarma A R P

    2008-02-01

    Histone deacetylase is one of the important targets in the treatment of solid tumors and hematological cancers. A total of 20 well-defined inhibitors were used to generate Pharmacophore models using and HypoGen module of Catalyst. These 20 molecules broadly represent 3 different chemotypes. The best HypoGen model consists of four-pharmacophore features--one hydrogen bond acceptor, one hydrophobic aliphatic and two ring aromatic centers. This model was validated against 378 known HDAC inhibitors with a correlation of 0.897 as well as enrichment factor of 2.68 against a maximum value of 3. This model was further used to retrieve molecules from NCI database with 238,819 molecules. A total of 4638 molecules from a pool of 238,819 molecules were identified as hits while 297 molecules were indicated as highly active. Also, a Similarity analysis has been carried out for set of 4638 hits with respect to most active molecule of each chemotypes which validated not only the Virtual Screening potential of the model but also identified the possible new Chemotypes. This type of Similarity analysis would prove to be efficient not only for lead generation but also for lead optimization.

  7. Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity.

    PubMed

    Godoy, Luis D; Lucas, Julianna E; Bender, Abigail J; Romanick, Samantha S; Ferguson, Bradley S

    2017-04-01

    Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of histone deacetylases (HDACs), impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Histone deacetylase mediated silencing of AMWAP expression contributes to cisplatin nephrotoxicity

    PubMed Central

    Ranganathan, Punithavathi; Hamad, Rania; Mohamed, Riyaz; Jayakumar, Calpurnia; Muthusamy, Thangaraju; Ramesh, Ganesan

    2015-01-01

    Cisplatin-induced acute kidney injury is a serious problem in cancer patients during treatment of solid tumors. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Since histone deacetylase (HDAC) inhibition augments cisplatin anti-tumor activity, we tested whether HDAC inhibitors can prevent cisplatin-induced nephrotoxicity and determined the underlying mechanism. Cisplatin up-regulated the expression of several HDACs in the kidney. Inhibition of HDAC with clinically used trichostatin A suppressed cisplatin-induced kidney injury, inflammation and epithelial cell apoptosis. Moreover, trichostatin A upregulated the novel anti-inflammatory protein, activated microglia/macrophage WAP domain protein (AMWAP), in epithelial cells which was enhanced with cisplatin treatment. Interestingly, HDAC1 and -2 specific inhibitors are sufficient to potently up-regulate AMWAP in epithelial cells. Administration of recombinant AMWAP or its epithelial cell-specific overexpression reduced cisplatin-induced kidney dysfunction. Moreover, AMWAP treatment suppressed epithelial cell apoptosis, and siRNA-based knockdown of AMWAP expression abolished trichostatin A-mediated suppression of epithelial cell apoptosis in vitro. Thus, HDAC-mediated silencing of AMWAP may contribute to cisplatin nephrotoxicity. Hence, HDAC1 and -2 specific inhibitors or AMWAP could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:26509586

  9. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat*

    PubMed Central

    Munkacsi, Andrew B.; Hammond, Natalie; Schneider, Remy T.; Senanayake, Dinindu S.; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J.; Ory, Daniel S.; Maue, Robert A.; Chen, Fannie W.; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J.; Ginsberg, Henry N.; Ioannou, Yiannis A.; Sturley, Stephen L.

    2017-01-01

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1−/−) and missense (Npc1nmf164) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. PMID:28031458

  10. Histone deacetylase inhibitor treatment restores memory-related gene expression and learning ability in neonicotinoid-treated Apis mellifera.

    PubMed

    Hu, Y-T; Tang, C-K; Wu, C-P; Wu, P-C; Yang, E-C; Tai, C-C; Wu, Y-L

    2018-04-25

    Apis mellifera plays crucial roles in maintaining the balance of global ecosystems and stability of agricultural systems by helping pollination of flowering plants, including many crops. In recent years, this balance has been disrupted greatly by some pesticides, which results in great losses of honeybees worldwide. Previous studies have found that pesticide-caused memory loss might be one of the major reasons for colony loss. Histone deacetylase inhibitors (HDACis) are chemical compounds that inhibit the activity of histone deacetylases and are known to cause hyperacetylation of histone cores and influence gene expression. In our study, the HDACi sodium butyrate was applied to honeybees as a dietary supplement. The effect of sodium butyrate on the expression profiles of memory-related genes was analysed by quantitative reverse transcription PCR. The results revealed that this HDACi had up-regulation effects on most of the memory-related genes in bees, even in bees treated with imidacloprid. In addition, using the proboscis extension reflex to evaluate olfactory learning in bees, we found that this HDACi boosted the memory formation of bees after impairment owing to imidacloprid exposure. This study investigated the association between gene expression and memory formation from an epigenetic perspective. Additionally, we further demonstrate the possibility of enhancing bee learning using HDACis and provide initial data for future research. © 2018 The Royal Entomological Society.

  11. Comparative modeling and benchmarking data sets for human histone deacetylases and sirtuin families.

    PubMed

    Xia, Jie; Tilahun, Ermias Lemma; Kebede, Eyob Hailu; Reid, Terry-Elinor; Zhang, Liangren; Wang, Xiang Simon

    2015-02-23

    Histone deacetylases (HDACs) are an important class of drug targets for the treatment of cancers, neurodegenerative diseases, and other types of diseases. Virtual screening (VS) has become fairly effective approaches for drug discovery of novel and highly selective histone deacetylase inhibitors (HDACIs). To facilitate the process, we constructed maximal unbiased benchmarking data sets for HDACs (MUBD-HDACs) using our recently published methods that were originally developed for building unbiased benchmarking sets for ligand-based virtual screening (LBVS). The MUBD-HDACs cover all four classes including Class III (Sirtuins family) and 14 HDAC isoforms, composed of 631 inhibitors and 24609 unbiased decoys. Its ligand sets have been validated extensively as chemically diverse, while the decoy sets were shown to be property-matching with ligands and maximal unbiased in terms of "artificial enrichment" and "analogue bias". We also conducted comparative studies with DUD-E and DEKOIS 2.0 sets against HDAC2 and HDAC8 targets and demonstrate that our MUBD-HDACs are unique in that they can be applied unbiasedly to both LBVS and SBVS approaches. In addition, we defined a novel metric, i.e. NLBScore, to detect the "2D bias" and "LBVS favorable" effect within the benchmarking sets. In summary, MUBD-HDACs are the only comprehensive and maximal-unbiased benchmark data sets for HDACs (including Sirtuins) that are available so far. MUBD-HDACs are freely available at http://www.xswlab.org/ .

  12. Effect of a Histone Deacetylases Inhibitor of IL-18 and TNF-Alpha Secretion in Vitro.

    PubMed

    Dobreva, Zlatka Georgieva; Grigorov, Boncho Grigorov; Stanilova, Spaska Angelova

    2018-02-15

    Interleukin-18 (IL-18) and Tumor Necrosis Factor-alpha (TNF-α) are proinflammatory cytokines that increased the development of Th1 immune response, but have a different type of regulation of the gene expression. Whereas TNF-α has an inducible expression, IL-18 is translated as an inactive protein and required proteolytic cleavage by Casp-1 in inflammasome complexes. To investigate the effect of the histone deacetylases inhibitor Suberoylanilide Hydroxamic Acid (SAHA) on the gene expression and secretion of both cytokines, IL-18 and TNF-α, according to their contribution to the cancer development and anticancer immunity. Isolated peripheral blood mononuclear cells (PBMC) were stimulated with LPS and C3bgp with or without SAHA. Cytokine production was assessed by ELISA at 6 and 24h. IL-18 and TNF-α secretion was significantly increased at 6h and 24h in response to stimulation. TNF-α production from stimulated PBMC was downregulated by SAHA at 6 and 24h. Treatment with SAHA does not inhibit the secretion of IL-18 significantly either at 6 or 24h of stimulation. The inhibition of histone deacetylases by SAHA does not influence the inflammasome-dependent production of immunologically active IL-18. In contrast, the production of proinflammatory TNF-α in cultures was mediated by the activity of HDAC class I and class II enzymes.

  13. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Claudia A.; Fievez, Laurence; Neyrinck, Audrey M.

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact ofmore » sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.« less

  14. Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells.

    PubMed

    Yamanegi, Koji; Kawabe, Mutsuki; Futani, Hiroyuki; Nishiura, Hiroshi; Yamada, Naoko; Kato-Kogoe, Nahoko; Kishimoto, Hiromitsu; Yoshiya, Shinichi; Nakasho, Keiji

    2015-05-01

    The level of vascular endothelial growth inhibitor (VEGI) has been reported to be negatively associated with neovascularization in malignant tumors. The soluble form of VEGI is a potent anti-angiogenic factor due to its effects in inhibiting endothelial cell proliferation. This inhibition is mediated by death receptor 3 (DR3), which contains a death domain in its cytoplasmic tail capable of inducing apoptosis that can be subsequently blocked by decoy receptor 3 (DcR3). We investigated the effects of sodium valproate (VPA) and trichostatin A (TSA), histone deacetylase inhibitors, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Consequently, treatment with VPA and TSA increased the VEGI and DR3 expression levels without inducing DcR3 production in the OS cell lines. In contrast, the effect on the HMVE cells was limited, with no evidence of growth inhibition or an increase in the DR3 and DcR3 expression. However, VPA-induced soluble VEGI in the OS cell culture medium markedly inhibited the vascular tube formation of HMVE cells, while VEGI overexpression resulted in enhanced OS cell death. Taken together, the HDAC inhibitor has anti-angiogenesis and antitumor activities that mediate soluble VEGI/DR3-induced apoptosis via both autocrine and paracrine pathways. This study indicates that the HDAC inhibitor may be exploited as a therapeutic strategy modulating the soluble VEGI/DR3 pathway in osteosarcoma patients.

  15. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasko, Loren M.; Jakob, Clarissa G.; Edalji, Rohinton P.

    The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription1 and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind2. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer3). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products4,more » bi-substrate analogues5 and the widely used small molecule C6466,7, lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like catalytic inhibitor of p300 and CBP. We present a high resolution (1.95 Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 competes with acetyl coenzyme A (acetyl-CoA). A-485 selectively inhibited proliferation in lineage-specific tumour types, including several haematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen-sensitive and castration-resistant prostate cancer and inhibited tumour growth in a castration-resistant xenograft model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases.« less

  16. Histone Deacetylases as New Therapeutic Targets in Triple-negative Breast Cancer: Progress and Promises.

    PubMed

    Garmpis, Nikolaos; Damaskos, Christos; Garmpi, Anna; Kalampokas, Emmanouil; Kalampokas, Theodoros; Spartalis, Eleftherios; Daskalopoulou, Afrodite; Valsami, Serena; Kontos, Michael; Nonni, Afroditi; Kontzoglou, Konstantinos; Perrea, Despina; Nikiteas, Nikolaos; Dimitroulis, Dimitrios

    2017-01-01

    Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR) and HER2 gene. It comprises approximately 15-20% of breast cancers (BCs). Unfortunately, TNBC's treatment continues to be a clinical problem because of its relatively poor prognosis, its aggressiveness and the lack of targeted therapies, leaving chemotherapy as the mainstay of treatment. It is essential to find new therapies against TNBC, in order to surpass the resistance and the invasiveness of already existing therapies. Given the fact that epigenetic processes control both the initiation and progression of TNBC, there is an increasing interest in the mechanisms, molecules and signaling pathways that participate at the epigenetic modulation of genes expressed in carcinogenesis. The acetylation of histone proteins provokes the transcription of genes involved in cell growth, and the expression of histone deacetylases (HDACs) is frequently up-regulated in many malignancies. Unfortunately, in the field of BC, HDAC inhibitors have shown limited effect as single agents. Nevertheless, their use in combination with kinase inhibitors, autophagy inhibitors, ionizing radiation, or two HDAC inhibitors together is currently being evaluated. HDAC inhibitors such as suberoylanilidehydroxamic acid (SAHA), sodium butyrate, mocetinostat, panobinostat, entinostat, YCW1 and N-(2-hydroxyphenyl)-2-propylpentanamide have shown promising therapeutic outcomes against TNBC, especially when they are used in combination with other anticancer agents. More studies concerning HDAC inhibitors in breast carcinomas along with a more accurate understanding of the TNBC's pathobiology are required for the possible identification of new therapeutic strategies. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis.

    PubMed

    Mou, Haiwei; Moore, Jill; Malonia, Sunil K; Li, Yingxiang; Ozata, Deniz M; Hough, Soren; Song, Chun-Qing; Smith, Jordan L; Fischer, Andrew; Weng, Zhiping; Green, Michael R; Xue, Wen

    2017-04-04

    Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras , indicating the existence of Kras -independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras -independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras -expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.

  18. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis

    PubMed Central

    Mou, Haiwei; Moore, Jill; Malonia, Sunil K.; Li, Yingxiang; Ozata, Deniz M.; Hough, Soren; Song, Chun-Qing; Smith, Jordan L.; Fischer, Andrew; Weng, Zhiping; Xue, Wen

    2017-01-01

    Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras. Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles’ heel in tumors initiated by oncogenic Kras. PMID:28320962

  19. Aberrant apoptotic machinery confers melanoma dual resistance to BRAFV600E inhibitor and immune effector cells: immunosensitization by a histone deacetylase inhibitor

    PubMed Central

    Jazirehi, Ali R; Nazarian, Ramin; Torres-Collado, Antoni Xavier; Economou, James S

    2014-01-01

    BRAFV600E-inhibitors (BRAFi; e.g., vemurafenib) and modern immune-based therapies such as PD-1/PD-L1 and CTLA-4 checkpoints blockade and adoptive cell transfer (ACT) have significantly improved the care of melanoma patients. Having these two effective (BRAFi and immunotherapy) therapies raises the question whether there is a rational biological basis for using them in combination. We developed an in vitro model to determine whether tumor resistance mechanisms to a small molecule inhibitor of a driver oncogene, and to cytotoxic T lymphocyte (CTL)- and natural killer (NK) cell-delivered apoptotic death signals were exclusive or intersecting. We generated melanoma sublines resistant to BRAFi vemurafenib and to CTL recognizing the MART-1 melanoma antigen. Vemurafenib-resistant (VemR) sublines were cross-resistant to MART CTL and NK cells indicating that a common apoptotic pathway governing tumor response to both modalities was disrupted. Pretreatment of VemR melanomas with a histone deacetylase inhibitor (HDACi) restored sensitivity to MART CTL and NK apoptosis by skewing the apoptotic gene programs towards a proapoptotic phenotype. Our in vitro findings suggest that during the course of acquisition of BRAFi resistance, melanomas develop cross-resistance to CTL- and NK-killing. Further, aberrant apoptotic pathways, amenable by an FDA-approved chromatin remodeling drug, regulate tumor resistance mechanisms to immune effector cells. These results may provide rational molecular basis for further investigations to combine these therapies clinically. PMID:24660121

  20. Emerging approaches for histone deacetylase inhibitor drug discovery.

    PubMed

    Zwergel, Clemens; Valente, Sergio; Jacob, Claus; Mai, Antonello

    2015-06-01

    Histone deacetylases (HDACs) are key players in the mediation of gene expression for both cancerous and noncancerous malignancies. Overexpression of these enzymes has been demonstrated in numerous types of cancer with some enzyme isoforms also involved in neurological, inflammatory and viral pathologies. Hence, the development of HDAC inhibitors (HDACis) represents a promising approach for their treatment. Numerous chemical entities have been studied in the recent years and some of them have reached clinical trials. This review summarizes the recent efforts in the drug development of HDACis and their potential application as therapeutic agents in cancerous, neurological, inflammatory and viral diseases. The development of novel potent and selective HDACis is ongoing. However, increased scientific effort is needed to aid the fight of specific types of cancerous or noncancerous disease with more selective agents required to avoid side effects during therapy. An interesting therapeutic approach is the use of HDACis in combination with other epigenetic target modulators to combine their therapeutic potential for a synergistic effect.

  1. Histone deacetylase inhibitor (HDACI) PCI-24781 enhances chemotherapy induced apoptosis in multidrug resistant sarcoma cell lines

    PubMed Central

    Yang, Cao; Choy, Edwin; Hornicek, Francis J.; Wood, Kirkham B; Schwab, Joseph H; Liu, Xianzhe; Mankin, Henry; Duan, Zhenfeng

    2013-01-01

    The anti-tumor activity of histone deacetylase inhibitors (HDACI) on multi-drug resistant sarcoma cell lines has never been previously described. Four multidrug resistant sarcoma cell lines treated with HDACI PCI-24781 resulted in dose-dependent accumulation of acetylated histones, p21 and PARP cleavage products. Growth of these cell lines was inhibited by PCI-24781 at IC50 of 0.43 to 2.7. When we looked for synergy of PCI-24781 with chemotherapeutic agents, we found that PCI-24781 reverses drug resistance in all four multidrug resistant sarcoma cell lines and synergizes with chemotherapeutic agents to enhance caspase-3/7 activity. Expression of RAD51 (a marker for DNA double-strand break repair) was inhibited and the expression of GADD45α (a marker for growth arrest and DNA-damage) was induced by PCI-24781 in multidrug resistant sarcoma cell lines. In conclusion, HDACI PCI-24781 synergizes with chemotherapeutic drugs to induce apoptosis and reverses drug resistance in multidrug resistant sarcoma cell lines. PMID:21508354

  2. Epstein-Barr virus-infected Akata cells are sensitive to histone deacetylase inhibitor TSA-provoked apoptosis.

    PubMed

    Kook, Sung-Ho; Son, Young-Ok; Han, Seong-Kyu; Lee, Hyung-Soon; Kim, Beom-Tae; Jang, Yong-Suk; Choi, Ki-Choon; Lee, Keun-Soo; Kim, So-Soon; Lim, Ji-Young; Jeon, Young-Mi; Kim, Jong-Ghee; Lee, Jeong-Chae

    2005-11-30

    Epstein-Barr virus (EBV) infects more than 90 % of the world's population and has a potential oncogenic nature. A histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), has shown potential ability in cancer chemoprevention and treatment, but its effect on EBV-infected Akata cells has not been examined. This study investigated the effect of TSA on the proliferation and apoptosis of the cells. TSA inhibited cell growth and induced cytotoxicity in the EBV-infected Akata cells. TSA treatment sensitively induced apoptosis in the cell, which was demonstrated by the increased number of positively stained cells in the TUNEL assay, the migration of many cells to the sub-G0/G1 phase in flow cytometric analysis, and the ladder formation of genomic DNA. Western blot analysis showed that caspase-dependent pathways are involved in the TSA-induced apoptosis of EBV-infected Akata cells. Overall, this study shows that EBV-infected B lymphomas are quite sensitive to TSA-provoked apoptosis.

  3. Design, synthesis and anti-tumor activity study of novel histone deacetylase inhibitors containing isatin-based caps and o-phenylenediamine-based zinc binding groups.

    PubMed

    Gao, Shuai; Zang, Jie; Gao, Qianwen; Liang, Xuewu; Ding, Qinge; Li, Xiaoyang; Xu, Wenfang; Chou, C James; Zhang, Yingjie

    2017-06-15

    As a hot topic of epigenetic studies, histone deacetylases (HDACs) are related to lots of diseases, especially cancer. Further researches indicated that different HDAC isoforms played various roles in a wide range of tumor types. Herein a novel series of HDAC inhibitors with isatin-based caps and o-phenylenediamine-based zinc binding groups have been designed and synthesized through scaffold hopping strategy. Among these compounds, the most potent compound 9n exhibited similar if not better HDAC inhibition and antiproliferative activities against multiple tumor cell lines compared with the positive control entinostat (MS-275). Additionally, compared with MS-275 (IC 50 values for HDAC1, 2 and 3 were 0.163, 0.396 and 0.605µM, respectively), compound 9n with IC 50 values of 0.032, 0.256 and 0.311µM for HDAC1, 2 and 3 respectively, showed a moderate HDAC1 selectivity. Copyright © 2017. Published by Elsevier Ltd.

  4. Histone deacetylase inhibitors promote the tumoricidal effect of HAMLET.

    PubMed

    Brest, Patrick; Gustafsson, Mattias; Mossberg, Ann-Kristin; Gustafsson, Lotta; Duringer, Caroline; Hamiche, Ali; Svanborg, Catharina

    2007-12-01

    Histone deacetylase inhibitors (HDIs) and HAMLET (human alpha-lactalbumin made lethal to tumor cells) interact with histones, modify the structure of chromatin, and trigger tumor cell death. This study investigated how the combination of HDIs and HAMLET influences cell viability, histone acetylation, and DNA integrity. The pretreatment of tumor cells with HDIs was shown to enhance the lethal effect of HAMLET and the histone hyperacetylation response to HDIs increased even further after HAMLET treatment. HDIs and HAMLET were shown to target different histone domains as HAMLET bound tailless core histones, whereas HDIs modify the acetylation of the histone tail. DNA damage in response to HAMLET was increased by HDIs. The DNA repair response (p21WAFI expression) was induced by both agonists but abolished when the two agonists were combined. The results suggest that the synergy of HDIs and HAMLET is based on different but converging death pathways, both involving chromatin alterations. We speculate that HAMLET and HDIs might be combined to promote tumor cell death in vivo.

  5. Identification of novel isoform-selective inhibitors within class I histone deacetylases.

    PubMed

    Hu, Erding; Dul, Edward; Sung, Chiu-Mei; Chen, Zunxuan; Kirkpatrick, Robert; Zhang, Gui-Feng; Johanson, Kyung; Liu, Ronggang; Lago, Amparo; Hofmann, Glenn; Macarron, Ricardo; de los Frailes, Maite; Perez, Paloma; Krawiec, John; Winkler, James; Jaye, Michael

    2003-11-01

    Histone deacetylases (HDACs) represent an expanding family of protein modifying-enzymes that play important roles in cell proliferation, chromosome remodeling, and gene transcription. We have previously shown that recombinant human HDAC8 can be expressed in bacteria and retain its catalytic activity. To further explore the catalytic activity of HDACs, we expressed two additional human class I HDACs, HDAC1 and HDAC3, in baculovirus. Recombinant HDAC1 and HDAC3 fusion proteins remained soluble and catalytically active and were purified to near homogeneity. Interestingly, trichostatin (TSA) was found to be a potent inhibitor for all three HDACs (IC50 value of approximately 0.1-0.3 microM), whereas another HDAC inhibitor MS-27-275 (N-(2-aminophenyl)-4-[N-(pyridin-3-methyloxycarbonyl)-aminomethyl]benzamide) preferentially inhibited HDAC1 (IC50 value of approximately 0.3 microM) versus HDAC3 (IC50 value of approximately 8 microM) and had no inhibitory activity toward HDAC8 (IC50 value >100 microM). MS-27-275 as well as TSA increased histone H4 acetylation, induced apoptosis in the human colon cancer cell line SW620, and activated the simian virus 40 early promoter. HDAC1 protein was more abundantly expressed in SW620 cells compared with that of HDAC3 and HDAC8. Using purified recombinant HDAC proteins, we identified several novel HDAC inhibitors that preferentially inhibit HDAC1 or HDAC8. These inhibitors displayed distinct properties in inducing histone acetylation and reporter gene expression. These results suggest selective HDAC inhibitors could be identified using recombinantly expressed HDACs and that HDAC1 may be a promising therapeutic target for designing HDAC inhibitors for proliferative diseases such as cancer.

  6. A Class 1 Histone Deacetylase with Potential as an Antifungal Target.

    PubMed

    Bauer, Ingo; Varadarajan, Divyavaradhi; Pidroni, Angelo; Gross, Silke; Vergeiner, Stefan; Faber, Birgit; Hermann, Martin; Tribus, Martin; Brosch, Gerald; Graessle, Stefan

    2016-11-01

    Histone deacetylases (HDACs) remove acetyl moieties from lysine residues at histone tails and nuclear regulatory proteins and thus significantly impact chromatin remodeling and transcriptional regulation in eukaryotes. In recent years, HDACs of filamentous fungi were found to be decisive regulators of genes involved in pathogenicity and the production of important fungal metabolites such as antibiotics and toxins. Here we present proof that one of these enzymes, the class 1 type HDAC RpdA, is of vital importance for the opportunistic human pathogen Aspergillus fumigatus Recombinant expression of inactivated RpdA shows that loss of catalytic activity is responsible for the lethal phenotype of Aspergillus RpdA null mutants. Furthermore, we demonstrate that a fungus-specific C-terminal region of only a few acidic amino acids is required for both the nuclear localization and catalytic activity of the enzyme in the model organism Aspergillus nidulans Since strains with single or multiple deletions of other classical HDACs revealed no or only moderate growth deficiencies, it is highly probable that the significant delay of germination and the growth defects observed in strains growing under the HDAC inhibitor trichostatin A are caused primarily by inhibition of catalytic RpdA activity. Indeed, even at low nanomolar concentrations of the inhibitor, the catalytic activity of purified RpdA is considerably diminished. Considering these results, RpdA with its fungus-specific motif represents a promising target for novel HDAC inhibitors that, in addition to their increasing impact as anticancer drugs, might gain in importance as antifungals against life-threatening invasive infections, apart from or in combination with classical antifungal therapy regimes. This paper reports on the fungal histone deacetylase RpdA and its importance for the viability of the fungal pathogen Aspergillus fumigatus and other filamentous fungi, a finding that is without precedent in other eukaryotic pathogens. Our data clearly indicate that loss of RpdA activity, as well as depletion of the enzyme in the nucleus, results in lethality of the corresponding Aspergillus mutants. Interestingly, both catalytic activity and proper cellular localization depend on the presence of an acidic motif within the C terminus of RpdA-type enzymes of filamentous fungi that is missing from the homologous proteins of yeasts and higher eukaryotes. The pivotal role, together with the fungus-specific features, turns RpdA into a promising antifungal target of histone deacetylase inhibitors, a class of molecules that is successfully used for the treatment of certain types of cancer. Indeed, some of these inhibitors significantly delay the germination and growth of different filamentous fungi via inhibition of RpdA. Upcoming analyses of clinically approved and novel inhibitors will elucidate their therapeutic potential as new agents for the therapy of invasive fungal infections-an interesting aspect in light of the rising resistance of fungal pathogens to conventional therapies. Copyright © 2016 Bauer et al.

  7. Functional activation of the estrogen receptor-α and aromatase by the HDAC inhibitor, entinostat, sensitizes of ER-negative tumors to letrozole

    PubMed Central

    Sabnis, Gauri J; Goloubeva, Olga; Chumsri, Saranya; Nguyen, Nguyen; Sukumar, Saraswati; Brodie, Angela MH

    2011-01-01

    Approximately 25% of breast cancers do not express the estrogen receptor (ERα) and consequently do not respond to endocrine therapy. In these tumors, ERα repression is often due to epigenetic modifications such as methylation and histone deacetylation. For this reason, we investigated the ability of the histone deacetylase inhibitor entinostat (ENT) to trigger re-expression of ERα and aromatase in breast cancer cells, with the notion that this treatment would restore sensitivity to the aromatase inhibitor letrozole. ENT treatment of tumor cells increased expression of ERα and aromatase along with the enzymatic activity of aromatase, in a dose-dependent manner both in vitro and in vivo. Notably, ERα and aromatase upregulation resulted in sensitization of breast cancer cells to estrogen and letrozole. Tumor growth rate was significantly lower in tumor xenografts following treatment with ENT alone and in combination with letrozole compared to control tumors (p >0.001). ENT plus letrozole also prevented lung colonization and growth of tumor cells with a significant reduction (p>0.03) in both visible and microscopic foci. Our results demonstrate that ENT treatment can be used to restore the letrozole responsiveness of ER-negative tumors. More generally, they provide a strong rationale for immediate clinical evaluation of combinations of histone deacetylase and aromatase inhibitors to treat ER-negative and endocrine-resistant breast cancers. PMID:21245100

  8. Potentiation of apoptosis by histone deacetylase inhibitors and doxorubicin combination: cytoplasmic cathepsin B as a mediator of apoptosis in multiple myeloma.

    PubMed

    Cheriyath, V; Kuhns, M A; Kalaycio, M E; Borden, E C

    2011-03-15

    Although inhibitors of histone deacetylase inhibitors (HDACis) in combination with genotoxins potentiate apoptosis, the role of proteases other than caspases in this process remained elusive. Therefore, we examined the potentiation of apoptosis and related mechanisms of HDACis and doxorubicin combination in a panel of myeloma cell lines and in 25 primary myelomas. At IC(50) concentrations, sodium butyrate (an HDACi) or doxorubicin alone caused little apoptosis. However, their combination potentiated apoptosis and synergistically reduced the viability of myeloma cells independent of p53 and caspase 3-7 activation. Potentiated apoptosis correlated with nuclear translocation of apoptosis-inducing factor, suggesting the induction of caspase 3- and 7-independent pathways. Consistent with this, butyrate and doxorubicin combination significantly increased the activity of cytoplasmic cathepsin B. Inhibition of cathepsin B either with a small-molecule inhibitor or downregulation with a siRNA reversed butyrate- and doxorubicin-potentiated apoptosis. Finally, ex vivo, clinically relevant concentrations of butyrate or SAHA (suberoylanilide hydroxamic acid, vorinostat, an HDACi in clinical testing) in combination with doxorubicin significantly (P<0.0001) reduced the survival of primary myeloma cells. Cathepsin B has a prominent function in mediating apoptosis potentiated by HDACi and doxorubicin combinations in myeloma. Our results support a molecular model of lysosomal-mitochondrial crosstalk in HDACi- and doxorubicin-potentiated apoptosis through the activation of cathepsin B.

  9. Acetylation of histone deacetylase 1 regulates NuRD corepressor complex activity.

    PubMed

    Yang, Tao; Jian, Wei; Luo, Yi; Fu, Xueqi; Noguchi, Constance; Bungert, Jörg; Huang, Suming; Qiu, Yi

    2012-11-23

    HDAC1-containing NuRD complex is required for GATA-1-mediated repression and activation. GATA-1 associated with acetylated HDAC1-containing NuRD complex, which has no deacetylase activity, for gene activation. Acetylated HDAC1 converts NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation program. HDAC1 acetylation may function as a master regulator for the activity of HDAC1 containing complexes. Histone deacetylases (HDACs) play important roles in regulating cell proliferation and differentiation. The HDAC1-containing NuRD complex is generally considered as a corepressor complex and is required for GATA-1-mediated repression. However, recent studies also show that the NuRD complex is involved in GATA-1-mediated gene activation. We tested whether the GATA-1-associated NuRD complex loses its deacetylase activity and commits the GATA-1 complex to become an activator during erythropoiesis. We found that GATA-1-associated deacetylase activity gradually decreased upon induction of erythroid differentiation. GATA-1-associated HDAC1 is increasingly acetylated after differentiation. It has been demonstrated earlier that acetylated HDAC1 has no deacetylase activity. Indeed, overexpression of an HDAC1 mutant, which mimics acetylated HDAC1, promotes GATA-1-mediated transcription and erythroid differentiation. Furthermore, during erythroid differentiation, acetylated HDAC1 recruitment is increased at GATA-1-activated genes, whereas it is significantly decreased at GATA-1-repressed genes. Interestingly, deacetylase activity is not required for Mi2 remodeling activity, suggesting that remodeling activity may be required for both activation and repression. Thus, our data suggest that NuRD can function as a coactivator or repressor and that acetylated HDAC1 converts the NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation.

  10. Butyrate: A dietary inhibitor of histone deacetylases and an epigenetic regulator

    USDA-ARS?s Scientific Manuscript database

    The short-chain fatty acids (SCFAs) acetate, propionate and butyrate, also known as volatile fatty acids (VFA), are produced in the gastrointestinal tract by microbial fermentation. Consumption of dietary fibers has been shown to have positive metabolic health effects, such as increasing satiety, an...

  11. RNA sequences of the bovine epithelial transcriptome

    USDA-ARS?s Scientific Manuscript database

    As a signaling molecule and an inhibitor of histone deacetylases (HDACs), butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on a...

  12. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins

    PubMed Central

    Stephens, Andrew D.; Liu, Patrick Z.; Banigan, Edward J.; Almassalha, Luay M.; Backman, Vadim; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.

    2018-01-01

    Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed “blebs” are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson–Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity. PMID:29142071

  13. Multimodal HDAC Inhibitors with Improved Anticancer Activity.

    PubMed

    Schobert, Rainer; Biersack, Bernhard

    2018-01-01

    Histone deacetylases (HDACs) play a significant role in the proliferation and dissemination of cancer and represent promising epigenetic drug targets. The HDAC inhibitor vorinostat featuring a zinc-binding hydroxamate fragment was already clinically approved. However, HDAC inhibitors containing hydroxamic acids are often hampered by acquired or intrinsic drug resistance and may lead to enhanced tumor aggressiveness. In order to overcome these drawbacks of hydroxamate HDAC inhibitors, a series of multimodal derivatives of this compound class, including such with different zinc-binding groups, was recently developed and showed promising anticancer activity. This review provides an overview of the chemistry and pleiotropic anticancer modes of action of these conceptually new HDAC inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Targeting Deacetylases to Improve Outcomes after Allogeneic Bone Marrow Transplantation

    PubMed Central

    Reddy, Pavan

    2013-01-01

    Graft-versus-host disease (GVHD) is the major complication of allogeneic bone marrow transplantation (BMT). GVHD is a complex immunologically mediated biological process. Recent data have shown that histone deacetylase inhibitors (HDACis) have potent anti-inflammatory effects. We have been studying the role of acetylation through inhibition of histone deacetylases (HDACs) in modulating immunity, specifically, GVHD. HDAC inhibition regulates GVHD, at least in part, through suppression of the function of host antigen presenting cells such as dendritic cells (DCs). HDACis reduce DC responses by enhancing the expression of indoleamine 2,3 dioxygenase (IDO) in a STAT-3–dependent manner. They also alter the function of other immune cells such as T regulatory cells and NK cells, which also play important roles in the biology of GVHD. Based on these observations, a clinical trial has been launched to evaluate its impact on clinical GVHD. The clinical features, biology of GVHD, the experimental studies with HDACis, and preliminary observations from humans are discussed. PMID:23874019

  15. Role of histone deacetylases in pancreas: Implications for pathogenesis and therapy

    PubMed Central

    Klieser, Eckhard; Swierczynski, Stefan; Mayr, Christian; Schmidt, Johanna; Neureiter, Daniel; Kiesslich, Tobias; Illig, Romana

    2015-01-01

    In the last years, our knowledge of the pathogenesis in acute and chronic pancreatitis (AP/CP) as well as in pancreatic cancerogenesis has significantly diversified. Nevertheless, the medicinal therapeutic options are still limited and therapeutic success and patient outcome are poor. Epigenetic deregulation of gene expression is known to contribute to development and progression of AP and CP as well as of pancreatic cancer. Therefore, the selective inhibition of aberrantly active epigenetic regulators can be an effective option for future therapies. Histone deacetylases (HDACs) are enzymes that remove an acetyl group from histone tails, thereby causing chromatin compaction and repression of transcription. In this review we present an overview of the currently available literature addressing the role of HDACs in the pancreas and in pancreatic diseases. In pancreatic cancerogenesis, HDACs play a role in the important process of epithelial-mesenchymal-transition, ubiquitin-proteasome pathway and, hypoxia-inducible-factor-1-angiogenesis. Finally, we focus on HDACs as potential therapeutic targets by summarizing currently available histone deacetylase inhibitors. PMID:26691388

  16. Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension

    PubMed Central

    Woods, Crystal; Stearman, Robert S.; Venkataraman, Sujatha; Ferguson, Bradley S.; Swain, Kalin; Bowler, Russell P.; Geraci, Mark W.; Ihida-Stansbury, Kaori; Stenmark, Kurt R.; McKinsey, Timothy A.; Domann, Frederick E.

    2016-01-01

    Epigenetic mechanisms, including DNA methylation and histone acetylation, regulate gene expression in idiopathic pulmonary arterial hypertension (IPAH). These mechanisms can modulate expression of extracellular superoxide dismutase (SOD3 or EC-SOD), a key vascular antioxidant enzyme, and loss of vascular SOD3 worsens outcomes in animal models of pulmonary arterial hypertension. We hypothesized that SOD3 gene expression is decreased in patients with IPAH due to aberrant DNA methylation and/or histone deacetylation. We used lung tissue and pulmonary artery smooth muscle cells (PASMC) from subjects with IPAH at transplantation and from failed donors (FD). Lung SOD3 mRNA expression and activity was decreased in IPAH vs. FD. In contrast, mitochondrial SOD (Mn-SOD or SOD2) protein expression was unchanged and intracellular SOD activity was unchanged. Using bisulfite sequencing in genomic lung or PASMC DNA, we found the methylation status of the SOD3 promoter was similar between FD and IPAH. Furthermore, treatment with 5-aza-2′-deoxycytidine did not increase PASMC SOD3 mRNA, suggesting DNA methylation was not responsible for PASMC SOD3 expression. Though total histone deacetylase (HDAC) activity, histone acetyltransferase (HAT) activity, acetylated histones, and acetylated SP1 were similar between IPAH and FD, treatment with two selective class I HDAC inhibitors increased SOD3 only in IPAH PASMC. Class I HDAC3 siRNA also increased SOD3 expression. Trichostatin A, a pan-HDAC inhibitor, decreased proliferation in IPAH, but not in FD PASMC. These data indicate that histone deacetylation, specifically via class I HDAC3, decreases SOD3 expression in PASMC and HDAC inhibitors may protect IPAH in part by increasing PASMC SOD3 expression. PMID:27233998

  17. Phenylbutyrate is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer´s disease-like phenotype of a commonly used mouse model.

    PubMed

    Cuadrado-Tejedor, Mar; Ricobaraza, Ana L; Torrijo, Rosana; Franco, Rafael; Garcia-Osta, Ana

    2013-01-01

    4-Phenylbutyrate (PBA) is a histone deacetylase (HDAC) inhibitor whose efficacy in the Tg2576 mouse model of Alzheimer´s disease (AD) is correlated with decreased tau phosphorylation, clearance of intraneuronal Aβ and restoration of dendritic spine density in hippocampal CA1 pyramidal neurons. PBA is also a chemical chaperone that facilitates cell proteostasis. To determine the relative contributions of HDAC inhibition and chaperone-like activity in the anti-AD effects of PBA, we compared the effect of PBA with that of sodium butyrate (NaBu), an HDAC inhibitor with no chaperone activity. In neuronal cultures from Tg2576 mice, we observed a correlation between histone 3 acetylation and decreased p-tau levels. Moreover, we observed a decrease in the processing of the amyloid precursor protein (APP) in Tg2576 neurons treated with PBA, but not with NaBu. In Tg2576 mice administered PBA or NaBu for 3 weeks, only PBA normalized the pathological AD markers, implicating, at least in part, other mechanism as the chaperone-like activity in the reversal of the AD-like phenotype of Tg2576 mice. Furthermore, treatment with PBA but not NaBu prevented the neuronal loss in the hippocampus of hAPPWT-overexpressing mice, as was particularly evident in the CA1 layer. In addition to its activity as a HDAC inhibitor, the chaperone activity of PBA appears to at least partially, mediate its reversal of the AD phenotype in Tg2576 mice and its neuroprotective effect in a model of hippocampal neuronal loss.

  18. Adamantanyl-Histone Deacetylase Inhibitor H6CAHA Exhibits Favorable Pharmacokinetics and Augments Prostate Cancer Radiation Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konsoula, Zacharoula; Cao Hong; Velena, Alfredo

    2011-04-01

    Purpose: To evaluate pharmacological properties of H6CAHA, an adamantyl-hydroxamate histone deacetylase inhibitor, and to investigate its effect on prostate cancer cells following exposure to {gamma}-radiation in vitro and in vivo. Methods and Materials: H6CAHA was assessed for in vitro solubility, lipophilicity and growth inhibition, and in vivo plasma pharmacokinetics. The effect of H6CAHA on radiation clonogenic survival and DNA damage repair was evaluated in human prostate cancer (PC3, DU145, LNCaP) and nonmalignant control epithelial (RWPE1 and 267B1) cell lines. The effect of this agent on the growth of prostate cancer xenografts was also assessed in mice. Results: H6CAHA demonstrated goodmore » solubility and permeability profiles and preferentially inhibited the growth of prostate cancer cells over nonmalignant cells. Plasma pharmacokinetics revealed that the area under the curve of H6CAHA was 8.08 {+-} 0.91 {mu}M x h, and its half-life was 11.17 {+-} 0.87 h. Radiation clonogenic assays revealed that H6CAHA decreased the survival of prostate cancer cells at the dose that exerted limited effect on normal cells. Concomitantly, delayed DNA damage repair following combination treatment was evident in cancer cells, indicated by the prolonged appearance of {gamma}H2AX and Rad51 foci and suppression of DNA damage repair genes (ATM, BRCA1, and BRCA2). Combined modality of H6CAHA (daily intraperitoneal injections for 10 days) with {gamma}-radiation (10 x 2 Gy) completely blocked the growth of PC3 tumor xenografts (p < 0.001) over 60 days. Conclusion: These results support the potential therapeutic value of H6CAHA in combination with radiation and support the rationale for further clinical investigation.« less

  19. Effect of histone deacetylase inhibitor in combination with 5-fluorouracil on pancreas cancer and cholangiocarcinoma cell lines.

    PubMed

    Iwahashi, Shuichi; Ishibashi, Hiroki; Utsunomiya, Tohru; Morine, Yuji; Ochir, Tovuu Lkhaguva; Hanaoka, Jun; Mori, Hiroki; Ikemoto, Tetsuya; Imura, Satoru; Shimada, Mitsuo

    2011-02-01

    Histone deacetylase (HDAC) is well known to be associated with tumorigenesis through epigenetic regulation, and its inhibitors (HDACIs) induce differentiation and apoptosis of tumor cells. We examined the therapeutic effects of valproic acid (VPA, a HDACI) with a combination of 5-fluorouracil (5-FU) in vitro. A human pancreas cancer cell line (SUIT-2) and a cholangiocarcinoma cell line (HuCCT1) were used. Cell viabilities were evaluated by a cell proliferation assay. We determined the anticancer effects of VPA combined with 5-FU in these cell lines. Pancreas cancer (SUIT-2): No effect of 5-FU (1.0 µM) was observed, but 17% and 30% of proliferation-inhibitory effects were recognized in a dose of 2.5 or 5.0 µM, respectively. Cell viability was only weakly reduced by VPA (0.5 mM). However, in combination of 5-FU (1.0 µM) with VPA (0.5 mM), 19% of inhibitory effect was observed. Cholangiocarcinoma (HuCCT1): 5-FU (1.0 µM) did not suppress the cell viability, but 5-FU (2.5 µM) suppressed by 23%. VPA (0.5 mM) did not suppress the cell viability, while VPA (1.0 mM) weakly decreased it by 11%. Combination of 5-FU (1.0 µM) and VPA (0.5 mM) markedly reduced the cell viability by 30%. VPA augmented the anti-tumor effects of 5-FU in cancer cell lines. Therefore, a combination therapy of 5-FU plus VPA may be a promising therapeutic option for patients with pancreas cancer and cholangiocarcinoma.

  20. Histone deacetylase inhibitor SAHA mediates mast cell death and epigenetic silencing of constitutively active D816V KIT in systemic mastocytosis.

    PubMed

    Lyberg, Katarina; Ali, Hani Abdulkadir; Grootens, Jennine; Kjellander, Matilda; Tirfing, Malin; Arock, Michel; Hägglund, Hans; Nilsson, Gunnar; Ungerstedt, Johanna

    2017-02-07

    Systemic mastocytosis (SM) is a clonal bone marrow disorder, where therapeutical options are limited. Over 90% of the patients carry the D816V point mutation in the KIT receptor that renders this receptor constitutively active. We assessed the sensitivity of primary mast cells (MC) and mast cell lines HMC1.2 (D816V mutated), ROSA (KIT WT) and ROSA (KIT D816V) cells to histone deacetylase inhibitor (HDACi) treatment. We found that of four HDACi, suberoyl anilide hydroxamic acid (SAHA) was the most effective in killing mutated MC. SAHA downregulated KIT, followed by major MC apoptosis. Primary SM patient MC cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas primary MC from healthy subjects were less affected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive SM, with almost 100% cell death among MC from the mast cell leukemia patient. Additionally, ROSA (KIT D816V) was more affected by HDACi than ROSA (KIT WT) cells. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/H3 decreased significantly in the KIT region. This epigenetic silencing was seen only in the KIT region and not in control genes upstream and downstream of KIT, indicating that the downregulation of KIT is exerted by specific epigenetic silencing. In conclusion, KIT D816V mutation sensitized MC to HDACi mediated killing, and SAHA may be of value as specific treatment for SM, although the specific mechanism of action requires further investigation.

  1. Histone deacetylase inhibitor SAHA mediates mast cell death and epigenetic silencing of constitutively active D816V KIT in systemic mastocytosis

    PubMed Central

    Lyberg, Katarina; Ali, Hani Abdulkadir; Grootens, Jennine; Kjellander, Matilda; Tirfing, Malin; Arock, Michel; Hägglund, Hans

    2017-01-01

    Systemic mastocytosis (SM) is a clonal bone marrow disorder, where therapeutical options are limited. Over 90% of the patients carry the D816V point mutation in the KIT receptor that renders this receptor constitutively active. We assessed the sensitivity of primary mast cells (MC) and mast cell lines HMC1.2 (D816V mutated), ROSA (KIT WT) and ROSA (KIT D816V) cells to histone deacetylase inhibitor (HDACi) treatment. We found that of four HDACi, suberoyl anilide hydroxamic acid (SAHA) was the most effective in killing mutated MC. SAHA downregulated KIT, followed by major MC apoptosis. Primary SM patient MC cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas primary MC from healthy subjects were less affected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive SM, with almost 100% cell death among MC from the mast cell leukemia patient. Additionally, ROSA (KIT D816V) was more affected by HDACi than ROSA (KIT WT) cells. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/H3 decreased significantly in the KIT region. This epigenetic silencing was seen only in the KIT region and not in control genes upstream and downstream of KIT, indicating that the downregulation of KIT is exerted by specific epigenetic silencing. In conclusion, KIT D816V mutation sensitized MC to HDACi mediated killing, and SAHA may be of value as specific treatment for SM, although the specific mechanism of action requires further investigation. PMID:28038453

  2. Histone deacetylase and GATA-binding factor 6 regulate arterial remodeling in angiotensin II-induced hypertension.

    PubMed

    Kim, Gwi Ran; Cho, Soo-Na; Kim, Hyung-Seok; Yu, Seon Young; Choi, Sin Young; Ryu, Yuhee; Lin, Ming Quan; Jin, Li; Kee, Hae Jin; Jeong, Myung Ho

    2016-11-01

    Histone deacetylase (HDAC) inhibitors have been reported to improve essential and secondary hypertension. However, the specific HDAC that might serve as a therapeutic target and the associated upstream and downstream molecules involved in regulating hypertension remain unknown. Our study was aimed at investigating whether a selective inhibitor of class II HDAC (MC1568) modulates hypertension, elucidating the underlying mechanism. Hypertension was established by administering angiotensin II (Ang II) to mice before treatment with MC1568. SBP was measured. Treatment with MC1568 reduced elevated SBP; attenuated arterial remodeling in the kidney's small arteries and thoracic aorta; and inhibited cell cycle regulatory gene expression, vascular smooth muscle cell (VSMC) proliferation, DNA synthesis, and VSMC hypertrophy in vivo and in vitro. Ang II enhanced the expression of phosphorylated HDAC4 and GATA-binding factor 6 (GATA6) proteins, which were specifically localized in the cytoplasm of cells in the arteries of kidneys and in aortas. Forced expression and knockdown of HDAC4 increased and decreased, respectively, the proliferation and expression of cell cycle genes in VSMCs. GATA6, a newly described binding partner of HDAC4, markedly enhanced the size and number of VSMCs. Calcium/calmodulin-dependent kinase IIα (CaMKIIα), but not HDAC4, translocated from the nucleus to the cytoplasm in response to Ang II. CaMKIIα and protein kinase D1 were associated with VSMC hypertrophy and hyperplasia via direct interaction with HDAC4. MC1568 treatment weakened the association between HDAC4 and CaMKIIα. These results suggest that class II HDAC inhibition attenuates hypertension by negatively regulating VSMC hypertrophy and hyperplasia via the CaMKIIα/protein kinase D1/HDAC4/GATA6 pathway.

  3. Combination treatment with docetaxel and histone deacetylase inhibitors downregulates androgen receptor signaling in castration-resistant prostate cancer.

    PubMed

    Park, Sang Eun; Kim, Ha-Gyeong; Kim, Dong Eun; Jung, Yoo Jung; Kim, Yunlim; Jeong, Seong-Yun; Choi, Eun Kyung; Hwang, Jung Jin; Kim, Choung-Soo

    2018-04-01

    Backgrounds Since most patients with castration-resistant prostate cancer (CRPC) develop resistance to its standard therapy docetaxel, many studies have attempted to identify novel combination treatment to meet the large clinical unmet need. In this study, we examined whether histone deacetylase inhibitors (HDACIs) enhanced the effect of docetaxel on AR signaling in CRPC cells harboring AR and its splice variants. Methods HDACIs (vorinostat and CG200745) were tested for their ability to enhance the effects of docetaxel on cell viability and inhibition of AR signaling in CRPC 22Rv1 and VCaP cells by using CellTiter-Glo™ Luminescent cell viability assay, synergy index analysis and Western blotting. The nuclear localization of AR was examined via immunocytochemical staining in 22Rv1 cells and primary tumor cells from a patient with CRPC. Results Combination treatment with HDACIs (vorinostat or CG200745) and docetaxel synergistically inhibited the growth of 22Rv1 and VCaP cells. Consistently, the combination treatment decreased the levels of full-length AR (AR-FL), AR splice variants (AR-Vs), prostate-specific antigen (PSA), and anti-apoptotic Bcl-2 proteins more efficiently compared with docetaxel or vorinostat alone. Moreover, the combination treatment accelerated the acetylation and bundling of tubulin, which significantly inhibited the nuclear accumulation of AR in 22Rv1 cells. The cytoplasmic colocalization of AR-FL and AR-V7 with microtubule bundles increased after combination treatment in primary tumor cells from a patient with CRPC. Conclusions The results suggested that docetaxel, in combination with HDACIs, suppressed the expression and nuclear translocation of AR-FL and AR-Vs and showed synergistic anti-proliferative effect in CRPC cells. This combination therapy may be useful for the treatment of patients with CRPC.

  4. Declined Expression of Histone Deacetylase 6 Contributes to Periodontal Ligament Stem Cell Aging.

    PubMed

    Li, Qian; Ma, Yushi; Zhu, Yunyan; Zhang, Ting; Zhou, Yanheng

    2017-01-01

    Identification of regulators for aging-associated stem cell (SC) dysfunctions is a critical topic in SC biology and SC-based therapies. Periodontal ligament stem cell (PDLSC), a kind of dental mesenchymal SC with dental regeneration potential, ages with functional deterioration in both in vivo and ex vivo expansion. However, little is known about regulators for PDLSC aging. Expression changes of a potential regulator for PDLSC aging, histone deacetylase 6 (HDAC6), were evaluated within various models. Senescence-associated phenotypic and functional alternations of PDLSC in loss-of-function models for HDAC6 were examined using HDAC6-specific pharmacologic inhibitors or RNA interference-based knockdown. Involvement of p27 Kip1 in HDAC6-associated aging was demonstrated by its acetylation and stability changes along with overexpression or functional inhibition of HDAC6. Expression of HDAC6 decreased significantly in replicative senescence and induced SC aging models. Loss-of-function experiments suggested that pharmacologic inhibition of deacetylase activity of HDAC6 accelerated PDLSC senescence and impaired its SC activities, which showed reduced osteogenic differentiation and diminished migration capacities. Examination of markers for proliferative exhaustion of SCs revealed that protein level of p27 Kip1 was specifically elevated after HDAC6 inhibition. HDAC6 physically interacted with p27 Kip1 and could deacetylate p27 Kip1 . Importantly, acetylation of p27 Kip1 was negatively regulated by HDAC6, which correlated with alteration of p27 Kip1 protein levels. Data suggest that HDAC6 plays an important role in PDLSC aging, which is dependent, at least partially, on regulation of p27 Kip1 acetylation.

  5. Alternate splicing regulated by butyrate in the bovine epithelial cell

    USDA-ARS?s Scientific Manuscript database

    As a signaling molecule and a potent inhibitor of histone deacetylases (HADCs), butyrate exerts its impacts on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. In this study, we examined the effect of...

  6. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    USDA-ARS?s Scientific Manuscript database

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  7. Sirtinol abrogates late phase of cardiac ischemia preconditioning in rats.

    PubMed

    Safari, Fereshteh; Shekarforoosh, Shahnaz; Hashemi, Tahmineh; Namvar Aghdash, Simin; Fekri, Asefeh; Safari, Fatemeh

    2017-07-01

    The aim of this study was to investigate the effect of sirtinol, as an inhibitor of sirtuin NAD-dependent histone deacetylases, on myocardial ischemia reperfusion injury following early and late ischemia preconditioning (IPC). Rats underwent sustained ischemia and reperfusion (IR) alone or proceeded by early or late IPC. Sirtinol (S) was administered before IPC. Arrhythmias were evaluated based on the Lambeth model. Infarct size (IS) was measured using triphenyltetrazolium chloride staining. The transcription level of antioxidant-coding genes was assessed by real-time PCR. In early and late IPC groups, IS and the number of arrhythmia were significantly decreased (P < 0.05 and P < 0.01 vs IR, respectively). In S + early IPC, incidences of arrhythmia and IS were not different compared with the early IPC group. However, in S + late IPC the IS was different from the late IPC group (P < 0.05). In late IPC but not early IPC, transcription levels of catalase (P < 0.01) and Mn-SOD (P < 0.05) increased, although this upregulation was not significant in the S + late IPC group. Our results are consistent with the notion that different mechanisms are responsible for early and late IPC. In addition, sirtuin NAD-dependent histone deacetylases may be implicated in late IPC-induced cardioprotection.

  8. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model.

    PubMed

    Di Liddo, Rosa; Valente, Sergio; Taurone, Samanta; Zwergel, Clemens; Marrocco, Biagina; Turchetta, Rosaria; Conconi, Maria Teresa; Scarpa, Carlotta; Bertalot, Thomas; Schrenk, Sandra; Mai, Antonello; Artico, Marco

    2016-01-20

    Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.

  9. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    PubMed

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Skinner-Adams, Tina; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  10. Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition.

    PubMed

    Kakihana, Masatoshi; Ohira, Tatsuo; Chan, Daniel; Webster, Robin B; Kato, Harubumi; Drabkin, Harry A; Gemmill, Robert M

    2009-12-01

    Loss of E-cadherin confers a poor prognosis in lung cancer patients and is associated with in vitro resistance to endothelial growth factor receptor inhibitors. Zinc finger E box-binding homeobox (ZEB)-1, the predominant transcriptional suppressor of E-cadherin in lung tumor lines, recruits histone deacetylases (HDACs) as co-repressors. NSCLC cell lines were treated with HDAC inhibitors and analyzed for E-cadherin induction, growth inhibition and apoptosis. National Cancer Institute-H157 cells expressing ectopic E-cadherin were tested for tumorigenicity in murine xenografts. We found that treatment with MS-275, compared to vorinostat (SAHA), valproic acid or trichostatin A, was most effective in E-cadherin up-regulation and persistence in non-small cell lung cancers. As with other tumor types and HDAC inhibitors, MS-275 inhibited growth and induced apoptosis. Importantly, blocking E-cadherin induction by short hairpin RNA resulted in less inhibition by MS-275, implicating the epithelial to mesenchymal phenotype process as a contributing factor. In contrast to H460 and H661, H157 cells were resistant to E-cadherin up-regulation by HDAC inhibitors. However, E-cadherin was restored, in a synergistic manner, by combined knockdown of ZEB-1 and ZEB-2. In addition, H157 cells stably transfected with E-cadherin were markedly attenuated in their tumor forming ability. Lastly, combining MS-275 with the microtubule stabilizing agent, paclitaxel, or 17-(allylamino)-17-demethoxygeldanamycin, a heat shock protein 90 inhibitor, resulted in synergistic growth inhibition. Since MS-275 has no reported activity against HDAC6, which regulates both microtubule and heat shock protein 90 functions, other mechanisms of synergy are anticipated. These results support the role of ZEB proteins and HDAC inhibitors in the pathogenesis and treatment of lung cancer.

  11. Histone deacetylase inhibitors: Potential in cancer therapy.

    PubMed

    Marks, P A; Xu, W-S

    2009-07-01

    The role of histone deacetylases (HDAC) and the potential of these enzymes as therapeutic targets for cancer, neurodegenerative diseases and a number of other disorders is an area of rapidly expanding investigation. There are 18 HDACs in humans. These enzymes are not redundant in function. Eleven of the HDACs are zinc dependent, classified on the basis of homology to yeast HDACs: Class I includes HDACs 1, 2, 3, and 8; Class IIA includes HDACs 4, 5, 7, and 9; Class IIB, HDACs 6 and 10; and Class IV, HDAC 11. Class III HDACs, sirtuins 1-7, have an absolute requirement for NAD(+), are not zinc dependent and generally not inhibited by compounds that inhibit zinc dependent deacetylases. In addition to histones, HDACs have many nonhistone protein substrates which have a role in regulation of gene expression, cell proliferation, cell migration, cell death, and angiogenesis. HDAC inhibitors (HDACi) have been discovered of different chemical structure. HDACi cause accumulation of acetylated forms of proteins which can alter their structure and function. HDACi can induce different phenotypes in various transformed cells, including growth arrest, apoptosis, reactive oxygen species facilitated cell death and mitotic cell death. Normal cells are relatively resistant to HDACi induced cell death. Several HDACi are in various stages of development, including clinical trials as monotherapy and in combination with other anti-cancer drugs and radiation. The first HDACi approved by the FDA for cancer therapy is suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza), approved for treatment of cutaneous T-cell lymphoma. 2009 Wiley-Liss, Inc.

  12. Comparative Modeling and Benchmarking Data Sets for Human Histone Deacetylases and Sirtuin Families

    PubMed Central

    Xia, Jie; Tilahun, Ermias Lemma; Kebede, Eyob Hailu; Reid, Terry-Elinor; Zhang, Liangren; Wang, Xiang Simon

    2015-01-01

    Histone Deacetylases (HDACs) are an important class of drug targets for the treatment of cancers, neurodegenerative diseases and other types of diseases. Virtual screening (VS) has become fairly effective approaches for drug discovery of novel and highly selective Histone Deacetylases Inhibitors (HDACIs). To facilitate the process, we constructed the Maximal Unbiased Benchmarking Data Sets for HDACs (MUBD-HDACs) using our recently published methods that were originally developed for building unbiased benchmarking sets for ligand-based virtual screening (LBVS). The MUBD-HDACs covers all 4 Classes including Class III (Sirtuins family) and 14 HDACs isoforms, composed of 631 inhibitors and 24,609 unbiased decoys. Its ligand sets have been validated extensively as chemically diverse, while the decoy sets were shown to be property-matching with ligands and maximal unbiased in terms of “artificial enrichment” and “analogue bias”. We also conducted comparative studies with DUD-E and DEKOIS 2.0 sets against HDAC2 and HDAC8 targets, and demonstrate that our MUBD-HDACs is unique in that it can be applied unbiasedly to both LBVS and SBVS approaches. In addition, we defined a novel metric, i.e. NLBScore, to detect the “2D bias” and “LBVS favorable” effect within the benchmarking sets. In summary, MUBD-HDACs is the only comprehensive and maximal-unbiased benchmark data sets for HDACs (including Sirtuins) that is available so far. MUBD-HDACs is freely available at http://www.xswlab.org/. PMID:25633490

  13. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC)

    PubMed Central

    Anantharaju, Preethi G.; Reddy, Bandi Deepa; Padukudru, Mahesh A.; Kumari Chitturi, CH. M.; Vimalambike, Manjunath G.

    2017-01-01

    ABSTRACT Histone deacetylases (HDACs), which modulate the expression of genes, are potential therapeutic targets in several cancers. Targeted inhibition of HDAC prevents the expression of oncogenes thereby help in the treatment of cancers. Hence, several pharmaceutical companies developed inhibitors of HDAC and tested them in preclinical models and in clinical trials. SAHA (suberanilohydroxamic acid) is one such HDAC inhibitor developed for treating breast and colorectal carcinomas. However, due to poor efficacy in clinical trials the utility of SAHA for treating cancers was discouraged. Similarly another HDAC inhibitor Trichostatin-A (TSA) also showed promising results in clinical trials but exhibited severe adverse effects, which dampened the interest of using this molecule for cancer treatment. Therefore, search for developing a potent HDAC inhibitor with minimal side effects still continues. Hence, in this study we have screened benzoic acid and benzoic acid derivatives with hydroxylic (-OH) groups and methoxy (-OCH3) groups for their efficacy to bind to the TSA binding site of HDAC using molecular docking studies. Molecules that showed much stronger affinity (than TSA) to HDAC were tested for inhibiting HDAC expressing cultured cancer cells. DHBA but not Dimethoxy Benzoic Acid (DMBA) inhibited HDAC activity, leading to cancer cell growth inhibition through the induction of ROS and cellular apoptosis mediated by Caspase-3. In addition, DHBA arrested cells in G2/M phase of the cell cycle and elevated the levels of sub-G0-G1 cell population. In summary, results of this study report that DHBA could be a strong HDAC inhibitor and inhibit cancer cell growth more effectively. PMID:28506198

  14. Histone deacetylase inhibitors prevent p53-dependent and p53-independent Bax-mediated neuronal apoptosis through two distinct mechanisms.

    PubMed

    Uo, Takuma; Veenstra, Timothy D; Morrison, Richard S

    2009-03-04

    Pharmacological manipulation of protein acetylation levels by histone deacetylase (HDAC) inhibitors represents a novel therapeutic strategy to treat neurodegeneration as well as cancer. However, the molecular mechanisms that determine how HDAC inhibition exerts a protective effect in neurons as opposed to a cytotoxic action in tumor cells has not been elucidated. We addressed this issue in cultured postnatal mouse cortical neurons whose p53-dependent and p53-independent intrinsic apoptotic programs require the proapoptotic multidomain protein, Bax. Despite promoting nuclear p53 accumulation, Class I/II HDAC inhibitors (HDACIs) protected neurons from p53-dependent cell death induced by camptothecin, etoposide, heterologous p53 expression or the MDM2 inhibitor, nutlin-3a. HDACIs suppressed p53-dependent PUMA expression, a critical signaling intermediate linking p53 to Bax activation, thus preventing postmitochondrial events including cleavage of caspase-9 and caspase-3. In human SH-SY5Y neuroblastoma cells, however, HDACIs were not able to prevent p53-dependent cell death. Moreover, HDACIs also prevented caspase-3 cleavage in postnatal cortical neurons treated with staurosporine, 3-nitropropionic acid and a Bcl-2 inhibitor, all of which require the presence of Bax but not p53 to promote apoptosis. Although these three toxic agents displayed a requirement for Bax, they did not promote PUMA induction. These results demonstrate that HDACIs block Bax-dependent cell death by two distinct mechanisms to prevent neuronal apoptosis, thus identifying for the first time a defined molecular target for their neuroprotective actions.

  15. Histone Deacetylase Inhibitors Prevent p53-dependent and Independent Bax-Mediated Neuronal Apoptosis Through Two Distinct Mechanisms

    PubMed Central

    Uo, Takuma; Veenstra, Timothy D.; Morrison, Richard S.

    2009-01-01

    Pharmacological manipulation of protein acetylation levels by histone deacetylase (HDAC) inhibitors represents a novel therapeutic strategy to treat neurodegeneration as well as cancer. However, the molecular mechanisms that determine how HDAC inhibition exerts a protective effect in neurons as opposed to a cytotoxic action in tumor cells has not been elucidated. We addressed this issue in cultured postnatal mouse cortical neurons whose p53-dependent and —independent intrinsic apoptotic programs require the pro-apoptotic multidomain protein, Bax. Despite promoting nuclear p53 accumulation, Class I/II HDAC inhibitors (HDACIs) protected neurons from p53-dependent cell death induced by camptothecin, etoposide, heterologous p53 expression or the MDM2 inhibitor, nutlin-3a. HDACIs suppressed p53-dependent PUMA expression, a critical signaling intermediate linking p53 to Bax activation, thus preventing post-mitochondrial events including cleavage of caspase-9 and -3. In human SH-SY5Y neuroblastoma cells, however, HDACIs were not able to prevent p53-dependent cell death. Moreover, HDACIs also prevented caspase-3 cleavage in postnatal cortical neurons treated with staurosporine, 3-nitropropionic acid and a Bcl-2 inhibitor, all of which require the presence of Bax but not p53 to promote apoptosis. Although these three toxic agents displayed a requirement for Bax, they did not promote PUMA induction. These results demonstrate that HDACIs block Bax-dependent cell death by two distinct mechanisms to prevent neuronal apoptosis, thus identifying for the first time a defined molecular target for their neuroprotective actions. PMID:19261878

  16. Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities.

    PubMed

    Chao, Shi-Wei; Chen, Liang-Chieh; Yu, Chia-Chun; Liu, Chang-Yi; Lin, Tony Eight; Guh, Jih-Hwa; Wang, Chen-Yu; Chen, Chun-Yung; Hsu, Kai-Cheng; Huang, Wei-Jan

    2018-01-01

    Histone deacetylase (HDAC) is a validated drug target for various diseases. This study combined indole recognition cap with SAHA, an FDA-approved HDAC inhibitor used to treat cutaneous T-cell lymphoma (CTCL). The structure activity relationship of the resulting compounds that inhibited HDAC was disclosed as well. Some compounds exhibited much stronger inhibitory activities than SAHA. We identified two meta-series compounds 6j and 6k with a two-carbon linker had IC 50 values of 3.9 and 4.5 nM for HDAC1, respectively. In contrast, the same oriented compounds with longer carbon chain linkers showed weaker inhibition. The result suggests that the linker chain length greatly contributed to enzyme inhibitory potency. In addition, comparison of enzyme-inhibiting activity between the compounds and SAHA showed that compounds 6j and 6k displayed higher inhibiting activity for class I (HDAC1, -2, -3 and -8). The molecular docking and structure analysis revealed structural differences with the inhibitor cap and metal-binding regions between the HDAC isozymes that affect interactions with the inhibitors and play a key role for selectivity. Further biological evaluation showed multiple cellular effects associated with compounds 6j- and 6k-induced HDAC inhibitory activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Pharmacokinetic optimization of class-selective histone deacetylase inhibitors and identification of associated candidate predictive biomarkers of hepatocellular carcinoma tumor response.

    PubMed

    Wong, Jason C; Tang, Guozhi; Wu, Xihan; Liang, Chungen; Zhang, Zhenshan; Guo, Lei; Peng, Zhenghong; Zhang, Weixing; Lin, Xianfeng; Wang, Zhanguo; Mei, Jianghua; Chen, Junli; Pan, Song; Zhang, Nan; Liu, Yongfu; Zhou, Mingwei; Feng, Lichun; Zhao, Weili; Li, Shijie; Zhang, Chao; Zhang, Meifang; Rong, Yiping; Jin, Tai-Guang; Zhang, Xiongwen; Ren, Shuang; Ji, Ying; Zhao, Rong; She, Jin; Ren, Yi; Xu, Chunping; Chen, Dawei; Cai, Jie; Shan, Song; Pan, Desi; Ning, Zhiqiang; Lu, Xianping; Chen, Taiping; He, Yun; Chen, Li

    2012-10-25

    Herein, we describe the pharmacokinetic optimization of a series of class-selective histone deacetylase (HDAC) inhibitors and the subsequent identification of candidate predictive biomarkers of hepatocellular carcinoma (HCC) tumor response for our clinical lead using patient-derived HCC tumor xenograft models. Through a combination of conformational constraint and scaffold hopping, we lowered the in vivo clearance (CL) and significantly improved the bioavailability (F) and exposure (AUC) of our HDAC inhibitors while maintaining selectivity toward the class I HDAC family with particular potency against HDAC1, resulting in clinical lead 5 (HDAC1 IC₅₀ = 60 nM, mouse CL = 39 mL/min/kg, mouse F = 100%, mouse AUC after single oral dose at 10 mg/kg = 6316 h·ng/mL). We then evaluated 5 in a biomarker discovery pilot study using patient-derived tumor xenograft models, wherein two out of the three models responded to treatment. By comparing tumor response status to compound tumor exposure, induction of acetylated histone H3, candidate gene expression changes, and promoter DNA methylation status from all three models at various time points, we identified preliminary candidate response prediction biomarkers that warrant further validation in a larger cohort of patient-derived tumor models and through confirmatory functional studies.

  18. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy.

    PubMed

    Wang, Xiaojie; Liu, Jiang; Zhen, Junhui; Zhang, Chun; Wan, Qiang; Liu, Guangyi; Wei, Xinbing; Zhang, Yan; Wang, Ziying; Han, Huirong; Xu, Huiyan; Bao, Chanchan; Song, Zhenyu; Zhang, Xiumei; Li, Ningjun; Yi, Fan

    2014-10-01

    Studies have highlighted the importance of histone deacetylase (HDAC)-mediated epigenetic processes in the development of diabetic complications. Inhibitors of HDAC are a novel class of therapeutic agents in diabetic nephropathy, but currently available inhibitors are mostly nonselective inhibit multiple HDACs, and different HDACs serve very distinct functions. Therefore, it is essential to determine the role of individual HDACs in diabetic nephropathy and develop HDAC inhibitors with improved specificity. First, we identified the expression patterns of HDACs and found that, among zinc-dependent HDACs, HDAC2/4/5 were upregulated in the kidney from streptozotocin-induced diabetic rats, diabetic db/db mice, and in kidney biopsies from diabetic patients. Podocytes treated with high glucose, advanced glycation end products, or transforming growth factor-β (common detrimental factors in diabetic nephropathy) selectively increased HDAC4 expression. The role of HDAC4 was evaluated by in vivo gene silencing by intrarenal lentiviral gene delivery and found to reduce renal injury in diabetic rats. Podocyte injury was associated with suppressing autophagy and exacerbating inflammation by HDAC4-STAT1 signaling in vitro. Thus, HDAC4 contributes to podocyte injury and is one of critical components of a signal transduction pathway that links renal injury to autophagy in diabetic nephropathy.

  19. Synergistic effects of combined treatment with histone deacetylase inhibitor suberoylanilide hydroxamic acid and TRAIL on human breast cancer cells

    PubMed Central

    Zhou, Weiqiang; Feng, Xiuyan; Han Han; Guo, Shanchun; Wang, Guangdi

    2016-01-01

    Previous studies showed that either histone deacetylase (HDAC) inhibitors or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in tumor cells including breast cancer. However, the underling mechanisms of combining HDAC inhibitors with TRAIL in the treatment of breast cancer are poorly understood. In this study, we determined the ability of SAHA and TRAIL as single agents or in combination to inhibit the growth and survival of MCF-7 and MDA-MB-231 breast cancer cells. Our results demonstrate that the distinct effects of SAHA or TRAIL individually and in combination on the proliferation, cell viability, apoptosis, cell cycle distribution, and morphological changes of MDA-MB-231 and MCF-7 cells. We further determined the different effects of SAHA or TRAIL alone and combining SAHA with TRAIL on the expression of a number of apoptosis-related molecules, cell cycle, growth factors and their receptors in cancer cells. Our results demonstrated that the combinatorial treatment of SAHA and TRAIL may target multiple pathways and serve as an effective therapeutic strategy against breast cancer. An improved understanding of the molecular mechanisms may facilitate either SAHA or TRAIL targeted use and the selection of suitable combinations. PMID:27292433

  20. In silico structure prediction and inhibition mechanism studies of AtHDA14 as revealed by homology modeling, docking, molecular dynamics simulation.

    PubMed

    Zhao, Ming-Lang; Wang, Wang; Nie, Hu; Cao, Sha-Sha; Du, Lin-Fang

    2018-05-06

    Histone deacetylases (HDACs) play a significant role in the epigenetic mechanism by catalyzing deacetylation of lysine on histone in both animals and plants. HDACs involved in growth, development and response to stresses in plants. Arabidopsis thaliana histone deacetylase 14 (AtHDA14) is found to localize in the mitochondria and chloroplasts, and it involved in photosynthesis and melatonin biosynthesis. However, its mechanism of action was still unknowns so far. Therefore, in this study, we constructed AtHDA14 protein model using homology modeling method, validated using PROCHECK and presented using Ramachandran plots. We also performed virtual screening of AtHDA14 by docking with small molecule drugs and predicted their ADMET properties to select representative inhibitors. MD simulation for representative AtHDA14-ligand complexes was carried out to further research and reveal their stability and inhibition mechanism. Meanwhile, MM/PBSA method was utilized to obtain more valuable information about the residues energy contribution. Moreover, compared with four candidate inhibitors, we also found that compound 645533 and 6918837 might be a more potent AtHDA14 inhibitor than TSA (444732) and SAHA (5311). Therefore, compound 6445533 and 6918837 was anticipated to be a promising drug candidate for inhibition of AtHDA14. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Histone Deacetylase Inhibitor MS-275 Exhibits Poor Brain Penetration: Pharmacokinetic Studies of [11C]MS-275 using Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, J.M.; Hooker, J.M.; Kim, S.W.

    2009-10-01

    MS-275 (entinostat) is a histone deacetylase (HDAC) inhibitor currently in clinical trials for the treatment of several types of cancer. Recent reports have noted that MS-275 can cross the blood-brain barrier (BBB) and cause region-specific changes in rodent brain histone acetylation. To characterize the pharmacokinetics and distribution of MS-275 in the brain using positron emission tomography (PET), we labeled the carbamate carbon of MS-275 with carbon-11. Using PET, we determined that [{sup 11}C]MS-275 has low uptake in brain tissue when administered intravenously to nonhuman primates. In rodent studies, we observed that pharmacokinetics and brain accumulation of [{sup 11}C]MS-275 were notmore » changed by the coadministration of large doses of unlabeled MS-275. These results, which both highlight the poor brain penetration of MS-275, clearly suggest its limitation as a therapeutic agent for the central nervous system (CNS). Moreover, our study demonstrates the effectiveness of PET at providing brain pharmacokinetic data for HDAC inhibitors. These data are important not only for the development of new compounds for peripheral cancer treatment (where CNS exclusion is often advantageous) but also for the treatment of neurological disorders (where CNS penetration is critical).« less

  2. Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev

    2016-11-01

    Insulin resistance is a common feature of obesity and predisposes the affected individuals to a variety of pathologies, including type 2 diabetes mellitus (T2DM), dyslipidemias, hypertension, cardiovascular disease etc. Insulin resistance is the primary cause of T2DM and it occurs many years before the disease onset. Although Thiazolidinediones (TZDs) such as rosiglitazone and pioglitazone are outstanding insulin sensitizers and are in clinical use since 1990s, however, their serious side effects such as heart attack and bladder cancer have limited their utilization. Thus, there is an unmet need to identify a new class of drugs with insulin sensitizing activity and minimal side effects. In the recent years, Histone deacetylase (HDAC) has emerged as a new molecular target in the control of insulin resistance and T2DM. The level of histone acetylation/deacetylation has been found to be altered during insulin resistance and T2DM conditions. HDAC inhibitors have been found to effectively manage insulin resistance and T2DM in various preclinical models and clinical trials. In this review we will focus on various aspects related to regulation of insulin signalling by HDACs and the future scope of HDAC inhibitors as therapeutics for insulin resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Dissecting the mechanism of histone deacetylase inhibitors to enhance the activity of zinc finger nucleases delivered by integrase-defective lentiviral vectors.

    PubMed

    Joglekar, Alok V; Stein, Libby; Ho, Michelle; Hoban, Megan D; Hollis, Roger P; Kohn, Donald B

    2014-07-01

    Integrase-defective lentiviral vectors (IDLVs) have been of limited success in the delivery of zinc finger nucleases (ZFNs) to human cells, due to low expression. A reason for reduced gene expression has been proposed to involve the epigenetic silencing of vector genomes, carried out primarily by histone deacetylases (HDACs). In this study, we tested valproic acid (VPA), a known HDAC inhibitor (HDACi), for its ability to increase transgene expression from IDLVs, especially in the context of ZFN delivery. Using ZFNs targeting the human adenosine deaminase (ADA) gene in K562 cells, we demonstrated that treatment with VPA enhanced ZFN expression by up to 3-fold, resulting in improved allelic disruption at the ADA locus. Furthermore, three other U.S. Food and Drug Administration-approved HDACis (vorinostat, givinostat, and trichostatin-A) exhibited a similar effect on the activity of ZFN-IDLVs in K562 cells. In primary human CD34(+) cells, VPA- and vorinostat-treated cells showed higher levels of expression of both green fluorescent protein (GFP) as well as ZFNs from IDLVs. A major mechanism for the effects of HDAC inhibitors on improving expression was from their modulation of the cell cycle, and the influence of heterochromatinization was determined to be a lesser contributing factor.

  4. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions.

    PubMed

    Galasinski, Scott C; Resing, Katheryn A; Goodrich, James A; Ahn, Natalie G

    2002-05-31

    The regulation of histone deacetylases (HDACs) by phosphorylation was examined by elevating intracellular phosphorylation in cultured cells with the protein phosphatase inhibitor okadaic acid. After fractionation of extracts from treated versus untreated cells, HDAC 1 and 2 eluted in several peaks of deacetylase activity, assayed using mixed acetylated histones or acetylated histone H4 peptide. Stimulation of cells with okadaic acid led to hyperphosphorylation of HDAC 1 and 2 as well as changes in column elution of both enzymes. Hyperphosphorylated HDAC2 was also observed in cells synchronized with nocodazole or taxol, demonstrating regulation of HDAC phosphorylation during mitosis. Phosphorylated HDAC1 and 2 showed a gel mobility retardation that correlated with a small but significant increase in activity, both of which were reversed upon phosphatase treatment in vitro. However, the most pronounced effect of HDAC phosphorylation was to disrupt protein complex formation between HDAC1 and 2 as well as complex formation between HDAC1 and corepressors mSin3A and YY1. In contrast, interactions between HDAC1/2 and RbAp46/48 were unaffected by okadaic acid. These results establish a novel link between HDAC phosphorylation and the control of protein-protein interactions and suggest a mechanism for relief of deacetylase-catalyzed transcriptional repression by phosphorylation-dependent signaling.

  5. Deacetylases and NF-κB in Redox Regulation of Cigarette Smoke induced Lung Inflammation: Implications in Pathogenesis of COPD

    PubMed Central

    Rajendrasozhan, Saravanan; Yang, Se-Ran; Edirisinghe, Indika; Yao, Hongwei; Adenuga, David; Rahman, Irfan

    2009-01-01

    Oxidative stress has been implicated in the pathogenesis of several inflammatory lung disorders including chronic obstructive pulmonary disease (COPD) due to its effect on pro-inflammatory gene transcription. Cigarette smoke-mediated oxidative stress activates NF-κB-dependent transcription of pro-inflammatory mediators either through activation of inhibitor κB-α kinase (IKK) and/or the enhanced recruitment and activation of transcriptional co-activators. Enhanced NF-κB-co-activator complex formation results in targeted increase in chromatin modifications, such as histone acetylation leading to inflammatory gene transcription. NF-κB-dependent gene expression, at least in part, is regulated by changes in deacetylases such as histone deacetylases (HDACs) and sirtuins. Cigarette smoke and oxidants also alter the levels/activity of HDAC by post-translational modifications and in doing so further induces gene expression of pro-inflammatory mediators. In addition, cigarette smoke/oxidants can reduce glucocorticoid sensitivity by attenuating HDAC2 activity and expression, which may account for the glucocorticoid insensitivity in patients with COPD. Understanding the mechanisms of NF-κB regulation, and the balance between histone acetylation and deacetylation may lead to the development of novel therapies based on the pharmacological manipulation of IKK and deacetylases in lung inflammation and injury. PMID:18220485

  6. The epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2' deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo.

    PubMed

    Susanto, Johana M; Colvin, Emily K; Pinese, Mark; Chang, David K; Pajic, Marina; Mawson, Amanda; Caldon, C Elizabeth; Musgrove, Elizabeth A; Henshall, Susan M; Sutherland, Robert L; Biankin, Andrew V; Scarlett, Christopher J

    2015-05-01

    Despite incremental advances in the diagnosis and treatment for pancreatic cancer (PC), the 5‑year survival rate remains <5%. Novel therapies to increase survival and quality of life for PC patients are desperately needed. Epigenetic thera-peutic agents such as histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have demonstrated therapeutic benefits in human cancer. We assessed the efficacy of these epigenetic therapeutic agents as potential therapies for PC using in vitro and in vivo models. Treatment with HDACi [suberoylanilide hydroxamic acid (SAHA)] and DNMTi [5‑AZA‑2' deoxycytidine (5‑AZA‑dc)] decreased cell proliferation in MiaPaCa2 cells, and SAHA treatment, with or without 5‑AZA‑dc, resulted in higher cell death and lower DNA synthesis compared to 5‑AZA‑dc alone and controls (DMSO). Further, combination treatment with SAHA and 5‑AZA‑dc significantly increased expression of p21WAF1, leading to G1 arrest. Treatment with epigenetic agents delayed tumour growth in vivo, but did not decrease growth of established pancreatic tumours. In conclusion, these data demonstrate a potential role for epigenetic modifier drugs for the management of PC, specifically in the chemoprevention of PC, in combination with other chemotherapeutic agents.

  7. Strategies to circumvent the T315I gatekeeper mutation in the Bcr-Abl tyrosine kinase

    PubMed Central

    Bose, Prithviraj; Park, Haeseong; Al-Khafaji, Jawad; Grant, Steven

    2013-01-01

    Despite the remarkable success of imatinib against Bcr-Abl, development of secondary resistance, most often due to point mutations in the Bcr-Abl tyrosine kinase (TK) domain, is quite common. Of these, the T315I “gatekeeper” mutation is resistant to all currently registered Bcr-Abl TK inhibitors (TKIs) with the notable exception of ponatinib (Iclusig™), which was very recently approved by the United States Food and Drug Administration (FDA). Besides ponatinib, numerous strategies have been developed to circumvent this problem. These include the protein synthesis inhibitor omacetaxine (Synribo®), and “switch-control” inhibitors. Dual Bcr-Abl and aurora kinase inhibitors represent another promising strategy. Finally, several promising synergistic combinations, such as TKIs with histone deacetylase inhibitors (HDACIs), warrant attention. PMID:23977454

  8. Zinc binding in HDAC inhibitors: a DFT study.

    PubMed

    Wang, Difei; Helquist, Paul; Wiest, Olaf

    2007-07-06

    Histone deacetylases (HDACs) are attractive targets for the treatment of cancers and a variety of other diseases. Most currently studied HDAC inhibitors contain hydroxamic acids, which are potentially problematic in the development of practical drugs. DFT calculations of the binding modes and free energies of binding for a variety of other functionalities in a model active site of HDAC are described. The protonation state of hydroxamic acids in the active site and the origin of the high affinity are discussed. These results emphasize the importance of a carefully chosen pKa for zinc binding and provide guidance for the design of novel, non-hydroxamic acid HDAC inhibitors.

  9. Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors

    PubMed Central

    Sacco, Joseph J.; Kenyani, Jenna; Butt, Zohra; Carter, Rachel; Chew, Hui Yi; Cheeseman, Liam P.; Darling, Sarah; Denny, Michael; Urbé, Sylvie; Clague, Michael J.; Coulson, Judy M.

    2015-01-01

    Histone deacetylases are important targets for cancer therapeutics, but their regulation is poorly understood. Our data show coordinated transcription of HDAC1 and HDAC2 in lung cancer cell lines, but suggest HDAC2 protein expression is cell-context specific. Through an unbiased siRNA screen we found that BRCA1-associated protein 1 (BAP1) regulates their expression, with HDAC2 reduced and HDAC1 increased in BAP1 depleted cells. BAP1 loss-of-function is increasingly reported in cancers including thoracic malignancies, with frequent mutation in malignant pleural mesothelioma. Endogenous HDAC2 directly correlates with BAP1 across a panel of lung cancer cell lines, and is downregulated in mesothelioma cell lines with genetic BAP1 inactivation. We find that BAP1 regulates HDAC2 by increasing transcript abundance, rather than opposing its ubiquitylation. Importantly, although total cellular HDAC activity is unaffected by transient depletion of HDAC2 or of BAP1 due to HDAC1 compensation, this isoenzyme imbalance sensitizes MSTO-211H cells to HDAC inhibitors. However, other established mesothelioma cell lines with low endogenous HDAC2 have adapted to become more resistant to HDAC inhibition. Our work establishes a mechanism by which BAP1 loss alters sensitivity of cancer cells to HDAC inhibitors. Assessment of BAP1 and HDAC expression may ultimately help identify patients likely to respond to HDAC inhibitors. PMID:25970771

  10. Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but Not Transcription and Cell Viability

    PubMed Central

    Lauffer, Benjamin E. L.; Mintzer, Robert; Fong, Rina; Mukund, Susmith; Tam, Christine; Zilberleyb, Inna; Flicke, Birgit; Ritscher, Allegra; Fedorowicz, Grazyna; Vallero, Roxanne; Ortwine, Daniel F.; Gunzner, Janet; Modrusan, Zora; Neumann, Lars; Koth, Christopher M.; Lupardus, Patrick J.; Kaminker, Joshua S.; Heise, Christopher E.; Steiner, Pascal

    2013-01-01

    Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility. PMID:23897821

  11. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability.

    PubMed

    Lauffer, Benjamin E L; Mintzer, Robert; Fong, Rina; Mukund, Susmith; Tam, Christine; Zilberleyb, Inna; Flicke, Birgit; Ritscher, Allegra; Fedorowicz, Grazyna; Vallero, Roxanne; Ortwine, Daniel F; Gunzner, Janet; Modrusan, Zora; Neumann, Lars; Koth, Christopher M; Lupardus, Patrick J; Kaminker, Joshua S; Heise, Christopher E; Steiner, Pascal

    2013-09-13

    Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility.

  12. Oncolytic Virotherapy Targeting Lung Cancer Drug Resistance

    DTIC Science & Technology

    2014-10-01

    to VSV oncolysis was also a theme of our recent publication [ Shulak L, Beljanski V, et al. J. Virol. 88(5):2927-40 (2014)] and was used as part of...neural progenitors in the injured adult spinal cord. J Neurosci 26(46):11948-60. 2006 10. Shulak L, et al. Histone deacetylase inhibitors potentiate

  13. Histone Deacetylase Inhibitors Repress Tumoral Expression of the Proinvasive Factor RUNX2.

    PubMed

    Sancisi, Valentina; Gandolfi, Greta; Ambrosetti, Davide Carlo; Ciarrocchi, Alessia

    2015-05-01

    Aberrant reactivation of embryonic pathways occurs commonly in cancer. The transcription factor RUNX2 plays a fundamental role during embryogenesis and is aberrantly reactivated during progression and metastasization of different types of human tumors. In this study, we attempted to dissect the molecular mechanisms governing RUNX2 expression and its aberrant reactivation. We identified a new regulatory enhancer element, located within the RUNX2 gene, which is responsible for the activation of the RUNX2 promoter and for the regulation of its expression in cancer cells. Furthermore, we have shown that treatment with the anticancer compounds histone deacetylase inhibitor (HDACi) results in a profound inhibition of RUNX2 expression, which is determined by the disruption of the transcription-activating complex on the identified enhancer. These data envisage a possible targeting strategy to counteract the oncongenic function of RUNX2 in cancer cells and provide evidence that the cytotoxic activity of HDACi in cancer is not only dependent on the reactivation of silenced oncosuppressors but also on the repression of oncogenic factors that are necessary for survival and progression. ©2015 American Association for Cancer Research.

  14. Glutathione-S-transferase pi 1(GSTP1) gene silencing in prostate cancer cells is reversed by the histone deacetylase inhibitor depsipeptide.

    PubMed

    Hauptstock, Vera; Kuriakose, Sapuna; Schmidt, Doris; Düster, Robert; Müller, Stefan C; von Ruecker, Alexander; Ellinger, Jörg

    2011-09-09

    Gene silencing by epigenetic mechanisms is frequent in prostate cancer (PCA). The link between DNA hypermethylation and histone modifications is not completely understood. We chose the GSTP1 gene which is silenced by hypermethylation to analyze the effect of the histone deacetylase inhibitor depsipeptide on DNA methylation and histone modifications at the GSTP1 promoter site. Prostate cell lines (PC-3, LNCaP, and BPH-1) were treated with depsipeptide; apoptosis (FACS analysis), GSTP1 mRNA levels (quantitative real-time PCR), DNA hypermethylation (methylation-specific PCR), and histone modifications (chromatin immunoprecipitation) were studied. Depsipeptide induced apoptosis in PCA cells, but not a cell cycle arrest. Depispeptide reversed DNA hypermethylation and repressive histone modifications (reduction of H3K9me2/3 and H3K27me2/3; increase of H3K18Ac), thereby inducing GSTP1 mRNA re-expression. Successful therapy requires both, DNA demethylation and activating histone modifications, to induce complete gene expression of epigenetically silenced genes and depsipeptide fulfils both criteria. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Influence of natural and synthetic histone deacetylase inhibitors on chromatin.

    PubMed

    Licciardi, Paul V; Kwa, Faith A A; Ververis, Katherine; Di Costanzo, Natasha; Balcerczyk, Aneta; Tang, Mimi L; El-Osta, Assam; Karagiannis, Tom C

    2012-07-15

    Histone deacetylase inhibitors (HDACIs) have emerged as a new class of anticancer therapeutics. The hydroxamic acid, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™), and the cyclic peptide, depsipeptide (Romidepsin, Istodax™), were approved by the U.S. Food and Drug Administration (FDA) for the treatment of cutaneous T-cell lymphoma in 2006 and 2009, respectively. At least 15 HDACIs are currently undergoing clinical trials either alone or in combination with other therapeutic modalities for the treatment of numerous hematological and solid malignancies. The potential utility of HDACIs has been extended to nononcologic applications, including autoimmune disorders, inflammation, diseases of the central nervous system, and malaria. Given the promise of HDACIs, there is growing interest in the potential of dietary compounds that possess HDAC inhibition activity. This review is focused on the identification of and recent findings with HDACIs from dietary, medicinal plant, and microbial sources. We discuss the mechanisms of action and clinical potential of natural HDACIs. Apart from identification of further HDACI compounds from dietary sources, further research will be aimed at understanding the effects on gene regulation on lifetime exposure to these compounds. Another important issue that requires clarification.

  16. [Gender-dependent effects of histone deacetylase inhibitor sodium valproate on early olfactory learning in 129Sv mice].

    PubMed

    Burenkova, O V; Aleksandrova, E A; Zaraĭskaia, I Iu

    2013-02-01

    In the brain, histone acetylation underlies both learning and the maintenance of long-term sustained effects of early experience which is further epigenetically inherited. However, the role of acetylation in learning previously has only been studied in adult animals: high level of learning could be dependent on high levels of histone H3 acetylation in the brain. The role of acetylation in the mechanisms of early learning has not been studied. In the present work, we were interested whether histone deacetylase inhibitor sodium valproate which increases the level of histone H3 acetylation will affect early olfactory discrimination learning in 8-day-old pups of 129Sv mice that are characterized by low efficiency of learning with imitation of maternal grooming. Multiple valproate injections from 3rd to 6th postnatal day had a gender-dependent effect: learning was selectively improved in male but not in female pups. In the female pups, learning improvement was observed after multiple injections of saline. Possible epigenetic mechanisms underlying these sex differences are discussed.

  17. A role for histone deacetylases in the cellular and behavioral mechanisms underlying learning and memory.

    PubMed

    Mahgoub, Melissa; Monteggia, Lisa M

    2014-10-01

    Histone deacetylases (HDACs) are a family of chromatin remodeling enzymes that restrict access of transcription factors to the DNA, thereby repressing gene expression. In contrast, histone acetyltransferases (HATs) relax the chromatin structure allowing for an active chromatin state and promoting gene transcription. Accumulating data have demonstrated a crucial function for histone acetylation and histone deacetylation in regulating the cellular and behavioral mechanisms underlying synaptic plasticity and learning and memory. In trying to delineate the roles of individual HDACs, genetic tools have been used to manipulate HDAC expression in rodents, uncovering distinct contributions of individual HDACs in regulating the processes of memory formation. Moreover, recent findings have suggested an important role for HDAC inhibitors in enhancing learning and memory processes as well as ameliorating symptoms related to neurodegenerative diseases. In this review, we focus on the role of HDACs in learning and memory, as well as significant data emerging from the field in support of HDAC inhibitors as potential therapeutic targets for the treatment of cognitive disorders. © 2014 Mahgoub and Monteggia; Published by Cold Spring Harbor Laboratory Press.

  18. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism

    PubMed Central

    Jeong, Mark Y.; Lin, Ying H.; Wennersten, Sara A.; Demos-Davies, Kimberly M.; Cavasin, Maria A.; Mahaffey, Jennifer H.; Monzani, Valmen; Saripalli, Chandrasekhar; Mascagni, Paolo; Reece, T. Brett; Ambardekar, Amrut V.; Granzier, Henk L.; Dinarello, Charles A.; McKinsey, Timothy A.

    2018-01-01

    There are no approved drugs for the treatment of heart failure with preserved ejection fraction (HFpEF), which is characterized by left ventricular (LV) diastolic dysfunction. We demonstrate that ITF2357 (givinostat), a clinical-stage inhibitor of histone deacetylase (HDAC) catalytic activity, is efficacious in two distinct murine models of diastolic dysfunction with preserved EF. ITF2357 blocked LV diastolic dysfunction due to hypertension in Dahl salt-sensitive (DSS) rats and suppressed aging-induced diastolic dysfunction in normotensive mice. HDAC inhibitor–mediated efficacy was not due to lowering blood pressure or inhibiting cellular and molecular events commonly associated with diastolic dysfunction, including cardiac fibrosis, cardiac hypertrophy, or changes in cardiac titin and myosin isoform expression. Instead, ex vivo studies revealed impairment of cardiac myofibril relaxation as a previously unrecognized, myocyte-autonomous mechanism for diastolic dysfunction, which can be ameliorated by HDAC inhibition. Translating these findings to humans, cardiac myofibrils from patients with diastolic dysfunction and preserved EF also exhibited compromised relaxation. These data suggest that agents such as HDAC inhibitors, which potentiate cardiac myofibril relaxation, hold promise for the treatment of HFpEF in humans. PMID:29437146

  19. Endogenous Modulators and Pharmacological Inhibitors of Histone Deacetylases in Cancer Therapy

    PubMed Central

    Spiegel, Sarah; Milstien, Sheldon; Grant, Steven

    2012-01-01

    The class I histone deacetylases HDAC1 and HDAC2 belong to a family of 11 zinc-dependent human HDACs and are overexpressed in many cancers. Inhibitors of these HDACs now in clinical trials show activity against several types of cancers. This review is focuse on recent advances in both clinical and preclinical efforts to understand the basis for HDACi actions, with an emphasis on implications for rational combinations with conventional or other targeted agents. We will address new perspectives on the molecular mechanisms by which HDACs act and how these actions relate to cancer. We will also review new evidence demonstrating that HDACs are direct intracellular targets of the potent sphingolipid mediator sphingosine-1-phosphate (S1P), the first identified endogenous nuclear regulator of these enzymes, linking sphingolipid metabolism in the nucleus to remodeling of chromatin and epigenetic regulation of gene expression. Understanding how endogenous molecules regulate HDAC activity in vivo may facilitate the search for safer and more effective anti-cancer drugs capable of interfering with HDAC functions in a highly specific manner. PMID:21725353

  20. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    PubMed

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Barbas, Carlos F; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  1. The effect of various zinc binding groups on inhibition of histone deacetylases 1-11.

    PubMed

    Madsen, Andreas S; Kristensen, Helle M E; Lanz, Gyrithe; Olsen, Christian A

    2014-03-01

    Histone deacetylases (HDACs) have the ability to cleave the acetyl groups of ε-N-acetylated lysine residues in a variety of proteins. Given that human cells contain thousands of different acetylated lysine residues, HDACS may regulate a wide variety of processes including some implicated in conditions such as cancer and neurodegenerative disorders. Herein we report the synthesis and in vitro biochemical profiling of a series of compounds, including known inhibitors as well as novel chemotypes, that incorporate putative new zinc binding domains. By evaluating the compound collection against all 11 recombinant human HDACs, we found that the trifluoromethyl ketone functionality provides potent inhibition of all four subclasses of the Zn(2+) -dependent HDACs. Potent inhibition was observed with two different scaffolds, demonstrating the efficiency of the trifluoromethyl ketone moiety as a zinc binding motif. Interestingly, we also identified silanediol as a zinc binding group with potential for future development of non-hydroxamate class I and class IIb HDAC inhibitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells.

    PubMed

    Liu, Jing; Livingston, Man J; Dong, Guie; Tang, Chengyuan; Su, Yunchao; Wu, Guangyu; Yin, Xiao-Ming; Dong, Zheng

    2018-02-23

    Histone deacetylase inhibitors (HDACi) have therapeutic effects in models of various renal diseases including acute kidney injury (AKI); however, the underlying mechanism remains unclear. Here we demonstrate that two widely tested HDACi (suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA)) protect the kidneys in cisplatin-induced AKI by enhancing autophagy. In cultured renal proximal tubular cells, SAHA and TSA enhanced autophagy during cisplatin treatment. We further verified the protective effect of TSA against cisplatin-induced apoptosis in these cells. Notably, inhibition of autophagy by chloroquine or by autophagy gene 7 (Atg7) ablation diminished the protective effect of TSA. In mice, TSA increased autophagy in renal proximal tubules and protected against cisplatin-induced AKI. The in vivo effect of TSA was also abolished by chloroquine and by Atg7 knockout specifically from renal proximal tubules. Mechanistically, TSA stimulated AMPK and inactivated mTOR during cisplatin treatment of proximal tubule cells and kidneys in mice. Together, these results suggest that HDACi may protect kidneys by activating autophagy in proximal tubular cells.

  3. Immunomodulatory effects of histone deacetylase inhibitors.

    PubMed

    Licciardi, P V; Ververis, K; Tang, M L; El-Osta, A; Karagiannis, T C

    2013-05-01

    Histone deacetylase inhibitors (HDACi) have emerged as a new generation of anticancer therapeutics. The classical broad-spectrum HDACi typically alter the cell cycle distribution and induce cell death, apoptosis and differentiation in malignant and transformed cells. This provides the basis for the clinical potential of HDACi in cancer therapy. Currently two compounds, suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved for by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Apart from clinical application in oncology, HDACi have also been investigated as potential therapeutics for various pathologies including those of the central nervous system (such as Huntington's disease and multiple sclerosis), cardiac conditions (particularly hypertrophy), arthritis and malaria. Further, evidence is accumulating for potent immunomodulatory effects of classical HDACi which is the focus of this review. We review the antiinflammatory effects of HDACi and in particular findings implicating regulation of the innate and adaptive immune systems by HDAC enzymes. The recent findings highlighting the immunomodulatory function of HDAC11 which relates to balancing immune activation versus tolerance are also discussed.

  4. Differential effects of trichostatin A on gelatinase A expression in 3T3 fibroblasts and HT-1080 fibrosarcoma cells: implications for use of TSA in cancer therapy.

    PubMed

    Ailenberg, Menachem; Silverman, Mel

    2003-03-07

    Trichostatin A (TSA) is a histone deacetylase (HDAC) inhibitor with potential in cancer therapeutics. In a recent communication, we demonstrated that TSA is a selective, potent inhibitor of gelatinase A in 3T3 fibroblasts. In the present study, we extend these observations and examine the effects of TSA in 3T3 fibroblasts compared to HT-1080 fibrosarcoma cells with respect to gelatinase A expression, cell viability, and apoptosis. We find that while expression of gelatinase A in 3T3 fibroblasts is exquisitely sensitive to inhibition by TSA, expression of this enzyme in HT-1080 cells is minimally affected by this compound. Moreover, we show that TSA is pro-apoptotic in HT-1080 cells, but is anti-apoptotic in 3T3 cells. We propose a two-pronged model for the therapeutic action of TSA. On the one hand TSA selectively decreases cancer cell viability, while enhancing the viability of stromal cells. On the other hand, by selectively decreasing gelatinase A expression in stromal but not cancer cells, TSA acts to control metastatic potential by reducing the ability of metastatic cells to recruit stromal cells to secrete gelatinase A.

  5. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA) on SIV-infected Chinese rhesus macaques.

    PubMed

    Ling, Binhua; Piatak, Michael; Rogers, Linda; Johnson, Ann-Marie; Russell-Lodrigue, Kasi; Hazuda, Daria J; Lifson, Jeffrey D; Veazey, Ronald S

    2014-01-01

    Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART)-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM) treated with intensive combination antiretroviral therapy (cART) and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA). SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations. Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters. The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.

  6. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance.

    PubMed

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-30

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future.

  7. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance

    PubMed Central

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-01

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future. PMID:28134290

  8. [Effect of trichostatin A on the osteogenic differentiation potential of periodontal ligament stem cells in inflammatory microenvironment induced by tumor necrosis factor-α stimulation].

    PubMed

    Wang, H; Chen, Q; Liu, W J; Yang, Z H; Li, D; Jin, F

    2016-04-09

    To compare the expression of histone deacetylase(HDAC)1-11 of human periodontal ligament stem cells(PDLSC)in normal and inflammatory microenvironments, and to investigate the effect of histone deacetylase inhibitor trichostatin A(TSA)on the osteogenic differentiation potential of PDLSC in inflammatory microenvironment induced by tumor necrosis factor-α(TNF-α)stimulation. PDLSC were isolated from periodontal ligament tissues obtained from the surgically extracted human teeth and cultured by single-colony selection. The expression of HDAC1-11 in cells with or without TNF-α(10 μg/L)stimulation was evaluated by quantitative real time-PCR(RT-PCR). The effect of TSA on cell proliferation was investigated by methyl thiazolyl tetrazolium(MTT)assay. The influence of TSA on osteogenic differentiation of PDLSC in inflammatory microenvironment with TNF-α stimulation was assessed by alizarin red staining, quantitative RT-PCR and Western blotting, respectively. The expression of HDAC in PDLSC with TNF-α stimulation was significantly higher than that in normal PDLSC(P<0.05)(except HDAC7, P=0.243). TSA had no significant effect on PDLSC proliferation at the concentration of 50 nmol/L(P=0.232). The alizarin red staining showed that PDLSC in TNF-α group generated less mineralized nodule than the control group, while the cell matrix mineralization in TSA group was improved obviously. TNF-α had an inhibitory effect on the expression of osteogenesis related genes, runt-related transcription factor-2(RUNX2)and alkaline phosphatase(ALP), with relative gene expression ratio(experimental/control)decreased to 0.17 ± 0.02 and 0.32 ± 0.03, while TSA could significantly increase the genes' expression to 0.67±0.03 and 0.89±0.02(P<0.01). Western blotting test showed that in TNF-α group the expression of osteogenesis related proteins was obviously reduced, and compared with the TNF-α group, TSA could significantly promote the expression of proteinsin inflammatory microenvironment. PDLSC in inflammatory microenvironment by TNF-α stimulation had a higher expression of HDAC than that in normal conditions. TSA, as a histone deacetylase inhibitor, could significantly promote the osteogenic differentiation potential of PDLSC in inflammatory microenvironment by suppressing HDAC.

  9. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat.

    PubMed

    Munkacsi, Andrew B; Hammond, Natalie; Schneider, Remy T; Senanayake, Dinindu S; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J; Ory, Daniel S; Maue, Robert A; Chen, Fannie W; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J; Ginsberg, Henry N; Ioannou, Yiannis A; Sturley, Stephen L

    2017-03-17

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1 nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null ( Npc1 -/- ) and missense ( Npc1 nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Creating a prosurvival phenotype through a histone deacetylase inhibitor in a lethal two-hit model.

    PubMed

    Liu, Zhengcai; Li, Yongqing; Chong, Wei; Deperalta, Danielle K; Duan, Xiuzhen; Liu, Baoling; Halaweish, Ihab; Zhou, Peter; Alam, Hasan B

    2014-02-01

    Hemorrhagic shock (HS) can initiate an exaggerated systemic inflammatory response and multiple organ failure, especially if followed by a subsequent inflammatory insult ("second hit"). We have recently shown that histone deacetylase inhibitors can improve survival in rodent models of HS or septic shock, individually. In the present study, we examined whether valproic acid (VPA), a histone deacetylase inhibitor, could prolong survival in a rodent "two-hit" model: HS followed by septic shock from cecal ligation and puncture (CLP). Male Sprague-Dawley rats (250-300 g) were subjected to sublethal HS (40% blood loss) and then randomly divided into two groups (n = 7/group): VPA and control. The VPA group was treated intraperitoneally with VPA (300 mg/kg in normal saline [NS], volume = 750 μL/kg). The control group was injected with 750 μL/kg NS. After 24 h, all rats received CLP followed immediately by injection of the same dose of VPA (VPA group) or NS (vehicle group). Survival was monitored for 10 days. In a parallel study, serum and peritoneal irrigation fluid from VPA- or vehicle-treated rats were collected 3, 6, and 24 h after CLP, and enzyme-linked immunosorbent assay was performed to analyze myeloperoxidase activity and determine tumor necrosis factor α and interleukin 6 concentrations. Hematoxylin-eosin staining of lungs at 24-h time point was performed to investigate the grade of acute lung injury. Rats treated with VPA (300 mg/kg) showed significantly higher survival rates (85.7%) compared with the control (14.3%). Moreover, VPA significantly suppressed myeloperoxidase activity (marker of neutrophil-mediated oxidative damage) and inhibited levels of proinflammatory cytokine tumor necrosis factor α and interleukin 6 in the serum and peritoneal cavity. Meanwhile, the severity of acute lung injury was significantly reduced in VPA-treated animals. We have demonstrated that VPA treatment improves survival and attenuates inflammation in a rodent two-hit model.

  11. SIRT1 Activates MAO-A in the Brain to Mediate Anxiety and Exploratory Drive

    PubMed Central

    Libert, Sergiy; Pointer, Kelli; Bell, Eric L.; Das, Abhirup; Cohen, Dena E.; Asara, John M.; Kapur, Karen; Bergmann, Sven; Preisig, Martin; Otowa, Takeshi; Kendler, Kenneth S.; Chen, Xiangning; Hettema, John M.; van den Oord, Edwin J.; Rubio, Justin P.; Guarente, Leonard

    2012-01-01

    SUMMARY SIRT1 is a NAD+-dependent deacetylase that governs a number of genetic programs to cope with changes in the nutritional status of cells and organisms. Behavioral responses to food abundance are important for the survival of higher animals. Here we used mice with increased or decreased brain SIRT1 to show that this sirtuin regulates anxiety and exploratory drive by activating transcription of the gene encoding the monoamine oxidase A (MAO-A) to reduce serotonin levels in the brain. Indeed, treating animals with MAO-A inhibitors or selective serotonin reuptake inhibitors (SSRIs) normalized anxiety differences between wild-type and mutant animals. SIRT1 deacetylates the brain-specific helix-loop-helix transcription factor NHLH2 on lysine 49 to increase its activation of the MAO-A promoter. Both common and rare variations in the SIRT1 gene were shown to be associated with risk of anxiety in human population samples. Together these data indicate that SIRT1 mediates levels of anxiety, and this regulation may be adaptive in a changing environment of food availability. PMID:22169038

  12. Epigenetic modulation with HDAC inhibitor CG200745 induces anti-proliferation in non-small cell lung cancer cells.

    PubMed

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer.

  13. Epigenetic Modulation with HDAC Inhibitor CG200745 Induces Anti-Proliferation in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer. PMID:25781604

  14. Differentiation of NUT Midline Carcinoma by Epigenomic Reprogramming

    PubMed Central

    Schwartz, Brian E.; Hofer, Matthias D.; Lemieux, Madeleine E.; Bauer, Daniel E.; Cameron, Michael J.; West, Nathan H.; Agoston, Elin S.; Reynoird, Nicolas; Khochbin, Saadi; Ince, Tan A.; Christie, Amanda; Janeway, Katherine A.; Vargas, Sara O.; Perez-Atayde, Antonio R.; Aster, Jon C.; Sallan, Stephen E.; Kung, Andrew L.; Bradner, James E.; French, Christopher A.

    2011-01-01

    NUT midline carcinoma (NMC) is a lethal pediatric tumor defined by the presence of BRD-NUT fusion proteins that arrest differentiation. Here we explore the mechanisms underlying the ability of BRD4-NUT to prevent squamous differentiation. In both gain-of and loss-of-expression assays we find that expression of BRD4-NUT is associated with globally decreased histone acetylation and transcriptional repression. Bulk chromatin acetylation can be restored by treatment of NMC cells with histone deacetylase inhibitors (HDACi), engaging a program of squamous differentiation and arrested growth in vitro that closely mimics the effects of siRNA mediated attenuation of BRD4-NUT expression. The potential therapeutic utility of HDACi differentiation therapy was established in three different NMC xenograft models, where it produced significant growth inhibition and a survival benefit. Based on these results and translational studies performed with patient-derived primary tumor cells, a child with NMC was treated with the FDA-approved HDAC inhibitor, vorinostat. An objective response was obtained after five weeks of therapy, as determined by positron emission tomography. These findings provide preclinical support for trials of HDACi in patients with NMC. PMID:21447744

  15. Targeting Lysine Deacetylases (KDACs) in Parasites

    PubMed Central

    Wang, Qi; Rosa, Bruce A.; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R.; Mitreva, Makedonka

    2015-01-01

    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in targeting Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to address the challenges of targeting specific parasitic diseases while limiting host toxicity. PMID:26402733

  16. Trithiocarbonates: exploration of a new head group for HDAC inhibitors.

    PubMed

    Dehmel, Florian; Ciossek, Thomas; Maier, Thomas; Weinbrenner, Steffen; Schmidt, Beate; Zoche, Martin; Beckers, Thomas

    2007-09-01

    Inhibition of histone deacetylases class I/II enzymes is a new, promising approach for cancer therapy. In the present study, we disclose a new structural class of HDAC inhibitors with the trithiocarbonate motif. A clear structure-activity-relationship was obtained for the cap-linker motif and the putative Zn(2+) complexing head group. Selected analogs display potent inhibition of HDAC enzymatic activity and a cellular potency comparable to that of suberoylanilide hydroxamic acid (SAHA), recently approved for treatment of patients with advanced cutaneous T-cell lymphoma.

  17. Discovery, synthesis, and pharmacological evaluation of spiropiperidine hydroxamic acid based derivatives as structurally novel histone deacetylase (HDAC) inhibitors.

    PubMed

    Varasi, Mario; Thaler, Florian; Abate, Agnese; Bigogno, Chiara; Boggio, Roberto; Carenzi, Giacomo; Cataudella, Tiziana; Dal Zuffo, Roberto; Fulco, Maria Carmela; Rozio, Marco Giulio; Mai, Antonello; Dondio, Giulio; Minucci, Saverio; Mercurio, Ciro

    2011-04-28

    New spiro[chromane-2,4'-piperidine] and spiro[benzofuran-2,4'-piperidine] hydroxamic acid derivatives as HDAC inhibitors have been identified by combining privileged structures with a hydroxamic acid moiety as zinc binding group. The compounds were evaluated for their ability to inhibit nuclear extract HDACs and for their in vitro antiproliferative activity on different tumor cell lines. This work resulted in the discovery of spirocycle 30d that shows good oral bioavailability and tumor growth inhibition in an HCT-116 murine xenograft model.

  18. Histone deacetylase 5 promotes the migration and invasion of hepatocellular carcinoma via increasing the transcription of hypoxia-inducible factor-1α under hypoxia condition.

    PubMed

    Ye, Ming; Fang, Zejun; Gu, Hongqian; Song, Rui; Ye, Jiangwei; Li, Hongzhang; Wu, Zhiguang; Zhou, Shenghui; Li, Peng; Cai, Xiang; Ding, Xiaokun; Yu, Songshan

    2017-06-01

    Hypoxia plays a critical role in the progression and metastasis of hepatocellular carcinoma by activating the key transcription factor, hypoxia-inducible factor-1. This study aims to identify the novel mechanisms underlying the dysregulation of hypoxia-inducible factor-1α in hepatocellular carcinoma. We found that histone deacetylase 5, a highly expressed histone deacetylase in hepatocellular carcinoma, strengthened the migration and invasion of hepatocellular carcinoma cells under hypoxia but not normoxia condition. Furthermore, histone deacetylase 5 induced the transcription of hypoxia-inducible factor-1α by silencing homeodomain-interacting protein kinase-2 expression, which was also dependent on hypoxia. And then knockdown of hypoxia-inducible factor-1α decreased the expressions of mesenchymal markers, N-cadherin, and Vimentin, as well as matrix metalloproteinases, MMP7 and MMP9; however, the epithelial marker, E-cadherin, increased. Phenotype experiments showed that the migration and invasion of hepatocellular carcinoma cells were impaired by knockdown of histone deacetylase 5 or hypoxia-inducible factor-1α but rescued when eliminating homeodomain-interacting protein kinase-2 in hepatocellular carcinoma cells, which suggested the critical role of histone deacetylase 5-homeodomain-interacting protein kinase-2-hypoxia-inducible factor-1α pathway in hypoxia-induced metastasis. Finally, clinical analysis confirmed the positive correlation between histone deacetylase 5 and hypoxia-inducible factor-1α in hepatocellular carcinoma specimens and a relatively poor prognosis for the patients with high levels of histone deacetylase 5 and hypoxia-inducible factor-1α. Taken together, our findings demonstrated a novel mechanism underlying the crosstalk between histone deacetylase 5 and hypoxia-inducible factor-1 in hepatocellular carcinoma.

  19. The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation

    PubMed Central

    Toki, Shinji; Goleniewska, Kasia; Reiss, Sara; Zhou, Weisong; Newcomb, Dawn C; Bloodworth, Melissa H; Stier, Matthew T; Boyd, Kelli L; Polosukhin, Vasiliy V; Subramaniam, Sriram; Peebles, R Stokes

    2016-01-01

    Background Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. Methods BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. Results We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). Conclusions These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen. PMID:27071418

  20. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation

    PubMed Central

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Xu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS-2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro-inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection validated these results. Treatment with HDACis alleviated airway inflammation and reduced in vivo RSV replication. Our data demonstrated that RSV reduced histone acetylation by enhancing HDAC2 expression. Treatment with HDACis (TSA/SAHA) significantly inhibited RSV replication and decreased RSV-induced airway inflammation and oxidative stress. Therefore, the inhibition of HDACs represents a novel therapeutic approach in modulating RSV-induced lung disease. PMID:27460781

  1. Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells

    PubMed Central

    Vasilatos, Shauna N.; Boric, Lamia; Shaw, Patrick G.; Davidson, Nancy E.

    2013-01-01

    Abnormal activities of histone lysine demethylases (KDMs) and lysine deacetylases (HDACs) are associated with aberrant gene expression in breast cancer development. However, the precise molecular mechanisms underlying the crosstalk between KDMs and HDACs in chromatin remodeling and regulation of gene transcription are still elusive. In this study, we showed that treatment of human breast cancer cells with inhibitors targeting the zinc cofactor dependent class I/II HDAC, but not NAD+ dependent class III HDAC, led to significant increase of H3K4me2 which is a specific substrate of histone lysine-specific demethylase 1 (LSD1) and a key chromatin mark promoting transcriptional activation. We also demonstrated that inhibition of LSD1 activity by a pharmacological inhibitor, pargyline, or siRNA resulted in increased acetylation of H3K9 (AcH3K9). However, siRNA knockdown of LSD2, a homolog of LSD1, failed to alter the level of AcH3K9, suggesting that LSD2 activity may not be functionally connected with HDAC activity. Combined treatment with LSD1 and HDAC inhibitors resulted in enhanced levels of H3K4me2 and AcH3K9, and exhibited synergistic growth inhibition of breast cancer cells. Finally, microarray screening identified a unique subset of genes whose expression was significantly changed by combination treatment with inhibitors of LSD1 and HDAC. Our study suggests that LSD1 intimately interacts with histone deacetylases in human breast cancer cells. Inhibition of histone demethylation and deacetylation exhibits cooperation and synergy in regulating gene expression and growth inhibition, and may represent a promising and novel approach for epigenetic therapy of breast cancer. PMID:21452019

  2. Epigenetic Manipulation of a Filamentous Fungus by the Proteasome-Inhibitor Bortezomib Induces the Production of an Additional Secondary Metabolite.

    PubMed

    VanderMolen, Karen M; Darveaux, Blaise A; Chen, Wei-Lun; Swanson, Steven M; Pearce, Cedric J; Oberlies, Nicholas H

    2014-01-01

    The use of epigenetic modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, has been explored increasingly as a technique to induce the production of additional microbial secondary metabolites. The application of such molecules to microbial cultures has been shown to upregulate otherwise suppressed genes, and in several cases has led to the production of new molecular structures. In this study, the proteasome inhibitor bortezomib was used to induce the production of an additional metabolite from a filamentous fungus (Pleosporales). The induced metabolite was previously isolated from a plant, but the configuration was not assigned until now; in addition, an analogue was isolated from a degraded sample, yielding a new compound. Proteasome inhibitors have not previously been used in this application and offer an additional tool for microbial genome mining.

  3. Towards isozyme-selective HDAC inhibitors for interrogating disease.

    PubMed

    Gupta, Praveer; Reid, Robert C; Iyer, Abishek; Sweet, Matthew J; Fairlie, David P

    2012-01-01

    Histone deacetylase (HDAC) enzymes have emerged as promising targets for the treatment of a wide range of human diseases, including cancers, inflammatory and metabolic disorders, immunological, cardiovascular, and infectious diseases. At present, such applications are limited by the lack of selective inhibitors available for each of the eighteen HDAC enzymes, with most currently available HDAC inhibitors having broad-spectrum activity against multiple HDAC enzymes. Such broad-spectrum activity maybe useful in treating some diseases like cancers, but can be detrimental due to cytotoxic side effects that accompany prolonged treatment of chronic diseased states. Here we summarize progress towards the design and discovery of HDAC inhibitors that are selective for some of the eleven zinc-containing classical HDAC enzymes, and identify opportunities to use such isozyme-selective inhibitors as chemical probes for interrogating the biological roles of individual HDAC enzymes in diseases.

  4. Long-term phenylbutyrate administration prevents memory deficits in Tg2576 mice by decreasing Abeta.

    PubMed

    Ricobaraza, Ana; Cuadrado-Tejedor, Mar; Garcia-Osta, Ana

    2011-06-01

    Aberrations in protein folding, processing, and/or degradation are common features of neurodegenerative diseases, such as Alzheimer's disease (AD). Sodium 4-phenylbutyrate (PBA) is a well-known histone deacetylase inhibitor, which increases gene transcription of a number of genes, and also exerts neuroprotective effects. PBA acts as a chemical chaperone reducing the load of mutant or unfolded proteins during cellular stress. Previously, we reported that 5-week administration of PBA reinstated memory loss and dendritic spine densities in the Tg2576 mouse model of AD. In this study we reported that chronic administration of PBA, starting before the onset of disease symptoms (6 month-old) prevents age-related memory deficits in Tg2576 mice. The amelioration of the memory impairment is associated to a decrease in amyloid beta pathology and the glial fibrillary acidic protein (GFAP), suggesting that inflammation was reduced in PBA-treated animals. Together, the beneficial effects of PBA make it a promising agent for the prevention of AD.

  5. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma.

    PubMed

    Zhang, Heng; Liu, Limei; Liu, Chungang; Pan, Jinhong; Lu, Gensheng; Zhou, Zhansong; Chen, Zhiwen; Qian, Cheng

    2017-05-23

    Abnormal activation of Notch signaling is involved in the etiology of various diseases, including cancer, but the association between Notch3 expression in urothelial cancer and clinical outcome remains unclear, and the molecular mechanisms underlying Notch3 signaling activation are not well defined. In this study we examined 59 urothelial cancer patients and found that Notch3 was more highly expressed in human urothelial cancer tissues than in non-tumorous bladder tissue samples, with Notch3 overexpression being associated with poor clinical outcome. Notch3 knockdown resulted in decreased proliferation of urothelial cancer cells in vitro and decreased xenograft tumor growth in vivo. In addition, Notch3 knockdown rendered urothelial cancer cells more sensitive to cisplatin. Furthermore, suberoylanilide hydroxamic acid (SAHA, a histone deacetylase [HDAC] inhibitor) induced acetylation of NOTCH3, downregulated Notch 3, prevented urothelial cancer cell proliferation, and induced cell cycle arrest. Taken together, these data suggested that Notch 3 overexpression promotes growth and chemoresistance in urothelial cancer.

  6. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma

    PubMed Central

    Zhang, Heng; Liu, Limei; Liu, Chungang; Pan, Jinhong; Lu, Gensheng; Zhou, Zhansong; Chen, Zhiwen; Qian, Cheng

    2017-01-01

    Abnormal activation of Notch signaling is involved in the etiology of various diseases, including cancer, but the association between Notch3 expression in urothelial cancer and clinical outcome remains unclear, and the molecular mechanisms underlying Notch3 signaling activation are not well defined. In this study we examined 59 urothelial cancer patients and found that Notch3 was more highly expressed in human urothelial cancer tissues than in non-tumorous bladder tissue samples, with Notch3 overexpression being associated with poor clinical outcome. Notch3 knockdown resulted in decreased proliferation of urothelial cancer cells in vitro and decreased xenograft tumor growth in vivo. In addition, Notch3 knockdown rendered urothelial cancer cells more sensitive to cisplatin. Furthermore, suberoylanilide hydroxamic acid (SAHA, a histone deacetylase [HDAC] inhibitor) induced acetylation of NOTCH3, downregulated Notch 3, prevented urothelial cancer cell proliferation, and induced cell cycle arrest. Taken together, these data suggested that Notch 3 overexpression promotes growth and chemoresistance in urothelial cancer. PMID:28416766

  7. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?

    PubMed

    Harrison, Ian F; Dexter, David T

    2013-10-01

    Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD? Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design. Copyright © 2014 John Wiley & Sons, Ltd.

  9. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  10. Selective inhibition of class I but not class IIb histone deacetylases exerts cardiac protection from ischemia reperfusion

    PubMed Central

    Aune, Sverre E.; Herr, Daniel J.; Mani, Santhosh K.; Menick, Donald R.

    2014-01-01

    While inhibition of class I/IIb histone deacetylases (HDACs) protects the mammalian heart from ischemia reperfusion (IR) injury, class selective effects remain unexamined. We hypothesized that selective inhibition of class I HDACs would preserve left ventricular contractile function following IR in isolated hearts. Male Sprague Dawley rats (n=6 per group) were injected with vehicle (dimethylsulfoxide, 0.63 mg/kg), the class I/IIb HDAC inhibitor trichostatin A (1 mg/kg), the class I HDAC inhibitor entinostat (MS-275, 10 mg/kg), or the HDAC6 (class IIb) inhibitor tubastatin A (10 mg/kg). After 24 h, hearts were isolated and perfused in Langendorff mode for 30 min (Sham) or subjected to 30 min global ischemia and 120 min global reperfusion (IR). A saline filled balloon attached to a pressure transducer was placed in the LV to monitor contractile function. After perfusion, LV tissue was collected for measurements of antioxidant protein levels and infarct area. At the conclusion of IR, MS-275 pretreatment was associated with significant preservation of developed pressure, rate of pressure generation, rate of pressure relaxation and rate pressure product, as compared to vehicle treated hearts. There was significant reduction of infarct area with MS-275 pretreatment. Contractile function was not significantly restored in hearts treated with trichostatin A or tubastatin A. Mitochondrial superoxide dismutase (SOD2) and catalase protein and mRNA in hearts from animals pretreated with MS-275 were increased following IR, as compared to Sham. This was associated with a dramatic enrichment of nuclear FOXO3a transcription factor, which mediates the expression of SOD2 and catalase. Tubastatin A treatment was associated with significantly decreased catalase levels after IR. Class I HDAC inhibition elicits protection of contractile function following IR, which is associated with increased expression of endogenous antioxidant enzymes. Class I/IIb HDAC inhibition with trichostatin A or selective inhibition of HDAC6 with tubastatin A was not protective. This study highlights the need for the development of new strategies that target specific HDAC isoforms in cardiac ischemia reperfusion. PMID:24632412

  11. Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma.

    PubMed

    Matthews, G M; Lefebure, M; Doyle, M A; Shortt, J; Ellul, J; Chesi, M; Banks, K M; Vidacs, E; Faulkner, D; Atadja, P; Bergsagel, P L; Johnstone, R W

    2013-09-12

    Multiple myeloma (MM) is an incurable malignancy with an unmet need for innovative treatment options. Histone deacetylase inhibitors (HDACi) are a new class of anticancer agent that have demonstrated activity in hematological malignancies. Here, we investigated the efficacy and safety of HDACi (vorinostat, panobinostat, romidepsin) and novel combination therapies using in vitro human MM cell lines and in vivo preclinical screening utilizing syngeneic transplanted Vk*MYC MM. HDACi were combined with ABT-737, which targets the intrinsic apoptosis pathway, recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL/MD5-1), that activates the extrinsic apoptosis pathway or the DNA methyl transferase inhibitor 5-azacytidine. We demonstrate that in vitro cell line-based studies provide some insight into drug activity and combination therapies that synergistically kill MM cells; however, they do not always predict in vivo preclinical efficacy or toxicity. Importantly, utilizing transplanted Vk*MYC MM, we report that panobinostat and 5-azacytidine synergize to prolong the survival of tumor-bearing mice. In contrast, combined HDACi/rhTRAIL-based strategies, while efficacious, demonstrated on-target dose-limiting toxicities that precluded prolonged treatment. Taken together, our studies provide evidence that the transplanted Vk*MYC model of MM is a useful screening tool for anti-MM drugs and should aid in the prioritization of novel drug testing in the clinic.

  12. Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma

    PubMed Central

    Matthews, G M; Lefebure, M; Doyle, M A; Shortt, J; Ellul, J; Chesi, M; Banks, K-M; Vidacs, E; Faulkner, D; Atadja, P; Bergsagel, P L; Johnstone, R W

    2013-01-01

    Multiple myeloma (MM) is an incurable malignancy with an unmet need for innovative treatment options. Histone deacetylase inhibitors (HDACi) are a new class of anticancer agent that have demonstrated activity in hematological malignancies. Here, we investigated the efficacy and safety of HDACi (vorinostat, panobinostat, romidepsin) and novel combination therapies using in vitro human MM cell lines and in vivo preclinical screening utilizing syngeneic transplanted Vk*MYC MM. HDACi were combined with ABT-737, which targets the intrinsic apoptosis pathway, recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL/MD5-1), that activates the extrinsic apoptosis pathway or the DNA methyl transferase inhibitor 5-azacytidine. We demonstrate that in vitro cell line-based studies provide some insight into drug activity and combination therapies that synergistically kill MM cells; however, they do not always predict in vivo preclinical efficacy or toxicity. Importantly, utilizing transplanted Vk*MYC MM, we report that panobinostat and 5-azacytidine synergize to prolong the survival of tumor-bearing mice. In contrast, combined HDACi/rhTRAIL-based strategies, while efficacious, demonstrated on-target dose-limiting toxicities that precluded prolonged treatment. Taken together, our studies provide evidence that the transplanted Vk*MYC model of MM is a useful screening tool for anti-MM drugs and should aid in the prioritization of novel drug testing in the clinic. PMID:24030150

  13. Clinical use and applications of histone deacetylase inhibitors in multiple myeloma

    PubMed Central

    Tandon, Nidhi; Ramakrishnan, Vijay; Kumar, Shaji K

    2016-01-01

    The incorporation of various novel therapies has resulted in a significant survival benefit in newly diagnosed and relapsed patients with multiple myeloma (MM) over the past decade. Despite these advances, resistance to therapy leads to eventual relapse and fatal outcomes in the vast majority of patients. Hence, there is an unmet need for new safe and efficacious therapies for continued improvement in outcomes. Given the role of epigenetic aberrations in the pathogenesis and progression of MM and the success of histone deacetylase inhibitors (HDACi) in other malignancies, many HDACi have been tried in MM. Various preclinical studies helped us to understand the antimyeloma activity of different HDACi in MM as a single agent or in combination with conventional, novel, and immune therapies. The early clinical trials of HDACi depicted only modest single-agent activity, but recent studies have revealed encouraging clinical response rates in combination with other antimyeloma agents, especially proteasome inhibitors. This led to the approval of the combination of panobinostat and bortezomib for the treatment of relapsed/refractory MM patients with two prior lines of treatment by the US Food and Drug Administration. However, it remains yet to be defined how we can incorporate HDACi in the current therapeutic paradigms for MM that will help to achieve longer disease control and significant survival benefits. In addition, isoform-selective and/or class-selective HDAC inhibition to reduce unfavorable side effects needs further evaluation. PMID:27226735

  14. Sodium valproate, a histone deacetylase inhibitor, enhances the efficacy of vinorelbine-cisplatin-based chemoradiation in non-small cell lung cancer cells.

    PubMed

    Gavrilov, Vladimir; Lavrenkov, Konstantin; Ariad, Samuel; Shany, Shraga

    2014-11-01

    To enhance the anticancer activity of vinorelbine, cisplatin and ionizing radiation (IR) combination against non-small cell lung cancer (NSCLC) cells by co-administration of sodium valproate (VPA), a histone deacetylase inhibitor, and to elucidate molecular events underpinning treatment efficacy. The NSCLC A549 cell line was treated with cisplatin (0.2 μg/ml), vinorelbine (2 nM), VPA (1 mM) and IR (2.5 Gy) alone, or in combination. Cell proliferation, cell-cycle distribution, apoptosis, and levels of DNA double-strand breaks, activated DNA damage checkpoint kinases pCHK1, pCHK2, cell-cycle inhibitors p21CIP1/WAF1 and p27KIP1 were assessed. VPA markedly enhanced the DNA-damaging effect of the cisplatin-vinorelbine-IR combination and induced increased DSBs, and expression of pCHK2, pCHK1, p21CIP1/WAF1 and p27KIP1. These molecular changes led to cell-cycle arrest and increased apoptosis and consequently markedly curtailed cancer cell growth. VPA markedly enhances the anticancer activity of cisplatin-vinorelbine-IR combination. This finding has translational implications for enhancing the efficacy of anticancer treatment and for reducing side-effects by reducing doses of radiation and drugs. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Suppression of BMP-7 by histone deacetylase 2 promoted apoptosis of renal tubular epithelial cells in acute kidney injury

    PubMed Central

    Ma, Taotao; Huang, Cheng; Xu, Qingqing; Yang, Yang; Liu, Yaru; Meng, Xiaoming; Li, Jun; Ye, Min; Liang, Hong

    2017-01-01

    Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by histone deacetylase (HDAC) inhibitors via epigenetic modification to enhance bone morphogenetic protein 7 (BMP-7) expression. Cisplatin upregulated the activity of HDAC2 in the kidney. Inhibition of HDAC with clinically used trichostatin A (TSA) or valproic acid (VPA) suppressed cisplatin-induced kidney injury and epithelial cell apoptosis. Overexpression of HDAC2 promotes CP-treated tubular epithelium cells apoptosis. Chromatin immunoprecipitation assay clearly detected HDAC2 assosiation with BMP-7 promoter. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by TSA or VPA in vivo and in vitro. Interestingly, administration of recombinant BMP-7 (rhBMP-7) reduced cisplatin-induced kidney dysfunction. Moreover, BMP-7 treatment suppressed epithelial cell apoptosis and small interfering RNA-based knockdown of BMP-7 expression abolished HDAC inhibitors suppression of epithelial cell apoptosis in vitro. Results of current study indicated that TSA or VPA inhibited apoptosis of renal tubular epithelial cells via promoting the level of BMP-7 epigenetically through targeting HDAC2. Hence, HDAC inhibitors could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:29072686

  16. Suppression of Class I and II Histone Deacetylases Blunts Pressure-Overload Cardiac Hypertrophy

    PubMed Central

    Kong, Yongli; Tannous, Paul; Lu, Guangrong; Berenji, Kambeez; Rothermel, Beverly A.; Olson, Eric N.; Hill, Joseph A.

    2014-01-01

    Background Recent work has demonstrated the importance of chromatin remodeling, especially histone acetylation, in the control of gene expression in the heart. In cell culture models of cardiac hypertrophy, pharmacological suppression of histone deacetylases (HDACs) can either blunt or amplify cell growth. Thus, HDAC inhibitors hold promise as potential therapeutic agents in hypertrophic heart disease. Methods and Results In the present investigation, we studied 2 broad-spectrum HDAC inhibitors in a physiologically relevant banding model of hypertrophy, observing dose-responsive suppression of ventricular growth that was well tolerated in terms of both clinical outcome and cardiac performance measures. In both short-term (3-week) and long-term (9-week) trials, cardiomyocyte growth was blocked by HDAC inhibition, with no evidence of cell death or apoptosis. Fibrotic change was diminished in hearts treated with HDAC inhibitors, and collagen synthesis in isolated cardiac fibroblasts was blocked. Preservation of systolic function in the setting of blunted hypertrophic growth was documented by echocardiography and by invasive pressure measurements. The hypertrophy-associated switch of adult and fetal isoforms of myosin heavy chain expression was attenuated, which likely contributed to the observed preservation of systolic function in HDAC inhibitor–treated hearts. Conclusions Together, these data suggest that HDAC inhibition is a viable therapeutic strategy that holds promise in the treatment of load-induced heart disease. PMID:16735673

  17. Influenza A Virus Dysregulates Host Histone Deacetylase 1 That Inhibits Viral Infection in Lung Epithelial Cells

    PubMed Central

    Nagesh, Prashanth Thevkar

    2016-01-01

    ABSTRACT Viruses dysregulate the host factors that inhibit virus infection. Here, we demonstrate that human enzyme, histone deacetylase 1 (HDAC1) is a new class of host factor that inhibits influenza A virus (IAV) infection, and IAV dysregulates HDAC1 to efficiently replicate in epithelial cells. A time-dependent decrease in HDAC1 polypeptide level was observed in IAV-infected cells, reducing to <50% by 24 h of infection. A further depletion (97%) of HDAC1 expression by RNA interference increased the IAV growth kinetics, increasing it by >3-fold by 24 h and by >6-fold by 48 h of infection. Conversely, overexpression of HDAC1 decreased the IAV infection by >2-fold. Likewise, a time-dependent decrease in HDAC1 activity, albeit with slightly different kinetics to HDAC1 polypeptide reduction, was observed in infected cells. Nevertheless, a further inhibition of deacetylase activity increased IAV infection in a dose-dependent manner. HDAC1 is an important host deacetylase and, in addition to its role as a transcription repressor, HDAC1 has been lately described as a coactivator of type I interferon response. Consistent with this property, we found that inhibition of deacetylase activity either decreased or abolished the phosphorylation of signal transducer and activator of transcription I (STAT1) and expression of interferon-stimulated genes, IFITM3, ISG15, and viperin in IAV-infected cells. Furthermore, the knockdown of HDAC1 expression in infected cells decreased viperin expression by 58% and, conversely, the overexpression of HDAC1 increased it by 55%, indicating that HDAC1 is a component of IAV-induced host type I interferon antiviral response. IMPORTANCE Influenza A virus (IAV) continues to significantly impact global public health by causing regular seasonal epidemics, occasional pandemics, and zoonotic outbreaks. IAV is among the successful human viral pathogens that has evolved various strategies to evade host defenses, prevent the development of a universal vaccine, and acquire antiviral drug resistance. A comprehensive knowledge of IAV-host interactions is needed to develop a novel and alternative anti-IAV strategy. Host produces a variety of factors that are able to fight IAV infection by employing various mechanisms. However, the full repertoire of anti-IAV host factors and their antiviral mechanisms has yet to be identified. We have identified here a new host factor, histone deacetylase 1 (HDAC1) that inhibits IAV infection. We demonstrate that HDAC1 is a component of host innate antiviral response against IAV, and IAV undermines HDAC1 to limit its role in antiviral response. PMID:26912629

  18. 4-N-Hydroxy-4-[1-(sulfonyl)piperidin-4-yl]-butyramides as HDAC inhibitors.

    PubMed

    Rossi, Cristina; Fincham, Christopher I; D'Andrea, Piero; Porcelloni, Marina; Ettorre, Alessandro; Mauro, Sandro; Bigioni, Mario; Binaschi, Monica; Maggi, Carlo A; Nardelli, Federica; Parlani, Massimo; Fattori, Daniela

    2011-11-15

    A series of N-substituted 4-alkylpiperidine hydroxamic acids, corresponding to the basic structure of histone deacetylase (HDAC) inhibitors (zinc binding moiety-linker-capping group) has been previously reported by our group. Linker length and aromatic capping group connection were systematically varied to find the optimal geometric parameters. A new series of submicromolar inhibitors was thus identified, which showed antiproliferative activity on HCT-116 colon carcinoma cells. We report here the second part of the strategy used in our research group to find a new class of HDAC inhibitors, namely the SAR study for the compounds bearing a sulfonyl group on the piperidine nitrogen. In the present work, we have considered both sulfonamides and sulfonyl ureas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A novel histone deacetylase inhibitor prevents IL‐1β induced metabolic dysfunction in pancreatic β‐cells

    PubMed Central

    Susick, Laura; Senanayake, Thulani; Veluthakal, Rajakrishnan; Woster, Patrick M.

    2009-01-01

    Abstract The histone deacetylase (HDAC) inhibitor trichostatin A (TSA) has recently been shown to inhibit deleterious effects of cytokines on β‐cells, but it is unable to protect β‐cells from death due to its own cytotoxicity. Herein, we investigated novel HDAC inhibitors for their cytoprotective effects against IL‐1β‐induced damage to isolated β‐cells. We report that three novel compounds (THS‐73–44, THS‐72–5 and THS‐78–5) significantly inhibited HDAC activity and increased the acetylation of histone H4 in isolated β‐cells. Further, these compounds exerted no toxic effects on metabolic cell viability in these cells. However, among the three compounds tested, only THS‐78–5 protected against IL‐1β‐mediated loss in β‐cell viability. THS‐78–5 was also able to attenuate IL‐1β‐induced inducible nitric oxide synthase expression and subsequent NO release. Our data also indicate that the cytoprotective properties of THS‐78–5 against IL‐1β‐mediated effects may, in part, be due to inhibition of IL‐1β‐induced transactivation of nuclear factor κB (NF‐κB) in these cells. Together, we provide evidence for a novel HDAC inhibitor with a significant potential to prevent IL‐1β‐mediated effects on isolated β‐cells. Potential implications of these findings in the development of novel therapeutics to prevent deleterious effects of cytokines and the onset of autoimmune diabetes are discussed. PMID:20141611

  20. From the bench to the bedside: emerging new treatments in multiple myeloma

    PubMed Central

    Mitsiades, Constantine S.; Hayden, Patrick J.; Anderson, Kenneth C.; Richardson, Paul G.

    2012-01-01

    Within the last decade, several novel classes of anti-myeloma therapeutics have become available. The clinical successes achieved by thalidomide, lenalidomide, and the proteasome inhibitor bortezomib, and in particular the ability of these agents to lead to major clinical responses in patients resistant to conventional or high-dose chemotherapy, have highlighted the importance of expanding even further the spectrum of classes of agents utilized for the treatment of myeloma. Herein, we review the current state of the field of development of novel anti-myeloma agents, with emphasis on classes of therapeutics which have already translated into clinical trials or those in advanced stages of preclinical development. These include second-generation proteasome inhibitors (NPI-0052 and PR-171), heat shock protein 90 (hsp90) inhibitors, 2-methoxyestradiol, histone deacetylase (HDAC) inhibitors (e.g. SAHA, tubacin and LBH589), fibroblast growth factor receptor 3 (FGF-R3) inhibitors, insulin-like growth factor 1 receptor (IGF-1R) inhibitors, mTOR inhibitors, monoclonal antibodies, and agents targeting the tumor microenvironment, including defibrotide. PMID:18070720

  1. Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat.

    PubMed

    Choi, Sin Young; Kee, Hae Jin; Jin, Li; Ryu, Yuhee; Sun, Simei; Kim, Gwi Ran; Jeong, Myung Ho

    2018-05-01

    Histone deacetylase (HDAC) inhibitors are gaining increasing attention as potential therapeutics for cardiovascular diseases as well as cancer. We recently reported that the class II HDAC inhibitor, MC1568, and the phytochemical, gallic acid, lowered high blood pressure in mouse models of hypertension. We hypothesized that class II HDACs may be involved in the regulation of hypertension. The aim of this study was to determine and compare the effects of well-known HDAC inhibitors (TMP269, panobinostat, and MC1568), phytochemicals (gallic acid, sulforaphane, and piceatannol), and anti-hypertensive drugs (losartan, carvedilol, and furosemide) on activities of class IIa HDACs (HDAC4, 5, 7, and 9). The selective class IIa HDAC inhibitor, TMP269, and the pan-HDAC inhibitor, panobinostat, but not MC1568, clearly inhibited class IIa HDAC activities. Among the three phytochemicals, gallic acid showed remarkable inhibition, whereas sulforaphane presented mild inhibition of class IIa HDACs. Piceatannol inhibited only HDAC7 activity. As expected, the anti-hypertensive drugs losartan, carvedilol, and furosemide did not affect the activity of any class IIa HDAC. In addition, we evaluated the inhibitory effect of several compounds on the activity of class l HDACs (HDAC1, 2, 3, and 8) and class IIb HDAC (HDAC6). MC1568 did not affect the activities of HDAC1, HDAC2, and HDAC3, but it reduced the activity of HDAC8 at concentrations of 1 and 10 μM. Gallic acid weakly inhibited HDAC1 and HDAC6 activities, but strongly inhibited HDAC8 activity with effectiveness comparable to that of trichostatin A. Inhibition of HDAC2 activity by sulforaphane was stronger than that by piceatnnaol. These results indicated that gallic acid is a powerful dietary inhibitor of HDAC8 and class IIa/b HDAC activities. Sulforaphane may also be used as a dietary inhibitor of HDAC2 and class IIa HDAC. Our findings suggest that the class II HDAC inhibitor, MC1568, does not inhibit class IIa HDAC, but inhibits HDAC8. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Histone deacetylase inhibitors reduce differentiating osteoblast-mediated protection of acute myeloid leukemia cells from cytarabine

    PubMed Central

    Sterner, Rosalie M.; Kremer, Kimberly N.; Al-Kali, Aref; Patnaik, Mrinal M.; Gangat, Naseema; Litzow, Mark R.; Kaufmann, Scott H.; Westendorf, Jennifer J.; van Wijnen, Andre J.; Hedin, Karen E.

    2017-01-01

    The bone marrow microenvironment protects acute myeloid leukemia (AML) cells during chemotherapy and is a major factor in relapse. Here, we examined which type(s) of bone marrow cells are responsible for the relapse of AML following treatment with cytarabine (Ara-C), and we identified a means to inhibit this protection. To determine the protective cell type(s), AML cells were treated with Ara-C, and AML cell survival in the presence or absence of osteoblast lineage cells was assessed. Cultured AML cells and patient bone marrow isolates were each significantly protected from Ara-C-induced apoptosis by co-culture with differentiating osteoblasts. Moreover, pretreating differentiating osteoblasts with the histone deacetylase inhibitors (HDACi) vorinostat and panobinostat abrogated the ability of the differentiating osteoblasts to protect AML cells. Together, our results indicate that differentiating osteoblasts have the potential to promote residual AML in the bone marrow following standard chemotherapy and act via a mechanism requiring HDACi-sensitive gene expression. Using HDACi to target the leukemic microenvironment in combination with Ara-C could potentially improve treatment of AML. Moreover, other strategies for manipulating bone marrow osteoblasts may also help eradicate AML cells and reduce relapse. PMID:29212250

  3. Discovery of N-hydroxy-4-(3-phenylpropanamido)benzamide derivative 5j, a novel histone deacetylase inhibitor, as a potential therapeutic agent for human breast cancer.

    PubMed

    Feng, Jinhong; Fang, Hao; Wang, Xuejian; Jia, Yuping; Zhang, Lei; Jiao, Jie; Zhang, Jian; Gu, Lichuan; Xu, Wenfang

    2011-03-01

    A novel series of N-hydroxy-4-(3-phenylpropanamido)benzamide (HPPB) derivatives comprising N-hydroxybenzamide group as zinc-chelating moiety were designed, synthesized and evaluated as histone deacetylases inhibitors. The thiophene substituted derivative 5j exhibited the best HDAC inhibition activity among these compounds. The present study was designed to evaluate the efficacy of 5j as a candidate compound for cancer therapy. Our results indicated that 5j exhibited better HDAC1, 8 and hela nuclear extract inhibition activities than SAHA, and good antiproliferative activities against a broad spectrum of human cancer cell lines especially for breast cancer. 5j induced cell cycle arrest at G(2)/M phase, and eventual apoptosis possibly by modulating p21, caspase-3 and Bcl-x(L) on MDA-MB-231 cells. In addition, 5j down regulated the active form of MMP2, and inhibited the invasion of MDA-MB-231 cell lines. Moreover, 5j significantly delayed the growth of MDA-MB-231 xenografts in mice after 3 weeks of peritoneal injection. In summary, our results suggest that 5j might have therapeutic potential for the treatment of human breast cancer.

  4. Histone deacetylase inhibitor stimulates E2 and P4 secretion in sika deer ovarian granulosa cells at a moderate dose.

    PubMed

    Xing, Mingjie; Chen, Xiumin; Li, Xiaoxia; Yang, Yifeng; Wang, Xiaoxu; Cao, Xinyan; Xue, Hailong; Wang, Shiyong; Diao, Yunfei; Zhao, Weigang; Zhao, Meng; Cui, Xuezhe; Chang, Tong; Xu, Baozeng; Wei, Haijun

    2018-03-01

    The histone deacetylase inhibitor (HDACi) and tumor suppressor play an important role in genome reorganization and epigenetic regulation. In this study, granulosa cells (GCs) isolated from sika deer ovaries were cultured and treated with different concentrations of trichostatin A (TSA) for 48 h. It was found that TSA inhibited GCs proliferation and induced GCs apoptosis by upregulating expression of BAX, meanwhile, downregulating expression of GLUT3, GLUT8, BCL-XL. In addition, TSA caused cell cycle arrest at the G1 and G2/M phase accompanied by reducing expression of Cyclin D2 and CDK4. TSA pretreatment increased DNMT3a, DNMT1, HDAC1, and HAT1 expression, and attenuated them when TAS higher than 50 nM. The protein levels of H3K9ac and H4K8ac in GCs were increased at 48 h after TSA treatment. TSA stimulated the secretion of estradiol and progesterone at a moderate dose. Our data suggest that TSA is important as a regulator of steroid hormone synthesis in granulosa cells during follicular development in the sika deer ovary. © 2018 International Federation for Cell Biology.

  5. Transcription factor Sox4 is required for PUMA-mediated apoptosis induced by histone deacetylase inhibitor, TSA.

    PubMed

    Jang, Sang-Min; Kang, Eun-Jin; Kim, Jung-Woong; Kim, Chul-Hong; An, Joo-Hee; Choi, Kyung-Hee

    2013-08-23

    PUMA is a crucial regulator of apoptotic cell death mediated by p53-dependent and p53-independent mechanisms. In many cancer cells, PUMA expression is induced in response to DNA-damaging reagent in a p53-dependent manner. However, few studies have investigated transcription factors that lead to the induction of PUMA expression via p53-independent apoptotic signaling. In this study, we found that the transcription factor Sox4 increased PUMA expression in response to trichostatin A (TSA), a histone deacetylase inhibitor in the p53-null human lung cancer cell line H1299. Ectopic expression of Sox4 led to the induction of PUMA expression at the mRNA and protein levels, and TSA-mediated up-regulation of PUMA transcription was repressed by the knockdown of Sox4. Using luciferase assays and chromatin immunoprecipitation, we also determined that Sox4 recruits p300 on the PUMA promoter region and increases PUMA gene expression in response to TSA treatment. Taken together, these results suggest that Sox4 is required for p53-independent apoptotic cell death mediated by PUMA induction via TSA treatment. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Attenuation of Choroidal Neovascularization by Histone Deacetylase Inhibitor

    PubMed Central

    Chan, Nymph; He, Shikun; Spee, Christine K.; Ishikawa, Keijiro; Hinton, David R.

    2015-01-01

    Choroidal neovascularization (CNV) is a blinding complication of age-related macular degeneration that manifests as the growth of immature choroidal blood vessels through Bruch’s membrane, where they can leak fluid or hemorrhage under the retina. Here, we demonstrate that the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) can down-regulate the pro-angiogenic hypoxia-inducible factor-1α and vascular endothelial growth factor (VEGF), and up-regulate the anti-angiogenic and neuro-protective pigment epithelium derived factor in human retinal pigment epithelial (RPE) cells. Most strikingly, TSA markedly down-regulates the expression of VEGF receptor-2 in human vascular endothelial cells and, thus, can knock down pro-angiogenic cell signaling. Additionally, TSA suppresses CNV-associated wound healing response and RPE epithelial-mesenchymal transdifferentiation. In the laser-induced model of CNV using C57Bl/6 mice, systemic administration of TSA significantly reduces fluorescein leakage and the size of CNV lesions at post—laser days 7 and 14 as well as the immunohistochemical expression of VEGF, VEGFR2, and smooth muscle actin in CNV lesions at post-laser day 7. This report suggests that TSA, and possibly HDACi’s in general, should be further evaluated for their therapeutic potential for the treatment of CNV. PMID:25807249

  7. Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients.

    PubMed

    Almeida, Sandra; Gao, Fuying; Coppola, Giovanni; Gao, Fen-Biao

    2016-06-01

    Mutations in the granulin (GRN) gene cause frontotemporal dementia (FTD) due to progranulin haploinsufficiency. Compounds that can increase progranulin production and secretion may be considered as potential therapeutic drugs; however, very few of them have been directly tested on human cortical neurons. To this end, we differentiated 9 induced pluripotent stem cell lines derived from a control subject, a sporadic FTD case and an FTD patient with progranulin S116X mutation. Treatment with 1 μM suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, increased the production of progranulin in cortical neurons of all subjects at both the mRNA and protein levels without affecting their viability. Microarray analysis revealed that SAHA treatment not only reversed some gene expression changes caused by progranulin haploinsufficiency but also caused massive alterations in the overall transcriptome. Thus, histone deacetylase inhibitors may be considered as therapeutic drugs for GRN mutation carriers. However, this class of drugs also causes drastic changes in overall gene expression in human cortical neurons and their side effects and potential impacts on other pathways should be carefully evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors

    PubMed Central

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 –which resides mainly in resting CD4+ T cells–is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection. PMID:26933881

  9. Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts.

    PubMed

    McGee-Lawrence, Meghan E; McCleary-Wheeler, Angela L; Secreto, Frank J; Razidlo, David F; Zhang, Minzhi; Stensgard, Bridget A; Li, Xiaodong; Stein, Gary S; Lian, Jane B; Westendorf, Jennifer J

    2011-05-01

    Histone deacetylase (Hdac) inhibitors are used clinically to treat cancer and epilepsy. Although Hdac inhibition accelerates osteoblast maturation and suppresses osteoclast maturation in vitro, the effects of Hdac inhibitors on the skeleton are not understood. The purpose of this study was to determine how the pan-Hdac inhibitor, suberoylanilide hydroxamic acid (SAHA; a.k.a. vorinostat or Zolinza(TM)) affects bone mass and remodeling in vivo. Male C57BL/6J mice received daily SAHA (100mg/kg) or vehicle injections for 3 to 4weeks. SAHA decreased trabecular bone volume fraction and trabecular number in the distal femur. Cortical bone at the femoral midshaft was not affected. SAHA reduced serum levels of P1NP, a bone formation marker, and also suppressed tibial mRNA levels of type I collagen, osteocalcin and osteopontin, but did not alter Runx2 or osterix transcripts. SAHA decreased histological measures of osteoblast number but interestingly increased indices of osteoblast activity including mineral apposition rate and bone formation rate. Neither serum (TRAcP 5b) nor histological markers of bone resorption were affected by SAHA. P1NP levels returned to baseline in animals which were allowed to recover for 4weeks after 4weeks of daily SAHA injections, but bone density remained low. In vitro, SAHA suppressed osteogenic colony formation, decreased osteoblastic gene expression, induced cell cycle arrest, and caused DNA damage in bone marrow-derived adherent cells. Collectively, these data demonstrate that bone loss following treatment with SAHA is primarily due to a reduction in osteoblast number. Moreover, these decreases in osteoblast number can be attributed to the deleterious effects of SAHA on immature osteoblasts, even while mature osteoblasts are resistant to the harmful effects and demonstrate increased activity in vivo, indicating that the response of osteoblasts to SAHA is dependent upon their differentiation state. These studies suggest that clinical use of SAHA and other Hdac inhibitors to treat cancer, epilepsy or other conditions may potentially compromise skeletal structure and function. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Ginsenoside Rg3 Inhibits Melanoma Cell Proliferation through Down-Regulation of Histone Deacetylase 3 (HDAC3) and Increase of p53 Acetylation

    PubMed Central

    Shan, Xiu; Fu, Yuan-Shan; Aziz, Faisal; Wang, Xiao-Qi; Yan, Qiu; Liu, Ji-Wei

    2014-01-01

    Malignant melanoma is an aggressive and deadly form of skin cancer, and despite recent advances in available therapies, is still lacking in completely effective treatments. Rg3, a monomer extracted from ginseng roots, has been attempted for the treatment of many cancers. It is reported that the expressions of histone deacetylase 3 (HDAC3) and p53 acetylation correlate with tumor cell growth. However, the antitumor effect of Rg3 on melanoma and the mechanism by which it regulates HDAC3 expression and p53 acetylation remain unknown. We found high expression of HDAC3 in human melanoma tissues to be significantly correlated to lymph node metastasis and clinical stage of disease (p<0.05). In melanoma cells, Rg3 inhibited cell proliferation and induced G0/G1 cell cycle arrest. Rg3 also decreased the expression of HDAC3 and increased the acetylation of p53 on lysine (k373/k382). Moreover, suppression of HDAC3 by either siRNA or a potent HDAC3 inhibitor (MS-275) inhibited cell proliferation, increased p53 acetylation and transcription activity. In A375 melanoma xenograft studies, we demonstrated that Rg3 and HDAC3 short hairpin RNA (shHDAC3) inhibited the growth of xenograft tumors with down-regulation of HDAC3 expression and up-regulation of p53 acetylation. In conclusion, Rg3 has antiproliferative activity against melanoma by decreasing HDAC3 and increasing acetylation of p53 both in vitro and in vivo. Thus, Rg3 serves as a potential therapeutic agent for the treatment of melanoma. PMID:25521755

  11. SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation.

    PubMed

    Wilking, Melissa J; Singh, Chandra; Nihal, Minakshi; Zhong, Weixiong; Ahmad, Nihal

    2014-12-01

    Melanoma causes more deaths than any other skin cancer, and its incidence in the US continues to rise. Current medical therapies are insufficient to control this deadly neoplasm, necessitating the development of new target-based approaches. The objective of this study was to determine the role and functional significance of the class III histone deacetylase SIRT1 in melanoma. We have found that SIRT1 is overexpressed in clinical human melanoma tissues and human melanoma cell lines (Sk-Mel-2, WM35, G361, A375, and Hs294T) compared to normal skin and normal melanocytes, respectively. In addition, treatment of melanoma cell lines A375, Hs294T, and G361 with Tenovin-1, a small molecule SIRT1 inhibitor, resulted in a significant decrease in cell growth and cell viability. Further, Tenovin-1 treatment also resulted in a marked decrease in the clonogenic survival of melanoma cells. Further experiments showed that the anti-proliferative response of Tenovin-1 was accompanied by an increase in the protein as well as activity of the tumor suppressor p53. This increase in p53 activity was substantiated by an increase in the protein level of its downstream target p21. Overall, these data suggest that small molecule inhibition of SIRT1 causes anti-proliferative effects in melanoma cells. SIRT1 appears to be acting through the activity of the tumor suppressor p53, which is not mutated in the majority of melanomas. However, future detailed studies are needed to further explore the role and mechanism of SIRT1 in melanoma development and progression and its usefulness in melanoma treatment.

  12. [Effect of hydroquinone on the histone deacetylase in human bone marrow mononuclear cells].

    PubMed

    Hong, L L; Yu, K; Yan, Q X; Xu, X; Shi, Y F; Ge, H P

    2016-03-20

    To observe the activity of histone deacetylase and the mRNA expression level of HDAC1 and HDAC2 in human bone marrow mononuclear cells, which induced by hydroquinone and exposed to hydroquinone plus Trichostatin as a histone deacetylase inhibitor for 10 hours respectively. Collect the bone marrow mononuclear cells suspension,divided into control group,HQ group (3 h, 6 h, 12 h, 24 h) , HQ+TSA 10 h group and HQ 10 h group. Extract the nuclear proteins and RNA, test the activity of histone deacetylase with the colorimetric HDAC assay kit and detect the mRNA expression level of HDAC1 and HDAC2 by real-time Polymerase Chain Reaction (PCR). The HDAC activity of HQ3 h group, HQ6 h group and HQ12 h group were 1.31 times, 1.53 times and 1.148 times than that of control group respectively. And the difference was statistically significant (P<0.05). Except the HQ24 h group (P>0.05) , the HDAC1 mRNA expression of HQ3 h group, HQ6 h group and HQ12 h group were 1.173 times, 1.901 times and 2.348 times than that of control group respectively. And the difference was statistically significant (P<0.05). The HDAC2 mRNA expression of HQ6 h group and HQ12 h group were 1.426 times and 1.766 times than that of the control group respectively. And the difference was statistically significant (P<0.05). No significant difference was observed between HQ3 h group, HQ24 h group and control group (P>0.05). The cells were treated by hydroquinone plus TSA for 10 hours. The HDAC activity of HQ+TSA 10h group was reduced by 25.6% than that of HQ 10 h group (P<0.05) and rised 13.0% compared to the control group (P<0.05). And the difference was statistically significant between groups (P<0.05) .The cells were treated by hydroquinone plus TSA for 10 hours. The HDAC1 mRNA expression of the HQ+TSA 10h group is reduced by 26.9% than that of HQ10h group. The HDAC2 mRNA expression is reduced by 19.3% compared to the HQ 10h group.And the difference was statistically significant between groups (P<0.05). The HDAC1 and HDAC2 mRNA expression is obviously higher than the control group, the difference was statistically significant (P<0.05). Treatment of hydroquinone, the histone deacetylase activity and the mRNA expression of HDAC1 and HDAC2 were increased in a certain time range. The histone deacetylase inhibitor (TSA) can reduce the histone deacetylase activity and the mRNA expression level of HDAC1 and HDAC2 in the bone marrow mononuclear cell induce by hydroquinone.It can be confirmed that hematopoietic damage induced by the benzene metabolites is related to the histone acetylation modification level.

  13. Design, synthesis and preliminary biological evaluation of indoline-2,3-dione derivatives as novel HDAC inhibitors.

    PubMed

    Jin, Kang; Li, Shanshan; Li, Xiaoguang; Zhang, Jian; Xu, Wenfang; Li, Xuechen

    2015-08-01

    Histone deacetylases (HDACs) are zinc-dependent or NAD(+) dependent enzymes and play a critical role in the process of tumor development. Herein a series of indoline-2,3-dione derivatives have been designed and synthesized as potential HDACs inhibitors. The preliminary biological evaluation showed that most compounds synthesized have exhibited moderate Hela cell nuclear extract inhibitory activities, among which compound 25a (IC50=10.13 nM) has shown the best efficacy. The anti-proliferative activities of some of these compounds were also discussed. Copyright © 2015. Published by Elsevier Ltd.

  14. Class I Histone Deacetylase Inhibition by Tianeptinaline Modulates Neuroplasticity and Enhances Memory.

    PubMed

    Zhao, Wen-Ning; Ghosh, Balaram; Tyler, Marshall; Lalonde, Jasmin; Joseph, Nadine F; Kosaric, Nina; Fass, Daniel M; Tsai, Li-Huei; Mazitschek, Ralph; Haggarty, Stephen J

    2018-06-22

    Through epigenetic and other regulatory functions, the histone deacetylase (HDAC) family of enzymes has emerged as a promising therapeutic target for central nervous system and other disorders. Here we report on the synthesis and functional characterization of new HDAC inhibitors based structurally on tianeptine, a drug used primarily to treat major depressive disorder (MDD) that has a poorly understood mechanism of action. Since the chemical structure of tianeptine resembles certain HDAC inhibitors, we profiled the in vitro HDAC inhibitory activity of tianeptine and demonstrated its ability to inhibit the lysine deacetylase activity of a subset of class I HDACs. Consistent with a model of active site Zn 2+ chelation by the carboxylic acid present in tianeptine, newly synthesized analogues containing either a hydroxamic acid or ortho-aminoanilide exhibited increased potency and selectivity among the HDAC family. This in vitro potency translated to improved efficacy in a panel of high-content imaging assays designed to assess HDAC target engagement and functional effects on critical pathways involved in neuroplasticity in both primary mouse neurons and, for the first time, human neurons differentiated from pluripotent stem cells. Most notably, tianeptinaline, a class I HDAC-selective analogue of tianeptine, but not tianeptine itself, increased histone acetylation, and enhanced CREB-mediated transcription and the expression of Arc (activity-regulated cytoskeleton-associated protein). Systemic in vivo administration of tianeptinaline to mice confirmed its brain penetration and was found to enhance contextual fear conditioning, a behavioral test of hippocampal-dependent memory. Tianeptinaline and its derivatives provide new pharmacological tools to dissect chromatin-mediated neuroplasticity underlying memory and other epigenetically related processes implicated in health and disease.

  15. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy.

    PubMed

    Xie, Min; Kong, Yongli; Tan, Wei; May, Herman; Battiprolu, Pavan K; Pedrozo, Zully; Wang, Zhao V; Morales, Cyndi; Luo, Xiang; Cho, Geoffrey; Jiang, Nan; Jessen, Michael E; Warner, John J; Lavandero, Sergio; Gillette, Thomas G; Turer, Aslan T; Hill, Joseph A

    2014-03-11

    Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury. Twenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects. The US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.

  16. Predicting Response to Histone Deacetylase Inhibitors Using High-Throughput Genomics.

    PubMed

    Geeleher, Paul; Loboda, Andrey; Lenkala, Divya; Wang, Fan; LaCroix, Bonnie; Karovic, Sanja; Wang, Jacqueline; Nebozhyn, Michael; Chisamore, Michael; Hardwick, James; Maitland, Michael L; Huang, R Stephanie

    2015-11-01

    Many disparate biomarkers have been proposed as predictors of response to histone deacetylase inhibitors (HDI); however, all have failed when applied clinically. Rather than this being entirely an issue of reproducibility, response to the HDI vorinostat may be determined by the additive effect of multiple molecular factors, many of which have previously been demonstrated. We conducted a large-scale gene expression analysis using the Cancer Genome Project for discovery and generated another large independent cancer cell line dataset across different cancers for validation. We compared different approaches in terms of how accurately vorinostat response can be predicted on an independent out-of-batch set of samples and applied the polygenic marker prediction principles in a clinical trial. Using machine learning, the small effects that aggregate, resulting in sensitivity or resistance, can be recovered from gene expression data in a large panel of cancer cell lines.This approach can predict vorinostat response accurately, whereas single gene or pathway markers cannot. Our analyses recapitulated and contextualized many previous findings and suggest an important role for processes such as chromatin remodeling, autophagy, and apoptosis. As a proof of concept, we also discovered a novel causative role for CHD4, a helicase involved in the histone deacetylase complex that is associated with poor clinical outcome. As a clinical validation, we demonstrated that a common dose-limiting toxicity of vorinostat, thrombocytopenia, can be predicted (r = 0.55, P = .004) several days before it is detected clinically. Our work suggests a paradigm shift from single-gene/pathway evaluation to simultaneously evaluating multiple independent high-throughput gene expression datasets, which can be easily extended to other investigational compounds where similar issues are hampering clinical adoption. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Histone Deacetylase Inhibitors for Treating a Spectrum of Diseases Not Related to Cancer

    PubMed Central

    Dinarello, Charles A; Fossati, Gianluca; Mascagni, Paolo

    2011-01-01

    This issue of Molecular Medicine contains 14 original research reports and state-of-the-art reviews on histone deacetylase inhibitors (HDACi’s), which are being studied in models of a broad range of diseases not related to the proapoptotic properties used to treat cancer. The spectrum of these diseases responsive to HDACi’s is for the most part due to several antiinflammatory properties, often observed in vitro but importantly also in animal models. One unifying property is a reduction in cytokine production as well as inhibition of cytokine postreceptor signaling. Distinct from their use in cancer, the reduction in inflammation by HDACi’s is consistently observed at low concentrations compared with the higher concentrations required for killing tumor cells. This characteristic makes HDACi’s attractive candidates for treating chronic diseases, since low doses are well tolerated. For example, low oral doses of the HDACi givinostat have been used in children to reduce arthritis and are well tolerated. In addition to the antiinflammatory properties, HDACi’s have shown promise in models of neurodegenerative disorders, and HDACi’s also hold promise to drive HIV-1 out of latently infected cells. No one molecular mechanism accounts for the non–cancer-related properties of HDACi’s, since there are 18 genes coding for histone deacetylases. Rather, there are mechanisms unique for the pathological process of specific cell types. In this overview, we summarize the preclinical data on HDACi’s for therapy in a wide spectrum of diseases unrelated to the treatment of cancer. The data suggest the use of HDACi’s in treating autoimmune as well as chronic inflammatory diseases. PMID:21556484

  18. ING2 (inhibitor of growth protein-2) plays a crucial role in preimplantation development.

    PubMed

    Zhou, Lin; Wang, Pei; Zhang, Juanjuan; Heng, Boon Chin; Tong, Guo Qing

    2016-02-01

    ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.

  19. HDAC Inhibitors Target Replication Forks to Take a Stab at Cancer | Center for Cancer Research

    Cancer.gov

    The stability and function of many proteins within the cell can be altered with the addition or removal of certain chemical groups, including acetyl groups. Therefore, the enzymes that regulate these modifications have an important impact on the cell. One class of such enzymes—histone deacetylases, or HDACs—has been implicated in cancer and has become a target for cancer therapy. One HDAC inhibitor, called SAHA, has been approved for use against cutaneous T-cell lymphoma, and more than 60 ongoing clinical trials are continuing to test this class of drugs in various forms of cancer. However, the mechanisms by which SAHA and other HDAC inhibitors undermine the viability of tumor cells are not completely understood.

  20. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  1. Epigenetic Alteration of Donor Cells with Histone Deacetylase Inhibitor m-Carboxycinnamic Acid Bishydroxymide Improves the In Vitro Developmental Competence of Buffalo (Bubalus bubalis) Cloned Embryos.

    PubMed

    Agrawal, Himanshu; Selokar, Naresh Lalaji; Saini, Monika; Singh, Manoj Kumar; Chauhan, Manmohan Singh; Palta, Prabhat; Singla, Suresh Kumar; Manik, Radhey Sham

    2018-02-01

    Epigenetic reprogramming is an indispensable process during the course of mammalian development, but aberrant in cloned embryos. The aim of this study was to examine the effect of donor cell treatment with histone deacetylase (HDAC) inhibitor m-carboxycinnamic acid bishydroxymide (CBHA) on cloned embryo development and establish its optimal concentration. Different concentrations of CBHA (2.5, 5.0, 10.0, and 20.0 μM) were used to treat buffalo adult fibroblast cells for 24 hours and effect on cell proliferation, gene expression, and histone modifications was analyzed. Based on these experiments, the best concentration was chosen to determine the effect of enhanced gene activation mark on developmental rates. Among the different concentrations, CBHA at higher concentration (20 μM) shows the sign of apoptosis and stress as indicated by proliferation rate and gene expression data. CBHA treatment significantly decreased the activity of HDACs and increased the level of gene activation mark H3K9ac and H3K4me3, but could not alter the level of H3K27ac. Based on these experiments, 5 μM CBHA was chosen for treatment of donor cells used for the production of cloned embryos. There was no significant difference in cleavage rate between the control and CBHA treatment group (98.5% ± 1.5% vs. 99.0% ± 1.0%), whereas, blastocyst rate markedly improved (46.65% ± 1.94% vs. 57.18% ± 2.68%). The level of H3K9ac and H3K27me3 did not differ significantly in cloned blastocyst produced from either control or CBHA-treated cells. Altogether, these results suggested that donor cell treatment with CBHA supports the reprogramming process and improves the cloned preimplantation development.

  2. Histone deacetylase 6 inhibition reduces cysts by decreasing cAMP and Ca2+ in knock-out mouse models of polycystic kidney disease.

    PubMed

    Yanda, Murali K; Liu, Qiangni; Cebotaru, Valeriu; Guggino, William B; Cebotaru, Liudmila

    2017-10-27

    Autosomal dominant polycystic kidney disease (ADPKD) is associated with progressive enlargement of multiple renal cysts, often leading to renal failure that cannot be prevented by a current treatment. Two proteins encoded by two genes are associated with ADPKD: PC1 ( pkd1 ), primarily a signaling molecule, and PC2 ( pkd2 ), a Ca 2+ channel. Dysregulation of cAMP signaling is central to ADPKD, but the molecular mechanism is unresolved. Here, we studied the role of histone deacetylase 6 (HDAC6) in regulating cyst growth to test the possibility that inhibiting HDAC6 might help manage ADPKD. Chemical inhibition of HDAC6 reduced cyst growth in PC1-knock-out mice. In proximal tubule-derived, PC1-knock-out cells, adenylyl cyclase 6 and 3 (AC6 and -3) are both expressed. AC6 protein expression was higher in cells lacking PC1, compared with control cells containing PC1. Intracellular Ca 2+ was higher in PC1-knock-out cells than in control cells. HDAC inhibition caused a drop in intracellular Ca 2+ and increased ATP-simulated Ca 2+ release. HDAC6 inhibition reduced the release of Ca 2+ from the endoplasmic reticulum induced by thapsigargin, an inhibitor of endoplasmic reticulum Ca 2+ -ATPase. HDAC6 inhibition and treatment of cells with the intracellular Ca 2+ chelator 1,2-bis(2-aminophenoxy)ethane- N , N , N ', N '-tetraacetic acid tetrakis(acetoxymethyl ester) reduced cAMP levels in PC1-knock-out cells. Finally, the calmodulin inhibitors W-7 and W-13 reduced cAMP levels, and W-7 reduced cyst growth, suggesting that AC3 is involved in cyst growth regulated by HDAC6. We conclude that HDAC6 inhibition reduces cell growth primarily by reducing intracellular cAMP and Ca 2+ levels. Our results provide potential therapeutic targets that may be useful as treatments for ADPKD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaver, Laura M., E-mail: beaverl@onid.orst.edu; School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR 97331; Yu, Tian-Wei, E-mail: david.yu@oregonstate.edu

    2012-09-15

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast,more » DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ► DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ► DIM is significantly more effective than I3C at inhibiting HDAC activity. ► I3C has no effect on HDAC protein expression. ► Inhibition of HDAC activity by DIM is associated with increased p21 expression. ► HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.« less

  4. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show thatmore » down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.« less

  5. HDAC7 Ubiquitination by the E3 Ligase CBX4 Is Involved in Contextual Fear Conditioning Memory Formation.

    PubMed

    Jing, Xu; Sui, Wen-Hai; Wang, Shuai; Xu, Xu-Feng; Yuan, Rong-Rong; Chen, Xiao-Rong; Ma, Hui-Xian; Zhu, Ying-Xiao; Sun, Jin-Kai; Yi, Fan; Chen, Zhe-Yu; Wang, Yue

    2017-04-05

    Histone acetylation, an epigenetic modification, plays an important role in long-term memory formation. Recently, histone deacetylase (HDAC) inhibitors were demonstrated to promote memory formation, which raises the intriguing possibility that they may be used to rescue memory deficits. However, additional research is necessary to clarify the roles of individual HDACs in memory. In this study, we demonstrated that HDAC7, within the dorsal hippocampus of C57BL6J mice, had a late and persistent decrease after contextual fear conditioning (CFC) training (4-24 h), which was involved in long-term CFC memory formation. We also showed that HDAC7 decreased via ubiquitin-dependent degradation. CBX4 was one of the HDAC7 E3 ligases involved in this process. Nur77, as one of the target genes of HDAC7, increased 6-24 h after CFC training and, accordingly, modulated the formation of CFC memory. Finally, HDAC7 was involved in the formation of other hippocampal-dependent memories, including the Morris water maze and object location test. The current findings facilitate an understanding of the molecular and cellular mechanisms of HDAC7 in the regulation of hippocampal-dependent memory. SIGNIFICANCE STATEMENT The current findings demonstrated the effects of histone deacetylase 7 (HDAC7) on hippocampal-dependent memories. Moreover, we determined the mechanism of decreased HDAC7 in contextual fear conditioning (CFC) through ubiquitin-dependent protein degradation. We also verified that CBX4 was one of the HDAC7 E3 ligases. Finally, we demonstrated that Nur77, as one of the important targets for HDAC7, was involved in CFC memory formation. All of these proteins, including HDAC7, CBX4, and Nur77, could be potential therapeutic targets for preventing memory deficits in aging and neurological diseases. Copyright © 2017 the authors 0270-6474/17/373848-16$15.00/0.

  6. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases

    PubMed Central

    Yoon, Somy

    2016-01-01

    Histone deacetylases (HDACs) are epigenetic regulators that regulate the histone tail, chromatin conformation, protein-DNA interaction, and even transcription. HDACs are also post-transcriptional modifiers that regulate the protein acetylation implicated in several pathophysiologic states. HDAC inhibitors have been highlighted as a novel category of anti-cancer drugs. To date, four HDAC inhibitors, Vorinostat, Romidepsin, Panobinostat, and Belinostat, have been approved by the United States Food and Drug Administration. Principally, these HDAC inhibitors are used for hematologic cancers in clinic with less severe side effects. Clinical trials are continuously expanding to address other types of cancer and also nonmalignant diseases. HDAC inhibition also results in beneficial outcomes in various types of neurodegenerative diseases, inflammation disorders, and cardiovascular diseases. In this review, we will briefly discuss 1) the roles of HDACs in the acquisition of a cancer's phenotype and the general outcome of the HDAC inhibitors in cancer, 2) the functional relevance of HDACs in cardiovascular diseases and the possible therapeutic implications of HDAC inhibitors in cardiovascular disease. PMID:26865995

  7. HDAC inhibitors: a 2013-2017 patent survey.

    PubMed

    Faria Freitas, Micaela; Cuendet, Muriel; Bertrand, Philippe

    2018-04-19

    Zinc-dependent histone deacetylases (HDAC) inhibitors represent an important class of biologically active compounds with four of them approved by the FDA. A wide range of molecules has been reported for applications in several human diseases.Area covered: This review covers recent efforts in the synthesis and applications of HDAC inhibitors from 2013-2017.Expert opinion: HDAC inhibitors represent an important class of biologically active compounds for single or combination therapies. The current synthetic methodologies are oriented towards selective HDAC isoforms to achieve better therapeutic effects. Among the recent patents available, most of them focus on HDAC6 selective inhibitors. Beside this search for isoform selectivity, the quest for zinc binding groups with better pharmacokinetic properties and high potency against HDACs only motivates medicinal chemists, as well as the design of inhibitors targeting HDACs and at the same time another biological target. If the major applications are for anticancer activity, one can note the emerging applications in neurological or metabolic disorders or for the stimulation of the immune system.

  8. SAHA-based novel HDAC inhibitor design by core hopping method.

    PubMed

    Zang, Lan-Lan; Wang, Xue-Jiao; Li, Xiao-Bo; Wang, Shu-Qing; Xu, Wei-Ren; Xie, Xian-Bin; Cheng, Xian-Chao; Ma, Huan; Wang, Run-Ling

    2014-11-01

    The catalytic activity of the histone deacetylase (HDAC) is directly relevant to the pathogenesis of cancer, and HDAC inhibitors represented a promising strategy for cancer therapy. SAHA (suberoanilide hydroxamic acid), an effective HDAC inhibitor, is an anti-cancer agent against T-cell lymphoma. However, SAHA has adverse effects such as poor pharmacokinetic properties and severe toxicities in clinical use. In order to identify better HDAC inhibitors, a compound database was established by core hopping of SAHA, which was then docked into HDAC-8 (PDB ID: 1T69) active site to select a number of candidates with higher docking score and better interaction with catalytic zinc ion. Further ADMET prediction was done to give ten compounds. Molecular dynamics simulation of the representative compound 101 was performed to study the stability of HDAC8-inhibitor system. This work provided an approach to design novel high-efficiency HDAC inhibitors with better ADMET properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors[OPEN

    PubMed Central

    Venturelli, Sascha; Belz, Regina G.; Kämper, Andreas; Berger, Alexander; von Horn, Kyra; Wegner, André; Böcker, Alexander; Zabulon, Gérald; Barneche, Fredy; Lauer, Ulrich M.; Bitzer, Michael

    2015-01-01

    To secure their access to water, light, and nutrients, many plant species have developed allelopathic strategies to suppress competitors. To this end, they release into the rhizosphere phytotoxic substances that inhibit the germination and growth of neighbors. Despite the importance of allelopathy in shaping natural plant communities and for agricultural production, the underlying molecular mechanisms are largely unknown. Here, we report that allelochemicals derived from the common class of cyclic hydroxamic acid root exudates directly affect the chromatin-modifying machinery in Arabidopsis thaliana. These allelochemicals inhibit histone deacetylases both in vitro and in vivo and exert their activity through locus-specific alterations of histone acetylation and associated gene expression. Our multilevel analysis collectively shows how plant-plant interactions interfere with a fundamental cellular process, histone acetylation, by targeting an evolutionarily highly conserved class of enzymes. PMID:26530086

  10. Synthesis and biochemical analysis of 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-N-hydroxy-octanediamides as inhibitors of human histone deacetylases.

    PubMed

    Henkes, Leonhard M; Haus, Patricia; Jäger, Felix; Ludwig, Joachim; Meyer-Almes, Franz-Josef

    2012-01-15

    Inhibition of human histone deacetylases (HDACs) has emerged as a novel concept in the chemotherapeutic treatment of cancer. Two chemical entities, SAHA (ZOLINZA, Merck) and romidepsin (Istodax, Celgene) have been recently approved by the FDA as first-in-class drugs against cutaneous T-cell lymphoma. Clinical use of these drugs revealed several side effects including gastro-intestinal symptoms, fatigue, thrombocytopenia, thrombosis. Romidepsin is associated with an yet unresolved cardiotoxicity issue. A general hypothesis for the diminishment of unwanted adverse effects and an improved therapeutical window suggests the development of more isotype selective inhibitors. In this study the first time HDAC inhibitors with perfluorinated spacers between the zinc chelating moiety and the aromatic capping group were synthesized and tested against representatives of HDAC classes I, IIa and IIb. Competitive binding assays and a combined approach by using blind docking and molecular dynamics support binding of the perfluorinated analogs of SAHA to the active site of the HDAC-like amidohydrolase from Bordetella/Alcaligenes and presumably also to human HDACs. In contrast to the alkyl spacer of SAHA and derivatives, the perfluorinated alkyl spacer seems to contribute to or facilitate the induction of selectivity for class II, particularly class IIa, HDACs even though the overall potency of the perfluorinated SAHA analogs in this study against human HDACs remained still rather moderate in the micromolar range. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Comparison of the Deacylase and Deacetylase Activity of Zinc-Dependent HDACs.

    PubMed

    McClure, Jesse J; Inks, Elizabeth S; Zhang, Cheng; Peterson, Yuri K; Li, Jiaying; Chundru, Kalyan; Lee, Bradley; Buchanan, Ashley; Miao, Shiqin; Chou, C James

    2017-06-16

    The acetylation status of lysine residues on histone proteins has long been attributed to a balance struck between the catalytic activity of histone acetyl transferases and histone deacetylases (HDAC). HDACs were identified as the sole removers of acetyl post-translational modifications (PTM) of histone lysine residues. Studies into the biological role of HDACs have also elucidated their role as removers of acetyl PTMs from lysine residues of nonhistone proteins. These findings, coupled with high-resolution mass spectrometry studies that revealed the presence of acyl-group PTMs on lysine residues of nonhistone proteins, brought forth the possibility of HDACs acting as removers of both acyl- and acetyl-based PTMs. We posited that HDACs fulfill this dual role and sought to investigate their specificity. Utilizing a fluorescence-based assay and biologically relevant acyl-substrates, the selectivities of zinc-dependent HDACs toward these acyl-based PTMs were identified. These findings were further validated using cellular models and molecular biology techniques. As a proof of principal, an HDAC3 selective inhibitor was designed using HDAC3's substrate preference. This resulting inhibitor demonstrates nanomolar activity and >30 fold selectivity toward HDAC3 compared to the other class I HDACs. This inhibitor is capable of increasing p65 acetylation, attenuating NF-κB activation, and thereby preventing downstream nitric oxide signaling. Additionally, this selective HDAC3 inhibition allows for control of HMGB-1 secretion from activated macrophages without altering the acetylation status of histones or tubulin.

  12. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  13. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    PubMed

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  14. Influenza A Virus Dysregulates Host Histone Deacetylase 1 That Inhibits Viral Infection in Lung Epithelial Cells.

    PubMed

    Nagesh, Prashanth Thevkar; Husain, Matloob

    2016-05-01

    Viruses dysregulate the host factors that inhibit virus infection. Here, we demonstrate that human enzyme, histone deacetylase 1 (HDAC1) is a new class of host factor that inhibits influenza A virus (IAV) infection, and IAV dysregulates HDAC1 to efficiently replicate in epithelial cells. A time-dependent decrease in HDAC1 polypeptide level was observed in IAV-infected cells, reducing to <50% by 24 h of infection. A further depletion (97%) of HDAC1 expression by RNA interference increased the IAV growth kinetics, increasing it by >3-fold by 24 h and by >6-fold by 48 h of infection. Conversely, overexpression of HDAC1 decreased the IAV infection by >2-fold. Likewise, a time-dependent decrease in HDAC1 activity, albeit with slightly different kinetics to HDAC1 polypeptide reduction, was observed in infected cells. Nevertheless, a further inhibition of deacetylase activity increased IAV infection in a dose-dependent manner. HDAC1 is an important host deacetylase and, in addition to its role as a transcription repressor, HDAC1 has been lately described as a coactivator of type I interferon response. Consistent with this property, we found that inhibition of deacetylase activity either decreased or abolished the phosphorylation of signal transducer and activator of transcription I (STAT1) and expression of interferon-stimulated genes, IFITM3, ISG15, and viperin in IAV-infected cells. Furthermore, the knockdown of HDAC1 expression in infected cells decreased viperin expression by 58% and, conversely, the overexpression of HDAC1 increased it by 55%, indicating that HDAC1 is a component of IAV-induced host type I interferon antiviral response. Influenza A virus (IAV) continues to significantly impact global public health by causing regular seasonal epidemics, occasional pandemics, and zoonotic outbreaks. IAV is among the successful human viral pathogens that has evolved various strategies to evade host defenses, prevent the development of a universal vaccine, and acquire antiviral drug resistance. A comprehensive knowledge of IAV-host interactions is needed to develop a novel and alternative anti-IAV strategy. Host produces a variety of factors that are able to fight IAV infection by employing various mechanisms. However, the full repertoire of anti-IAV host factors and their antiviral mechanisms has yet to be identified. We have identified here a new host factor, histone deacetylase 1 (HDAC1) that inhibits IAV infection. We demonstrate that HDAC1 is a component of host innate antiviral response against IAV, and IAV undermines HDAC1 to limit its role in antiviral response. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack.

    PubMed

    Brookes, Rebecca L; Crichton, Siobhan; Wolfe, Charles D A; Yi, Qilong; Li, Linxin; Hankey, Graeme J; Rothwell, Peter M; Markus, Hugh S

    2018-01-01

    A variant in the histone deacetylase 9 ( HDAC9 ) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P =0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3-0.7; P =0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29-0.77; P =0.003). These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. © 2017 The Authors.

  16. Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors.

    PubMed

    Pietschmann, Kristin; Bolck, Hella Anna; Buchwald, Marc; Spielberg, Steffi; Polzer, Harald; Spiekermann, Karsten; Bug, Gesine; Heinzel, Thorsten; Böhmer, Frank-Dietmar; Krämer, Oliver H

    2012-11-01

    Activating mutations of the class III receptor tyrosine kinase FLT3 are the most frequent molecular aberration in acute myeloid leukemia (AML). Mutant FLT3 accelerates proliferation, suppresses apoptosis, and correlates with poor prognosis. Therefore, it is a promising therapeutic target. Here, we show that RNA interference against FLT3 with an internal tandem duplication (FLT3-ITD) potentiates the efficacy of the histone deacetylase inhibitor (HDACi) panobinostat (LBH589) against AML cells expressing FLT3-ITD. Similar to RNA interference, tyrosine kinase inhibitors (TKI; AC220/cpd.102/PKC412) in combination with LBH589 exhibit superior activity against AML cells. Median dose-effect analyses of drug-induced apoptosis rates of AML cells (MV4-11 and MOLM-13) revealed combination index (CI) values indicating strong synergism. AC220, the most potent and FLT3-specific TKI, shows highest synergism with LBH589 in the low nanomolar range. A 4-hour exposure to LBH589 + AC220 already generates more than 50% apoptosis after 24 hours. Different cell lines lacking FLT3-ITD as well as normal peripheral blood mononuclear cells are not significantly affected by LBH589 + TKI, showing the specificity of this treatment regimen. Immunoblot analyses show that LBH589 + TKI induce apoptosis via degradation of FLT3-ITD and its prosurvival target STAT5. Previously, we showed the LBH589-induced proteasomal degradation of FLT3-ITD. Here, we show that activated caspase-3 also contributes to the degradation of FLT3-ITD and that STAT5 is a direct target of this protease. Our data strongly emphasize HDACi/TKI drug combinations as promising modality for the treatment of FLT3-ITD-positive AMLs. ©2012 AACR.

  17. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin

    PubMed Central

    Furumai, Ryohei; Komatsu, Yasuhiko; Nishino, Norikazu; Khochbin, Saadi; Yoshida, Minoru; Horinouchi, Sueharu

    2001-01-01

    Trichostatin A (TSA) and trapoxin (TPX) are potent inhibitors of histone deacetylases (HDACs). TSA is proposed to block the catalytic reaction by chelating a zinc ion in the active-site pocket through its hydroxamic acid group. On the other hand, the epoxyketone is suggested to be the functional group of TPX capable of alkylating the enzyme. We synthesized a novel TPX analogue containing a hydroxamic acid instead of the epoxyketone. The hybrid compound cyclic hydroxamic acid-containing peptide (CHAP) 1 inhibited HDAC1 at low nanomolar concentrations. The HDAC1 inhibition by CHAP1 was reversible as it was by TSA, in contrast to the irreversible inhibition by TPX. CHAP with an aliphatic chain length of five, which corresponded to that of acetylated lysine, was stronger than those with other lengths. These results suggest that TPX is a substrate mimic and that the replacement of the epoxyketone with the hydroxamic acid converted TPX to an inhibitor chelating the zinc like TSA. Interestingly, HDAC6, but not HDAC1 or HDAC4, was resistant to TPX and CHAP1, whereas TSA inhibited these HDACs to a similar extent. HDAC6 inhibition by TPX at a high concentration was reversible, probably because HDAC6 is not alkylated by TPX. We further synthesized the counterparts of all known naturally occurring cyclic tetrapeptides containing the epoxyketone. HDAC1 was highly sensitive to all these CHAPs much more than HDAC6, indicating that the structure of the cyclic tetrapeptide framework affects the target enzyme specificity. These results suggest that CHAP is a unique lead to develop isoform-specific HDAC inhibitors. PMID:11134513

  18. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    PubMed

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  19. Combined treatment of adenosine nucleoside inhibitor NITD008 and histone deacetylase inhibitor vorinostat represents an immunotherapy strategy to ameliorate West Nile virus infection.

    PubMed

    Nelson, Jacob; Roe, Kelsey; Orillo, Beverly; Shi, Pei-Yong; Verma, Saguna

    2015-10-01

    West Nile virus (WNV), a member of the Flaviviridae family, is the leading cause of viral encephalitis in the United States. Despite efforts to control the spread of WNV, there has been an increase in the number of outbreaks and clinical cases with neurological problems. There are no antiviral compounds currently in trials for WNV. NITD008 is an adenosine analogue inhibitor that interrupts the RNA-dependent RNA polymerase of flaviviruses. Previous studies demonstrated NITD008 as a potent antiviral for dengue virus, however this drug was associated with preclinical toxicity. The ability of NITD008 to block WNV replication is only shown in Vero cells. Neuroinflammation is also a major cause of the WNV-associated pathology, therefore we evaluated the effect of NITD008 and a newly characterized anti-inflammatory drug vorinostat (SAHA), a histone deacetylase inhibitor, on WNV replication and disease progression in a mouse model. When administered at 10 and 25mg/kg at days 1-6 after WNV infection in C57BL/6 mice, NITD008 conferred complete protection from clinical symptoms and death, which correlated with reduced viral load in the serum and restriction of virus-CNS entry. Delay of NITD008 treatment to days 3-6 and days 5-9 after infection, when WNV replication was high in the periphery and brain, resulted in the gradual loss of protection against WNV infection. However, co-treatment with SAHA and NITD008 during the CNS phase of disease improved disease outcome significantly by reducing inflammation and neuronal death. Our results support potential synergistic effect of combination therapy of NITD008 with SAHA for the treatment of WNV encephalitis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Clinical trial studies drug for pediatric diffuse intrinsic pontine glioma (DIPG) treatment | Center for Cancer Research

    Cancer.gov

    Diffuse intrinsic pontine gliomas (DIPGs) are difficult to treat and are the leading cause of brain tumor deaths in children. Katherine Warren, M.D., of the Pediatric Oncology Branch is leading a pediatric clinical trial to determine the safety and best dose of panobinostat, a histone deacetylase inhibitor, for slowing or stopping the growth of DIPGs. Read more…

  1. Prostate Cancer Prevention by Sulforaphane, a Novel Dietary Histone Deacetylase Inhibitor

    DTIC Science & Technology

    2009-01-01

    found in cruciferous vegetables and is especially high in broccoli and broccoli sprouts. SFN is an effective chemoprotective agent in carcinogen-induced...following dietary consumption of broccoli sprouts. We have recruited the subjects and conducted the study. The samples are under the analysis...Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that is particularly abundant in broccoli and broccoli sprouts. Epidemiological

  2. HDAC Inhibitors Target Replication Forks to Take a Stab at Cancer | Center for Cancer Research

    Cancer.gov

    The stability and function of many proteins within the cell can be altered with the addition or removal of certain chemical groups, including acetyl groups. Therefore, the enzymes that regulate these modifications have an important impact on the cell. One class of such enzymes—histone deacetylases, or HDACs—has been implicated in cancer and has become a target for cancer

  3. Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing

    PubMed Central

    Wei, Datsen George; Chiang, Vicki; Fyne, Elizabeth; Balakrishnan, Mini; Barnes, Tiffany; Graupe, Michael; Hesselgesser, Joseph; Irrinki, Alivelu; Murry, Jeffrey P.; Stepan, George; Stray, Kirsten M.; Tsai, Angela; Yu, Helen; Spindler, Jonathan; Kearney, Mary; Spina, Celsa A.; McMahon, Deborah; Lalezari, Jacob; Sloan, Derek; Mellors, John; Geleziunas, Romas; Cihlar, Tomas

    2014-01-01

    Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART. PMID:24722454

  4. Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma.

    PubMed

    Kroesen, Michiel; Büll, Christian; Gielen, Paul R; Brok, Ingrid C; Armandari, Inna; Wassink, Melissa; Looman, Maaike W G; Boon, Louis; den Brok, Martijn H; Hoogerbrugge, Peter M; Adema, Gosse J

    2016-06-01

    Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients.

  5. TORC1 and class I HDAC inhibitors synergize to suppress mature B cell neoplasms.

    PubMed

    Simmons, John K; Patel, Jyoti; Michalowski, Aleksandra; Zhang, Shuling; Wei, Bih-Rong; Sullivan, Patrick; Gamache, Ben; Felsenstein, Kenneth; Kuehl, W Michael; Simpson, R Mark; Zingone, Adriana; Landgren, Ola; Mock, Beverly A

    2014-03-01

    Enhanced proliferative signaling and loss of cell cycle regulation are essential for cancer progression. Increased mitogenic signaling through activation of the mTOR pathway, coupled with deregulation of the Cyclin D/retinoblastoma (Rb) pathway is a common feature of lymphoid malignancies, including plasmacytoma (PCT), multiple myeloma (MM), Burkitt's lymphoma (BL), and mantle cell lymphoma (MCL). Here we evaluate the synergy of pharmacologically affecting both of these critical pathways using the mTOR inhibitor sirolimus and the histone deacetylase inhibitor entinostat. A dose-matrix screening approach found this combination to be highly active and synergistic in a panel of genetically diverse human MM cell lines. Synergy and activity was observed in mouse PCT and human BL and MCL cell lines tested in vitro, as well as in freshly isolated primary MM patient samples tested ex vivo. This combination had minimal effects on healthy donor cells and retained activity when tested in a co-culture system simulating the protective interaction of cancer cells with the tumor microenvironment. Combining sirolimus with entinostat enhanced cell cycle arrest and apoptosis. At the molecular level, entinostat increased the expression of cell cycle negative regulators including CDKN1A (p21) and CDKN2A (p16), while the combination decreased critical growth and survival effectors including Cyclin D, BCL-XL, BIRC5, and activated MAPK. Published by Elsevier B.V.

  6. ENDOTHELIN-STIMULATED HUMAN B-TYPE NATRIURETIC PEPTIDE GENE EXPRESSION IS MEDIATED BY YY1 IN ASSOCIATION WITH HDAC2

    PubMed Central

    Glenn, Denis J.; Wang, Feng; Chen, Songcang; Nishimoto, Minobu; Gardner, David G.

    2009-01-01

    Increased B-type natriuretic peptide (BNP) gene expression is regarded as one of the hallmarks of cardiac myocyte hypertrophy. Here we demonstrate that both basal and endothelin-1 (ET-1) -dependent stimulation of human (h) BNP gene transcription requires the presence of an intact Yin Yang 1 (YY1) binding site positioned at -62 bp relative to the transcription start site. Mutation of this site reduced both basal and stimulated hBNP promoter activity. This site was shown to bind YY1 both in vitro and within the context of the intact cell. The latter interaction increased following ET-1 treatment. Exposure to ET-1 also resulted in increased nuclear localization of YY1 and a reduction in acetylation of the YY1 protein. Overexpression of wild type YY1 increased both basal and endothelin-stimulated hBNP promoter activity, while a carboxy terminal deletion mutant of YY1 was devoid of activity. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) resulted in decreased hBNP reporter activity. YY1 was shown to associate with histone deacetylase 2 (HDAC2), and HDAC2 was shown to associate directly with the hBNP promoter in the intact cell. Collectively these findings demonstrate that YY1 plays an important role in regulating the transcriptional activity of the hBNP gene promoter. These data suggest a model in which YY1 activates hBNP transcription through interaction with HDAC2. PMID:19139378

  7. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases

    PubMed Central

    Montgomery, McKale R.; Leyva, Kathryn J.

    2016-01-01

    Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments. PMID:27556043

  8. Histone Deacetylase Inhibitors in Clinical Studies as Templates for New Anticancer Agents

    PubMed Central

    Mottamal, Madhusoodanan; Zheng, Shilong; Huang, Tien L.; Wang, Guangdi

    2015-01-01

    Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility. PMID:25738536

  9. CG200745, an HDAC inhibitor, induces anti-tumour effects in cholangiocarcinoma cell lines via miRNAs targeting the Hippo pathway.

    PubMed

    Jung, Dawoon E; Park, Soo Been; Kim, Kahee; Kim, Chanyang; Song, Si Young

    2017-09-07

    Cholangiocarcinoma is a devastating malignancy with fatal complications that exhibits low response and resistance to chemotherapy. Here, we evaluated the anticancer effects of CG200745, a novel histone deacetylase inhibitor, either alone or in combination with standard chemotherapy drugs in cholangiocarcinoma cells. CG200745 dose-dependently reduced the viability of cholangiocarcinoma cells in vitro and decreased tumour volume and weight in a xenograft model. Administering CG200745 along with other chemotherapeutic agents including gemcitabine, 5-fluorouracil (5-FU), cisplatin, oxaliplatin, or gemcitabine plus cisplatin further decreased cholangiocarcinoma cell viability, with a combination index < 1 that indicated synergistic action. CG200745 also enhanced the sensitivity of gemcitabine-resistant cells to gemcitabine and 5-FU, thereby decreasing cell viability and inducing apoptosis. This was accompanied by downregulation of YAP, TEAD4, TGF-β2, SMAD3, NOTCH3, HES5, Axl, and Gas6 and upregulation of the miRNAs miR-22-3p, miR-22-5p, miR-194-5p, miR-194-3p, miR-194-5p, miR-210-3p, and miR-509-3p. The Ingenuity Pathway Analysis revealed that CG200745 mainly targets the Hippo signalling pathway by inducing miR-509-3p expression. Thus, CG200745 inhibits cholangiocarcinoma growth in vitro and in vivo, and acts synergistically when administered in combination with standard chemotherapeutic agents, enabling dose reduction. CG200745 is therefore expected to improve the outcome of cholangiocarcinoma patients who exhibit resistance to conventional therapies.

  10. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products.

    PubMed

    Sun, Yunan; Zhou, Hui; Zhu, Hongmei; Leung, Siu-wai

    2016-01-25

    Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.

  11. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products

    NASA Astrophysics Data System (ADS)

    Sun, Yunan; Zhou, Hui; Zhu, Hongmei; Leung, Siu-Wai

    2016-01-01

    Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.

  12. Multiple roles of HDAC inhibition in neurodegenerative conditions

    PubMed Central

    Chuang, De-Maw; Leng, Yan; Marinova, Zoya; Kim, Hyeon-Ju; Chiu, Chi-Tso

    2009-01-01

    Histone deacetylases (HDACs) play a key role in homeostasis of protein acetylation in histones and other proteins and in regulating fundamental cellular activities such as transcription. Imbalances in protein acetylation levels and dysfunctions in transcription are associated with a wide variety of brain disorders. Treatment with various HDAC inhibitors corrects these deficiencies and has emerged as a promising new strategy for therapeutic intervention in neurodegenerative diseases. Here, we review and discuss intriguing recent developments in the use of HDAC inhibitors to combat neurodegenerative conditions in cellular and disease models. HDAC inhibitors have neuroprotective, neurotrophic and anti-inflammatory properties, and improvements in neurological performance, learning/memory and other disease phenotypes are frequently seen in these models. We discuss the targets and mechanisms underlying these effects of HDAC inhibition and comment on the potential for some HDAC inhibitors to prove clinically effective in treating neurodegenerative disorders. PMID:19775759

  13. Recent advances in the discovery of potent and selective HDAC6 inhibitors.

    PubMed

    Wang, Xiu-Xiu; Wan, Ren-Zhong; Liu, Zhao-Peng

    2018-01-01

    Histone deacetylase HDAC6, a member of the class IIb HDAC family, is unique among HDAC enzymes in having two active catalytic domains, and has unique physiological function. In addition to the modification of histone, HDAC6 targets specific substrates including α-tubulin and HSP90, and are involved in protein trafficking and degradation, cell shape and migration. Selective HDAC6 inhibitors are an emerging class of pharmaceuticals due to the involvement of HDAC6 in different pathways related to neurodegenerative diseases, cancer, and immunology. Therefore, extensive investigations have been made in the discovery of selective HDAC6 inhibitors. Based on their different zinc binding groups (ZBGs), in this review, HDAC6 inhibitors are grouped as hydroxamic acids, a sulfur containing ZBG based derivatives and other ZBG-derived compounds, and their enzymatic inhibitory activity, selectivity and other biological activities are introduced and summarized. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Hematologic Response to Vorinostat Treatment in Relapsed Myeloid Leukemia of Down Syndrome.

    PubMed

    Scheer, Carina; Kratz, Christian; Witt, Olaf; Creutzig, Ursula; Reinhardt, Dirk; Klusmann, Jan-Henning

    2016-09-01

    Children with Down syndrome are at high risk to develop myeloid leukemia (ML-DS). Despite their excellent prognosis, children with ML-DS particularly suffer from severe therapy-related toxicities and for relapsed ML-DS the cure rates are very poor. Here we report the clinical course of one child with ML-DS treated with the histone deacetylase (HDAC) inhibitor vorinostat (suberoylanilide hydroxamic acid) after second relapse. The child had previously received conventional chemotherapy and stem cell transplantation, yet showed a remarkable clinical and hematologic response. Thus, HDAC inhibitor may represent an effective class of drugs for the treatment of ML-DS. © 2016 Wiley Periodicals, Inc.

  15. Identification and Biological Evaluation of Secondary Metabolites from Marine Derived Fungi-Aspergillus sp. SCSIOW3, Cultivated in the Presence of Epigenetic Modifying Agents.

    PubMed

    Li, Xiaofan; Xia, Zhenyao; Tang, Jianqiang; Wu, Jiahui; Tong, Jing; Li, Mengjie; Ju, Jianhua; Chen, Huirong; Wang, Liyan

    2017-08-04

    Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW3, resulting in significant changes of the secondary metabolites. One new diphenylether- O -glycoside (diorcinol 3- O -α-D-ribofuranoside), along with seven known compounds, were isolated from the culture treated with a combination of histone deacetylase inhibitor (suberohydroxamic acid) and DNA methyltransferase inhibitor (5-azacytidine). Compounds 2 and 4 exhibited significant biomembrane protective effect of erythrocytes. 2 also showed algicidal activity against Chattonella marina , a bloom forming alga responsible for large scale fish deaths.

  16. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition

    PubMed Central

    Zhao, Zaorui; Fan, Lu; Fortress, Ashley M.; Boulware, Marissa I.; Frick, Karyn M.

    2012-01-01

    Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol (E2). We first showed that bilateral infusion of garcinol (0.1, 1, or 10 μg/side) into the dorsal hippocampus (DH) immediately after training impaired object recognition memory consolidation in ovariectomized female mice. A behaviorally effective dose of garcinol (10 μg/side) also significantly decreased DH HAT activity. We next examined whether DH infusion of a behaviorally subeffective dose of garcinol (1 ng/side) could block the effects of DH E2 infusion on object recognition and epigenetic processes. Immediately after training, ovariectomized female mice received bilateral DH infusions of vehicle, E2 (5 μg/side), garcinol (1 ng/side), or E2 plus garcinol. Forty-eight hours later, garcinol blocked the memory-enhancing effects of E2. Garcinol also reversed the E2-induced increase in DH histone H3 acetylation, HAT activity, and levels of the de novo methyltransferase DNMT3B, as well as the E2-induced decrease in levels of the memory repressor protein histone deacetylase 2 (HDAC2). Collectively, these findings suggest that histone acetylation is critical for object recognition memory consolidation and the beneficial effects of E2 on object recognition. Importantly, this work demonstrates that the role of histone acetylation in memory processes can be studied using a HAT inhibitor. PMID:22396409

  17. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells

    PubMed Central

    Göttlicher, Martin; Minucci, Saverio; Zhu, Ping; Krämer, Oliver H.; Schimpf, Annemarie; Giavara, Sabrina; Sleeman, Jonathan P.; Lo Coco, Francesco; Nervi, Clara; Pelicci, Pier Giuseppe; Heinzel, Thorsten

    2001-01-01

    Histone deacetylases (HDACs) play important roles in transcriptional regulation and pathogenesis of cancer. Thus, HDAC inhibitors are candidate drugs for differentiation therapy of cancer. Here, we show that the well-tolerated antiepileptic drug valproic acid is a powerful HDAC inhibitor. Valproic acid relieves HDAC-dependent transcriptional repression and causes hyperacetylation of histones in cultured cells and in vivo. Valproic acid inhibits HDAC activity in vitro, most probably by binding to the catalytic center of HDACs. Most importantly, valproic acid induces differentiation of carcinoma cells, transformed hematopoietic progenitor cells and leukemic blasts from acute myeloid leukemia patients. More over, tumor growth and metastasis formation are significantly reduced in animal experiments. Therefore, valproic acid might serve as an effective drug for cancer therapy. PMID:11742974

  18. EZH2 and histone deacetylase inhibitors induce apoptosis in triple negative breast cancer cells by differentially increasing H3 Lys27 acetylation in the BIM gene promoter and enhancers.

    PubMed

    Huang, Julia P; Ling, Kun

    2017-11-01

    Enhancer of zeste homolog 2 (EZH2), a subunit of polycomb repressive complex 2, is a histone methyl-transferase and is considered to work cooperatively with histone deacetylases (HDACs) in the same protein complex to mediate gene transcription repression by increasing histone H3 Lys 27 trimethylation (H3K27me3), in particular in the nucleosome (s). EZH2 is overexpressed in numerous types of cancer, including triple negative breast cancer (TNBC), a subtype of breast cancer, which there are no effective treatment options for. Thus, inhibition of EZH2 may be harnessed for targeted therapy of this disease. The present study demonstrated that co-treatment with an EZH2 inhibitor and a HDAC inhibitor additively induced apoptosis in two TNBC cell lines, namely MDA-MB-231 and MDA-MB-436. The increased rate of cell death was associated with an elevation of B cell lymphoma-2 like 11 (BIM) expression level, a pro-apoptotic protein at the protein and mRNA expression levels in these two cell lines. The expression of forkhead box O1 (FOXO1), a known upstream transcriptional activator of BIM , was upregulated in both cell lines by the HDAC inhibitor, and the effect was more pronounced in MDA-MB-436 cells with higher phosphorylation levels of protein kinase B, a negative regulator of FOXO1, compared with MDA-MB-231 cells. Conversely, FOXO1 expression was inhibited following treatment with the EZH2 inhibitor, suggesting that EZH2 and HDAC inhibitors induced BIM expression via a FOXO1-independent mechanism. The present study further revealed that the EZH2 inhibitor, but not the HDAC inhibitor, induced high levels of H3K27 acetylation (H3K27ac) in the BIM promoter. By contrast, compared with the effect of the EZH2 inhibitor, HDAC inhibitor treatment resulted in an increase in H3K27ac at two BIM enhancers. Collectively, the results of the present study indicated that EZH2 and HDACs act differentially on H3K27ac levels in the nucleosome at the promoter and enhancer regions of the BIM gene. Through the upregulation of BIM, co-treatment with EZH2 and HDAC inhibitors had a pronounced therapeutic effect on TNBC cells, suggesting that co-targeting EZH2 and HDAC proteins represents a viable therapeutic option for the treatment of TNBC.

  19. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation.

    PubMed

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Χu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-09-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS‑2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro‑inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection validated these results. Treatment with HDACis alleviated airway inflammation and reduced in vivo RSV replication. Our data demonstrated that RSV reduced histone acetylation by enhancing HDAC2 expression. Treatment with HDACis (TSA/SAHA) significantly inhibited RSV replication and decreased RSV-induced airway inflammation and oxidative stress. Therefore, the inhibition of HDACs represents a novel therapeutic approach in modulating RSV-induced lung disease.

  20. Peritransplant Treg-Based Immunomodulation to Improve VCA Outcomes

    DTIC Science & Technology

    2017-10-01

    function as assessed in vitro assays (mean ± SD, n=4/group) using cells analyzed at day 5. (D) Western blots of Foxp3 protein expression in Tregs from...mice and undertaking bisulphite conversion, cloning and sequencing . WT Tregs were largely demethylated at the TSDR site (open circles, Fig. 2...term murine limb vascularized composite allotransplantation (VCA) survival. • Aim 2 - Determine if histone/ protein deacetylase (HDAC) inhibitor

  1. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation

    PubMed Central

    Leus, Niek G.J.; Zwinderman, Martijn R.H.; Dekker, Frank J.

    2016-01-01

    Activation of inflammatory gene expression is regulated, among other factors, by post-translational modifications of histone proteins. The most investigated type of histone modifications are lysine acetylations. Histone deacetylases (HDACs) remove acetylations from lysines, thereby influencing (inflammatory) gene expression. Intriguingly, apart from histones, HDACs also target non-histone proteins. The nuclear factor κB (NF-κB) pathway is an important regulator in the expression of numerous inflammatory genes, and acetylation plays a crucial role in regulating its responses. Several studies have shed more light on the role of HDAC 1-3 in inflammation with a particular pro-inflammatory role for HDAC 3. Nevertheless, the HDAC-NF-κB interactions in inflammatory signalling have not been fully understood. An important challenge in targeting the regulatory role of HDACs in the NF-κB pathway is the development of highly potent small molecules that selectively target HDAC iso-enzymes. This review focuses on the role of HDAC 3 in (NF-κB-mediated) inflammation and NF-κB lysine acetylation. In addition, we address the application of frequently used small molecule HDAC inhibitors as an approach to attenuate inflammatory responses, and their potential as novel therapeutics. Finally, recent progress and future directions in medicinal chemistry efforts aimed at HDAC 3-selective inhibitors are discussed. PMID:27371876

  2. Synergistic Activation of Latent HIV-1 Expression by Novel Histone Deacetylase Inhibitors and Bryostatin-1.

    PubMed

    Martínez-Bonet, Marta; Clemente, Maria Isabel; Serramía, Maria Jesús; Muñoz, Eduardo; Moreno, Santiago; Muñoz-Fernández, Maria Ángeles

    2015-11-13

    Viral reactivation from latently infected cells has become a promising therapeutic approach to eradicate HIV. Due to the complexity of the viral latency, combinations of efficient and available drugs targeting different pathways of latency are needed. In this work, we evaluated the effect of various combinations of bryostatin-1 (BRY) and novel histone deacetylase inhibitors (HDACIs) on HIV-reactivation and on cellular phenotype. The lymphocyte (J89GFP) or monocyte/macrophage (THP89GFP) latently infected cell lines were treated with BRY, panobinostat (PNB) and romidepsin (RMD) either alone or in combination. Thus, the effect on the viral reactivation was evaluated. We calculated the combination index for each drug combination; the BRY/HDACIs showed a synergistic HIV-reactivation profile in the majority of the combinations tested, whereas non-synergistic effects were observed when PNB was mixed with RMD. Indeed, the 75% effective concentrations of BRY, PNB and RMD were reduced in these combinations. Moreover, primary CD4 T cells treated with such drug combinations presented similar activation and proliferation profiles in comparison with single drug treated cells. Summing up, combinations between BRY, PNB and/or RMD presented a synergistic profile by inducing virus expression in HIV-latently infected cells, rendering these combinations an attractive novel and safe option for future clinical trials.

  3. Computational analysis for selectivity of histone deacetylase inhibitor by replica-exchange umbrella sampling molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Shuichiro; Sakae, Yoshitake; Itoh, Yukihiro; Suzuki, Takayoshi; Okamoto, Yuko

    2018-03-01

    We performed protein-ligand docking simulations with a ligand T247, which has been reported as a selective inhibitor of a histone deacetylase HDAC3, by the replica-exchange umbrella sampling method in order to estimate the free energy profiles along ligand docking pathways of HDAC3-T247 and HDAC2-T247 systems. The simulation results showed that the docked state of the HDAC3-T247 system is more stable than that of the HDAC2-T247 system although the amino-acid sequences and structures of HDAC3 and HDAC2 are very similar. By comparing structures obtained from the simulations of both systems, we found the difference between structures of hydrophobic residues at the entrance of the catalytic site. Moreover, we performed conventional molecular dynamics simulations of HDAC3 and HDAC2 systems without T247, and the results also showed the same difference of the hydrophobic structures. Therefore, we consider that this hydrophobic structure contributes to the stabilization of the docked state of the HDAC3-T247 system. Furthermore, we show that Tyr209, which is one of the hydrophobic residues in HDAC2, plays a key role in the instability from the simulation results of a mutated-HDAC2 system.

  4. In Vitro Plasma Stability, Permeability and Solubility of Mercaptoacetamide Histone Deacetylase Inhibitors

    PubMed Central

    Konsoula, Roula; Jung, Mira

    2008-01-01

    Histone deacetylase inhibitors (HDACIs) are emerging as a new class of therapeutic agents with potent antitumor activities in a broad spectrum of human cancers. In this study, the in vitro plasma stability, permeability, solubility, and lipophilicity (logD) of two mercaptoacetamide-based HDACIs (coded as W2 and S2) were evaluated and compared to Vorinostat (SAHA). The results demonstrated that the compounds manifested high solubility in HCl (pH 1.2) but lower in PBS (pH 7.4) than SAHA. Moreover, mercaptoacetamide-based HDACIs exhibited higher lipophilicity values compared to SAHA. The permeability of these compounds was evaluated using the Caco-2 cell monolayer as a model of the intestinal mucosa. The Caco-2 studies revealed that the compounds S2 and W2 are highly permeable with apparent permeability coefficients (Papp) in the apical to basolateral direction of 7.33 × 10−6 and 15.0 × 10−6 cm/s, respectively. The in vitro stability was determined in human, mouse, porcine and rat plasma. Data showed that the compound W2 is more stable in human and rat plasma and the S2 is more stable in all plasma species than SAHA. Taken together, these results indicate that the mercaptoacetamide-based HDACIs possess favorable solubility, lipophilicity, permeability and plasma stability features. PMID:18562136

  5. Exposure to histone deacetylase inhibitors during Pavlovian conditioning enhances subsequent cue-induced reinstatement of operant behavior.

    PubMed

    Ploense, Kyle L; Kerstetter, Kerry A; Wade, Matthew A; Woodward, Nicholas C; Maliniak, Dan; Reyes, Michael; Uchizono, Russell S; Bredy, Timothy W; Kippin, Tod E

    2013-06-01

    Histone deacetylase inhibitors (HDACIs) strengthen memory following fear conditioning and cocaine-induced conditioned place preference. Here, we examined the effects of two nonspecific HDACIs, valproic acid (VPA) and sodium butyrate (NaB), on appetitive learning measured by conditioned stimulus (CS)-induced reinstatement of operant responding. Rats were trained to lever press for food reinforcement and then injected with VPA (50-200 mg/kg, i.p.), NaB (250-1000 mg/kg, i.p.), or saline vehicle (1.0 ml/kg), 2 h before receiving pairings of noncontingent presentation of food pellets preceded by a tone+light cue CS. Rats next underwent extinction of operant responding followed by response-contingent re-exposure to the CS. Rats receiving VPA (100 mg/kg) or NaB (1000 mg/kg) before conditioning displayed significantly higher cue-induced reinstatement than did saline controls. Rats that received either vehicle or VPA (100 mg/kg) before a conditioning session with a randomized relation between presentation of food pellets and the CS failed to show subsequent cue-induced reinstatement with no difference between the two groups. These findings indicate that, under certain contexts, HDACIs strengthen memory formation by specifically increasing the associative strength of the CS, not through an increasing motivation to seek reinforcement. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  6. Exposure to histone deacetylase inhibitors during Pavlovian conditioning enhances subsequent cue-induced reinstatement of operant behavior

    PubMed Central

    Ploense, Kyle L.; Kerstetter, Kerry A.; Wade, Matthew A.; Woodward, Nicholas C.; Maliniak, Dan; Reyes, Michael; Uchizono, Russell S.; Bredy, Timothy W.; Kippin, Tod E.

    2014-01-01

    Histone deacetylase inhibitors (HDACIs) strengthen memory following fear conditioning and cocaine-induced conditioned place preference. Here, we examined the effects of two non-specific HDACIs, valproic acid (VPA) and sodium butyrate (NaB), on appetitive learning measured via conditioned stimulus (CS)-induced reinstatement of operant responding. Rats were trained to lever press for food reinforcement and then injected with VPA (50–200 mg/kg, i.p.), NaB (250–1000 mg/kg, i.p.), or saline vehicle (1.0 ml/kg), 2h before receiving pairings of noncontingent presentation of food pellets preceded by a tone+light cue CS. Rats next underwent extinction of operant responding followed by response-contingent re-exposure to the CS. Rats receiving VPA (100 mg/kg) or NaB (1000 mg/kg) prior to conditioning displayed significantly higher cue-induced reinstatement than did saline controls. Rats that receiving either vehicle or VPA (100 mg/kg) prior to a conditioning session with a randomized relation between presentation of food pellets and the CS failed to show subsequent cue-induced reinstatement with no difference between the two groups. These findings indicate that, under certain contexts, HDACIs strengthen memory formation by specifically increasing the associative strength of the CS, not through an increasing motivation to seek reinforcement. PMID:23604166

  7. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histone deacetylase inhibitor TSA.

    PubMed

    Hai, Tang; Hao, Jie; Wang, Liu; Jouneau, Alice; Zhou, Qi

    2011-02-01

    Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.

  8. Histone deacetylases (HDAC) in physiological and pathological bone remodelling.

    PubMed

    Cantley, M D; Zannettino, A C W; Bartold, P M; Fairlie, D P; Haynes, D R

    2017-02-01

    Histone deacetylases (HDACs) 2 play important roles in the epigenetic regulation of gene expression in cells and are emerging therapeutic targets for treating a wide range of diseases. HDAC inhibitors (HDACi) 3 that act on multiple HDAC enzymes have been used clinically to treat a number of solid and hematological malignancies. HDACi are also currently being studied for their efficacy in non-malignant diseases, including pathologic bone loss, but this has necessitated a better understanding of the roles of individual HDAC enzymes, particularly the eleven zinc-containing isozymes. Selective isozyme-specific inhibitors currently being developed against class I HDACs (1, 2, 3 and 8) and class II HDACs (4, 5, 6, 7, 9 and 10) will be valuable tools for elucidating the roles played by individual HDACs in different physiological and pathological settings. Isozyme-specific HDACi promise to have greater efficacy and reduced side effects, as required for treating chronic disease over extended periods of time. This article reviews the current understanding of roles for individual HDAC isozymes and effects of HDACi on bone cells, (osteoblasts, osteoclasts and osteocytes), in relation to bone remodelling in conditions characterised by pathological bone loss, including periodontitis, rheumatoid arthritis and myeloma bone disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Genetic dissection of histone deacetylase requirement in tumor cells

    PubMed Central

    Haberland, Michael; Johnson, Aaron; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylase inhibitors (HDACi) represent a new group of drugs currently being tested in a wide variety of clinical applications. They are especially effective in preclinical models of cancer where they show antiproliferative action in many different types of cancer cells. Recently, the first HDACi was approved for the treatment of cutaneous T cell lymphomas. Most HDACi currently in clinical development act by unspecifically interfering with the enzymatic activity of all class I HDACs (HDAC1, 2, 3, and 8), and it is widely believed that the development of isoform-specific HDACi could lead to better therapeutic efficacy. The contribution of the individual class I HDACs to different disease states, however, has so far not been fully elucidated. Here, we use a genetic approach to dissect the involvement of the different class I HDACs in tumor cells. We show that deletion of a single HDAC is not sufficient to induce cell death, but that HDAC1 and 2 play redundant and essential roles in tumor cell survival. Their deletion leads to nuclear bridging, nuclear fragmentation, and mitotic catastrophe, mirroring the effects of HDACi on cancer cells. These findings suggest that pharmacological inhibition of HDAC1 and 2 may be sufficient for anticancer activity, providing an experimental framework for the development of isoform-specific HDAC inhibitors. PMID:19416910

  10. Translating HDAC inhibitors in Friedrich's ataxia

    PubMed Central

    Soragni, Elisabetta; Gottesfeld, Joel M

    2016-01-01

    Introduction Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. Areas covered We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. Expert opinion 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing. PMID:28392990

  11. Epigenetic modulation of AR gene expression in prostate cancer DU145 cells with the combination of sodium butyrate and 5'-Aza-2'-deoxycytidine.

    PubMed

    Fialova, Barbora; Luzna, Petra; Gursky, Jan; Langova, Katerina; Kolar, Zdenek; Trtkova, Katerina Smesny

    2016-10-01

    The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. Castration-resistant prostate cancer (CRPC) is a consequence of androgen deprivation therapy. Unchecked CRPC followed by metastasis is lethal. Some CRPCs show decreased AR gene expression due to epigenetic mechanisms such as DNA methylation and histone deacetylation. The aim of this study was to epigenetically modulate the methylated state of the AR gene leading to targeted demethylation and AR gene expression in androgen-independent human prostate cancer DU145 cell line, representing the CRPC model with very low or undetectable AR levels. The cell treatment was based on single and combined applications of two epigenetic inhibitors, sodium butyrate (NaB) as histone deacetylases inhibitor and 5'-Aza-2'-deoxycytidine (Aza-dC) as DNA methyltransferases inhibitor. We found that the Aza-dC in combination with NaB may help reduce the toxicity of higher NaB concentrations in cancer cells. In normal RWPE-1 cells and even stronger in cancer DU145 cells, the combined treatment induced both AR gene expression on the mRNA level and increased histone H4 acetylation in AR gene promoter. Also activation and maintenance of G2/M cell cycle arrest and better survival in normal RWPE-1 cells compared to cancer DU145 cells were observed after the treatments. These results imply the selective toxicity effect of both inhibitors used and their potentially more effective combined use in the epigenetic therapy of prostate cancer patients.

  12. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms

    PubMed Central

    Law, ME; Corsino, PE; Jahn, SC; Davis, BJ; Chen, S; Patel, B; Pham, K; Lu, J; Sheppard, B; Nørgaard, P; Hong, J; Higgins, P; Kim, J-S; Luesch, H; Law, BK

    2013-01-01

    Aggressive cancers often express E-cadherin in cytoplasmic vesicles rather than on the plasma membrane and this may contribute to the invasive phenotype of these tumors. Therapeutic strategies are not currently available that restore the anti-invasive function of E-cadherin in cancers. MDA-MB-231 cells are a frequently used model of invasive triple-negative breast cancer, and these cells express low levels of E-cadherin that is mislocalized to cytoplasmic vesicles. MDA-MB-231 cell lines stably expressing wild-type E-cadherin or E-cadherin fused to glutathione S-transferase or green fluorescent protein were used as experimental systems to probe the mechanisms responsible for cytoplasmic E-cadherin localization in invasive cancers. Although E-cadherin expression partly reduced cell invasion in vitro, E-cadherin was largely localized to the cytoplasm and did not block the invasiveness of the corresponding orthotopic xenograft tumors. Further studies indicated that the glucocorticoid dexamethasone and the highly potent class I histone deacetylase (HDAC) inhibitor largazole cooperated to induce E-cadherin localization to the plasma membrane in triple-negative breast cancers, and to suppress cellular invasion in vitro. Dexamethasone blocked the production of the cleaved form of the CDCP1 (that is, CUB domain-containing protein 1) protein (cCDCP1) previously implicated in the pro-invasive activities of CDCP1 by upregulating the serine protease inhibitor plasminogen activator inhibitor-1. E-cadherin preferentially associated with cCDCP1 compared with the full-length form. In contrast, largazole did not influence CDCP1 cleavage, but increased the association of E-cadherin with γ-catenin. This effect on E-cadherin/γ-catenin complexes was shared with the nonisoform selective HDAC inhibitors trichostatin A (TSA) and vorinostat (suberoylanilide hydroxamic acid, SAHA), although largazole upregulated endogenous E-cadherin levels more strongly than TSA. These results demonstrate that glucocorticoids and HDAC inhibitors, both of which are currently in clinical use, cooperate to suppress the invasiveness of breast cancer cells through novel, complementary mechanisms that converge on E-cadherin. PMID:22543582

  13. Histone deacetylase inhibitors selectively suppress expression of HDAC7.

    PubMed

    Dokmanovic, Milos; Perez, Gisela; Xu, Weisheng; Ngo, Lang; Clarke, Cathy; Parmigiani, Raphael B; Marks, Paul A

    2007-09-01

    There are 18 histone deacetylases (HDAC) generally divided into four classes based on homology to yeast HDACs. HDACs have many protein substrates in addition to histones that are involved in regulation of gene expression, cell proliferation, and cell death. Inhibition of HDACs can cause accumulation of acetylated forms of these proteins, thus altering their function. HDAC inhibitors (HDACi), such as the hydroxamic acid-based vorinostat (suberoylanilide hydroxamic acid), inhibit the zinc-containing classes I, II, and IV, but not the NAD(+)-dependent class III, enzymes. HDACis are a group of novel anticancer agents. Vorinostat is the first HDACi approved for clinical use in the treatment of the cancer cutaneous T-cell lymphoma. Factors affecting expression of HDACs are not well understood. This study focuses on the effect of the HDACi vorinostat on the expression of class I and class II HDACs. We found that vorinostat selectively down-regulates HDAC7 with little or no effect on the expression of other class I or class II HDACs. Fourteen cell lines were examined, including normal, immortalized, genetically transformed, and human cancer-derived cell lines. Down-regulation of HDAC7 by vorinostat is more pronounced in transformed cells sensitive to inhibitor-induced cell death than in normal cells or cancer cells resistant to induced cell death. Modulation of HDAC7 levels by small interfering RNA-mediated knockdown or by HDAC7 overexpression is associated with growth arrest but without detectable changes in acetylation of histones or p21 gene expression. Selective down-regulation of HDAC7 protein may serve as a marker of response of tumors to HDACi.

  14. A Class 1 Histone Deacetylase with Potential as an Antifungal Target

    PubMed Central

    Bauer, Ingo; Varadarajan, Divyavaradhi; Pidroni, Angelo; Gross, Silke; Vergeiner, Stefan; Faber, Birgit; Hermann, Martin; Tribus, Martin; Brosch, Gerald

    2016-01-01

    ABSTRACT Histone deacetylases (HDACs) remove acetyl moieties from lysine residues at histone tails and nuclear regulatory proteins and thus significantly impact chromatin remodeling and transcriptional regulation in eukaryotes. In recent years, HDACs of filamentous fungi were found to be decisive regulators of genes involved in pathogenicity and the production of important fungal metabolites such as antibiotics and toxins. Here we present proof that one of these enzymes, the class 1 type HDAC RpdA, is of vital importance for the opportunistic human pathogen Aspergillus fumigatus. Recombinant expression of inactivated RpdA shows that loss of catalytic activity is responsible for the lethal phenotype of Aspergillus RpdA null mutants. Furthermore, we demonstrate that a fungus-specific C-terminal region of only a few acidic amino acids is required for both the nuclear localization and catalytic activity of the enzyme in the model organism Aspergillus nidulans. Since strains with single or multiple deletions of other classical HDACs revealed no or only moderate growth deficiencies, it is highly probable that the significant delay of germination and the growth defects observed in strains growing under the HDAC inhibitor trichostatin A are caused primarily by inhibition of catalytic RpdA activity. Indeed, even at low nanomolar concentrations of the inhibitor, the catalytic activity of purified RpdA is considerably diminished. Considering these results, RpdA with its fungus-specific motif represents a promising target for novel HDAC inhibitors that, in addition to their increasing impact as anticancer drugs, might gain in importance as antifungals against life-threatening invasive infections, apart from or in combination with classical antifungal therapy regimes. PMID:27803184

  15. Plant-derived flavone Apigenin: The small-molecule with promising activity against therapeutically resistant prostate cancer.

    PubMed

    Ganai, Shabir Ahmad

    2017-01-01

    Prostate cancer is the second leading cause of cancer related deaths in men in the United States. Mounting evidences suggest that in the pathophysiology of prostate cancer epigenetic modifications play a considerable role. Histone deacetylases (HDACs) have strong crosstalk with prostate cancer progression as they regulate various genes meant for tumour suppression. HDACs are emerging as striking molecular targets for anticancer drugs and therapy as their aberrant expression has been implicated in several cancers. Histone deacetylase inhibitors (HDACi), the small molecules interfering HDACs are the propitious chemotherapeutic agents as they tune the altered acetylation homeostasis for attenuating disease signalling. More than 20 HDACi have entered into the clinical trials and 4 have crossed the journey by gaining FDA approval for treating distinct haematological malignancies including multiple myeloma. Despite the therapeutic benefits, the synthetic HDACi cause detrimental side effects like atrial fibrillation, raising concerns regarding their applicability. Taking these facts into consideration the current article focused on plant-derived HDAC inhibitor Apigenin and its marvelous role in prostate cancer therapy. Moreover, the article sheds light on Apigenin induced apoptosis in various prostate cancer models. The defined inhibitor provokes apoptotic signaling in these models by multiple mechanisms like restraining HDACs, declining the levels of antiapoptotic proteins. Importantly, Apigenin hampers NF-κB signalling and down-modulates its regulated gene products for bringing therapeutic effect. Furthermore, Apigenin shows synergistic effect in combinatorial therapy and induces apoptosis even in prostate cancer models resistant to conventional therapeutic regimens. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Histone deacetylase inhibitors, valproic acid and trichostatin-A induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells

    PubMed Central

    FORTSON, WENDELL S.; KAYARTHODI, SHUBHALAXMI; FUJIMURA, YASUO; XU, HUALI; MATTHEWS, ROLAND; GRIZZLE, WILLIAM E.; RAO, VEENA N.; BHAT, GANAPATHY K.; REDDY, E. SHYAM P.

    2012-01-01

    An ETS family member, ETS Related Gene (ERG) is involved in the Ewing family of tumors as well as leukemias. Rearrangement of the ERG gene with the TMPRSS2 gene has been identified in the majority of prostate cancer patients. Additionally, overexpression of ERG is associated with un- favorable prognosis in prostate cancer patients similar to leukemia patients. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate transcription as well as epigenetic status of genes through acetylation of both histones and transcription factors. Deregulation of HATs and HDACs is frequently seen in various cancers, including prostate cancer. Many cellular oncogenes as well as tumor viral proteins are known to target either or both HATs and HDACs. Several studies have demonstrated that there are alterations of HDAC activity in prostate cancer cells. Recently, we found that ERG binds and inhibits HATs, which suggests that ERG is involved in deregulation of protein acetylation. Additionally, it has been shown that ERG is associated with a higher expression of HDACs. In this study, we tested the effect of the HDAC inhibitors valproic acid (VPA) and trichostatin-A (TSA) on ERG-positive prostate cancer cells (VCaP). We found that VPA and TSA induce apoptosis, upregulate p21/Waf1/CIP1, repress TMPRSS2-ERG expression and affect acetylation status of p53 in VCaP cells. These results suggest that HDAC inhibitors might restore HAT activity through two different ways: by inhibiting HDAC activity and by repressing HAT targeting oncoproteins such as ERG. PMID:21519790

  17. Inhibition of histone deacetylation and DNA methylation improves gene expression mediated by the adeno-associated virus/phage in cancer cells.

    PubMed

    Kia, Azadeh; Yata, Teerapong; Hajji, Nabil; Hajitou, Amin

    2013-10-22

    Bacteriophage (phage), viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV). This novel AAV/phage hybrid (AAVP) specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.

  18. Carboxylic acid derivatives display potential selectivity for human histone deacetylase 6: Structure-based virtual screening, molecular docking and dynamics simulation studies.

    PubMed

    Uba, Abdullahi Ibrahim; Yelekçi, Kemal

    2018-08-01

    Human histone deacetylase 6 (HDAC6) has been shown to play a major role in oncogenic cell transformation via deacetylation of α-tubulin, making it a viable target of anticancer drug design and development. The crystal structure of HDAC6 catalytic domain 2 has been recently made available, providing avenues for structure-based drug design campaign. Here, in our continuous effort to identify potentially selective HDAC6 inhibitors, structure-based virtual screening of ∼72 461 compounds was carried out using Autodock Vina. The top 100 compounds with calculated ΔG < -10 kcal/mol were manually inspected for binding mode orientation. Furthermore, the top 20 compounds with reasonable binding modes were evaluated for selectivity by further docking against HDAC6 and HDAC7 using Autodock4. Four compounds with a carboxylic fragment, displayed potential selectivity for HDAC6 over HDAC7, and were found to have good druglike and ADMET properties. Their docking complexes were then submitted to 10 ns-molecular dynamics (MD) simulation using nanoscale MD (NAMD) software, to examine the stability of ligand binding modes. These predicted inhibitors remained bound to HDAC6 in the presence of water and ions, and the root-mean-square deviation (RMSD), radius of gyration (Rg) and nonbond distance (protein-ligand) profiles suggested that they might be stable over time of the simulation. This study may provide scaffolds for further lead optimization towards the design of HDAC6 inhibitors with improved selectivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Expression loss and revivification of RhoB gene in ovary carcinoma carcinogenesis and development.

    PubMed

    Liu, Yingwei; Song, Na; Ren, Kexing; Meng, Shenglan; Xie, Yao; Long, Qida; Chen, Xiancheng; Zhao, Xia

    2013-01-01

    RhoB, a member of small GTPases belonging to the Ras protein superfamily, might have a suppressive activity in cancer progression. Here, expression of RhoB gene was evaluated in human benign, borderline and malignant ovary tumors by immunostaining, with normal ovary tissue as control. Malignant tumors were assessed according to Federation Internationale de Gynecologie Obstetrique (FIGO) guidelines and classified in stage I-IV. Revivification of RhoB gene was investigated by analyzing the effect of histone deacetylase (HDAC) inhibitor trichostatin (TSA) and methyltransferase inhibitor 5-azacytidine (5-Aza) on ovarian cancer cells via RT-PCR and western blot. Apoptosis of ovary cancer cells was detected using flowcytometry and fluorescence microscopy. Subsequently, RhoB expression is detected in normal ovary epithelium, borderline tumors, and decreases significantly or lost in the majority of ovarian cancer specimen (P<0.05). RhoB expression decreases significantly from stage II (71.4%) to stage III (43.5%) to stage IV (18.2%, P<0.05). TSA can both significantly revive the RhoB gene and mediate apoptosis of ovarian cancer cells, but 5-Aza couldn't. Interference into Revivification of RhoB gene results in reduction of ovary carcinoma cell apoptosis. It is proposed that loss of RhoB expression occurs frequently in ovary carcinogenesis and progression and its expression could be regulated by histone deacetylation but not by promoter hypermethylation, which may serve as a prospective gene treatment target for the patients with ovarian malignancy not responding to standard therapies.

  20. Expression Loss and Revivification of RhoB Gene in Ovary Carcinoma Carcinogenesis and Development

    PubMed Central

    Liu, Yingwei; Song, Na; Ren, Kexing; Meng, Shenglan; Xie, Yao; Long, Qida; Chen, Xiancheng; Zhao, Xia

    2013-01-01

    RhoB, a member of small GTPases belonging to the Ras protein superfamily, might have a suppressive activity in cancer progression. Here, expression of RhoB gene was evaluated in human benign, borderline and malignant ovary tumors by immunostaining, with normal ovary tissue as control. Malignant tumors were assessed according to Federation Internationale de Gynecologie Obstetrique (FIGO) guidelines and classified in stage I-IV. Revivification of RhoB gene was investigated by analyzing the effect of histone deacetylase (HDAC) inhibitor trichostatin (TSA) and methyltransferase inhibitor 5-azacytidine (5-Aza) on ovarian cancer cells via RT-PCR and western blot. Apoptosis of ovary cancer cells was detected using flowcytometry and fluorescence microscopy. Subsequently, RhoB expression is detected in normal ovary epithelium, borderline tumors, and decreases significantly or lost in the majority of ovarian cancer specimen (P<0.05). RhoB expression decreases significantly from stage II (71.4%) to stage III (43.5%) to stage IV (18.2%, P<0.05). TSA can both significantly revive the RhoB gene and mediate apoptosis of ovarian cancer cells, but 5-Aza couldn’t. Interference into Revivification of RhoB gene results in reduction of ovary carcinoma cell apoptosis. It is proposed that loss of RhoB expression occurs frequently in ovary carcinogenesis and progression and its expression could be regulated by histone deacetylation but not by promoter hypermethylation, which may serve as a prospective gene treatment target for the patients with ovarian malignancy not responding to standard therapies. PMID:24223801

  1. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines.

    PubMed

    Witta, Samir E; Gemmill, Robert M; Hirsch, Fred R; Coldren, Christopher D; Hedman, Karla; Ravdel, Larisa; Helfrich, Barbara; Dziadziuszko, Rafal; Chan, Daniel C; Sugita, Michio; Chan, Zeng; Baron, Anna; Franklin, Wilbur; Drabkin, Harry A; Girard, Luc; Gazdar, Adi F; Minna, John D; Bunn, Paul A

    2006-01-15

    The epidermal growth factor receptor (EGFR) is overexpressed in the majority of non-small cell lung cancers (NSCLC). EGFR tyrosine kinase inhibitors, such as gefitinib and erlotinib, produce 9% to 27% response rates in NSCLC patients. E-Cadherin, a calcium-dependent adhesion molecule, plays an important role in NSCLC prognosis and progression, and interacts with EGFR. The zinc finger transcriptional repressor, ZEB1, inhibits E-cadherin expression by recruiting histone deacetylases (HDAC). We identified a significant correlation between sensitivity to gefitinib and expression of E-cadherin, and ZEB1, suggesting their predictive value for responsiveness to EGFR-tyrosine kinase inhibitors. E-Cadherin transfection into a gefitinib-resistant line increased its sensitivity to gefitinib. Pretreating resistant cell lines with the HDAC inhibitor, MS-275, induced E-cadherin along with EGFR and led to a growth-inhibitory and apoptotic effect of gefitinib similar to that in gefitinib-sensitive NSCLC cell lines including those harboring EGFR mutations. Thus, combined HDAC inhibitor and gefitinib treatment represents a novel pharmacologic strategy for overcoming resistance to EGFR inhibitors in patients with lung cancer.

  2. Stereoselective HDAC inhibition from cysteine-derived zinc-binding groups.

    PubMed

    Butler, Kyle V; He, Rong; McLaughlin, Kathryn; Vistoli, Giulio; Langley, Brett; Kozikowski, Alan P

    2009-08-01

    A series of small-molecule histone deacetylase (HDAC) inhibitors, which feature zinc binding groups derived from cysteine, were synthesized. These inhibitors were tested against multiple HDAC isoforms, and the most potent, compound 10, was determined to have IC(50) values below 1 microM. The compounds were also tested in a cellular assay of oxidative stress-induced neurodegeneration. Many of the inhibitors gave near-complete protection against cell death at 10 microM without the neurotoxicity seen with hydroxamic acid-based inhibitors, and were far more neuroprotective than HDAC inhibitors currently in clinical trials. Both enantiomers of cysteine were used in the synthesis of a variety of novel zinc-binding groups (ZBGs). Derivatives of L-cysteine were active in the HDAC inhibition assays, while the derivatives of D-cysteine were inactive. Notably, the finding that both the D- and L-cysteine derivatives were active in the neuroprotection assays suggests that multiple mechanisms are working to protect the neurons from cell death. Molecular modeling was employed to investigate the differences in inhibitory activity between the HDAC inhibitors generated from the two enantiomeric forms of cysteine.

  3. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.

    PubMed

    Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P

    2012-01-01

    Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.

  4. Oncolytic Virotherapy Targeting Lung Cancer Drug Resistance

    DTIC Science & Technology

    2013-08-01

    R. M ., F. Galivo, T. Kottke, P. Wongthida, J. Qiao, J. Thompson, M . Valdes, G. Barber, and R. G. Vile. 2007. Oncolytic immunovirotherapy for...2545. 10 4. Kottke, T., F. Errington, J. Pulido, F. Galivo, J. Thompson, P. Wongthida, R. M . Diaz, H. Chong, E. Ilett, J. Chester, H. Pandha...established tumors. Nat Med 17:854-859. 5. Nguyen, T. L., M . G. Wilson, and J. Hiscott. 2010. Oncolytic viruses and histone deacetylase inhibitors--a

  5. Emerging Agents for the Treatment of Advanced, Imatinib-Resistant Gastrointestinal Stromal Tumors: Current Status and Future Directions.

    PubMed

    Bauer, Sebastian; Joensuu, Heikki

    2015-08-01

    Imatinib is strongly positioned as the recommended first-line agent for most patients with advanced gastrointestinal stromal tumor (GIST) due to its good efficacy and tolerability. Imatinib-resistant advanced GIST continues to pose a therapeutic challenge, likely due to the frequent presence of multiple mutations that confer drug resistance. Sunitinib and regorafenib are approved as second- and third-line agents, respectively, for patients whose GIST does not respond to imatinib or who do not tolerate imatinib, and their use is supported by large randomized trials. ATP-mimetic tyrosine kinase inhibitors provide clinical benefit even in heavily pretreated GIST suggesting that oncogenic dependency on KIT frequently persists. Several potentially useful tyrosine kinase inhibitors with distinct inhibitory profiles against both KIT ATP-binding domain and activation loop mutations have not yet been fully evaluated. Agents that have been found promising in preclinical models and early clinical trials include small molecule KIT and PDGFRA mutation-specific inhibitors, heat shock protein inhibitors, histone deacetylase inhibitors, allosteric KIT inhibitors, KIT and PDGFRA signaling pathway inhibitors, and immunological approaches including antibody-drug conjugates. Concomitant or sequential administration of tyrosine kinase inhibitors with KIT signaling pathway inhibitors require further evaluation, as well as rotation of tyrosine kinase inhibitors as a means to suppress drug-resistant cell clones.

  6. Design, synthesis and biological evaluation of di-substituted cinnamic hydroxamic acids bearing urea/thiourea unit as potent histone deacetylase inhibitors.

    PubMed

    Ning, Chengqing; Bi, Yanjing; He, Yujun; Huang, WenYuan; Liu, Lifei; Li, Yi; Zhang, Sihan; Liu, Xiaoyu; Yu, Niefang

    2013-12-01

    A novel class of di-substituted cinnamic hydroxamic acid derivatives containing urea or thiourea unit was designed, synthesized and evaluated as HDAC inhibitors. All tested compounds demonstrated significant HDAC inhibitory activities and anti-proliferative effects against diverse human tumor cell lines. Among them, 7l exhibited most potent pan-HDAC inhibitory activity, with an IC50 value of 130 nM. It also showed strong cellular inhibition against diverse cell lines including HCT-116, MCF-7, MDB-MB-435 and NCI-460, with GI50 values of 0.35, 0.22, 0.51 and 0.48 μM, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy.

    PubMed

    Gong, Chao-Jun; Gao, An-Hui; Zhang, Yang-Ming; Su, Ming-Bo; Chen, Fei; Sheng, Li; Zhou, Yu-Bo; Li, Jing-Ya; Li, Jia; Nan, Fa-Jun

    2016-04-13

    Histone deacetylases (HDACs) are a class of epigenetic modulators with complex functions in histone post-translational modifications and are well known targets for antineoplastic drugs. We have previously developed a series of bisthiazole-based hydroxamic acids as novel potent HDAC inhibitors. In the present work, a new series of bisthiazole-based compounds with different zinc binding groups (ZBGs) have been designed and synthesized. Among them is compound 7, containing a trifluoromethyl ketone as the ZBG, which displays potent inhibitory activity towards human HDACs and improved antiproliferative activity in several cancer cell lines. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27.

    PubMed

    Huang, Ying; Wu, Renyi; Su, Zheng-Yuan; Guo, Yue; Zheng, Xi; Yang, Chung S; Kong, Ah-Ng

    2017-02-01

    Tocotrienols, members of the vitamin E family, have three unsaturated bonds in their side chains. Recently, it has been suggested that the biological effects of tocotrienols may differ from that of tocopherols. Several in vitro studies have shown that tocotrienols have stronger anticancer effects than tocopherols. VCaP cell line used in this study is from a vertebral bone metastasis from a patient with prostate cancer. Eight-week-old male NCr(-/-) nude mice were subcutaneously injected with VCaP-luc cells in matrigel and then administered a tocotrienol mixture for 8 weeks. The tocotrienol mixture inhibited the growth of human prostate tumor xenografts in a dose-dependent manner. The concentrations of tocotrienols and their metabolites were significantly increased in treatment groups. Tocotrienols inhibited prostate tumor growth by suppressing cell proliferation, which was associated with the induction of the cyclin-dependent kinase (CDK) inhibitors p21 and p27. In addition, tocotrienol treatment was associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27 and with decreased expression of histone deacetylases. Tocotrienols inhibited human prostate tumor growth, associated with up-regulation of the CDK inhibitors p21 and p27. Elevated expression of p21 and p27 could be partly due to the suppressed expression of HDACs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Protein kinase D2 controls cardiac valve formation in zebrafish by regulating histone deacetylase 5 activity.

    PubMed

    Just, Steffen; Berger, Ina M; Meder, Benjamin; Backs, Johannes; Keller, Andreas; Marquart, Sabine; Frese, Karen; Patzel, Eva; Rauch, Gerd-Jörg; Katus, Hugo A; Rottbauer, Wolfgang

    2011-07-19

    The molecular mechanisms that guide heart valve formation are not well understood. However, elucidation of the genetic basis of congenital heart disease is one of the prerequisites for the development of tissue-engineered heart valves. We isolated here a mutation in zebrafish, bungee (bng(jh177)), which selectively perturbs valve formation in the embryonic heart by abrogating endocardial Notch signaling in cardiac cushions. We found by positional cloning that the bng phenotype is caused by a missense mutation (Y849N) in zebrafish protein kinase D2 (pkd2). The bng mutation selectively impairs PKD2 kinase activity and hence Histone deacetylase 5 phosphorylation, nuclear export, and inactivation. As a result, the expression of Histone deacetylase 5 target genes Krüppel-like factor 2a and 4a, transcription factors known to be pivotal for heart valve formation and to act upstream of Notch signaling, is severely downregulated in bungee (bng) mutant embryos. Accordingly, the expression of Notch target genes, such as Hey1, Hey2, and HeyL, is severely decreased in bng mutant embryos. Remarkably, downregulation of Histone deacetylase 5 activity in homozygous bng mutant embryos can rescue the mutant phenotype and reconstitutes notch1b expression in atrioventricular endocardial cells. We demonstrate for the first time that proper heart valve formation critically depends on Protein kinase D2-Histone deacetylase 5-Krüppel-like factor signaling.

  10. Post transcriptional control of the epigenetic stem cell regulator PLZF by sirtuin and HDAC deacetylases.

    PubMed

    McConnell, Melanie J; Durand, Laetitia; Langley, Emma; Coste-Sarguet, Lise; Zelent, Arthur; Chomienne, Christine; Kouzarides, Tony; Licht, Jonathan D; Guidez, Fabien

    2015-01-01

    The transcriptional repressor promyelocytic leukemia zinc finger protein (PLZF) is critical for the regulation of normal stem cells maintenance by establishing specific epigenetic landscape. We have previously shown that CBP/p300 acetyltransferase induces PLZF acetylation in order to increase its deoxynucleotidic acid (DNA) binding activity and to enhance its epigenetic function (repression of PLZF target genes). However, how PLZF is inactivated is not yet understood. In this study, we demonstrate that PLZF is deacetylated by both histone deacetylase 3 and the NAD+ dependent deacetylase silent mating type information regulation 2 homolog 1 (SIRT1). Unlike other PLZF-interacting deacetylases, these two proteins interact with the zinc finger domain of PLZF, where the activating CBP/p300 acetylation site was previously described, inducing deacetylation of lysines 647/650/653. Overexpression of histone deacetylase 3 (HDAC3) and SIRT1 is associated with loss of PLZF DNA binding activity and decreases PLZF transcriptional repression. As a result, the chromatin status of the promoters of PLZF target genes, involved in oncogenesis, shift from a heterochromatin to an open euchromatin environment leading to gene expression even in the presence of PLZF. Consequently, SIRT1 and HDAC3 mediated-PLZF deacetylation provides for rapid control and fine-tuning of PLZF activity through post-transcriptional modification to regulate gene expression and cellular homeostasis.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo

    Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, whichmore » is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and is implicated in decreased 5 Prime -AMP activated kinase (AMPK) activation, leading to the impairment of autophagy. The mTOR inhibitor, rapamycin, abolishes Sirtinol-induced inflammation and NF-{kappa}B activation associated with p62/Sqstm1 accumulation. In summary, SIRT1 inactivation induces inflammation through NF-{kappa}B activation and dysregulates autophagy via nutrient-sensing pathways such as the mTOR and AMPK pathways, in THP-1 cells.« less

  12. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity*

    PubMed Central

    Samant, Sadhana A.; Pillai, Vinodkumar B.; Sundaresan, Nagalingam R.; Shroff, Sanjeev G.; Gupta, Mahesh P.

    2015-01-01

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107

  13. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells.

    PubMed

    Kalle, Arunasree M; Mallika, A; Badiger, Jayasree; Alinakhi; Talukdar, Pinaki; Sachchidanand

    2010-10-08

    Overexpression of SIRT1, a NAD+-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC₅₀ of 1, 10 and 0.5 μM, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma

    PubMed Central

    Kroesen, Michiel; Büll, Christian; Gielen, Paul R.; Brok, Ingrid C.; Armandari, Inna; Wassink, Melissa; Looman, Maaike W. G.; Boon, Louis; den Brok, Martijn H.; Hoogerbrugge, Peter M.; Adema, Gosse J.

    2016-01-01

    ABSTRACT Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients. PMID:27471639

  15. ERalpha and ERbeta expression and transcriptional activity are differentially regulated by HDAC inhibitors

    PubMed Central

    Duong, Vanessa; Licznar, Anne; Margueron, Raphaël; Boulle, Nathalie; Busson, Muriel; Lacroix, Matthieu; Katzenellenbogen, Benita S.; Cavaillès, Vincent; Lazennec, Gwendal

    2006-01-01

    The proliferative action of ERα largely accounts for the carcinogenic activity of estrogens. By contrast, recent data show that ERβ displays tumor-suppressor properties, thus supporting the interest to identify compounds which could increase its activity. Here, we show that histone deacetylase inhibitors (HDI) up-regulated ERβ protein levels, whereas it decreased ERα expression. Part of this regulation took place at the mRNA level through a mechanism independent of de novo protein synthesis. In addition, we found that, in various cancer cells, the treatment with different HDI enhanced the ligand-dependent activity of ERβ more strongly than that of ERα. On the other hand, in MDA-MB231 and HeLa cells, the expression of ERs modified the transcriptional response to HDI. The use of deletion mutants of both receptors demonstrated that AF1 domain of the receptors was required. Finally, we show that ERβ expression led to a dramatic increased in the antiproliferative activity of HDI, which correlated with a modification of the transcription of genes involved in cell cycle control by HDI. Altogether, these data demonstrate that the interference of ERβ and HDAC on the control of transcription and cell proliferation constitute a promising approach for cancer therapy. PMID:16158045

  16. Future Directions in Myelodysplastic Syndrome: Newer Agents and the Role of Combination Approaches

    PubMed Central

    Gore, Steven D.; Hermes-DeSantis, Evelyn R.

    2009-01-01

    Myelodysplastic syndrome (MDS) is not a single disease, but a collection of hematopoietic disorders that require newer strategies. Currently, azacitidine, decitabine, and lenalidomide are approved by the US Food and Drug Administration for the treatment of MDS. A recent study demonstrated an improved overall survival (24.4 months vs 15 months) in high-risk MDS patients receiving azacitidine plus best supportive care vs conventional care which has resulted in an updated label for this product. Conventional care consisted of supportive care alone or either low-dose ara-C or standard chemotherapy plus best supportive care. While these data are encouraging, newer agents such as vorinostat, MGCD0103, MS-275, and tipifarnib are currently being studied as monotherapy or in combinations with approved treatments for MDS. The goal of combining pharmacotherapy, such as the combination of DNA methylation inhibitors and histone deacetylase inhibitors, in the management of MDS is to increase the response rates and decrease the toxicities associated with treatment. Clinical experience in the use of combination products has given practitioners the empirical knowledge necessary to better treat patients with MDS. Utilizing convergent or complementary molecular mechanisms with in vitro or in vivo evidence of synergy is a fresher and maybe a more efficacious approach to combination therapy. PMID:18813208

  17. Novel Preclinical Testing Strategies for Treatment of Metastatic Pheochromocytoma

    DTIC Science & Technology

    2014-09-01

    normal neural stem cells based on the Additions to Basic medium + 10% FBS + 1mM Hydrocortisone 1% BSA + 1mM Hydrocortisone None 0 0 BME 0 0 LIF...proliferation of tumor cells under any condition tested Trichostatin A LIF 1000 IU/mL Hydrocortisone 1 µM LIF 1000 IU/mL + Hydrocortisone 1 µM...deacetylase inhibitor trichostatin A or leukemia inhibiting factor (LIF), which are reported to maintain “stemness”. Hydrocortisone is a survival

  18. Life or death? A Physiogenomic Approach to Understand Individual Variation in Responses to Hemorrhagic Shock

    DTIC Science & Technology

    2011-01-01

    Olaomi, O.; Olldashi, F.; Perel, P.; Peto, R.; Ramana, P. V.; Ravi, R. R.; Yutthakasemsunt, S. Effects of tranexamic acid on death, vascular...Glutamine [197-199] Yes Histone deacetylase inhibitors (e.g., valproic acid ) [168-169, 200-201] No Naloxone [202] Yes 430 Current Genomics, 2011, Vol...regulation and dynamics of ribonucleic Acid . Endocrinology, 2010, 151, 1391-1397. [44] Spriggs, K. A.; Bushell, M.; Willis, A. E. Translational regulation

  19. Combinations of Novel Histone Deacetylase and Bcr-Abl Inhibitors in the Therapy of Imatinib Mesylate-Sensitive and -Refractory Bcr-Abl Expressing Leukemia

    DTIC Science & Technology

    2008-12-01

    information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services , Directorate for Information Operations... internal tandem duplications pro- mote cell viability and proliferation by signaling through Foxo proteins. Oncogene. 2004;23:3338- 3349. 45. Harada H...Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 1999; 131:207-19. Kantarjian HM, Dixon D, Keating MJ, et al. Characteristics of

  20. A salt bridge turns off the foot-pocket in class-II HDACs.

    PubMed

    Zhou, Jingwei; Yang, Zuolong; Zhang, Fan; Luo, Hai-Bin; Li, Min; Wu, Ruibo

    2016-08-21

    Histone Deacetylases (HDACs) are promising anticancer targets and several selective inhibitors have been created based on the architectural differences of foot-pockets among HDACs. However, the "gate-keeper" of foot-pockets is still controversial. Herein, it is for the first time revealed that a conserved R-E salt bridge plays a critical role in keeping foot-pockets closed in class-II HDACs by computational simulations. This finding is further substantiated by our mutagenesis experiments.

  1. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack

    PubMed Central

    Brookes, Rebecca L.; Crichton, Siobhan; Wolfe, Charles D.A.; Yi, Qilong; Li, Linxin; Hankey, Graeme J.; Rothwell, Peter M.

    2018-01-01

    Background and Purpose— A variant in the histone deacetylase 9 (HDAC9) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Methods— Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. Results— A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P=0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3–0.7; P=0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29–0.77; P=0.003). Conclusions— These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. PMID:29247141

  2. HDAC6 deficiency or inhibition blocks FGFR3 accumulation and improves bone growth in a model of achondroplasia.

    PubMed

    Ota, Sara; Zhou, Zi-Qiang; Romero, Megan P; Yang, Guang; Hurlin, Peter J

    2016-10-01

    Mutations that cause increased and/or inappropriate activation of FGFR3 are responsible for a collection of short-limbed chondrodysplasias. These mutations can alter receptor trafficking and enhance receptor stability, leading to increased receptor accumulation and activity. Here, we show that wildtype and mutant activated forms of FGFR3 increase expression of the cytoplasmic deacetylase HDAC6 (Histone Deacetylase 6) and that FGFR3 accumulation is compromised in cells lacking HDAC6 or following treatment of fibroblasts or chondrocytes with small molecule inhibitors of HDAC6. The reduced accumulation of FGFR3 was linked to increased FGFR3 degradation that occurred through a lysosome-dependent mechanism. Using a mouse model of Thanatophoric Dysplasia Type II (TDII) we show that both HDAC6 deletion and treatment with the small molecule HDAC6 inhibitor tubacin reduced FGFR3 accumulation in the growth plate and improved endochondral bone growth. Defective endochondral growth in TDII is associated with reduced proliferation and poor hypertrophic differentiation and the improved bone growth was associated with increased chondrocyte proliferation and expansion of the differentiation compartment within the growth plate. These findings further define the mechanisms that control FGFR3 accumulation and contribute to skeletal pathology caused by mutations in FGFR3. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Expression of Histone Deacetylases in Cellular Compartments of the Mouse Brain and the Effects of Ischemia

    PubMed Central

    Bachleda, Amelia; Morrison, Richard S.; Murphy, Sean P.

    2011-01-01

    Drugs that inhibit specific histone deacetylase (HDAC) activities have enormous potential in preventing the consequences of acute injury to the nervous system and in allaying neurodegeneration. However, very little is known about the expression pattern of the HDACs in the central nervous system (CNS). Identifying the cell types that express HDACs in the CNS is important for determining therapeutic targets for HDAC inhibitors and evaluating potential side effects. We characterized the cellular expression of HDACs 1–3, and HDACs 4 and 6, in the adult mouse brain in the cingulate cortex, parietal cortex, dentate gyrus, and CA1 regions of the hippocampus and subcortical white matter. Expression of class I HDACs showed a cell-and region-specific pattern. Transient focal ischemia induced by temporary middle cerebral artery occlusion, or global ischemia induced by in vitro oxygen–glucose deprivation, altered the extent of HDAC expression in a region- and cell-specific manner. The pan-HDAC inhibitor, SAHA, reduced ischemia-induced alterations in HDACs. The results suggest that in addition to promoting epigenetic changes in transcriptional activity in the nucleus of neurons and glia, HDACs may also have non-transcriptional actions in axons and the distant processes of glial cells and may significantly modulate the response to injury in a cell- and region-specific manner. PMID:21966324

  4. Hybrids from Farnesylthiosalicylic Acid and Hydroxamic Acid as Dual Ras-Related Signaling and Histone Deacetylase (HDAC) Inhibitors: Design, Synthesis and Biological Evaluation.

    PubMed

    Ling, Yong; Wang, Xuemin; Wang, Chenniu; Xu, Chenjun; Zhang, Wei; Zhang, Yihua; Zhang, Yanan

    2015-06-01

    A novel series of hybrids was designed and synthesized by combining key elements from farnesylthiosalicylic acid (FTS) and hydroxamic acid. Several 3,7,11-trimethyldodeca-2,6,10-trien-1-yl) thio)benzamide derivatives, particularly those with branched and linear aliphatic linkers between the hydroxamic zinc binding group (ZBG) and the benzamide core, not only displayed significant antitumor activities against six human cancer cells but also exhibited histone deacetylase (HDAC) inhibitory effects in vitro. Among them, N-(4-(hydroxyamino)-4-oxobutyl)-2-(((2E,6E)-3,7,11-trimethyldodeca-2,6, 10-trien-1-yl)thio)benzamide (8 d) was the most potent, with IC50 values of 4.9-7.6 μM; these activities are eight- to sixteen-fold more potent than FTS and comparable to that of suberoylanilide hydroxamic acid (SAHA). Derivative 8 d induced cell cycle arrest in the G0/G1 phase, inhibited the acetylation of histone H3 and α-tubulin, and blocked Ras-related signaling pathways in a dose-dependent manner. The improved tumor growth inhibition and cell-cycle arrest in vitro might result from the dual inhibition. These findings suggest dual inhibitors of Ras-related signaling pathway and HDAC hold promise as therapeutic agents for the treatment of cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Epigenetic Silencing of the Proapoptotic Gene BIM in Anaplastic Large Cell Lymphoma through an MeCP2/SIN3a Deacetylating Complex12

    PubMed Central

    Piazza, Rocco; Magistroni, Vera; Mogavero, Angela; Andreoni, Federica; Ambrogio, Chiara; Chiarle, Roberto; Mologni, Luca; Bachmann, Petra S; Lock, Richard B; Collini, Paola; Pelosi, Giuseppe; Gambacorti-Passerini, Carlo

    2013-01-01

    BIM is a proapoptotic member of the Bcl-2 family. Here, we investigated the epigenetic status of the BIM locus in NPM/ALK+ anaplastic large cell lymphoma (ALCL) cell lines and in lymph node biopsies from NPM/ALK+ ALCL patients. We show that BIM is epigenetically silenced in cell lines and lymph node specimens and that treatment with the deacetylase inhibitor trichostatin A restores the histone acetylation, strongly upregulates BIM expression, and induces cell death. BIM silencing occurs through recruitment of MeCP2 and the SIN3a/histone deacetylase 1/2 (HDAC1/2) corepressor complex. This event requires BIM CpG methylation/demethylation with 5-azacytidine that leads to detachment of the MeCP2 corepressor complex and reacetylation of the histone tails. Treatment with the ALK inhibitor PF2341066 or with an inducible shRNA targeting NPM/ALK does not restore BIM locus reacetylation; however, enforced expression of NPM/ALK in an NPM/ALK-negative cell line significantly increases the methylation at the BIM locus. This study demonstrates that BIM is epigenetically silenced in NPM/ALK-positive cells through recruitment of the SIN3a/HDAC1/2 corepressor complex and that NPM/ALK is dispensable to maintain BIM epigenetic silencing but is able to act as an inducer of BIM methylation. PMID:23633923

  6. Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases.

    PubMed

    Das Gupta, Kaustav; Shakespear, Melanie R; Iyer, Abishek; Fairlie, David P; Sweet, Matthew J

    2016-01-01

    Macrophages have central roles in danger detection, inflammation and host defense, and consequently, these cells are intimately linked to most disease processes. Major advances in our understanding of the development and function of macrophages have recently come to light. For example, it is now clear that tissue-resident macrophages can be derived from either blood monocytes or through local proliferation of phagocytes that are originally seeded during embryonic development. Metabolic state has also emerged as a major control point for macrophage activation phenotypes. Herein, we review recent literature linking the histone deacetylase (HDAC) family of enzymes to macrophage development and activation, particularly in relation to these recent developments. There has been considerable interest in potential therapeutic applications for small molecule inhibitors of HDACs (HDACi), not only for cancer, but also for inflammatory and infectious diseases. However, the enormous range of molecular and cellular processes that are controlled by different HDAC enzymes presents a potential stumbling block to clinical development. We therefore present examples of how classical HDACs control macrophage functions, roles of specific HDACs in these processes and approaches for selective targeting of drugs, such as HDACi, to macrophages. Development of selective inhibitors of macrophage-expressed HDACs and/or selective delivery of pan HDACi to macrophages may provide avenues for enhancing efficacy of HDACi in therapeutic applications, while limiting unwanted side effects.

  7. Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases

    PubMed Central

    Das Gupta, Kaustav; Shakespear, Melanie R; Iyer, Abishek; Fairlie, David P; Sweet, Matthew J

    2016-01-01

    Macrophages have central roles in danger detection, inflammation and host defense, and consequently, these cells are intimately linked to most disease processes. Major advances in our understanding of the development and function of macrophages have recently come to light. For example, it is now clear that tissue-resident macrophages can be derived from either blood monocytes or through local proliferation of phagocytes that are originally seeded during embryonic development. Metabolic state has also emerged as a major control point for macrophage activation phenotypes. Herein, we review recent literature linking the histone deacetylase (HDAC) family of enzymes to macrophage development and activation, particularly in relation to these recent developments. There has been considerable interest in potential therapeutic applications for small molecule inhibitors of HDACs (HDACi), not only for cancer, but also for inflammatory and infectious diseases. However, the enormous range of molecular and cellular processes that are controlled by different HDAC enzymes presents a potential stumbling block to clinical development. We therefore present examples of how classical HDACs control macrophage functions, roles of specific HDACs in these processes and approaches for selective targeting of drugs, such as HDACi, to macrophages. Development of selective inhibitors of macrophage-expressed HDACs and/or selective delivery of pan HDACi to macrophages may provide avenues for enhancing efficacy of HDACi in therapeutic applications, while limiting unwanted side effects. PMID:26900475

  8. Preclinical Pharmacokinetics Study of R- and S-Enantiomers of the Histone Deacetylase Inhibitor, AR-42 (NSC 731438), in Rodents.

    PubMed

    Cheng, Hao; Xie, Zhiliang; Jones, William P; Wei, Xiaohui Tracey; Liu, Zhongfa; Wang, Dasheng; Kulp, Samuel K; Wang, Jiang; Coss, Christopher C; Chen, Ching-Shih; Marcucci, Guido; Garzon, Ramiro; Covey, Joseph M; Phelps, Mitch A; Chan, Kenneth K

    2016-05-01

    AR-42, a new orally bioavailable, potent, hydroxamate-tethered phenylbutyrate class I/IIB histone deacetylase inhibitor currently is under evaluation in phase 1 and 2 clinical trials and has demonstrated activity in both hematologic and solid tumor malignancies. This report focuses on the preclinical characterization of the pharmacokinetics of AR-42 in mice and rats. A high-performance liquid chromatography-tandem mass spectrometry assay has been developed and applied to the pharmacokinetic study of the more active stereoisomer, S-AR-42, when administered via intravenous and oral routes in rodents, including plasma, bone marrow, and spleen pharmacokinetics (PK) in CD2F1 mice and plasma PK in F344 rats. Oral bioavailability was estimated to be 26 and 100% in mice and rats, respectively. R-AR-42 was also evaluated intravenously in rats and was shown to display different pharmacokinetics with a much shorter terminal half-life compared to that of S-AR-42. Renal clearance was a minor elimination pathway for parental S-AR-42. Oral administration of S-AR-42 to tumor-bearing mice demonstrated high uptake and exposure of the parent drug in the lymphoid tissues, spleen, and bone marrow. This is the first report of the pharmacokinetics of this novel agent, which is now in early phase clinical trials.

  9. Experimental treatment of pancreatic cancer with two novel histone deacetylase inhibitors

    PubMed Central

    Haefner, Martin; Bluethner, Thilo; Niederhagen, Manuel; Moebius, Christian; Wittekind, Christian; Mossner, Joachim; Caca, Karel; Wiedmann, Marcus

    2008-01-01

    AIM: To investigate in vitro and in vivo treatment with histone deacetylase inhibitors NVP-LAQ824 and NVP-LBH589 in pancreatic cancer. METHODS: Cell-growth inhibition by NVP-LAQ824 and NVP-LBH589 was studied in vitro in 8 human pancreatic cancer cell lines using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the anti-tumoral effect of NVP-LBH589 was studied in a chimeric mouse model. Anti-tumoral activity of the drugs was assessed by immunoblotting for p21WAF-1, acH4, cell cycle analysis, TUNEL assay, and immunohistochemistry for MIB-1. RESULTS: In vitro treatment with both compounds significantly suppressed the growth of all cancer cell lines and was associated with hyperacetylation of nucleosomal histone H4, increased expression of p21WAF-1, cell cycle arrest at G2/M-checkpoint, and increased apoptosis. In vivo, NVP-LBH589 alone significantly reduced tumor mass and potentiated the efficacy of gemcitabine. Further analysis of the tumor specimens revealed slightly increased apoptosis and no significant reduction of cell proliferation. CONCLUSION: Our findings suggest that NVP-LBH589 and NVP-LAQ824 are active against human pancreatic cancer, although the precise mechanism of in vivo drug action is not yet completely understood. Therefore, further preclinical and clinical studies for the treatment of pancreatic cancer are recommended. PMID:18595135

  10. Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity

    PubMed Central

    Cao, K; Wang, G; Li, W; Zhang, L; Wang, R; Huang, Y; Du, L; Jiang, J; Wu, C; He, X; Roberts, A I; Li, F; Rabson, A B; Wang, Y; Shi, Y

    2015-01-01

    The poor efficacy of the in vivo anti-tumor immune response has been partially attributed to ineffective T-cell responses mounted against the tumor. Fas-FasL-dependent activation-induced cell death (AICD) of T cells is believed to be a major contributor to compromised anti-tumor immunity. The molecular mechanisms of AICD are well-investigated, yet the possibility of regulating AICD for cancer therapy remains to be explored. In this study, we show that histone deacetylase inhibitors (HDACIs) can inhibit apoptosis of CD4+ T cells within the tumor, thereby enhancing anti-tumor immune responses and suppressing melanoma growth. This inhibitory effect is specific for AICD through suppressing NFAT1-regulated FasL expression on activated CD4+ T cells. In gld/gld mice with mutation in FasL, the beneficial effect of HDACIs on AICD of infiltrating CD4+ T cells is not seen, confirming the critical role of FasL regulation in the anti-tumor effect of HDACIs. Importantly, we found that the co-administration of HDACIs and anti-CTLA4 could further enhance the infiltration of CD4+ T cells and achieve a synergistic therapeutic effect on tumor. Therefore, our study demonstrates that the modulation of AICD of tumor-infiltrating CD4+ T cells using HDACIs can enhance anti-tumor immune responses, uncovering a novel mechanism underlying the anti-tumor effect of HDACIs. PMID:25745993

  11. Histone deacetylase inhibitor ITF2357 leads to apoptosis and enhances doxorubicin cytotoxicity in preclinical models of human sarcoma.

    PubMed

    Di Martile, Marta; Desideri, Marianna; Tupone, Maria Grazia; Buglioni, Simonetta; Antoniani, Barbara; Mastroiorio, Carlotta; Falcioni, Rita; Ferraresi, Virginia; Baldini, Nicola; Biagini, Roberto; Milella, Michele; Trisciuoglio, Daniela; Del Bufalo, Donatella

    2018-02-23

    Sarcomas are rare tumors with generally poor prognosis, for which current therapies have shown limited efficacy. Histone deacetylase inhibitors (HDACi) are emerging anti-tumor agents; however, little is known about their effect in sarcomas. By using established and patient-derived sarcoma cells with different subtypes, we showed that the pan-HDACi, ITF2357, potently inhibited in vitro survival in a p53-independent manner. ITF2357-mediated cell death implied the activation of mitochondrial apoptosis, as attested by induction of pro-apoptotic BH3-only proteins and a caspases-dependent mechanism. ITF2357 also induced autophagy, which protected sarcoma cells from apoptotic cell death. ITF2357 activated forkhead box (FOXO) 1 and 3a transcription factors and their downstream target genes, however, silencing of both FOXO1 and 3a did not protect sarcoma cells against ITF2357-induced apoptosis and upregulated FOXO4 and 6. Notably, ITF2357 synergized with Doxorubicin to induce cell death of established and patient-derived sarcoma cells. Furthermore, combination treatment strongly impaired xenograft tumor growth in vivo, when compared to single treatments, suggesting that combination of ITF2357 with Doxorubicin has the potential to enhance sensitization in different preclinical models of sarcoma. Overall, our study highlights the therapeutic potential of ITF2357, alone or in rational combination therapies, for bone and soft tissue sarcomas management.

  12. Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues

    PubMed Central

    Li, Jia; Chen, Shu; Cleary, Rachel A.; Wang, Ruping; Gannon, Olivia J.; Seto, Edward

    2014-01-01

    Histone deacetylases (HDACs) are a family of enzymes that mediate nucleosomal histone deacetylation and gene expression. Some members of the HDAC family have also been implicated in nonhistone protein deacetylation, which modulates cell-cycle control, differentiation, and cell migration. However, the role of HDACs in smooth muscle contraction is largely unknown. Here, HDAC8 was localized both in the cytoplasm and the nucleus of mouse and human smooth muscle cells. Knockdown of HDAC8 by lentivirus-encoding HDAC8 shRNA inhibited force development in response to acetylcholine. Treatment of smooth muscle tissues with HDAC8 inhibitor XXIV (OSU-HDAC-44) induced relaxation of precontracted smooth muscle tissues. In addition, cortactin is an actin-regulatory protein that undergoes deacetylation during migration of NIH 3T3 cells. In this study, acetylcholine stimulation induced cortactin deacetylation in mouse and human smooth muscle tissues, as evidenced by immunoblot analysis using antibody against acetylated lysine. Knockdown of HDAC8 by RNAi or treatment with the inhibitor attenuated cortactin deacetylation and actin polymerization without affecting myosin activation. Furthermore, expression of a charge-neutralizing cortactin mutant inhibited contraction and actin dynamics during contractile activation. These results suggest a novel mechanism for the regulation of smooth muscle contraction. In response to contractile stimulation, HDAC8 may mediate cortactin deacetylation, which subsequently promotes actin filament polymerization and smooth muscle contraction. PMID:24920679

  13. The novel HDAC inhibitor OBP-801/YM753 enhances the effects of 5-fluorouracil with radiation on esophageal squamous carcinoma cells.

    PubMed

    Furutani, Akinobu; Sowa, Yoshihiro; Fujiwara, Hitoshi; Otsuji, Eigo; Sakai, Toshiyuki

    2014-01-01

    Histone deacetylase (HDAC) inhibitors have been shown to enhance the effects of 5-fluorouracil (5-FU) against various cancer cells; however, no report has shown that an HDAC inhibitor may enhance the effects of 5-FU with radiation. Therefore, we investigated whether the novel HDAC inhibitor OBP-801/YM753 could enhance the effects of 5-FU with radiation on esophageal squamous carcinoma KYSE170 cells. The inhibition of the cell growth was significantly stronger with the combination of OBP-801/YM753 with 5-FU than with the 5-FU treatment only. Furthermore, inhibition of the colony formation was the most effective with the combined treatment of OBP-801/YM753, 5-FU, and radiation. Western blot analysis showed that OBP-801/YM753 suppressed the expression of thymidylate synthase induced by 5-FU. Therefore, this three-combined therapy is promising for patients with esophageal squamous carcinoma.

  14. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalle, Arunasree M., E-mail: arunasreemk@ilsresearch.org; Mallika, A.; Badiger, Jayasree

    2010-10-08

    Research highlights: {yields} Novel small molecule SIRT1 inhibitor better than sirtinol. {yields} IC{sub 50} 500 nM. {yields} Specific tumor cytotoxicity towards breast cancer cells. {yields} Restoration of H3K9 acetylation levels to baseline when co-treated with SIRT1 activator (Activator X) and inhibitor (ILS-JGB-1741). -- Abstract: Overexpression of SIRT1, a NAD{sup +}-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistrymore » approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC{sub 50} of 1, 10 and 0.5 {mu}M, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.« less

  15. Activation of p53 Transcriptional Activity by SMRT: a Histone Deacetylase 3-Independent Function of a Transcriptional Corepressor

    PubMed Central

    Adikesavan, Anbu Karani; Karmakar, Sudipan; Pardo, Patricia; Wang, Liguo; Liu, Shuang; Li, Wei

    2014-01-01

    The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression. PMID:24449765

  16. The chemopreventive activity of the histone deacetylase inhibitor tributyrin in colon carcinogenesis involves the induction of apoptosis and reduction of DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidor, Renato; Advanced Research Center in Food Science and Nutrition; Furtado, Kelly Silva

    2014-04-15

    The chemopreventive activity of the histone deacetylase inhibitor (HDACi) tributyrin (TB), a prodrug of butyric acid (BA), was evaluated in a rat model of colon carcinogenesis. The animals were treated with TB (TB group: 200 mg/100 g of body weight, b.w.) or maltodextrin (MD isocaloric control group: 300 mg/100 g b.w.) daily for 9 consecutive weeks. In the 3rd and 4th weeks of treatment, the rats in the TB and MD groups were given DMH (40 mg/kg b.w.) twice a week. After 9 weeks, the animals were euthanized, and the distal colon was examined. Compared with the control group (MDmore » group), TB treatment reduced the total number of aberrant crypt foci (ACF; p < 0.05) as well as the ACF with ≥ 4 crypts (p < 0.05), which are considered more aggressive, but not inhibited the formation of DMH-induced O6-methyldeoxyguanosine DNA adducts. The TB group also showed a higher apoptotic index (p < 0.05) and reduced DNA damage (p < 0.05) compared with MD group. TB acted as a HDACi, as rats treated with the prodrug of BA had higher levels of histone H3K9 acetylation compared with the MD group (p < 0.05). TB administration resulted in increased colonic tissue concentrations of BA (p < 0.05) compared with the control animals. These results suggest that TB can be considered a promising chemopreventive agent for colon carcinogenesis because it reduced the number of ACF, including those that were more aggressive. Induction of apoptosis and reduction of DNA damage are cellular mechanisms that appear to be involved in the chemopreventive activity of TB. - Highlights: • Tributyrin is a chemopreventive agent for rat colon aberrant crypt foci. • Tributyrin increased apoptosis in an experimental rat colon carcinogenesis model. • Tributyrin treatment in a rat colon carcinogenesis model decreased DNA damage. • Tributyrin treatment induced H3K9 acetylation in a rat colon carcinogenesis model.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). Wemore » found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin cancer cells. ►Grape seed proanthocyanidins can prevent skin cancer through epigenetic modulation.« less

  18. Induction of MAPK- and ROS-dependent autophagy and apoptosis in gastric carcinoma by combination of romidepsin and bortezomib

    PubMed Central

    Hui, Kwai Fung; Yeung, Po Ling; Chiang, Alan K.S.

    2016-01-01

    Proteasome inhibitors and histone deacetylase (HDAC) inhibitors can synergistically induce apoptotic cell death in certain cancer cell types but their combinatorial effect on the induction of autophagy remains unknown. Here, we investigated the combinatorial effects of a proteasome inhibitor, bortezomib, and an HDAC inhibitor, romidepsin, on the induction of apoptotic and autophagic cell death in gastric carcinoma (GC) cells. Isobologram analysis showed that low nanomolar concentrations of bortezomib/romidepsin could synergistically induce killing of GC cells. The synergistic killing was due to the summative effect of caspase-dependent intrinsic apoptosis and caspase-independent autophagy. The autophagic cell death was dependent on the activation of MAPK family members (ERK1/2 and JNK), and generation of reactive oxygen species (ROS), but was independent of Epstein-Barr virus infection. In vivo, bortezomib/romidepsin also significantly induced apoptosis and autophagy in GC xenografts in nude mice. This is the first report demonstrating the potent effect of combination of HDAC and proteasome inhibitors on the induction of MAPK- and ROS-dependent autophagy in addition to caspase-dependent apoptosis in a cancer type. PMID:26683357

  19. Induction of MAPK- and ROS-dependent autophagy and apoptosis in gastric carcinoma by combination of romidepsin and bortezomib.

    PubMed

    Hui, Kwai Fung; Yeung, Po Ling; Chiang, Alan K S

    2016-01-26

    Proteasome inhibitors and histone deacetylase (HDAC) inhibitors can synergistically induce apoptotic cell death in certain cancer cell types but their combinatorial effect on the induction of autophagy remains unknown. Here, we investigated the combinatorial effects of a proteasome inhibitor, bortezomib, and an HDAC inhibitor, romidepsin, on the induction of apoptotic and autophagic cell death in gastric carcinoma (GC) cells. Isobologram analysis showed that low nanomolar concentrations of bortezomib/romidepsin could synergistically induce killing of GC cells. The synergistic killing was due to the summative effect of caspase-dependent intrinsic apoptosis and caspase-independent autophagy. The autophagic cell death was dependent on the activation of MAPK family members (ERK1/2 and JNK), and generation of reactive oxygen species (ROS), but was independent of Epstein-Barr virus infection. In vivo, bortezomib/romidepsin also significantly induced apoptosis and autophagy in GC xenografts in nude mice. This is the first report demonstrating the potent effect of combination of HDAC and proteasome inhibitors on the induction of MAPK- and ROS-dependent autophagy in addition to caspase-dependent apoptosis in a cancer type.

  20. Discovery of HDAC Inhibitors That Lack an Active Site Zn(2+)-Binding Functional Group.

    PubMed

    Vickers, Chris J; Olsen, Christian A; Leman, Luke J; Ghadiri, M Reza

    2012-06-14

    Natural and synthetic histone deacetylase (HDAC) inhibitors generally derive their strong binding affinity and high potency from a key functional group that binds to the Zn(2+) ion within the enzyme active site. However, this feature is also thought to carry the potential liability of undesirable off-target interactions with other metalloenzymes. As a step toward mitigating this issue, here, we describe the design, synthesis, and structure-activity characterizations of cyclic α3β-tetrapeptide HDAC inhibitors that lack the presumed indispensable Zn(2+)-binding group. The lead compounds (e.g., 15 and 26) display good potency against class 1 HDACs and are active in tissue culture against various human cancer cell lines. Importantly, enzymological analysis of 26 indicates that the cyclic α3β-tetrapeptide is a fast-on/off competitive inhibitor of HDACs 1-3 with K i values of 49, 33, and 37 nM, respectively. Our proof of principle study supports the idea that novel classes of HDAC inhibitors, which interact at the active-site opening, but not with the active site Zn(2+), can have potential in drug design.

  1. Quantitative structure-activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries.

    PubMed

    Pham-The, H; Casañola-Martin, G; Diéguez-Santana, K; Nguyen-Hai, N; Ngoc, N T; Vu-Duc, L; Le-Thi-Thu, H

    2017-03-01

    Histone deacetylases (HDAC) are emerging as promising targets in cancer, neuronal diseases and immune disorders. Computational modelling approaches have been widely applied for the virtual screening and rational design of novel HDAC inhibitors. In this study, different machine learning (ML) techniques were applied for the development of models that accurately discriminate HDAC2 inhibitors form non-inhibitors. The obtained models showed encouraging results, with the global accuracy in the external set ranging from 0.83 to 0.90. Various aspects related to the comparison of modelling techniques, applicability domain and descriptor interpretations were discussed. Finally, consensus predictions of these models were used for screening HDAC2 inhibitors from four chemical libraries whose bioactivities against HDAC1, HDAC3, HDAC6 and HDAC8 have been known. According to the results of virtual screening assays, structures of some hits with pair-isoform-selective activity (between HDAC2 and other HDACs) were revealed. This study illustrates the power of ML-based QSAR approaches for the screening and discovery of potent, isoform-selective HDACIs.

  2. Alpha-keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells.

    PubMed

    Nian, Hui; Bisson, William H; Dashwood, Wan-Mohaiza; Pinto, John T; Dashwood, Roderick H

    2009-08-01

    Methylselenocysteine (MSC) and selenomethionine (SM) are two organoselenium compounds receiving interest for their potential anticancer properties. These compounds can be converted to beta-methylselenopyruvate (MSP) and alpha-keto-gamma-methylselenobutyrate (KMSB), alpha-keto acid metabolites that share structural features with the histone deacetylase (HDAC) inhibitor butyrate. We tested the organoselenium compounds in an in vitro assay with human HDAC1 and HDAC8; whereas SM and MSC had little or no activity up to 2 mM, MSP and KMSB caused dose-dependent inhibition of HDAC activity. Subsequent experiments identified MSP as a competitive inhibitor of HDAC8, and computational modeling supported a mechanism involving reversible interaction with the active site zinc atom. In human colon cancer cells, acetylated histone H3 levels were increased during the period 0.5-48 h after treatment with MSP and KMSB, and there was dose-dependent inhibition of HDAC activity. The proportion of cells occupying G(2)/M of the cell cycle was increased at 10-50 microM MSP and KMSB, and apoptosis was induced, as evidenced by morphological changes, Annexin V staining and increased cleaved caspase-3, -6, -7, -9 and poly(adenosine diphosphate-ribose)polymerase. P21WAF1, a well-established target gene of clinically used HDAC inhibitors, was increased in MSP- and KMSB-treated colon cancer cells at both the messenger RNA and protein level, and there was enhanced P21WAF1 promoter activity. These studies confirm that in addition to targeting redox-sensitive signaling molecules, alpha-keto acid metabolites of organoselenium compounds alter HDAC activity and histone acetylation status in colon cancer cells, as recently observed in human prostate cancer cells.

  3. Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model

    PubMed Central

    Whittle, Nigel; Schmuckermair, Claudia; Gunduz Cinar, Ozge; Hauschild, Markus; Ferraguti, Francesco; Holmes, Andrew; Singewald, Nicolas

    2013-01-01

    Anxiety disorders are characterized by persistent, excessive fear. Therapeutic interventions that reverse deficits in fear extinction represent a tractable approach to treating these disorders. We previously reported that 129S1/SvImJ (S1) mice show no extinction learning following normal fear conditioning. We now demonstrate that weak fear conditioning does permit fear reduction during massed extinction training in S1 mice, but reveals specific deficiency in extinction memory consolidation/retrieval. Rescue of this impaired extinction consolidation/retrieval was achieved with d-cycloserine (N-methly-d-aspartate partial agonist) or MS-275 (histone deacetylase (HDAC) inhibitor), applied after extinction training. We next examined the ability of different drugs and non-pharmacological manipulations to rescue the extreme fear extinction deficit in S1 following normal fear conditioning with the ultimate aim to produce low fear levels in extinction retrieval tests. Results showed that deep brain stimulation (DBS) by applying high frequency stimulation to the nucleus accumbens (ventral striatum) during extinction training, indeed significantly reduced fear during extinction retrieval compared to sham stimulation controls. Rescue of both impaired extinction acquisition and deficient extinction consolidation/retrieval was achieved with prior extinction training administration of valproic acid (a GABAergic enhancer and HDAC inhibitor) or AMN082 [metabotropic glutamate receptor 7 (mGlu7) agonist], while MS-275 or PEPA (AMPA receptor potentiator) failed to affect extinction acquisition in S1 mice. Collectively, these data identify potential beneficial effects of DBS and various drug treatments, including those with HDAC inhibiting or mGlu7 agonism properties, as adjuncts to overcome treatment resistance in exposure-based therapies. This article is part of a Special Issue entitled ‘Cognitive Enhancers’. PMID:22722028

  4. Inhibition of histone deacetylase 3 via RGFP966 facilitates cortical plasticity underlying unusually accurate auditory associative cue memory for excitatory and inhibitory cue-reward associations.

    PubMed

    Shang, Andrea; Bylipudi, Sooraz; Bieszczad, Kasia M

    2018-05-31

    Epigenetic mechanisms are key for regulating long-term memory (LTM) and are known to exert control on memory formation in multiple systems of the adult brain, including the sensory cortex. One epigenetic mechanism is chromatin modification by histone acetylation. Blocking the action of histone de-acetylases (HDACs) that normally negatively regulate LTM by repressing transcription has been shown to enable memory formation. Indeed, HDAC inhibition appears to facilitate memory by altering the dynamics of gene expression events important for memory consolidation. However, less understood are the ways in which molecular-level consolidation processes alter subsequent memory to enhance storage or facilitate retrieval. Here we used a sensory perspective to investigate whether the characteristics of memory formed with HDAC inhibitors are different from naturally-formed memory. One possibility is that HDAC inhibition enables memory to form with greater sensory detail than normal. Because the auditory system undergoes learning-induced remodeling that provides substrates for sound-specific LTM, we aimed to identify behavioral effects of HDAC inhibition on memory for specific sound features using a standard model of auditory associative cue-reward learning, memory, and cortical plasticity. We found that three systemic post-training treatments of an HDAC3-inhibitor (RGPF966, Abcam Inc.) in rats in the early phase of training facilitated auditory discriminative learning, changed auditory cortical tuning, and increased the specificity for acoustic frequency formed in memory of both excitatory (S+) and inhibitory (S-) associations for at least 2 weeks. The findings support that epigenetic mechanisms act on neural and behavioral sensory acuity to increase the precision of associative cue memory, which can be revealed by studying the sensory characteristics of long-term associative memory formation with HDAC inhibitors. Published by Elsevier B.V.

  5. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    PubMed

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2017-06-15

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism. Experimental Design: We used EGFR -mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR. Results: EGFR -mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR -mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR -T790M mutations. Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR -mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139-49. ©2016 AACR . ©2016 American Association for Cancer Research.

  6. Effects of histone deacetylase inhibitor sodium butyrate on heroin seeking behavior in the nucleus accumbens in rats.

    PubMed

    Chen, Wei-Sheng; Xu, Wen-Jin; Zhu, Hua-Qiang; Gao, Lei; Lai, Miao-Jun; Zhang, Fu-Qiang; Zhou, Wen-Hua; Liu, Hui-Fen

    2016-12-01

    Histone acetylation and other modifications of the chromatin are important regulators of gene expression and may contribute to drug-induced behaviors and neuroplasticity. Inhibition of histone deacetylases (HDAC) activity results in the change of some drug-induced behaviors,however, relatively little is known about the effects of HDAC inhibitors on heroin-seeking behavior. In the present study, male rats were trained to self-administer heroin under a FR1 schedule for consecutive 14 days, followed by 14 daily 2h extinction session in the operant chamber. After training, the heroin priming (250μg/kg) was introduced for the reinstatement of heroin-seeking behavior. Pretreatment with sodium butyrate (NaB) (200 or 400mg/kg, i.p.), an inhibitor of HDAC, failed to affect heroin self-administration. Additionally,systemic administration of NaB (400mg/kg, i.p.)increased significantly the reinstatement of heroin-seeking induced by heroin priming when NaB administered 12h, but not 6h before the reinstatement test. The same effect was observed after the intracerebroventricular injection of NaB (5μL, 100μg/μL). Moreover, the levels of histone H3 acetylation at lysine 18(H3K18)and H4 acetylation at lysine 5 or lysine 8(H4K5 or H4K8)in the accumbens nucleus core and shell were remarkably increased during the reinstatement and were further strengthened after intracerebroventricular injection of NaB. These results demonstrated that activation of histone acetylation may be involved in the heroin-seeking behavior, and identifying these epigenetic changes will be critical in proposing a novel pharmacological strategy for treating heroin addiction. Copyright © 2016. Published by Elsevier B.V.

  7. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC)

    PubMed Central

    Anantharaju, Preethi G.; Reddy, Deepa B.; Padukudru, Mahesh A.; Chitturi, CH. M. Kumari; Vimalambike, Manjunath G.

    2017-01-01

    Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis. PMID:29190639

  8. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC).

    PubMed

    Anantharaju, Preethi G; Reddy, Deepa B; Padukudru, Mahesh A; Chitturi, Ch M Kumari; Vimalambike, Manjunath G; Madhunapantula, SubbaRao V

    2017-01-01

    Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis.

  9. Experimental study on inhibitory effects of histone deacetylase inhibitor MS-275 and TSA on bladder cancer cells.

    PubMed

    Qu, Wei; Kang, Yin-Dong; Zhou, Mei-Sheng; Fu, Li-Li; Hua, Zhen-Hao; Wang, Li-Ming

    2010-01-01

    To investigate the inhibitory effect of histone deacetylase (HDAC) inhibitors (MS-275 and TSA) on T24 human bladder cancer cells in vitro, and explore the possible mechanism. The MTT assay was employed to evaluate the inhibitory effect of MS-275 and TSA on T24 cell growth. FCM was used to analyze the variation of T24 cell cycle distribution and the apoptotic ratio after T24 cells were treated with MS-275 and TSA. Histone acetylation level was detected by Western blot. mRNA expression of p21 WAF1/CIP1, cyclin A, and cyclin E was measured by FQ-PCR. Dynamic changes of Bcl-2 and bax expression were detected by FCM. MS-275 and TSA inhibited T24 cell growth in a concentration and time-dependent manner. Treatment with 4 μmol/l MS-275 or 0.4 μmol/l TSA blocked cell cycling in the G0/G1 phase and induced a significant increase in cell apoptosis. MS-275 and TSA significantly increased the level of histone acetylation, induced p21CIP1WAF1 mRNA expression, and inhibited cyclin A mRNA expression, though no significant effect was observed on cyclin E. Bcl-2 expression was down-regulated, while bax expression was up-regulated. HDAC inhibitors can block bladder cancer cell cycle in vitro and induce apoptosis. The molecular mechanism may be associated with increased level of histone acetylation, down-regulation of p21WAF1/CIP1 expression, up-regulation of cyclin A expression, and dynamic change of bcl-2 and bax expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. A metabolic screening study of trichostatin A (TSA) and TSA-like histone deacetylase inhibitors in rat and human primary hepatocyte cultures.

    PubMed

    Elaut, G; Laus, G; Alexandre, E; Richert, L; Bachellier, P; Tourwé, D; Rogiers, V; Vanhaecke, T

    2007-04-01

    Hydroxamic acid (HA)-based histone deacetylase (HDAC) inhibitors, with trichostatin A (TSA) as the reference compound, are potential antitumoral drugs and show promise in the creation of long-term primary cell cultures. However, their metabolic properties have barely been investigated. TSA is rapidly inactivated in rodents both in vitro and in vivo. We previously found that 5-(4-dimethylaminobenzoyl)aminovaleric acid hydroxyamide or 4-Me2N-BAVAH (compound 1) is metabolically more stable upon incubation with rat hepatocyte suspensions. In this study, we show that human hepatocytes also metabolize TSA more rapidly than compound 1 and that similar pathways are involved. Furthermore, structural analogs of compound 1 (compounds 2-9) are reported to have the same favorable metabolic properties. Removal of the dimethylamino substituent of compound 1 creates a very stable but 50% less potent inhibitor. Chain lengthening (4 to 5 carbon spacer) slightly improves both potency and metabolic stability, favoring HA reduction to hydrolysis. On the other hand, Calpha-unsaturation and spacer methylation not only reduce HDAC inhibition but also increase the rate of metabolic inactivation approximately 2-fold, mainly through HA reduction. However, in rat hepatocyte monolayer cultures, compound 1 is shown to be extensively metabolized by phase II conjugation. In conclusion, this study suggests that simple structural modifications of amide-linked TSA analogs can improve their phase I metabolic stability in both rat and human hepatocyte suspensions. Phase II glucuronidation, however, can compensate for their lower phase I metabolism in rat hepatocyte monolayers and could play a yet unidentified role in the determination of their in vivo clearance.

  11. Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling

    PubMed Central

    Carpio, Lomeli R.; Bradley, Elizabeth W.; McGee-Lawrence, Meghan E.; Weivoda, Megan M.; Poston, Daniel D.; Dudakovic, Amel; Xu, Ming; Tchkonia, Tamar; Kirkland, James L.; van Wijnen, Andre J.; Oursler, Merry Jo; Westendorf, Jennifer J.

    2017-01-01

    Histone deacetylase (HDAC) inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, each of these drugs inhibits multiple HDACs and has detrimental effects on the skeleton. To better understand how HDAC inhibitors affect endochondral bone formation, we conditionally deleted one of their targets, Hdac3, pre- and postnatally in type II collagen α1 (Col2α1)–expressing chondrocytes. Embryonic deletion was lethal, but postnatal deletion of Hdac3 delayed secondary ossification center formation, altered maturation of growth plate chondrocytes, and increased osteoclast activity in the primary spongiosa. HDAC3-deficient chondrocytes exhibited increased expression of cytokine and matrix-degrading genes (Il-6, Mmp3, Mmp13, and Saa3) and a reduced abundance of genes related to extracellular matrix production, bone development, and ossification (Acan, Col2a1, Ihh, and Col10a1). Histone acetylation increased at and near genes that had increased expression. The acetylation and activation of nuclear factor κB (NF-κB) were also increased in HDAC3-deficient chondrocytes. Increased cytokine signaling promoted autocrine activation of Janus kinase (JAK)–signal transducer and activator of transcription (STAT) and NF-κB pathways to suppress chondrocyte maturation, as well as paracrine activation of osteoclasts and bone resorption. Blockade of interleukin-6 (IL-6)–JAK–STAT signaling, NF-κB signaling, and bromodomain extraterminal proteins, which recognize acetylated lysines and promote transcriptional elongation, significantly reduced Il-6 and Mmp13 expression in HDAC3-deficient chondrocytes and secondary activation in osteoclasts. The JAK inhibitor ruxolitinib also reduced osteoclast activity in Hdac3 conditional knockout mice. Thus, HDAC3 controls the temporal and spatial expression of tissue-remodeling genes and inflammatory responses in chondrocytes to ensure proper endochondral ossification during development. PMID:27507649

  12. Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases

    PubMed Central

    Thakur, Vijay S.; Gupta, Sanjay

    2012-01-01

    Green tea polyphenols (GTPs) reactivate epigenetically silenced genes in cancer cells and trigger cell cycle arrest and apoptosis; however, the mechanisms whereby these effects occur are not well understood. We investigated the molecular mechanisms underlying the antiproliferative effects of GTP, which may be similar to those of histone deacetylase (HDAC) inhibitors. Exposure of human prostate cancer LNCaP cells (harboring wild-type p53) and PC-3 cells (lacking p53) with 10–80 μg/ml of GTP for 24 h resulted in dose-dependent inhibition of class I HDAC enzyme activity and its protein expression. GTP treatment causes an accumulation of acetylated histone H3 in total cellular chromatin, resulting in increased accessibility to bind with the promoter sequences of p21/waf1 and Bax, consistent with the effects elicited by an HDAC inhibitor, trichostatin A. GTP treatment also resulted in increased expression of p21/waf1 and Bax at the protein and message levels in these cells. Furthermore, treatment of cells with proteasome inhibitor, MG132 together with GTP prevented degradation of class I HDACs, compared with cells treated with GTP alone, indicating increased proteasomal degradation of class I HDACs by GTP. These alterations were consistent with G0–G1 phase cell cycle arrest and induction of apoptosis in both cell lines. Our findings provide new insight into the mechanisms of GTP action in human prostate cancer cells irrespective of their p53 status and suggest a novel approach to prevention and/or therapy of prostate cancer achieved via HDAC inhibition. PMID:22114073

  13. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells.

    PubMed

    Oh, Eun-Taex; Park, Moon-Taek; Choi, Bo-Hwa; Ro, Seonggu; Choi, Eun-Kyung; Jeong, Seong-Yun; Park, Heon Joo

    2012-04-01

    Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.

  14. Chorein interacts with α-tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells.

    PubMed

    Sasaki, Natsuki; Nakamura, Masayuki; Kodama, Akiko; Urata, Yuka; Shiokawa, Nari; Hayashi, Takehiro; Sano, Akira

    2016-11-01

    The autophagy pathway has recently been implicated in several neurodegenerative diseases. Recently, it was reported that chorein-depleted cells showed accumulation of autophagic markers and impaired autophagic flux. Here, we demonstrate that chorein overexpression preserves cell viability from starvation-induced cell death in human embryonic kidney 293 (HEK293) cells. Subsequent coimmunoprecipitation and reverse coimmunoprecipitation assays using extracts from chorein that stably overexpressed HEK293 cells revealed that chorein interacts with α-tubulin and histone deacetylase 6, a known α-tubulin deacetylater and central component of basal autophagy. Indeed, acetylated α-tubulin immunoreactivity was significantly decreased in chorein that stably overexpressed HEK293 cells. These results suggest that chorein/histone deacetylase 6/α-tubulin interactions may play an important role in starvation-induced cell stress, and their disruption may be one of the molecular pathogenic mechanisms of chorea-acanthocytosis.-Sasaki, N., Nakamura, M., Kodama, A., Urata, Y., Shiokawa, N., Hayashi, T., Sano, A. Chorein interacts with α-tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells. © FASEB.

  15. HDAC5-mTORC1 Interaction in Differential Regulation of Ghrelin and Nucleobindin 2 (NUCB2)/Nesfatin-1.

    PubMed

    Ma, Liangxiao; Tang, Hong; Yin, Yue; Yu, Ruili; Zhao, Jing; Li, Yin; Mulholland, Michael W; Zhang, Weizhen

    2015-11-01

    Sodium valporate (VPA), a broad-spectrum inhibitor of histone deacetylases (HDACs), increased ghrelin whereas decreased nesfatin-1 in mice fed normal chow diet or high-fat diet. Alterations in ghrelin and nucleobindin 2/nesfatin-1 were mediated by HDAC5 but not HDAC4. Activation of mTORC1 significantly attenuated the effect of VPA on ghrelin and nesfatin-1 levels. HDAC5 coimmunoprecipitated with raptor. Inhibition of HDAC5 by VPA, trichostatin A, or siHDAC5 markedly increased acetylation of raptor Lys840 and subsequent phosphorylation of raptor Ser792, resulting in suppression of mTORC1 signaling. A raptor mutant lacking the Lys840 acetylation site showed a decrement in phosphorylation of raptor Ser792 and subsequent increase in mTORC1 signaling. These alterations were associated with reciprocal changes in ghrelin and nucleobindin 2/nesfatin-1 expression. These findings reveal HDAC5-mTORC1 signaling as a novel mechanism in the differential regulation of gastric ghrelin and nesfatin-1.

  16. Targeting Histone Deacetylases in Diseases: Where Are We?

    PubMed Central

    Benedetti, Rosaria; Conte, Mariarosaria

    2015-01-01

    Abstract Significance: Epigenetic inactivation of pivotal genes involved in cell growth is a hallmark of human pathologies, in particular cancer. Histone acetylation balance obtained through opposing actions of histone deacetylases (HDACs) and histone acetyltransferases is one epigenetic mechanism controlling gene expression and is, thus, associated with disease etiology and progression. Interfering pharmacologically with HDAC activity can correct abnormalities in cell proliferation, migration, vascularization, and death. Recent Advances: Histone deacetylase inhibitors (HDACi) represent a new class of cytostatic agents that interfere with the function of HDACs and are able to increase gene expression by indirectly inducing histone acetylation. Several HDACi, alone or in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, are currently being used in clinical trials for solid and hematological malignancies, and are, thus, promising candidates for cancer therapy. Critical Issues: (i) Non-specific (off-target) HDACi effects due to activities unassociated with HDAC inhibition. (ii) Advantages/disadvantages of non-selective or isoform-directed HDACi. (iii) Limited number of response-predictive biomarkers. (iv) Toxicity leading to dysfunction of critical biological processes. Future Directions: Selective HDACi could achieve enhanced clinical utility by reducing or eliminating the serious side effects associated with current first-generation non-selective HDACi. Isoform-selective and pan-HDACi candidates might benefit from the identification of biomarkers, enabling better patient stratification and prediction of response to treatment. Antioxid. Redox Signal. 23, 99–126. PMID:24382114

  17. Acetylation of the RhoA GEF Net1A controls its subcellular localization and activity

    PubMed Central

    Song, Eun Hyeon; Oh, Wonkyung; Ulu, Arzu; Carr, Heather S.; Zuo, Yan; Frost, Jeffrey A.

    2015-01-01

    ABSTRACT Net1 isoform A (Net1A) is a RhoA GEF that is required for cell motility and invasion in multiple cancers. Nuclear localization of Net1A negatively regulates its activity, and we have recently shown that Rac1 stimulates Net1A relocalization to the plasma membrane to promote RhoA activation and cytoskeletal reorganization. However, mechanisms controlling the subcellular localization of Net1A are not well understood. Here, we show that Net1A contains two nuclear localization signal (NLS) sequences within its N-terminus and that residues surrounding the second NLS sequence are acetylated. Treatment of cells with deacetylase inhibitors or expression of active Rac1 promotes Net1A acetylation. Deacetylase inhibition is sufficient for Net1A relocalization outside the nucleus, and replacement of the N-terminal acetylation sites with arginine residues prevents cytoplasmic accumulation of Net1A caused by deacetylase inhibition or EGF stimulation. By contrast, replacement of these sites with glutamine residues is sufficient for Net1A relocalization, RhoA activation and downstream signaling. Moreover, the N-terminal acetylation sites are required for rescue of F-actin accumulation and focal adhesion maturation in Net1 knockout MEFs. These data indicate that Net1A acetylation regulates its subcellular localization to impact on RhoA activity and actin cytoskeletal organization. PMID:25588829

  18. TSA protects H9c2 cells against thapsigargin-induced apoptosis related to endoplasmic reticulum stress-mediated mitochondrial injury.

    PubMed

    Li, Zhiping; Liu, Yan; Dai, Xinlun; Zhou, Qiangqiang; Liu, Xueli; Li, Zeyu; Chen, Xia

    2017-05-01

    Endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. Recently, TSA has shown protective effects on ERS and its mechanisms related to ER pathway has been previously characterized. However, whether TSA exerts its protective role via metabolic events remain largely undefined. Objectives : To explore the possible involvement of the metabolic changes during ERS and to better understand how TSA influence mitochondrial function to facilitate cellular adaptation. Results : TSA is an inhibitor of histone deacetylase which could significantly inhibit H9c2 cell apoptosis induced by Thapsigargin (TG). It also intervene the decrease of mitochondrial membrane potential. By immunofluorescence staining, we have shown that GRP78 was concentrated in the perinuclear region and co-localized with ER. However, treatments with TG and TSA could let it overlap with the mitochondrial marker MitoTracker. Cellular fractionation also confirmed the location of GRP78 in mitochondrion. TSA decreases ERS-induced cell apoptosis and mitochondrial injury may related to enhance the location of GRP78 in mitochondrion.

  19. Prostate-Specific Membrane Antigen Targeted Polymersomes for Delivering Mocetinostat and Docetaxel to Prostate Cancer Cell Spheroids.

    PubMed

    Karandish, Fataneh; Haldar, Manas K; You, Seungyong; Brooks, Amanda E; Brooks, Benjamin D; Guo, Bin; Choi, Yongki; Mallik, Sanku

    2016-11-30

    Prostate cancer cells overexpress the prostate-specific membrane antigen (PSMA) receptors on the surface. Targeting the PSMA receptor creates a unique opportunity for drug delivery. Docetaxel is a Food and Drug Administration-approved drug for treating metastatic and androgen-independent prostate cancer, and mocetinostat is a potent inhibitor of class I histone deacetylases. In this study, we prepared reduction-sensitive polymersomes presenting folic acid on the surface and encapsulating either docetaxel or mocetinostat. The presence of folic acid allowed efficient targeting of the PSMA receptor and subsequent internalization of the polymeric vesicles in cultured LNCaP prostate cancer cell spheroids. The intracellular reducing agents efficiently released docetaxel and mocetinostat from the polymersomes. The combination of the two drug-encapsulated polymersome formulations significantly ( p < 0.05) decreased the viability of the LNCaP cells (compared to free drugs or control) in three-dimensional spheroid cultures. The calculated combination index value indicated a synergistic effect for the combination of mocetinostat and docetaxel. Thus, our PSMA-targeted drug-encapsulated polymersomes has the potential to lead to a new direction in prostate cancer therapy that decreases the toxicity and increases the efficacy of the drug delivery systems.

  20. Prostate-Specific Membrane Antigen Targeted Polymersomes for Delivering Mocetinostat and Docetaxel to Prostate Cancer Cell Spheroids

    PubMed Central

    2016-01-01

    Prostate cancer cells overexpress the prostate-specific membrane antigen (PSMA) receptors on the surface. Targeting the PSMA receptor creates a unique opportunity for drug delivery. Docetaxel is a Food and Drug Administration-approved drug for treating metastatic and androgen-independent prostate cancer, and mocetinostat is a potent inhibitor of class I histone deacetylases. In this study, we prepared reduction-sensitive polymersomes presenting folic acid on the surface and encapsulating either docetaxel or mocetinostat. The presence of folic acid allowed efficient targeting of the PSMA receptor and subsequent internalization of the polymeric vesicles in cultured LNCaP prostate cancer cell spheroids. The intracellular reducing agents efficiently released docetaxel and mocetinostat from the polymersomes. The combination of the two drug-encapsulated polymersome formulations significantly (p < 0.05) decreased the viability of the LNCaP cells (compared to free drugs or control) in three-dimensional spheroid cultures. The calculated combination index value indicated a synergistic effect for the combination of mocetinostat and docetaxel. Thus, our PSMA-targeted drug-encapsulated polymersomes has the potential to lead to a new direction in prostate cancer therapy that decreases the toxicity and increases the efficacy of the drug delivery systems. PMID:27917408

Top